
1

SFE-MODELLING OF DYNAMIC AND STATIC PROPERTIES OF
R/C BEAMS IN PROGRESSIVE DAMAGE

Matthias Ebert & Christian Bucher
Bauhaus-University Weimar, Germany

matthias.ebert@bauing.uni-weimar.de, christian.bucher@bauing.uni-weimar.de

1 Introduction

The application of systematic inspection and maintenance of civil engineering structures has
increased enormously during the last decades. Dynamic testing for damage assessment as
non-destructive method has attracted growing interest. The applicability of the dynamic in-
vestigation does not depend on the building material. It is also possible to detect damage at
unobserved locations. Dynamic in situ testing can be a fast method with relatively low cost.
The increasing speed of personal computers and data acquisition systems opens new dimen-
sions for dynamic investigations.
The accumulation of damage in a structure causes a change in dynamic properties such as
natural frequencies, mode shapes and damping. The occurrence of a crack in a R/C or in a
steel structure changes the local stiffness and so the modal properties. In general, the natural
frequency decreases, the damping capacity changes up and down and the mode shapes shift
slightly.
Only a few studies so far focus on relations between progressive structural damage and
changes of dynamic structural behavior. Most of these investigations concentrate on beam
structures. Investigations with R/C beams can be found e.g. in Dieterle & Bachmann;1979,
Jahn; 1996, Owens et al.; 1999, De Roeck et al.; 1999, for steel beams in Rytter et al.; 2000.
Studies of plate structures can be found in Meinhold et al.; 1996; Ebert et al.; 1999.
Structures have time-independent randomly varying material parameters. These properties
influence the state of an undamaged structure and the damage evolution. Therefore, the dy-
namic properties are not only a function of the damage state of a structure, but also of these
varying parameters. For understanding and for assessing the actual damage state, it becomes
mandatory to investigate the influence of stochastic properties.
In this context static and dynamic experiments with three R/C beams were performed. A Sto-
chastic Finite Element (SFE) Model is developed to investigate numerically the nonlinear be-
havior of the beams by using correlated random fields for different material and physical
properties. Thus, different damage histories are investigated.

2 Changing of dynamic properties due to damage

The equation of motion for a multi degree of freedom structure is given by

M x t C x t K x t f t⋅ ( ) + ⋅ ( ) + ⋅ ( ) =
⋅⋅ ⋅

( ) (1)

where M is the mass matrix, C is the damping matrix and K is the stiffness matrix, f is the
load vector. If we consider varying material properties for an undamaged structure, all these
matrices are spatially stochastic. Generally, some reference values are given for the produc-
tion process, e.g. for the strength and for its correlated Young's Modulus. If tests with speci-
mens of the structural material are performed, the first and second statistical moments for the
investigated parameters can be determined.
The matrix eigenvalue problem
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K - n
2ω ⋅( ) ⋅ =M nΦ 0 (2)

is solved and we get the stochastic natural frequencies ω  and the mode shapes as the matrix
of eigenvectors Φ .
During the load history the structure is damaged. Damaged zones in a deterministic formula-
tion are the zones, where the stiffness matrix of the originally homogenous structure gets de-
fects. In a stochastic formulation damage occurs, when the homogenous correlated fields of
material properties (as integrated in the stiffness matrix) get defects. These defects can be ef-
fected by changed material states, e.g. one integration point fails at a limit stress.
Damage for a R/C structure under laboratory conditions is at first crack evolution and the re-
sultant loss of bond between concrete and reinforcement. Other influences on the load carry-
ing or dynamic behavior like thermical, chemical influences (carbonatisation and corrosion),
the condition of bearings and other time-dependent material properties may be neglected. The
crack evolution decreases the stiffness of the structure. The time and the location of beginning
and the further evolution of cracking are stochastic. The stochastic stiffness matrix K is
changed while the mass matrix M remains constant. Hence the natural frequencies depend on
K only. Within the model of a linear undamped system, the natural frequencies decrease. The
mode shapes remain similar, only the location of the nodal lines changes in a small. The
damping increases especially at the load levels of crack initiation.

3 Experimental Results

Static and dynamic four point bending tests with three similar R/C beams were performed.
The aim of the tests was to determine the changing of modal properties of the beam after each
increasing load level. These changes are compared with the static behavior of the structures,
especially as stiffness-loss factor of static and dynamic parameters. The dimensions of the
beam are ( 2 10 0 12 0 115. . .× × )m. The beams are reinforced with three longitudinal bars of
diameter 6 mm. The beams were permanently simply supported. The Fig. 1 shows the typical
test setup and the scheme of instrumentation and excitations for beam B2, only the results of
these beams are presented in this paper.
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Figure 1. Test setup and scheme of instrumentation, B2

Under static conditions properties displacements, rotations, strains were continuously meas-
ured. As dynamic properties acceleration time histories were recorded after each finished load
level. A hammer impact load and also harmonic excitation were used as dynamic excitation.
The dynamic measurements were always performed on the unloaded structure after removing
the steel beam for the load. These dynamic loads result in only small deformations and there-
fore the measured vibrations are assumed to be linear.
The static load was increased step by step with varying load histories for the beams, but the
same load regime for each of the beams. Each load level was repeated three times to get a sta-
ble damage state. Fig. 2 shows the load-displacement history with the hysteresis loops and
their damage behavior with increasing load. To quantify the damage evolution a stiffness-loss
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factor Dkis defined in eq. 3. The tangential stiffness ki  of each of the three load processes of
each load level is determined. This is done for the three receivers for the displacements
(LVDT), (Fig. 3). The stiffness k0 is the stiffness of the first loading process.

D
k
kk

i= −1
0

(3)

In the first load levels a low increasing of the stiffness can be seen, which is effected by con-
ditions of the test setup. At 5 kN a strong crack development happens which leads to a strong
decrease in stiffness up to a Dk of 50 %. Then we have a more slowly increasing of stiffness
loss up to a level of 72 %. To illustrate the process movie 1 shows the crack evolution for the
load levels after Fig. 4.
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Figure 2. Load-displacement, B2 Figure 3. Dk-Load, B2
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Figure 4. Load levels

Fig. 5 and 7 show the evolution of the first natural frequency and the modal damping ratio ζ
of the first natural frequency of structure B2. Strong decrease of the natural frequency occurs
after the load level of 4 and 6 kN. The load- frequency function has the typical tri-linear shape
before failure of the structure. The damping ratio increases with crack formation, then de-
creases to a level which is higher as that at the beginning. Analogous to eq. 3, we define a fre-
quency loss factor DF (Fig. 6).
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The curves of DK and DF show the same qualitative progress. But the quantitative stiffness
loss is not the same. The lower stiffness loss, as calculated from the frequencies, is probably a
result of the crack closure after unloading.

4 Stochastic Finite Element Model

The beams are modeled three-dimensionally by finite elements. The model consists of 8-node
brick elements for the concrete (Fig. 8) and beam elements for the reinforcement. Vertical
crack opening zones are defined in a theoretical crack distance for the concrete. These zones
(Fig.8) have horizontal three-dimensional spring contact elements. These elements for dis-
crete crack modeling lose their stiffness in beam axis direction at a given force equivalent to a
tensile strength (Fig. 9). For the zone between concrete and reinforcement a further contact
element is utilized, which considers the failure of bond after cracking of concrete in this area.
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Figure. 8 Brick elements of FE-Model and vertical
contact zones (spring elements)

Figure 9. Material law of the spring ele-
ments for discrete cracks modeling

The nonlinear model should perform the hysteretic loading- and unloading curves of the dif-
ferent load levels. After unloading a eigenvalue analysis is performed to get the actual eigen-
values of the structure. So both static and dynamic experimental and numerical results of the
same FE-model are comparable, a fact which is very rare in the literature.
As mentioned random fields for material and physical properties are used. A random field
H(x) is a geometrical multidimensional continuous, stochastic process. The random field is
weakly homogenous and weakly isotropy. The discretisized random variables H(xi); i=1,...,n
are correlated through the covariance matrix CHH, which is defined with the aid of the auto-
correlation function RHH .

C x x E H x H x H x H x i j nHH i j i i j j, ( ) ( ) , ( ) ( ) ; , ,...,( ) = −{ } −{ }[ ] = 1 (6)

R
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L LHH
c c

= ⋅ −
−
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




 = ⋅ −









σ σ

ξ
2 2exp exp (7)

σ2 is the standard deviation of the random field, Lc is the correlation distance, ξ the distance
vector. A non standard normal distributed random field is transformed in the correlated nor-
mal space by the Nataf transformation. To create realizations of the random field by Monte
Carlo methods the correlated Gaussian random variables are made independent by solving the
eigenvalue problem of the covariance matrix. The transformation is

h c= Φ , (8)
with h as a vector of correlated random variables, Φ the matrix of eigenvectors and c the
vector of uncorrelated random variables. One important property of Φ is

Φ ΦT
HH iC diag= ( )σ2 , (9)
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where σ i
2  are the variances of the uncorrelated Gaussian random variables. The vector h of

the random field is then a linear combination of deterministic eigenvectors Φk with random
amplitudes. Movie 2 show the first 20 mode shapes and 10 samples of the random field with
the parameters after Fig. 10. In many cases the number of random variables can be reduced
considerably from n to a much smaller number n*.« n. The quality of the field can be esti-
mated by comparing the considered variances σ i

2  with the sum of all variances of the uncor-
related random variables vector. Detailed description of the used method for random fields
can be found in Brenner; 1995 and SLang; 2000.

Movie 2. First eigenvalue of random field (left) and a sample (pictures from movie)

The computational effort for the Monte Carlo simulation of  the nonlinear problem can be re-
duced by applying the Latin-Hypercube sampling (LHS) technique. This method is particu-
larly useful for the estimation of response variability from a very small number of random
samples. A recent study by Novák et al. (2000) showed the excellent applicability of the
method for linear and nonlinear random field problems. Fig. 10 presents the parameters of the
random field and the samples. The two random fields are full correlated.

Random field for Type/
Mean Value/

Standard deviation

Correlation
length

Used elements Number of
elments/

random variables

Number of
used variables

for LHS
Stiffness [N/m2] normal/3.5e10 /0.2 2.1 m Brick8, Spring 840; 940 128
Strength [N/m2] normal/3.5e6 /0.2 2.1 m Spring 940 128

Figure 10 Random field parameters

5 Numerical results in comparison with experimental results and their statistics

The SFE computation with LHS is performed with 32 samples. The mean value µ, the stan-
dard deviations σ and the detailed functions of all samples are presented in Fig. 11 to Fig. 14.
The red line in both figures is the experimental history for the first natural frequency. The ex-
perimental and numerical results for the frequency differ after the strong crack formation. The
static result of the experiment is located above the mean value function. A contradiction is,
that the real beam has higher maximal displacements, but a higher frequency as the model.
The reason are probably the complicated processes of bond loss and crack closing and their
influence on the dynamic behavior of an unloaded structure as also seen in the stiffness loss
factor in Chapter 3. These influences are a topic of current research and are not yet suffi-
ciently represented in the model.
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Figure 15 Coefficient of varia-
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displacements for all load levels

The coefficient of variations increases nearly linearly from the first to the 7th load level. This
is an effect of the stochastic crack formation. After that only the variation of the displace-
ments increases. At the higher load levels the variations decrease. The reason is a finished
crack evolution, which could also be observed during the experiment. The states of the struc-
ture are similar, the influence of stochastic material parameters decreases.

6 Conclusions

The results indicate an influence of stochastic material properties on the damage evolution.
By taking into account experimental results a Stochastic Finite Element Model is developed
and updated, which allows studying different damage histories. There are still differences
between the dynamic and static results, but some phenomena are well described qualitatively.
The use of random fields allows to perform more realistic computations, although the pa-
rameters of such fields, especially the correlations, are quite uncertain. Advanced Monte-
Carlo simulation techniques such Latin Hypercube Sampling can lead to a substantial reduc-
tion of numerical efforts of the nonlinear computations. So the different histories of structures
with the same design parameters can be investigated. At the end this knowledge is the basis
for further development of dynamic testing procedures and the assessment of its profits.
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