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Abstract

The complex failure process of concrete structures can not be described in detail by stan-
dard engineering design formulas. The numerical analysis of crack development in con-
crete is essential for several problems. In the last decades a large number of research
groups have dealt with this topic and several models and algorithms were developed.
However, most of these methods show some difficulties and are limited to special cases.
The goal of this study was to develop an automatic algorithm for the efficient simulation
of multiple cracking in plain and reinforced concrete structures of medium size. For this
purpose meshless methods were used to describe the growth of crack surfaces. Two mesh-
less interpolation schemes were improved for a simple application. The cracking process
of concrete has been modeled using a stable criterion for crack growth in combination
with an improved cohesive crack model which can represent the failure process under
combined crack opening and crack sliding very well. This crack growth algorithm was
extended in order to represent the fluctuations of the concrete properties by enlarging the

single-parameter random field concept for multiple correlated material parameters.






Kurzfassung

Das komplexe Versagensverhalten von Betonstrukturen kann in der Regel nicht mit Stan-
dardbemessungsformeln beschrieben werden. Eine detaillierte numerische Analyse der
Rissentwicklung in Beton ist flir einige Problemstellungen unverzichtbar. In den letz-
ten Jahrzehnten haben sich eine Vielzahl von Forschergruppen mit dieser Thematik aus-
einandergesetzt. Dabei wurden verschiedene Modelle und Algorithmen entwickelt. Die
meisten dieser Verfahren weisen jedoch verschiedene Probleme auf oder sind nur fiir
Spezialfille anwendbar. Das Ziel dieser Arbeit war die Entwicklung eines automatischen
Algorithmus zur effizienten Simulation von mehrfacher Rissentwicklung in Beton- und
Stahlbetonstrukturen mittlerer Grofe. Dabei wurden netzfreie Verfahren angewendet, um
die Anderung der Rissoberflichen abzubilden. Zwei netzfreie Interpolationstypen wurden
im Hinblick auf eine unkomplizierte Anwendung angepalit. Der Versagensprozess des
Betons wurde mit Hilfe eines stabilen Risskriteriums in Kombination mit einem erwei-
terten kohdsiven Rissmodell abgebildet. Dieses erweiterte Modell kann die Zusammen-
hénge bei kombinierter Rissoffnung und -gleitung sehr gut wiedergeben. Der entwickelte
Algorithmus zur Risssimulation wurde in Hinblick auf eine stochastische Modellierung
erweitert. Zu diesem Zweck wurde das Zufallsfeldkonzept fiir die Abbildung mehrerer

untereinander korrelierter Materialparameter ergénzt.
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Chapter 1

Introduction

1.1 Motivation

Numerical simulation has become an important alternative to experimental investigations
in applied and engineering science in recent decades. The development of numerical tools
has been accelerated due to the very fast development of computer technology, which
enables a large group of researchers and users to access powerful hardware. Today several
simulation methods are available in a large number of commercial software applications
and an even larger number of research programs have been developed in the university
and industrial environment.

Today the Finite Element Method is an established tool for numerical simulations in
civil and mechanical engineering. This method was permanently further developed in a
huge number of research groups in order to simulate sophisticated material behavior and
complex structures efficiently.

The development of numerical tools for the simulation of damage processing due to
crack formation and crack growth is still mainly an academic research field. The frequent
publication of new methods and algorithms shows the importance of this topic in the
international research environment. But numerical simulations of crack processing are
done only rarely in industrial practice.

The simulation of crack development in a base material requires adapting the dis-
cretization in order to represent the moving domain boundary. Two different approaches
in the context of the Finite Element Method have been developed for this purpose, the
smeared crack approach and the discrete crack approach. In the smeared method the
crack surface is represented as a reduced strength at the integration point level, which is
smeared over the whole element by the standard element formulation. This approach is
in general relatively expensive, since the size of incremental steps is strongly limited to
avoid numerical problems. The application of the discrete approach is more robust, but
due to the explicit representation of the crack surface a permanent update of the finite

element discretization is necessary. The traditional way for this update is local remesh-
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ing of the finite element structure, which is very complex in three dimensions and may
cause several problems due to the mapping between the original and the new meshes. For
this reason some improved finite element formulations without remeshing have been de-
veloped in recent years which represent the crack surface by additional shape functions.
These shape functions are handled either as local modes in embedded formulations or as
global enhancements in an extended formulation.

As an alternative to finite element formulations the development of meshless or mesh-
free methods was accelerated since the middle of the nineties. With these methods the
shape function formulation is very flexible and can be adapted in a simple way. Fur-
thermore these methods use a continuous interpolation, which leads to smooth strains
and stresses in contrast to the Finite Element Method. Many of the meshless methods
can represent growing crack surfaces without a discretization update and without addi-
tional formulations. But generally these methods do not satisfy the interpolation property,
which leads to huge problems by imposing boundary conditions. Most of the meshless
approaches are based on the definition of influence domains by introducing additional nu-
merical parameters. These parameters generally have a strong influence on the numerical
results, although they do not have a physical meaning.

Apart from the discretization of the crack development, the principles of crack growth
in metals can be described very well using available fracture mechanical concepts. The
material concrete has a much more complex fracture process as compared to metals due
to its inhomogeneity. For modeling concrete cracking on the macro scale the fictitious
crack model is a simple and efficient approach. This model is based on a homogenized
material, and its formulation does not consider the dilatancy effect and the interlocking for
crack sliding. A more detailed description is a meso scale approach where the aggregates
and the cement matrix are modeled explicitly, but at present this procedure is limited
to small specimen sizes and cannot no be applied to complex structures due to the huge
numerical effort. A further field of current research activity in modeling concrete cracking
is the question of the criteria for crack growth and crack direction. Mostly a stress-based
formulation is used, which depends strongly on the discretization.

Due to the already mentioned inhomogeneity and varying conditions during the con-
struction process the material properties of concrete show significant fluctuations as com-
pared to other materials. The consideration of such uncertainties in a numerical crack
growth analysis has been considered only in very few studies, where one material pa-
rameter of a single structural member is mainly modeled as a random variable. A more
detailed spatial distribution has been represented only in some individual cases.

The mentioned arguments show that an enormous need for research activities exists
in developing and improving numerical models for the simulation of cracking in concrete

structures.

Thomas Most PhD Thesis
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1.2 Aims of the present work

The goal of this work is the development of an automatic algorithm for the efficient sim-
ulation of cracking in plain and reinforced concrete structures of medium size. For this
purpose meshless methods will be applied such that adaptive coupling with finite ele-
ments is realized, where the meshless discretization is used only in regions with devel-
oping cracks. For this purpose a meshless interpolation scheme for modeling discrete
cracks will be developed, which solves the problems of existing approaches in imposing
the boundary conditions and enabling an easy coupling with finite elements.

Furthermore the concrete cracking will be modeled on the macroscopic scale where
the applied cohesive crack model represents the complex behavior in the fictitious crack
surfaces for combined crack opening and sliding, the so-called mixed mode cracking.
This concept will be implemented in a crack criterion which gives very stable results even
for coarse discretization.

The mentioned spatial fluctuations of the concrete properties will be represented us-
ing random fields. For this purpose the single parameter random field concept will be
extended to an arbitrary number of random material parameters, which are correlated
among each other. Thus the reduction of the random variables will have an important
significance in order to enable the application of the developed concept to approximation
methods.

To achieve these goals, the following assumptions will be made:

e The implementation will be done for the two-dimensional case and an extension to

three dimensions will be discussed.

e The modeling of concrete failure will be limited to cracking due to tensile load-
ing. This implies that the base material remains linear elastic in the discrete crack

approach.

e The parameters of the cohesive crack model will be assumed to be constant material
properties. A variation due to not fully developed or overlapping fracture process

zones will be neglected.

e Quasi-static behavior will be assumed, which implies that no kinetic energy will be

released during the cracking process.
e Creep and shrinkage effects of the concrete will not be considered.

e The bond behavior between concrete and reinforcement will be modeled using ex-

isting shear stress-slip relations.

e Uncertainties in the reinforcement, in the external loading, and in the geometrical

and boundary conditions will not be represented.

Thomas Most PhD Thesis



4 1. Introduction

e The stochastic analysis will be limited to estimating the statistical properties of the
structural response. An application of the probabilistic model to reliability analyses

will be discussed.

1.3 Outline

This work is organized as follows: After this introduction, the second chapter presents
the mechanical fundamentals which are necessary for understanding the further chapters.
The basic ideas of the Finite Element Method are shown and the extension to nonlinear
material behavior with some solution procedures is given.

The third chapter gives a survey on existing meshless methods. Two methods, the
Element-free Galerkin Method and the Natural Neighbor Galerkin Method are improved
and adapted to the intended application. The effects of the developed enhancements is
shown by means of several simple examples.

The fourth chapter starts with an introduction to Linear Elastic Fracture Mechanics.
Then the presented concepts are used in modified form to develop a criterion for crack
growth and crack direction. The standard and an improved cohesive crack model are
described and analyzed in combination with this criterion. An investigation of some plain
concrete structures and a reinforced concrete beam rounds off this chapter.

The fifth chapter introduces the random variable and random field theory and illus-
trates the extension to multi-parameter random fields. After presented some sampling
strategies the probabilistic model is verified using several numerical examples.

Finally the sixth chapter summerizes and assesses the presented results and gives im-

pulses for further research activities.

Thomas Most PhD Thesis



Chapter 2
Mechanical fundamentals

In this chapter the mechanical formulations are presented, which are necessary for the
understanding of this work. Based on the continuum description of an elastic domain
a derivation of the Finite Element Method is given, which is the basis of the following
chapters. Furthermore this chapter contains the extension for nonlinear material behavior

and a survey of approaches to the solution of such nonlinear problems.

2.1 Continuum formulation

2.1.1 Kinematics

In the undeformed reference configuration of a body B, the position vector of an arbitrary

point is defined as
X = Xlel + X2e2 + X3€3 = Xiez- (21)

where X; are called Lagrangian coordinates. The position vector in the actual configura-

tion reads analogously
X = r1€1 + T2€5 + r3€3 = T;€; (2.2)

with the Eulerian coordinates x;. The transformation of a point from the reference to the

actual configuration is described by
x(X) = p(X). 23)

In Fig. 2.1, the principle of this transformation is shown. The change of position from X

to x can be characterized by the displacement vector

u(X) = x(X) - X. (2.4)
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E »(B)

(S5
Figure 2.1. Movement of a single point from the reference to the actual configuration
The transformation of a differential line element
dx = FdX (2.5)

is described by the deformation gradient F

po X)) _ 0x
- 0X 90X

(2.6)

which is in general an asymmetric tensor. The differential line element by using Eq. (2.5)

reads

ds? = dxTdx = dXTFTFdX = dXTCdX (2.7)
where C is the right Cauchy-Green tensor defined as

C=FTF. (2.8)
Based on a right-polar decomposition of the deformation gradient

F =RU (2.9)
into a rotational part R and a symmetric deformational part U, C can be expressed as

C =F'F =U'RTRU = UTU. (2.10)
The absolute elongation finally reads

ds® — dS? = dXTCdX — dXTdX = dX"(C — 1)dX = dX"2EdX  (2.11)

Thomas Most PhD Thesis



2.1. Continuum formulation 7

by introducing the Green-Lagrangian strain tensor as

E=-(C—1). (2.12)

N |

This tensor can be written as

1 [ Ou, Oou;  Ouy, Ouy,
Ei; =— . J . 2.13
72 (8Xj 0X; 0X; an) 2.13)
2.1.2 Equilibrium
Let t be the real stress vector in a point of a body
Af  df
= lim — = — 2.14
t ASD0AS  dS @14

where Af are the section forces affecting the section surface area AS. The stress t can be

obtained from the symmetric Cauchy stress tensor T as
t=Tn (2.15)

where n is the normal to the section surface. The acting body and surface forces for an

arbitrary domain fulfill the equilibrium condition

/pidV + /St,ds = 0. (2.16)
1%

The second part of Eq. (2.16) can be transformed to a volume integral by using Eq. (2.15),
which leads to the equation

E.
/pidV—i—/ %deO. 2.17)
1% \%4 J

Considering volume elements we obtain the well-known equilibrium equation

oT;;
8a:j
or
p + divT = 0. (2.19)

The stress tensor which is the energetic conjugate of the deformation gradient F is the

first Piola-Kirchhoft stress tensor P. This tensor is obtained by transforming the resulting

Thomas Most PhD Thesis



8 2. Mechanical fundamentals

force acting on an infinitesimal section surface area ds in the actual configuration

F, = / Tnds (2.20)
ds
to the reference configuration by using the transformation equation
ds = det(F)F~"dS. (2.21)
This leads to the formulation
F; = / det(F)TF~"NdS (2.22)
s
where the first Piola-Kirchhoff stress tensor is defined as
P = det(F)TF~. (2.23)
Due to the asymmetric P the second Piola-Kirchhoff stress tensor was introduced
S=F'P (2.24)
which is the energetic conjugate of the Green-Lagrangian strain tensor E.
2.1.3 Constitutive law
For linear elastic materials Hooke’s law can be given in the form
S=CE (2.25)

where C is the four-dimensional elasticity tensor containing 81 components. In the case of
the restriction to isotropic materials this tensor can be represented by the Lamé constants

n and
Cijii = 105500 + 1 (w60 + 00 (2.26)

where ;; is the Kronecker symbol

L
b= 7 (2.27)
0 i#]
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2.1. Continuum formulation 9

The relations between the Lamé constants and the commonly used Young’s modulus £

and Poisson’s ratio v are given as

=y V)EZ — ) (228)
and
= 2(1—21/) (2.29)
Using Eq. (2.26), Eq. (2.28) and Eq. (2.29) in Eq. (2.25) yields the relation
S = 1 tr(E)1 + 2uE = by tr(E)1 + E. (2.30)
(1+v)(1—2v) (1+v)

If only small strains are considered, which means that a geometrically linear analysis is
performed, the linearized strain tensor can be obtained from the Green-Lagrangian strain

tensor by neglecting higher order terms. It reads

The conjugated stress tensor o is called the linearized stress tensor. The linearized stress-

strain relation is then given as
o = Ce. (2.32)

Introducing the three-dimensional displacement degrees of freedom u,, u, and u, and

the linear gradient operator O, the kinematic relation in Eq. (2.31) reads in matrix-vector

form
€ = 0.u
_ - _ - - _
€xn € 5 0 0
P
Eyy Eyy 0 BN 0 " 233
o) T .
€2 | | €| | 0 0 &
2 B 2 2 9 “y
€y Yy dy Oz u
2 2 0 2 :
E$Z ’ya)z 82 8$
a @
L 2€yz | L PYyZ | B O % d_y 1
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The constitutive law in Eq. (2.32) can be written as

[ Uxx | | Exac |
Oyy Eyy
%= | | (2.34)
O‘iEZ /yJJZ
L O-yZ - - fyyz -
with the constitutive matrix C for linear elastic materials
[ 1—v v v 0 0 ]
v 1—v v 0 0
F 1— 0 0 0
Cc_ v v v (2.35)
(1+v)(1—2v) 0 0 % 0 0
0 0 0 =2 0
0 0 0 0 1}2”
If a plane stress state is assumed, Eq. (2.33) and Eq. (2.34) read
B
€rx Dz 0
d Uy
€y | = 0 em [ ] (2.36)
a 9 Uy
Vzy oy oz
and
fo 1 v 0 €
F
o | =12 |7 1 0 €yy | - (2.37)
Ozy 0 0 I_TV Vay
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2.2. Finite Element Method 11

2.2 Finite Element Method

The system of governing differential equations and boundary conditions for a linear elastic
continuum §2 € R? with the domain boundary I can be written as

e +fP =0 in Q

€ = 0.u in

o= Ce in 2

no = f° on T/ (2.38)
u=nu’ onI™

r=rvur/

Nt =¢

where f° is the prescribed traction vector on the Neumann boundary I'/, the so-called

natural or static boundary conditions

o=l s (2:39)

u® is the vector of prescribed displacements on the Dirichlet boundary I'“, known as

essential or kinematic boundary conditions
s T
u’ = [ udoud ud } ; (2.40)

5 is the body force vector, and n is the matrix of direction cosine components of a unit

normal to the domain boundary (positive outwards)

ng, 0 0 ny, n, 0
n=1,0 n, 0 n, 0 n,|. (2.41)

0 0 n, 0 ng, ny

In (Argyris and Kelsey 1954) a concept was developed where the above system of
differential equations is solved only in a given set of discrete points and the solution is
mapped onto the domain () by using element-wise defined interpolation functions. To-
day this Finite Element Method presents an essential tool for the numerical solution of

differential equations in different fields of engineering science.

2.2.1 Method of Galerkin

The Ritz method is a very well-known procedure for the solution of differential equa-

tions, where linearly independent uniform base functions ¢;, are used to approximate an
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12 2. Mechanical fundamentals

unknown function u(x, y, z) which is chosen here in a three-dimensional domain 2 as

u=do(z,y,2) + »_ crdu(x,y, 2). (2.42)
k=1

Since only the fulfillment of kinematic boundary conditions is postulated for the base
functions ¢y, an error occurs by the insertion of Eq. (2.42) into the differential equation.

This error, which is called the residue

R(x,y,z) = Apo + Z kAo — u(z,y, 2), (2.43)
can be minimized in {2 by weighting Eq. (2.42) with an arbitrary linearly independent
function set ¢y (x, y, 2), ..., Um(x, y, 2). This approach is known as the method of weighted
residues. In the method of Galerkin (Galerkin 1915) the weighting functions v, are cho-
sen according to the function set ¢;. This leads to an orthogonal function subspace, which
presents the best approximation in the space of ¢;. By postulating a vanishing error in the

domain {2 in integral sense the formulation

/R¢de:O; j=1,...m (2.44)
Q

is obtained. Thus the method of Galerkin is a special form of the method of weighted

residues.

2.2.2 Variational formulation

Considering the total potential (Bathe 1996)

_ L[ 7 _ TeB i) _ TeS
[I(u) = 2/96 (u)Ce(u)d2 /Qu £2dQ /Ffu f2dl’ (2.45)

and invoking the stationarity of II yields the weak form of the equilibrium

SM(u) =0 = / 5e” (1) Ce(u)dS) — / sultBd0 — / suf3dr. (2.46)
Q Q rf

This weak form is called the principle of virtual work and has the advantage that the only
varying terms are the displacements whose boundary conditions can be easily considered.
In a Galerkin approach the virtual displacements du, called test functions, and the un-
known displacements u, called trial functions, are assumed to exist in the same function

space.
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. u(z)

Node 1 i Node 2

Ue(z) D1 (x)Ue 1 D o(x)Ue 2

Ue,1

= +

1. |1

Figure 2.2. One-dimensional linear finite element interpolation

2.2.3 Discretization by finite elements

By introducing the finite element shape functions @, ;(x), the interpolated displacements

in an element are given as

u’(x) = Ho(x)1, (2.47)

e

where the matrix H, contains the nodal shape function values of this element depending

on the position x,

D, (x) 0 0 o Do (x) 0 0
H.(x) = D, 1 (x) 0 0 D, (%) ,
0 0 Q.1(x) ... 0 0 D, (%)

(2.48)

and u. is the local node displacement vector. The finite element shape functions fulfill the
interpolation conditions exactly,

D, (%),

=6 (2.49)

Fig. 2.2 shows the example of a one-dimensional finite element interpolation. The strains
within the element can be obtained from Eq. (2.33) by defining a strain-displacement-

matrix

B.(x) = 8:H.(x) (2.50)
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14 2. Mechanical fundamentals

in the form
€.(x) = B.(x)u.. (2.51)

The discrete formulation of Eq. (2.46) by using Eq. (2.47) and Eq. (2.51) reads for one

single element

0= / s B CB.1i.d2 — / sal HIt5d0 — / ) sal H 941 (2.52)
e € Fe
which has to be valid for every variation du.. This implies
0= / B/ CB.dQu, — / H {240 — ) HIf%dr. (2.53)
Qe Qe re

Eq. (2.53) is the well-known element-stiffness relation and can be written as
K.u, = £ (2.54)
with

K. = / B CB.d,

e (2.55)

fort — / HIt5d0 + /F ) HIf5r.

Eq. (2.55) clarifies a very important advantage of the Galerkin method: by choosing equal

test and trial functions a symmetric stiffness matrix is obtained, which enables efficient
solution procedures.

By using the relation between nodes and elements, which are usually stored in the in-

cidence table, the global stiffness matrix K and the external load vector £¢** are assembled

and the unknown global displacement vector d can be determined by solving
Kd = f', (2.56)

Due to the compact support of the finite element shape functions, the global stiffness
matrix has sparse character. Thus in an implementation of the Finite Element Method
only the small number of nonzero values of the global stiffness matrix has to be stored.
This can be done for example using the Compressed Storage Format (Karypis and Kumar
1998). Furthermore this sparse character enables the application of special solvers for
the system of linear equations, which are much more efficient for this special matrix
type than using standard algorithms for dense matrices. Chapter 2.3.1 describes different
types of such sparse matrix solvers. This work shows how to accelerate assembling of the

element and the global stiffness matrices for multiprocessor computer systems with shared
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2.2. Finite Element Method 15

1,1

Figure 2.3. Projection of a distorted four-node element with belonging Gaussian integration
points into local coordinates

memory with the parallelization environment OpenMP (OpenMP Architecture Review

Board 2002). In appendix A.1 more detailed information about this topic can be found.

2.2.4 Numerical integration

The integration required in Eq. (2.55) can be done analytically only in some special cases,
e.g. for three-node triangular elements in 2D and for four-node tetrahedral elements in 3D.
For higher order elements a Gaussian numerical integration is most commonly used with
the Finite Element Method. This approach obtains the exact solution for a polynomial of
degree 2n — 1 with n supporting points. The shape functions have to be defined locally

as
u.(x) = H, (1)d, (2.57)
where
rz[r s tr (2.58)

and a projection onto the unit square or triangle (in 2D) is necessary. This is shown in
Fig. 2.3 for a linear two-dimensional four-node element with the required 2 x 2 Gaussian

integration points. This projection, which is given as
dx dy dz = detJ dr ds dt, (2.59)

is realized by defining the Jacobian matrix

or oy oz

ox or Or Or

— = _ | 9z Oy 0=z
J = or - ds Os Os : (260)

or oy 0

ot ot ot
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16 2. Mechanical fundamentals

The Jacobian determinant has to be positive to ensure the reversibility of Eq. (2.59), which
is fulfilled for convex element geometries. In (Bathe 1996) the required weighting fac-
tors and the positions of the integration points are given for different polynomial orders.
The integration scheme for determining the stiffness matrix in Eq. (2.55) for a three-

dimensional element reads

l m
K, = / B/CB.d2=> Y > www;Bl CB.detJ. (2.61)
Qe ;

i=1 j=1 k=1

3

The strain-displacement matrix is obtained from the shape functions defined in local co-

ordinates as

or

B.(x) =9:H.(x) =8.J ' | £ | Hc(r). (2.62)

2.2.5 Material nonlinearity

The derivation in section 2.2.2 and 2.2.3 can be extended for materials which are not

linear elastic. A nonlinear constitutive equation is introduced,
o =20(e,apn), (2.63)

where 6 denotes the nonlinear constitutive operator and e;,,; contains the internal variables

e = [ i o -] (.64

which describe the state of an inelastic material. In general the internal variables are path

dependent and influenced by the strain history. For the discretized case we obtain
0. = 6(B.le, a;y). (2.65)

The discretized weak form given in Eq. (2.52) now reads

/ §u! Bl6 (B a,, ain)dQ = /
Qe

sul HIfPa0 + /
Qe

sulHIf%dr,  (2.66)
r{

which leads to the abbreviated equation

£ (1) = £ (2.67)
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2.2. Finite Element Method 17

where
£ (8,) = / B!& (B, aint)dQ (2.68)

is the vector of the equivalent internal forces depending on the nodal displacements u®
in a nonlinear way. Eq. (2.55), where linear elasticity is assumed, is a special case of
Eq. (2.67). The internal forces are given for this case "/ (11.) = K.1,.

To solve the system of nonlinear equations given in Eq. (2.67), the concept of lin-
earization can be applied. Then a given strain state € with corresponding stress state
& = & (€) is assumed to be known and the constitutive function & can be expressed in the

vicinity of € by a Taylor series

G(E+ Ae) =6 (€) + g—: Ae+.... (2.69)

€=€

For small increments Ae the linearized equation
o(€+ Ae) ~ 6(€) + D(€) Ae (2.70)

can be obtained where D = 06 /0e is the tangential material stiffness matrix depending
on the actual strain state €. By linearizing Eq. (2.68) at a given nodal displacement state

Ui, we obtain a similar formulation
£ (@ + Au,) ~ £ (T,) + K. (8.)Au,, (2.71)

where K. = 0f™ /0, is the tangential stiffness matrix at @, which reads, according to
Eq. (2.55),

K.(1.) = / B'D(e)B.df) = / BD(B.ii.)B.d. (2.72)
Again linear elasticity is a special case of Eq. (2.70) and Eq. (2.72), where the tangential
material stiffness matrix is equivalent to the constant constitutive matrix in Eq. (2.35):
D = C and the tangential stiffness matrix corresponds to the initial stiffness matrix and
remains constant with increasing displacements: K. = const.

For anisotropic materials the symmetry of the tangential stiffness matrix can break and
a special handling is necessary for the solution of the global system of equations. Fur-
thermore the application of the Gaussian integration scheme presented in section 2.2.4 is,
for most nonlinear constitutive laws, only an approximation which necessitates the refine-
ment of the element integration scheme or of the finite element discretization depending

on the required accuracy.
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18 2. Mechanical fundamentals

2.3 Solution strategies

2.3.1 Linear analysis

To solve a system of linear equations
Ab=c (2.73)

the Gaussian elimination algorithm can be applied (Bronstein and Semendjajew 1979).
The high-performance linear algebra library LAPACK (Linear Algebra PACKage) (An-
derson, E. et al. 1995) contains a very efficient implementation of this algorithm to solve
the above equation. This library, which uses internally the BLAS package (Basic Lin-
ear Algebra Subprograms) (Hanson et al. 1973), has already been adapted to parallel
computer architectures in the ScaLAPACK library (Blackford, L. S. et al. 1997). ScalLA-
PACK can be used on shared and distributed memory systems with the PVM (Parallel
Virtual Machine) (Geist, A. et al. 1994) or MPI (Message Passing Interface) (M.P.1.
Forum 1994), (Snir et al. 1996) parallel environments. Communication between the pro-
cessors is arranged by the BLACS package (Basic Linear Algebra Communication Sub-
programs) (Dongarra and van de Geijn 1991). Both the LAPACK and the ScaLAPACK
library contain a large number of further algebraic routines, for example an eigenvalue
and eigenvector decomposition of a quadratic matrix.

Within a Galerkin method the unknown displacements d can be determined directly

for a linear elastic problem by solving the equation
Kd = fet (2.74)

where the stiffness matrix K has, in general, sparse character due to the compact support
of the shape functions. The solution of Eq. (2.74) can only be found if K is not singular.
Furthermore the discretization of the differential equation presented in section 2.2.3 leads
to a symmetric matrix K. The standard procedure for solving Eq. (2.74) with a symmetric
and non-singular matrix K is the LDL’ factorization (Bathe 1996)

K =LDL" (2.75)

where L is a triangular matrix and D has diagonal form. The unknown displacement

vector d is then obtained by using the backward substitution

Ty = fo

g (2.76)
DL d=v.
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Another solution procedure is the Cholesky factorization scheme (Bathe 1996)

ET

Il
=

K
(2.77)

[

=
Il
=

D,

which needs slightly more operations than the LDL’ factorization and is limited to sys-
tems with a positive definite matrix K. Both methods are direct solution procedures.
Iterative solution procedures are a second group, for example the conjugate gradient or
the Gauss-Seidel method (Bathe 1996). In this section only direct solvers are discussed
as they are independent of a start vector and have higher accuracy.

For an efficient and fast implementation of a factorization scheme the number of aris-
ing additional nonzero entries of the matrix K should be limited. This can be realized by
reducing the band-width of K. Several algorithms have been developed for this purpose,
for example the Cuthill-McKee-algorithm (Cuthill and McKee 1969), a spectral reduc-
tion technique (Barnand et al. 1993) or a geometrical ordering approach (Bucher, C. et al.
2002). Due to the limitation of the band-width reduction algorithms a new group of meth-
ods has become popular in the recent years. It reduces the fill-in during the factorization
process. With these methods the number of additional nonzero entries can be reduced
more significantly for systems with higher band-width. One of the first algorithms of this
group was the Approximate Minimum Degree (AMD) ordering (Davis et al. 1994). Today
the METIS package (Karypis and Kumar 1998) is one of the most efficient fill-reducing
orderings of sparse matrices.

In the course of this work different sequential and parallel direct solver libraries for
sparse matrices have been investigated and implemented in the software package SI[#Dg .
These solvers are a sequential sparse direct solver developed at the Czech University
in Prague (Vondracek 2003) with Approximate Minimum Degree ordering, the MUIti-
frontal Massively Parallel Solver (MUMPS) (Amestoy et al. 2003), which uses MPI,
and the OpenMP based PARallel DIrect SOlver (PARDISO) (Schenk and Gértner 2004).
The MUMPS package offers several built-in ordering algorithms, like an Approximate
Minimum Degree and an Approximate Minimum Fill ordering, and furthermore an in-
terface to the external ordering packages PORD (Schulze 2001) and METIS. PARDISO
contains an Approximate Minimum Degree ordering and a METIS interface. The per-
formance of these solvers is investigated and compared to the performance of the S[A1g
implementation of the LDL" factorization solver with band-width reduction in section
2.4.1. Detailed information of the implementation of the MUMPS library in SI#E using
an external MPI-application are given in (Schrader 2004a).
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20 2. Mechanical fundamentals

2.3.2 Load controlled nonlinear analysis

Nonlinear finite element simulations determine the response of a structural model subject
to a given loading history. This is usually done by applying the external load in several
incremental steps. The response after each step is obtained by solving the global form of
Eq. (2.67)

£l (d) = feot (2.78)

in an iterative way. One of the most commonly used iterative methods for this purpose
is the standard or modified Newton-Raphson procedure (Bathe 1996), which will be ex-
plained in this section.

In a load controlled analysis the external nodal force vector is given by a sequence
feet, (1) feet,(2) fext(3) - which was evaluated by using Eq. (2.55). The goal of this anal-
ysis is to find the corresponding nodal displacement vectors dV),d® d®, ... such that
each couple (d™, fe=t:()) fulfills Eq. (2.78). By starting with the known displacements
of the previous load increment d™ the unknown displacement increment Ad"*+1 =
d+Y — d™ has to be found by solving

fznt(d(n) 4 Ad(nJrl)) — femv(”+1). (279)
Eq. (2.79) can by linearized in the first iteration step according to Eq. (2.71) as
K(d(n))Ad(nJrl,l) — fext(nt+1) _ fmt(d(n)> (2.80)

where Ad™+11) is the first approximation of the unknown displacement increment as-
suming the initial displacement values to be d*+10 = d(™. Eq. (2.80) can be solved by
using the linear solvers for sparse matrices mentioned in section 2.3.1 in the same manner
as for Eq. (2.74).

The following iteration procedure reads for: = 1,2, 3, ...

K(d(n+1,i—1))6d(n+1,i) _ fea:t,(n—l—l) . fint(d(n—l—l,i—l))

| | | (2.81)
d(n—‘rl,z) — d(n—i—l,z—l) + 5d(n+1,z)

where d"*1%) is the displacement approximation after the i-th iteration in the load step
n+1and §d™+1) is the displacement correction applied in the i-th iteration. The accumu-
lated displacement corrections during the iteration converge to the unknown displacement

increment

AdY = lim A4 (2.82)

1—00
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with

Ad+1) — Z 5d 1) (2.83)
k=1

In a numerical implementation of this method the algorithm is stopped after a finite num-
ber of cycles ¢ if the convergence criteria are satisfied. The last approximation is used as

the new equilibrium state
Ad"D & AQHLY, (2.84)

Three common criteria for the convergence of an iteration process are described in
this section according to (Bathe 1996). The first one analyzes the displacement increment

after each iteration step

”5d(n+l,i) ||

The second criterion is fulfilled if the normalized imbalance forces are less than a given

tolerance

”fea:t,(nJrl) _ fint(d(n+1,i))||
||feact,(n+1) _ fmt(d(n)) H

< ep. (2.86)

Another criterion investigates the increment of the global energy

[fe:pt,(n—i—l) _ fmt(d(n+1,z'—1))}T 5d(n+1)

[feat.(nt1) _ fint(d(m))]T Ad(n+1.1) < B (2.87)
These criteria can be used individually or combined for all iterative solution procedures
presented in this section.

In the modified Newton-Raphson method the stiffness matrix in Eq. (2.81) is not eval-
uated in the iteration steps but is taken from the last equilibrium state K(d"*1"=1) =
K(d™). Thus the rate of convergence slows down, but the most time consuming pro-
cesses in one iteration step, the evaluation and the factorization of the stiffness matrix,
has to be done only once for each load increment, which leads to a more efficient so-
lution procedure for weakly nonlinear problems. A further simplification is the initial
stiffness method, where the stiffness matrix is taken from the initial state of the structure
K(d™+=D) = K(d®). For strongly nonlinear problems such as those investigated in
this work, the application of the modified Newton-Raphson or the initial stiffness method
may lead to convergence problems, thus the full Newton-Raphson method is more promis-

ing for such investigations.
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2.3.3 Displacement control

Structures consisting of materials with ideal-plastic or softening behavior have in general
a certain load-carrying capacity. If load controlled algorithms are used for the analysis,
the post-peak behavior cannot be investigated. For this reason displacement controlled
methods have been developed. In this section the direct displacement control is presented
according to the details in (Jirdsek and Bazant 2002).

In the direct displacement control approach the nodal displacements are divided into
two groups d = [d;, dg]T, where the first one contains the unknown displacements d;
and the second one the prescribed displacements d, at the controlled degrees of freedom.
According to this assumption the external and internal force vectors are partitioned in
the same manner, £t = [feot feot]” and fint = [fint £i7]" respectively. For simplicity
(Jirasek and Bazant 2002) assumed the external forces f{** corresponding to the unknown
displacements d; to be equal to zero. Thus all external forces acting on the structure are
represented by the reactions £5** at the supports. The global equilibrium equation given
in Eq. (2.78) reads

ffnt(dl, dg) — 0,

int ext (288)
f2 (dl,dQ) - f2 .

The second part of Eq. (2.88) can be obtained directly after solving the first part, which is
done iteratively. Introducing the partitioned stiffness matrix

Ofimt Ot

K — ofint _ od; 0ds _ K1 Ky (2.89)
od ofint ot Koi Koo ’
od;  0ds
obtains the linearized equation
£;" 0 4 K{P AT + KA = 0. (2.90)

Due to the known displacement increment Adg”rl) = d(2n+1) - dg"), Eq. (2.90) can be

rewritten as
KA = —f 0 — K Adf, (2.91)

The iteration process is performed for ¢ = 1,2, 3, ... in the form

K571L+1,i71)5dgn+1,i) _ _fi'nt,(nJrl,ifl) . K§72L+1,i71)5dgn+1,i)

2.92
d(n+1,i) _ d(n—l—l,i—l) + 5d(n+1,i) ( )
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a) b)
A limit point A
(snap-through) Al
turning point Al
(snap-back) A
d d

Figure 2.4. a) Load displacement diagram for a single degree of freedom system with snap-back,
b) arc-length method with equilibrium states (Jirasek and Bazant 2002)

where

dgnJrl,O) _ dgn)

dén—l—l,(]) _ dgn)
(2.93)
(SdgH_LI) _ dgn-‘,-l) . d;n)

sdy T =0 for i=2,3,...

until the convergence criteria are satisfied.

2.3.4 Arc-length method

Direct displacement control can not be applied, if structures are investigated where several
different points or surfaces are loaded and the relation between the displacements of the
belonging nodes can not be formulated in advance. Furthermore this displacement control
approach can not represent the load-displacement curve including a turning or snap-back
point as shown in Fig. 2.4. This snap-back effect can occur if a localized softening takes
place in a mainly elastically deformed structure. In section 2.4.2, a simple snap-back
problem is presented. The arc-length method can handle such snap-back behavior and
can obtain the post-peak load-displacement relation by using a defined external loading

vector. In general, linear loading
fert(\) = fy + Af (2.94)

is assumed with a constant component f;, and proportionally increasing component Af,

where A is the scalar loading factor. In (Crisfield 1981) a spherical arc-length

Aly = /AdTAd + (cAN)? (2.95)
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is introduced where Ad is the unknown displacement increment and A\ is the unknown
load factor increment in one solution step. The scaling factor ¢ defines the relation be-
tween displacements and load increments and can be obtained for example from the as-
sumption that the contributions of load and displacements should be equal as long as the

structure remains linear elastic (Jirdsek and Bazant 2002). This leads to

c=+/dL, s (2.96)
where d.;.s 1S the solution of

Keiastdetast = £. (2.97)
The equations of equilibrium

fri(d) = fy + Mf (2.98)

and the definition of the arc-length in Eq. (2.95) gives a set of Npor + 1 nonlinear equa-
tions, where Npor 1s the number of nodal degrees of freedom, which is solved iteratively.
Eq. (2.98) can be linearized in the ¢-iteration as

K(n+1,i—1)5d(n+1,i) _ fO + )\(n—i-l,z'—l)f . fint,(n—l-l,i—l) + 5}\(71—1-1,1’)? (299)

with the unknown displacement correction 6d"*'*) and the unknown load factor correc-

tion 0A("+19) By solving the separated equations

K(n+1,i—1)5d0 _ ?0 + /\(n—}—l,i—l)f _ fz'nt7(n+1,i—1)

K+i-05q, — F (2.100)
the displacement correction is obtained as
oA = 5dy 4+ AT 5d,. (2.101)
By substituting this expression in the modified formulation of Eq. (2.95)
(Ad(n+1,i—1) + 5d(n+1,i))T (Ad(n-i—l,i—l) + 5d(n+1,z‘))
(2.102)

+62 (A)\(n—i—l,i—l) + 5)\(71,—}—1,1'))2 _ (AZA)Z,
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with

n+1 A Z 5d (n+1,4)
n+1 4 Z 5)\(714—1 i

(2.103)

a quadratic equation for the unknown load factor correction A% is obtained. The
correct root for this solution, which is very important to avoid doubling back, is chosen
in general such that the corresponding incremental displacements Adgnﬂ’i) or Adgnﬂ’i)

encircle the smaller angle with the displacement increments of the last iteration step (Cr-
isfield 1981)

Z(Ad{5 ™ ALY = min, (2.104)

If sharp snap-backs are investigated with the spherical arc-length method, convergence
problems may occur at the turning point. Then the application of the cylindrical arc-
length method, where the scaling factor c is taken as zero, is more promising (Crisfield
1983). In this work a further stabilized technique, the cylindrical arc-length method with
minimal residues (Hellweg and Crisfield 1998) is applied. There the solution is taken

n+1,7)

from this value of & )\12 where the corresponding internal force vector has the minimal

difference from the external forces

IFo + (A + AN — £74(d™ 4+ ALY = min, (2.105)
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2.3.5 Acceleration of convergence using the line search method

The line search method is an iterative technique to accelerate the convergence of nonlinear
solution algorithms. This method can be applied to load and displacement controlled anal-
yses in the same manner as for the arc-length method. If the standard Newton-Raphson
iteration does not converge, which can be caused by several reasons e.g. if the nonlinear
function contains inflection points, the line search method may achieve convergence in
most cases.

In this section the line search approach is presented according to (Reich 1993). This
method automatically under- or over-relaxes the obtained displacement correction §d(™+1+%)
of the actual global iteration step i. The displacement correction is multiplied by a scalar
value s, which defines the amount of under- or over-relaxing. Thus the update of the

total displacements reads
d(n+1,i+l,k) _ d(n+1,i) + Sk(gd(n—l-l,i)' (2106)

For k = 0 and k = 1 the values of s* are 0 and 1, respectively. Therefore

d(n+1,i+1,0) _ d(n+1,i)

dnHLitLl) — qntLitl) (2.107)

The amount of under- or over-relaxing is determined by enforcing an orthogonality con-
dition between the displacement corrections 6d ™+ and the unbalanced forces R+D.
This is realized by defining a scalar value g* representing the iterative change in energy

as

g" = 6d"THIRIFY (2.108)
with

RO+LE) — peat _ fint(d(n-&-l,i—&-l,k))' (2.109)

The object of the line search method is to find s* such that g” is zero. An estimate of s**+!

is determined using an extrapolation procedure

sl = gh I (2.110)

After s**1 has been obtained d("1i+LkE+1) | fint(q(rtLitlh+1)) and ROE+HLEHD are com-

puted for the next line search iteration step. The iteration terminates if

|g"]
g
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R(i+1,2)

k] /‘

R(+10) Ri+13)

RG+1.0) [ |

Figure 2.5. Line search method for a SDOF system a) improves standard Newton-Raphson
method near an inflection point and b) accelerates modified Newton-Raphson method

where the tolerance T'OL is generally chosen between 0.5 and 0.8. If Eq. (2.111) is not
fulfilled after three steps, the iteration is canceled and the value of s*, where |g*/¢°| was
minimal, is used to obtain the final displacement vector d(**+1#+15)

In Fig. 2.5a the line search algorithm is shown for a single-degree-of-freedom (SDOF)
system near an inflection point where the standard Newton-Raphson procedure does not
converge. In Fig. 2.5b the principle of the acceleration of the modified Newton-Raphson
method is presented. In this work the line search method was used for the investigated

problems in combination with the standard Newton-Raphson method.
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2.4 Examples

The numerical examples in this section have been chosen to demonstrate the differences
of the described direct solvers for sparse matrices with respect to their efficiency. Fur-
thermore the reason for the appearance of the snap-back effect is shown on a simplified

example.

2.4.1 Performance of direct sparse matrix solvers

.

Figure 2.6. Investigated cantilever and compact block with load and boundary conditions

In this section the performance of the different direct sparse matrix solvers mentioned in
section 2.3.1 will be investigated on two simple structures. The first system is a cantilever
with a length of 1m and a quadratic cross section of 0.1m x 0.1m, which is loaded by
a single load of 1N as shown in Fig. 2.6. The second investigated structure is a com-
pact block with 1m edge length. The assumed load and boundary conditions for this
system are shown additionally in Fig. 2.6. The linearly distributed load is taken with
16 N/m. Both systems have been analyzed using 27-node hexahedral finite elements with
quadratic shape functions. For each structure two different discretization levels have been
investigated: the cantilever was modeled with 640 elements and 6561 nodes, resulting
in 19612 degrees of freedom (DOFs) and with 5120 finite elements, 46529 nodes and
139516 DOFs and the compact block was discretized with 512 elements, 4913 nodes and
13872 DOFs and 4096 elements, 35937 nodes and 106928 DOFs. The material has been
assumed to be linear-elastic and the properties are taken as F = 103 N/m? for Young’s
modulus and v = 0.3 for Poisson’s ratio.

These two structures were chosen to clarify the differences of the solver performance
for a system with small and a system with high band-width. In Fig. 2.7 the assignment of
the lower symmetric part of the stiffness matrices optimized using the spectral reduction
algorithm are displayed.

In Table 2.1 the required computational times for one factorization and solution step
with initial ordering are listed. The calculations have been carried out using the S[#Dg im-

plementations of the LDL" solver with geometrical, spectral and Cuthill-McKee band-
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Figure 2.7. Optimized stiffness matrix assignments for the cantilever and the compact block
model using spectral reduction

width reduction, the Vondracek solver with AMD ordering and the MUMPS and PAR-
DISO solvers with METIS ordering. The values have been obtained on an AMD Opteron

computer with 2.2 GHz using one processor and Linux. The missing values (-) indicate

DOFs Geom. red.  Spectral red. Cuthill Vondragek MUMPS PARDISO
Cantilever

19612 a) 7.87s 6.96s 11.03s 3.33s 1.99s 1.69s
19612 b) 0.05s 1.64s 2.88s 0.74s 1.73s 1.71s
139516 a) 656.38s - 1322.11s 450.83s 70.76s 71.24s
139516 b) 0.10s - 162.9s 12.16s 17.25s 17.20s
Compact block

13872 a) 55.37s 41.72s 408.82s 8.66s 2.84s 2.44s
13872 b) 0.04s 0.77s 0.58s 0.79s 1.17s 1.15s
106944 a) - - - 1671.96s 136.22s 141.18s
106944 b) - - - 8.16s 12.10s 13.25s

Table 2.1. Comparison of computational time for the different matrix solvers (a: factorization
and solution, b: ordering)

the unsuccessful factorization of the solver caused by memory problems. The table clearly
indicates that the solvers which use a fill-in reducing ordering (Vondracek, MUMPS and
PARDISO) have much better performance compared to the solvers with band-width re-
duction, especially for the compact block example, where a very high band-width exists.
Furthermore the METIS ordering leads to an even faster factorization than using the AMD
algorithm. Both solvers with METIS ordering (MUMPS and PARDISO) have a similar
performance for the investigated examples. Their performance data have been obtained by
using the LAPACK and BLAS implementation of the Intel Math Kernel Library (MKL)
(Intel Corporation 2004). These routines are mainly used by the MUMPS and PARDISO
solvers, thus the efficiency of these solvers is much higher with the MKL than using
self-compiled LAPACK and BLAS libraries.

By means of the structures presented above the scalability of the parallel solvers,
MUMPS and PARDISO, was investigated on a shared memory system, the SGI Altix
3000 super computer with 40 Itanium II processors with 900 Mhz by using 64-bit Linux.
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Figure 2.8. Required computational time for one factorization and solution step of the cantilever
and the compact block model

Both solvers use the sequential ordering package METIS on the master processor and
do the factorization and solution distributed on all involved processors. In Fig. 2.8 the
obtained computational time for one factorization and solution step is shown depending
on the number of processor for both structures. The figure indicates that both solvers scale
very well for the larger models even for higher numbers of processors. The OpenMP-
based PARDISO solver shows a better scaling behavior above 8 processors than the MPI-
based MUMPS solver, especially for the smaller models. More investigations with the
presented sequential and parallel solvers can be found in (Most and Eckardt 2004) and
(Schrader 2004a).

Furthermore a parallel MPI-based implementation of the METIS package, ParMETIS,
can be used to reduce the computational time required for the ordering on parallel comput-
ers. In (Schrader 2004b) an interface to connect the ParMETIS package with the MUMPS
solver within SI#D8 was developed. The application of ParMETIS reduces the required
time for ordering on the one hand, but the scaling of the MUMPS factorization is reduced
on the other hand. Thus no significant overall performance profit could be observed for

most investigated systems.

2.4.2 Simulation of a snap-back problem using the arc-length method

In this example the formation of a snap-back effect is presented on a simple tensile bar.
The tensile bar, as shown in Fig. 2.9, has a cross section of 0.1m x 0.1m and a localization
zone orthogonal to the loading axis, which is modeled by a single two-dimensional four-
node interface element (Appendix A.2). The continuum is modeled linear elastically with
standard four-node 2D solid elements by assuming £ = 2.5 - 101N /m? for Young’s
modulus and v = 0.2 for Poisson’s ratio. In the interface surface a simple linear softening
model is used for the relation between the normal stress oy and the relative displacement
Auwuy, which is shown in Fig. 2.9. For this model the elastic tangent modulus is taken with
kN ctast = 101 N/m3, the maximum stress with oy 4. = 2 - 105N/m? and the softening
modulus with ky o5 = —2.5 - 10'°N/m3. The relation between the applied load F and
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Figure 2.9. Tensile bar with localization zone and belonging interface softening model
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Figure 2.10. Numerically (dots) and analytically (lines) obtained relations between the load F
and the length change Al of the bar depending on the increasing length !

the corresponding change of the bar length Al is investigated depending on the increasing

bar length [/, by using the cylindrical arc-length method with a constant arc-length of

Aly = 5-10"°m. Fig. 2.10 shows the analytical and numerical values for different bar

lengths. The figure indicates that with increasing [ the elastic energy of the bar at the

limit point increases, but the total inelastic energy, which is released in the interface zone

in this process, remains constant. This is the reason for the snap-back effect, where the

maximum elastic energy in the system, which is reversible, exceeds the inelastic energy

released in the interface zone.
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Chapter 3

Meshless methods

Conventional numerical methods, like the Finite Element Method, need a predefinition of
the node connectivity, since they rely on a mesh. During the last two decades a new class
of numerical methods was developed, which approximates partial differential equations
based only on a set of nodes without the need for an additional mesh. Today a huge
number of different meshless methods are available, but here only a brief overview is
given of the most common methods. Several state-of-the-art-reports, e.g. (Duarte 1995),
(Belytschko et al. 1996), (Li and Liu 2002) and (Fries and Matthies 2003), give more
detailed access to this field.

The most important feature of meshless methods compared to mesh-based approaches
is the absence of a mesh, so they are not alignment sensitive. Furthermore the connectivity
of the nodes is determined at run-time, which leads to a much simpler implementation of
adaptive schemes. No initial mesh generation is necessary at the beginning of the calcu-
lation, which is still not a fully automatic process in mesh-based methods, especially for
complex three-dimensional structures. For problems with large deformations or moving
boundaries meshless methods show several advantages since no remeshing is necessary,
which degrades the accuracy of the numerical method due to the required projection be-
tween the meshes. Another important advantage is that the meshless shape functions can
easily be constructed to have any desired order of continuity, thus no post-processing is
necessary to obtain smooth strains etc.

In practice meshless methods are often more time-consuming than mesh-based meth-
ods, caused by the more complex shape functions which require a larger number of in-
tegration points. For every integration point the neighboring nodes have to be deter-
mined and several operations are necessary to calculate the shape function values. The
global system of equations has in general a larger band-width than for comparable mesh-
based methods. Another problem of most meshless methods is the imposition of essential
boundary conditions, which is not straight-forward as the interpolation property is not
fulfilled, and additional numerical effort is necessary to solve this problem.

In (Fries and Matthies 2003) a good classification of meshless and mesh-based meth-
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Figure 3.1. Classification of meshless and mesh-based methods (Fries and Matthies 2003)
ods is given, which is shown in Fig. 3.1. All mentioned methods in Fig. 3.1 construct a

Partition of Unity (PU) of order n with different approximations. If in a weighted residual
method a function « is approximated by a set of functions ®; as

U%Uh: E (I)Zﬂ,“
i

and ®; builds a Partition of Unity of order n, it is possible to find an exact polynomial

3.1)

solution of a partial differential equation up to this order. Most of the meshless and mesh-
based methods have a Partition of Unity of order 0 or 1, thus they can exactly represent a
constant displacement field (better known as rigid body modes) or a linear displacement
field. In Fig. 3.1 the methods are classified according to their choice of approximation,
which can use the intrinsic basis only or add an extrinsic basis and the choice of test
functions. The construction of the PU is mainly done using the Moving Least Squares
(MLS) concept introduced by (Lancaster and Salkauskas 1981) and the Reproducing Ker-
nel Method (RKM) (Liu et al. 1995). The MLS approach uses a local least squares ap-
proximation around a fixed point. Reproducing Kernel Methods are in general a class of
operators that reproduce the function itself through integration over the domain. From the
continuous form of the RKM approximation a discretized form, the Reproducing Kernel
Particle Method (RKPM), was derived. One of the first and the simplest meshless meth-
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ods was the Smooth Particle Hydrodynamics (SPH) method (Lucy 1977), which is similar
to the RKPM concept. The SPH method was originally introduced for unbounded prob-
lems in astrophysics. Its application to bounded problems leads to major problems such
as the “spurious boundary effect” and a tension instability, caused by the not fulfilled PU
of the SPH shape functions. In the Corrected Smoothed Particle Hydrodynamics (CSPH)
these problems have been solved partially by additional correction terms for the kernel
functions and in the Moving Least Squares Particle Hydrodynamics (MLSPH) the MLS
interpolation is used instead of the traditional kernel functions.

The most common meshless method is the Element-free Galerkin Method (EFG) (Be-
lytschko et al. 1994), which uses the MLS interpolation to construct the trial and test
functions. This method is similar to the Diffuse Element Method (DEM) proposed in
(Nayroles et al. 1992), but some improvements have been realized. In the DEM the
derivatives of the interpolant are computed be considering only the polynomial terms,
where the coefficients, which depend on the position of the interpolation point, are as-
sumed to be constant. In the EFG method the complete derivatives have been used in
order to avoid problems caused by this incorrectness. Furthermore a much larger number
of integration points was used in the EFG method, which are arranged in a background cell
structure, in order to obtain more accurate results. Another improvement is the enforce-
ment of the essential boundary conditions with special methods. This was not realized in
the DEM and the boundary conditions were fulfilled only approximately.

In the Meshfree Local Petrov-Galerkin (MLPG) method (Atluri and Zhu 1998) a local
weak form is used instead of the global form of a standard Galerkin approach. The local
weak form is formulated over all local sub-domains and the integration is performed over
these domains. Thus this method is called “truly meshless” in (Atluri and Zhu 1998),
since no background mesh is required. Several special cases have been derived for the
MLPG concept depending on the choice of the test functions. If the MLS interpolation is
used as test functions the method is similar to EFG and DEM but with local weak form.
The Method of Finite Spheres (MFS) proposed in (De and Bathe 2000) uses this approach
in a modified form, whereby the so-called Shepard interpolation (Shepard 1968) instead
of the MLS interpolation is applied. The choice of other test functions in the MLPG
approach leads to the Least Squares Meshfree Method (LSMM) proposed by (Park and
Youn 2001) or to the Local Boundary Integral Equation (LBIE), which is the meshless
and local equivalent to the well-known Boundary Element Method (BEM).

The class of Partition of Unity Methods (PUM) contains meshless and mesh-based
approaches, like the Partition of Unity FEM (PUFEM) proposed in (Melenk and Babuska
1996), which is regarded as a meshless method, and the Extended Finite Element Method
(XFEM) (Moés et al. 1999), which is a local enrichment of the standard FEM. All of these
methods are essentially identical, since a lower order PU is enriched to a higher order

approximation. The shape functions are a product of the PU functions and higher order
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local approximation functions. Thus more unknowns per node are needed as opposed to
the MLS and RPKM approaches. Essential boundary conditions can be implemented by
choosing an appropriate local approximation space as shown in (Babuska et al. 2002). In
the Method of Finite Spheres the concept of Partition of Unity Methods was included to
obtain a higher order approximation than the used Shepard interpolation.

A further meshless approach is the so-called hp-Clouds method (Duarte and Oden
1996). This method considers the i and p enrichment of the approximation space from
the beginning. In this method the p-enrichment, which increases the polynomial degree of
the functions used for the shape function computation, does not introduce discontinuities
in contrast to the MLS and RKPM approaches. This is the main advantage of this method,
which enables an individual enrichment of the approximation function for each node. The
h-refinement is realized by adding more clouds of smaller size while keeping the shape
function degree unchanged.

Alternative “non-standard” approaches to construct the partition of unity are the Sib-
sonian (Sibson 1980) and Non-Sibsonian interpolation (Belikov et al. 1997), which are
used in the Natural Neighbor Galerkin Method (Sukumar et al. 1998) also called Natural
Element Method (NEM). In this method a Voronoi diagram of the nodal domain is used
to determine the neighbor nodes of an interpolation point. Since this Voronoi diagram is
directly defined by the nodal positions, and no predefined mesh is necessary, and the ob-
tained interpolation is smooth except at the nodes, this method is interpreted as a meshless
method. A very important advantage compared to many other meshless methods is the
fulfillment of the interpolation property, which enables the direct imposition of essential
boundary conditions.

A kind of a coupled method is the Meshless Finite Element Method (MFEM) proposed
in (Idelsohn et al. 2002), where the domain is uniquely divided into polyhedra which are
handled as finite elements such that in each polyhedron the Non-Sibsonian interpolation
is used. This concept destroys the smoothness of the interpolation which is one main
advantage of meshless methods. Meshless ideas are only considered to find the shape
functions of arbitrary elements. Some further methods have been developed by employing
RKPM ideas to combine meshless and finite element methods, e.g. the Reproducing
Kernel Element Method (RKEM) proposed by (Liu et al. 2004) and the Moving Particle
Finite Element Method introduced by (Hao et al. 2002).

Due to the higher numerical effort of meshless methods compared to mesh-based ap-
proaches, in this work the use of meshless methods is limited to some parts of the domain,
where their advantages, interpolation without a mesh, good accuracy, smooth derivatives
and trivial adaptivity, are sufficient. These parts are sub-domains where cracks develop.
Thus an adaptive coupling of meshless methods with the standard FEM in an automatic
crack growth algorithm was one aim of this work. Because of this reason only approaches

with intrinsic basis have been investigated. Two meshless methods were analyzed and en-
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hanced for the crack growth simulation in this work. The first one is the Element-free
Galerkin Method, which was chosen because of its widely successful application to me-
chanical problems. One of the biggest problems of this approach, the lack of the inter-
polation property, is solved in this work by a new weighting function type. As second
method the Natural Neighbor Galerkin Method is favored, since in this method the in-
terpolation property is automatically fulfilled and the shape function computation is in
general simpler than in the EFG method. This method was not yet applied to automatic
crack growth, thus its adaptation for this purpose, especially the modeling of non-convex
domains, was necessary in this work.

In this chapter both enhanced methods will be presented in detail and their advantages
and disadvantages will be discussed. The application in the framework of the developed

crack growth algorithm will be shown in the next chapter.
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3.1 Element-free Galerkin Method

3.1.1 Moving Least Squares interpolation

An arbitrary function w is interpolated at a point x by a polynomial as

a1
ul(x) = 1z y 2® zy y* .. . | =p'(x)a (3.2)

Qn

where p(x) is the base vector and a contains the coefficients of the polynomial. These
coefficients are constant in the interpolation domain and can be determined directly if the
number of supporting points m used for the interpolation is equivalent to the number of
coefficients n. This principle is applied for example in the Finite Element Method, where

an element-wise interpolation is realized. There the coefficients are simply given as
a=P7 '@ (3.3)

where 1 contains the function values at the supporting points

_ T
U= | U .. Up (3.4)

and P consists of the values of the polynomial basis calculated at the supporting points

Pl(X1> Pl(Xg) Pl(Xm)
p_ Pg(:xl) PQ(:XQ) ) Pz(:)(m) | (3.5)
P.(x1) Pu(x2) ... Py(xm)

The matrix P is not invertible for some configurations of the supporting points. In
(H&ussler-Combe 2001) this problem is investigated in detail and the requirements for
aregular P are derived.

Within the “Moving Least Squares” (MLS) interpolation method (Lancaster and Salka-
uskas 1981) the number of supporting points m exceeds the number of coefficients n,
which leads to an overdetermined system of equations. This kind of optimization prob-

lem can be solved by using a least squares approach
Pi = PP7a(x) (3.6)

with changing (“moving”) coefficients a(x). If an interpolation technique should by used
in a numerical method the compact support of the interpolation is essential for an efficient

implementation. This was realized for the MLS-interpolation by introducing a distance
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b). o ° ]

Figure 3.2. Neighbor search a) from the nodal positions with varying D and b) from the interpo-
lation point with unique D

depending weighting function w = w(s), where s is the standardized distance between

the interpolation point and the considered supporting point

_ Ix=xi

and D is the influence radius, which is defined as a numerical parameter. All types of
functions can be used as weighting function w(s) which have their maximum in s = 0
and vanish outside of the influence domain specified by s = 1. This distance depending
weighting function type leads to circular and spherical influence domains in two and three
dimensions, respectively. Alternatively to this type, rectangular or other shaped influence
domains have been applied (Dolbow and Belytschko 1999), but the distance depending
type is more general and mostly realized in efficient implementations. In the following
section some common and new distance depending weighting functions will be presented
and discussed. The nodes whose weighting function values do not vanish at the interpola-
tion point are the influencing nodes of the interpolation point. The determination of these
nodes is the most time consuming process in the Moving Least Squares interpolation. If
the influence radius D is assumed to be equal for all nodes, the influencing nodes can be
determined more efficient directly from the interpolation point, which is shown in Fig.
3.2. This procedure can be accelerated if additional neighbor information resulting from
the integration cells are considered (see section 3.3.1).

Using the introduced weighting function, Eq. (3.6) is expanded to
B(x)ii = A(x)a(x), (3.8)
where A (x) and B(x) are given as
A(x) = PW(x)P”,

(3.9)
B(x) = PW(x),
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and the diagonal matrix W (x) can be determined as

w(x — X1) 0 0
0 w(x —Xg) ... 0
W(x) = . ) N : . (3.10)
0 0 cow(x —Xy)

The interpolated value of the function u at x can be obtained by introducing the MLS
shape functions

uh(x) = @M (x), @M (x) = pl(x)A(x) 'B(x). (3.11)

Similar to Eq. (3.3) the invertibility of the matrix A (x) has to be assured, which is not
automatically given if the interpolation point is in the influence domain of at least m
nodes. This is fulfilled for a linear or quadratic polynomial basis in 2D if these nodes
span two or three linear independent vectors, respectively, as derived in (Héussler-Combe
2001).

In contrast to the Finite Element Method the MLS interpolation does not pass through
the nodal values caused by the applied least squares approach. This implies that the
interpolation condition is not fulfilled,

DM (x;) # 65 (3.12)

Eq. (3.12) holds if regular weighting functions are used. In (Lancaster and Salkauskas
1981) it was pointed out that the interpolation property can be recovered by using weight-
ing functions which are singular at the nodes. But this leads to many problems, e.g. if
an interpolation point is too close to the singularity. In (Kaljevic and Saigal 1997) this
problem was solved by additional basis functions, which leads to an additional numerical
effort. Thus this technique was not applied in further studies.

The properties of the MLS interpolation depend mainly on the polynomial basis and
on the weighting function. This means that every function of polynomial type can be
reproduced exactly if the polynomial basis has the same order as the interpolated func-
tion, but the number of polynomial basis terms is limited for efficiency reasons because
of the increasing numerical effort in inverting the matrix A (x) and the higher number of
required supporting points in the influence domain of an interpolation point. The most
simple polynomial basis is a constant function p = [1] which leads to the so-called Shep-
ard interpolation (Shepard 1968)

(I)i\/[LS,const (X) _ mw(x — Xi) ) (313)
Z w(x — x;)
=1
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This interpolation function represents the rigid body modes exactly, thus the following
equation, which is known as Partition of Unity condition, is fulfilled for every interpola-

tion point of the domain (2 if the polynomial basis contains the constant term

d oM (x)=1  ¥xeqQ (3.14)

i=1
Furthermore, Linear Completeness, which means that a linear function can be repre-
sented and which is necessary for the convergence of a Galerkin method, can be obtained
by using a linear polynomial basis. The smoothness of the MLS interpolation is directly
related to the smoothness of the weighting function. If the weighting function has C*
continuity the interpolation has C* continuity as well if the basis polynomial is also at
least continuous as the weighting function (Duarte 1995).
The derivatives of the shape functions, which are necessary to compute the strain-

displacement matrix, can be obtained from Eq. (3.11) as

o, opT . 70A! )
= A™'B —B A — 3.15
(9$j ('32:j + p 81']' * P aij ( )
where
ATy 0A
81Ej 81Ej
0A oW
— =P—P7 3.16
ﬁxj al'j ’ ( )
0B _ oW
aZL‘j al'j

Higher order derivatives can be computed in closed form as well. The second deriva-

tives, which might be necessary for adaptive algorithms by using strain gradients, can be

derived as
25 2. T
0° P, _ 0°p A-IB
8@8% a$zaxj
op’ [OA! _, 0B op’ (OA! _, 0B
B+A! B+A!
ox; ( Ox; + 8xj) + Ox; ox; + o0x;

L (PAT g o OB OATOB | OAT OB
p 81181‘] &vzﬁx] 6@ 6% 61'j aZL'Z
(3.17)
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where
O?A~1 _ _8A’1 0A Al Al 0’A Al _Aflcf)_A@A*l
8a:jaxk an 8l‘k 8xj8xk &’Ej al’k ’
0’A O*W
=P PT 3.18
Oz ;0xy, Ox;0xy (3.18)
0’B O*W

=P .
8a:jaxk 81‘]85Ek

3.1.2 Weighting functions

w(s)

s= lIx-x,Il/D
Figure 3.3. Gaussian, cubic spline and cubic weighting functions

A large number of different weighting functions for the Moving Least Squares interpola-
tion can be found in the literature. In (Fries and Matthies 2003) a good overview is given.
In this section the most common weighting function types are discussed, which are the
Gaussian weighting function, the cubic weighting function and a cubic spline weighting
function. In Fig. 3.3 these function types are displayed depending on the standardized dis-
tance s. This section gives only a brief overview of these weighting types. More detailed
information including the first and second derivatives can be found in the appendix.

The Gaussian weighting function is of exponential type and is given as (Haussler-
Combe 2001)

(3.19)
0 s> 1

The shape parameter « is often taken to be 0.4 (Karutz 2000). The first and second deriva-
tives of this function at the boundary of the influence domain s = 1 are not exactly zero,
thus C! and C? continuity can only be reached approximately using this weighting type.
In (Levin 1998) a MLS interpolation with C'* continuity is presented. There the weight-

ing function is of the same exponential type, but defined for the whole domain. Thus
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Figure 3.4. MLS shape function and first derivative for a regular set of nodes using the Gaussian
weighting function

the shape functions do not have compact support and the interpolation is not applicable
efficiently in a Galerkin approach. For data interpolation and response surface application
it seems to be more attractive.

In Fig. 3.4 an MLS shape function with belonging first derivative obtained with the
Gaussian weighting type is shown for a regular set of nodes.

The weighting function based on a cubic polynomial is given in (Karutz 2000) as

1-3s24+2s s<1
we(s) = . , . (3.20)
s >

With this type only C'' continuity can be reached, the second derivative for s = 1 is not
equal to zero.
In (De and Bathe 2001a) an improved weighting function type using a cubic spline is

introduced, which leads to exact C* continuity

1 —6s*+6s° s<1
ws(s) =Q 2—06s+6s -2 L <s<1 . (3.21)
0 s>1

Due to the applied least square approach explained in the previous section, the ob-
tained nodal shape functions by using one of the presented weighting types have a strong
dependence on the size of the influence radius D. In Fig. 3.5 a single nodal shape func-
tion of the middle node of a regular one-dimensional set of nodes is shown for increasing
D. As weighting function the above described Gaussian type and a linear polynomial
basis p = [l z] are used. The figure indicates that with increasing influence radius,
the shape function error at each support point, caused by the approximative character of
the MLS approach, increases dramatically. This problem is even more significant for ir-
regular nodal setups. As a result the application of geometrical boundary conditions is
difficult and additional numerical effort is necessary to fulfill these conditions. Different

methods to impose the boundary conditions have been developed in recent years and will
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Figure 3.5. Nodal shape function of the MLS interpolation using Gaussian weighting and linear
polynomial basis for regular and irregular sets of nodes

be explained in section 3.1.4.
Because of the presented problems using existing weighting function types, in this
work a new weighting function was developed which enables the fulfillment of the MLS

interpolation condition with very high accuracy without any additional numerical effort
M5 (x) & 6y (3.22)
This can only be reached if Eq. (3.23) holds,
w; (x;) = 6. (3.23)

The weighting function value of a node ¢ at an interpolation point x is introduced by the

following regularized formulation

wilss) = B8 (3.24)
> ig(s;)
j=1
with
(246 —(1+¢°°
dp(s) = L e L (3.25)
e2—(1+ 6)_2

This weighting function has a singularity at s = 0 if ¢ = 0, which leads to an exact
fulfillment of the interpolation conditions as already mentioned in the previous section.
In this work this singular function is regularized by a regularization parameter e, which
has to be chosen small enough to fulfill Eq. (3.23) with high accuracy, but large enough
to obtain a regular, differentiable function at s = 0 within the machine precision. In this
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w(s)

nodes (]

w(s)

0 . + *
1 0 1

s= lIx-x,Il/D

Figure 3.6. Regularized weighting function for a single node with two neighbor nodes

work it is recommended to use the value
e=10"". (3.26)

In Fig. 3.6 the regularized weighting function is displayed as a function of the standard-
ized distance s and the position of the supporting points. The maximum weighting func-

tion error at these points in the interpolation domain 2 can be approximated by assuming

x|
iy = 5l 5, (3.27)

as

Wi (X5) = Gl paw & ((Smim) ™" — 1) - € (3.28)
where ||x; — X;|mn specifies the minimal distance between two nodes. The detailed
derivation is given in the appendix.

In order to reduce the numerical effort of the shape function computation a simplifi-
cation of Eq. (3.24) in combination with Eq. (3.11) can be made as

@ (x) = p’(x)A(x) 'B(x)
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Figure 3.7. Nodal shape function of the MLS interpolation with regularized weighting function
and linear polynomial basis for regular and irregular sets of nodes

Figure 3.8. MLS shape function and first derivative for a regular set of nodes using the regularized
spline weighting function

This means that instead of the complex weighting function from Eq. (3.24) the much
simpler formulation in Eq. (3.25) can be used as weighting function by obtaining exactly
the same shape function values.

In Fig. 3.7 a single nodal shape function obtained by using the regularized weighting
function type is shown for different values of the influence radius D.

Fig. 3.7 and Eq. (3.28) clearly point out that the interpolation condition is fulfilled
with very high accuracy even for irregular sets of nodes with grading node density. In
clear contrast to the shape functions obtained with the Gaussian weighting function the
influence radius D influences the regularized shape function characteristics marginally if
a certain value of D is reached.

The first and the second derivative of the regularized weighting function at the bound-
ary of the influence domain d = D are not exactly zero, similar to the Gaussian weighting
function, thus C'* and C? continuity are not reached exactly.

Exact C? continuity can be achieved if the weighting function is multiplied by the

cubic spline from Eq. (3.21)

wrs(s) = ws(s) - wr(s). (3.30)
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Figure 3.9. Modified influence domain of a node close to a non-convex corner using a) the
visibility and b) the diffraction approach

More accurate results can be obtained for this combined function type if a slightly modi-
fied regularized weighting function is used,
-2 -2
— (1 ‘
wns(s) = we(s) - G ZUHD T pes (3.31)
e2— (1467

In Fig. 3.8 a MLS shape function with corresponding first derivative obtained by using

this combined regularized spline weighting function is shown for a regular set of nodes.

3.1.3 Representation of non-convex domains

With the Moving Least Squares interpolation non-convex domains, bodies with for exam-
ple internal holes, curved external boundaries, or sharp discontinuity lines, can be mod-
eled by modifying the weighting function. The first approach doing so was the so-called
visibility criterion (Belytschko et al. 1994), which defines an influencing node of a single
interpolation point only if the node can be “seen” by the interpolation point, which means
that the connecting line is not cut by a boundary or discontinuity. Fig. 3.9 shows the in-
fluence domain of a node I close to a non-convex corner. Due to the resulting jump in the
weighting function, the interpolation function gets an artificial displacement discontinuity
inside the domain.

An improved technique, the diffraction method, models a diffraction around a concave
corner, similar to light propagation (Belytschko et al. 1996). The modified influence
domain is shown additionally in Fig. 3.9. The standardized distance from an interpolation

point with the coordinates x in the diffraction area to the node I is defined as

s1 + S2(x) AP
=|——— 3.32
where the distances s; = ||x; — x.||/D, s2 = ||x — X.||/D and sq = ||x — x;||/D are

indicated in the figure and \p is the diffraction parameter and describes the shape of the

diffraction area.
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A further approach is the transparency method, which defines a linearly decreasing
transparency for the visibility (Belytschko et al. 1996). This method was developed for
sharp corners, like crack tips. Because of the fact that both sharp and non-sharp concave
corners have to be modeled for complex structures, the transparency method is not applied
in this work. Further details about this method can be found in (Karutz 2000).

3.1.4 Fulfillment of geometrical boundary conditions

By using the standard Moving Least Squares interpolation in a Galerkin method, the
essential or geometrical boundary conditions are not fulfilled automatically because of

the approximative character of the shape functions
OMLS (x;) # by5. (3.33)

Several methods have been developed during the recent years to overcome this prob-
lem. The most common approaches will be presented in this section briefly. A complete
overview is given in (Fries and Matthies 2003).

One of the first approaches was the introduction of Lagrange multipliers (Belytschko
et al. 1994). The principle of virtual work in Eq. (2.46) reads in modified form

/(56T(u)Ce(u)dQ—/5quBdQ—/ suTf5dr
“ “ " (3.34)
—/ 6AT(u—us)dF+/ su’Xdl' = 0

where A is a vector containing the Lagrange multipliers at one point of the Dirichlet

boundary
T
A= [ A A, AZ} . (3.35)
The fulfillment of the essential boundary conditions is included as constrained condition
K.d = qq, (3.36)
and the global system of equations given in Eq. (2.56) is extended to the relation
K K, d fext
- | = (3.37)
K, 0 A du

which requires special solvers due to the singular coefficient matrix. Further details about
the calculation of the symmetric matrix K, and the equivalent vector on the geometrical

boundary q, are given in (Haussler-Combe 2001).
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In (Lu et al. 1994), Eq. (3.34) was rewritten to obtain the constrained equation
A=f* onI™ (3.38)
where f* is the traction vector on the Dirichlet boundary and can be expressed as
f*=noc onl™. (3.39)
This leads to the standard equation
Kd =f, (3.40)

but the construction of the coefficient matrix K and the load vector f is more expensive
due to the additional constrained equation.

A further possibility to apply geometrical boundary conditions is the definition of a
penalty term [ as presented in (Haussler-Combe 2001),

B> (K] (3.41)

The boundary conditions can be enforced by

/ 5’ (u)Ce(u)dQ) — / oultBdq — / oultsdr
° ° Ff (3.42)
B [ |lu—u®|?dl =0,
I‘u

but the correct choice of 3 is uncertain and the global system of equations can be ill-
conditioned.

All three approaches assume clearly defined, static boundary conditions. If compati-
bility conditions have to be considered, for example for the coupling with finite elements,
where the displacements in coupling points are unknown, these procedures become much
more complex as shown in (Héussler-Combe 2001). For this reason another method was
developed in (Krongauz 1996) where the boundary of the meshless domain €2, is mod-
eled with a transition zone €);,..,s, Which is discretized by transition elements as shown
in Fig. 3.10. In these elements the meshless shape functions are modified by blending

functions R(x) to obtain finite element interpolation conditions on the boundary,

By [1— R(x)]®FPM(x) + R(x)PML9(x) % € Qrans
M8 (x) = T (3.43)
(I)ZJ-V[LS(X) X; € QMLS

Linear or cubic function types are used as blending functions, whereby the latter type

enables a continuous blending of the strains. In (Karutz 2000) this concept was realized
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Figure 3.10. Application of essential boundary conditions using transition elements

in an automatic algorithm with adaptive coupling between meshless and finite element
domains in 2D. An extension to the three-dimensional case is relatively difficult due to the
complexity of the changing coupling interface and the belonging update of the transition
elements.

If the new regularized weighting function is applied in the MLS interpolation the

essential boundary conditions are fulfilled with high accuracy,
u~u® onl% (3.44)

Thus no special method is necessary and the numerical implementation is straight-forward.
Furthermore the application of the above methods does not decrease the interpolation er-
ror of the standard MLS interpolation inside the domain, which may lead to problems by
the evaluation of crack criteria. These problems do not occur with the presented regular-

ized weighting type.

3.1.5 Application of boundary forces

The external forces acting on the Neumann boundary of a meshless domain can be for-

mulated analogous to Eq. (2.55) as
feit = / ®TF5r. (3.45)
r/

In the Finite Element Method this external force vector can be obtained very easily be-
cause of the linear or quadratic precision on the domain boundary. The shape functions of
internal nodes are zero at the boundary lines, thus they have no contribution to the nodal
force vector.

In the Moving Least Squares interpolation the nodal domain is only specified by the
influence radius. This leads to arbitrary intersections of the domain of internal nodes with
the domain boundary I" as shown in Fig. 3.11 for node /. In general, internal nodes con-

tribute to the nodal force vector if their influence domain overlaps the Neumann boundary
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T

F’LL

Figure 3.11. Intercept of the domain of an internal node with the boundary

ﬁ“z/@ﬁ%F%Q (3.46)
rf

This problem complicates the assembling of the external force vector and does not allow
a coupling with finite elements with compatible displacements along the coupling bound-
ary. The application of the transition elements explained in the previous section does
solve this problem automatically, the internal meshless shape functions are blended out
in boundary elements and linear precision is obtained on the boundary. Because of the
complex handling of the transition elements, if an adaptive coupling with finite elements
is used, the application of this method is not straight-forward.

In this work an easier blending concept is developed. The weighting function of the
internal nodes are blended out in a blending domain around the boundary, by multiplying
the values of the weighting function with a blending value. The blending domain is simply
defined by a blending length /g, thus the required blending value can be obtained very
easily from the position of the interpolation point and the boundary description. The
resulting blending region is shown in Fig. 3.12 for a two-dimensional discretization. As
the figure indicates, three different blending types have to be considered for 2D, which are
marked in the figure by A, B and C'. The first type in region A is valid if an interpolated
point x is not located in the area of a convex (region B) or concave corner (region C).

Then the blending value is simply given as

uﬂwzh(@w) (3.47)

ls

where f5(s) is the blending function which has to be zero for s = 0 and one for s = 1, and

dp is the shortest distance of x to the boundary. As blending function the cubic function
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Figure 3.12. Blending region of an internal node with convex and concave boundary corner

from Eq. (3.20) is adapted,

37— 253 s<1
fols) = . (3.48)

1 s>1

This function has the useful property

fB(s) =1~ fp(l—s) (3.49)

which leads to a smooth blending over the whole blending region. Due to the C con-
tinuity of fp the resulting blended weighting function has C! continuity, if the original
weighting function has at least C'* continuity.

The second blending type has to be applied to convex corners (region B), where a
bilinear blending is used. This is realized by mapping the coordinates of the point x in
the convex boundary area into a unit square as shown in Fig. 3.12. The blending value in

a convex corner is defined in the form

wB,com;ez<X) == fB(TD(X))fB(SD(X»- (350)

This formulation preserves the C'! continuity of the blending function in rectangular con-
vex corners, where the domain which has to be mapped onto the unit square is not dis-
torted. If the convex angle is not equal to ninety degrees, this mapping leads to weak
discontinuities of the blending function derivative along the connection lines between re-
gion B and region A. Thus the obtained blending function has only approximative C'!
continuity in such cases.

In a concave corner (region (') a radial blending is realized

wB,concave<X) = fB (dNCLMC(X)> ) (351)

ls
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Figure 3.13. Blending function of a boundary node

where dy,,.... 1s the distance to the node located at the concave corner. This radial
blending preserves the C'* continuity inside the concave region as well as on the crossover
to the region of type A. With the presented blending technique the weighting functions
of internal nodes are modified such that their values are exactly zero along the boundary.
This blending does not destroy the property of the MLS interpolation that the polynomial
basis can be represented exactly inside the domain.

For the imposition of a linear interpolation between the boundary nodes directly at the
boundary polygon, a mapped radial blending of the boundary node weighting function is

performed, which is illustrated in Fig. 3.13. The resulting blending value is defined as

wB,boundary(X) = fB <1 - %> (352)

T'x
where dy is the distance of the interpolation point to the boundary node and 7y is the
mapped radius, which is simply defined as

e =a+ (b— a)&_ (3.53)

¥
The lengths of the boundary segments a and b and the angles (, and ¢ spanned by the
interpolation point and the boundary segment a and by both boundary segments, respec-
tively, are indicated in the figure. The blending of the boundary nodes is independent of
the blending length [z and depends only on the position of the neighbor boundary nodes.
Inside the domain, the obtained blending function has C! continuity. For a stable appli-
cation of this boundary blending it is necessary that at least one internal node is located

inside the blending region of each boundary node.
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3.2 Natural Neighbor Galerkin Method

3.2.1 Voronoi diagram and Delaunay tesselation

The Natural Neighbor Interpolation is based on the Voronoi diagram and its dual Delau-
nay tesselation of the domain. Both can be defined for an arbitrary set of nodes in the
m-~dimensional space. The Voronoi diagram is a subdivision of the nodal domain into
subregions 7;, which are either closed and convex or unbounded. Each region 7; is asso-
ciated with a node NN; such that any point x in 7} is closer to the natural neighbor node V;

than to any other node in the domain (Green and Sibson 1978),
T, ={xeR":d(x,x;) <d(x,x;) V i#j} (3.54)

where d(x,x;) is the distance between the point x and the node V;. An example of
a Voronoi diagram for a two-dimensional set of nodes is shown in Fig. 3.14. The figure
indicates that for all nodes inside the convex hull the Voronoi cells are closed and bounded

and for all nodes on the boundary of the convex hull the cells are unbounded.

a)

Figure 3.14. a) Voronoi diagram, b) Delaunay triangulation and ¢) Natural neighbor circumcircles

The Delaunay triangulation, which is the dual of the Voronoi diagram, is constructed
by connecting the nodes with common Voronoi edges. This defines the Delaunay edges
only between nodes which are natural neighbors. All Delaunay triangles fulfill the empty
circumcircle criterion (Lawson 1977), thus the circumcircle of every Delaunay triangle
contains no other nodes. In Fig. 3.14 the Delaunay triangulation and the belonging De-
launay or natural neighbor circumecircles are shown. In the case that more than three nodes
are on the circumcircle of a Delaunay triangle, the triangulation is not unique and differ-
ent Delaunay triangulations are possible for the same nodal set, but the corresponding
Voronoi diagram is always unique.

Several algorithms have been developed to determine the Delaunay triangulation or

the Voronoi diagram. An overview can be found in (Fortune 1995). In this work the
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package Triangle (Shewchuk 1996) is used in a two-dimensional framework.

3.2.2 Natural Neighbor Interpolation

(Sibson 1980) introduced the natural neighbor coordinates by defining second order Voronoi
cells. This second order diagram is a subdivision into cells 7;;, where each region is as-
sociated with a nodal neighbor pair, N; and NV;, such that /V; is the nearest neighbor and
N; is the second nearest neighbor. A second order Voronoi cell is defined (Sibson 1980)

as
T, ={xeR":d(x,x;) <d(x,x; <d(x,x) V k#ij}. (3.55)

T;; is non-empty only if /V; and N; are natural neighbors. This leads to the result that
for an arbitrary point x located in the circumcircle of a Delaunay triangle AN;N; N}, the
nodes spanning the triangle V;, N; and [V, are natural neighbors of x. In Fig. 3.15 the
insertion of the point x into the original Voronoi diagram and the belonging first and

second order Voronoi cells, 7y and T%;, are shown. In the example indicated in the figure

a) b)

Figure 3.15. a) Insertion of a point x into the Voronoi diagram, b) First and second order Voronoi
cells concerning x

x has four natural neighbors, N, N, N5 and Ng. The natural neighbor coordinates of x
with respect to the node ¢ are defined in 2D as the ratio of the area or in 3D as the ratio of
the volume of Ty; and 7

®;(x) = A’ o (3.56)
where
Ax) = iAj(x) (3.57)
j=1
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Figure 3.16. NEM shape function and first derivative for a regular set of nodes

and n is the number of natural neighbors. The four regions in Fig. 3.15, which are the
closed polygons ae fd, abe, bcfe, cdf, are the second order Voronoi cells and their union,
the closed polygon abcd, is the first order Voronoi cell of x.

The Natural Neighbor Interpolation or Sibsonian interpolation of a function u(x) is
carried out by using the natural neighbor coordinates in Eq. (3.56) as interpolation shape

functions
uh(x) = Pi(x)i (3.58)
=1

where ; = u(x;) are the nodal values at the n natural neighbors. The application of this
interpolation scheme in a Galerkin approach is called Natural Neighbor Galerkin Method
or Natural Element Method (NEM) (Sukumar et al. 1998). In Fig. 3.16 a NEM shape
function and its first derivative are shown for a regular set of nodes.

The natural neighbor shape functions have compact support, their values are only
non-zero in the neighborhood of the belonging node. The Natural Neighbor Interpolation

passes exactly through the nodal values,
ONEM (%) = &y, (3.59)

which implies that essential boundary conditions are fulfilled automatically. Furthermore
the interpolated function depends only on the nodal positions and no additional parameter
is necessary. Thus the nodal influence domain is automatically adjusted for varying node

densities. The interpolation fulfills the partition of unity condition

d oMM (x)=1 V x€eQ (3.60)
i=1
and linear completeness is satisfied (Sukumar et al. 1998). Along boundary lines the
interpolation has linear precision, which enables an easy application of boundary forces
and a compatible coupling with linear finite elements. Natural neighbor shape functions

have C'! continuity, except at the nodes, where we find C° continuity (Sibson 1980). The
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first derivatives of the shape functions are obtained by differentiation of Eq. (3.56),

0P;(x) 1 [04i(x) 0A(x)
= — Q;(x)——+ 3.61
Jz; A(x) [ 0z; i(x) z; (3-61)
Further differentiation yields
IPPi(x) 1 0PAi(x) 24; 0A(x) 0A(x)
Or;0x),  A(x) 0,07,  A3(x) Ox; Omy
, , 2
1 [0Ai(x) 0A(x) n 0A(x) 0A;(x) N Ai(x)a A(x)
A%(x) | Ox;  Oxy Jr;  Oxy Oz j0xy,
(3.62)

The natural neighbors of an interpolation point are determined according to (Unger
2003), where it is assumed that the Delaunay triangle in which the point is located is
known. Starting from one of the nodes of the triangle it is checked whether the cir-
cumcenter corresponding to the adjacent triangle in counterclockwise order contains this
node. If the first triangle circumcircle is found the node is not located in, this procedure is
stopped. Then the next node is chosen in clockwise order within the last triangle having
the last node inside its circumcircle. This is repeated until the second node of the triangle
edge is reached. The described procedure is repeated for all three initial triangle edges.

For the sake of completeness of this section, another natural neighbor based interpo-
lation, the Laplacian or Non-Sibsonian interpolation (Belikov et al. 1997), is presented
briefly here. Within this method the shape functions are not defined as the ratio of the
area of a second order Voronoi cell belonging to a node and the area of the first order
Voronoi cell of the interpolation point x as given in Eq. (3.56). The two-dimensional
Non-Sibsonian shape functions are introduced as the ratio of the length of the Voronoi
edge s;(x) associated with node IV;, and the perpendicular distance h;(x) between the

Voronoi edge of /V; and the point x as

Q; (X)

Z a;(x)

O;(x) oy (x) = ). (3.63)

Fig. 3.17 shows the required distances for a simple set of nodes. The Non-Sibsonian
interpolation has similar properties as the Sibsonian interpolation: the partition of unity
criterion is fulfilled, linear completeness is satisfied and linear precision is obtained on
the boundary (Sukumar et al. 2001). This method is computationally easier, because
in 2D only distances have to be calculated instead of areas, but the C'! continuity of
the Sibsonian interpolation between the nodes can not be preserved. For this reason the

method is not applied in this work.
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Ny N3

Figure 3.17. Non-Sibsonian interpolation

3.2.3 Shape function computation

Different algorithms have been developed for the automatic computation of the natural
neighbor shape functions. In this work the algorithms of (Watson 1994) and (Lasserre
1983) are used, which are presented in this section according to (Unger 2003).

Watson’s algorithm calculates the areas of the second order Voronoi cells as the sum of
the signed areas of triangles. This algorithm can be applied only in 2D and only to points
located inside of triangles. First the neighbor triangles for a given Point X are determined.
They are those triangles in whose circumcircle X is located. In Fig. 3.18 the principle of
the algorithm is shown. There the neighbor triangles of X are ABAG and AAFG. The

Figure 3.18. Shape function computation using Watson’s algorithm (Unger 2003)
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sign of the area is determined automatically by using a counterclockwise enumeration for
all triangles. Each neighbor triangle ¢,, is decomposed into three sub-triangles t;, ¢, and
t3 spanned by X and two vertices of ¢,,, for example ABAG is subdivided in ABAX,
AAGX and AGBX. Then the circumcenter c;j, of each sub-triangle, where 7 and j
are the vertices of the neighbor triangle, are calculated as a function of X. The signed
area of a second order Voronoi cell belonging to a node [ is calculated by considering
all neighbor triangles of X which have I as vertex. The sum over all of these neighbor
triangles ¢,, of the signed area of the triangle Ac;;x, crxx, cryx gives the area of a second
order Voronoi cell, where c;;x and c; g x are the two circumcenters of the sub-triangles of
t,. cryk is the circumcenter of ¢,,, and J and K the other two vertices belonging to ¢,,. In
Fig. 3.18 the area of the second order Voronoi cell of X belonging to node A is obtained
as the sum of the triangles areas of Acgax, coax, cag and Acgax, Carx, CAra, Where
the second one has a negative area. The total area of the first order Voronoi cell of X is the
sum of all areas of the second order Voronoi cells. A detailed description of the scheme
used for calculating the area of the triangles and the circumcenter of a triangle is given in
(Sukumar 1998) and (Unger 2003).

The algorithm of (Lasserre 1983) can be applied in 2D and 3D and has no restriction
about the position of the interpolation point. The first step of the algorithm tests whether
the point is located on a boundary segment. If this is the case, linear interpolation be-
tween the nodes of the belonging segment is performed. Otherwise a bounding box is
constructed which contains all neighbor nodes and natural neighbor circumcircles. In 2D
a polygon p belonging to each neighbor node [ is assembled separately, which contains
the circumcenters of all neighbor triangles of X spanned by /. This polygon defines the
intersection of the Voronoi cell belonging to node I and the bounding box. If two succes-
sive triangles of I do not share a triangle edge, two additional points are inserted on the
boundary, where the median lines of both edges cut the bounding box. In Fig. 3.19a this
is illustrated for node A: the points () and R are added and since they are not on the same
edge of the bounding box, the additional point S is inserted into p. The area of the closed

polygon containing n points p‘ is then calculated by
Ay =5 > vt =t (3.64)
i=1

where p"*! = p'. The calculated area is positive if the points p’ are ordered in counter-
clockwise order. The polygon obtained for node A in Fig. 3.19a contains ), .S, R and the
circumcenter of AABE.

In the second step the sub-triangles spanned by the neighbor nodes of X and by X
itself are calculated. Each neighbor node is part of two sub-triangles. The calculated poly-
gon p and the circumcenters of the two sub-triangles belonging to node / form another

polygon p. In Fig. 3.19b this second polygon contains @), S, R and the circumcenters
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Figure 3.19. Shape function computation using Lasserre’s algorithm, a) Neighbor triangles of
interpolation point, b) Sub-triangles of neighbor nodes and interpolation point (Unger 2003)

of AABX and AEAX. The area of the second order Voronoi cell T7x of the point X
belonging to node I is then simply given by the difference of the areas of the polygons p
and p. The total area of the first order Voronoi cell of X can be calculated again as the
sum of the second order Voronoi cell areas.

Compared to Watson’s algorithm this approach is more complex and requires a higher
numerical effort. Thus in this work Watson’s algorithm is used for all points inside a

triangle and Lasserre’s method only for points on triangle edges.

3.2.4 Adaptation for non-convex domains

The standard Delaunay triangulation can only be applied to convex domains, where the
boundary of the body is always the convex hull of the domain. Non-convex domains,
where the convex hull does not correspond to the external boundary, can be modeled by
using either conforming or constrained triangulation (Lo 1989). The boundary of a non-
convex domain can be represented by using a Planar Straight Line Graph (PSLG), which
is a set of boundary segments, each spanned by two boundary nodes. In a conforming
Delaunay triangulation the empty circumcircle criterion is preserved and the triangula-
tion is still the strict dual of the Voronoi diagram. This is achieved by subdividing each
PSLG segment whose belonging triangle does not initially fulfill the empty circumcircle
criterion. The additional points on these segments are called Steiner points. For the appli-
cation in a hybrid discretization containing a NEM domain coupled with finite elements,
these additional Steiner points have to be considered by refining the finite element mesh,
which leads to additional numerical effort.

In a constrained Delaunay triangulation the duality property does not hold and the
empty circumcircle criterion may not be fulfilled for some triangles. For convex bod-
ies the convex hull containing all boundary segments can be defined as PSLG and the

belonging constrained triangulation fulfills the Delaunay criterion. If only the bound-
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_______________________________

D :

Figure 3.20. Interpolation on the boundary of a non-convex body, a) Bounded 2nd order Voronoi
cells of X, b) Modified unbounded cells, c) 2nd order cells for a point close to the boundary

ary of non-convex bodies is included in the PSLG the corresponding triangulation is a
true Delaunay triangulation as well, if the triangles outside of the boundary are deleted
(Unger 2003). The obtained triangulation does not need additional points, which enables
a straight-forward coupling with finite elements. Thus this approach is applied in this
work to model non-convex domains.

In Fig. 3.20a a piece of a two-dimensional non-convex body is shown with the be-
longing Voronoi diagram and the constrained Delaunay triangulation. The interpolation
value of a point X on the boundary segment spanned by the nodes B and C' is not a linear
function between B and C' because the nodes A and D are additional natural neighbors of
X and the second order Voronoi cells of X belonging to B and C' are not unbounded, as
shown in the figure. If the external triangles AAC B and AADC' are deleted, the nodes
A and D are not the natural neighbors of X anymore. The resulting second order Voronoi
cells of X belonging to B and C' become unbounded as shown in Fig. 3.20b, thus linear
interpolation on the boundary segments is obtained. Watson’s algorithm can be applied to
the calculation of the area of the second order Voronoi cells without any modification in
this case. If X is close to the boundary as shown in Fig. 3.20c, the area of the belonging
second order cells corresponding to the nodes B and C', namely the triangles Aaed and
Aabe, increases with decreasing distance of X to the boundary. In the limit, the area of
both cells is infinite, while the area of the second order cells of the other neighbor nodes
remains finite, which leads to a linear interpolation between B and C'.

The presented concept is not complete, because for non-convex domains with sharp
concave corners, like crack tips, the circumcircles of one side of an internal boundary
may overlap the domain on the opposite side of the boundary as shown in Fig. 3.21a.
The resulting interpolation on the boundary segment is again not linear between the two
belonging nodes. The second order Voronoi cells of these nodes are bounded because
of the irregular neighbor nodes on the opposite side. In this work the concept of vis-

ibility, introduced for the Moving Least Squares interpolation, is adapted such that the
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Figure 3.21. a) Irregular neighborhood relations across a non-convex boundary, b) Modified
interpolation using the visibility criterion

visibility criterion is checked for all determined neighbor nodes of X. Those nodes which
do not fulfill this criterion are not handled as natural neighbors of X, thus the required
linear precision on the boundary segment is preserved. In Fig. 3.21 the original and the
modified second order Voronoi cells are shown for a point close to the boundary. The
figure indicates that by using the visibility criterion, the area of the cells belonging to the
boundary nodes increases by decreasing the distance of X to the boundary. In contrast
to the MLS-interpolation the shape functions obtained by using the visibility criterion are
continuous.

The presented concept requires the initial definition of the boundary segments as
PSLG. This is very simple in 2D but more complex in 3D. In (Cueto et al. 2000) the
concept of a-shapes, which are widely used in scientific visualization, was introduced to
impose a linear interpolation condition on the boundary. By using this concept the do-
main boundary need not to be defined in advance. Thus it can be easily applied to two- or
three-dimensional non-convex domains whose geometry is only defined by a set of points.
This method checks the neighborhood of nodal tuples and deletes the neighbor relations

Figure 3.22. Neighborhood in the context of a-complexes (Cueto et al. 2000)
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of these nodes, which are not located in the domain of the a-complex. In Fig. 3.22 the
node A is not in the neighborhood of the point X, thus it is not considered as a neighbor
node in the shape function computation. This method fails for sharp concave corners,
like crack tips, thus in this work the concept of the PSLG-defined boundary including the
visibility criterion is used in a 2D implementation, where it can be applied much easier

than the concept of a-shapes.

Thomas Most PhD Thesis



64 3. Meshless methods

3.3 Numerical integration

In meshless methods the discretization of the weak form in Eq. (2.46) can be done sim-
ilarly to the Finite Element Method, where the meshless domain can be assumed to be a
hyper-element with flexible node number. The stiffness relation of such a meshless zone

Q,, reads in analogy to Eq. (2.55)
K, = / B! CB,,d
Qm

feot — / o7 840 + / , @7 £94r.
m F

m

(3.65)

Thus a coupling of several meshless zones with finite elements can be easily represented
in the global stiffness relation in Eq. (2.56), but this requires a compatible coupling which
is achieved in this work as presented in the sections 3.1.4, 3.1.5 and 3.2.4. In this section

different approaches for the numerical integration of Eq. (3.65) will be explained.

3.3.1 Gauss integration

In the Element-free Galerkin Method a Gauss quadrature over background meshes is gen-
erally performed (Belytschko et al. 1996). Two different approaches have been developed
for this purpose, the usage of integration cells which cover the whole body exactly, and
the integration over a background cell structure which includes the whole domain where
the edges do not coincide with the domain boundary. The required integration order is
uncertain for these approaches since the interpolant is a rational function and the integra-
tion cells do not coincide with the support of the shape functions. In (Belytschko et al.
1994) the integration order n is approximated in 2D depending on the number of nodes

m per integration cell in the form

ng = v/m + 2. (3.66)

In (Most and Bucher 2003) the authors used a triangle background mesh spanned by all
nodes, which leads to an adapted integration scheme for varying node densities and an
exact reproduction of the boundary lines. The triangles are computed using a modified
Advancing Front Method based on (Peraire et al. 1987). In (Beissel and Belytschko 1996)
a quadrature scheme without a background mesh is presented, but this nodal integration
approach is much more complex and does not lead to any better numerical results.
Within the Natural Neighbor Galerkin Method the Delaunay triangles needed for the
shape function computation are generally taken as integration cells to avoid an additional
background mesh (Sukumar et al. 1998). The same accuracy problems as in the EFG
occur, caused by rational interpolant and the fact that integration cells and shape function

supports do not coincide. In this work the Delaunay triangulation is used for both meth-
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ods, NEM and EFG, as background mesh for the Gauss integration because the Delaunay
triangulation gives the best triangle shapes by maximizing the minimum angle in all tri-
angles (Lawson 1977). The weighting factors and the positions of the integration points
in a Gauss quadrature over triangles are given for example in (Dunavant 1985).

The influencing nodes needed in the MLS interpolation are determined by using the
neighborhood relations of the triangles. The applied algorithm works similar to that de-
scribed for the NEM in section 3.2.2 by starting with the triangle in which the integration

point is located.

3.3.2 Support decomposition of the domain

In (Gonzales et al. 2004) a method with a decomposition of the domain into subregions
is proposed for the Natural Neighbor Galerkin Method. This method was developed to
overcome accuracy problems due to integration cells that differ from the shape function
support. In the Natural Neighbor Interpolation the area of influence of a node is the
union of all circumcircles, corresponding to the triangles in the Delaunay triangulation
having this node as a vertex. Thus this is a natural decomposition into subregions that
are bounded by segments of all circumcircles of the Delaunay triangulation. Using this
decomposition the whole domain is split into triangles and segments of circles. In order
to perform the integration over the segments of circles, a mapping from a unit square onto
the segment is used (De and Bathe 2001b). Since this transformation his highly nonlinear,
and a Gauss point quadrature is used within the unit square, the integration is again only
an approximation. Furthermore this procedure is inefficient from a computational point
of view, since subregions with a constant number of influencing nodes can be bounded by
many circular or straight segments. Thus many further decompositions are required. This
approach is applied similarly in the Method of Finite Spheres in (De and Bathe 2001a),
where the spherical nodal influence domains are sub-divided in regions with a constant

number of influencing nodes.

3.3.3 Stabilized conforming nodal integration

The Stabilized Conforming Nodal Integration scheme (Chen et al. 2001) was developed
to enable the exact representation of a linear displacement field within the Element-free
Galerkin Method. This method was adapted for the Natural Element Method in (Gonzéles
et al. 2004).

If a linear displacement field is assumed, the strain and the stresses in a linear elastic
domain are constant. The equilibrium of internal and external forces at node I can be

formulated as

fint — fpeat, (3.67)
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with
f}nt = / BF}FUQ
Qr

fort — / &Todr .
rf

I

(3.68)

The body forces have to be zero to enable a constant stress field. The constant stress o

can be moved outside of the integral and the following relation is obtained

/ B7Q = / ®Tdr, (3.69)
Q; rf

which is the integration constraint condition that has to be fulfilled for every node to en-
able the exact representation of a linear displacement field. This condition is not fulfilled
by using the Gauss integration in the Natural Element Method or in the Element-free
Galerkin Method, although the basic interpolations can represent a linear displacement
field.

In (Chen et al. 2001) an assumed strain is introduced at the node /

1
) = 4 [ et A= [ an (3.70)
AI QI QI
where ¢;; are the strains obtained from the kinematic relation
1 8uz an
=5 ; 3.71
is 2 (3% + 8IZ> ( )

and (; is the representative domain of node I, which is assumed to be the first order

Voronoi cell of /. By applying the divergence theorem the following equation is obtained

- 1
Gij(XI) = 2—14]/F (umj -+ ani)dr, (372)
I

where n; are the direction cosine components of a unit normal to the nodal domain bound-

ary [';. By introducing the meshless shape function the discrete form of Eq. (3.72) reads

Exr) =Y Br(x)iy, (3.73)

LeGy

where (7} is the group of the nodes in which their associated shape function supports cover
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the domain €2;. The modified strain-displacement matrix B is given in two dimensions

] IR RS
B.(x;) = A_I/F 0 Oy (x)n,(x) | dl (3.74)

' Pr(x)ne  Pr(x)n,(x)
In (Chen et al. 2001) in was shown, that the assumed strain exactly satisfies the integration
constraint for a linear displacement field given in Eq. (3.69). For the implementation of
the strain smoothing formulation in a Galerkin approach the mixed variational principle

based on an assumed strain method (Simo and Hughes 1986) is considered
6T(u, é) = / 6eT Ced) — / sultBdq — / sulfodr. (3.75)
Q Q rf

By introducing the discrete formulation for the displacements and the assumed strains and

performing nodal integration this variational equation reads

Kﬁ — fext
Np
Krr =Y BY(x;)CB A
KL ; L(x1)CBk(x1) A (3.76)
Np NpB
oot — Z@f(x])fB(XI)AI + Z @7 (x1)f (x1)s1,
I=1 I=1

where K i, is a submatrix associated with node K and node L, Np is the number of points
in G;, Npp is the number of points on the natural boundary and s; are the associated
weights.

In (Unger 2003) and (Unger et al. 2004) it was shown, that this method fails for
systems with load or geometry induced singularity points, like crack tips, which can be
observed from an artificial oscillation of the displacements. Furthermore this approach
destroys the continuous stress function, which is the main advantage of a meshless in-
terpolation. This can lead to problems especially when evaluating a crack criterion. In
(Gonzales et al. 2004) several systems have been investigated, for nonlinear displace-
ment fields the application of this method did not lead to better results compared to the
Gauss integration. For these reasons this nodal integration approach is only applied for

comparison in this work.

3.3.4 Adaptive integration

Because of the presented problems of existing integration procedures in (Unger 2003) an
adaptive Gauss integration method was developed. These procedures uses the triangle
integration cells with a variable Gauss integration order. Starting with a uniform low

order the number of Gauss points is increased in these triangles, where the integration
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constraints for a linear displacement field in Eq. (3.69) are exceeded most significantly.

This constraint equation reads for an internal node [ in discretized form

Nip

0= /Q 1 B](x) d2~ Y B (xp)ws, (3.77)

L=1

where B; contains the derivatives of the shape functions 0®;(x)/dx and 0P (x)/dy, Nrp
belongs to the number of integration points in the nodal influence domain §2; and w;, are
the integration point weights. The normalized integration error at the node is determined

as

L=1 L=1

N 2 N 2
1 =2 6@](XL) = 8@[(XL)
Ae[,tot = A_I <Z TWL) + (Z a—yédL . (378)

This leads to the error density for a single Delaunay triangle A\;

N

1
= A ) Q )
Po == /Q R ; ertot®r(x) dS, (3.79)

where N is the number of nodes with shape function support in ;. Depending on a given
error tolerance the integration order in the triangles will be increased until the integration
constraints are fulfilled for all triangle integration zones with the required accuracy. This
method was verified for different simple examples, but the choice of the error tolerance
was done only empirically and the applicability to more complex examples was not yet re-
alized. Therefore more research activities are necessary before this method can be applied

to automatic crack growth simulations.
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3.4 Examples

The following simple examples will demonstrate the effect of the presented improvements
of the MLS and Natural Neighbor Interpolation. There the robustness of the interpolation
procedures with respect to strong distortions of the discretization are investigated and

compared to finite element simulations.

3.4.1 MLS-shape functions for regular and irregular sets of nodes

Within this example the interpolation errors are calculated for a regular and a irregular set
of 5 x 5 nodes with a distance of a = 0.25m by using the Gaussian, the regularized and

the regularized spline weighting function. In Fig. 3.23 both investigated nodal sets are

displayed.
° ° ° ° ° ° ° ° ° °
° ° ° ° ° ° ° ° ° °
%‘\. B
° ° oA ° ° ° ° A e °
- ® ® ) ) -0 [ [ ] [ ] L]
a a

Figure 3.23. Investigated regular and irregular set of nodes

First the interpolation error according to Eq. (3.22) at the supporting points for the
shape function of node A is analyzed for a varying influence radius D using the regular
nodal set. The regularization term is assumed to be ¢ = 10° for the regularized weighting
function and € = 10~ for the regularized spline weighting function. The Gaussian shape

parameter is taken with o = 0.3295. In Table 3.1 the obtained maximum error is given for

D |OMF5 (xy) = biy| [ OMES () =G| | OMHE (%) = by
0.3m 0.6 % 3.84-107% % 2.50-107* %
0.4m 10.1 % 2.30-107° % 4.82-1075 %
0.5m 30.5 % 2.66-107°5 % 7.19-107% %

0.6 m 49.5 % 1.27-107° % 8.88-107% %
1.0 m 81.5 % 1.50-107° % 6.39-107° %

Table 3.1. Maximum interpolation error at the nodes as a function of the influence radius using
Gaussian (G), regularized (R) and regularized spline (RS) weighting types

all investigated weighting types. It can be seen, that with increasing influence radius the

error using the Gaussian weighting function increases but the error from the regularized
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types remains very small. This means that Eq. (3.22) is fulfilled with extremely high
accuracy if the regularized weighting function is used.

The influence of the minimum nodal distance on the interpolation accuracy is investi-
gated on the irregular set of nodes shown in Fig. 3.23 by decreasing the distance between
node A and B. The influence radius is kept constant with D = 0.5m. In Table 3.2 the

obtained interpolation errors are shown. The table clearly indicates that the interpolation

| BMLES (x;) — 6] Wi,k (%5) = 0ijlpas

numerical  approximation

dap/D  |®}MFS (x5) = 0y ma

0.4 36.8 % 1.19-107° % 3.81-1079  3.81-107Y
0.2 47.7 % 2.34-107% % 6.24-107%  6.24-10"8
0.1 55.2 % 1.02-107°5 % 9.97-10=7  1.00-10°¢
0.01 59.0 % 1.05-107% % 826-1073  1.00-1072
0.001 59.0 % 1.05-107' % 8.26- 1071 —

Table 3.2. Maximum numerical error as a function of the minimum nodal distance

error by using the regularized weighting function is very small even if the nodal arrange-
ment is strongly irregular. Additionally the maximum weighting function error at the
supporting points and the approximated values by using Eq. (3.28) are shown in the table.
It can be seen, that the approximated values agree very well with the numerical values.
For dyp/D = 0.001 the assumption in Eq. (3.27) is not valid and the approximation in
Eq. (3.28) can not be used.

The application of a weighting function of singular type, which was realized for this
example using the function in Eq. (3.25) with € = 0, leads to a exactly fulfilled interpola-

tion condition for all investigated configurations.

3.4.2 Patch test with irregular node distribution

The representation of a linear displacement field depending on the integration type is
analyzed in this example. For the investigations a system according to (Unger 2003) is
chosen, which is shown with load and boundary conditions in Fig. 3.24. The thickness of
the panel is taken as d = 1m and the material properties are assumed to be E = 10° N/m?
for the Young’s modulus and v = 0.2 for the Poisson’s ratio.

If the MLS interpolation with the regularized spline (RS) weighting function is used,
the analytical solution can not be represented because of the nonzero boundary intercepts
of the internal nodes. This is shown additionally in Fig. 3.24, where the calculated strains
are displayed by using 2500 equally weighted integration points per integration cell. By
applying the presented blending technique a behavior similar to the Natural Neighbor
Interpolation is obtained, which is shown in Fig. 3.25. The blending length is taken as
Ip = 2.0m. Similar results can be observed by using the Gaussian (G) weighting type.

The deviation from the analytical solution decreases with increasing integration order for
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Figure 3.24. Patch test system with loading and boundary conditions and obtained MLS-strains
in load direction using regularized weighting and no blending

all three interpolation types. If the singular (SI) weighting type is used, the results are
similar only for a smaller number of integration points. If this number increases and some
integration points are located too close to the nodes, this error increases.

In Fig. 3.26 the influence of the blending length on the maximum nodal displacement
error using the regularized spline weighting function is shown. The figure indicates, that
if a certain blending length is reached, the error value converges. If internal nodes are
inside of the blending region, which is valid for this example for [z = 2.0m, the results
are not influenced negatively. In Table 3.3 the obtained maximum displacement errors
by using Gauss integration are given depending on the number of integration points per
integration cell. The table indicates, that the displacement errors using NEM and MLS

Maximum displacement error Maximum strain error
Nip NEM MLS (G) MLS(RS) MLS (SI) NEM MLS(G) MLS(RS) MLS (SI)
1 244%  33.33% 10.90%  11.45% 20.99 %  48.30 % 80.85%  77.33%
4 1.49 % 6.36 % 6.98%  85.11% 5.67%  21.03% 18.94 % 3984 %
7 0.65 % 1.34 % 0.40 % 0.93 % 3.38% 11.43% 6.37% 11.82%

12 019% 0.33 % 0.11 % 0.72 % 1.86 % 3.98 % 1.85 % 5.16 %

Table 3.3. Maximum displacement and strain errors for Gauss integration using blended MLS
interpolation with Gaussian (G) and regularized spline (RS) weighting and NEM interpolation

interpolation are in the same range. For the practical use in a numerical simulation a
displacement error of about 0.2% seems to be acceptable. For higher order displacement
fields, the error which occurs by an interpolation of lower order is more significant, thus
similar results can be obtained with the presented meshless methods than with comparable
finite elements, which will be shown in section 3.4.4. Furthermore this table shows, that
the singular weighting function may lead to very bad results, if some of the integration
points have a position close to a nodal singularity. Thus this weighting type should not be
applied in a Galerkin approach.

By using the Natural Neighbor Interpolation with the Stabilized Conforming Nodal
Integration approach, the linear displacement field can be represented exactly. The ob-

tained maximum nodal displacement error for this example by using two Gauss points
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Figure 3.25. Displacement error vs. integra-
tion order using NEM and blended MLS
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Figure 3.26. Influence of blending length /5
on the maximum nodal displacement error

per Voronoi segment is 3.02 - 1071°, which is in the range of the machine precision.

3.4.3 Interpolation along a non-convex boundary

The imposition of a linear boundary interpolation for non-convex domains, presented in
section 3.2.4 for the Natural Neighbor Interpolation and in section 3.1.5 for the Moving
Least Squares interpolation will be verified in this example. For this purpose the non-
convex system shown in Fig. 3.27 is investigated. The properties for the linear elastic
material have been taken with 1000N/m? for the Young’s modulus and v = 0.1 for the
Poisson’s ratio. The thickness was assumed to be 1.0m.

The deviations from the function, obtained by using a linear interpolation between the
nodal displacement values along the boundary ABC D, and the values of the meshless
interpolations in several points inside the domain with equal distance from the non-convex
boundary are analyzed. In Fig. 3.27 these interpolation errors are shown depending on the
distance. The figure indicates, that the application of the Natural Neighbor Interpolation

O 5 le2 8 T
2
;E; -4
) g 1e-03 R ]
= -4
g ~
é NEM —a—
MLS (RS) ---m--- ]
E o0 E MISB (RS) ---e--- |
5 MLS (G) =B~ -
= MLS-B (G) --@- 4
‘D le-05 b v v v L
le-01 le-02 1e-03 le-04

\ om

1 Distance to the boundary [m]

Figure 3.27. Non-convex system with loading and boundary conditions and obtained deviations
from an assumed linear boundary interpolation using NEM and MLS interpolation with blending
(MLS-B) and without blending and Gaussian (G) and regularized spline (RS) weighting types

leads to a vanishing error for a very small distance, thus the linear precision is fulfilled

Thomas Most PhD Thesis



3.4. Examples 73

asymptotically. By using the MLS interpolation without the presented blending technique
the interpolation errors do not converge to zero, therefore the interpolation is not linear
along the boundary. If the blending technique is applied, a behavior similar to the Natural
Neighbor Interpolation is obtained and linear precision is imposed on the non-convex

boundary.

3.4.4 Cantilever with increasing distortion
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Figure 3.28. Investigated distorted cantilever with Q9 mesh

Within this example the accuracy of the meshless interpolation embedded in a Galerkin
method is investigated for a quadratic displacement field as a function of increasing dis-
tortion of the nodal arrangement. In Fig. 3.28 the system with geometrical properties and
boundary conditions is shown. For comparison the investigated beam was discretized with
three-node (CST), four-node (Q4) and nine-node (Q9) iso-parametric finite elements. In
Fig. 3.28 the Q9 discretization is shown exemplarily. The material was assumed to be
linear elastic and the properties are taken as 3000N/m? for the Young’s modulus and
v = 0.0 for the Poisson’s ratio and the thickness was defined to be 0.1m.

In Fig. 3.29 the obtained maximum nodal displacement errors using the Natural Neigh-

bor Interpolation are displayed as a function of increasing distortion a. The numerical in-
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Figure 3.29. Maximum nodal errors for a quadratic displacement field under increasing distortion
obtained by using Natural Neighbor Interpolation with Gauss and stabilized nodal integration
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Figure 3.30. Maximum nodal errors obtained by using MLS interpolation with Gaussian (G) and
regularized spline (RS) weighting functions and bilinear and quadratic base polynomials

tegration is carried out via a Gauss quadrature over 25 integration points and using 10000
equally weighted integration points per triangular background cell and via stabilized nodal
integration with 3 integration points per Voronoi segment. The figure clearly indicates,
that the Gauss integrated NEM interpolation gives significantly better results than using
the CST and Q4 finite element discretization. By using the QO finite elements the analyt-
ical solution was obtained within the machine precision for every distorted system. For
a very high distortion the obtained error using the Gauss integrated NEM interpolation
increases dramatically, which is caused by the integration error. This error is reduced if
the integration order is increased, but if highly distorted triangles are avoided during the
simulation, the integration error is negligible even for a smaller number of integration
points. The application of the nodal integration scheme leads to results, which are very
robust against the applied distortion, but the deviations from the analytical solution are
much higher than using the Gauss integration.

The obtained numerical errors using the Moving Least Squares interpolation with
the common Gaussian weighting and the new regularized spline weighting are shown in
Fig. 3.30. The integration is done again using Gauss quadrature over 25 integration points
and bilinear and quadratic base polynomials are investigated. The meshless calculations
with the quadratic base polynomial led to a very good agreement for the undistorted struc-
ture. The remaining deviations from the analytical solution are a result of the integration
error. With increasing distortion the usage of the Gaussian weighting function results
in an increasing error, whereby the application of the regularized spline type gives very
good results even for stronger distortions. For the calculations using the bilinear base
polynomial the same trend was observed, there the results from the regularized weighting
function are slightly better than these obtained with the Q4 finite elements. The mesh-
less simulations have been carried out by taken the influence radius as D = 2.5m for the

bilinear base polynomial and as D = 3.0m for the quadratic base polynomial.
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Figure 3.31. Maximum nodal error depending on the influence radius D using Gaussian (G),
regularized (R) and regularized spline (RS) weighting types

Furthermore the influence of the size of the influence radius D on the displacement
errors is investigated for MLS interpolation. In Fig. 3.31 the obtained errors using the
Gaussian, the regularized and the regularized spline weighting functions are shown for
an undistorted structure depending on the influence radius D. The figure indicates that
the results obtained with the regularized weighting type are almost independent of the
influence radius size in strong contrast to these from the Gaussian weighting function.
The multiplication of the regularized weighting function with the cubic spline, presented
in Eq. (3.30), increases the dependence on D slightly, but compared to the Gaussian

weighting function this dependence is negligible.
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Chapter 4
Discrete crack modeling

The simulation of crack growth at the macro scale is traditionally done by using two dif-
ferent approaches, the smeared crack model and the discrete crack model. The fracture
process is represented within the smeared approach by a number of parallel cracks of
small opening smeared over the finite element (BaZant and Planas 1998). The finite ele-
ment mesh is kept unchanged during the calculation and the crack evolution is represented
by a stiffness and strength decrease of the material. The crack behavior is included into
the stress-strain relation of the constitutive laws. Two different assumptions of the crack
behavior lead to the fixed crack (Cervenka 1970) and the rotating crack model (Gupta
and Akbar 1984). Some difficulties in the numerical analysis can appear due to the strain
softening in the constitutive formulation , such as an ill-posed system of equations, insta-
bilities through localization, and stress-locking caused by mesh sensitivities. A nonlocal
approach (BaZant and Pijaudier-Cabot 1988) has been developed to overcome these prob-
lems, but they could not be solved in general.

The second group are discrete crack models. They were developed first mainly for the
investigation of the fracture behavior of metals by using Linear Elastic Fracture Mechan-
ics (LEFM). One of the first discrete methods was the nodal release approach, where crack
growth is possible only along predefined element edges by splitting existing nodes. Due
to the strong mesh dependence this method could not be applied to the general case and
further techniques were developed. These methods are split-element-methods (Saouma
1981) and approaches using a local remeshing procedure, called the delete-and-refill
method. A famous simulation tool for crack growth is the program Franc (Wawrzynek
1991), which uses this adaptive update of the initial finite element mesh to represent
an arbitrary geometry of an evolving crack. The main advantages of discrete approaches
compared to smeared models are the reduced mesh dependency and the linear-elastic base
material, which avoids several problems in the global solution procedure.

Due to the adaptation of the finite element arrangement around a moving crack tip a
transfer of the integration point state variables is necessary when investigating nonlinear

material behavior. Since the stresses are discontinuous across the element edges this is
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not straight-forward. Another problem is the automatic remeshing procedure, which is
simple in 2D but very complex and numerically expensive in 3D. Because of this reason
the development of meshless discretization techniques has been accelerated in the nineties
to overcome this problem. By using meshless methods for crack growth simulations no
complex mesh generators are necessary and a state variable transfer, if it is required, is
straight-forward due to the continuous stress functions. An adaptive coupling of mesh-
less zones in the growing fracture area with traditional finite elements in the undamaged
domain, as presented in (Karutz 2000), seems to be necessary to obtain an efficient al-
gorithm. This is because meshless methods require larger numerical effort to determine
the shape function values. Another development for modeling discrete cracks is the en-
richment of standard finite elements with additional shape functions to represent a line
of discontinuity inside the elements in order to avoid any discretization update of the
domain. In (Jirdsek and Belytschko 2002) two very famous methods are discussed and
compared. These are finite elements with embedded discontinuities (Belytschko et al.
1988), which are based on the Enhanced Assumed Strain method (Simo and Rifai 1990),
and the Extended Finite Element Method (Moés et al. 1999) which is a Partition of Unity
Method. The difference between the two methods is the handling of additional shape
functions representing the discontinuity. In elements with embedded discontinuities these
additional modes are condensed out and the number of global degrees of freedom remains
unchanged. This leads to a discontinuous crack path which is in general adjusted using
tracking algorithms. In the Extended Finite Element Method the additional modes are
handled as global degrees of freedom, which leads to a continuous crack geometry. In
both methods a state variable transfer analog to adaptive finite elements is still necessary
for nonlinear materials due to the integration point rearrangement in cracked elements.
Furthermore there remain some problems, which have to be solved in the future, e.g. the
initiation of a new crack within only one element. Many published applications of these
methods still need a fine discretization of the domain to represent curved cracks accu-
rately (Moés and Belytschko 2002). Today several meshless and enriched finite element
methods are used by different research groups, since all methods have advantages and
disadvantages and an ultimate method can not be defined.

The concepts of Linear Elastic Fracture Mechanics can be used for discrete crack
growth only if the fracture process zone at a crack tip is small compared to the system
size (Bazant and Planas 1998). When analyzing fracture behavior the size of the frac-
ture process zone is larger for concrete than for metals because of the inhomogeneous
character of the material which leads to a widespread aggregate interlock and material
de-bonding with developing micro cracks before a macro crack occurs. In (Hillerborg
et al. 1976) the fictitious or cohesive crack model was introduced. It merges the number
of micro cracks in the fracture process zone in front of a real crack tip to a single fictitious

crack with cohesive force transmission over the crack surfaces numerically. Today this
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concept is widely used for the crack growth analysis of concrete on the macro scale.

This chapter first presents the fundamental concepts of LEFM. The original cohe-
sive crack model developed for Mode-I dominated problems and an improved model for
mixed-mode problems with their adaptation for automatic crack growth simulation are
compared and discussed based on this description. Furthermore a stress-based and an
energy-based crack criterion are presented and analyzed by means of several numerical
examples. Finally the modeling of the bond between concrete and reinforcement is shown
and verified.

The presented algorithm describes crack evolution in two dimensions, modeling only
the tensile failure of concrete. Thus linear-elastic behavior was assumed for the base

material by neglecting the nonlinear behavior of concrete under compression.
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4.1 Introduction to Linear Elastic Fracture Mechanics

Linear elastic fracture mechanics (LEFM) is the basic theory of fracture, which was intro-
duced by (Griffith 1921) and completed by (Irwin 1956) and (Rice 1968). LEFM is based
on an ideal situation in which the material is elastic except in a vanishing region, which
is the crack tip. This concept can be applied to describe the behavior of any material with
cracks if the size of the inelastic zone is small compared to the dimension of the elastic
domain. In the theory of LEFM the stress field contains a singularity directly at the crack
tip no matter how small the external load is. Thus (Griffith 1921) proposed an energetic
approach to decide upon growth of existing cracks since a strength criterion can not be
applied. In this criterion the energy release rate G, representing the energy available for
fracture of a unit crack surface, and the specific fracture energy G, representing the en-
ergy required for fracture of a unit crack surface, are the basic quantities. By assuming
that an existing crack in a plane structure of thickness ¢ under quasi-static loading ad-
vances by an infinitesimal length da, the balance of energy for quasi-static crack growth
requires (BaZant and Planas 1998)

Gtoa = Gtoa. 4.1

In a more general dynamic situation with the initial kinetic energy IC = 0 and the kinetic

energy increase 0/C > 0, Eq. (4.1) reads
Gtoa = Gytéa + oK (4.2)
which leads to the following fracture criterion

if <Gy then da=0 and 0K =0 No crack growth,
if G=Gy then 6a>0 and 6K =0 Quasi-static crack growth, (4.3)
if §>G; then éa>0 and OK >0 Dynamic crack growth.

4.1.1 The concept of stress intensity factors

(Irwin 1956) introduced the stress intensity factors which can be used to describe the stress
and displacement field around a crack tip. This concept is based on the decomposition
of the crack configuration into three different crack opening modes, Mode-I, Mode-II
and Mode-III. A Mode-I crack results from pure in-plane tension loading, Mode-II from
in-plane shear loading, and Mode-III from anti-plane shear loading. All three opening
modes are shown in Fig. 4.1. (Irwin 1956) defines the dependence of the three opening
modes from only three scalar values, the stress intensity factors K;, K;; and K;;; which
may be interpreted as a measure of the crack tip singularity.

In the following sections a two-dimensional stress state is assumed, thus the Mode-III
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a) b) ¢)

- ~

e

Figure 4.1. Crack opening modes: a) Mode-I, b) Mode-II and c) Mode-III

stress intensity factor vanishes. The stress and displacement field for a pure Mode-I crack

are then given in local coordinates as (Anderson 1991)

1-— sing sin%e

Ozz

K7 0 : .
o | = Wor= cos§ 1+ s1ng s1n% (4.4)
Ozy .
Y smg cos%
and
9 . 929
[ux]:&\/z cos? (k — 14 2sin*9) ws
Uy 2p Y 2w sing (k+1-2 00523)

The angle 6 and the distance r from the crack tip and the local z, y coordinate system are
indicated in Fig. 4.2.

Figure 4.2. Global, local and polar coordinates at an existing crack tip

For a pure Mode-II crack the following formulation is valid

.9 0 .30
—sing (2+ cosf cos??)

— 0 e anedd
oy | = sin; oS3 COS% (4.6)

cos? (1 — sinf sin??)
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[% ] - KU\/T siné (li+1+200$29) W
Uy 2p Y 2w —cosg (Ii —-1-2 sinzg)

where 1 is the shear modulus introduced in Eq. (2.29) and « is the Kolosov constant

3—v
for plane stress
o — 1+v (4.8)

3 —4v  for plane strain

with the Poisson’s ratio v.
A transformation to polar coordinates leads to the well-known formulation for the

stress field for mixed-mode cracking in a two-dimensional domain

K; (1—|— 51n29)+KH( sinf — 2tan)

Opp

1 0
w0 | = cos K cos®? — 2Ky sind . (49
Orp

%KI sinf + %KH (3 cos — 1)

The energy release rate can be expressed for # = 0 in terms of the stress intensity
factors as (Irwin 1956)

1
G == (Ki +K7p), (4.10)
where
E for plane stress
E = E . (4.11)

.2 for plane strain

Different methods have been developed for the determination of the stress intensity
factors in a numerical analysis. The most common are the Displacement Correlation
Method, the Virtual Crack Extension technique, the Crack Closure Integral method and
the J-integral method. The Displacement Correlation Method is very simple and cor-
relates the computed local displacements with their theoretical values in Eq. (4.5) and
Eq. (4.7) with the stress intensity factors as scaling parameters. For this purpose sin-
gle points can be evaluated or many displacement values can be used by averaging the
obtained stress intensity factors. The Displacement Correlation Method relies on local
displacement differences, thus it is very dependent on the local discretization. The Virtual
Crack Extension technique is an energy based method and will be explained in detail in

the next section. The Crack Closure Integral approach was first suggested by (Rybicki
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Figure 4.3. a) Transformation of an eight-node isoparametric finite element to a crack tip element
with 1//r singularity and b) symmetric discretization around the crack tip

and Kanninen 1977) and is based on the notion in (Irwin 1956) of reversing crack growth
to compute the energy release rate. Early versions required two separate numerical cal-
culations, the first with the current crack geometry and the second with a small crack
extension. In the Modified Crack Closure Integral method (Singh et al. 1998) only one
calculation is necessary by assuming, that the change of the local displacements is small.
Another common method is the J-integral approach (Rice 1968), where a contour inte-
gral is obtained along the boundary of the crack tip domain, having the singularity inside.
This integral is path independent if no body forces are inside the integration area, if no
traction affects the crack surface and if the material is linear elastic. For the latter case
the J-integral can be interpreted as being equivalent to the energy release rate. The Crack
Closure Integral approach and the J-integral method have not been applied in this work,
thus they will not be presented more detailed. In general the Virtual Crack Extension
technique, the Crack Closure Integral approach and the J-integral method give more ac-
curate results than the Displacement Correlation Method, since they use energy quantities,
which are more independent of the discretization than displacement values.

The 1/+/r stress singularity at the crack tip cannot be represented exactly with stan-
dard finite element or meshless interpolation functions. For this reason special approaches
have been developed for both methods to overcome this problem and to obtain sufficient
accurate results for LEFM problems even with coarse discretization levels. One possibil-
ity to introduce a crack tip singularity in a finite element mesh was presented by (Barsoum
1974). There isoparametric eight-node finite elements have been used around the crack
tip by merging the three nodes of one edge and moving the middle nodes of the adja-
cent element edges into the quarter points as shown in Fig. 4.3a. The 1//r singularity
is obtained in the merged nodes throughout the Jacobi transformation (Bathe 1996). The

stress intensity factors can be simply calculated for a symmetric configuration as shown in
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Fig. 4.3b by using the Displacement correlation method according to (Wawrzynek 1991)

W 2m
= 1+ f [4(ub?? - udﬂ) - (ch - uezj)} )

1 2m
K = Vo [ — ugs) — (e — tez)]
II 1_'_,% I [ (ubx uda:) (ucx Uex)]

In the Element-free Galerkin Method two different approaches have been developed to

K

(4.12)

enrich the interpolation functions (Fleming 1997). The first method introduces the stress

intensity factors as global unknowns in the interpolation
ui(x) = pT(x)ai(x) + K1Qui(x) + Kr1Q2(x), (4.13)

where ()1; and ()o; characterize the displacement field as given in Eq. (4.5) and Eq. (4.7).
This approach leads to good results, but the implementation is complicated and the num-
ber of global unknowns increase. More elegant is a second method, where the base poly-
nomial is extended. The complete enrichment, which can represent the displacement field

in Eq. (4.5) and Eq. (4.7) exactly, is given in (Fleming 1997) as

0
pPPx)=1|1 z y .. \/Fcosg \/Fsing \/Fsing sind \/Fcos§ sinf | .
(4.14)

This method does not increase the number of global unknowns, but the higher number
of base polynomial terms requires the enlargement of the influence radius, which leads to

additional numerical effort. Thus in (Fleming 1997) a simplified enrichment is introduced

pr(x)=[1 2z y .. Vr], (4.15)

which can represent the crack tip singularity with much smaller additional effort. Outside
of the crack tip domain the /7 extension is neglected, which leads to a discontinuous
displacement field. In (Hegen 1997) this approach is improved by using a smooth blend-
ing of the additional term to obtain continuous displacements. Furthermore in (Hegen
1997) it is noted, that the integration of the crack tip area needs special attention to obtain
accurate results. Therefor an integration scheme similar to this of the crack tip elements
was applied, where triangle integration cells are mapped onto the unit square as shown in
Fig. 4.3a.

In (Sukumar 1998) an enrichment for the Natural Neighbor Interpolation was pro-
posed similar to Eq. (4.15) using only a /7 extension. The full enrichment shown in
Eq. (4.14) was applied for the Extended Finite Element Method in (Belytschko and Black

1999), whereby only the crack tip element was enriched with crack tip functions. In the

Thomas Most PhD Thesis



4.1. Introduction to Linear Elastic Fracture Mechanics 85

adjacent elements the additional displacement field is blended out with linear functions.
In (Fuhlrott 2004) it was found, that this enrichment does not converge to the exact so-
lution for a Mode-I problem, which may be caused by the applied standard integration
scheme, using a subdivision of the crack tip element into triangle cells. The application
of the integration method proposed in (Hegen 1997) could lead to more accurate results.
In this work an enrichment of the meshless interpolation functions was not imple-
mented, since the simulation of cohesive crack growth is of final interest, where no sin-
gularity exists at the cohesive crack tip. The singular crack tip elements have been used

for comparison in section 4.5.1 and 4.5.2.

4.1.2 Virtual Crack Extension

The Virtual Crack Extension (VCE) method computes the rate of change of the total
potential energy of a system for a virtual extension da of the crack. It was first proposed
by (Parks 1975) and (Hellen 1975) to calculate stress intensity factors.

The formulation of the total potential for the linear elastic case given in Eq. (2.45) can

be rewritten as

1
1= 5ﬁTKﬁ — al fert (4.16)

with

K= / BTCBdQ
@ 4.17)

fert — / OTFBa0 + / oTfar,
Q rf

where 1 is the nodal displacement vector, K is the elastic stiffness matrix and f*** is

external nodal force vector of the system. The energy release rate can be expressed as the

derivative of the total potential energy with respect to the change of the crack surface A,

which is caused by a virtual extension da (Parks 1975)
oIl 1_ 0K _pofet

R L R

(4.18)

Different approaches are possible to define the virtual crack extension in a numerical
discretization. The most common method is to extend only the crack tip by keeping the
remaining discretization constant. For the use with standard finite elements, this approach
assumes that only the position of the crack tip node is changed. This leads to the assump-
tion, that the external loads keep constant for a change of the crack surface, which is valid

if no body forces are applied in the domain influenced by the crack extension and if there
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b) 4

xT

Figure 4.4. a) Noncoplanar VCE extension da in the direction of the maximum energy release
rate and b) simplified coplanar VCE extension in local crack direction

is no externally applied traction on the crack surface. Then Eq. (4.18) can be written as

G = —%ﬁTg—Izﬁ. (4.19)
This special type of the VCE technique is called Stiffness Derivative Method.

The crack extension is introduced in the most studies in the local crack direction. This
approach is called the coplanar VCE technique (Fig. 4.4b). This local crack direction is
only for Mode-I cracking the direction with the maximum energy release rate. Several
studies have performed a noncoplanar technique (Hellen 1975), (Sha 1984) as shown in
Fig. 4.4a, but indeed errors have been reported, when Mode-II condition is approached
(Sha 1984). This technique requires additional numerical effort to determine the direction
of the maximum energy release rate. In this study the coplanar VCE technique is used,
since in (Xie 1995) it was shown, that this technique did not introduce significant errors.
Furthermore in (Ingraffea 1989) it was indicated that mixed-mode crack propagation has
always a tendency of approaching Mode-I condition, where the coplanar VCE assumption
is valid.

For the general case Eq. (4.19) can be expressed by a finite difference approximation
(Parks 1975)

G = —ﬁ”AKﬁ, (4.20)

where AA is the increase of the crack surface after a crack extension Aa. For a two-
dimensional structure with thickness ¢ this value reads AA = tAa. An analytical solution
for the stiffness derivative can be found for a symmetric discretization around the crack
tip with the crack tip elements (Hwang et al. 1998), but this is not possible for an arbitrary
asymmetric discretization. In (Yang et al. 2001) it was shown, that the finite difference

approximation converges for small values of Aa. Thus in this work the presented finite
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difference approach is used to calculate the stiffness derivative.
For the calculation of the stress intensity factors the mode decomposition method
(Ishikawa 1980) can be applied. By substituting the Mode-I (symmetric) and Mode-II

(anti-symmetric) displacements, 1i; and tu;;, in Eq. (4.20) the following formulation is

obtained
G=- SAA (y + )" AK (i + Gipr)
1 _ - 1 _ - 4.21
= — mU?AKu[ — muz—}AKll][ ( )
1 . - 1 _ -
— —ZAAU?AKUI] - —2AAU?IAKUI.

The mode-coupling terms vanish, which was proved e.g. in (Hwang et al. 2005), thus the

Mode-I and Mode-II energy release rates can be obtained as

1
Gr = — ——u} AKi,.
2A1A (4.22)
g]] - - mﬁ%}AKﬁ[}
This leads to the absolute values of the stress intensity factors
K| =+/F'Gy,
. ! (4.23)

| K| = E'Grr,

where £’ is defined in Eq. (4.11). To decide the sign of the stress intensity factors the
relative displacements of two nodes located symmetrically at both crack surfaces as shown
in Fig. 4.5 (node A and B) can be used (Hwang et al. 2005). The relative displacements

are defined in local crack coordinates as

Auz = uaz — UBz,

4.24
Au (4.24)

y = Uay — UBg-

The sign of K is positive if Auy is positive and Ky is positive if Aug is positive.

The Mode-I and Mode-II displacements can be obtained by decomposing the total
displacement values. This is realized in this work according to (Yang et al. 2001), where
mirror images of the nodes are used. For the node C' with belonging mirror node D as

shown in Fig. 4.5 this decomposition reads in global coordinates

B S e Y ) P

UCy; UCy;r
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Figure 4.5. Decomposition of the nodal displacements using mirror images of the nodes

with
UCe, = % [uc, + (cos*p — sin®p) up, + 2cosep sing up,]
Uy, = % [ucy + (sin2gp — 005230) Upy + 2c08p sing qu} , 426
UGy, = % [uc, + (sin®p — cos’p) up, — 2cosp sing up,| |
UCy,, = % [ucy + (c052<p — sin2g0) Upy — 2C0S(p sing qu} ,

where ¢ is the angle between the local and global axes. If the mirror image of a node
coincides with an existing nodes, then simply the displacement values of this node are
taken for the decomposition. If this is not the case, in this work the displacement values at
the mirror node position are calculated using the nodal displacement values interpolated
with the meshless shape functions. This procedure and the calculation of the energy
release rate in Eq. (4.22) can be done by considering all nodes and the global stiffness
change. More efficient is the way to consider only the crack tip domain 2¢7, which is
influenced by the shifted crack tip. Using finite elements this crack tip area contains all
elements, which are spanned by the crack tip node. In this work the stiffness difference in
Eq. (4.22) is computed for the meshless formulation from the integration points influenced
by the crack tip node. In Fig. 4.6 this is shown for the Natural Neighbor Interpolation.
There the circumcircles of the Delaunay triangles spanned by the crack tip node, which
define this integration domain, are illustrated together with the crack tip area nodes. These
nodes have to be considered for computing u; and uy; if at least one of their belonging

triangle circumecircles contains an integration point of the marked integration area.
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Figure 4.6. Observed nodes in the crack tip area {27 and corresponding integration domain for
the determination of the stiffness derivative using the Natural Neighbor Interpolation

4.1.3 Crack direction criteria

The most common criterion for predict the crack direction in LEFM is the criterion of
maximum circumferential stress (Erdogan and Sih 1963). This criterion states that, for
in-plane mixed-mode loading, the crack grows in this direction, where the normal stress
across the crack path is tensile, principal and maximum. The traction over the new crack
surface are gyy as normal stress and o, as tangential stress. If the circumferential stress

og¢ 18 maximum the shear stress o, is equal to zero. This leads to the following equation
K sinf. + Kj;(3 cosf. — 1) =0, (4.27)

since the trivial solution cos /2 = 0 corresponds to § = +180°, which is the existing
crack surface with minimum circumferential stress. The solution of Eq. (4.27) leads to

the well-known formulation for the new crack angle

1{ K; ( K; )2
0. = 2arctan— | —— + — ] +8], 4.28
4\ Kir Kir (4.28)

where the sign is chosen to make the hoop stress gy positive. This is valid if Eq. (4.29)
is fulfilled.

1 0 0 3
Top = cos— | K cos®’— — =K,y sinf,.| >0 4.29
= costy | K oot = Sy sin| > 429)

In (Bazant and Planas 1998) it is noted, that the following criteria are equivalent: the

circumferential stress is principal (0,9 = 0), the circumferential stress ogg is maximum
with respect to 6 and the magnitude /o3, + 02, of the traction vector is maximum with
respect to 6.

Another well-known criterion is the maximum energy release rate criterion, which

Thomas Most PhD Thesis



90 4. Discrete crack modeling

defines the crack propagation angle in this direction, where the energy release rate is
maximum. In LEFM the energy release rate is a function of the direction of propagation
and the loading. For infinitesimal crack growth, the loading is completely defined by the
near-tip field, which is characterized by K; and K;;. The cracking direction 6. can be

obtained from the following equation
G (Kr, Ki1,0) |g=9, = maximum. (4.30)

This angle can be determined e.g. with the noncoplanar Virtual Crack Extension tech-
nique. In (Nuismer 1975) it was shown, that this criterion leads for LEFM to a similar
propagation angle as the criterion of maximum circumferential stress.

In (Hussain et al. 1974) an analytical solution for the direction of the maximum energy
release rate was found. By assuming an infinitesimal kink at an existing crack analogous
to Fig. 4.4a, the new stress intensity factors K (6) and K;;(f) have been formulated in

terms of the stress intensity factors of the original crack as

{ K1(6) } B 4 (1_§> K; cos&—%KH sind 431)
= 5 0 ) .
KII(O) 3 + cos?d 1+; K][ COSO+%K] sinf

3|

The energy release rate can be obtained by assuming coplanar crack growth using Eq. (4.10)

as

G(0) = = (K30) + K4(6)) 432)

Substituting Eq. (4.31) in Eq. (4.32) yields

0
4 1\ [1-2\~
G0 =g (3+cos29> <1+g) (4.33)

[(1+3cos®0) K7 — 8 sinf cosd K K+ (9 — 5 cos’0) K7 .

The angle of crack propagation 6, is found by maximizing G(0)

290)

00 ’ (4.34)
79(0) _,
902 ‘

In Fig.4.7 the energy release rate is plotted depending on the assumed crack propagation
angle for different ratios of the stress intensity factors. Fig. 4.8 shows the obtained crack
angles, where the energy release rate is maximum, in comparison to the values obtained
with the maximum circumferential stress criterion given in Eq. (4.28). The figure indi-

cates, that both approaches give similar values. For pure Mode-II with K; = 0 the crack
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Figure 4.7. Energy release rate depending on  Figure 4.8. Prediction of .. using the direction
the assumed crack propagation angle for dif-  of maximum circumferential stress and maxi-

ferent ratios K/ K mum energy release rate
propagation angle is ¢, = —75.2° using the maximum energy release rate direction and
0. = —70.5° using the direction of maximum circumferential stress.
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4.2 Cohesive Crack Model

True crack Fracture process zone Intact material
Figure 4.9. Cracking process in concrete (Galvez et al. 2002)

In LEFM the fracture process is considered to occur at the tip of a sharp crack, which
is valid if the fracture process zone is small compared to the relevant dimensions of the
specimen. For the description of cracking in concrete structures, this approach can not be
applied since the crack length or other dimensions of the structure are small compared to
a fully developed fracture process zone. In that case a detailed description of the process
in the fracture process zone is necessary. Fig. 4.9 shows the principle of this process.
In an intact material which has not been loaded up to its strength the fracture process
zone develops when the material strength is reached. In this zone the material is partially
broken by micro cracks, but with unbroken bridges, which are able to transmit stresses
through the interface. If these bridges are destroyed, the micro cracks turn into a true

crack without stresses transmission through the interface.

4.2.1 Mode-I cohesive crack model

(Hillerborg et al. 1976) proposed the so-called Cohesive or Fictitious Crack Model, which
models the fracture process on the macroscopic level. In this model the fracture process
zone ahead of a real crack tip is lumped into a fictitious crack line transferring surface
stresses until the crack width reaches a critical value. This model has been successfully
applied in a huge number of studies dealing with the crack propagation in concrete. Part
of this success is due to its simplicity and physical meaning.

The stress o normal to the crack surface is formulated in this model as a function of
the crack opening Auy. Two properties of the softening curve are most important: the
tensile strength f; and the specific fracture energy for Mode-1 G£, which are introduced in
the cohesive crack model as constant material parameters. Several types for this softening
function have been developed. Some widely used are shown in Fig. 4.10. The rectangular
and linear function are very simple, but can not reproduce the softening behavior sufficient
accurate. In (Petersson 1981) a bilinear curve with fixed kink was presented. This type

is very common, since in can be fitted very simple for different experimental curves. In
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Figure 4.10. Softening functions of linear/bilinear and exponential type

the CEB-FIB Model Code (Telford 1993) several bilinear curves are given for different
maximum aggregate sizes.

A huge number of softening laws have been derived from the exponential function
type

Au
ON = for - €Xp —ftG§ al (4.35)
One is the quasi-exponential softening law (Hillerborg et al. 1976)
JiAuy
1+c)-exp|—c — fic Auy < Auy,
— fe ( 1) p [ 2 fo fier N > N (4.36)
0 AUN > AUNC

where the dimensionless parameters ¢; and ¢, can be obtained from the following equa-
tions
1+ C1 ft 1-— Co

Cy = 1— C1 = .
C1 ’ ch C1Co

(4.37)

The critical crack opening Auy ., where the fictitious crack turns into a real crack without
normal stresses is given for standard concrete in (Planas and Elices 1991) as Auy, =
5G%/ f which gives the required parameters using Eq. (4.37) as ¢; = 8.2896 - 10~* and
co = 0.9602016. Another well-known softening curve of exponential type was proposed
in (Cornelissen et al. 1986)

3
fi|1+0.199 (f'*A“N> . exp [—1.35ftA?N

.

Gy Gy
oN = QA
—0.00533" — Auy < Auy,
Gf
L 0 AU,N > AUNC
(4.38)
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Figure 4.11. Modified normal stress function depending on crack opening displacement

where the critical crack width is given with Auy, = 5.14G§ / fi- For the general case the

function for the normal stress o can be formulated as

o ([, G, Auy)  Auy < Auy,
oN = (4.39)
0 AUN > AUNC

with Auy, = Auy, (ft, ch)

In order to minimize the penetration of existing crack surfaces caused by compressive
loading and to activate the maximum tensile forces over a crack width Auyo > 0, which
1s necessary to obtain numerical stability, a linear penalty function with constant stiffness
kp is applied in this work for a crack width Awuy below Awu . This leads to the following

modified normal stress function

knAuy Auy < Auyy
on =9 o (fi, Gl Auy — Auyg)  Auyg < Auy < Aufd + Auyg
0 AuRe® + Auyg < Auy
(4.40)
with
2
AU/NO = ]lgf—tj kN > %7
N i ‘A (4.41)
-Au
A’LLTffd — AuNc (ft,G§mOd> ’ G?nod _ ch _ t . NO'

The modifications in the softening function in Eq. (4.40) are necessary to keep the integral
of the whole function for positive values of Auy equal to the specific fracture energy ch.
The penalty stiffness &y has to be chosen as large as possible to minimize the artifical
activation crack width Auy but avoiding numerical problems within the global iteration
procedure. For un- and reloading a linear function back to the point of origin is assumed.
In Fig. 4.11 the modified normal stress function depending on the crack width is visualized

for a quasi-exponential softening type.
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In the basic cohesive crack model the shear stress transmission in tangential direction
is neglected. In some studies, e.g. (Haussler-Combe 2001), this model was enhanced by
introducing shear stresses according to the Coulomb friction hypothesis. This extended
model can still not represent the interaction between the normal traction and shear traction
damage of the crack surfaces and the dilatancy caused by the saw-teeth effect of the
irregularities along the crack surfaces. Thus it leads to sufficiently accurate results only

for Mode-I dominated problems.

4.2.2 Improved mixed-mode cohesive crack model

Due to the limitation of the standard cohesive crack model for Mode-I dominated prob-
lems, in this work a coupled mixed-mode cohesive crack model proposed by (Carol et al.
1997) 1s adapted for the use in automatic crack growth simulation. This model represents
the degradation of the fictitious crack surfaces under coupled normal and shear traction.
Thus the destruction of the aggregate interlocking due to pure sliding of the crack sur-
faces or combined sliding and opening can be modeled. Furthermore this model is able to
represent the dilatancy effect, which leads to crack opening under pure tangential loading.

This model was proposed for the three-dimensional case, but in this section the imple-
mented two-dimensional formulation is presented for simplicity. The degradation of the
crack surface is described by (Carol et al. 1997) in terms of the classical plasticity theory,
where the well-known continuum formulation is transferred into an interface formulation,
where relative displacements Au in the crack surface are used instead of strains. Based on

a decomposition of Au into an elastic part Au® and a plastic part Au® in the following

form
A A el A cr
Au=| 2 Aut 4 Au = | TN (4.42)
ur Au% + Au%"
the stresses in the crack surface are defined as
k 0 Auny — Aus,
o= Y| =CcAu—Aur)=| N INTREN L (4.43)
ar 0 kT AUT - Augr

where C is the elastic material stiffness matrix, which contains only decoupled terms, and
Aur and or are the relative displacement and the stress in tangential direction, respec-
tively. The elastic stiffness values ky and k7 are, similar to ky in the standard cohesive
model with the penalty approach in Eq. (4.40), numerical parameters for the activation of
the normal and shear stresses without physical meaning.

The fracture process is described by a hyperbolic yield surface shown in Fig. 4.12a

F =02 — (c— oy tang)? + (c — x tang)?, (4.44)
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a) b)
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Figure 4.12. a) Hyperbolic yield surface and plastic potential, b) Development of yield surface

where tang is the friction coefficient for Coulomb friction and ¢ and y are internal vari-
ables belonging to the actual shear and tensile strength, respectively. If the value of
the yield criterion F' is negative, the interface material is in an elastic state (initial or
un-/reloading), and if F' is equal to zero the material is in a plastic state, where the internal
variables c and x show a softening behavior with increasing plastic relative displacements
Au“. In Fig. 4.12b the development from the initial yield surface to the state with com-
pletely destroyed interlocking of the crack surfaces is shown. This final state represents
Coulomb’s friction between two plain surfaces.

In (Carol et al. 1997) the softening behavior of y and c is described in terms of the
work W< spent on the fracture process during the formation of the crack. They are
assumed to decrease from their initial values y, and ¢y, which are the initial tensile and
shear strength taken as material parameters, to zero when W = G§ and W = fo ‘,
respectively. The initial tensile strength x, is equivalent to f; defined in the previous
section. G; is the Mode-I specific fracture energy, which is used in the standard cohesive
model, and fo ¢ is the Mode-Ila specific fracture energy. The latter case is also called
asymptotic Mode-II, where the crack opening due to dilatancy effects is avoided by very

high compression forces. The variation of ¢ and x is defined by a scaling function ¢ as

WCT
X = Xo— Xo ¥ G_fc’ax ;

(4.45)
c=cy—Cot (%m&) ;
f
with
e ¢
V(€ a)= T (eo—1)¢ (4.46)

In Fig. 4.13 the softening curves for ¢ and x depending on W< are shown for different
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I II
Gy Gy

Figure 4.13. Softening functions for ¢ and x depending on the shape parameters «.. and o,

scaling parameters «. and . Linear decreasing functions are obtained for a = 0.
The change of the actual work W< is defined in (Carol et al. 1997) as

O'Ndu% +0TducT” ON Z 0
Ve — . (4.47)
orduf’ (1— UN—W> ony <0
or

which implies, that in tension all dissipated work goes into the fracture process, while in
compression only the shear work by subtracting the basic friction is considered.

The yield direction is defined in classical plasticity theory perpendicular to the plastic
potential surface (). In this model this potential surface is taken as the yield surface by
introducing following two modifications: Initially the potential surface coincides with
the yield surface in tension. For compression the dilatancy vanishes for a compressive
stress higher than the dilatancy stress 0%, which is introduced as material parameter.
Furthermore the amount of dilatancy has to decrease with increasing degradation of the
crack surface. It vanishes completely for the pure friction state with ¢ = 0. This leads to
the following expressions for the derivatives of the plastic potential, which describe the

yield direction

9Q

don

9Q

= 2 tang(c — oy tang) 4 fAil, Do
T

— 27, (4.48)

where f4 and f4 are the factors introduced to represent the two mentioned effects.

These factors are defined using the scaling function in Eq. (4.46) as follows

dil o] dil
fo-l :1_1/}(0_&[704;)7
dil Co—C g
fcZ :1—¢<—CO 7OZCZ).

The plastic potential is shown in Fig. 4.12a together with the yield surface for an initial

(4.49)

material state. Altogether the presented model has twelve parameters, the elastic stift-
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nesses ky and kr, the initial tensile and shear strength y, and ¢y, the Mode-I and Mode-
ITa specific fracture energy ch and G;I “, the friction coefficient tan¢, the dilatancy stress

dil dil
¢ and of

o%! and four shape parameters, Qryy Qly Q1 , where the elastic stiffnesses are
pure numerical parameters, which have to be taken as large as possible without causing
numerical problems.

In this work the implementation of the presented model clarified a significant prob-
lem of the formulation, which limits the application to very small incremental steps. This
problem is caused by the quadratic formulation of the yield surface in Eq. (4.44) concern-
ing oy, which has two independent functions fulfilling ' = 0. This is shown in Fig. 4.14.
If the elastic predictor in the stress update procedure is to large, caused by large incre-
ments or high elastic stiffnesses, the iteration converges to the second zero line, which
has no physical meaning. In the worst case elastic behavior is indicated if the elastic
predictor is in the second domain with /' < 0.

This problem is solved here, by transforming the original surface with quadratic terms

to the following formulation

Froa = \/0% + (¢ — x tang)? — ¢ + oy tang, (4.50)

where no quadratic term concerning o is included. Fig. 4.14 indicates, that the modified

surface has only one function with /' = (0, which coincides exactly with the first function

of the original surface. The derivatives of the modified yield function lead to the following

formulation of the yield direction
0Q

dil pdil
% = tangf;" f",

8@ . ar
dor  \/oZ + (c — x tang)?

(4.51)

The modified model has been implemented by using the General Closest Point Projec-
tion algorithm (Simo and Hughes 1998), which is an implicit method and leads to the

fulfillment of the constitutive equations presented in this section with a given tolerance.

150
100
50

-50

-100
-150
-200

Figure 4.14. Original yield surface with two functions for F' = 0 and modified surface with only
one zero line
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Thus it can be applied to larger increments, which enables a stable global iteration pro-
cedure. The algorithm and the tangential material stiffness matrix are derived in detail in
the appendix.

Due to the formulation of the softening function of ¢ and x in terms of the work
W and the scaling function ¥ (£, «), the direct fitting of experimental curves, e.g. from
uniaxial tension tests, is not directly possible. For the case of uniaxial tension and o, = 0
the following relation has been derived in (Carol et al. 1997) for the total crack opening

displacement
Auy = IV 4 T8 jp X0 (4.52)

which is valid for Auy > xo/kn, describing the softening part of the function. This
equation can not be inverted in closed form to give oy in terms of Auy, but for a very
high elastic stiffness &, this relation leads to the well-known exponential softening curve
in Eq. (4.35). This means, that the exponential curve modified by the penalty approach
in Eq. (4.40) and the result given in Eq. (4.52) agree exactly for kyy = oo. For smaller

values of k the curves differ as shown in Fig. 4.15. In this work the value for the normal

T T T T T T
1 Carol et al.
Penalty -------

0.8

< 0.6
Z
©

0.4

0.2

0

1
Auyf /G

Figure 4.15. Comparison of the uniaxial softening function obtained by using the model of
(Carol et al. 1997) and the penalty approach

stiffness is taken as ky > 1000f2/GL, thus both curves agree almost exactly. For linear

or piecewise linear uniaxial softening curves, the function of c and  in terms of W can

be derived analytically. This enables an easy fitting of experimental data, e.g. using a

bilinear approximation. For linear softening the function of x in terms of W reads

X (W) = ! (4.53)
0 wer > Gl

which can be used analogous for c. For the general bilinear case, shown in Fig. 4.16, the
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cr
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cTr
Aufy

cr
Aufyy

cr
Augy,

Figure 4.16. a) Linear and b) bilinear softening curves x vs. Au%; and corresponding functions

in terms of W

following softening function of x in terms of Au$ can be formulated

( _ XOT XL A er
Aufy UN
N1

cr cr
Au§ < Aufyy

bilinear cry __ A’U,CTC — AU,CT or cr or
A TR v e A IR e
{ 0 Aufy > Aug,
which leads to
p
Xo — X1
Xoy 1 — 2Wer X XL Wer < Wer
\/ Aug X !
bilinear cry 2 We —Wer
X (W) 9 X1 | — 1 chr<Wcr§G§
X1 Au§,. — Auf,
\ 0 wWe > Gy
(4.55)
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with
cr 1 cr cr
Wi = 2X1(AUNC Augy). (4.56)

A detailed derivation of the formulation for the linear and the bilinear case can be found
in the appendix. By using the linear softening relation for the x-Au function in this
model, the obtained stress-crack opening relation for uniaxial tension is exactly the same

than using the penalty approach in Eq. (4.40), independently of &y

k’NA’LLN AUN < &
kn
inear AUNC — AUN XO
X (Aun) = § Ay, 1 Ty Auy < Auy, (4.57)
X0 kn
L 0 AUN > AUNC
with
2G7
Auy, = —1 (4.58)
X0

For the bilinear case both approaches lead to exactly the same relation only for the asymp-
totic case ky = 0o, similar to the exponential softening curve.

In (Galvez et al. 2002) a simplified model, using the same yield function as the model
in (Carol et al. 1997) was proposed. There the internal variables c and x are formulated

in terms of an effective plastic displacement Aug’

c = c(Au”,
(Bucqy), (4.59)
X - X(Aueff)a
with
Al = / Aug dt,
1 1 (4.60)

Augh, = Auf + Auf.

This assumption enables the direct implementation of the determined uniaxial relations
between x and Au$; and ¢ and Aug and leads to the same softening curve for uniaxial
tension as the formulation in (Carol et al. 1997). But for combined loading the assump-
tion in Eq. (4.59) leads to a faster decrease of the dilatancy. This is caused, since for
negative normal stresses the increase of Auy; contributes to the increase of Aug ., where
the increase of W depends only on the change of Auf if Au$; is negative. Furthermore
the pure frictional part of the plastic displacements is included in Aug,, which leads to

an unrealistic softening. Thus the consistent formulation in (Carol et al. 1997) using W "
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is preferred in this work. The assumption in Eq. (4.59) is used only for comparison.

4.2.3 Stress-based crack criterion

The well-known Rankine criterion is the one of the mostly used criteria for crack initiation
and crack growth in the context of the cohesive crack model. This criterion is fulfilled, if

the maximum principle stress exceeds the tensile strength
max(o12) > fi. (4.61)

In this work this criterion is evaluated by means of an averaged stress tensor similar to
(H&ussler-Combe 2001) and (Feist 2003). This averaging gives more stable results for
points close to stress singularities, caused by the geometrical shape of the domain or by
a point-wise coupling of continuum elements with elements of the reinforcement, which
is described in section 4.4. Furthermore it is necessary to obtain a representative stress
tensor directly at the crack tip, where generally no integration point is located. Here
a nonlocal approach is used according to (Jirdsek and Zimmermann 1997), where the

nonlocal stress tensor is evaluated within a given interaction area as

(k£
Jop oo (Ix— €[ dC”

o) = [ abxole)de. alxe (462
Qg

where «, {2z and £ are the nonlocal weighting function, the nonlocal interaction area and
the coordinate of the investigated point, respectively. The second part in this equation is
necessary to represent a constant stress field exactly. As weighting function a bell shaped

polynomial is chosen (Rolshoven and Jirasek 2003)

1 r2\
o) en
ablry =4 ¢ R (4.63)

0 | > R

where the distance is given as = ||x —&|| and R indicates an interaction radius R, which
is assumed to be a material depending parameter. In (Feist 2003) this quantity is assumed
to be between three and five times of the maximum aggregate size. The scaling factor ¢
is defined for 2D problems as ¢ = wR?/3. Fig. 4.17 shows this averaging procedure for a
point x located in a set of integration points. The Rankine criterion is evaluated using the
nonlocal stress tensor for single integration points to decide upon crack initiation and for
the crack tips to decide upon crack growth. In order to neglect integration points located
on the opposite side of a crack the visibility criterion presented in section 3.1.3 is used as
shown in Fig. 4.17.

The nonlocal scheme gives good results, if the integration points considered for the
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Figure 4.17. Nonlocal influence domain for a point x located close to an existing crack tip

averaging procedure are in a similar stress state. This is not valid, if the interaction radius
is taken too large depending on the gradients in the surrounding stress field. As a conse-
quence a delay of the crack initiation or propagation will be caused, which will be shown
in the examples. If the interaction radius is taken too small or if the discretization is too
coarse, the points in the influence domain are not enough to obtain a nonlocal information
about the stress field.

4.2.4 [Energy-based criterion using Virtual Crack Extension

The expression for the total potential in Eq. (4.16) formulated for LEFM can be extended
for an elastic body with cohesive cracks as follows

1
Mt = C6TKE — @7 4 @ (4.64)

where " are the cohesive forces acting on the fictitious crack surface. From this ex-
tended potential (Xie 1995) derived a criterion for cohesive crack propagation using the
Virtual Crack Extension technique

B 5Hcoh 1 ~T5K _ 7 6fezt 7 5fcoh

By assuming again that no external forces are applied on the crack surfaces and that the
body forces are zero in the domain of the crack tip and using the definition in Eq. (4.19),

the following relation is obtained

fcoh
G — ﬁT55A =0, (4.66)
with
1_,0K
g= —§1IT5—AU, (4.67)
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Figure 4.18. Virtual Crack Extension for a cohesive crack tip with finite interface elements

which implies, that an existing cohesive crack growths, if the elastic energy release rate G
due to a virtual crack extension J A reaches the energy rate in the cohesive interface. No

crack growth takes place for

6fcoh
=T
Y

< 0. (4.68)

This criterion can be applied only to decide upon the extension of existing cracks but not
for crack initiation. In (Xie 1995) and (Yang and Chen 2004) it was applied to cohesive
crack growth simulation with adaptive finite elements. In these studies the derivative of
the stiffness matrix in Eq. (4.67) was carried out by using the finite difference scheme as
presented in section 4.1.2.

The cohesive energy rate can be obtained for the general case using finite differences

in the same manner as for the elastic energy release rate

afcoh _ Afcoh
0A T AA

(4.69)

In this work the coplanar VCE-technique (section 4.1.2) is applied to obtain the elastic
energy release rate and the cohesive energy rate. If finite interface elements are used to
transmit the cohesive forces, only the element at the crack tip has to be considered as
shown in Fig. 4.18. By using two-dimensional linear interface elements the following
simple relation is derived (see appendix C.3)

ofcoh it
— 4.70
0A ~ Lor-t (4.70)

where 2% is the internal force vector and Lo is the length of the crack tip interface
element.
In (Xie 1995) and (Yang and Chen 2004) the standard cohesive crack model was

applied, which does not consider shear stresses across the cohesive crack surfaces of an

Thomas Most PhD Thesis



4.2. Cohesive Crack Model 105

opened crack. This assumption results in the following decomposition
feoh fIcoh; flc?h =0. 4.71)

Thus the implementation is limited to Mode-I dominated problems, since the Mode-II
component is missing in the cohesive energy release rate but exists for the elastic energy
release rate, if the Mode-II displacements are nonzero.

In this work the presented improved mixed-mode cohesive crack model is used in the
framework of the energy-based criterion, where both, Mode-I and Mode-II, components
of the cohesive forces are considered. Thus the presented completed approach can be

applied to Mode-I and Mode-II dominated and mixed-mode problems in the same manner.

4.2.5 Crack direction criteria

If the criterion for crack initiation or crack growth is fulfilled for a point in the investi-
gated domain, the direction of the new crack or crack increment has to be predicted. The
quality of this prediction has a major influence on the global behavior, since the global in-
elastic energy needed for the fracture process is directly influenced by the cohesive crack
geometry and the displacements of the crack surfaces. For cohesive crack propagation
modeling no universal approach exists like in LEFM, which works accurately and effi-
ciently for different geometries and loading situation. Thus this topic is still a field for
many researchers. In this section several methods will be presented and discussed.

If the Rankine criterion is applied for crack initiation or crack growth the crack angle is
assumed in general to be perpendicular to the maximum principle stress direction. In (Xie
1995), (Yang and Chen 2004) this approach is used in combination with the presented
energy-based crack criterion. In order to obtain a stable direction prediction, mostly a
nonlocal averaging scheme is used for the determination of the representative stress or
strain tensor (Jirasek and Zimmermann 1997),(Haussler-Combe 2001),(Feist 2003). The
prediction of the crack angle using this nonlocal stress tensor gives very good results for
the most cases, which will be shown in the examples, but a similar stress state in the
nonlocal domain is required, as already mentioned in section 4.2.3.

This is not the case, e.g. if the structure is almost completely cracked, as shown sim-
plified in Fig. 4.19 for a Mode-I crack. the stress gradients in the nonlocal domain have
large values, which lead to a significant sensitivity of the prediction with respect to the
position of the averaged integration points. If for a Mode-I crack the integration point
arrangement is asymmetric with respect to the theoretical crack line, the nonlocal stress
tensor in crack tip coordinates shown in Fig. 4.2 has nonzero shear components 75;. Thus
the prediction of the crack angle reads 6. # 0. This error increases for higher stress
gradients. The author has tried to solve this problem using stress points for the nonlocal

averaging, which are located symmetrically with respect to the existing crack tip, but the
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Figure 4.19. Stresses and belonging nonlocal influence domain for a growing Mode-I crack

crack angle prediction was not improved significantly for an asymmetric nodal discretiza-
tion, since the stress field is still slightly asymmetric. Good results for the crack path of a
Mode-I problem could only be obtained, if the nodal discretization keeps symmetric with
respect to the theoretical crack during the simulation. But for the general case, using an
arbitrary discretization to describe an arbitrary crack path, this cannot be assured.

In (Jirdsek and Marfia 2005) a method was proposed, which determines the maximum
circumferential stress on a semicircle around the crack tip. The radius has been taken
smaller than the nonlocal influence radius. The angle of the maximum circumferential
stress is assumed to be the angle of crack growth, similar to LEFM. Investigations by
the author lead to similar results for the Mode-I problem as using the nonlocal stress
tensor: for an asymmetric discretization, the stress field is asymmetric and the maximum
circumferential stress (local or smoothed) will be found in the analysis not for all cases
as 0. =~ 0. This clarifies the fact, that as long as the stress field is almost equal around the
crack tip, the prediction of the crack angle gives good results with a stress-based approach.
If this is not the case, these approaches are not adequate for a good prediction.

(Dumstorff and Meschke 2004) investigated several approaches and similar results
have been obtained using a stress-based criterion. Furthermore the method using the
direction of the maximum total energy release rate from LEFM described in section 4.1.3
was adapted in (Dumstorff and Meschke 2004) for cohesive cracks in the context of the
Extended Finite Element Method. This direction was determined by an iterative process
extending the existing crack in the investigated possible crack direction similar to the
noncoplanar VCE technique. The problems of stress-based approaches did not occur
with this method and good crack path predictions could be obtained, since the energy
release rate is an integral quantity and is much more independent of the discretization
than a stress-based method. This method is not applied in this work, because of the large
numerical effort, which is necessary to extend the crack in several directions during the
iteration process.

In this work the application of the criterion of the maximum circumferential stress

introduced for LEFM in terms of the stress intensity factors was investigated for cohesive
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crack growth simulation. By writing Eq. (4.27) in terms of the Mode-I and Mode-II
components of the elastic energy release rate using Eq. (4.23) the following equation is

obtained

1 Gy Gy
0. = 2arctan— | £/ — £/ — +8]. 4.72
i ( Ve, “Van ) &7

The choice of the signs is done according to section 4.1.2 and 4.1.3. Both components
of the elastic energy release rate are obtained using the mode decomposition procedure
described in section 4.1.2. The approach in Eq. (4.72) is based on the assumption of a
singular stress field at the crack tip. This is not valid for the cohesive crack, thus this
criterion can not be used in general in this context, but for Mode-I dominated problems,
where Gy is very small, Eq. (4.72) predicts the crack angle with 6. ~ 0. In this work
good results could be obtained with this approach for theoretical crack paths with small
curvature. For stronger curved crack geometries the crack angle is overestimated. The
nonlocal stress-based direction gives good results for the latter case. Thus in this work a
combined direction criterion is formulated, which takes the angle for the crack extension
from the criterion based on LEFM if the absolute value of the crack angle is smaller than

with the nonlocal prediction. In the other case the nonlocal crack angle is taken.

0 if |6 < |ONonioca
902{ LEFM 1 | LEFM| _| Nonl z| (4.73)

eNonlocal if |9LEFM‘ > ’(gNonlocal‘
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4.3 Crack growth algorithm

In fully automatic crack propagation the crack extension and the direction is predicted
without user interaction. In this work a quasi-automatic algorithm is used where the new
crack-length increment has to be provided by the user. This value has to be chosen as large
as possible to reduce the numerical effort during the calculation, but as small as needed
to represent the investigated crack geometry with sufficient accuracy. In (Wawrzynek
1991) the initial crack length increment was reduced with increasing crack angle .. For
simplicity, this length increment is assumed to be constant in this work and has to be
chosen at the beginning of a calculation. In the algorithm only one crack increment is
allowed in one iteration step, namely for the point (crack tip or integration point) where
the crack criterion is most exceeded. When a new crack increment is introduced, the
global nonlinear iteration is done again without increasing the external load or prescribed
displacement values. This is repeated until the crack criterion is exceeded nowhere else

and the new increment of the external load or prescribed displacement is applied.

4.3.1 Representation of moving discontinuities

After deciding, that an existing crack grows or a new crack begins to form and the de-
termination of the new crack geometry, the crack has to be represented in the actual dis-
cretization. In the two-dimensional case the crack contour can be easily described by a
sequence of line segments, which was realized by many researches, e.g. (Belytschko et al.
1994),(Hegen 1997),(Rao and Rahman 2000) and (Haussler-Combe 2001). The descrip-
tion in three dimensions is much more complicated, since the complete crack surface has
to be represented. Several studies use triangles to span the surface (Feist 2003), (Oliver
etal. 2004). Another approach is the level set method (Sethian 1999) which is widely used
in the Extended Finite Element Method, e.g. in (Sukumar et al. 2001). There the crack
surface is assumed to be the zero-level-set-curve of a function in the fourth-dimensional
space. The moving of the surface is included in this function by means of a hyperbolic
formulation. In this work only the two-dimensional case is investigated, thus the crack
path is represented using line segments.

The representation of the crack as discontinuity line can be done directly in the Element-
free Galerkin method due to the modification of the weighting function described in sec-
tion 3.1.3. In (Belytschko et al. 1994) this was realized without modifying the background
integration cells as shown in Fig. 4.20a. This assumption leads to a kind of smeared dis-
continuity in the belonging integration cells, due to the applied Gauss integration scheme
assuming a polynomial function. In (Hegen 1997) an improvement of this approach was
realized by subdividing the integration cells containing a discontinuity line in that way,
that the sub-cell edges coincide exactly with discontinuity lines (Fig. 4.20b). This con-
cept was adapted later for the Extended Finite Element Method in (Moés et al. 1999). For
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Figure 4.20. Representation of a crack a) without update of the discretization, b) with update of
the integration cells and c¢) with adaptation of the nodal discretization and integration cells

both concepts the description of cohesive cracks can be done with an integration along the
crack surface, in which the displacement differences, which are the input quantities for the
cohesive crack model, are directly obtained from the meshless displacement interpolation.
This was realized e.g. in (Haussler-Combe 2001).

Better results than using both presented concepts can be obtained, if the crack surface
is discretized by node pairs at the end of the segments and a node directly at the crack
tip as shown in Fig. 4.20c. In (Rao and Rahman 2000) this concept was applied and
additional nodes are introduced to improve the discretization around the crack tip.

In this work the first concept is used for the EFG method only for comparison. For
the general case the third concept was implemented for the EFG method and the Natural
Neighbor Galerkin Method, because of the better results for the EFG approach, although
the new nodes and the adaptation of the integration cells require additional effort. For the
NEM only this concept can be used, since the discontinuity has to be modeled as external

or internal boundary segments each spanned by two nodes.

Figure 4.21. Generation of the crack surface nodes and belonging interface elements a) for an
existing crack tip and b) for a new crack

If an existing crack grows the new crack increment is introduced into the meshless
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Figure 4.22. New node position from one single smoothing step

discretization by splitting the previous crack tip node and creating an additional node at
the new crack tip. For crack initiation a node pair is created at the stress point, where
the crack criterion is exceeded, and the two new crack tip nodes are generated along
the predicted crack direction with a distance to this node pair equal to the half size of
the specified crack increment length. For cohesive crack modeling the transmission of the
surface forces is realized by integrating finite interface elements between the crack surface
nodes. These procedures are shown in principle in Fig. 4.21 for an existing crack tip and
an initial crack. Due to the obtained linear precision of the Natural Neighbor Interpolation
and the blended MLS-interpolation along the domain boundary, the application of linear
interface elements is to the best advantage. In the appendix a detailed description of this
element type can be found.

Through the insertion of additional crack nodes the triangle integration cell configura-
tion close to the crack tip, which is updated in this procedure, may contain some strongly
distorted triangles, which still fulfill the Delaunay criterion but lead to remarkable errors
in the integration procedure as shown in (Unger 2003) for the Natural Neighbor Inter-
polation. The author developed an algorithm to overcome this problem based on the
Laplacian smoothing technique (Herrmann 1976). The original procedure in (Herrmann
1976) moves every node to the center of gravity of all triangles belonging to this node.
After a small number of cycles over all movable nodes the algorithm converges and the
nodes hold their new positions. But if the node density varies very much this can lead to
some longish triangles. To overcome this problem the new nodal position is taken here
as the midpoint between the center of gravity of the node-belonging triangles and the ge-
ometrical midpoint of their nodes. This is shown exemplarily in Fig. 4.22 for one single
smoothing step. The smoothing for non-convex subregions is only executed if the new
node position is not outside of the subregion. Nodes on the external and on the crack sur-
face boundaries are not allowed to be moved. Furthermore additional nodes are included
around the new crack increment if the increment length is smaller than the average node

distance in the surrounding domain in order to avoid distorted triangles at the new crack
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a) Original b) Smoothing ¢) Refinement

Figure 4.23. a) Initial triangulation improved by b) the smoothing and ¢) the refinement algorithm
to reduce distorted triangles

tip. After the convergence of the algorithm the smoothed triangles in general do not fulfill
the Delaunay criterion and a local re-triangulation is required. This algorithm is a local
procedure, which is fast and simple in two dimensions. The extension for the 3D case
seems to be more complicated.

In (Unger et al. 2004) another algorithm for the update of the triangulation procedure
around an extended crack tip has been proposed. This method is based on Rupperts
refinement algorithm (Ruppert 1995), which can produce grading triangle meshes and
already existing nodes are kept in the final triangulation. Compared to the smoothing
algorithm this procedure can guarantee that all triangles get small distortions, but on the
other hand additional nodes will be created at the boundary. If a new node is inserted
on a crack surface boundary within the refinement procedure some additional effort is
necessary to adapt the interface elements. In (Most et al. 2005) both algorithms have been
investigated in a crack growth algorithm and similar results have been obtained. Thus in
this work the smoothing algorithm is used, since its implementation is much simpler and
no additional nodes are necessary at the boundary. In Fig. 4.23 the result of the smoothing
algorithm is shown compared to a refined discretization using an initial state containing

strongly distorted triangles.

4.3.2 Adaptive coupling with finite elements

As already mentioned in the previous sections, the numerical effort for using the meshless
interpolation is in general higher than using standard finite elements. For this reason
an adaptive coupling of the meshless discretization with finite elements is an efficient
way to reduce this effort. In this concept, which was applied e.g. in (Karutz 2000) for
crack growth simulation in brittle materials, only this domain is discretized with meshless
components, where the crack growth happens. In this work this is realized by starting from
an initial finite element discretization and transforming these elements with corresponding
neighbor elements to meshless zones, where the maximum principle stress reaches 95%
of the tensile strength. In this procedure, the existing nodes are kept and only the critical

elements are deleted. The meshless components are discretized with these existing nodes
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b)

d)

e)

©)

Figure 4.24. Crack growth algorithm with adaptive coupling with finite elements:

a) initial FE-mesh with determined critical and neighbor elements, b) transformation into meshless
component, c) crack growth in meshless zone, d) element touched by new crack increment with
neighbor elements, e) adapted meshless zone and f) further crack growth

and the coupling with the remaining elements is done directly. This is shown in principle
in Fig. 4.24.

The direct coupling is possible, since the boundary conditions are fulfilled in the pre-
sented meshless interpolation. Due to the linear precision along the meshless boundary,
linear finite elements are preferred in this work, which leads to a compatible displacement
field along the coupling boundary. During this procedure an arbitrary number of meshless
zones can be created, which will be merged if they share a common edge. The presented
crack criterion will be checked in all meshless components and the new increment is in-
troduced, where the criterion is mostly exceeded. If a new crack increment will end in
an adjacent element, the crack increment is not used and this element with correspond-
ing neighbor elements is transformed, as shown in Fig. 4.24. After doing the nonlinear
iteration, the crack criterion is checked again and the new crack increment is included.
The displacement values of the nodes, which are created or smoothed during the update
around the crack tip, are interpolated from the old discretization state using the mesh-
less shape function. Then the next nonlinear iteration will converge faster, since the start
values are consistent to the last equilibrium state for all nodes. The transfer of history
variables from the old integration points to the new arrangement is straight-forward, due
to the continuous stress function, and can be done similar using the meshless interpolation
function. In this work the base material is assumed to be linear elastic, thus such a transfer
is not necessary. In Fig. 4.25 the applied algorithm of a single step for one global load or

displacement increment is presented in principle.
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e get new external load or prescribed displacement vector
START
e do nonlinear iteration procedure to obtain global equilibrium
e build up stress values and check for critical elements

o if critical elements found: transform elements to meshless components,
merge components, build meshless shape functions and go to START

e check crack criterion in meshless zones

e if new crack increment found without touching a finite element:
update the discretization and the meshless shape functions,
interpolate the displacements for new and smoothed nodes and go to ST ART

e if found new crack increment with touching a finite element:
do not use new crack increment, but transform touched finite elements,
merge components, build meshless shape functions and go to START

e do postprocessing

END

Figure 4.25. Single step for one global load or displacement increment in the crack growth
algorithm with adaptive coupling of finite elements and meshless components

4.4 Modeling of the bond behavior in reinforced concrete

The explicit description of the bond behavior between concrete and reinforcement is nec-
essary for the modeling of discrete crack growth in reinforced concrete structures. In such
analyses the reinforcement is generally modeled in two dimensions with bar elements
which are coupled with the concrete discretization. This was done e.g. in (Mehlhorn and
Kolleger 1995) and (H&ussler-Combe 2001). If the bond behavior is assumed to be per-
fect, the reinforcement and the concrete discretization is directly coupled, which leads to
the formation of a large number of cracks as shown in (Cervenka 1998) without a realistic
representation of the crack process. In this process a slip between the reinforcement and
concrete causes shear stresses in the bond surface. Due to these shear stresses the tension
forces, which are transmitted by the reinforcement over the surface of a macro crack, are
transmitted back to the concrete over a certain length. There is still no unified description
of this bond behavior by considering the important global and local influences as the re-
inforcement surface geometry or the lateral pressure. Thus this problem is still a field of
active research.

For practical use the relation between the shear stress and the relative displacements
between reinforcement and concrete, the slip, is assumed to be nonlinear. In this work

this concept is applied by using the following relation proposed in (Doerr 1980) between
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the bond shear stress o, and the relative displacement in reinforcement direction A,

83.2Au, — 1260Au? + 6480Au2, Au, < Au,

T

07 = { 83.2A4, — 1260A72 + 6480A73,  Ad, < Au, < Ad, (474
t

0 Au,; > A,

where Au, has to be taken in mm. (Doerr 1980) gives the relative displacement value

A, where the shear stress is at its maximum depending on the lateral pressure o; as

[ 0.06mm, o, =O0N/mm?

0.08mm, o, =5N/mm?
At = . (4.75)
0.13mm, o, = 10N/mm?

| 0.15mm, o, = 16N/mm?

The critical displacement value Au, where the shear stress gets zero is taken in general
as triple size of Au,. Un- and reloading is assumed to be linear with a stiffness equivalent
to the initial value. In Fig. 4.26 the nonlinear relation between shear stress and relative
displacement is shown.

The coupling between the reinforcement and the concrete nodes is done in this work
using so-called bond-link-elements (Mehlhorn and Kolleger 1995), which in 2D are two
springs, one in axial reinforcement direction using the nonlinear bond model and the other
in normal direction with a linear penalty law to avoid relative displacements between
concrete and reinforcement in normal direction. The shear stress obtained from the bond
model has to be multiplied by the surface area of the reinforcement segment belonging to

the spring to obtain the internal force of the spring element.

Or|-----=2= ;
/ A, Aii,

Figure 4.26. Nonlinear bond model according to (Doerr 1980)
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4.5 Examples

The following examples will clarify the applicability of the presented algorithm to crack
growth problems in plain and reinforced concrete structures. For this purpose a step-wise
verification is done in the following sequence: First the Virtual Crack Extension procedure
is applied to Mode-I and mixed-mode LEFM problems and the obtained meshless results
are compared to those of finite element simulations and the analytical solutions. Then the
improved mixed-mode cohesive crack model is verified independent of the crack growth
algorithm by means of simple tests. In the following examples the developed model is
applied to the Mode-I and mixed-mode evolution of a single crack in plain concrete and
the influence of the crack criteria and the type of the cohesive crack model are investi-
gated. The final example in this section investigates the propagation of multiple cracks in

a reinforced concrete beam.

4.5.1 Application of VCE technique for Mode-I cracking
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Figure 4.27. Mode-I fracture: square plate with horizontal crack

This numerical example, corresponding to Mode-I Linear Elastic Fracture Mechanics
has been carried out to verify the adaptation of the VCE for the meshless formulation.
For this purpose a quadrilateral panel with a horizontal central crack was analyzed by
calculating the Mode-I stress intensity factor according to (Yang et al. 2001). In Fig. 4.27
the material and geometrical properties are given. The analytical solution for this problem
is K; = 4.72 - 10°N/\/m (Tada et al. 1993).

First the system was investigated using the eight-node singular crack tip elements. For
the numerical analysis different nodal discretizations were investigated and only one half
of the plate was modeled by considering the symmetry of the system. The coarsest finite
element mesh is shown in Fig. 4.28a. The stress intensity factors have been calculated

with these elements using the Displacement Correlation Method and the Virtual Crack
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Figure 4.28. Mode-I fracture: a) Deformed finite element mesh with singular crack tip elements,
b) deformed meshless zone with crack modeled as boundary and ¢) modeled as internal disconti-
nuity

Extension technique. In Table 4.1a the numerical errors in comparison to the analytical
solution are shown. The table indicates, that the VCE method gives much better results
for coarser meshes than the Displacement Correlation Method.

Investigations for the different meshless formulations were carried out with the stan-
dard interpolation functions for increasing discretization levels. For comparisson an anal-
ysis with standard four-node finite elements (Q4) was performed. In Fig. 4.28b the inves-
tigated regular discretization is shown where the crack was explicitly modeled as domain
boundary. The numerical errors for these calculations are given in Table 4.1b in which the
values for the Q4 elements show excellent agreement with these obtained by (Yang et al.
2001) (47 nodes: —18.6%, 157 nodes: —11.2%). The results using the Natural Neighbor
Interpolation (NEM) and the MLS-interpolation with the regularized spline weighting
(RS) agree very well with the finite element solution. The application of the Gaussian
weighting function leads to similar results, but the rate of convergence is smaller. All
MLS calculations have been carried out using a bilinear base polynomial with an influ-
ence radius of D = 2d,,;,, where d,,;, 1s the minimal nodal distance. The numerical
integration was done for the MLS and the NEM using 25 Gauss integration points per
integration cell. The virtual crack extension ratio was assumed with R; = 107%d,,;,,. This

quantity is defined here as

_Aa

R; 7

(4.76)

where Aa and L are the virtual crack extension and the distance between the nodes on the
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a) Singular Q8 crack tip elements

Error of prediction K [%]

No. of nodes Virtual Crack Extension Displacement Correlation
165 0.21 5.70
581 0.07 2.23
2177 0.03 0.81
8425 0.02 0.17

b) Virtual Crack Extension with standard interpolation functions
Error of prediction K [%]

Internal crack

Crack as domain boundary + tip node

No. of nodes FEM, Q4 NEM MLS, G MLS, RS MLS, RS
47 -18.73 -16.25 -17.11 -17.41 -21.11
157 -11.30 -10.96 -13.40 -10.66 -16.78
569 -7.82 -8.44 -11.86 -7.44 -13.37
2161 -6.16 -7.22 -11.14 -5.88 -11.46
8417 -5.35 -6.62 -10.78 -5.11 -10.88

¢) influence of the virtual crack ratio R;
Error of prediction K [%]

Internal crack

Crack as domain boundary Internal crack + tip node
R; NEM MLS,G  MLS, RS MLS, RS MLS, RS
10705 -20.27 -21.73 -23.57 -39.08 -18.98
10~%0 -17.48 -19.34 -19.38 -22.06 -14.11
10-15 -16.64 -20.79 -17.59 -22.22 -21.75
10=20 -16.38 -28.11 -16.07 35.01 -21.11
10739 -16.27 -17.13 -17.44 20.42 -23.35
10~40 -16.25 -17.12 -17.42 404.2 -15.73
10-6-0 -16.25 -17.11 -17.41 - -

Table 4.1. Mode-I fracture: a) results from singular finite element simulations, b) from finite
element and meshless simulations with standard shape functions and c) influence of the virtual
crack extension ratio R; using the discretization with 47 nodes

crack surface, which is equal to d,,;, for this example. In Table 4.1c¢ it is shown, that the
obtained numerical values converge for a decreasing size of R;.

Furthermore the system was analyzed using the MLS interpolation where the crack
was modeled as internal discontinuity as presented in Fig. 4.28c. The integration cells
have not been adapted around the crack, but 100 equally weighted integration points per
cell were used to reduce the integration error along the crack line. It was obtained, that
the virtual crack extension ratio can not be chosen very small as shown in Table 4.1c. If
an additional node is introduced directly at the crack tip this problem can be solved, if
R; is not too small, but the numerical errors, given in Table 4.1b and which are obtained
using R; = 1072, are larger than modeling the crack as external boundary.

For all MLS calculations the visibility criterion presented in section 3.1.3 was used
to describe the crack as non-convex boundary or as internal discontinuity. This criterion
gives in general better results for LEFM problems than the diffraction or the transparency
method, which was shown in (Belytschko et al. 1996). By means of this example the
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diffraction criterion was analyzed additionally and the obtained numerical errors were
larger than the results presented in Table 4.1b (47 nodes using MLS interpolation with RS
weighting: -17.41% error with visibility criterion; -21.68% error for \p = 1 and -18.83%

error for A\p = 2 with diffraction method).

4.5.2 Verification of coplanar VCE method for mixed-mode cracking
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Figure 4.29. Mixed-mode fracture: square plate with 45° inclined crack

This example has been chosen to verify the coplanar VCE technique for mixed-mode
Linear Elastic Fracture Mechanics. For this purpose a square panel having an inclined
crack subjected to uniaxial tension was investigated. By assuming an infinite plate the

analytical solution can be obtained according to (Tada et al. 1993) as

Kr = a\/?cosg(ﬁ), K= agsin(ﬁ)cos(ﬂ), (4.77)

where (3 is the crack angle and a is the crack length. This leads to
K; = K;; = 0.8862N/+/m for the parameters given in Fig. 4.29.

According to the previous example, the system was analyzed first with the singular Q8
elements around the crack tip. The coarsest finite element mesh is shown in Fig. 4.30a.
The obtained numerical errors by applying the VCE technique are again much smaller
than using the Displacement Correlation Method as shown in Table 4.2a. The remaining
error for the VCE method does not converge to zero, caused by the coplanar crack exten-
sion, but the error values are quite small, thus this technique can be certainly applied to
mixed-mode problems.

Meshless investigations have been carried out for different discretization levels by
applying the Natural Neighbor Interpolation with standard shape functions in which a
regular nodal grid was used around the crack tips. Fig. 4.30b shows one meshless dis-

cretization. The obtained numerical errors, which are presented in Table 4.2b have similar
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convergency behavior for an increasing discretization level as in the previous example. A
finite element simulation with Q4 elements was performed as well. The results of the
finite element and NEM simulation are compared in Table 4.2b be means of the mixed
mode energy release rate, which results from the analytical stress intensity factors as
G = 5.4165 - 1075 Nm. These results show very good agreement.

The results of this and the previous example have shown, that the application of the
Virtual Crack Extension technique leads to good results for Mode-I and mixed-mode
LEFM problems, if the standard meshless shape functions are used.

a) b)
FEM; 1091 nodes Meshless; 601 nodes

Figure 4.30. Mixed-mode fracture: a) Finite element mesh with singular crack tip elements and
b) meshless discretization

a) Singular Q8 crack tip elements
Error of prediction [%]
No. of nodes  Virtual Crack Extension Displacement correlation

Ki Krr Kr Kir
1091 0.69 0.18 6.91 7.19
1439 0.57 0.37 3.29 3.53

b) Virtual Crack Extension with standard interpolation functions
Error of prediction [%]

Meshless, NEM FEM, Q4
No. of nodes Ky Ky G G
157 -19.47 -30.35 -43.30 -47.24
601 -11.85 -14.46 -24.44 -26.75
253 -8.58 -8.43 -16.73 -17.33
9313 -7.03 -6.65 -13.21 -12.84
37057 -6.28 -5.68 -11.60 -10.72

Table 4.2. Mixed-mode fracture: a) results from singular finite element simulations, b) from finite
element and meshless simulations with standard shape functions
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4.5.3 Verification of improved mixed-mode cohesive crack model

This example was carried out according to (Carol et al. 1997) to verify the mixed-mode
cohesive crack model (CCM) for pure tension loading, for shear loading under constant
compression and for combined loading. The first two artificial tests have been designed in
(Carol et al. 1997) and the material parameters are given in Table 4.3, where for the pure
tension test only the Mode-I parameters are necessary, the Mode-II parameters can be
chosen arbitrarily. In the third calculation the experimental results of the test in (Hassan-
zadeh 1990) have been used for fitting the material parameters. The obtained parameters
are given additionally in Table 4.3. During this test a prismatic concrete specimen of
7 X Tem cross section with a perimetral 1.5¢m deep notch was subjected to pure ten-
sion, until the peak of normal stresses was reached and the tensile crack began to form
through the notched cross section. From this point on, normal and shear displacements

were applied simultaneously in a fixed proportion characterized by tan § = Auy /Aur.

Pure tension  Shear/compression  Hassanzadeh

Normal stiffness kn [109N/m3] 1.0 25.0 200.0
Tangential stiffness kr [109N/m?3] - 25.0 200.0
Tensile strength X0 [106N/m?] 3.0 3.0 2.8
Shear strength co [106N/m?) - 4.5 7.0
Mode-I fracture energy G} [Nm/m?]  10,30,100 30.0 100
Mode-Ila fracture energy ~ G/'*  [Nm/m?| - 60.0 1000
Dilatancy stress ol [105N/m? - 30.0 56.0
Friction coefficient tan ¢ [-] - 0.8785 0.9
Shape parameter Qy [] 0.0 0.0 0.0
Shape parameter Qe [] - 0.0 1.5
Shape parameter adil [-] - 2.0 2.7
Shape parameter adi ] - 0.0 3.0

Table 4.3. Parameters for verification of mixed-mode CCM according to (Carol et al. 1997)

The calculations have been carried out here using a single interface element by per-
forming a displacement controlled analysis. The improved mixed-mode CCM presented
in section 4.2.2 was investigated for all three tests with the modifications of the yield and
potential surface as shown in Eq. (4.14) and Eq. (4.51). The results displayed in Fig. 4.31,
4.32 and 4.33, where this improved mixed-mode CCM is marked as Model 1, show ex-
cellent agreement with these obtained in (Carol et al. 1997). The analytical solution for
the pure tension problem can be obtained using Eq. (4.52). In Fig. 4.32 it can be seen,
that the tangential stresses converge to the Coulomb friction values and that the dilatancy
effect depends on the normal stress. Fig. 4.33 clarifies, that the model can represent the
complex mixed-mode fracture process investigated in (Hassanzadeh 1990) very well.

In a further investigation the simplified approach for the softening description accord-

ing to (Galvez et al. 2002) was analyzed, which is given in Eq. (4.59). For pure tension
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this Model 2 leads to the same results as Model 1, where the softening is formulated in
terms of the fracture work. In Fig. 4.32 it can be seen, that the dilatancy effect is less
significantly than with Model 1, caused by the reasons mentioned in section 4.2.2. Due
to the consistent softening formulation in Model 1 in terms of the fracture work, where
negative normal stresses and pure friction does not contribute to the softening process,
this model gives more adequate results, which is shown in the Hassanzadeh test, where
the dilatancy effect plays an important role.

3.5 T T

T
Analytical °

I 2 Model 1 b
Gf =100 Nm/m Model 2 -

25 -
Gf’ =30 Nm/m> i

3.0

2.0

L5 -
10 G/ =10 Nm/m’

0.5 =

Normal stress G [106 N/mz]

0.0 ' ' b
0.000 0.005 0.010 0.015 0.020

Normal relative displacement Auy, [10_3 m]

Figure 4.31. Pure tension: Normal stress vs. normal relative displacement for different values of
Mode-I fracture energy
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Figure 4.32. Shear under constant compression: Shear stress vs. tangential relative displacement
and evolution of dilatancy for different values of compressive stress
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Figure 4.33. Hassanzadeh test: Normal stress vs. normal relative displacement and shear stress
vs. tangential relative displacement
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122 4. Discrete crack modeling

4.5.4 Mode-I problem: Three-point bending beam with initial crack

P Young’s modulus £ 3.65 - 101°N/m?
Poisson’s ratio v 0.1
\ Tensile strength f; 3.19 - 10°N/m?
v d Spec. fracture energy G; 100 Nm/m?
A | '\ . "_ Beam length [ 0.6 m

Beam heigth d 0.15m

- l - Beam thickness ¢ 1.00 m
Initial crack length ag 0.045 m

Figure 4.34. Three point bending beam with initial crack (Carpinteri et.al. 1986)

Within this example the presented crack growth model is verified for a Mode-I prob-
lem by comparing the results with (Carpinteri et al. 1986), where a simply supported
beam with an initial center crack was investigated by means of standard finite elements.
Fig. 4.34 shows the system and the geometrical and material properties taken in (Carpin-
teri et al. 1986), where the softening behavior of concrete was assumed to be a linear
function and the resulting cohesive forces were applied via nodal forces along the the-
oretical crack line. Here first a finite element calculation with the presented interface
elements along the theoretical crack-line coupled with four-node 2D-solid elements was
performed. The beam was discretized with 1721 nodes and 80 x 20 solid elements, the
crack line with 15 node pairs and 14 linear interface elements, where the standard co-
hesive crack model was used due to the Mode-I situation with ky = 10*N/m?. The
Young’s modulus was calibrated with respect to the linear part of the given load displace-
ment curve as £ = 4.0 - 10'°N/m? to obtain the same stiffness of the finite element
model as the model in (Carpinteri et al. 1986) (This calibration is caused by the coarser
discretization which leads to a stiffer model in (Carpinteri et al. 1986)). The meshless cal-
culation was done by using a coupled discretization between a Natural Neighbor meshless
area in the middle of the beam and two 35 x 20 four-node 2D-solid FE regions to the left
and to the right of it. The total node number was 1707 and 12 Gauss integration points per
triangle were used for the computation of the system matrices and vectors. Simulations
with the MLS-interpolation lead to similar results as the Natural Neighbor Interpolation.
Due to the faster shape function computation the latter method is generally used in this

and in the following examples.

Investigation of crack growth criteria

First the system was investigated using the energy-based approach with the VCE tech-
nique to decide upon crack growth and the direction of the maximum principle nonlocal
stress to determine the crack direction. As shown in Fig. 4.35a the problems mentioned in

section 4.2.5 occured, where the crack geometry deviates from the theoretical line caused
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a) b)

R=5mm R=10mm R=20mm LEFM R=5mm R=10mm R=20mm

Figure 4.35. Crack geometries obtained with meshless simulations using a) the VCE technique
for crack growth and the nonlocal stress tensor and LEFM for the crack direction and b) the
nonlocal stress tensor for crack growth and the crack direction
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Figure 4.36. Calculated load displacement curves of three point bending beam using Natural
Neighbor Galerkin Method and FEM compared to the results in Carpenteri et.al. 1986

by the sensitivity of the direction criterion subjected to small perturbations. After a cer-
tain crack length the deviation becomes so large that a strong oscillation of the crack line
can be observed. Investigations with the maximum hoop stress criterion from LEFM in
Eq. (4.28) for the crack direction gives a very good prediction of the crack line. The
obtained load displacement curves are plotted in comparison to the results in (Carpinteri

et al. 1986) in Fig. 4.36, where the relative load is defined as the following term

P

=g,

(4.78)
and the relative mid deflection is given as the quotient of the mid deflection and the beam
height. The numerical results obtained with the VCE criterion and the LEFM direction
show an excellent agreement with the finite element results and with those in (Carpin-
teri et al. 1986). All meshless calculations have been carried out with a constant crack
increment length of {; = bmm.

If the nonlocal maximum principle stress is used to decide upon crack growth, similar
problems in the crack path prediction can be seen. This leads to an artificial stiffening
effect in the load displacement curve. The increasing of the interaction radius R can elim-
inate the oscillation, as shown in Fig. 4.35b, but then the crack criterion is overestimated

and we obtain a choppy curve which deviates considerably from the desired relation.
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Influence of crack increment length and system size
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Figure 4.37. Load displacement curves of three point bending beam obtained by using NEM with
different crack increment lengths in comparison to FEM results

Different crack increment lengths between [; = 0.5¢m and [; = 5.0cm have been
investigated by using the energy-based criterion. The obtained load displacement curves
are shown in Fig. 4.37. The figure indicates, that all calculations show a good agreement
with the finite element solution. If the crack increment is taken very large, the resulting
crack surface is discretized with only a few interface elements ([; = 3.4cm: 3 interface
elements; [; = 5cm: 2 interface elements) and the obtained curves are not smooth but
represent the global behavior in general. This shows the independence of the results from
the crack increment length for smaller values if problems with theoretical straight crack
lines are investigated. For the investigation of mixed-mode crack propagation, the incre-
ment length has to be chosen small enough to represent the curved crack line sufficiently
accurate.

In (H&ussler-Combe 2001) the developed crack growth algorithm was verified by
means of this numerical example using different system sizes. This verification will be

done here analogous by defining an initial crack brittleness

s 7a0'ft
0= I
Gf

(4.79)

The investigations in (Haussler-Combe 2001) have shown, that different system sizes with
equal crack brittleness, which should lead to exactly the same load displacement curves,
show good agreement. Here different configurations have been investigated, which are

given in Table 4.4. The structure size is modified depending on the scaling factor by

Brittleness s 718 1436 2871 14355
ch [Nm/m?] 100 200 400 50 100 200 25 50 100 5 10 20
Scaling factor 05 1.0 2.0 05 1.0 20 05 1.0 20 05 1.0 20

Table 4.4. Investigated configurations of specific fracture energy and scaling factors
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Figure 4.38. Load displacement curves for varying crack brittleness using different scaling factors

keeping the geometry relations ag/d and d/l constant. In Fig. 4.38 the obtained load
displacement curves for the investigated configurations are shown. It can be seen, that the
calculated curves for the same brittleness agree exactly and a very good comparison with
the curves obtained by (Carpinteri et al. 1986) was found. This shows that the developed
crack growth algorithm works, as expected, independently of the system size.

Cohesive Crack Model vs. Linear Elastic Fracture Mechanics

0.30 T P T T 0.05 T T T T
/'I Scaling 1 Scaling 50
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. I :
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Relative mid deflection f/d - 10™ Relative mid deflection #/d - 10”

Figure 4.39. Obtained load-displacement curves by using the Cohesive Crack Model and Linear
Elastic Fracture Mechanics (LEFM) for different scaling factors

A further investigation using this beam was carried out to demonstrate the fact, that
with increasing system size compared to the fracture process zone the assumptions of Lin-
ear Elastic Fracture Mechanics become suitable. For this purpose first the load displace-
ment curves obtained by using the crack criterion according to LEFM given in Eq. (4.3)
and the Cohesive Crack Model (CCM) with the energy-based crack criterion are compared
for the beam in Fig. 4.34 scaled with factor 1 and then for a scaling factor 50. Fig. 4.39
shows the calculated curves. The figure clearly indicates, that for a concrete structure with
standard size the application of LEFM instead of CCM leads to a strong overestimation
of the maximum load. If the structure is very large (scaling 50 corresponds to d = 7.5m)
the load displacement curves show good agreement. In Fig. 4.40 the convergence of both

methods for increasing system size is displayed. The length of the fracture process zone
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Figure 4.40. Convergence of Cohesive Crack Model and LEFM for increasing specimen size and
corresponding convergence of the length of the cohesive fracture process zone

in the cohesive model was simply estimated from the number of interface elements, which

still transmit normal forces if the normal stress at the crack mouth becomes zero.

Efficiency of crack growth algorithm

By means of this example the efficiency of the developed crack growth algorithm was
investigated. For this purpose the computational time for calculating 75 displacement
increments of 0.002mm at the loading point was determined for using the finite element
discretization with predefined crack (FEM + crack), using a coupled meshless and FEM
discretization with predefined crack (FEM + meshless + crack) and a coupled meshless
and FEM discretization with the automatic crack growth algorithm (FEM + meshless +
algorithm). For each displacement increment five steps for the nonlinear iteration have
been used for every method. The displacement error norm given in Eq. (2.85) of the
nonlinear iteration in the meshless calculations is after the five steps always below 10714,
which is in the range of the machine precision. The obtained computational time for the

whole calculation on a Pentium 4 with 2.4 GHz is given in Table 4.5.

FEM + crack FEM + meshless + crack FEM + meshless + algorithm
NEM 160 s 186's 190 s
MLS 160 s 234 s 239s

Table 4.5. Computational time for 75 displacement increments

The crack increment length has been taken as I[; = 0.75c¢m, which is equivalent to
the interface element length in the calculation with predefined crack. All meshless cal-
culations have been carried out using 12 Gauss integration points per triangle cell. For
the MLS simulations a linear base polynomial with 6 nodes in the influence domain and
the regularized spline weighting type was taken. The table clearly indicates, that the de-
veloped algorithm for checking the crack criterion and updating the discretization works
very efficient, since the additional time compared to the coupled simulation with prede-
fined crack is about 2%. The MLS calculations are more time consuming than the NEM
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caused by the complex shape function computation. Compared to the finite element sim-
ulation the additional effort of the meshless calculations using 5 steps for the nonlinear
iteration is not increased very much (about 19% for the NEM and 50% for the MLS).

0.15 T T T T T

0.12 - N -
0.10 - AN b
0.08 - AN 4
0.05 - —
Carpinteri ~ +

0.03 Meshless N
IATENA .

Relative load Sp

0.00 L L L
0.00 0.25 0.50 0.75 1.00 1.25 1.50

Relative mid deflection f/d - 10°
Figure 4.41. ATENA discretization, obtained load displacement curve and crack geometry

In order to compare the implemented algorithm with existing implementations of other
crack models the beam shown in Fig. 4.34 was investigated with the program ATENA
(Cervenka and Pukl 2003). Several smeared crack models with a local formulation are
available in this program, here the rotating crack model was used, since it gives in gen-
eral better results as e.g. the fixed crack model. The structure was discretized with the
same element size using 80 x 20 solid elements and some additional elements along
the theoretical crack line as shown in Fig. 4.41. The obtained load displacement curve
show significant deviations from the reference and the meshless solution, which is mainly
caused by the calculated crack pattern shown in Fig. 4.41. Through the local formula-
tion, this crack geometry is not a straight line and several adjacent elements are cracked
perpendicular to the theoretical line. Due to this mesh sensitivity the smeared approach
could not be applied without special improvements to obtain accurate results. This was
shown for other implementations of smeared crack models in several studies e.g. in (Feist
et al. 2004). Aside from the accuracy problems, the numerical effort is much higher than
using discrete approaches. The presented investigation with ATENA needed 56 minutes
instead of about three minutes for the meshless calculation on the same computer for the

same number of displacement increments.
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4.5.5 Mode-I problem: Wedge splitting tests on dam concrete
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Figure 4.42. Wedge splitting test setup and assumed softening curve (Trunk 1999)

By means of this example the developed crack growth algorithm will be verified for a
Mode-I crack by experimental data. For this purpose the wedge splitting tests performed
by (Trunk 1999) for different specimen sizes were analyzed numerically. The system and
the elastic material properties are given in Fig. 4.42. The fracture parameters given in
Table 4.6 have been determined in (Trunk 1999) for the different specimen sizes by as-

suming linear softening as shown in Fig. 4.42. The numerical simulation has been carried

Hlmm] Blmm] ag[mm] G}[N/mm] fiIN/mm?]  oi[N/mm?] Auni[mm] Auye[mm)

400 400 175 0.300 2.27 0.37 0.15 0.62
800 800 375 0.373 2.12 0.27 0.20 1.24
1600 1600 775 0.482 2.11 0.38 0.20 1.40
3200 3200 1575 0.480 2.27 0.29 0.25 1.42

Table 4.6. Dimension of wedge splitting specimens with identified fracture parameters

out by using again a coupled finite element - meshless discretization, where the energy-
based criterion for crack growth and the maximum hoop stress criterion from LEFM for
the crack direction were taken. Bilinear and quasi-exponential softening behavior was in-
vestigated using the standard cohesive crack model with ky = 10'*N/m3. The obtained
numerical crack geometries are shown in Fig. 4.43 together with the discretizations for
the different specimen sizes. Additionally the used crack increment length /; is indicated
in the figure. It can be seen, that all crack geometries agree very well with theoretical
straight crack line. In Fig. 4.44 the calculated load displacement curves are presented.
The curves using the bilinear softening model show good agreement with the experimen-
tal curves. If the quasi-exponential softening is used, some deviations can be remarked,

but the general behavior can be represented.
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H = 400mm, 604 nodes, [; = 15mm H = 800mm, 1504 nodes, [ = 25mm

H = 1600mm, 1305 nodes, I; = 50mm H = 3200mm, 4787 nodes, {; = 100mm

Figure 4.43. Calculated crack geometries for the different specimen sizes

Beside the good agreement of numerical and experiment results, this examples shows
the limitation of the cohesive crack model: The specific fracture energy G, which is
assumed as a material constant in the CCM, depends on the size of the specimen as shown
in Table 4.6, although the same concrete type was used. Thus the assumption of the CCM
are not correct, if the fracture process zone is not fully developed due to limited specimen

sizes or if two or more cracks have theoretical overlapping fracture process zones.
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Figure 4.44. Experimental and numerical load displacement curves for different specimen sizes
using quasi-exponential and bilinear softening laws

4.5.6 Investigation of L-shaped panel
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Figure 4.45. Test setup of investigated L-shaped panel (Winkler 2001, dimensions in mm)

Within this example the presented algorithm was used to predict curved crack patterns.
For this purpose a L-shaped concrete panel, which was investigated experimentally in

(Winkler 2001), was analyzed by using the standard and the improved cohesive crack
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model. The experiments have been carried out with three displacement controlled tests.
The test setup of the panel is shown in Fig. 4.45. In Table 4.7 the parameters, which
have been determined in (Winkler 2001) are given. For the numerical investigations the
Young’s modulus was calibrated on the linear part of the load displacement curve by using
an initial uniform finite element discretization with 1200 four-node elements and 1281
nodes. The Mode-I specific fracture energy was modified analogous to the contribution of
Oliver et. al. to (NW-Ialad 2003) which was determined by integrating the experimental
load displacement curves. The additional parameters for the improved cohesive crack

model were estimated from the given quantities and are given in Table 4.7

Parameters determined in (Winkler 2001) Estimated parameters
Young’s modulus £ 2.6 - 1010 N /m? Young’s modulus £ 1.8 - 101N /m?
Poisson’s ratio v 0.18 Shear strength ¢ 4.0 -105N/m?
Tensile strength f;, xo 2.7-10N/m? Mode-I fracture energy ch 95 Nm/m?
Mode-I fracture energy G} 65 — 90 N'om/m? Mode-1la fracture energy G4'* 200 Nm/m?
Panel thickness ¢ 100 mm Dilatancy stress o4t 30.0 - 105N /m?
Friction coefficient tan ¢ 0.55
Shape par. a,, a., adi, adit 0

Table 4.7. Determined and estimated parameters for the L-shaped panel test

a) Standard CCM b) Mixed-mode CCM ¢) Dumstorff 2004

:

Figure 4.46. Crack patterns of L-panel obtained using a) the standard cohesive crack model
(CCM), b) the improved mixed-mode CCM and c) the direction of maximum energy release rate
in comparison to the experimental spectrum

Exponential softening behavior was assumed by using the standard cohesive crack
model and the improved mixed-mode crack model, where the interface stiffnesses were
taken with ky = 103 N/m3 and kr = 10" N/m?. All meshless calculations were done
by using the initial finite element discretization and transforming the critical elements
during the calculation as described in section 4.3.2. In the created meshless zone 12
Gauss points per triangle cell were used. The energy-based criterion was taken for crack
growth and the combined criterion for the crack direction. The nonlocal influence radius
for combined direction was assumed to be R = 20mm. In Fig. 4.46 the obtained crack
geometries are shown compared to the experimental scatter. In can be seen, that if the
standard cohesive crack model is used, the crack turns early into a Mode-I crack due to the
missing shear resistance. For the improved model, the crack cannot change its direction

so early and the obtained crack path is more realistic. In Fig. 4.46c¢ the crack path obtained
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in (Dumstorff and Meschke 2004) using the direction of the maximum energy release rate
with the standard cohesive crack model is shown. This path shows good comparison to the
crack geometry in 4.46a. Thus the developed simple combined crack direction can give
similar results as the much more complex approach using the direction of the maximum
energy release rate.

In Fig. 4.47 the numerical results for both cohesive models are displayed compared
to the experimental values. Both simulations lead to good results. The deviation for the
improved model is less than using the standard model. The remaining deviation from the

experimental values may be caused by the inaccurate determination of the fracture energy.
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Figure 4.47. Experimental and numerical load displacement curves
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4.5.7 Four-point single edge-notched shear beam
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Figure 4.48. Four-point single edge-notched shear beam (Arrea and Ingraffea 1982)

As another example a four-point single-edge notched shear beam (SENS) was inves-
tigated. This beam has been analyzed experimentally by (Arrea and Ingraffea 1982) and
has become a standard benchmark for the verification of mixed-mode crack simulations.
The geometrical properties are shown in Fig. 4.48 and the thickness is assumed to be
152mm. In Table 4.8 the material parameters determined in (Arrea and Ingraffea 1982)
are given. Different estimations of the fracture parameters, which have not been identi-
fied in the experiments, can be found for this example as given in Table 4.8. In (Xie et al.
1995) the standard cohesive crack model was applied, thus the Mode-II parameters were
not needed. In (Gélvez et al. 2002) a simplified mixed-mode model was used, but the
dependence of the yield direction from compressive normal stresses, described in (Carol
et al. 1997) by the dilatancy stress 0%, was neglected. The parameters, which were fi-
nally used in this work for the presented standard and improved mixed-mode cohesive

crack model are given in the last column of Table 4.8.

Arrea 1982 Xie 1995 Galvez 2002  Estimated

Young’s modulus E [10°N/m?] 24.8 24.8 24.8 24.8
Poisson’s ratio v -] 0.18 0.18 0.18 0.18
Compressive strength fe [105N/m?] 45.5 - - -
Tensile strength fesxo  [10°N/m?] - 4.0 3.7 4.0
Mode-I fracture energy G§ [Nm/m?] - 150 107 120
Shear strength co [105N/m?] - - 5.0 4.0
Mode-Ila fracture energy ~ GLI®  [Nm/m?] - - 143 200
Dilatancy stress odil [105N/m?] - - - 30.0
Friction coefficient tan ¢  [-] - - 0.55 0.55
Shape parameter Qs ey a3 i - - - 0

Table 4.8. Determined and estimated parameters for four-point single edge-notched shear beam

For the numerical analysis the beam was modeled initially with 24 x 8 four-node
solid elements and 227 nodes, where 8 x 8 elements of the middle part of the beam have
been transformed to a meshless zone coupled with the remaining finite elements. The
calculations have been carried out by using the energy based criterion for crack growth
and the combined criterion for the crack direction. The nonlocal interaction radius R, used

for the combined direction criterion, was assumed to be 10mm and the crack increment
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length I; = 10mm. The interface stiffnesses were taken again with ky = 1013 N/m? and
kr = 10" N/m?3. In Fig. 4.49 the obtained numerical relations between load and crack
mouth sliding displacement (CMSD) and the calculated crack geometries are compared

to the experimental spectrum. The figures indicate, that if the mixed-mode cohesive crack

160 T | | | a) Mixed-mode b) Standard

o Exp. spectrum ———
140 L .. Standard 7 ‘
120 # N\ N Mixed-mode --=—=- i

Standard (Xie) -------
100 | \ ]
80 - -
60 - N .
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20 \‘:':;:_':4_ ZZZZZ -
0 1 1 1 1
0 0.03 0.06 0.09 0.12 0.15 — —

Crack mouth sliding displacement (CMSD) [mm]

Figure 4.49. Experimental and numerical load-crack mouth sliding displacement curves with
belonging crack geometries

model is used, the numerical curve agrees very well with the experimental data. By
using the standard CCM, the numerical curve has a large deviation in the post-peak part.
For this reason in (Xie et al. 1995) an increased value of the Mode-I fracture energy
was used, which leads to the third numerical curve in Fig. 4.49, which still does not
completely fit in the experimental envelope. The obtained crack geometries agree well

with the experimental results. The mixed-mode model gives slightly better results.

160 S T d d T T T 300 T T T T
tandar
140 = Mixed-mode -~ T 250 F
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E 200 -
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Loading point deflection [mm)] Crack mouth sliding displacement (CMSD) [mm]

Figure 4.50. Sharp snap-back in load-displacement curve and relation between crack length and
crack mouth sliding displacement

Fig. 4.50 gives the determined relation between load and load point deflection for
both simulations. In can be remarked in the figure, that the curves show a sharp snap-
back behavior, thus the presented modified arc-length method according to (Hellweg and
Crisfield 1998) was applied. Furthermore the figure shows the calculated crack increment
length depending of the CMSD. It can be seen, that the crack using the standard model
growths for CMSD > 0.06mm, which corresponds to the post-peak part in Fig. 4.49,

faster than using the improved mixed-mode model caused by the missing shear resistance.
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4.5.8 Reinforced four-point bending beam
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Figure 4.51. Reinforced four-point bending beam (Leonard and Walther 1962)
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Within this example the developed crack growth algorithm is used for describing mul-
tiple cracking in reinforced concrete. For this purpose the test beam shown in Fig. 4.51
was analyzed. In (Leonhardt and Walther 1962) two load-controlled experiments with this
beam have been carried out and the maximum loads were measured with ' = 60k /N and
F' = 78k N. The beam was reinforced by two longitudinal bars without vertical reinforce-
ment. The standard material parameters for this beam have been calculated in (Cervenka
1998) from the concrete cube strength of 35 - 106 N/m? according to the CEB-FIB Model
Code (Telford 1993). In Table 4.9 the parameters from (Cervenka 1998) and the estimated

missing values are given.

Parameters taken from (Cervenka 1998) Estimated parameters
Concrete
Young’s modulus F 3.17- 10N /m? Shear strength ¢ 3.0-105N/m?
Poisson’s ratio v 0.2 Mode-1la fracture energy G4'* 200 Nm/m?
Tensile strength f;, xo 1.64 - 105N /m? Dilatancy stress o%! 30.0 - 106N /m?
Mode-I fracture energy G; 100 Nm/m? Friction coefficient tan ¢ 0.55

Shape par. oy, o, adil, ad 0
Reinforcement
Young’s modulus F 2.08 - 101 N/m?
Poisson’s ratio v 0.3
Yield stress o, 250 - 105N /m?

Table 4.9. Material parameters for the four-point bending beam

For the numerical analysis one half of the beam was modeled initially with 56 x 12
four-node solid elements. During the simulation the critical elements were transformed to
meshless zones. Exponential softening was assumed by using the improved mixed-mode
CCM. The energy based criterion for crack growth and the combined criterion for the
corresponding crack direction and the nonlocal criterion for crack initiation were applied
where the nonlocal interaction radius R was taken as 30mm and the crack increment
length as I[; = 50mm. As interface stiffnesses ky = 10"*N/m? and kr = 102N/m3
were used. The material behavior of the reinforcement was modeled linear elastic until the
yield stress was reached. After this point ideal plasticity was assumed. The description

of the bond behavior was done using the nonlinear shear-stress-slip-relation presented
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in section 4.4 according to (Doerr 1980). The lateral pressure in the bond surface was

assumed to be zero, thus the required model parameters were taken from Eq. (4.74) as
Au, = 0.06mm and Au, = 0.18mm.

Figure 4.52. Numerical (deformation scaled with 30) and experimental crack patterns

The ultimate load of the beam was calculated as F' = 76kN. At this point the re-
inforcement has reached the yield stress at several integration points. In Fig. 4.52 the
obtained numerical crack pattern is shown at the ultimate load, where the deformation is
scaled with factor 30 to visualize the crack opening. The cracks with significant open-
ing correspond very well to the experimentally observed macro cracks. In the numerical
crack pattern several cracks with small opening can be seen, which arise due to the stress
concentration around coupling points between concrete and reinforcement. The normal
traction for the crack state at the ultimate load is shown in Fig. 4.53 for the simulated half
of the beam. The final dominant shear cracks obtained in the experimental analysis are
represented in the numerical results due to four curved cracks, where each almost inter-
sects the neighbor crack. The calculated load displacement curve is displayed in Fig. 4.54

and agrees very well with the experimental curve.
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Figure 4.53. Normal stresses in the cohesive  Figure 4.54. Experimental and numerical load
crack surfaces (deformation scaled with 200) displacement curves
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Chapter 5
Modeling of uncertainties

Estimating uncertainties is an important task in the design process of engineering struc-
tures. While the standard way using safety factors according to the valid design code is
applied in most practical cases, a newer development using an explicit stochastic model-
ing of the uncertainties in the loading, geometrical, and material properties becomes more
and more attractive as it designs more efficient structures.

Several procedures have been developed for a stochastic analysis. A simple method is
the description of such uncertainties by a set of correlated random variables, where each
variable represents a material parameter, load factor, or geometrical property. Such an
approach is used for example in (Pukl et al. 2003) and (Teply et al. 2003) for the analysis
of concrete bridges.

A more detailed method assumes a spatial distribution of geometrical or material prop-
erties and models this random distribution by a continuous field called a random field. In
combination with the Finite Element Method this approach is generally called Stochastic
Finite Elements (Brenner 1995), (Matthies et al. 1997). Applications of this procedure
to geometrical uncertainties can be found for example in (Schorling 1997) and (Most
et al. 2004), where the dynamic stability behavior of randomly imperfect shell struc-
tures was analyzed, and in (Bucher and Ebert 2000), where geometrical imperfections of
steel flanges were modeled. Fluctuations of material properties of steel structures were
investigated for example in (Brenner 1995) and (Rahman and Rao 2001), the latter study
simulates discrete crack growth using the Element-free Galerkin Method. Similar analy-
ses have been carried out for concrete structures in (Ebert 2002), where the cracking of the
material was considered by means of predefined cohesive interfaces. Further applications
can be found in the research activities of the Collaborative Research Center 532 “Textile
Reinforced Concrete - Foundation of a new technology” at the RWTH Aachen University,
where the material properties of multi-filament yarns are represented by random fields.

Stochastic modeling of a structure is generally performed in order to determine the
probabilistic response or to assess reliability. Different procedures are usually applied in

the two cases. In this work only the probabilistic response is calculated for the investi-
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gated systems, which can be done using a sampling strategy, that covers the probability
space very well. The plain Monte Carlo Simulation (MCS) is a very robust and simple
approach for this purpose, but the number of random realizations required to obtain good
estimations of the statistical characteristics of a response quantity is very high. A more
efficient tool is Latin Hypercube Sampling (McKay et al. 1979), which will be described
in this chapter. This sampling type enables a good estimation of statistical properties from
a small number of samples.

In the reliability analyses of engineering structures, generally very small failure prob-
abilities have to be estimated. In principle plain MCS is suitable for this task, but a
large number of samples is required. Several much more efficient methods have been
developed, which are only briefly mentioned here. Some of these sampling strategies are
Importance Sampling (Bourgund and Bucher 1986) or Adaptive Sampling (Bucher 1988),
which are improved Monte Carlo Simulations modifying the original distribution. Thus
during the stochastic simulation a large fraction of realizations will be obtained in the fail-
ure domain and the probability of failure can be estimated very well with a much smaller
number of samples. Other methods are the First and Second Order Reliability Method,
where the limit state function is approximated by a linear or quadratic expression. For the
investigation of complex nonlinear systems the reduction of the required evaluation points
could be necessary. This is achieved by using an approximation of either the structural
characteristics or the limit state function between the evaluation points. A powerful and
widely used approach to such an approximation is the Response Surface Method (Bucher
and Bourgund 1990), (Bucher and Macke 2004), where mostly a polynomial regression
of the evaluated values is used for the reliability analysis. In recent years neural networks
have been applied in some studies for this purpose, e.g. in (Hurtado and Alvarez 2001).
Within these networks the structural response is approximated by means of a complex set
of nonlinear functions.

This chapter describes the random field concept and its application and adaptation
for use in the developed crack growth algorithm. An introduction to random variables
and vectors is given. The basic ideas of Monte Carlo Simulation and Latin Hypercube
Sampling will be presented. These sampling methods will be applied in the numerical
examples to determine the probabilistic response of plain and reinforced concrete struc-
tures. In the simulation carried out in this chapter the stochastic modeling is limited to the
important concrete material parameters. The presented concept can be extended directly
to model the material parameters of the reinforcement or the geometrical properties as the

covering of the reinforcement as random fields.
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5.1 Introduction to random variables

5.1.1 Random variables

Let X be a single real valued random variable. The probability P, that this random
variable is smaller than a deterministic value x is defined by the cumulative distribution

function
Fx(z) = P[X < z]. (5.1)

The probability density function is obtained by differentiating the distribution function

with respect to x

8FX (ZL’)
ox

fx(x) = : (5.2)

Random variables are often described by their mean value, standard deviation and distri-

bution type. The mean value X of a random variable X is defined as

o0

X =E[X]= /:cfX(x)dzz:. (5.3)

—0o0

The standard deviation o x is the square root of the variance of X, defined as

o0

7 = BI(X = X)) = [ (@~ 2P fx(o)e (5.4)

— 0
The normalized standard deviation is called coefficient of variation

o
Ve =% (5.5)

In Table 5.1 some common distribution types are listed with their distribution and prob-
ability density function and a graphical representation. As indicated in the table, the
exponential and Rayleigh distribution types are a special case of the Weibull distribution.
The normal distribution with zero mean and unit standard deviation is called standard nor-
mal distribution and its cumulative distribution function is denoted as ®(.) as indicated in
Table 5.1.
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—0<z<o

fx(w) — ﬁ fx(z)
Uniform Fx(z) = == P
a<z<b X = %, _U_X-
ox = b;f; a X bz
a7 (5) ]
(Gauss) Fx(z) =@ (x;f) o]

Lognormal
O<axr <o

Weibull
e<x <00

Exponential
(Weibull, £ = 1)
e<z<o0

A=w—¢

Rayleigh
(Weibull, £ = 2)

e<zr<o0

f(@) = %5 exp (159"
Fy(2) =1 exp (- 52"
X =c+ay/n/2

ox = ay/2—1/2
a=(w—e€/v2

Table 5.1. Common distribution types with corresponding distribution function Fx (z), probabil-
ity density function fx (z), mean value X, standard deviation o x and specific parameters
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5.1.2 Random vectors

For multi-dimensional stochastic problems the covariance function between two random

variables X; and X, gives information about the correlation between both variables
CXX<X17X2) =F [(Xl - X1) (Xz - Xz)] . (5.6)

The coefficient of correlation reads

E [(Xl — X1) (X2 — X2)] _ Cxx (X1, X)

O-Xlo-Xg O-XIO-X2

P12 = (5.7)
and is defined between -1 and 1. If p;5 is one, both variables are fully correlated, and if
p12 1s zero, they are uncorrelated. This is the case, e.g. if X; is independent of X5. An

arbitrary number of random variables can be arranged in a random vector
X =[X1, X, ..., X]", (5.8)

with the mean value vector

T

X: [Xl,XQ,...,Xn} (59)
The corresponding covariance matrix, containing the pairwise values of the covariance

function, is defined as

Cxx = F |(X - X) (X-X)"|. (5.10)

For the description of multi-dimensional distributions two models with prescribed in-
dividual (marginal) distributions and covariances are usually applied. These are the Mor-
genstern model (Morgenstern 1956) and the Nataf model (Nataf 1962), (Liu and Der Ki-
ureghian 1986). The Morgenstern model is valid only for small coefficients of correlation
but the Nataf model is applicable to a rather wide range of correlation coefficients. In
this work the Nataf concept is used, since strongly correlated random variables have to be
described as well as weakly correlated variables. In the Nataf model a vector of standard

normal distributed random variables

Z=[Z,Z,.... 2", i=1,...,n (5.11)
is obtained by the marginal transformation of the original random vector X as

Zi =0 Fx,(X;)], i=1,...,n. (5.12)

By assuming that Z is jointly normal distributed, the joint probability density function of

Thomas Most PhD Thesis



142 5. Modeling of uncertainties

X reads

¢n(2, Czz)
P(21)P(22) ... (zn)

fx(x) = fx, (21) fx,(22) - fx, (20) (5.13)

where z; = &~ F,(x;)], #(.) is the standard normal probability density function and
®n(z,Cgzz) is the n-dimensional standard normal density depending on the covariance

matrix of Z. The elements of this covariance matrix are the correlation coefficients of Z

which are defined in terms of the correlation coefficients p;; of the original random vector

X as
N s oo zi— X\ [(z;— X, N N P2(2i, 24, Pij) o o
Pij = / / ( ox, ) ( UXj )sz( l)fXj( J) QZS(Zz)Qb(ZJ) d ld 7

—00 —00

N / / ( ox, ) ( ]UXJ- J)¢2(2iuzj7,0ij)dzid2j,

—00 —00

(5.15)

The Nataf model can be applied if the covariance matrix Czz is positive definite and
if the distribution functions Flx,(x;) are continuous and strictly increasing. Eq. (5.15)
can be solved iteratively to obtain p;; for each pair of marginal distributions with known
coeflicient of correlation p;;. In (Liu and Der Kiureghian 1986) regression formulas for

the modified correlation coefficients p;; have been derived, which were introduced as
pij = pii ', F =1, (5.16)

where I is the Nataf coefficient depending on p;; and the original marginal distributions.
In Table 5.2 some of these coefficients with corresponding bounds are given for random
variable pairs X; and X; with the same marginal distribution type. The formula for the
exponential distribution is taken from (Brenner 1995), where it was improved for coeffi-
cient of correlation close to one. The regression formulas in Table 5.2 are independent of
the parameters of the distribution, except for the lognormal distribution, which depends
on the coefficients of variation Vx, = ox,/X; and Vx, = ox,/ X;.

In (Brenner 1995) it was mentioned, that this transformation concept cannot be applied
to strongly correlated random variables of all distribution types, e.g. for variables with
Weibull distribution.
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Marginal distribution Nataf coefficient F' Lower/upper bounds on p;;
Uniform 1.047 — 0.047p;; -0.999/0.999
Rayleigh 1.028 — 0.029p; -0.947/1.000

Exponential —0.047098(1 — p;;)? -0.645/1.000
11’1(1 + pijVXl. VXj> -1000/1000
Lognormal Ve — 1 1
/I +V2) In(1+12) (Vx, = Vx, <1)

Table 5.2. Selected Nataf coefficients F' and their area of validity for two random variables of the
same distribution type according to (Liu and Der Kiureghian 1986) and (Brenner 1995)

5.2 Random fields

5.2.1 Properties

A random field H can be interpreted as a geometrical multi-dimensional stochastic pro-

cess, which can be described as
{H(x); x€DCR"}, (5.17)

where D defines the domain containing the possible positions x. The dimension n of
the geometrical space can be arbitrary. For the application in stochastic finite element
simulations, one-, two- or three-dimensional spaces are usual.

A random field is characterized by its distribution type and its statistical parameters,

e.g. the mean value

A(x) = E[H(x)] (5.18)

0% (x) = E [(H(x) - H(x))Q] . (5.19)

The correlation of a random field can be formulated by the auto correlation function Ry,
which is influenced by further random field properties as isotropy and homogeneity. A
random field is called weakly homogenous, if the mean value and the covariance function

are independent of the position vectors. Then Eq. (5.20) is valid.

Ryn(x1,%2) = Ryu(x1,%1 + &) = Ruu(§), (5.20)
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where
§ =% —x1. (5.21)
For isotropic random fields the correlation function fulfills

Run(x1,x1 +&) = Ruu(|€]]), (5.22)

which means, that the correlation depends only on the distance between the two points
and no direction dependency exists.

The correlation function is often described by the correlation length /5. For isotropic
random fields this quantity is unique for every direction. For the anisotropic case different
values for each direction are taken, e.g. for three dimensions Iy, lf, and lg.. A very
common function type is the exponential correlation function defined for the isotropic

case as

R (I€]) = o exp (—@) , (5.23)

ln

which is based on the assumption, that the correlation between two points of the random
field decreases with increasing distance. If the correlation length tends to infinity, the
random field is fully correlated and if the correlation length is zero, the field is completely
uncorrelated. Thus the coefficients of correlation of a random field with such correlation

function are between zero and one and negative values are not possible.

5.2.2 Discretization

For the numerical representation in a finite element analysis a random field has to be
discretized. Several methods have been developed for this purpose, most of them are
described and discussed in (Matthies et al. 1997). One class of discretization schemes
are point discretization methods. These methods represent the uncertainties of a random
field at several points. The number of these points is equivalent to the number of random

variables. The discretized value at a point ¢ is directly given as

H; = H(x;). (5.24)
The covariance between two points reads

CHiHj = CHH(Xiaxj)- (5.25)

In (Matthies et al. 1997) several advantages and disadvantages of this class of methods

are mentioned. These advantages are the simple computation of the covariance matrix,
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the always positive definite covariance matrix and the same distribution function in the
discretized and in the continuous case, which enables the application to different dis-
tribution types. The disadvantages are the limitation of the mesh size compared to the
correlation length and a required almost regular discretization. For very short correlation
lengths the random field discretization has to be very fine, which increases the numerical
effort dramatically. Thus these methods are only useful for medium and long correla-
tion lengths. Two common point discretization methods are the midpoint method (Liu
and Der Kiureghian 1989), where the random field is discretized only at the centroids of
the finite elements, and the integration point method (Brenner 1995), where the Gaussian
integration points are used for the random field representation.

Another class of discretization methods are schemes based on an averaging procedure,
as the local averaging method (Zhu et al. 1992) and the interpolation method (Liu et al.
1986). The local averaging method determines discrete values as

1
H;, = —/ H(x)dx, (5.26)
Vi Jo,

where (2; is the local averaging domain and V; is the corresponding volume of €2;. This
method yields to accurate results even for coarse meshes, but the determination of the
distribution function of H; is difficult or even impossible, except for random fields with
normal (Gaussian) distribution, which limits these methods for this case. The interpola-
tion method uses an additional grid to discretize the random field independently of the
finite element mesh. The required random field values are obtained by using an interpola-
tion scheme similar to the finite element interpolation. This method can give good results
even for coarse or irregular finite element meshes, but the disadvantage is the need of an
additional discretization.

The third class are series expansion methods, where the random field is represented
by series with deterministic functions and random coefficients. Such an expansion can
be done by Taylor series, where the number of considered terms depends on the size
of the coefficients of variation. For small coefficients a first order approximation gives
good results, but for larger coefficients the high number of required terms complicates the
application of this method.

Due to the presented advantages of point discretization methods compared to other
approaches and its applicability for non-Gaussian distribution types, these methods have
been applied in several practical analyses, e.g. in (Brenner 1995), (Ebert 2002) and
(Bucher and Ebert 2000). In this work the integration point method was preferred for
the use with the presented coupled meshless and finite element discretization. The mesh-
less integrations points are handled in the same manner as these of the finite elements and

the computation of the covariance matrix is done without modifications.
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5.2.3 Simulation of random field samples

The number of random variables H; = H(x;) of the discretized random field can be

written in a random vector
H=[H(x)),H(X3),..., H(x;),...,H(x,)]", i=1,...,n (5.27)

The covariance matrix in the original space is then defined as

Cun = F |(H-H) (H-H)"|. (5.28)

This matrix is directly computed from the integration point positions using the pre-defined

auto correlation function as
CH«;HJ‘ = RHH(Xi,Xj,lH). (529)

If the exponential auto correlation function is used, the entries of this matrix are between
zero and one depending on the distance between two random field points. Thus a random
field vector contains strongly and weakly correlated random variables.

In order to simulate discrete samples of the random field, it is necessary to decouple
the random variables. This can be realized for normal distributed random field variables
by a transformation to the uncorrelated Gaussian space. If the distribution type is non-
Gaussian a transformation into the Gaussian space is required. In (Brenner 1995) this
was realized by using the Nataf model described in section 5.1.2. The obtained covari-
ance matrix Czz in the correlated Gaussian space is then transformed to the uncorrelated

Gaussian space by solving the standard eigenvalue problem
Czz = ¥Cyy 07, (5.30)

where Cyy = diag(a%/i ) is a diagonal matrix containing the sorted variances of the un-
correlated Gaussian random variables and the matrix ¥ consists of the corresponding

deterministic eigenvectors
V=0, U,.. . ¥,]l. (5.31)

This spectral representation has the advantage, that in the most cases only a small number
k of the largest eigenvalues with corresponding eigenvectors ¥, ..., W, are necessary to
represent the properties of a random field with a sufficient quality. This quality () has

been estimated in (Brenner 1995) as follows

_ Zle CYY (iv Z) _ Zf:l CYY@? i) (532)

@ tr(Cyy) tr(Czz)
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With decreasing size of the correlation length the number of required eigenvalues and
-vectors has to be increased to obtain a certain ().
A discrete sample of a random field is obtained by simulating first the reduced uncor-

related random variable vector

V= [1, Gos oo Tt) - (5.33)

Then a backward transformation to the correlated Gaussian space has to be performed as

follows
k
7 = Z\Imj% (5.34)
i=1

For non-Gaussian distribution types finally the inverse Nataf transformation has to be

applied, which can be done element-wise

H(x;) = F;'[®(%)], i=1,...,n. (5.35)

7

The described assembling of the original covariance matrix, its transformation to the
Gaussian space and its spectral decomposition has to be done only once. The following
simulation of discrete samples requires only the execution of the operations in Eq. (5.34)

and Eq. (5.35) for each sample.

5.2.4 Modeling of multiple correlated random parameters

The presented random field concept was applied in (Brenner 1995), (Ebert 2002) and
(Bucher and Ebert 2000) in that way, that a random parameter, e.g. the Young’s modulus

E, was modeled at an integration point ¢ as follows
E(x;) = Eo Hp(x), (5.36)

where Ej is the deterministic mean value and Hg(x) is a homogenous, isotropic random
field with unit mean. The standard deviation of the random field oy, is equivalent to
the coefficient of variation and the resulting standard deviation of the Young’s modulus is
og = Fyop,. With this concept only uncorrelated material and geometrical parameters
can be modeled, which was done in (Brenner 1995) for the Young’s modulus, the mass
density and the thickness in a linear elastic example and for the Young’s modulus and the
yield stress in another example describing a steel structure with an linear-elastic ideal-

plastic material law. In (Ebert 2002) the same approach was used to model a random
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Young’s modulus and a random tensile strength of a concrete beam independently

E(XZ> = EoHE(Xz‘),

(5.37)
fe(xi) = fio Hy, (%)

This means, that in these applications a random field for every parameter was defined,
spectral decomposed and simulated separately.

For the modeling of material uncertainties in concrete structures the consideration
of correlations between the different material parameters might be necessary. For this
reason the concept of single-parameter random fields was extended in this work to a
multi-parameter approach, which will be described as follows. The members of a single-

parameter covariance matrix of random field read in terms of the coefficients of correlation

Cuul(i,j) = ohpij. (5.38)

This matrix has the size n X n, where n is number of random variables, which is equiv-
alent to the number of points, where the random field is discretized. The entries of this
matrix are computed with the auto correlation function and depend only on the geom-
etry of the investigated system. Thus this matrix is called in the following description
geometric covariance matrix. In order to describe multi-parameter random fields here
a constant predefined matrix is introduced, which describes the correlation between the

several parameters at a certain point
Cep(i,J) = pij- (5.39)

The size of Cpp 1s m x m, with m as the number of correlated material parameters. The
extended covariance matrix Cjyy With size m - n X m - n is then obtained by multiplying

the geometrical covariance matrix element-wise with the parameter correlation matrix

Cau((i = )m +r,(j — 1)m + s) = Cuu(i, j) Cpp(1, 5);

(5.40)
,7=1,....,n; r,s=1,...,m,
which reads in terms of the coefficients of correlation
C;—IH((Z_ l)m—i_T? (] - 1)m+8) = OHr UHspij ,érs- (541)

The total number of random variables of the extended random field is m - n. In Eq. (5.41)
varying standard deviations for the different parameters are assumed, which have to be
considered in the Nataf transformation and the simulation of the uncorrelated random

variables. This is similar for different distribution types of the parameters. Here a unique
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5.2. Random fields 149

standard deviation and distribution type for all parameters is taken for simplicity. Then
the procedure presented in section 5.2.3 can be applied to the extended covariance matrix
trax 1n the same manner as for a single-parameter random field. The final correlated set

of material parameters P, of the extended random field H* at an integration point ¢ reads

Pl(Xi) = PloH*(Xia 1),

Py(x;) = P H" (x5, 2), (5.42)

P,(x;) = P, H*(x;,m).

In Table 5.3 the covariance matrix of simple random field with one and two parame-
ters is assembled exemplarily and the corresponding eigenvalues and eigenvectors in the
uncorrelated Gaussian space are displayed. The table indicates, that each eigenvector of
the single-parameter field belongs to a symmetric and anti-symmetric eigenvector of the
two-parameter field. The sum of the corresponding variances is twice the variance of the

single-parameter eigenvector.

5.2.5 Adaptive transfer of random field data

During the crack growth algorithm the discretization, which is in general a regular finite
element mesh, is adaptively changed by transforming finite elements to meshless zones
and introducing new nodes during the crack growth procedure. Both, the transformation
and the crack growth, need a rearrangement of the integration points. This requires an
update of the initial random field data of the current sample. Here this is realized using
an interpolation of a continuous field. The developing discontinuities in the investigated
structure are neglected for this interpolation.

The random field data for new meshless zones are interpolated using the shape func-
tions of the transformed finite elements. For the interpolation only this element is used, in
which the new integration point is located. First the nodal values will be calculated from
the element integration points. The values of the new point will be computed by using
the natural coordinates r and s, which can be determined analytically for linear elements
(Rehle 1996). If distorted higher order elements are used, which was not done in this
work, an iterative method according to (Werkle and Gong 1993) can be applied.

Another possibility to obtain the random field data from the transformed elements,
using the MLS interpolation scheme, was investigated only exemplarily for this case.
This led to similar results as with the finite element shape functions, which will be shown
in section 5.4.1, but with higher numerical effort, due to the more complex shape function
computation.

For the integration point arrangement during the crack growth procedure, the random
field data of the new points are obtained directly from the old integration points using
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System

im im ‘

ly =1m; on=1; Ruu((€l) = exp (—[€])

Random field with one parameter

1.000 0.368 0.135
Crm = | 0.368 1.000 0.368 | = WCyy 7T
0.135 0.368 1.000

o2 = 1.593 03, = 0.865 o3, = 0.543

Random field with two parameters

) ) o i 1.000 0.500
Ciin = Ciiu(Cun, Cpp) = ¥*Cyy ¥, Cpp = { 0.500 1.000 }

[ 1.000 0.500 0.368 0.184 0.135 0.068
0.500 1.000 0.184 0.368 0.068 0.135

0.368 0.184 1.000 0.500 0.368 0.184

Chm = | 0184 0368 0500 1000  0.184 0.368
0.135 0.068  0.368 0.184  1.000 0.500
| 0.068 0.135  0.184 0.368  0.500 1.000 |
072 = 2.388 032 = 1.297 012 = 0.815
032 = 0.796

Table 5.3. Simple three-point Gaussian random field with one and two parameters and belonging
covariance matrices and variances and eigenshapes in the uncorrelated space
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the MLS interpolation with the regularized weighting type and linear polynomial basis
independently of the applied interpolation scheme in the mechanical model. This was
done by considering all integration points in the deleted triangle cells as supporting points

of the interpolation.

5.3 Sampling strategies

5.3.1 Plain Monte Carlo Simulation

The standard Monte Carlo Simulation is a very simple and robust sampling strategy to
estimate statistical properties of an investigated stochastic problem. The expected value

E[.] of a function u(X) of a random vector X is defined as

v = / / X) fxyxx(X)dxy .. drg = Elu(X)], (5.43)

where K is the number of members of X. This expected value of u(X) can be estimated

using the mean value of the sample results

N
= Z (5.44)

where X is the i-th sample of X and V is the number of samples, respectively. Eq. (5.44)
is the basis principle of the Monte Carlo Simulation. This means, that N samples of the
random vector X are computed using the joint density function fx,  x, (x), the function
u(X) is calculated for each sample separately and finally the estimated expected value is

obtained. The estimator ¢ is unbiased

E[8] = E[u(X)] (5.45)

op = %ai(xp (5.46)
where
ooy = El(u(X))?’] — (E[u(X)])*. (5.47)

(5.48)
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152 5. Modeling of uncertainties

The disadvantage of MCS is the large number of samples, which are necessary to obtain
a sufficient accuracy of the estimation.

Monte Carlo samples are often obtained using a random generator, which computes
uniformly distributed samples between zero and one. These samples can be transformed

into the desired distribution type using the inverse distribution function.

5.3.2 Latin Hypercube Sampling

In this section the basic theory of Latin Hypercube Sampling is presented according to
(Olsson et al. 2003) and (Ebert 2002). Latin Hypercube Sampling (LHS) has been first
proposed by (McKay et al. 1979) and further developed in many studies, e.g. in (Florian
1992). LHS is a Monte Carlo Simulation with class stratification, a so-called Stratified
Sampling Method. These methods can reach a sufficient accuracy by estimating statistical
properties with only a few samples compared to plain MCS.

In this method the theoretical probability distribution of the independent base variables

x; 1s stratified in N classes D; with uniform probability

P[xiEDj]:%; i=1,..K; j=1,..,N, (5.49)
where K and N are equivalent to the number of base variables and to the number of com-
puted LHS samples, respectively. For each class a representative value Z;; is simulated as
follows:

First an N x K matrix P is assembled, where each of the K columns is a random permuta-
tionof 1,..., N. Thenan N x K matrix R containing independent uniformly distributed
random values between zero and one is simulated. The final sampling matrix S is then

obtained as

1
S=+(P-R). (5.50)

The final values z;; with the target marginal distribution are obtained by mapping the

elements of S as

A single sample of the random vector reads

)A(Z' - [.?Aﬁ'il, .fi'ig, oo ,.?Afik}T. (552)
In Fig. 5.1 a possible sampling for two random variables and five realization is shown

according to (Olsson et al. 2003).

Between the columns of the permutation matrix P unrequested correlations can arise.
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Figure 5.1. LHS sampling plan for two random variables with five realizations

In (Iman and Conover 1982) and (Novék and Shiraishi 1993) a method was proposed
which reduces the correlations by reordering the permutation matrix as follows:
First the members of the permutation matrix p;; are mapped on a standard normal distri-

bution

A 5.53

Then the covariance matrix of the obtained matrix Y is estimated and decomposed using

Cholesky factorization

LL" = Cyy. (5.54)
A new matrix Y* is obtained

Y =YL, (5.55)

where the ranks of the elements of the columns of Y* become the elements in the columns
of the modified permutation matrix P*. The Cholesky factorization requires a positive
definite matrix Cyvy, which implies that the number of realization is higher than the

number of random variables.
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154 5. Modeling of uncertainties

5.4 Examples

In this section three examples will be presented, where the first very simple example
analyzes the quality of the random transformation. In the second one the probabilistic
model is verified by means of a simple plain concrete beam with single crack growth, and

in the final example multiple crack propagation in a reinforced concrete beam is analyzed.

5.4.1 Random field transformation

This example was chosen to investigate the quality of the random field data interpo-
lation. The disc shown in Fig.5.2, which was discretized with 12 x 20 nine-node 2D
solid-elements, was assumed to be the initial system. In the analysis the elements in the
marked area were transformed to a meshless zone. The material data uncertainties were

[m]

0.4

1,2

0.8

04 1.2 0.4
2,0

Figure 5.2. Simple plate with included transformation area

described by an isotropic random field with two log-normally distributed parameters, the
Young’s modulus and the mass density. By using the exponential correlation function,
the correlation length was taken with 2m, which is equivalent to the system length. The
coefficients of variation were defined as Vg = V, = 0.2 and the mean values were taken
with £ = 3.4-10'°N/m? for the Young’s modulus and p = 3400kg/m? for mass density.
The correlation coefficient between the two parameters was assumed to be p;o = 0.8.
The first 20 eigenvectors were used for the simulation of the random field, which repre-
sent the 4320 random variables with a quality of 93.1%. The transformed random field
data obtained by using the FE-interpolation and the MLS-interpolation did not show visi-
ble differences among each other. In Fig.5.3 the original and the FE-transformed Young’s
modulus and mass density distributions for one sample are displayed. The figure indicates
good agreement between the initial and the transformed distribution. The visible smooth-
ing is caused by the higher integration point density in the new meshless component (four

integration points per triangle integration cell).
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Figure 5.3. Transformation of single random field sample describing the Young’s modulus and
mass density distribution

A statistical analysis was applied in order to quantify the errors due to the transforma-
tion procedure. Therefore the system was discretized with 3 x 5 nine-node and 6 x 10
four-node elements. By using a representation of 100% of the random field, the results
of transformed random field discretization could be directly compared to an initial cou-
pled FE-meshless random field. The statistical properties were evaluated by simulating
10° Monte Carlo samples. The elements of the transformed geometric correlation matrix
Cigrs which was computed from all MCS samples using Eq. (5.7), the coefficient of
variation and the mean value of the random field and the correlation coefficient between
the parameters are compared to the given values. The maximal absolute deviations for

each investigated quantity are shown in Table 5.4. The results show, that both transfor-

max AChu(i,7) max AVy max AH max Apio

FEM nine-node 0.04339 0.00377  0.00114  0.00320
MLS nine-node 0.05162 0.00703  0.00108  0.00118
FEM four-node 0.02827 0.00420  0.00173 0.00303
MLS four-node 0.02807 0.00405  0.00173 0.00304

Table 5.4. Maximum deviations of the statistical properties of the transformed random field

mation methods lead nearly to the same deviations. The interpolation errors in the statis-
tical values, which have been computed at each integration point (coefficient of variation,
mean value and parameter correlation coefficient), are one order of magnitude smaller
than the errors in the elements of the correlation matrix, since the interpolation function
can not reproduce the auto correlation function exactly. If more integration points are in

the original random field, which are used for the interpolation, the correlation errors in
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the transformed random field are reduced.

5.4.2 Three-point plain concrete beam

In this example the three-point bending beam with initial crack according to (Carpinteri
et al. 1986), which was analyzed deterministically in section 4.5.4, was investigated by
assuming random material properties. For this purpose a three parameter lognormally dis-
tributed random field with exponential correlation function was used to model the Young’s
modulus, the tensile strength and the Mode-I fracture energy as correlated parameters.
The mean values of these three quantities have been taken as the deterministic values
given in Fig. 4.34. The other material and geometrical parameters are assumed to be de-
terministic as the values given in section 4.5.4. The correlation length, the coefficients
of variation and the parameter correlation coefficients have been taken with [; = 0.6m,
Ve =V, = VG§ = 0.2 and p15 = p13 = p23 = 0.8, respectively.

The initial random field, which contains 4800 random variables (40 x 10 four-node
finite elements, each having 4 integration points with 3 random parameters) was mod-
eled with the largest 30 eigenvalues and belonging eigenvectors, which is equivalent to a

representation of 95.84%. In Fig. 5.4 one realization of the random field is shown.

0

Young’s modulus E [N/m?] ALZOZE

-
P

Tensile strength f; [N/m?]

\A

Mode-I fracture energy ch [Nm/m?]

3 4
-

Figure 5.4. Single three parameter random field sample for the three-point bending beam

o 7 R T 7

The stochastic analysis has been carried out by calculating the load displacement
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curves of 10000 plain Monte Carlo Simulations of the 30 uncorrelated random variables.
In Fig. 5.5 the statistical curves (mean value and standard deviation) are shown in com-

parison to the deterministic curve.

0.16 T T T T T
MCS
0.14 - - LHS 70 - 7]

0.12 - . S Deterministic ------ i

0.10 - X -
0.08 - n
0.06 - -
0.04 -
0.02 —

0.00 | | | | | |
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Relative mid deflection #/d - 10™

Relative load 8])

Figure 5.5. Statistical load displacement curves (mean values and mean values =+ standard errors)
of three point bending beam using Monte Carlo Simulation and Latin Hypercube Sampling

In a next step the analysis was performed by using Latin Hypercube Sampling with
different numbers of samples. In Table 5.5 the investigated number of samples with
the corresponding undesired maximum correlations between the 30 random variables are
given. The table indicates, that for 10, 20 and 30 samples these correlations are very large
and for 50 and more samples the errors are small enough to represent the statistical be-
havior sufficient accurate. In Fig. 5.5 the statistical curves obtained with 70 LHS samples
are shown, which agree excellent with the MCS curves. This shows, that LHS can be
successfully applied to crack propagation problems to obtain the statistical characteristics

of the complete structural response with only a small number of samples.

Number of LHS samples 10 20 30 50 70 100 200
Maximum undesired correlation 0.8667 0.7023 0.4852 0.0262 0.0151 0.0118 0.0052

Table 5.5. Investigated number of Latin Hypercube Samples with corresponding maximum un-
desired correlation between the 30 independent random variables

In further investigations the histograms of the relative load have been determined for
the MCS results for the relative mid deflections of 0.0001, 0.0007 and 0.0013, which
belongs to the elastic part, to the middle and to the end of the load displacement curves
and for the maximum relative load. These histograms are shown in Fig. 5.6. Additionally
the probability density functions (PDFs) by assuming a lognormal distribution are shown
using the indicated mean values and standard deviations obtained from the 10000 samples.
The histograms and the PDFs agree very well, thus the distribution type of the relative load
is nearly lognormal. Furthermore the PDFs obtained using the mean values and standard
deviations of 70 LHS samples are shown, which almost exactly agree with the PDFs of
the MCS.
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Finally the mean value and the standard deviation of the peak load have been calcu-
lated for all LHS simulations and for the MCS samples by using an increasing number
of samples. The obtained values are displayed in Fig. 5.7 depending on the number of
samples. As indicated in the figure, Latin Hypercube Sampling gives very good results
for the mean value with a much smaller number of samples (more than 20) as the MCS.

For a well approximated standard deviation more than 50 samples are necessary, which is

still a small number compared to the required number of MCS samples.
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Figure 5.6. Histograms of the MCS samples and probability density functions of the MCS and
LHS samples using the indicated statistical values and a lognormal distribution
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Figure 5.7. Calculated mean values and standard errors of the peak load depending on the number
of samples for Monte Carlo Simulation and Latin Hypercube Sampling
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5.4.3 Four-point reinforced concrete beam

In this final example the applicability of the presented stochastic model to multiple crack
growth will be shown. For this purpose an experimentally investigated reinforced con-
crete beam (Ebert and Bucher 2002) was analyzed numerically in order to represent the
statistical behavior of the structural response. Fig. 5.8 shows the test setup with load-
ing and boundary conditions. The indicated material parameters have been estimated in
(Ebert and Bucher 2002) according to the CEB-FIB Model Code (Telford 1993).

View from side

| | Concrete
A 210 . Young’s modulus F 3.05-101°N/m?
[ | Poisson’s ratio v 0.2
View from Tensile strength f; 2.6 - 105N /m?
] [] Spec. fracture energy G§ 65 Nm/m?
{1 q 47 ‘\ 96 Y }1 ? Reinforcement
12 Young’s modulus F 2.1- 101 N/m?
~ ] Loading area Poisson’s ratio v 0.3
QI D 0Go "{ | Simply support Yield stress oy 550 - 106 N/m?

H——H
2442

Figure 5.8. Simply supported reinforced concrete beam (Ebert and Bucher 2002, dimensions in
cm), system properties and mean and deterministic values of the material parameters

In the experimental tests 20 beams reinforced with 3 bars with a diameter of 10mm
have been analyzed load controlled and their mid deflection was measurred depending
on the applied external load F'. In Fig. 5.9 the obtained histogram of the mid deflec-
tion for the first load step with F' = 2500V is shown. In order to define a distribution
type for the numerical analysis different common types have been investigated. Their
probability density functions obtained with the experimental mean value and standard
deviation are given additionally in Fig. 5.9. The lognormal PDF shows the best agree-
ment with the experimental histogram. Thus a lognormally distributed random field was
used in the numerical analysis. Within this analysis the Young’s modulus, the tensile
strength and the specific fracture energy of the concrete were assumed to be the three
correlated random field parameters. The parameter correlation coefficients were taken as
P12 = p13 = 0.8; pa3 = 1.0, which means, that the tensile strength and the specific fracture
energy are fully correlated. All other material parameters of the concrete and the proper-
ties of the reinforcement were assumed to be deterministic. The initial discretization of
the concrete was done by using 10 x 168 four-node finite elements and the reinforcement
was modeled with 168 bar elements. Thus the initial random field consists of 13440 ran-
dom variables. The crack growth simulation was carried out using the Mode-I cohesive
crack model with exponential softening, since the middle part of the beam is subjected
to an almost constant moment, which led to mainly Mode-I cracks in the experiments.

The parameters for the bond model were taken from Eq. (4.74) as Au, = 0.06mm and
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A, = 0.18mm.

Different values for the correlation length [ and the coefficent of variation have been
used for the investigations, which are given in Table 5.6. The coefficent of variation for the
case with {;; = 0.5m has been taken in order to obtain almost the same standard deviation
at I = 2500N as with gy = 2.1m and Vi = V}, = Vc:; = 0.25. The number of random
variables has been reduced as presented in section 5.2.3 and Latin Hypercube Sampling
was applied to simulate the random field. The number of considered eigenvectors of the
random field and the used number of LHS samples are given in Table 5.6. In Fig. 5.9 the

Experimental Numerical
Correlation length [ - 0.5m 2.1m 2.1m
Coefficents of variation Vg = Vy, = VG§ - 0.30 0.25 0.35
Number of used random variables - 50 20 20
Representation quality - 0.9434 0.9748 0.9748
Number of LHS samples - 70 30 30
Maximum undesired correlation - 0.0325 0.0519 0.0519
Mean mid deflection at F' = 2500V 0.8459mm  0.5862mm  0.5692mm  0.6087 mm
Standard deviation at F' = 2500N 0.1809mm  0.1237mm  0.1179mm 0.1878 mm

Table 5.6. Investigated sets of correlation length and coefficient of variation and calculated cor-
responding quantities

obtained numerical histogram for [; = 0.5m is displayed for the first load step, which

shows good agreement with the equivalent lognormal probability density function.

Experimental Numerical (I = 0.5m; LHS 70)
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Figure 5.9. Histogram of experimental mid deflections and assumed probability density functions
for different distribution types and of numerical mid deflections with lognormal PDF

The crack development in the numerical simulation is shown for several load steps in
Fig. 5.10 for one random field sample. The figure indicates, that in two weak zones the
first cracks occur and with further increasing load the middle part of the beam is cracked
almost uniformely. In the final state at ' = 21000/N the numerical crack pattern shows

good agreement with the experimental crack geometries but the detailed crack branching
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and intersection observed in the experiments, which is caused by the local inhomogenity,
is not represented in the numerical model. An explicit representation of the cement matrix
and aggregates could model such a crack development, but this was not the aim of this
work, since the global cracking behavior can be represented sufficient accurate with a

homogenized concrete model. In Fig. 5.10 the initial and transformed random fields are

compared, which agree very well.
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Figure 5.10. Initial and final random field sample and crack development with increasing load
compared to experimental crack patterns

Finally the experimental and numerical load displacement curves have been statisti-
cally analyzed and the obtained mean values and standard deviations of the mid deflection
depending on the external load are given in Fig. 5.11. The calculated curves of the mean

values of all numerical simulations are almost similar and show good agreement with the
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experimental mean deflections. The experimental standard deviations are in between the
numerical values, but the hump in the numerical curves between 4 and 85N was not ob-
tained in the experimental function. The numerical cases with [, = 0.5m and Vi = 0.3
and with [z = 2.1m and Vg = 0.25 led to almost the same curves for the standard
deviation, which is a very interesting result.

The deviation of the numerical results from the experimental curve may be caused by
the fact, that the fracture parameters and/or the standard deviations of these quantities have
been overestimated. Another possibility may be, that the fluctuation inside of a single
random field sample is smaller than assumed. In this case the crack development, which
is asymmetric at the beginning of the numerical simulations, would be almost symmetric
and the standard deviation would be decreased. Nevertheless the numerical results show,
that the developed stochastic crack growth algorithm is an useful method for the modeling

of such problems.
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Figure 5.11. Experimental and numerical mean value and standard deviation of the mid deflection
using different correlation lengths [ and coefficients of variation (COV)
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Chapter 6
Conclusions

The research activities in the frame work of this dissertation attempted to develop an auto-
matic algorithm for the numerical simulation of multiple cracking in reinforced concrete
structures. It was intended that this method be applicable to systems in the dimension of
structural members. For this purpose three main points had to be solved in this work. The
first problem was the flexible representation of crack discontinuities. The second one was
the stable modeling of the concrete fracture process which should be almost independent
of the discretization. The consideration of fluctuations in the material properties, which
are higher for concrete than for other materials, was the third point.

The representation of the growing crack discontinuities was achieved by using an
adaptively coupled discretization, where the regions without crack growth were modeled
by standard finite elements and the regions where cracks develop were discretized using
meshless interpolation schemes. For this purpose two different meshless methods were
improved and adapted. The first method is the Element-free Galerkin Method, which
uses the Moving Least Squares approach. The MLS method is not a true interpolation
and the imposition of the essential boundary conditions and the coupling with finite el-
ements could be realized in existing studies only with additional effort. In this work a
new weighting function type was introduced, which leads to an interpolation with fulfill-
ment of the interpolation property at very high accuracy. In the numerical examples it
could by shown that by using this weighting type, the results are relatively independent of
the choice of the nodal influence domain and of an applied distortion of discretization in
strong contrast to the standard weighting types. The interpolation was further improved
by a special boundary blending, which leads to a linear precision along the boundaries.
Thus a compatible coupling with finite elements could by achieved.

The second meshless interpolation scheme was the Natural Neighbor Interpolation,
which is based on a Voronoi diagram of the nodal domain. This method was adapted
to non-convex domains in order to enable its application in crack growth simulations.
In the implemented two-dimensional algorithm this interpolation method was more ef-

ficient than the MLS scheme, due to the smaller number of influencing nodes and the
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simpler shape function computation. But on the other hand this method requires an adap-
tation of the nodal configuration with corresponding Voronoi diagram in a crack growth
simulation. In the realized 2D algorithm this did not lead to any remarkable efficiency de-
crease, but the extension for the three-dimensional case is much more complex than using
the improved MLS interpolation where the moving discontinuity does not require such
an adaptation. Nevertheless the developed improvements for both interpolation schemes
present an important step in the research dealing with meshless methods.

For the representation of the cracking behavior of concrete on the macro scale an
existing improved cohesive crack model was adapted for use in an automatic simula-
tion. This model can reproduce the fracture process under mixed-mode loading very
well, which leads to significantly better predictions in the numerical examples than the
standard model. In this work the integration of the improved model in an energy-based
criterion for crack growth was achieved for the first time. This criterion gives very stable
results for coarse discretization levels due to the evaluation of energy quantities. For the
determination of the crack direction a combined criterion using nonlocal stress and energy
quantities was developed. It could be shown that this criterion leads to good results, but
due to the used stress values the discretization has some requirements. The development
of an efficient pure energy-based criterion for the crack direction is a field for further
research.

The application of the developed crack growth algorithm in combination with a stan-
dard macroscopic law, describing the bond behavior between reinforcement and concrete,
led to very good results for reinforced concrete systems, which was shown in the numeri-
cal examples. Thus an improvement of this model was not intended.

The random field concept was used in order to model the fluctuations of the con-
crete properties. Thus an application to the coupled finite element-meshless discretization
could by realized directly using the interpolation point method for an isotropic homoge-
nous random field. The standard single parameter concept was extended to an arbitrary
number of correlated material parameters assuming the pointwise correlation to be con-
stant. The modeling of spatial fluctuating correlation coefficients was not necessary in the
opinion of the author. For the implementation of the probabilistic model the distribution
types and the coefficients of variation of these parameters were assumed to be uniform.
This assumption allowed for a simple extension of the single parameter concept. The con-
sideration of varying distribution types and coefficients of variation was discussed. For
the material parameters a lognormal distribution type was assumed, which led to good
agreement with the measured data in the final example. However, the stochastic ran-
dom field parameters such as the coefficient of variation and the correlation length were
chosen without experimental background due to missing data. For this reason an exper-
imental program was initialized in the final period of the Collaborative Research Center

at the Bauhaus-University, where the initial distribution of Young’s modulus and the cor-
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responding crack development shall be measured. These data might lead to an improved
estimation of the stochastic parameters.

The presented algorithm gives a good basis for the reliability analysis of reinforced
concrete structures. Due to the applied reduction of the number of random variables, it
is possible to apply approximation techniques such as the response surface method or
neural networks. For systems of larger size such an approximation seems to be essential.
Viscous effects in the constitutive laws and crack models might be considered in order
to use dynamic measurements as advance information in such an analysis. Furthermore
the modeling of lifetime influencing phenomena such as corrosion of the reinforcement
could be an important enhancement of the numerical analysis. This might be achieved
with minor effort, since the discrete crack simulation can provide the crack openings and

other required information directly.
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Appendix A

A.1 Parallel computing using OpenMP

OpenMP (OpenMP Architecture Review Board 2002) is a parallelization environment
for shared memory systems with a very easy application. It can be used for Fortran, C
and C++. In this work several time consuming loops were accelerated with this tool. If
the operation for one loop member works completely independent of each other, which
means, that only corresponding variables or arrays are modified during the calculation,
the parallel construct given in Fig. A.1 needs to be placed in front of the loop. This
principle is used in this work for the assembling of the finite element stiffness matrices
and internal force vectors, which are stored in the element structure, and the calculation
of the meshless shape functions at the integration points. The loop counter, an error
identifier and other controlling variables are defined as shared variables for all processors.
Private variables are these, which have to be a local copy for each processor. The dynamic
schedule type enables OpenMP to choose the optimal processor usage.

During the meshless calculations the domain is discretized with a few meshless zones,
each containing a large number of nodes and integration cells. The resulting objects are
stored in compact form for each meshless zone. This means that the parallelization of
the loop over the integration cells can not be done independently as for finite elements.
The problem can be solved by defining a critical region as shown in Fig. A.2, where the
local stiffness matrix of one integration cell is transferred onto the stiffness matrix of the

meshless zone, so that only one processor executes this part in a given time.

#pragma omp parallel shared(counter, error, ...) private(...)
#pragma omp for schedule(dynamic,1) nowait
for(counter = 0; counter < number; counter + )

{

/* do computation for single loop member */

Figure A.1. OpenMP parallelized simple loop
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#pragma omp parallel shared(counter, error, ...) private...)
#pragma omp for schedule(dynamic,1) nowait
for(counter = 0; counter < number; counter +-)

{

/* do computation for single loop member */

#pragma omp critical

{

/* transfer computed data to global array */

Figure A.2. OpenMP parallelized loop with critical region

A.2 Isoparametric finite interface elements

In (Mehlhorn and Kolleger 1995) the concept of isoparametric finite interface elements is
described for the general three-dimensional case for elements of arbitrary order. In this
work only linear two-dimensional elements have been used, which will be presented here.

In Fig. A.3 the implemented four-node element is shown. As input values for the interface

Figure A.3. Four-node isoparametric interface element with global and local coordinates and two
Gaussian integration points

traction-separation law the relative displacements in local coordinates are calculated as

follows
Aulocal _ TBglobalﬁe’ (AI)

where 1. is the nodal displacement vector and T is the transformation matrix from global

to local coordinates

T:[tr nsr. (A2)
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A.2. Isoparametric finite interface elements 177

The vector n, is the normal on the interface surface and t, is the tangential vector in-
dicated in Fig. A.3. The matrix B9 characterizes the correlation between relative

displacements in global coordinates and nodal displacements
Auglobal — Bglobalﬁe’ (A3)
and 1s given for the presented element as

1
global __ ~
B? =

2

-1+ 0 —1—r 0 1+4+7r 0 1—7r 0
0 —1+r 0 —1—-r 0 14+7r 0 1—r
(A.4)

The stresses in the interface surface are defined as a function of the relative displacements

T
local local local
o =0 Au = [ or ON } ,
( ) (A.5)

o-_local — D (Aulocal) Aulocal7

where D is tangential material stiffness matrix. In global coordinates we obtain
- T
O.QlObal _ TTo.local (Aulocal) _ |: or 0y } ) (A6)

This leads to the following equations for the element stiffness matrix and internal force

vector in global coordinates

~ T ~
Kglobal(ﬁe) — / [TBglobal] D(Aulocal)TB‘gZObaldA,
| r . (A.7)
f;nt,global(ﬁe) — / [TBglobal] alocal(Aulocal)dA‘
A

The numerical integration is carried out similarly to standard finite elements as presented

in section 2.2.4 by using two Gauss integration points on the interface surface.
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Appendix B

B.1 MLS weighting function derivatives

B.1.1 Gaussian weighting function

The weighting function is given as

wg(s) = -4 - . (B.1)
0 s>1

The first and second derivative for s < 1 can be obtained as

Jwa(s) e o 25
Os __1_€—a—12 a2’
2 (B.2)
Pwea(s) e o 2 4s?
02%s __1—6_«1_12 . (?_¥>’

which leads to the following values of the derivatives at the boundary of the influence

domain

Owg(s =1;a =0.4)

~ —0.024
0s ’
0%s T

B.1.2 Cubic weighting function

The cubic weighting function reads

1-3s24+28% s <1
we(s) = . , . (B.4)
s >
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The derivatives for s < 1 can be determined easily as

Qwos) _ s 4 6s2,
0s

D*we(s)
W = —6 + 128,

which results in the values on the influence boundary given in Eq. (B.6)
Jwe(s =1)

0s
Pwe(s=1)

0%s

0,
= 6.

B.1.3 Cubic spline weighting function

The derivatives of the cubic spline weighting function

1 —6s%+ 653 s <

N [—=

wg(s) 2—06s+06s?—2s° 3 <s<1

0 s>1

can be given for s < 1 as

dws(s) —12s + 18s?
—6 + 125 — 65>

The values for s = 1 and s = 0.5 can be derived as
Jwg(s = 1)
O0s

Jws(s = 0.5)
Os

_0 DPwg(s=1) _
’ ?s
D?wg(s = 0.5)

B.1.4 Regularized weighting function
The regularized weighting function is defined as

an(s) = I =29
e2—(1+ 6)_2

e 1.

B. Appendix

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)
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The first and second derivatives for s < 1 can be derived as

Dp(s)  —ds(s>+e)”
0s e2—(1+¢°
(B.11)
Pig(s) 2482 (P +e) ' —4(s2 )
2 - )
0d e2— (1467
and the values on the influence boundary can be approximated as
812)}%(8 = 1) ~ —462
Os (B.12)
(92@}3(8 = 1) ~ 2062
0?%s ~ '
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B.2 Interpolation error of regularized weighting function
Eq. (3.24) and Eq. (3.25) lead to the following formulation

2 -2 -2
wr(s:) = (si+€) "—(1+e) (B.13)

Zm: [(sj2 -+ 6)_2 -1+ e)_2]

J=1

If we assume
el 2. >e (B.14)

we can approximate

Z[s +e€) (1+6)_2]%6_2—1+ Z [s74—1]
o J=1;5#i (B.15)

by considering the fact, that the distance s; for the support point itself is equal to zero.
Under consideration of

(s34 €) 7 < (S ) (B.16)
and of Eq. (B.15) we obtain for the maximum error of the weighting function

0 05) = e & [ (0 +6) = (1)) €
(B.17)

~ (s;ﬁn — 1) €2

Using the simpler formulation from Eq. (3.25) we obtain under considering Eq. (B.15)
and Eq. (B.16) the same expression as given in Eq. (B.17)

@i (X7) = 045,00 (S — 1) - € (B.18)
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Appendix C

C.1 Implementation of mixed-mode cohesive crack model

C.1.1 Closest Point Projection Algorithm

In this section the adaptation of the General Closest Point Projection algorithm (Simo and
Hughes 1998) for the improved mixed-mode cohesive crack model presented in section
4.2.2 is derived according to (Schrader 2005).

Based on the decomposition of the relative displacements in the crack surface in elastic
and plastic quantities the following incremental formulation can be made

Au” | = Au” + fAu (C.1)

n+1-*

The increment of the plastic displacement difference can be formulated by means of the

flow direction, specified by the derivatives of the plastic potential, and the plastic multi-

plier v

SAuT,, = Mgg::. (C.2)
The global residue can be defined as

R, = —Au,, + Au? + 57% =0, (C.3)
and the yield criterion is given as

Foi1 = F(0,41) =0, (C4)
with

0,11 =C: [Aunﬂ — Auffﬂ] : (C.5)

During the local iteration Au,; remains constant, thus in the k-th iteration step the
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following relation is valid
er(®) _
sAau”) = —c': ool (C.6)
This can be used to linearize Eq. (C.3) and Eq. (C.4)

aan—i-l

k = (k k)

thzl + |::"EH)'1:| 507(1+1 + 52 n+1 e =0,

a ( ) n+1 (C.7)
F
(k) nt+l ¢ (k)
Foo + oy 00,11 =0,
where the Hessian matrix can be obtained as

=0 — |c 4 PQuh : C.8
Tl T T 00,41)? (aan+1)2 ( )

Substitution of 502’21 in the second part of Eq. (C.7) reads

aF(k) a@(k)
k n —~(k k k n
Fl 5 i B PR -t o : = 0. (C.9)

Solving Eq. (C.9) with respect to 527,(1]21 leads to the following relation

oF™®
k n =( k)
#), — oott L n+1 R7(1+1

n+1 ao_
528 = ntl (C.10)
n k
aFr(LJr)l : E(k) Qn+1
aO-n-i-l mr aan+1

Eq. (C.10) can be used for the update of the plastic relative displacements, which are the

iteration variables

or(®) =) ® o m 0QWh
sAuT =c 2R IRW, 46 s (C.11)
On+1

Then the complete algorithm can be formulated, which is given in Table C.1.1. The
required derivatives of the yield criterion and the plastic potential can be simply derived

and are given in (Schrader 2005).
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1. Initialize: ~ Au?, = Au” WY —we o 59 =0

2. Calculate actual stresses, fracture work, internal parameters and yield criterion:

k er(k)
U;L =C:[Au — Au, ]

gﬁu : [A ffﬂ — Au Cr] O-J(\I/C,)n—i-l >0
Wi = o (A, — A, ) (1 - —0557)”(;)1 tang ) O\t <0
0T n+1
werl) = wer 4 swenty
o = X0, W) el = eleo, W)
Fh = Foyhxith i)
IF < TOL AND k < 1 THEN: GOTO 6.
norm
Rgﬁl = Au, — Aufzrfrl) n+18 @n+1
IF \/(ﬁ)Z + (%)2 < TOL THEN: GOTO 6.

3. Calculate increment of plastic multiplier:
% — 9, R =k Rk
n+1 n+1 . n+l . n+1
(k
9, F" 2% 9,Q%),

k
52%(%)1 =

:7(’L+1 = |C 1+ 57n+1 a2Qn+li|

4. Calculate increments of plastic relative displacement:

cr(k) -—
6A n+1 - C ! e n+1 : |:R+ 52/}%—0—18 Qn—i—l

5. Actualize the iteration unknowns:

cr(k+1) cr( cr(F)
A n+1 - A +1 +5A n+1

(k+1
5%;1 ) 5’7n+1 + 527n+1

SET k = k + 1 GOTO 2.

CT’(k+1)

. cr o cr(k+1)
6. End: Au; = Auj = Wity

n

Table C.1. General Closest Point Projection algorithm for mixed-mode cohesive crack model
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Due to the different dimensions of the yield criterion F' and the residues R, which
are for practical material parameters about 10°N/m? for F' and about 10~*m for R, the

normalization terms Fj,m, and Ryom have been introduced in (Schrader 2005) as

Fnorm =V Cg + X(z) tan® gb (CIZ)

and
I
261
Ruoms = min4 " (C.13)
o Ua ’
f

Co

and a dimensionless iteration criterion is obtained

F\? IRJ)?
me) - (IRY o, .14

C.1.2 Elasto-plastic tangent modulus

By using a rate formulation and index notation (7, j, k, [, r, s = 1, 2) the following equa-

tions can be written for the elastic law
6; = Cy [Nty — AGST] (C.15)

and for the flow rule

. 0Q

AU = A —.
u‘] fy(‘?aj

(C.16)

The rate of the yield criterion can be formulated according to (Carol et al. 1997) as

: F
F= a—ak — H7, (C.17)
8ok

where H was introduced as softening parameter, which reads

_a_F—a_Fapi 8Wcra@ T_[ c
oy o owe 9Au 9o, P T X

)" (C.18)

The rate of the plastic multiplier v can by expressed using Eq. (C.17) as

1 [OF

. _1JoF 1
i = [ ], €19
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where F* = 0 is valid for the plastic state of the material. By substituting this relation and
Eq. (C.15) in Eq. (C.19) we obtain

1 OF

= Ea_aicij [Ad; — A5 (C.20)

gl

This can be further modified using Eq. (C.16) for the rate of the plastic relative displace-

ments as follows

OF )
;y B 8_UZC”A%
n oF . 0Q°
H - —_v
+ (%k Ckl 80’[

(C.21)

By substituting Eq. (C.21) and Eq. (C.16) in Eq. (C.15) the stresses can be expressed in
terms of the total relative displacements

9QoF
o, 0o,
oF . 0Q

H+ Z—Cy==
+80'k kladl

G
é’i — CUAU] —

Ay, (C.22)

which leads to the elasto-plastic material stiffness matrix

80 OF
Sﬁ_crsa_arch
9F _ 00

H+ —Cuy=—
+80'k klaO'l

&

Dy = Cyy (C.23)

Due to the non-associated flow rule the obtained material stiffness matrix is asymmetric.
In order to obtain a symmetric global stiffness matrix the material stiffness matrix is
symmetrized in this work in the following form

sym __
DY =

(Dij + Dji) - (C.24)

N | —

This leads to a slower convergence, due to the inconsistent linearization. But the appli-
cation of the line search method increases the convergence for this case. Due to the fact,
that the material stiffness matrix is only inconsistent for the interface elements of the co-
hesive cracks, while the base material remains linear elastic with consistently linearized
stiffness, the overall global convergence is still fast enough for the investigated examples.

Another possibility is to use the asymmetric but consistent matrix and a special sparse
matrix solver. The MUMPS solver (Amestoy et al. 2003) mentioned in section 2.3.1
can be used for this purpose, but the disadvantage of this proceeding is the necessity to
assemble and store the complete global stiffness matrix, which needs more computational

time and memory than using only one half of the symmetric matrix.
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C.2 Formulation of softening curves in terms of 1V

C.2.1 Linear softening curve

The linear uniaxial softening curve for the actual tensile strength x in terms of the plastic
crack opening displacement Au%; can be formulated for Auf < Auf,. according to
Fig. 4.16 as

AUCT
X(Auy) = Xxo (1 - N) : (C.25)

with Augj, = 2G%/xo. This leads to the following formulation for 1W<

W (Auy) = /AU% X(Auy)du = xoAufy (1 — A;Lg?(o) . (C.26)
0 f
The inverse function of this formulation reads
Ausz ey = 208 <1 + 1 W) , (C.27)
Xo ch

where the sign can only be negative since Auy < 2G§ /xo- Insertion of Eq. (C.27) in
Eq. (C.25) leads to the final expression

WCT‘
X(W) = xoy 1= &1 (C.28)
7

C.2.2 General bilinear softening curve

For the general bilinear case, shown in Fig. 4.16, and for Au§, < Au$;, the uniaxial

softening curve in terms of Au§ reads
X0 — X1 cr cr cr
X0 — AT Aufy Augy < Aufy,
or N1
x(Auy) = Au — Aue (C.29)
Xl—uNc Bl Auf > Aufy
Aug,. — Augy
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The work spent on the fracture process is than given as

( Augy

/ X (Auy)du Auf < Aufy
0

W () = o

Wi + / X(Auy)du Aufy > Aufyy

cr
Augry

(

cr Xo — X1 cr cr cr

Aufy (XO YN AuN> Aufy < Augy

N1

N Au, — Aug/2

! Aug,. — Aug,
—Auc X1 Au%c B Au%1/2
\ M Aug, - Aug,

=\ W+ Aug

Aug > Aufyy
with
cr AU%l cr Xl cr cr
Wi = / X(Aug)du = T(AUNC — Aug,).
0

The inverse function for W< < W{" reads

Aucr _
AuGwery = X0ZINL [ g ] gpper X0 Z XL
Xo — X1 XoAugy,

and for W& < W < GL we obtain
1 f

2 Wer — Wi

Auy (W) = Aufy, £ (Aufy, — Auly l— —— .

Again negative signs lead together with Eq. (C.29) to the final formulation

X0 — X1
Xoy /1 — 2W‘”’T Wwer < Wer
\/ AUN1X% !

2 WCT_WC'I‘
xl\/l - W <WT <G

. cr cr
X1 Au§,. — Auf,

X(We) =

(C.30)

(C.31)

(C.32)

(C.33)

(C.34)
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C.3 Cohesive energy rate for linear interface elements

Figure C.1. Coplanar Virtual Crack Extension for a linear isoparametric interface element with
two Gaussian integration points

The interface at a cohesive crack tip has two merged nodes (2 and 3 in Fig. C.1). In
appendix A.2 it was defined, that the displacement differences in the interface surface

given in local r, s-coordinates read
Au' = TBY™'q,. (C.35)
The internal forces in global coordinates are obtained as
, - T
femt,global(ﬁe) — / [TBglobal] a_local(Aulocal)d‘A7 (C36)
A
which leads to the following formulation using two Gauss integration points

2 - T L.t
fint,global ~e — [TBglobal] local A local ; C.37
o) = 3 [TBEO] ot Aty (€37)
where w; i1s the weighting factor of the integration points and ¢ is the thickness of the
element. The actual length of the element can be defined as the sum of initial length and

element extension

L=1Ly+0L, (C.38)
where
A=1L-t
=Log-t+ 0L -t (C.39)
= Ag +0A.

If the length of the element is changed by keeping the local coordinate axis in -
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direction constant, which is valid if the merged node in Fig. C.1 is shifted in local tan-
gential direction equivalent to the coplanar VCE-technique, the transformation matrix T

local

remains unchanged. Thus the local displacement differences Au”“* and even the local
stresses ' ( Au'*!) are unchanged as well, if the nodal displacement values are kept
constant, since B#°*? depends only on the local r coordinate, which is taken with fixed
values for the Gauss integration points.

Insertion of Eq. (C.39) in Eq. (C.37) leads to the change of the internal forces for a

element extension of 6 L

2

A 0A ~ T
5fént’910bal(ﬁe) — 7 Z |:TBglobal:| A JZOCGZ(AU?CQZ)U}Z‘. (C40)
i=1 !

The required derivative reads

int,global (= 2
afe tgaA (ue) _ %Z [TBglobal}éolocal(Auéocal)wi
i=1 z (C.41)
fént,global (ﬁe)

L-t
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Zusammenfassung

Einfithrung

Numerische Simulationen haben sich in den letzten Jahrzehnten zu einer wichtigen Alter-
native zu experimentellen Untersuchungen entwickelt. Die Finite Elemente Methode
stellt heutzutage ein etabliertes Werkzeug auf dem Gebiet des Bauingenieurwesens und
des Maschinenbaus dar. Dabei wird die Entwicklung numerischer Modelle zur Beschrei-
bung des Schidigungsverhaltens in mechanischen Systemen hauptsédchlich im akademi-
schen Umfeld vorangetrieben.

In den vergangenen Jahren wurden eine Vielzahl von Verfahren zur expliziten Ab-
bildung lokalisierter Schidigung entwickelt. Diese Verfahren erlauben eine deutliche
Verbesserung der Aussagefdhigkeit insbesondere in Bereichen, in denen Rissbildung die
Tragfdhigkeit negativ beeinflusst. Als wichtige Vertreter solcher Risssimulationsverfahren
sind erweiterte Finite Elemente Konzepte sowie netzfreie Verfahren zu nennen. Netzfreie
Ansitze erlauben eine einfache Anpassung der Diskretisierung an wachsende Rissgeo-
metrien und konnen im Gegensatz zur Finite Elemente Methode kontinuierliche Span-
nungsbilder reproduzieren. Dies erlaubt in der Regel relativ grobe Diskretisierungsstufen
um gute numerische Ergebnisse zu erzielen. Jedoch besitzen bestehende netzfreie Ver-
fahren verschiedene Nachteile, wie die Nichteinhaltung der Randbedingungen sowie den
erhohten numerischen Aufwand, die die Anwendung erschweren.

Die Zielsetzung dieser Arbeit bestand darin, einen automatischen Algorithmus zur
effizienten Simulation der Rissentwicklung in Beton- und Stahlbetontragwerksteilen zu
entwickeln. Zu diesem Zweck sollten netzfreie Verfahren in Kopplung mit finiten Ele-
menten zum Einsatz kommen, um die Vorteile beider Verfahren auszunutzen. Der Ver-
sagensmechanismus des Betons sollte unter Beriicksichtigung des komplexen Versagens
bei kombinierter Rissdffnung und -gleitung auf der Makroebene modelliert werden. Dieser
gemischte Zustand sollte weiterhin in einem Risskriterium abgebildet werden, das es er-
laubt, mit relativ geringer Knotendichte im Bereich des Risses zu arbeiten. Als weiterer
Punkt der Arbeit sollten die Schwankungen der Betoneigenschaften hervorgerufen durch
die Inhomogenitidt des Materials sowie variierende Einbaubedingungen innerhalb eines

probabilistischen Modells abgebildet werden.
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Mechanische Grundlagen

Ausgehend von den kinematischen Formulierungen des Kontinuums werden die starke
Form des Gleichgewichts sowie die konstitutiven Zusammenhénge eingefiihrt. Darauf
aufbauend wird die Finite Elemente Methode als diskretisierte Form des schwachen Gleich-
gewichts sowie deren Erweiterung fiir nichtlineare Materialformulierungen vorgestellt.
Zur Losung des globalen Gleichungssystems unter Beriicksichtigung linearen bzw.
nichtlinearen Materialverhaltens sind eine Vielzahl von Verfahren entwickelt worden. In
dieser Arbeit werden wichtige Vertreter, die im Rahmen des vorgestellten Algorithmus
angewendet werden, detailiert erldutert. Dabei werden anhand eines Beispiels die deut-

lichen Effizienzunterschiede verschiedener Gleichungsloser aufgezeigt.

Netzfreie Verfahren

Netzfreie Verfahren weisen entscheidende Vorteile gegeniiber herkdmmlichen Finite El-
emente Formulierungen auf. Dazu zdhlen hauptsédchlich eine Interpolation, die zu kon-
tinuierlichen Spannungen fiihrt, sowie eine einfache Abbildung verdnderlicher Struktur-
rander, wie z.B. Risse. Jedoch ist der Einsatz netzfreier Verfahren aufgrund signifikan-
ter Probleme deutlich erschwert. Zu diesen Problemen zdhlen der erhdhte numerische
Aufwand zur Berechnung der Formfunktionen sowie die meist nicht eingehaltene Inter-
polationsbedingung, was das Aufbringen der Randbedingungen verkompliziert.

In der vorliegenden Arbeit wird aufgrund des erhohten numerischen Aufwandes netz-
freier Verfahren ein adaptives Vorgehen angewendet, bei dem nur die Bereiche mit Riss-
bildung mittels netzfreier Zonen diskretisiert werden und intakte Bereiche weiterhin mit
Standardelementen vernetzt bleiben. Dieses Vorgehen erfordert jedoch eine kompatible
Kopplung beider Diskretisierungsverfahren, was mit verfiigbaren netzfreien Ansitzen nur
durch erhohten numerischen Aufwand zu bewiltigen ist. Als ein Schwerpunkt dieser Ar-
beit werden zwei netzfreie Verfahren fiir diesen Zweck so verbessert, dass eine direkte
Kopplung ohne erheblichen Mehraufwand ermoglicht wird. Fiir das gebriauchliche Ele-
mentfreie Galerkinverfahren, das die Moving Least Squares Interpolation verwendet, wird
eine neue Wichtungsfunktion vorgestellt, die im Gegensatz zu bisher verfiigbaren Funk-
tionstypen zur Einhaltung der Interpolationseigenschaften mit sehr hoher Genauigkeit
filhrt. Somit kénnen Randbedingungen direkt und ohne zusitzlichen Aufwand aufge-
bracht werden. Weiterhin fiihrt diese neue Wichtungsfunktion zu einer verbesserten Sta-
bilitdt der Interpolation, d.h. die GroBe des Knoteneinflussbereichs, der als kiinstlicher
Parameter eingefiihrt wird, hat nun einen relativ geringen Einfluss auf die numerischen
Ergebnisse.

Als zweites netzfreies Verfahren wird die Natural Neighbor Interpolation fiir nicht-

konvexe Bereiche, die zwangsldufig durch Risswachstum entstehen, erweitert. Dieses
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Verfahren erfiillt die Interpolationsbedingungen automatisch und kann somit direkt in
einer gekoppelten Diskretisierung angewendet werden. Die Berechnung der Formfunk-
tionen ist fiir die untersuchten Félle deutlich weniger aufwendig als bei der Moving
Least Squares Interpolation, allerdings beruht die Natural Neighbor Interpolation auf
einer Voronoizerlegung des Knotengebietes, welche bei einem wachsenden Riss aktu-
alisiert werden muss. Diese Aktualisierung ist bei der Moving Least Squares Interpo-
lation nicht notwendig. Fiir zweidimensionale Simulationen, wie sie in dieser Arbeit
vorgenommen werden, wird diese Aktualisierung durch einen schnellen, lokal begrenz-
ten Algorithmus durchgefiihrt, der kaum Einflul auf die globale Rechenzeit besitzt. Fiir
die Erweiterung auf dreidimensionale Berechnungen scheint jedoch die Moving Least

Squares Interpolation besser geeignet.

Diskrete Risssimulation

Zur Abbildung des Rissverhaltens in Beton hat sich innerhalb einer Beschreibung auf der
Makroebene das fiktive Rissmodell weitgehend durchgesetzt. Dabei werden die entste-
henden Mikrorisse einer sogenannten Prozesszone in einem fiktiven Riss mit Spannungs-
iibertragung iiber die Rissufer zusammengefasst. In diesem Modell geht man jedoch nur
von einer Kraftlibertragung senkrecht zur Rissflache aus. Anteile infolge Rissgleitung,
die durch die Verzahnung der Rissufer hervorgerufen werden, kénnen in diesem Mo-
dell nicht abgebildet werden. Aus diesem Grund wird in dieser Arbeit ein bestehendes,
verbessertes Modell an die Anforderungen der automatischen Risssimulation angepasst.
Dieses Modell kann die Degradation der Rissoberflache durch kombinierte Risso6ffnung
und -gleitung wiedergeben. Infolge der erweiterten Modellierung der Vorginge in der fik-
tiven Rissfliche konnen Rissgeometrien sowie globale Groflen wie Last-Verschiebungs-
beziehungen fiir solche kombinierten Fille deutlich besser abgebildet werden als mit dem
Standardmodell. Dies wird anhand verschiedener Beispiele verifiziert.

Um iiber Rissentstehung und -wachstum zu entscheiden, ist die Auswertung eines
Risskriteriums notwendig. Dabei wird in der Regel das Rankinekriterium auf Basis der
Hauptspannungen verwendet. Aufgrund der verwendeten lokalen Spannungsgrof3en sind
die berechneten Ergebnisse relativ stark von der verwendeten Diskretisierung abhéngig.
Daher wird in dieser Arbeit ein Energiekriterium mit virtueller Risserweiterung angewen-
det. Das Prinzip der virtuellen Risserweiterung wurde urspriinglich im Zusammenhang
mit der linearen Bruchmechanik zur Simulation von Risswachstum in Metallen vorgestellt.
Aus diesem Grund werden in dieser Arbeit die grundlegenden Formulierungen der lin-
earen Bruchmechanik aufgefiihrt. Die Erweiterung des Konzepts der virtuellen Risser-
weiterung flir kohdsive Risse in Beton wurde bisher nur fiir das standardméBige fiktive
Rissmodell umgesetzt, wodurch bei der Berechnung gemischten Versagens den dulleren

Energieanteilen, die zu einer Schubverformung der Rissoberflichen flihren, keine kohé-
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siven Energieanteile gegeniiberstehen. Dies kann bei kombinierter Beanspruchung zu
unkontrolliertem Risswachstum fiihren. In dieser Arbeit wird erstmals ein vollstdndiger
Ansatz fiir dieses Konzept vorgestellt, der durch Kombination des verbesserten fiktiven
Rissmodells mit dem energiebasierten Risskriterium Normal- und Schubanteile auf der
Einwirkungs- wie auf der Widerstandsseite beriicksichtigt.

Um die Richtung des wachsenden Risses festzulegen, wird hier ein kombiniertes Kri-
terium verwendet. Dabei wird die Rissrichtung unter Verwendung der linearen Bruch-
mechanik aus den Anteilen der Energiefreisetzungsrate und aus der Richtung der maxi-
malen Hauptspannung der Rissspitze bestimmt. Dieses Richtungskriterium fiihrt zu rea-

listischen Rissgeometrien, was anhand mehrerer numerischer Beispiele gezeigt wird.

Modellierung von Unsicherheiten

In dieser Arbeit werden die Schwankungen der Betoneigenschaften in einem stochasti-
schen Modell unter Verwendung von Zufallsfeldern modelliert. Diese Zufallsfelder repra-
sentieren die rdumliche Verteilung einer stochastischen GrofBle. Dabei geht man in der
Regel davon aus, dass diese Verteilung nur durch geometrische Eigenschaften beeinflusst
wird. Um eine Verteilung mehrerer Materialparameter abzubilden, bei der eine Korre-
lation dieser Grofen untereinander modelliert werden kann, wird hier das gebrauchliche
Ein-Parameter Konzept des Zufallsfeldes durch Definition einer konstanten Parameterko-
rrelationsmatrix erweitert. Somit 148t sich eine beliebige Anzahl von korrelierten Materi-
alparametern modellieren.

Das probabilistische Modell wird im Rahmen dieser Arbeit fiir die statistische Bewer-
tung der Strukturantwort unter Verwendung des entwickelten Algorithmus zur Risssimu-
lation verwendet. Eine Anwendung im Rahmen einer Zuverléssigkeitsanalyse wird nicht
vorgenommen ist jedoch direkt mdglich. Zur Ermittlung der probabilistischen Struktur-
antwort kommen hier das Monte Carlo Simulationsverfahren sowie die Latin Hypercube
Methode zu Einsatz. Das Latin Hypercube Simulationsverfahren ist in der Lage die statis-
tischen Eigenschaften einer Antwortgréf3e mit relativ wenig Realisationen zu bestimmen,
wodurch der numerische Aufwand einer stochastischen Analyse erheblich reduziert wird.

Dies wird anhand verschiedener Beispiele gezeigt.

Zusammmenfassung

In dieser Arbeit wurde ein automatischer Algorithmus zur Simulation diskreten Risswachs-
tums in Beton- und Stahlbetonkonstruktionen vorgestellt. Dieser Algorithmus kann auf-
grund der effizienten Gestaltung fiir stochastische Analysen auf der Bauteilebene angewen-
det werden. Die dabei umgesetzte adaptive Kopplung netzfreier Verfahren mit der Metho-

de der Finiten Elemente stellt eine sinnvolle Vorgehensweise speziell fiir die Simulation
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von Systemen mit mehrfacher Rissausbildung dar. Einige Probleme der verwendeten
netzfreien Verfahren konnten im Rahmen dieser Arbeit gelost werden, wodurch die An-
wendbarkeit deutlich verbessert wurde.

Die Kopplung eines kombinierten fiktiven Rissmodells und eines energiebasierten
Kriteriums flir Rissfortschritt fithrte zu einer erheblichen Steigerung der Qualitit der prog-
nostizierten Rissgeometrien und globalen Groflen bei gemischter Beanspruchung. Dabei
konnte nachgewiesen werden, dass auch mit relativ groben Diskretisierungsstufen eine
gute Aussagefahigkeit moglich ist.

Durch das vorgestellte Konzept zur Modellierung einer beliebigen Anzahl von ko-
rellierten Materialparameter wurde eine flexible Mdglichkeit zur stochastischen Ana-
lyse geschaffen. Infolge der reduzierten Anzahl der verwendeten Zufallsvariablen kann
die Anwendung von Approximationsverfahren im Rahmen einer Zuverldssigkeitsana-
lyse unkompliziert erfolgen. Die stochastischen Kennwerte wurden jedoch innerhalb der
durchgefiihrten Analysen relativ willkiirlich bestimmt. Eine experimentelle Ermittlung
der Parameterverteilungen und die Identifikation zugehoriger Versagensverlaufe stellen

eine notwendige Aufgabe flir weitere Forschungsaktivitdten dar.
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