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Mobile Phone Enabled Museum Guidance with
Adaptive Classification

Erich Bruns, Benjamin Brombach and Oliver Bimber

Abstract—We present an adaptive museum guidance system
called PhoneGuide. It uses camera-equipped mobile phones for
on-device object recognition in ad-hoc sensor networks and pro-
vides location and object aware multimedia content to museum
visitors.

I. INTRODUCTION AND MOTIVATION

A lthough audio guides are widely established in many
museums, they suffer from several drawbacks compared

to state-of-the-art multimedia technologies: First, they provide
only audible information to museum visitors, while other
forms of media presentation, such as reading text or video
could be beneficial for museum guidance tasks. Second, they
are not very intuitive. Reference numbers have to be manually
keyed in by the visitor before information about the exhibit
is provided. These numbers are either displayed on visible
tags that are located near the exhibited objects, or are printed
in brochures that have to be carried. Third, offering mobile
guidance equipment to visitors leads to acquisition and main-
tenance costs that have to be covered by the museum.
With our project PhoneGuide we aim at solving these prob-
lems by enabling the application of conventional camera-
equipped mobile phones for museum guidance purposes. The
advantages are obvious: First, todays off–the–shelf mobile
phones offer a rich pallet of multimedia functionalities —
ranging from audio (over speaker or head-set) and video
(graphics, images, movies) to simple tactile feedback (vibra-
tion). Second, integrated cameras, improvements in proces-
sor performance and more memory space enable supporting
advanced computer vision algorithms. Instead of keying in
reference numbers, objects can be recognized automatically
by taking non-persistent photographs of them. This is more
intuitive and saves museum curators from distributing and
maintaining a large number of physical (visible or invisible)
tags. Together with a few sensor-equipped reference tags only,
computer vision based object recognition allows for the clas-
sification of single objects; whereas overlapping signal ranges
of object-distinct active tags (such as RFID) would prevent the
identification of individuals that are grouped closely together.
Third, since we assume that museum visitors will be able to
use their own devices, the acquisition and maintenance cost
for museum–owned devices decreases.
Yet, this approach holds several challenges. Museums are
complex public environments that are —from a computer
vision perspective— not very well controlled. Many hundreds,
up to thousands of objects have to be classified from arbitrary
perspectives, distances and under changing lighting conditions.
In cooperation with local museums, we have tackled some of

Fig. 1. Basic concept (a) and application (b,c) of the PhoneGuide system in a
museum: Adaptive classification in dynamic large-scale museum environments
supported by ad-hoc sensor networks and phone-to-phone communication.

these problems over the past three years. Ideas, solutions and
results are summarized in this article.

II. ADAPTIVE CLASSIFICATION

The major challenge of the PhoneGuide system is to locate
and to recognize museum objects automatically in captured
images. Although much research has been carried out in areas
such as image retrieval and object recognition, it remains
difficult to achieve high recognition rates in dynamic and
uncontrolled large-scale environments such as museums. Often
hundreds or even thousands of objects have to be reliably
classified under varying lighting conditions and from arbitrary
perspectives and distances. Small objects located in showcases,
for instance, can not be photographed separately and have to be
distinguished automatically from each other in a single image.
The object recognition process becomes even more demanding
if the computational possibilities of a mobile device are
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Fig. 2. Overview of adaptive classification infrastructure: During application, each phone collects environmental parameters and user feedback, sensor and
phone-to-phone interfaces. When leaving the museum, these parameters are transmitted to the server, that stores and applies the gathered information to
generate and improve the required classification elements (rules, image classifiers, spatial relationships). The adapted classification elements are transmitted
to the mobile phones of new visitors upon entering the museum.

limited.
To overcome these limitations, we have developed an adap-
tive classification infrastructure (cf. figure 2). It continuously
collects sensor data and user feedback to adapt and improve
the local classification process over time. This is supported by
utilizing a coarse sensor network that provides local informa-
tion (such as rough position and environmental illumination
data) to the mobile devices. Together with the user feedback
gathered during the application of the system, these parameters
are applied to adjust and optimize classifiers, and they can
be shared with other users through ad-hoc phone-to-phone
networks.
Many related approaches exist that adapt classifiers to spe-
cific technical circumstances, user behavior or environmental
conditions. Most of them, however, perform an adaptation
without future influence. Thus, they do not advance over time.
Relevance feedback methods, for instance, are a common
technique for information retrieval systems that evaluate the
user’s feedback on query results. MacArthur et al. [1] apply a
decision tree for an image retrieval application that adapts to
the subjective relevance (indicated by the user) for each query

result. Based on this, a new query is performed. In contrast to
our approach, this method does not apply the information gath-
ered from one user to improve queries of other users. Draper
et al. [2] introduced ADORE, an adaptive object recognition
system that selects the optimal classification technique for an
arbitrary recognition task automatically. Yet, ADORE does not
adapt or improve over time since no feedback or other data is
collected. In contrast our system applies only one static set of
features.
Machine-learning techniques with adaptive learning behavior
can be found in robotics. Hagras et al. [3], for example,
present an autonomous mobile robot that continuously adapts
to a changing environment and utilizes a continuous learning
technique in order to accomplish tasks in agricultural domains.
Our system collects and applies visitor feedback in addition
to environmental parameters to adapt primarily to the users’
application behavior as well as to environmental conditions.
The adaptive classification infrastructure of PhoneGuide con-
sists of a stationary server and an arbitrary number of mobile
phones and sensor boxes. Their general functionalities are
briefly summarized below. More details are provided in the



3

following sections.
The server continuously carries out two main tasks: First, it
constantly collects and stores adaptation parameters, such as
environmental information and user feedback, that have been
gathered by each individual mobile phone during run-time
(i.e., during the museum visit). These parameters are transmit-
ted from the phones to the server when leaving the museum.
Note that there is no on–line connection between the mobile
devices and the server during run–time. Second, the server
applies the adaptation parameters for creating and improving
the required classification elements, such as rules, image
classifiers, and spatial relationships, off–line. These improved
elements are transmitted to the mobile phones of new visitors
when entering the museum. Note that our off-line adapta-
tion allows for the application of computationally expensive
training processes that would overload current mobile devices.
This decentralized attempt makes the system highly scalable
to an arbitrarily large number of users since the heavy-weight
training process is carried out off–line on the server while
the lower–weight classification task is performed individually
and in parallel by each mobile phone. This distinguishes our
approach from all centralized mobile classification systems
that perform multiple recognition requests sequentially on a
remote server [4], [5], or utilize high–performance (Tablet)
PCs as mobile devices [6], [7], [8].
The server consists of three major components: One module
is responsible for the preprocessing steps (object tracker and
spatial relationship (SR) creator) that are required for classi-
fying multiple objects in a single image (explained in section
recognition of sub–objects). Furthermore, the server contains
a preprocessor that prepares image data for training existing
image classifiers. Another module dynamically creates rules
and image classifiers based on adaptation parameters. The
rules (e.g., defined by a naive bayes classifier) determine which
classifier has to be selected for a specific environmental state.
The states are defined by temporally collected environmental
parameters, such as local position data and illumination in-
formation. Thus, for each state, the optimal classifier can be
selected and trained.
The front–end application on the mobile phone provides a user
interface and tracks (unnoticed by the user) actual recognition
results as well as provided user feedback: As an outcome
of the object identification, a probability-sorted objects list
is displayed after taking a photograph. The user selects the
correct object from this list with a minimum number of clicks
(only one click if the object has been classified correctly, two
clicks if the correct object has second highest probability,
etc.). This provides essential feedback that is used later for
adaptation on the server. Sensor boxes that are located in the
proximity provide the necessary information to determine the
users’ rough locations through a simple pervasive tracking
method [9], as well as the approximated local illumination
state of the environment.
Before the classification is carried out, however, the correct
image classifier (pre-trained by and transmitted from the
server earlier) has to be selected based on the incoming
environmental data of the nearby sensor boxes. This data
serves as input for those rules which the classifier selector

applies for determining an (for the given conditions) optimal
classifier. Optionally, the selected classifier can utilize spatial
relationships to identify multiple objects within a single image.
The phone-to-phone interface can be applied for exchanging
adaptation parameters dynamically during run-time (i.e., with-
out a check-in/check-out at the server when entering or leaving
the museum). These parameters will not be used for retraining
the classifiers on the phone (as they would be used for on the
server), but for adapting pre-trained classifiers to momentary
situations in the museum. Note that this component is still
under development and has not been formally evaluated.
Consequently, it will be discussed in the outlook section.
The remainder of this article will discuss these components in
more detail.

III. PERSPECTIVE INVARIANCE

In practice, our system has to be flexible enough to compen-
sate for individual user behavior. The ways in which visitors
approach and observe an object can vary to a great degree.
This leads to significant perspective differences in photographs
that are taken for classification. For ensuring an acceptable
recognition rate, the classification process must be scale and
perspective invariant.
To solve this problem, we apply the video capturing function-
ality of mobile phones to record videos containing multiple
perspectives and distances of each object in the museum.
These videos are preprocessed by the server (as indicated in
the previous section): keyframes are extracted and clustered.
The aim is to eliminate redundant frames and select frames
that contain descriptive perspective and scale information.
The remaining frames are forwarded to the image classifier
generator that —based on these frames— configures and
trains an optimized classifier. Consequently, these videos are
applied for an efficient initial training of the system. They are
recorded for all objects only once by the museum operator
when installing the system. Each subsequent modification of
the exhibit requires the recording of a video for the changes
only (e.g., one video of a new object or an existing object at
a new location). However, the classifiers will be continuously
updated and temporally improved over time. All images that
are captured by the visitors, in combination with their indi-
vidual recognition results and sensor values, are adaptation
parameters and are consequently part of the adaptation process.
Thus, step-by-step, the system will adapt to the most common
photographed perspectives and distances that were chosen by
the museum visitors —and consequently to the visitors’ be-
havior and to periodic environmental (lighting) conditions. To
prevent misapplications from adaptation drifts due to incorrect
user feedback, the server eliminates outliers through clustering
automatically. Details on the adaptive training method and
results from a user study that validates a common visitor
behavior (and consequently justifies this approach) can be
found in [10]. Figures 3a and 3b illustrate two examples from
a user study which show that visitors follow a similar behavior
pattern and approach the same objects in very similar ways.
They take photographs within small distinct areas, rather than
from all possible perspectives and distances. Our system will
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be able to adapt exactly towards these perspectives and scales
after a period.

IV. CLASSIFICATION IN LARGE–SCALE AND DYNAMIC
ENVIRONMENTS

Perspective and scale invariance are requirements that have
to be met for all objects individually. In public environments,
such as museums, two –more global– challenges have to be
addressed: scale and dynamics. The large number of objects to
be recognized under varying lighting conditions (mainly due
to the changing daylight) represent other major barriers for
achieving high recognition rates. To overcome these problems,
we apply a coarse network of custom-built sensor boxes (cf.
figure 2) that provides the additional information to phones
located in their proximity.

A. Large-scale classification

In general, it holds that the more objects a classifier has
to separate, the lower its recognition rate will be. Each sensor
box is equipped with a Bluetooth chip for communicating with
the mobile phones that are located in its signal range. Other
than sensor data, the chip also transmits its unique ID. The IDs
of all sensor boxes in the network together with their known
positions and signal ranges span a coarse grid of (possibly
overlapping) signal cells. Estimating the cell in which a phone
is currently located by analyzing all detectable sensor boxes
(and possibly by evaluating the strength of each signal —
which is currently not supported due to an implementation in
J2ME MIDP 2.0, CLDC 1.1) indicates to each device its own
rough position within the museum. Based on this position data,
the classifier selector chooses a classifier that is optimized
for recognizing only the objects which are located in the
proximity of the user (i.e., objects that are located within
the same signal cell as the user). In practice, only a small
number of objects need to be distinguished from each other
while an arbitrary number of objects can be recognized with a
suitable number of signal cells. More information about how
our classification approach is guided by pervasive tracking
techniques can be found in [9]. Figure 3 illustrates a floor
plan of the City Museum of Weimar that was equipped with
eight sensor boxes for experiments. The spanned grid of signal
cells are color coded. The number of objects located in each
signal cell ranged between 2 and 28.

B. Illumination invariance

Most image-based classification techniques become unsta-
ble with significant changes in illumination. In museums, for
example, the lighting changes frequently next to windows or
due to the fact that the room lights are sometimes turned
off and sometimes turned on. Each of our sensor boxes uses
seven hemispherically aligned photo diodes (cf. figure 3) that
measure the incoming radiance at a solid angle of 180 degrees
for the position where they have been placed. This is shown
in figures 3c and 3d for the eight sensor boxes. The gray
scale intensity values can be compared with omnidirectional
photographs that have been taken from roughly the same

positions. These seven values are broadcasted (together with
the sensor ID) to each phone located in the proximity of the
sensor box. Consequently, the local illumination information
is available and is stored together with a time-stamp on the
phone. As mentioned earlier, they are part of the adapta-
tion parameters that can be used on the server for adapting
classifiers to different local illumination conditions. If, for
instance, a recognition fails, the captured image together with
the corresponding illumination data will be transmitted to the
server as part of the adaptation process. On the server, it has
then to be decided whether the misclassification was due to
varying lighting conditions or due to an invalid perspective
or scaling. This can be done by geometrically registering the
failed image to all existing images of the same object that are
already stored on the server. If an appropriate match is found,
it is selected and the brightnesses of the common image areas
are compared. If, however, the registration process failed either
due to changes in illumination or in perspective/scale a new
classifier is created to cope with the new lighting conditions.
Furthermore, the rules are updated. The illumination data is
also used locally on the phone to select the correct pre–trained
classifier.

V. CLASSIFICATION OF SUB-OBJECTS

Many exhibits in museums are protected against environ-
mental influences or human curiosity by placing them into
showcases or behind other barriers. In these cases, visitors can
not take photographs of individual objects without capturing
others simultaneously. This section explains how our adaptive
classification framework is extended to support the recognition
of multiple objects in a single photograph. Practically, the
classification of sub-objects happens in two steps: After taking
a photograph, a regular image classification is carried out
first as described above. In this step, we do not differentiate
between photographs that contain single or multiple objects.
Since image classification techniques rather than object recog-
nition methods are applied, a scene with multiple objects
can be identified just like scenes with individual objects. As
mentioned above, the classification result is presented to the
users as a probability-sorted objects list. Just like for individual
objects, the user selects —with a minimal number of clicks—
the correct scene (if the scene is recognized, it is displayed as
first entry in the list and one click is sufficient). After defining
the correct scene context, the individual sub-objects in the
photograph are classified automatically. The results are labeled
and the sub-objects are linked with a sub-object list as shown
in figure 4f. From this list, the user can finally select the object
of interest and multimedia content is presented.
Our classification technique for sub–objects is based on spatial
relationships [11]. For scenes that contain inseparable sub–
objects, the video material that is applied for initial off-line
training on the server (see section perspective invariance) is
treated in a special way: In the first frame of these training
videos, the operator manually identifies all sub-objects (cf.
figure 4a). These objects are tracked by the object tracker (cf.
figure 2) via SIFT throughout all subsequent frames (cf. 4b).
If new objects appear, they have to be manually identified to
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Fig. 3. Eight sensor boxes were distributed in the City Museum of Weimar during a formal user study. The floorplan in the center illustrates their location
and the spanned signal cells (color coded). The measured incoming radiances of each sensor can be compared with omnidirectional photographs taken from
the same positions (c, d). The location of 15 subjects when taking photographs of two different sample objects are outlined in (a, b). They indicate that
visitors independently approach the same objects within the same small region —even though much more space was available (the areas shown in (a, b) are
only fractions of the actual rooms).

be tracked. By doing so, the spatial relationship tracker (cf.
figure 2) continuously computes spatial relationships (such as
maximal search angles and distances) between all sub-objects.
Additionally, the size of each sub-object’s bounding box and
it’s individual classification features are computed and stored.
The features are used to train individual classifiers on the
server that are specialized to detect the sub-objects on the
phone.
The trained classifiers and computed spatial relationships are
transferred to the phones along with the additional data when
entering the museum. After taking a photograph on the phone,
the scene context has to be classified first, as explained
above (cf. figure 4c). After this step, the corresponding set of
classifiers and spatial relationships are selected automatically.
An anchor object is classified that is assumed to be located in
the center of the photograph. We apply multi-resolution clas-
sification to cope with different scales. Perspective invariance
is hereby ensured, as explained above.
The scale and position of the anchor object’s bounding box
are then used for selecting the correct spatial relationships

(cf. figure 4d). The maximal search angles and distances to
neighboring sub-objects guide the following search process:
The closest neighbor is searched at the mean distance and
angle (green dot in figure 4e) which is defined by the spatial
relationships. If a sub-object could not be classified at this
position, a search mask is spirally shifted around the initial
position (yellow dots in figure 4e) until a sub-object is clas-
sified: If the excitation of the classifier is above a predefined
threshold (blue dot in figure 4e), a sub-object is found only
if, in addition, the excitations for neighboring search points
are lower (orange dots in figure 4e). Otherwise, the final
position of the subobject is gradually moved further until the
highest excitation is discovered (red dot in figure 4e). To
ensure a rapid classification directly on the phone, integral
images are initially computed that can be used for a fast feature
computation within the search masks.
Additional sub–objects are found by repeating this process
from already detected sub–objects. Note that only undetected
sub–objects have to be traced. Since the spatial relationships
can be optimized continuously the more sub-objects have been
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Fig. 4. Classification of sub-objects: On the server, individual sub-objects have to be manually identified in the first frame of each video (a). They are then
automatically tracked throughout all frames (b) to compute spatial relationships. On the phone, the scene context has to be detected first (c). The corresponding
spatial relationships are then used (d) to search for all sub-objects (e). The identified sub-objects are labeled, and the one of interest can be selected from a
sub-objects list (f).

detected, the classification process will speed up with each
detected sub-object. For instance, if the distance between two
sub-objects has been determined for one particular perspective
and scale, it can be used as a scaling factor to adjust the spatial
relationships of the remaining sub–objects.
The adjusted spatial relationships can be stored on the phone
and transmitted to the server as part of the adaptation pro-
cess. This way, the approximation of spatial relationships for
individual perspectives and scales will also be continuously
optimized over time. Note that the adaptation of our sub-object
classification is currently being implemented.
After all sub-objects have been found, they are labeled and
linked to close–up pictures in the sub-object list (cf. figure
4f). The visitor can browse through this list to select the object
of interest. Multimedia content of the selected object is then
presented.

VI. RESULTS AND OUTLOOK

In cooperation with the City Museum of Weimar, we were
able to test and to evaluate our system during regular opening
hours. In our current implementation, we applied a well
selected set of global image features [12], [10] and three-
layer neural networks for image classification [10]. Since
the classification is widely independent from the adaptation
framework, it can easily be replaced by enhanced algorithms,
such as SIFT, as soon as their computation time on the
mobile devices becomes acceptable. On Nokia 6630 mobile
phones, our local object recognition algorithm implemented
in J2ME requires on average 3.8 seconds. For 139 objects,

Fig. 5. Result of a questionaire gathered in the course of a user study from
15 museum visitors. Each question was answered through a ranking between
1 (worst) and 7 (best).

we achieve a recognition rate of 92.6% for experienced users
and 82% for totally inexperienced museum visitors. In the
context of a user study [10], we achieved these results under
realistic conditions (i.e., arbitrary perspectives and scales,
evaluated over a duration of 4 business days at different day
times and illumination situations). We could also show that a
temporal adaptation does lead to a continuous improvement
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System Location
information

Recognition
on server

Temporal
adaptation

Recognition rates

Hare et al. [4] No Yes No 850 images of 850 2D paintings: 80.0% for 200 trials

Bay et al. [7] No No No 205 images (splitted into two sets) of 20 objects: 91.5% for 116 trials

Fasel et al. [8] No No No 207 images (splitted into two sets) of 20 objects: 94.6%a for 119 trials

Bay et al. [6] Yes No No 130 images of 22 objects: 80.0% for 200 trials
rec. rate ∼ independent of #objects

Fritz et al. [5] Yes Yes No 40 images of 20 objects: 97.5% for 40 trials
1005 images of 201 objects: 91% for 115 trials
rec. rate ∼ independent of #objects

PhoneGuide Yes No Yes 7200 images of 139 objects: 92.6% for (6 perspectives x 139 objects =) 834
trials (expert user); 82% for 139 trials (museum visitors)
rec. rate ∼ independent of #objects

a97.5% for an unsplitted image set. Matching time is not applicable for mobile devices.

TABLE I
COMPARISON OF PHONEGUIDE WITH RELATED APPROACHES.

of the recognition rate over time [10].
We compare our system with the most related approaches
in table I: Fritz et al. [5] introduced a city guide for mobile
phones that identifies buildings or monuments. Photographs
that are coupled with GPS location data are transferred to a
remote server via UMTS or GPRS for classification using
a variation of SIFT called i-SIFT. Hare et al. [4] developed
a museum guide for Pocket PCs that recognized paintings.
Images are sent to a server that computes SIFT features but
applies image retrieval techniques for classification. Bay et al.
[7] also demonstrated a museum guide based on a Tablet PC.
However, in contrast to [5], [4] the classification is carried
out locally using SURF. In their previous work [6], they also
apply Bluetooth emitters for pervasive tracking. In their latest
approach [8], they suppress multiple feature–point matches
between test and model images by removing all matches
above a minimal distance. None of these approaches is either
adaptive or able to improve over time while being used.
Consequently, we believe that realistic recognition rates and
invariance against perspective, scaling, and illumination for
large-scale and uncontrolled situations (hundreds or thousands
of objects, and changing lighting) are difficult to achieve with
such techniques.
Besides estimating the quantitative benchmark data, we were
interested in the subjective impression of museum visitors
after using our system. Therefore, we asked fifteen subjects to
fill out a questionnaire and answer (inter alia) the following
questions (1=worst, 7=best)[10]:

1) How convenient was the duration of waiting for the
location estimation (pervasive tracking)?

2) How do you judge the recognition performance of
PhoneGuide?

3) How simple was the handling of the application?
4) How satisfied were you with the integrated concept of

PhoneGuide?
5) Can you imagine that PhoneGuide would become an ad-

equate alternative to today’s museum guidance systems
(e.g., audio guides)?

6) Do you believe that PhoneGuide can be applied in

different contexts (e.g., for city guidance)?
The results are presented in figure 5. The relatively long
waiting time required for the device localization was the most
criticized aspect of our approach. In our implementation, it
takes approximately 13 seconds for the scanning of nearby
Bluetooth emitters. This waiting time occurs only during
transitions between signal cells. The waiting time for the
recognition process remains constant. However, it is clear
that such high waiting times can easily occur for individual
recognition tasks if a centralized classification framework
would be used (such as in [4] and [5]). They will not scale well
with an increasing number of users and simultaneous classi-
fication requests. Our decentralized classification architecture
addresses all recognition requests in parallel and directly on
the local devices. Thus, no additional waiting time that is due
to network communication, and sequential request–handling
on the server is introduced. Newer and faster phones will even
decrease the waiting time for individual classifications.
Note that the results described above do not yet consider
the illumination sensor data (see section large-scale classi-
fication). A formal long-term evaluation of our system that
incorporates this information is one of our future tasks. They
also do not include the recognition rate and performance
for sub-object classification (see section recognition of sub-
objects). Although this must also be evaluated formally and
under realistic conditions, we carried out an initial benchmark
test: Our current implementation requires 2 to 3.5 seconds
for classifying 6-8 sub-objects with a recognition rate of 93%
(6% of all sub-objects were not found and 1% of all sub-
objects were found at wrong places, 90 trials have been carried
out with three different object sets). In some cases, reflections
or shadows of visitors on (sub–)objects might lead to miss–
recognitions and can prevent sub–objects from being located
correctly. For instance, image portions of small sub–objects
can be occluded by lens flare effects that modify their true
appearance completely.
Currently, adaptations to user behavior and environmental
changes do not become immediately effective. Adaptation
parameters have to be uploaded to the server first to lead
to improvements later. For enabling quicker adaptations to
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changes that take place during the actual museum visit, we
are investigating and implementing additional ad-hoc network
techniques —as they might be used in the future for car-to-car
communication and other areas. As illustrated in figure 1a, a
short direct point-to-point connection is established between
all phones that are within signal range (for compatibility
reasons we use Bluetooth at the moment, but WiFi is also
imaginable). Since each phone stores information about each
individual succeeded or failed classification trial together with
a time stamp, this data can be provided constantly to other
phones. By doing this, we ensure that each phone stores statis-
tical information about current object–individual classification
rates as well as about confusions with other objects. Since this
is continuously being repeated while the visitors move through
the museum, the data that is stored on each phone is always as
up-to-date as possible (likely to be different for each visitor —
depending on the movements and actions of all visitors). This
data allows for influencing the classification process directly
without re-training. As for transmitting information from the
sensor boxes, this process is carried out in the background and
remains unnoticed by the user.
We believe that mobile-phone enabled guidance systems have
a substantial potential in future —for indoor (such as for
museum guidance) as well as for outdoor (such as for city
guidance) applications, and that computer vision support is
complementary to other sensory information (such as provided
by GPS, RFID, etc.) and manual user input. For achieving
realistic classification rates in dynamic and complex public
environments, however, we see an intelligent system adapta-
tion as an essential component. For large-scale and dynamic
outdoor environments, established web services such as google
earth indexing or Flickr can be applied to organize (geo-
graphically and temporally) the data accumulated by adaptive
classification systems.
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I. RELATED WORK (OPTIONAL SIDEBAR)

For designing digital mobile guidance systems, a multitude
of different technologies exist. They can be categorized in
three major groups (cf. figure 1): User feedback approaches
allow visitors to identify objects manually in order to
retrieve further context information. They comprise traditional
museum guidance techniques such as audio guides (object
IDs are provided on human-readable lables or in handouts
that have to be keyed in by users), as well as electronic lists
(of images or text) provided on the mobile device that visitors
browse through in terms of making a selection.
Sensor systems apply small sensor devices for identification.
They are either attached to exhibits for identifying them
directly, or they are used to determine the location and/or
orientation of the mobile device within the environment (and
consequently determine objects in its proximity). Wireless
connection technologies such as RFID[1], [2], Bluetooth
[1] or Infrared [3], [2], [4] are usually utilized for this.
Precise object identification with sensors only could be
accomplished through narrow signal ranges of the emitters to
ensure unambiguousness. Välkkynen et al. [2], for instance,
use sensor devices called SoapBoxes [5], which host several
integrated sensors. Besides scanning for RFID chips in
the proximity (which are are embedded in each SoapBox),
a SoapBox can be triggered by a mobile device through
infrared or laser light (via an integrated light sensor). A
wireless connection between the corresponding SoapBox and
the mobile device is established and context data, such as
URLs are transmitted.
Several similar approaches exist that evaluate the user’s
location for providing context information [3], [6], [7].
Wide-range emitters (Bluetooth, WiFi, or GPS) are used
frequently to determine the approximated location of users.
With this information an assortment of close objects can be
presented in a selection list. One of the first location–based
mobile guidance systems was called Cyberguide [3]. Simple
maps with outlines of buildings and context information
are displayed on a hand-held device equipped with a GPS
receiver. For indoor applications, infrared beacons are
evaluated to estimate the device’s position. Cheverst et al.
[7] have introduced a city guidance system on a Tablet PC
that combines user feedback with location information. For
recognizing objects, users have to manually provide a rough
indication of how far they are away. The location information
is then estimated by detecting nearby WiFi hotspots. An
overview of different location–based guidance systems can
be found in [8].
In [9] a technique was presented that captures each room of
a museum with a fisheye–camera. The resulting panorama
images are presented on a PDA —registered to the real world
via a digital compass attached to the device. Depending on
the orientation, objects can be selected by simply clicking on
the corresponding region of the panorama image. A remote
server then delivers the appropriate multimedia content.
Computer vision approaches utilize integrated or attached
cameras for classification —either by recognizing the object
directly or by identifying machine–readable barcodes (e.g.,

Fig. 1. Overview of different techniques that are applied for object
identification in digital mobile guidance systems.

QR-Codes, Datamatrix) located next to them ( e.g., [10]).
Especially direct recognition techniques seem to be very
promising for object identification. This is also confirmed by
user experiments, such as the ones performed by Davies et
al. [11]. They investigated the acceptance of pure location–
based versus computer vision based (classification was only
simulated in their experiments for controlling the recognition
rates) techniques for guidance systems. They found that both
approaches are equally preferred —despite the imperfect
classifications. The various direct object classification
techniques that perform a recognition directly on the local
device [12], [13], [14] or on a remote server [15], [16] have
been summarized and compared with PhoneGuide in the
main text.
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