
Phone-to-Phone Communication for Adaptive Image
Classification

ABSTRACT
In this paper, we present a novel technique for adapting
local image classifiers that are applied for object recognition
on mobile phones through ad-hoc network communication
between the devices. By continuously accumulating and
exchanging collected user feedback among devices that are
located within signal range, we show that our approach im-
proves the overall classification rate and adapts to dynamic
changes quickly. This technique is applied in the context of
our ANONYMOUS SYSTEM – a mobile phone based mu-
seum guidance framework that combines pervasive tracking
and local object recognition for identifying a large number
of objects in uncontrolled museum environments.

1. INTRODUCTION AND MOTIVATION
The increasing computational possibilities of today’s mo-

bile devices –especially of camera-equipped mobile phones–
enable image retrieval and object recognition applications
on them. Examples are museum guidance or city guidance
applications that allow for the identification of objects by
simply taking photographs of them. The challenge of these
methods is to become as robust as possible – even when
applied in highly dynamic, large scale and uncontrollable
public environments. Museums in particular are demand-
ing of image classification algorithms because hundreds to
thousands of objects have to be recognized from different
perspectives and under varying lighting conditions. Most
related systems (e.g., [5, 6]) use mobile devices only as a
front end where captured images are sent to a server for
classification. Such centralized systems do not scale well
with an increasing number of users and an increasing number
of classification requests.
To address this problem, we have developed an adaptive mu-

seum guidance system, called ANONYMOUS SYSTEM [16],
which performs the classification task directly on camera-
equipped mobile phones instead of sending and receiving
information to and from a server. Since every visitor does
this in parallel, and independent of one another, the wait-
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Figure 1: Application of ANONYMOUS SYSTEM.

ing time for retrieving classification results is minimal. To
guarantee a maximum classification rate, however, ANONY-
MOUS SYSTEM has to adapt to dynamic changes in the
environment (e.g., changing daylight) and users’ behavior
(e.g., how visitors approach particular objects).
In principle, ANONYMOUS SYSTEM works as follows: Ob-
jects that are located in a same area are trained into the
same 3-layer neural networks that are used directly on the
phone for local classification. The correct classifier for a par-
ticular location is selected on the fly by the phone through
continuous estimation of its rough location. Pervasive track-
ing of the devices is enabled by a sparse set of distributed
Bluetooth beacons [15]. The set of pre-trained classifiers are
downloaded from a server onto all phones of visitors when
entering the museum. During their stay, visitors can classify
objects in less than 1 second by taking pictures of them.
Before presenting exhibit-unique multimedia content, the
classification result is displayed as a probability ordered se-
quence of potential recognition candidates (cf. figure 1). The
first candidate in this sequence has the highest probability
of being the correct object. The second candidate has the
second highest probability, and so on. The user is able to
select the correct object with a minimum number of clicks.
If the object is not classified correctly, for instance, the user
has to select another object from the list that is not the top
candidate. By doing so, user feedback is provided implicitly,
which is stored in combination with the captured image on
the phone. This feedback information is uploaded to the
server when the visitors leave the museum. It allows adapting
the classifiers before transmitting them to new visitors that
are entering the museum. Our on-site studies proved that
with this simple adaptation technique, stable recognition
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Figure 2: Adaptation example (sequence numbers encircled): Object 1 (chair) is first successfully recognized
on phone A (1). The voted classification sequence is time-weighted with f2

t and stored in A’s LODB. Then
object 2 (plate) is successfully recognized on phone A, and the LODB is expanded accordingly (2). Phone
B fails in recognizing object 1 (3), and stores the weighted vote sequence in its local LODB. Then phones A
and B are able to establish a connection. They both update their GODBs first (4+5) before synchronizing
them (6). Next, a connection between phones B and C is established and GODBs are synchronized (7).
The classification of object 1 on phone C (8) would fail when relying solely on the feedback from the neural
network, but it will succeed if the nearest neighbor classification is performed together with the GODB.

rates of 82% can be reached under realistic conditions (i.e.
tested in a museum over several days with real visitors) [16,
17].
One drawback to this approach is that an adaptation to
changes that happen during the actual stay of a visitor is
not possible. Once downloaded at the entry, the classifiers
remain unchanged until leaving the museum. Therefore, the
classification rate can drop significantly after sudden changes,
such as temporally varying lighting conditions (e.g., caused
by sunlight).
Addressing this problem is the motivation of the work pre-
sented in this paper. We explain a technique that distributes
the user feedback information during runtime through ad-hoc
network connections between local devices. By doing so, we
enforce cooperative classification improvements during the
actual stay of the visitors. The general functionality of our
technique has been tested with a small number of real devices
in a museum. For proving its scalability, however, we have
developed a simulator that evaluates our method for many
hundred devices under several conditions. The simulation
parameters have all been gathered in a museum, and are
therefore realistic. We will show that ad-hoc phone-to-phone
synchronization not only leads to higher overall classification
rates, but also to quicker adaptations to dynamic changes
during runtime.

2. RELATED WORK
Related work can be separated into two categories: Wire-

less ad-hoc communication for mobile devices and distributed

classification systems.
A popular example for wireless ad-hoc networks is car-to-car
(inter-vehicle) communication. This research field investi-
gates the exchange of dynamic traffic and other information
between moving vehicles using WiFi signals and GPS track-
ing [10, 4]. In addition, several applications for mobile devices
exist that utilizes wireless technologies, such as Bluetooth,
for ad-hoc communication. Aalto et al. [2], for instance,
propose a push-based advertising system. A sensor retrieves
addresses of mobile devices and forwards them to an ad-
vertisement server. This server then sends location aware
advertising directly to the mobile device via WAP. A simi-
lar system called BlueTorrent [7] supports peer-to-peer file
sharing based on Bluetooth enabled devices. The file data
is separated into blocks which are broadcasted to nearby
pedestrians and interchanged between moving users. Mu-
rakami et al. [9] implemented a simplified version of the
hierarchical ad-hoc on-demand distance vector method for
efficient data routing in large mobile phone networks. Based
on Bluetooth, their system addresses applications like mobile
games, tracking applications and mobile emergency systems.
Wang et al. [13] categorize games with respect to the way
how game engines are updated in mobile ad-hoc networks
(e.g. asynchron, synchron, real-time, etc.). They also discuss
challenges that arise when developing mobile P2P games in
Java ME using the available Bluetooth API (see also [11]).
In general, our approach is similar to [7]. But the ad-hoc
communication we propose is combined with adaptive image
classification. Instead of supporting cooperative file down-



Figure 3: Propagation example of classification and
feedback data in a mobile ad-hoc network (sequence
numbers encircled): Initially, all phones store their
local LODBs only. First, phone C synchronizes with
phone D (1), then C with B (2), then A with B (3),
and finally A with C (4). After these steps, A, B,
C share the same and most up-to-date information
that have been collected by all phones. Phone D
would also be up-to-date if it would now synchronize
with either A,B, or C.

loads, we focus on increasing the recognition rate and on
reacting to dynamic changes quickly in a cooperative manor.
The goal of distributed classification approaches is to out-
source the complex classification task to multiple networked
nodes. Each node performs a sub-classification that is merged
into the final result.
Besides various approaches that are based on static networks,
Luo et al. [8] introduce a distributed classification method
for P2P networks. In contrast to client-server systems, their
method is scalable by adding new nodes. Each node builds
its local classifiers based on a modified version of the pasting
bites method, while the results of all classifiers are combined
by plurality voting. Wolff et al. [14] executes a sequential
association rule mining algorithm on local databases of each
node in a P2P network. Each node then participates in dis-
tributed majority voting to retrieve the combined result of all
connected peers. Siersdorfer et al. [12] describes a method for
distributed document classification in P2P networks. Each
node generates classifiers for locally stored documents, which
are propagated through the network to help other nodes in
improving their own classifiers.
This last example is similar to our approach. The main
differences are that in our case the network connections are
highly dynamic and that the classification duration does not
increase with the amount of exchanged classification data.

3. ENHANCED IMAGE CLASSIFICATION
THROUGH AD-HOC NETWORKS

The main challenges in image classification are the deter-
mination of a well-defined feature set as well as the collection
of sufficient training samples in order to achieve invariance
to different appearances of the same captured content.
Since the computational possibilities (memory, CPU) of mo-
bile phones are still restricted in comparison to desktop PCs
or PDAs, sophisticated feature descriptors ([3]) that are ro-
bust against varying content can only be applied at the cost

of high computational effort. In turn, this leads to extensive
waiting times that distract from the museum experience,
which is a situation not tolerated by the visitors in general
[16]. In addition, museums are highly uncontrolled envi-
ronments with respect to illumination as well as to visitor
behavior. Thus, the training set that was recorded in an
initial training phase can differ significantly from the data
to be classified during runtime. Even highly sophisticated
feature sets and classifiers can not dynamically compensate
for this. Consequently the probability of false positives in-
creases in dynamic situations, such as changing illumination
or different user behavior.
The basic idea that is presented in this paper, is the collection
of information about the individual classification behavior of
all visitors simultaneously on each user’s local device. This
information is derived from user feedback that is recorded
during individual recognition tasks. It is then shared with
the phones of other visitors whenever possible. A continuous
synchronization within such dynamic ad-hoc networks allows
adapting and improving the classification rate of all users
over time.
In section 3.1 we will explain the principle adaptation method,
and in section 3.2 we will show how the synchronization can
be realized in practice.

3.1 Adaptation
As explained in section 1, we retrieve an ordered sequence

(r) of potential object candidates as a response from a 3-layer
neural network after each classification. The first candidate
in this sequence has the highest probability of being the
correct object. In cases of false positives, however, it is likely
that the correct object is still ranked under the top candi-
dates - even though it is not the correct match. It is also
likely, that the classification sequence is slightly different for
each object. These two assumptions enable a consecutive
classification step: Instead of relying solely on the candidate
with the highest probability, we take the object-individual
classification sequence into account. This allows for a dy-
namic compensation to environmental changes, as will be
explained below.
With respect to figure 2, a vote is assigned to each ranked
candidate in the classification sequence, after a recognition
is carried out. The candidate with the highest probability
(r(1)) gets the highest vote, the second element (r(2)) gets
the second highest vote and so on. The resulting vote se-
quence (o) is multiplied with the square of a time-dependent
factor f2

t to amplify more recent classification results. It is
then stored in a local object database (LODB) table, which is
individually managed on each phone. The size of the LODB
table is NxN, where N is the number of objects that are
trained in the neural network1. The columns of the LODB
indicate the recognized object IDs (rID) of r, as classified by
the neural network. The rows indicate the selected object
IDs (sID) that result from the users’ feedback after each
classification. Thus, the time-weighted vote sequence o com-
puted from each classification sequence r is stored in the
LODB at row sID. In the optimal case, sID and r(1) are
always equal. In this situation, the diagonal of the LODB
will store the highest votes. If, however, the neural network
classification must frequently be corrected by user feedback,
this will lead to higher votes on LODB ’s off-diagonal entries.

1The number of objects can be restricted through location-
aware services, such as pervasive tracking.



If the same sID results from the user feedback of multiple
recognition tasks, the new vote sequences are weighted and
added to the existing entries in the corresponding LODB
row. A row-individual counter is then increased to indicate
how many samples have been accumulated.
Our goal is to distribute and synchronize the information
collected from the feedback of each user to all other users and
apply this knowledge for adapting the classification of each
individual visitor. If, for instance, the classification of one
particular object will fail for many users due to the change
of environmental lighting (e.g., sunlight passing through a
window), this will be detected through a similar user feed-
back and votes of classification sequences for this object.
The LODB of each user will then reveal a similar pattern at
row sID that corresponds to the object. If this information
can be shared with users that have not yet approached the
object, it will help to adapt and improve the classification for
this object before the users approach them. In the following,
we will explain how this shared information can be used for
adapting the local classification process, while section 3.2
goes into more detail about how the synchronization takes
place.
For now, let us assume that an ad-hoc network connection
can be established between phones that are located within
signal range. In addition to the LODB, each phone stores a
global object database (GODB) that contains the informa-
tion gathered from other phones and from local classification
trials. The GODB has the same structure as the LODB.
Each phone’s GODB will be updated with the local infor-
mation stored in the LODB, but it will also be synchronized
with information stored in the GODBs of other phones. How
these updates and synchronization steps are realized will be
explained in section 3.2.
The synchronized GODBs that contain classification and
feedback information from multiple phones and users al-
low adapting and improving the local classification process.
Again, a classification sequence r is the result after a new
recognition attempt.
Instead of relying exclusively on r(1), as the result suggested
by the neural network, the information stored in the GODB
is also considered in a second step. We perform a nearest
neighbor classification between the vote sequence that is
derived from r and the row vectors stored in the GODB.
Note, that before finding the nearest neighbor, the order of
the entries in o has to be rearranged and normalized. This is
necessary to match them with the order stored in the GODB.
The rearranged sequence is denoted with o’, and is used for
nearest neighbor classification instead of o. Finally, the ID
that corresponds to the computed nearest neighbor repre-
sents the overall classification result. Figure 2 illustrates an
example, where the initial classification through the neural
network would fail. Only the additional comparison with
the GODB in the second step leads to a correct result. As
explained earlier, the unchanged voting sequence o is time-
weighted with f2

t and added to the LODB. The next section
describes how the GODBs are updated and synchronized.

3.2 Synchronization
As mentioned in section 3.1, the GODBs are synchronized

among phones as soon as they are within signal range. The
ad-hoc network is highly dynamic as visitors are moving con-
tinuously through the museum. Thus, we can only transfer
data between two directly connected phones without rout-

Figure 4: Steps for synchronizing one GODB row: If
phone A synchronizes with phone B, A’s GODB row
has to be updated before being transmitted. After
receiving it at B, this row replaces the existing row
in B’s GODB. Then, B has to perform an update
and sends the result back to A, where it replaces
the corresponding GODB row. After doing this for
each row, the GODBs of A and B are synchronized
and contain the most up-to-date information.

ing. Indirect connections over multiple phones would be
interrupted frequently and would therefore not be stable. In
section 4, we explain how the transmission of the GODBs is
realized in our current implementation.
If a connection is established, we carry out the following
synchronization steps for each GODB row on both sides (cf.
figure 4): As can be seen in figure 2, the number of samples
that have been accumulated in all rows of all GODBs and
LODBs are recorded in sample counters. Comparing each
corresponding row in the GODBs of both connected phones,
the row with the largest sample counter is selected. This
row is first updated with the corresponding row of the local
LODB. The update operation adds all entries of the LODB
row to the entries of the GODB row –including the sample
counter– and then resets all LODB row entries to 0 (includ-
ing the sample counter). As explained in section 3.1, new
samples can be added to the LODB row via new recognition
tasks.
After updating the GODB row, it will be sent to the other
phone, and having it received there it will replace completely
the existing GODB row with the same sID (including the
sample counter, as in the previous step). Then, a second
update with the local LODB row on this side is carried out.
The result is sent back and replaces the corresponding GODB
row on the other side.
This synchronization sequence ensures that no classification
and feedback information is considered more than once on the
same phone. Otherwise, the data transmitted over multiple
hops and at some point received by its originator would be
incorrectly overemphasized, and lead to incorrectly weighted
classification results. Therefore, loops are avoided in our
ad-hoc network communication.
These synchronization steps are repeated row by row, until
the full GODB is synchronized, or the connection has been
lost. It is started again, as soon as a new connection can
be established –either with the same phone or with another



Figure 5: Simulation screenshot: The floor plan of the City Museum of ANONYMOUS CITY with the
locations of the exhibited objects (blue boxes). For each successful ad-hoc synchronization during simulation,
the location of both phones have been tagged (red dots). The majority of successful data exchanges are in
the proximities of closely located objects, since visitors gather together in these areas for a longer time.

phone. Note, that rows are only synchronized if a higher
sample count on either one side exists. This indicates that
one side has more reliable results. If the sample counts
are equal, no synchronization is triggered. This would also
be the case if a new connection between two already syn-
chronized phones will be established again. Time-weighting
the vote sequences ensures that more recent classification
approaches are up-weighted, while outdated information is
down-weighted. Therefore, each GODB represents the most
up-to-date classification state. The GODB ’s sizes remain
constant on all phones. Therefore, synchronization time does
not increase.
Figure 3 shows an example of how locally connected infor-
mation is propagated through ad-hoc network connections.

4. REALIZATION AND RESULTS
In this section we will describe the practical challenges that

arise when implementing an ad-hoc phone-to-phone network
(subsection 4.1), as well as an application for simulating a
stream of visitors through a museum (subsection 4.2) that is
used for validating our approach (subsection 4.3).

4.1 Implementation
In our current Java ME implementation, we apply Blue-

tooth for wireless communication since it is widely established
and integrated in most mobile phones.
Three general steps are carried out to transfer data via Blue-
tooth between two devices: First, a scan for nearby devices
has to be performed (inquiry). Second, for each of the de-
tected devices, a service search must be executed in order
to exchange connection and service parameters. Finally, the
connection is established.
However, several practical drawbacks arise when applying
Bluetooth for ad-hoc networks. For instance, during in-
quiry, the phone enters the internal inquiry substate. During
this time, the phone can not be detected by other phones
until it leaves this substate and enters the inquiry scan sub-
state. To ensure that not all devices enter the same substates
synchronously, and therefore never detect each other, we
introduce a random waiting time period tw between both
substates. Empirically we found that tw=5-9 seconds is opti-
mal for avoiding continuous deadlocks. With this additional
waiting time, we can estimate the duration D that is required

for establishing an ad-hoc connection between nd phones:

D ≈ ti + ni(ti + tw) + nd(ts + tr), (1)

where ti is the inquiry time that is proportional to the num-
ber of devices within proximity and their distances. If devices
can be detected, ti is approximately 1-5 seconds per device
(for Java ME) but is not lower than 10.24 seconds2 – even if
no devices can be detected. The parameter ts is the times
required for carrying out one service search (on average 6
seconds per device), and tr is the time required for transmit-
ting the GODBs and service parameters in both directions.
Should no devices be detected during the first inquiry, we
have to repeat this step on average ni=2-5 times, with a
delay of tw seconds.
The transmission time tr depends on the amount of synchro-
nization data that has to be exchanged. In our case, the
GODB is of the size N x N x 4 bytes (with N being the
number of trained objects), and the list of sample counters
is of the size N x 4 bytes. With a measured average transfer
rate of ∼40 kbyte/s for Bluetooth 1.1 (specified with 732,2
kbit/s) on Nokia 6630 mobile phones, we synchronize two
devices with tr<1 second, when assuming that N=50 or
less. Phones equipped with Bluetooth 2.0 (specified with 2.1
Mbit/s) would allow much faster rates. In practice, we found
that D ranges from 65-120 seconds for synchronizing three
phones, for example.
Note, that this communication process runs in parallel to
the actual ANONYMOUS SYSTEM application to ensure
that ad-hoc synchronization is seamless to the users.

4.2 Simulation
We have tested and validated our approach practically

with three Nokia 6630 mobile phones directly in the City Mu-
seum of ANONYMOUS CITY. Although these experiments
showed that image classification through a synchronization
between the three devices improves and adapts to dynamic
situations, the number of devices is far too low to repre-
sent realistic conditions. Therefore, we have developed a
simulation application that simulates a stream of visitors
in a museum over time. It simulates museum visitors, but
not our algorithm itself. In fact, the simulator is connected

2”Specification of the Bluetooth System”, 2003,
http://www.bluetooth.com



Figure 6: Average recognition rates for an unadapted (blue), and an adapted image classification (light green:
12 visitors/h and dark green: 36 visitors/h) under measured lighting changes (red). The adapted classification
always performs better than the non-adapted classification, is less fragile to dynamic environmental changes,
and recovers quickly to sudden changes.

via TCP/IP to the Java ME wireless toolkit emulator that
executes our software in exactly the same way as it would be
executed on the mobile device. This gives us the opportunity
to evaluate different configurations and user scenarios for a
large number of users, which are currently not possible to
achieve in this extent with real users. All parameters that
are used for simulation (such as a floor plan and exhibits of
a museum, visitor behavior, lighting conditions, and Blue-
tooth signal range) have been investigated and measured in
advance in the City Museum of ANONYMOUS CITY to
guarantee the most realistic results possible.
Figure 5 illustrates a screenshot of the simulation tool. The
floor plan and the locations of the exhibited objects have
been measured in the museum. For each of the 50 objects3

that are located in our test area (framed with dotted yellow
lines) that we consider for our simulation, we captured a
pool of 200 images from multiple perspectives and distances
at two different time of days. Half of these images were used
for an initial training of the neural networks while the other
half was used for the simulation itself. These objects were
applied in previous evaluations of ANONYMOUS SYSTEM
[15, 17], and therefore represent a reference for measuring
the classification improvements. As mentioned above, our
ANONYMOUS SYSTEM is emulated on request of the sim-
ulator. Taking photographs of an object for recognition
is simulated by randomly selecting one entity of the corre-
sponding object’s image pool that was not used for initial
training. The user’s feedback is also simulated by always
picking the correct object ID after classification. The range
of the Bluetooth signal was defined to be 8 meters. We mea-
sured the transmission of the radio signal trough walls in the
museum. These measurements are also taken into account in
the simulation. Thick walls that did not transmit the signal
are marked with signal barriers (green lines, cf. figure 5).
Consequently, blocking and transmitting room elements are
considered during the simulation, but complex reflections of
the radio signals are not.
The visitor behavior is modeled as follows: We do know that
the visitors are guided in the museum to follow a predefined
path that leads them through different exhibition contexts.
Although they have the freedom to move freely, we observed

3From a total of 116 objects being displayed on the entire
floor.

that most visitors will actually follow this path (from start
to end). On this rough path, however, simulated visitors
are free to move randomly to arbitrary exhibits (e.g., that
are located in the same room) and can skip or move back
to objects. In the simulation, visitors enter the museum at
random times in between the opening hours. The speed with
which visitors walk from exhibit to exhibit, as well as the
examination time for each object is also selected randomly
within the range of our observations.
The synchronization between two phones is simulated by a
scheduler that continuously triggers an inquiry and service
search for each simulated visitor, as explained in section 4.1.
Whether or not a connection can be established and a syn-
chronization is successful depends on the visitors’ movements
and on the time that is required for the synchronization which
we derived from equation 1 and the measured parameters
explained in section 4.1.

4.3 Evaluation
With our simulation, we have evaluated two different sce-

narios to prove that an ad-hoc synchronization adapts to
dynamic changes and therefore improves the image classifi-
cation.
The first scenario shows the development of the recognition
rate over time for rapidly changing ambient illumination. As
mentioned above, the illumination changes are caused by the
increasing sunlight that has been measured at these times
within our test area of the museum. The result is plotted
in figure 6a. We simulated 84 and 252 visitors (12 and 36
visitors per hour, entering the museum randomly) over the
opening hours of one day. Note, that 12 visitors per hour
equals the average number of visitors per day for a german
museum, as it is reported in [1]. The average walking speed
was assumed to be 4 km\h, and the average examination
time was set to a range between 1 second (visitor just moves
on immediately after classification) and 90 seconds (visitor
listens to the multimedia information after classification).
Figure 6a presents the average recognition rates of all visitors
at a particular time that can be achieved with (light/dark
green) or without (blue) adapting the image classification
through our ad-hoc synchronization approach. As it can be
seen, the illumination changes rapidly (due to sunlight) after
210 minutes past the museum opening, and stabilizes after



305 minutes. In this case, the recognition rate of the non-
adapted classification process drops from ∼80% to ∼45%.
The ad-hoc synchronization, however, leads to a higher over-
all recognition rate and to a quick adaptation to environmen-
tal changes, such as the lighting conditions in this example.
The adapted classification drops relatively little, and can
recover after a short time (in this example: after roughly 25
minutes the recognition rate for 12 visitors/h reaches the orig-
inal level of the non-adapted classification, and even improves
further). The classification performance after the completed
adaptation is around ∼45% higher than the performance of
non-adapted classification under the same condition.
In the second scenario, we investigate how our approach
performs for non-abrupt, but slight and continuous changes,
such as a constant decrease in illumination. This is shown in
figure 6b. Note, that we apply a synthetic illumination curve
rather than true measurements for this experiment. With
linearly decreasing illumination, the recognition rate of the
non-adapted classification decreases in intervals. The reason
for this seems to be the specialization of the neural networks
weights which display different sensitivity to varying inputs.
The behavior of the adapted classification is correlated to
the behavior of the neural network. If the recognition rate of
the neural network decreases (sections B and D in figure 6b),
the recognition rate of the adapted classification decreases
too. However, the adapted classification is always better
than the non-adapted classification. If the recognition rate
of the neural network stagnates (sections A, C, and E in fig-
ure 6b), the adapted classification improves through ad-hoc
synchronization.
One other observation that can be made when investigating
the distribution of successful synchronizations, as visualized
in figure 5 is that most of them appear at locations with
a high object density. The reason for this is that at these
places, visitors will remain for a longer time within signal
range, and synchronizations become more likely. But on the
other hand, this also implies that objects which are located
more isolated from others will cause lower recognition rates.
This is the case if all visitors follow a similar path through
the museum. In this situation, synchronizations will only be
beneficial for quick adaptations if they are performed before
the actual recognition task is carried out. This is more likely
for areas with a dense object distribution, than for areas
with a sparse one.

5. LIMITATIONS AND OUTLOOK
The most limiting factor of our current implementation,

is the relatively long response time. As it can be seen in
figures 6a and 6b, the network requires approximately 25-
45 minutes for full recovery –depending on how far it is
decreased. This is mainly due to performance limitations of
Bluetooth communication (see section 4.1). Our simulation
revealed that with faster link connections (e.g., as possible
with WiFi) and an sufficiently large number of visitors the
classification rate remains constantly high (i.e., does not drop
down with environment changes). This, together with new
approaches that additionally store and provide adaptation
parameters locally (e.g., on memory-equipped signal beacons)
will be investigated in future.
We believe that such an ad-hoc adaptation approach can
also be beneficial for mobile image classification techniques
in other application areas, such as outdoor tourist guidance.
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