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ABSTRACT

We present a novel image classification technique for detect-
ing multiple objects (called subobjects) in a single image. In
addition to image classifiers, we apply spatial relationships
among the subobjects to verify and to predict locations of
detected and undetected subobjects, respectively. By contin-
uously refining the spatial relationships throughout the de-
tection process, even locations of completely occluded ex-
hibits can be determined. This approach is applied in the
context of PhoneGuide, an adaptive museum guidance sys-
tem for camera-equipped mobile phones.

Laboratory tests as well as a field experiment reveal recog-
nition rates and performance improvements when compared
to related approaches.
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INTRODUCTION AND MOTIVATION
Many museums are lacking in engaging and intuitive forms
of information presentation. In general, text labels are placed
close to exhibited objects for displaying related content, while
audio guides can provide auditive complements. Modern
museum guidance systems will enable further types of multi-
media presentations in addition to text and audio, such as im-
ages, videos, 2D and 3D graphics. They will also make the
identification of individual objects more intuitive. Instead of
keying reference numbers, as it is the case for conventional
audio guides, exhibits can be automatically detected through
image classification techniques.

We developed an adaptive museum guidance system called
PhoneGuide [11,7, 4, 6, 5]. It utilizes the visitors’ personal
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Figure 1. A visitor is taking a photo of a subobject group with his
mobile phone (a). Three of the correctly detected subobjects are labeled
(b). They could be identified through image classification in this case.
If subobjects cannot be detected through image classification, such as
in (c) where a shadow is cast onto the exhibit on the right-hand side, the
known spatial relationships among the subobjects still allow a correct
identification.

mobile phones for information retrieval and serves as basis
for our subobject detection approach presented in this paper.
The front-end application of PhoneGuide is executed on the
camera-equipped mobile devices of the visitors, which al-
lows identifying individual exhibits by simply taking a sin-
gle photo of them. Image classification techniques are car-
ried out locally on the phone that result in a probability-
sorted objects list which is presented on the screen [4]. With
a minimum number of clicks, the user can select the object
of interest from this list to retrieve related multimedia infor-
mation. No online server connection is required — neither for
classification nor for retrieving the multimedia content, since
all classification steps are executed directly on the phone and
the entire data is kept on the device. This makes PhoneGuide
scalable: Waiting times for classification results are indepen-
dent of the number of simultaneous users and remain con-
stant. No transmission costs for communication services are
necessary.

So far, we combined different techniques, such as image
classification with global features [11], pervasive tracking
[7], dynamic classification adaptation [4, 6], and ad-hoc net-



work communication [5] for achieving recognition rates in
the order of 82%-92% under realistic conditions (i.e., more
than one hundred objects, in real museums, with real visi-
tors). However, up to now, PhoneGuide is only able to detect
single objects — by convention, the one that is centered in the
camera image. In many cases, multiple objects are placed in
showcases or behind other barriers to protect them against
environmental influences and human curiosity. Thus, they
are captured together in a single image.

In this paper, we present a new classification technique that
is able to identify and to label all exhibits (called subobjects)
that appear in one image. One approach for achieving this
could be to apply sophisticated object recognition techniques
based on local image features, such as SIFT [15]. This, how-
ever, would significantly increase the overall classification
time and the amount of classification data required on each
device compared to our approach. In addition, the complex-
ity of such techniques scales with the number of objects to
be identified.

To avoid such data overheads and to ensure scalability, we
propose a new subobject detection technique that combines
image classification based on global color features, artificial
neural networks and spatial image relationships. Our method
follows two basic steps: First, the global context of the cap-
tured photograph is identified via image classification (i.e.,
the regular object recognition technique based on global im-
age features, as currently implemented for PhoneGuide [4]).
With this context information, the context-related subobjects
are detected in the image with a combination of image classi-
fication and spatial relationships in the second step. The spa-
tial relationships become more and more reliable the more
subobjects have been found. On the other hand, reliable
spatial relationships will restrict the search regions for im-
age classification. Thus, the entire classification becomes
the more robust and faster, the more subobjects have been
detected and their spatial relationships have been derived.
Even partially or completely occluded subobjects (e.g., oc-
cluded by shadows or other exhibits) for which image clas-
sifiers fail, can be detected with our approach. Finally, all
detected subobjects are labeled as shown in figure 1, and
the user can select the object of interest for retrieving corre-
sponding multimedia information.

The remaining sections of this paper will describe the dif-
ferent classification techniques in more detail. We will show
that the recognition of subobjects using spatial relationships
will be up to 68% faster than related approaches without spa-
tial relationships. Results of a field experiment in a local
museum will illustrate that unexperienced users reach an av-
erage recognition rate for subobjects of 85.6% under realistic
conditions.

RELATED WORK

We divide the related work into two main categories: mu-
seum guidance systems that are similar to PhoneGuide and
object detection approaches that are enhanced through spa-
tial relationships.

Museum Guidance Systems
Fritz et al. [12] introduced a city guide for mobile phones:
Datasets including photographs of buildings or monuments

and the respective GPS information are captured by tourists
and transferred to a remote server via UMTS or GPRS. On
the server, the images are compared with a database of known
sights via SIFT classification [15]. Finally, the correspond-
ing multimedia data is sent back to the user’s phone after
the objects have been classified. Hare et al. [13] developed
a museum guide for pocket PCs. Photographed images of
paintings are transferred to a remote server to compute SIFT
features. For classification, however, they apply an adapted
text retrieval technique. Nonetheless, the recognition is com-
parable to that of [12].

Bay et al. [2] introduced a museum guide based on a tablet
PC. In contrast to the previous two approaches, the identi-
fication is performed directly on the device, and no server
communication is established. An enhancement of SIFT,
called SURF [3], is applied for classification. In their pre-
vious work [1], they distributed Bluetooth emitters to de-
termine the users’ locations and consequently narrow the
set of possible results. Takacs et al. [19] implemented a
performance-improved version of SURF on today’s mobile
phones for outdoor Augmented Reality applications. To re-
move outliers of feature pairings, they perform a geometric
consistency check based on an affine model.

Most of these approaches allow detecting multiple objects
in one image. However, they rely exclusively on local im-
age classification techniques or perform only basic transfor-
mation models [19] to verify detected image feature pairs.
Instead, we take into account precise spatial relationships
among the objects to narrow search areas as well as to ver-
ify and adapt results of the image classification during the
recognition process. In addition, PhoneGuide supports a
temporal adaptation to dynamic environmental changes and
user behavior. It improves the recognition rate over time and
adapts to preferred user locations [4].

Object Detection Enhanced by Spatial Relationships
Spatial relationships describe specific geometric dependen-
cies between objects. They are applied in many different
areas, such as geographic information systems or content-
based image retrieval. Yet, their descriptions and definitions
vary dependent on the application. For instance, topological
relations [9] distinguish the relationships between two ob-
jects by analyzing the intersections of their boundaries and
interiors (e.g. occluded, partly occluded, or disjunct). Di-
rectional relations [17], as another example, are described
by directional attributes like north, west, south-east, etc.
Spatial relationships, however, are not only applied to sep-
arate individual objects but also to describe different parts
within a single object. Pham et al. [18] introduced a detector
that consists of several spatially distributed “part detectors”
that are based on template matching. The spatial relations
between the part detectors are defined by parameters of a
Gaussian distribution which are extracted from the part de-
tectors’ locations. The object detection itself is carried out
by maximizing a function based on the output of the part de-
tectors and their locations. Such a detector configuration is
able to achieve a higher recognition rate than a single fixed
template based detector due to higher flexibility with respect
to object distortion.

Spatial relationships are also utilized to generate a spatial
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Figure 2. Flow chart of the user interface for single-object recognition
and scene recognition with consecutive subobject classification. After
the user has taken a photograph of an exhibit (1a), an image classifi-
cation is carried out and the result is presented as a probability-sorted
objects list (1b). The correct object can be selected with a minimum
number of clicks for receiving multimedia information (1c¢). If a group
of subobjects was captured rather than a single object (2a), the user
has to acknowledge the scene classification first (2b), before a consec-
utive subobject classification is carried out. The detected exhibits are
labeled in the photograph (2c¢). Finally, the user can select the desired
subobject and the corresponding multimedia content is presented (2d).

orientation graph [10]. One node of a graph represents ei-
ther a part of an object or a single object within a group of
objects. The object detection is then realized by performing
different graph matching algorithms. In [22], face recogni-
tion is carried out by elastic bunch graph matching. A face
is defined by sets of wavelet components with different ori-
entations and scales called “jets”. They are connected with
edges holding a distance and an angle. The initial location
of the faces must be known. In [16], spatial relationships
verify the classification of regions (e.g. sky, tree, street) af-
ter an image segmentation. In a post processing step, the
consistency of all classified regions is checked and misclas-
sifications (e.g. street located above the sky) are corrected.
The spatial relationships are described by angle histograms,
resulting from the slope of all possible point pairs of two re-
gions.

All of these approaches utilize the spatial relationships in a
post processing step only. Thus, the object locations have
to be known before the spatial relationships can be applied.
In our approach, the spatial relationships do support image
classifiers during the actual classification process and pre-
dict subobjects’ locations. This leads to a faster subobject
detection and reduces misclassifications from the beginning.
The classification becomes more robust, the more spatial re-
lationships have been found.

OFFLINE REGISTRATION, TRAINING, AND EXTRACTION

OF SPATIAL RELATIONSHIPS
As mentioned earlier, the classification process is separated
into two steps (cf. figure 2): In the first step (la, 2a), a

scene, containing one or multiple exhibits, is photographed
and identified as explained in [4]. It identifies the scene (and
therefore provides the global context information) rather than
individual subobjects in the image. Afterwards, a probability-
sorted objects list is displayed (1b, 2b). It contains all pos-
sible candidates, beginning with the most likely candidate
on the left-hand side. The user can now select the correct
scene context with a minimum number of clicks (only one,
if the scene has been classified correctly). Browsing through
the list does not only show thumbnails but also icons in-
dicating what kind of information is available. If, for in-
stance, the image contains only one single object, these icons
indicate the different types of multimedia content that are
available (e.g., audio, video, text, images), which are played
back after selecting the corresponding list entry (1c). Note,
that the same technique was used in previous versions of
PhoneGuide to detect objects which are centered in the im-
age by definition. The information whether one or multiple
objects are present in a captured photograph can simply be
tagged to the classification result (i.e., together with the in-
formation about the recognized object or scene).

If the information icon indicates that the photographed scene
contains multiple exhibits (2b), a consecutive classification
step takes place that identifies all subobjects. The result is
displayed in a subobjects list that labels the different exhibits
(2c). After a final selection of the object of interest, the sub-
object’s individual multimedia content is presented (2d).
The details on the individual classification steps will be de-
scribed below. All classifiers (i.e., for scene context and for
subobjects) are based on global color features and 3-layer
artificial neural networks, as explained in [4]. For an initial
training of the neural networks, videos are recorded for all
exhibited scenes. The videos show the scene from differ-
ent perspectives, orientations and scales. Keyframes are ex-
tracted from each video, clustered and features are computed
for representative keyframes. These features are used for an
initial training of the neural networks on a server during an
one-time preprocessing step. The trained neural networks
are then applied on the phones for the scene classification.
After the initial training, the parameters of the neural net-
works can be updated through adaptation techniques — either
when visitors enter or leave the museum [4, 6] or during run-
time via ad-hoc phone-to-phone networks [5]. Describing
details of these techniques is out of the scope of this paper.
The interested reader is referred to the individual previous
publications.

For supporting the identification of subobjects during the
second classification step, however, each subobject has to be
considered during the initial training phase. We achieve this
by identifying the bounding box of each subobject manu-
ally in the first frame of the recorded training videos of each
scene, and track them via a kernel-based mean shift algo-
rithm automatically through the entire video sequence. For
the bounding boxes of each subobject in each video frame,
we compute the same global color features as described in
[4] to train subobject-individual neural networks. In addi-
tion to this, the spatial relationships among the tracked sub-
objects throughout each scene video are computed, recorded
and stored automatically. These two components (image
classifiers and spatial relationships) are the basis of our sub-
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Figure 3. Flow chart of the offline preprocessing: After a video of a scene with subobjects was recorded, a bounding box for each exhibit is manually
defined in the first frame (a). They are clustered automatically according to their size (b). For each frame in the video, all subobjects are tracked
(c), subimages of subobjects and non-subobjects (d) are stored, and the spatial relationships are extracted (e). Finally, global color features of all

subimages are computed to train the subobject-individual classifiers (f).

object detection algorithm. They are initially computed on
the server as part of the one-time preprocessing step. Once
computed, they are used on phones for subobject classifi-
cation during runtime. The following sections will explain
how these two components are computed in more detail.

Registration and Tracking of Subobjects

As indicated above, the bounding boxes of all subobjects are
manually defined in the first frame of a scene video (cf. fig-
ure 3a). They have to be automatically tracked throughout
the subsequent video frames to compute global features of
the subimages framed by the axis-aligned bounding boxes
and for deriving the spatial relationships among the detected
subojects.

We evaluated three different tracking techniques for accom-
plishing this: Template matching with fast normalized cross-
correlation [14], tracking based on SIFT features [15] and
kernel based mean shift tracking [8]. We found that mean
shift tracking is the most robust technique for our applied
low-resolution video recordings (160x120 pixels). Local fea-
ture extraction techniques, such as SIFT, would perform sim-
ilarly if the video resolution would be increased.

The tagged subobjects are clustered based on the size of
their bounding boxes via a simple agglomerative clustering
technique (3b). This is necessary to ensure that the correct
subimage sizes (search masks) are selected for feature cal-
culation on the phones during runtime. The subobjects are
tracked throughout all frames via mean shift tracking (3c).
The 2D pixel locations of each subobject’s center on the im-
age plane are then used for deriving the spatial relationships
to other subobjects within each frame (3e). In addition to the
subimages that actually contain exhibits, additional subim-
ages of the same size are also automatically collected in each
frame (3d). We refer to them as non-subobject subimages.
They are used later as negative samples for training the neu-
ral networks.

Generation of Subobject Classifiers

After tracking all subobjects throughout the training videos,
a certain number of subimages for each subobject is stored
and available for training (figure 3f). The number of subim-
ages can vary among the subobjects. Only subimages that
contain a single subobject which is not occluded by others
as well as subimages that are within the frame boundaries

are considered. Global color features (three 10-bin color
histograms, mean and variance in color channels [4]) are ex-
tracted from each subimage and combined to a feature vec-
tor that is applied for training two different 3-layer neural
network classifiers: A general classifier Cy;; is trained by
using the computed feature vectors of all detected subob-
jects. Consequently, for each subobject group, one Cl;; clas-
sifier is generated whose number of output neurons equals
the number of exhibits. This classifier can identify which
subobject of the subobject group has the highest probability
of being located in a specified region.

The second type of classifiers Csp.. are specialized to detect
individual exhibits (i.e., one Csp classifier per subobject).
Thus, only one output neuron is necessary in this case. It
is trained by applying the feature vectors of one particular
subobject in combination with the features extracted from
the non-subobject subimages which serve as negative train-
ing samples.

Applying the results of both classifiers ensures a more robust
classification and improves the recognition results [21](cp.
following chapter).

Extraction of Spatial Relationships

If the detection of subobjects would be exclusively performed
through image classification, the entire image has to be scanned
and tested against different subobject classifiers. This is both
computational exhausting and unreliable. Spatial relation-
ships describe how the subobjects are arranged in relation
to one another (figure 3e). This has preliminary two advan-
tages for the online classification during runtime: First, the
spatial relationships localize specific search areas for unde-
tected subobjects. Consequently, if at least one subobject
is detected, the locations of the remaining subobjects can
be approximated and the searching time decreases accord-
ingly. The more exhibits are detected over time, the more
precise the prediction of the remaining subobjects’ locations
becomes. The second advantage is that the spatial relation-
ships serve as an additional classifier. If, for instance, clas-
sifiers Cqy and Cgpe detect a subobject at an impossible
location (this can be derived from the spatial relationships),
the result is discarded and a new search is initiated.

We use two geometric parameters for describing the spa-
tial relationships among tracked subobjects: distances and
angles. The distances describe the normalized range be-
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Figure 4. Predicted search area of an undetected subobject (B) relative
to a detected exhibit (A). The corresponding ring sector is defined by
the minimum and maximum distances and angles that were extracted
during subobject tracking in the offline preprocessing.

tween two subobjects within the image. They are mutable
against scaling (i.e., the distance of a visitor to the exhibits)
but invariant against rotation (i.e., orientation of the mobile
phone when a photo is taken). The angles between subob-
jects are defined by the slope of a straight line that connects
two of them relative to the image’s horizontal edge. They
are rotation-variant, but invariant to scaling. Consequently,
combining both parameters leads to a robust and precise ge-
ometric mapping of the spatial relationships — in contrast to
e.g., a topological mapping.

Angle and distance parameters are usually different for each
frame. Therefore a 4-tuple (dist,in, diStmaz, anglemin,
angléepq,) of minimum and maximum distance and angle
is defined by the individual distances and angles collected
from each frame for each subobject pair. This 4-tuple de-
fines a ring sector (cf. figure 4) that describes the location
of one exhibit relative to another one. Each subobject is as-
sociated with all other exhibits by these 4-tuples. This leads

to a total number of (1;/ ) spatial relationship 4-tuples for NV
subobjects of one subobject group.

In summary, the result of the preprocessing as part of the ini-
tial one-time training procedure are the classifiers Cy;; (one

per scene) and C,,c. (one per subobject), the spatial relation-
ships ((];/ ) 4-tuples for IV subobjects per subobject group)
and the clustered subobject sizes per subobject group. This
data is transferred to the mobile phones and will be used for
online classification during runtime.

ONLINE SUBOBJECT DETECTION

The online subobject detection algorithm can be separated
into three main steps for identifying N subobjects: In the
first step, it searches for M, M < N subobjects that serve
as anchors for determining reliably the current rotation and
scale relationships among them. Then, the remaining N — M
subobjects can be detected faster while continuously refining
the spatial relationships. Finally, subobjects that were not
detected but are presumably in the image are located by pre-
diction through the geometric dependencies. The following
sections will explain this in more detail.

Detection of Anchor Subobjects
Since the correct scene context is given through the first clas-
sification step and the visitors’ feedback, the corresponding

classifiers (Cqu, Cspec), spatial relationships (angles, dis-
tances) and cluster information (sizes of search masks) can
be derived and selected accordingly.

For finding the first anchor subobject, no prior knowledge
about geometric relationships or the actual number of subob-
jects in the image is available due to the unknown perspec-
tive of the user’s location. Therefore, the algorithm starts
searching for subobjects from the center of the image, since
we assume that it is likely that visitors will center one of
the subobjects to a certain degree. A search mask (cf. fig-
ure 5a) is moved spirally around the center with a step size
that depends on the search mask’s size. Empirically, the step
size is chosen such that at least 80% of the previous search
region is superimposed by the current one. In each step,
the search mask’s size is adjusted to all the clustered sub-
object sizes that were generated during the offline training.
For each pixel region that is covered by a search mask, the
global color features are computed from a precomputed in-
tegral image [20]. Integral images speed-up the computation
of image features within subimage regions. These features
serve as input for the classifiers to identify the first anchor
subobject. It is detected if the following conditions are met
(cf. figure 5b): (1) the maximum excitation of C,; is above
a predefined threshold ¢, (2) the size of the identified subob-
ject equals to the size of the current search mask, and (3) the
specific classifier Cpe. of the candidate confirms the result
of the general classifier Cy;;. The final location of the de-
tected subobject is refined afterwards (cf. figure 5c) by mov-
ing the search mask in a small step size within a pre-defined
area around the initial position, and selecting the best match
(i.e., the position with the highest classification excitation).
This first anchor subobject (figure 5d) provides basic infor-
mation about the position of the remaining anchor subob-
jects. The region where the second anchor subobject is lo-
cated is defined by the spatial relationships that were ex-
tracted during the offline preprocessing (figure Se). The start-
ing point for searching the second anchor subobject is the
center of the derived ring sector.

After detecting the second and third subobject as explained
above, reliable information about the scale and rotation of
the phone and consequently of the captured image can be
derived. This is important since the spatial relationships
stored on the phone are absolute values and are either vari-
ant to scale or rotation. In addition, users align phones dif-
ferently, which changes the geometric dependencies among
different orientations and distances. Thus, correction factors
have to be computed for both parameters (distance, angle)
during the recognition process that compensate for differ-
ent phone alignments: The required distance scaling factor
is derived from the average ratio of the currently computed
distance and expected (from the offline preprocessing) dis-
tance between all possible detected subobject pairs. The ro-
tation correction angle is derived from the average quotient
of the differences between the detected and expected angle
as described in [10]. Newer phones have built-in accelerom-
eters which can be used to determine the relative pose of
the mobile phones. Such sensors can be applied to compute
the rotation correction angle before the subobject detection
starts. However, we also have to consider false positives
(i.e., wrongly detected subobjects). False positives influence
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the successive development of spatial relationships and lead
therefore to wrong search areas and to misclassifications of
subobjects. To overcome this, we apply the following func-
tion for expressing the classification quality of two related
subobjects. It weights and combines the results of the image
classification and of the spatial relationships:

SIM.go = w1 - P.+wo - SIMyg+ws-SIM, (1)
P.=P(A)-P(B) ()

|DAB_dAB|:|
SIM; = |1 - ————- 3
‘ { v | Y
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Equation 1 denotes the probability that two subobjects A and
B are detected correctly. This can be derived from three
components. The first component, P, (equation 2), com-
prises the probability that both subobjects are detected cor-
rectly. It is the product of the output probabilities of the
Cy classifier for A and B. The second component, STM,
(equation 3), denotes the normalized similarity (W = width,
H =height of image) of the currently computed distance d 4 5
between A and B, and the expected distance D 4 that was
pre-computed offline. The last component, S1M, (equation
4), defines the normalized similarity of the currently com-
puted angle 54p between A and B, and the expected (pre-
computed) angle avgp. All three components are weighted
by w1, wo and ws (with wy 4+ wa + w3 = 1). The weights are
empirical and define the classification reliability of the three
components. We chose w; = 0.2, wy = 0.4 and w3z = 0.4.

If new subobjects are found, the quality function STM_ 4,
is applied for each combination of detected subobject pairs.

If the average quality is above a predefined threshold ¢.4,,
the search for anchor subobjects is completed. In this case,
enough exhibits are detected. We figured out that a minimum
number of three anchor subobjects is necessary for reliably
determining the scale and rotation of the phone relative to the
real exhibits. From here, a faster detection technique that is
mainly based on the spatial relationships can be applied to
find the remaining subobjects. This is explained in the fol-
lowing section.

If SIM.q4, of one subobject to multiple other subobjects is
low while in comparison the quality among the others is
high, then this indicates that this particular subobject was
probably misclassified and its detection is discarded.

Detection of Remaining Subobjects

If a sufficient number of anchor subobjects are found, the
remaining subobjects can be reliably detected by applying
the spatial relationships. For each remaining subobject that
was not yet detected, the spatial relationships (adjusted by
the scaling factor and the rotation correction angle, as ex-
plained above) define different ring sectors (cf. figure 5g).
The intersection planes that are spanned by the ring sectors
of the identified anchor subobjects are the final search ar-
eas in which the remaining exhibits are located. In practice,
these intersection planes are not computed since the compu-
tational costs would be too expensive. Instead, the search
locations (cf. figure Se) are tested against each ring sector
individually. For detecting the remaining subobjects, only
Copec of the currently demanded subobject is applied. Re-
member, that we know which subobject is located in this
search region based on the spatial relationships. Searching
the exhibit within the constrained region is done as explained



above (i.e., spirally shifted search mask starting at the cen-
ter of the search region, refining the initially found location
through searches with smaller step sizes afterwards).
Consequently, finding the remaining subobjects is processed
much faster than finding anchor subobjects, since the start-
ing points in the search areas are more precise and reliable,
and only one classifier is applied. Although the quality func-
tion is only used for the anchor subobjects, the scale factor
and rotation correction angle are recomputed after each new
detected exhibit for continuously refining the search areas.
However, if the output of Cj. for all tested locations is
below the threshold t., no subobject will be detected, even
though the spatial relationships might have indicated one.
In these cases, the classifier is either not sufficiently trained
to recognize the subobject correctly or the subobject is oc-
cluded by another one. Therefore, the locations of the miss-
ing subobjects are predicted exclusively from the spatial re-
lationships. Its location is defined to be the center of grav-
ity of the corresponding intersection planes. An example
for such a case is illustrated in figure 1c: Although the user
casts a shadow on the book which leads to an image-based
misclassification, the exhibit is still detected from the spatial
relationships.

Finding subobjects exclusively through their spatial relation-
ships opens the opportunity to locate even exhibits that are
always completely occluded by other objects, or ones that
are so small that image classifiers can not detect them re-
liably. Such subobjects are tagged in the training video to
extract the corresponding spatial relationships without train-
ing Cpe. classifiers for them and without considering them
for the C\y; classifier.

After all subobjects have been detected (cf. figure 5h), the
labeled subobjects list is presented to the user, as illustrated
in figures 1b,c.

EVALUATION

We evaluated our approach with respect to two main ques-
tions: How high is its classification rate and performance
compared to related approaches that do not apply spatial
relationships? How well does it perform in the course of
a field experiment under realistic conditions (i.e., in a mu-
seum, with unexperienced visitors)?

For the performance analysis, we have compared the subob-
ject detection technique with a brute-force method that scans
the whole image for subobjects, as well as with a brute-force
method with early stopping (ES) that cancels the search if all
subobjects have been found. This test was carried out in a
laboratory with real image data that was captured in advance
in the City Museum of Weimar, Germany. The field experi-
ment was performed with 15 subjects in the same museum.
For both experiments (laboratory and field test) 12 subobject
groups were selected (6 of them are displayed in figure 6).
The number of subobjects per group ranged from 3 to 8 sub-
objects (average: 5.4). Of each group, a video of 90 frames
(160x120 pixels) was recorded from different perspectives
and distances. Every third frame of each video was used for
classification in the laboratory experiment such that in total
720 frames were applied for training and 360 frames were
applied for simulating the recognition. The PhoneGuide ap-
plication is developed in J2ME and the experiments were
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Figure 6. Average recognition rate and number of classifications for
brute-force, brute-force with early stopping, and for our approach (6
out of 12 different subobject groups). Thirty images from different
perspectives and distances were selected and classified for each group.
The graphs show that our approach outperforms related approaches
without spatial relationships, both in speed and recognition rate.

carried out on Nokia 6680 (CPU: 220 MHz) and Nokia N95
(330 MHz) mobile phones.

Performance Analysis

In general, a subobject detection that applies spatial relation-
ships should perform faster than approaches that scan the en-
tire image, since only predefined subregions are examined.
In addition, they should even improve the overall recognition
rate since the spatial relationships support the image classi-
fiers (Cyyy and Cipec) by determining the rough location of a
subobject. Thus, misclassifications at geometrically impos-
sible locations should be avoided.

To prove that these two hypotheses (i.e., classification speed-
up and improved recognition rate) are in fact true, we have
compared our approach with a brute-force method that scans
the whole image for subobjects: The search mask is spirally
moved to each possible location until it has reached each
part of the image, beginning from the center. At each loca-
tion of the search mask, global color features are extracted
to perform the classification with the Cyy; and Cgpe. clas-
sifiers. Parameters like search mask size and step size are
the same as for our approach in order to compare both ap-
proaches properly. After the entire image has been scanned,
the search areas with the highest sum of output excitations
of both classifiers are selected as the final locations for the
corresponding subobjects.

The brute-force method with early stopping is carried out in
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Figure 7. Number of classifications required for brute-force, brute-
force with early stopping and for our approach. For each of the 6
subobject groups, one image was selected to determine the number of
classifications for each subobject. It indicates that applying spatial re-
lationships requires less classification steps.

a similar way as the prior brute-force method. The only dif-
ference is, that it stops searching for a specific subobject, if
the output of C,; is above the threshold ¢, and at the same
time the excitation of Cjpe. is above ¢, too. Thus, com-
pared to the brute-force method, the computational effort is
reduced.

The recognition results of both methods in comparison to
our approach are illustrated in figure 6. Six different subob-
ject groups are displayed with their corresponding average
recognition rates for each method. Furthermore, the number
of classifications that were required to detect all subobjects
are displayed.

For each subobject group, 30 randomly selected images
from different perspectives and distances were used to de-
termine the results. These images contained different num-
bers of subobjects, since they can be outside the images’
boundaries or (partially) occluded. The brute-force method
reaches an average classification rate of 83.2% (for 12 sub-
object groups) with 13.4% false positives. The brute-force
method with ES achieves a similar average classification rate
of 85.7% and 14.1% false positives. Our approach reaches
an average classification rate of 94.4% with 3.0% false pos-
itives. Thereby, 11.6% of all correctly detected subobjects
were found exclusively by applying the spatial relationships
for situations in which the image classifier failed. The results
prove that the classification rate of our method significantly
outperforms brute-force and brute-force ES approaches.
Beside the improved recognition rate, figure 6 illustrates that
the recognition process needs less classification steps on av-
erage, which correlates to lower classification times. Thus,
our approach is much faster than brute-force methods and
brute-force ES methods.

To determine the speed-up more precisely, we monitored the
number of classification steps relative to the number of de-
tected subobjects, as shown in figure 7. We have selected one
image from each subobject group to show how the number

of classification steps increases with the number of subob-
jects for each of the three approaches. For the first subobject
group (cf. figure 7a), for instance, the brute-force method
needs 49 classification steps to find one subobject, 148 for
detecting two subobjects, and so on. Finally 569 classifica-
tion steps are required. In some cases, the number of clas-
sification steps for the brute-force approach and brute-force
ES approach does not increase for two consecutive subob-
jects. The reason for this is that these techniques can detect
multiple subobjects within one image scan as long as they
are equally sized. Thus, if all subobjects would have the
same search mask size, the number of required classification
steps is constant to the number of subobjects, as can be seen
in figure 7f. However, even in such cases, the brute-force
method’s number of classification steps is still higher than in
our approach.

If the overall computation times (including the necessary ge-
ometric computations) of the three approaches are compared
rather than the number of classification steps, our approach
is 68% faster than the brute-force method and approximately
50% faster than the brute-force ES method.

Field Experiment

Our field experiment was carried out over multiple days and
different times of day in the City Museum of Weimar, Ger-
many. Each of the 15 subjects (male: 12, female: 3, average
age: 26.2 years) were asked to photograph all 12 subobject
groups individually with the Nokia N95 mobile phone. The
subobject groups, and consequently the spatial relationships
and classifiers were identical to the ones that were applied
for the performance analysis. The size of the necessary clas-
sification data for 12 subobject groups with 64 subobjects in
total was 237 kb.

The recognition rate that was achieved by the subjects under
realistic conditions was 85.9% on average (max: 100.0%,
min: 52.4%, per subobject group). The recognition perfor-
mance depended mainly on the visitors’ perspectives and on
the appearance of the subobjects. If subobjects could be vi-
sually separated easily, the classification performance was
reliable. Thus, the worst recognition result (52.4%) occurred
at a subobject set with three almost identical cups in front
of a mirror (cf. figure 6f). The average recognition rate is
lower compared to the laboratory results. This is mainly
due to the individual behavior of subjects when approach-
ing and photographing the exhibits. An adaptive classifi-
cation technique, such as the one described in [4], would
compensate for this. Combining subobject recognition and
adaptive classification belongs to our future work. The time
for subobject detection, including integral image computa-
tion, ranged between 1.25 seconds and 4.45 seconds, (aver-
age: 2.85 seconds), depending on the number of subobjects,
the number of clusters and the number of necessary classi-
fications. Since the first classification step (i.e., recognizing
the scene context) takes less than 0.5 seconds [6] the com-
putation of the integral image can be performed as part of
the first classification step. This increases the classification
time of the first recognition, but reduces the duration of the
subobject detection in the second classification step by ~0.6
seconds to 2.3 seconds.

We also asked each subject to fill out a questionnaire and rate



different aspect of our system with marks from 1 (worst) to
7 (best). With this, we wanted to receive feedback on the us-
ability of the subobject detection as well as the users’ accep-
tance on the required computation time and achieved clas-
sification rate. Basic questions concerning handling (e.g.,
How easy was it to take a photo?) were already evaluated
in a previous field test [4] and led to satisfying results again.
Additionally, the subjects were asked how comfortable they
felt with the waiting time until the classification results of
the first classification step (i.e., context) and of the second
classification step (i.e., subobjects) are displayed. The du-
ration of the first step took ~0.95 seconds (including the
computation of the integral image) and was voted with 6.5
(o0 = 0.5). The second step needed on average 2.3 seconds
and was evaluated with 5.0 (0 = 1.1). In general, 54% of
the subjects would prefer a recognition duration of 2-4 sec-
onds, and 46% would prefer a classification time of below
2 seconds (11% requested a classification time of below 1
second) for each of the two steps. One subject explained
that she is not willing to accept long waiting times since she
wants to concentrate on the exhibition itself rather than on
her mobile phone. Consequently, the shorter the duration
of the classification is, the better is the acceptance of such
a guidance system. Since the subobject detection takes 2.3
seconds on the applied hardware, it suits the requirements of
the majority of our subjects. The subobject detection rate of
85.9% was evaluated with 5.8 (¢ = 0.7). The accuracy of
the labels that indicate the exact location of the subobjects
on the screen was judged with 5.6 (¢ = 0.6). The readabil-
ity of the detection result was ranked with 6.1 (¢ = 0.6).
This shows that most of the subjects were satisfied with the
overall handling, the performance and the visualization of
our system.

SUMMARY AND DISCUSSION

In this paper we have presented a new technique for the de-
tection of subobjects in a single image. Our method com-
bines light-weight image classification using global image
features, artificial neural networks and spatial relationships.
This has three advantages compared to related approaches
that apply a brute-force search (with or without early stop-
ping): First, the subobject detection is more reliable since
the spatial relationships can be used to validate the locations
of detected exhibits. Second, they speed-up the detection
process by predicting the locations of undetected subobjects.
This is continuously refined, the more subobjects are de-
tected. Third, entirely occluded or similar subobjects can be
located through spatial relationships, even if an image clas-
sification fails.

A field experiment revealed that the classification perfor-
mance of 85.9%, the visualization of the results, as well as
the recognition time of 2.3 seconds are acceptable for prac-
tical applications in a museum.

One drawback of our approach is the sensitivity to scaling
(i.e., to the distance of the visitors to subobjects when taking
a photograph). However, most people approach exhibits in
a similar way and capture images from similar perspectives
and distance, as found in [4].

Another problem arises if a large number of very small sub-
objects have to be detected simultaneously. The global fea-

tures that are computed from their subimages would not be
very representative, and their high variance would lead to an
insufficient training and classification. Increasing the image
resolution would solve this problem on the cost of classifi-
cation performance. However, the continuously increasing
processor speed of mobile phones will compensate this in
future.
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