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The Use of Activity Chain Models to Analyse Stochastic Travel Demand 
 
1. Introduction 
Activity chain analysis consists of spatial location and activity type participation of an 
individual throughout 24-hr period. These chains consist of activity patterns, which can be 
defined as an ordered sequence of activities participated during the day by members of a 
household. The three-dimensional (time, space, activity type) unlike mono-dimensional (trip) 
approach not only better defines human movements in time / space continuum but it also 
allows the use of stochastic models to effectively capture the problematic activity chains 
which deviate from the dominant home - work - home chain. This deviation is largely due to 
high degree of temporal and spatial substitutability of non-work activities. It is also caused by 
flexibility and hence complexity of the travel options available to non-work travellers. These 
options typically include the frequency, destinations and time of departure, among other 
factors. By considering activity engagement decisions, which are made sequentially, 
conditioned only on the 1−r  previous destinations in the activity chain but not on the 
destinations still ahead a stochastic model can be formulated to describe travel demand. The 
model used here treats activity participation frequency (and hence travel frequency), 
destination choice, travel time to destination and multi-destination of activities within a 
unified random stochastic framework. Since the model is based on activities, the next chapter 
gives an outline of characteristics of activity types. 

2. Characteristics of activity types 
Depending on the location of activity participation, activities can be divided into home and 
out-of-home activities. While the former incurs no spatial displacement throughout its 
duration the latter is characterised by space / time continua, which corresponds to spatial 
displacement during travel. Figure 1 shows how out-of-home activities differ from each other. 

3. Daily activity participation decisions 
Since the conceptual basis of a stochastic model can be captured by considering a potential 
trip maker sequential decisions, Figure 2 assumes that he/she begins the day at home after a 
given dwell time. This is defined as a starting after midnight (in the morning) when the 
individual decides whether to pursue out-of-home activity or to remain at home. If an out-of-
home activity is chosen, he/she must decide whether to pursue fixed activity or flexible 
activity. If either the former or the latter is chosen, the individual is met by spatial constraints 
which he/she must overcome (through mode choice) in order to participate in activity. Having 
arrived at some destination by a given mode, the decision on time to spend in the activity will 
depend on its temporal flexibility. After participation of first activity (either fixed or flexible), 
  



        out-of-home activities   

       
       
fixed activities   flexible activities 

• spatially fixed   • choice of time duration 
• temporally fixed   • choice of destination 
• mode choice flexible   • choice of mode 

    • conditional i.e. depends on the latest  
       starting time of the succeeding fixed 
       activity and the completion time of the  
       present fixed activity 

       
       
       
         
regular activities  occasional activities     

• non-flexible  • occasional work     

• routinely  • business related activities     

• daily work or  
       school activities 

 • health care activity e.g.  
       visit to a doctor 

    

         
         
         
  personal activities   lifestyle activities 
  • free choice of destination, 

       frequency and mode 
  • free choice of destination,  

       frequency and mode 
  • necessary activities   • choice depends on individual 

       lifestyle 
  • e.g. shop, bank, post office,

       book store 
  • e.g. sports activities, pubs,  

       recreation, cultural 
      
Figure 1: characteristics of activity types 
 
an individual can decide to participate in another out-of-home activity (through mode - 
destination choice) or to go back home (mode choice). If an individual returns home and 
decides to leave again, the entire process begins once again with exception; that he/she had 
already completed one cycle. 

4. Representation and characterisation the data of survey 
Households travel survey questionnaire delivers data about travel behaviour of the members 
of the household. Such models can be found in [3, 4 and 6]. The KBR (comprehensive travel 
survey) of Katowice / Siemianowice Sląskie cities was administered through personal 
interview and generated among other survey data, the data of out-of-home activities 
participated by members of the household. The survey covered 3074 households (6399 
individuals) in Katowice and 1357 households (2654 individuals) in Siemianowice Sląskie 
representing 2% and 4% of the population in the respective cities.  
From this data, trip chains were computed and by use of VISEM their probabilities were 
estimated. The probabilities of the chains conducted by several homogeneous behavioural 
groups were used by [3] to estimate the number of trips generated in a given zone and 
therefore trip distribution between the zones in the surveyed region. In this paper, 
characteristics of travel demand i.e. the number of daily out-of-home activities, conditional 
transition probabilities and the distribution of departure times are examined with the help of  
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Figure 2: a framework of activity participation decisions 
 
the original survey data. To model the daily travel demand from activity chains, the locations 
of activities are denoted by an universal set of possible activities which individual can 
participate in during the day,  

},a,,a{aA: mK21= .  
The set A  is termed as activity space. From the survey data, the number of distinguished 
states is equivalent to 8=m , that is; 
 

START 
(HOME) 

home stay duration 

pursue out of
home activity? 

END 
(HOME)

pursue fixed 
activity? 

flexible activity 

choice of destination choice of destination 

choice of mode choice of mode choice of mode 

activity in blocked period 
(fixed duration) 

activity in open period 
(flexible duration) 

pursue another 
out of home 

activity?



1a : D - Home 5a : O - Official activities 

2a : P - Work 6a : R - Private activities 

3a : S - School 7a : Z - Retail shopping 

4a : U - University 8a : H - Wholesale shopping 

The set of activities available to an individual is considered to be finite and many 
topologically distinct activity patterns are likely to be similar for homogeneous behavioural 
groups. Every individual who tends to satisfy her/his needs and desires out of home during the 
day takes part in an activity chain. For a given individual let )(rA denote the state which is 
ordered a the thr  position of the chain of activities, AA r ∈)( , .,,1,0 lr K=  Therefore, l  is the 
number of all activities participated during the day (including home stays, with the exception 
of the first home stay). The length l  can also be termed as the total- or cross-length of the 
corresponding activity chain and it corresponds to the number of trips, which the individual 
executes during the day and hence it is an important variable to describe travel demand. Since 
every activity chain is assumed to start and end at home, it then means that for each individual 
holds .and 1

)(
1

)0( aAaA l ==  
The value of l  depends essentially on the number of out-of-home activities participated by 
individual during the day, which is denoted by .n  In addition, let k  denote the number of 
cycles, whereby a cycle is defined as a sequence of activities beginning and ending at home 
(between these home stays there are assumed to be only out-of-home activities). An activity 
chain can be composed of one or more cycles. In the case of 0== nk , it implies that 
individual did not leave home during the day. 

For example: 
Consider a typical activity chain in which an individual leaves home to go to work, comes 
back home and leaves once again for private activities. The activity chain of interest in this 
case is D-P-D-R-D. The values of kandnl, are 22,4 === kandnl , respectively. 

For an individual randomly chosen from a homogeneous behavioural group, the number of 
out-of-home activities, the number of cycles and the gross-length of the activity chain have to 
be modelled as random variables, denoted by ,and, LKN  respectively.  
To describe transitions between several states, A  is used as the state-space of a stochastic 
point process )(rA (the state which is ordered at the thr position in the activity chain). 
Transition probabilities can be described by the conditional probabilities of equation (1), 

( ) ,1,,1,,,1,,,,,,| 111
)1()(

1
)1( −===== ++

+ LrmiiiaAaAaA rriri
r

ri
r KKKKP   (1) 

and the initial probabilities  
( ) .,,2, 11

)1( miaA i K==P                                                                                         (2) 
(Note that it holds ( ) ,11

)0( == aAP i.e. ( ) 0
0

)0( == iaAP for .,,20 mi K= ) 
Because of the complexity, it is hard to work with this general model, particularly with regard 
to the estimation of the transition probabilities by use of statistical data. Therefore 
assumptions for simplification have to be introduced.  
Finally, the distribution of departure times can be considered. In [5] it was observed, that 
there are three kinds of different time distributions, firstly the distribution of the time of first 
departure from home since an initial time (which is here defined as midnight), denoted by 

)0(T , secondly the distribution of non-home dwell time and finally the distribution of dwell 
time at home after returning from some trip. 
From the above considerations it is clear, that “home” should be treated as a special state. For 
instance the sequence D-D can not occur. In [1] and [2] another notation is used, whereby 
random variables iR , ,,,1 ni K= are considered, which have the value 1 if the individual 



returns home after the thi  out-of-home activity and otherwise 0. In that case, the spatial 
activity chain for an individual is completely described by the values of iR  and the sequence 

of out-of-home activities .,,1},,,,{~
32

)( niaaaA m
i KK =∈  

5. Number of out-of-home activities and gross-length of activity chains 
Using the notations introduced in Section 4 the following relationship between the considered 
random variables KNL and, is derived, 

( ) .1=+= KNLP                                                                                                          (3) 
Figure 3 shows the empirical frequencies of the variable L  of Siemianowice Sląskie (S) and 
Katowice (K) inhabitants. In both cases the dominating value of L  is 2=L , which means 
that the corresponding individuals take part in only one out-of-home activity during the day. 
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L (S) (K) 
0 0.1804 0.1169 
1 ---- ---- 
2 0.7206 0.7491 
3 0.0373 0.0774 
4 0.0539 0.0493 
5 0.0019 0.0036 
6 0.0054 0.0034 
7 0.0004 0.0002 
8 ---- ---- 
9 ---- 0.0002 
 

Figure 3: gross-length L  of the observed activity chains 
 
The stochastic relationship between the variables KNL and, can be examined in more details. 
Figure 4 shows the averaged gross-length L  of the activity chain in dependence on the 
number N of daily out-of-home activities. A declining increase can be observed. The reason 
for this empirical observation is the tendency of the individuals to chain up their out-of-home 
activities and this behaviour is the base for the considerations of this paper. By going directly 
from one out-of-home activity to another without returning home, the number of trips per 
activity decreases. This tendency is visible particularly for the Katowice survey data, which is 
especially suited because of the large number of cases. 
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home activity NL  
Number of  
out-of-home 
activities N 

(S) (K) 

1 2.00 2.00 
2 1.80 1.68 
3 1.85 1.57 
4 1.50 1.36 
5 ---- 1.20 

 
 

Figure 4: averaged values of L  and NL in dependence on N  
 



Additionally, Figure 5 shows the results for the empirical distribution of the number of out-of-
home activities. Because of the low number of cases with 5≥N , only the observations with 

4≤N are shown. The results are split according to homogeneous behavioural groups. The 
groups considered here are; unemployed people (ue), primary school pupils (pr), full time 
secondary school students (se), full time post secondary and university students (un) and 
employed people (em) for both Katowice (K) and Siemianowice Sląskie (S) towns. A 
remarkable difference between the empirical distributions of N with regard to unemployed 
people (who tend to have less out-of-home activities than other behavioural groups) is observed.  
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Figure 5: empirical distribution of N  
 
The empirical results of Figure 5 suggest the suitability of Poisson-distributions to model the 
stochastic behaviour of N  split by behavioural groups (see also [2]). In such a case, the 

distribution function would be described by ( ) .0,
!

≥==
−

n
n

λnN
n λeP  

For the expectation of N , it then holds that .λ=NE  The parameter λ should be chosen 
separately for every behavioural group. Furthermore it would be possible to describe the 
influence of other individual factors ( )K,,, 321 xxxx = , like sex, age, availability of a car, for 
instance by use of ( ),exp)( 3322110 K++++= xxxx ββββλ where the significance of the 
several factors reflects the parameters K,,, 321 βββ  However, the assumption of Poisson 
distribution for N can not be kept. This phenomenon was also observed by [2]. Figure 6 
shows the estimated expectations and variances of N  for the considered homogeneous 
behavioural groups mentioned above. 
 

ue pr se un em  
(S) (K) (S) (K) (S) (K) (S) (K) (S) (K) 

x  0.73 0.77 1.04 1.07 1.07 1.11 0.92 1.16 1.06 1.16 
2s  0.37 0.37 0.16 0.17 0.25 0.17 0.17 0.22 0.25 0.26 

Figure 6: estimated expectations and variances of N  
 
In case of Poisson distribution, expectation and variance should be equal, but from empirical 
data a clear underdispersion is observed. The results of corresponding Kolmogorov-Smirnov 
tests for Poisson distribution confirm this. The reason for this behaviour is on the one hand 
due to the dominance of the case ,1=N  and on the other hand the Poisson model presumes a 
time-constant rate of activities during the day while this assumption is not fulfilled in reality. 
However, Figure 6 shows a remarkable correspondence between the results for the estimated 



expectations and variances of N which were kept in Katowice and Siemianowice Sląskie 
surveys. This shows that the inhabitants of both towns have a similar behaviour with respect 
to the number of daily out-of-home activities. Finally, one can refer to [1], where models for 
the description of the conditional probability distribution of the cross-length L  with respect to 
N  are considered. 

6. Transition probabilities 
In this chapter, only individuals, who leave home at least once per day are considered. 
According to the probability ( )0>NP  these are 81.96% of the queried persons of  
Siemianowice Sląskie (S) and 88.31% of those of Katowice (K), respectively.  
In order to analyse transition probabilities, the initial probabilities ( ) ,)1(

iaA =P  
,8,,2 K=i are considered first. Figure 7 shows these probabilities for the whole population of 

(S) and (K) (on the left hand side) as well as split by the considered homogeneous behavioural 
groups (only Katowice survey data in this case). A very natural dependence on the 
behavioural groups is observable. 
 
  ( )iaA =)1(P  
i  state (S) (K) 
2 P 0.4034 0.4551 
3 S 0.1870 0.1724 
4 U 0.0223 0.0836 
5 O 0.0232 0.0165 
6 R 0.2003 0.1505 
7 Z 0.1600 0.1185 
8 H 0.0038 0.0033 
 
Figure 7: initial probabilities ( )iaA =)1(P  HZROUSP
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To study travel demand for the whole population, transition from )1(A  to )2(A  is considered. 
Thereby, the considerations are restricted again to the Katowice survey data. Figure 8 shows 
the estimated transition probabilities ( )ij aAaA == )1()2( |P  for 8,,1, K=ji . As mentioned 

before, “home” is a special state and the case 1
)1( aA =  can not occur (marked by the symbol B* B 

in the table). From the results of Figures 7 and 8 the probability, that an individual returns 
immediately home after first out-of-home activity ( )1

)2( aA =P  can be computed by 90.24%. 
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H 
 

total

D B* B B* B B* B B* B B* B B* B B* B B* B B* B 

P 0.8970 0.0044 0.0012 0.0008 0.0121 0.0271 0.0553 0.0020 1 
S 0.9424 0.0011 0.0011 0 0.0011 0.0405 0.0139 0 1 
U 0.8791 0.0044 0 0.0110 0 0.0549 0.0484 0.0022 1 
O 0.7444 0.0778 0 0 0.0444 0.0333 0.0889 0.0111 1 
R 0.8694 0.0366 0.0073 0.0037 0.0024 0.0232 0.0574 0 1 
Z 0.9519 0 0.0016 0 0 0.0388 0.0078 0 1 
H 0.6667 0.1667 0 0 0.0556 0.0556 0 0.0556 1 

Figure 8: transition probabilities ( )ij aAaA == )1()2( |P  



In case 2≥r  the following situation arises. The probability, that a transition between )(rA  
and )1( +rA  occurs at all corresponds to the probability ( ).1+≥ rLP  Under the condition, that 
such an transition takes place, we have to analyse the transition probabilities 

( )i
r

j
r aAaA ==+ )()1( |P for 8,,1, K=ji . Figure 9 shows the corresponding estimated 

probabilities in case  of the transition between )2(A  and )3(A  (i. e. )2=r .  
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total

D 0 0.0441 0.0271 0.0136 0.0203 0.5661 0.3186 0.0102 1 
P 0.7963 0.0185 0 0 0.0185 0.1481 0.0185 0 1 
S 0.9091 0 0.0909 0 0 0 0 0 1 
U 0.8000 0 0 0 0 0.1000 0.1000 0 1 
O 0.6579 0.1842 0 0 0.1316 0.0263 0 0 1 
R 0.9494 0 0 0 0 0.0393 0.0112 0 1 
Z 0.9655 0.0043 0 0 0 0.0172 0.0129 0 1 
H 0.6250 0.1250 0 0 0 0.1250 0 0.1250 1 

Figure 9: transition probabilities ( )ij aAaA == )2()3( |P  

 
A remarkable difference to the transition between )1(A  and )2(A  is visible, which means, that 
the corresponding state process is not homogeneously. Similar estimations for 3≥r  are 
possible. Nevertheless, it should be mentioned, that the estimation of the corresponding 
probabilities becomes more and more sophisticated because of the decreasing number of 
observations, this problem arises even in case .2=r  
The above considerations are only of descriptive nature. Because the probabilities  
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for r,,2 K=τ  (Markov property) can be reduced to 
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In particular the influence of the special state “home” has to be investigated more detailed. 

7.  Distribution of departure times 
As mentioned in Chapter 4, in [5] three kinds of distributions of the departure times  are 
suggested. To be brief, here only the time )0(T  of the first departure from home since 
midnight is considered. Figure 10 shows the empirical results for the Katowice (K) survey 
data, on the left hand side regarding to the whole population, on the right hand side according 
to the consideration of homogeneous behavioural groups exemplarity regarding to the group 
of full time post secondary and university students (un). 
According to the considerations of [5] by inspection of the histograms and subsequent 
comparison of the observed and predicted values a shifted gamma distribution was fitted to 

 



 
Figure 10: distribution of departure time )0(T  
 
the actual data. Thereby, the expectation and variance of the shifted gamma distribution and 
the corresponding estimated values from the actual data coincide. Therefore, the parameters 

),( pb  of the gamma distribution and the shift value st  are chosen as 7800.0=b , 1.6766=p , 
min300=st (for the whole population) and 9800.0=b , 1.2250=p , min380=st  (in case of 

the “un” behavioural group). Similar considerations for the other behavioural groups are 
possible. However, it shows, that for the time after the visible “peak” a remarkable 
correspondence exists, whereas the “peak” itself can not been described satisfyingly. As a 
consequence a 2χ -test of goodness of fit rejects the hypothesis of shifted gamma distribution. 
Nevertheless, for orientating considerations, this distribution seems to be quite suitable. 

8. Conclusion 
Various aspects in the description of travel demand, which base on activity chain models, 
were presented. It has been shown, that through the application of a sequential decision model 
the mobility of individuals can be estimated. Statistical computations regarding the travel 
survey of Katowice / Siemianowice Sląskie cities have been done. By using several 
characteristics of activity chains consequences with respect to the description of travel 
behaviour can be drawn, whereby the inclusion of Markov processes property can improve 
the model.  
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