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1. INTRODUCTION 
The determination of the stress intensity factor (SIF) appears to be one of the main subjects of the fracture 
mechanics. A significant progress in the methods of the linear fracture mechanics (LFM) has been made 
during the  past  two  decades. A lot of numerical and analytical techniques and methods for the SIF 
estimation with an satisfactory accuracy and different computational efforts assuming static or 
monotonically increased external loads are known. Recently the SIF evaluation in the case of dynamic 
external loading is studied intensively. In the LFM the energy release rate G can be used to calculate the 
stress intensity factor KB  B[1], [2]. The exact values of K are known only for a limited number of cases 
assuming an idealized shape or special boundary conditions. For more complex structures and types of 
loading the SIF can be studied numerically using different techniques such as the finite element method 
(FEM) or the boundary element method (BEM). For specific problems in the LFM the BEM provides the 
best accuracy and the lowest number of unknown parameters that are to be determined. However for a 
wide variety of problems including a material nonlinearity and dynamic external loads, the FEM appears 
to be an more general and versatile computational approach. Some new developments and upgrades of 
this method enable the researcher to calculate fracture mechanics parameters through the usual 
procedures of the FEM. For example the known J-integral and the released energy per unit released 
length can be evaluated numerically [1], [2]. At present the nonlinear fracture mechanics (NFM) is 
developing too. 
 
In this study a simple effective procedure practically based upon the FEM for determination of the 
dynamic stress intensity factor (DSIF) depending on the input frequency and using an advanced strain 
energy release evaluation by the simultaneous release of a set  of fictitious nodal spring links near the 
crack tip is developed and applied. The DSIF is expressed in terms of the released energy per unit crack 
length similarly to the case of a static loading. The formulations of the LFM are accepted. This approach 
is theoretically based upon the eigenvalue problem for assessment of the spring stiffnesses and on the 
modal decomposition of the crack shape. The inertial effects are included into the released energy. A 
linear elastic, homogeneous and isotropic material, time-dependent external loading of harmonic type and 
steady state undamped response of the structure are assumed. The procedure allows the opening (first), 
sliding and mixed modes of the structure fracture to be studied  in demand of K. The shear mode is 
neglected. The decreased dynamic stiffness is taken into account. This technique requires a fine mesh 
near the crack tip.  
 
2. THEORY AND AN ALGORITHM 
According to Ref. [1] the released energy G per unit crack length is defined by the following expression 
(Fig. 1): 
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where ∆a is the measure of the crack length growth and t(u) are the tractions, acting on the surface that is 
to be released. These tractions are assumed to be dependent on the crack opening displacements u and uP

0
P 

denotes the displacements of the traction-free surface. Note that the crack length increment ∆a tends to 
zero in the expression (1). From the numerical point of view ∆a will have only a finite value and it will 
never reach zero. The relationship between the normal stresses σ and the traction is  



t = σδ,    t → [kN/m],      G → [kNm/m],                    (2)          
where δ is the thickness.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Initial, Intermediate and Final States Formulation 
 

Following the above definition for the released energy per unit length one may express G in a matrix form 
(Fig. 2) when more than one discretized link elements are located on a length  ∆a,  namely 
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Here {t} and {du} denote the traction vector and the opening displacements vector respectively. An 
similar expression is used in [1] but for a single link in the crack. It is suggested that if several links are 
considered, the matrix formulation is required. Note that the integral limits are related to the initial state 0 
and with the final state 1. It can be proven that in the LFM the value of the integral in Eq.(3) is dependent 
only on these both states and not on the loading path. In the NFM the value of G is path dependent. The 
relation between the tractions and internal forces {f} associated with the released crack surfaces is as 

 { } { }t f=
1
δ

.                   (4) 

According to the finite element approach we have 
 { } [ ] { }f B dVT

e
= ∫∑ σ ,                           (5) 

where [B] is the gradient matrix and V is the element volume. Summation is done over all elements e 
whose bounds are included into the crack surfaces. 
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                     a) Simultaneous Release of a Group of Links                                b) Release of a Single Link 
Fig. 2. Simultaneous Release of Several Links and Release of a Single Link 

Figure 3 illustrates the process of simultaneous release of a set of disctetized links attempting to simulate 
the opening of the crack. Considering only a single node, we may imagine that two forces are applied 
there. The first force will appear in a vertically restrained node. The second force takes into account the 
effect of decreasing when the link is moved along the first force. This force is called fictitious force and it 
is indicated as a force, acting in a spring with a negative spring coefficient. For all links one may write 
the following matrix equilibrium equation: 

( )[ ] ( )[ ]( ){ } { }s c uθ θ− = 0 ,                   (6) 
where [c] is a diagonal matrix, containing all spring stiffnesses and [s] is the stiffness matrix of the 
released length. It is expediently the matrix [s] to be determined using the flexibility matrix [d] as follows 

[ ( )] [ ( )]s dθ θ= −1 . 
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Fig. 3. Implementation of Fictitious Springs in Places Where Tractions Are To Be Released 
 
Note that all these matrices are dependent on the input frequency θ. Obviously Eq. (6) is related to the 
eigenvalue problem. The quantities that should be determined are the fictitious spring stiffnesses 
(eigenvalues) and the corresponding mode shapes (eigenvectors) (Fig. 4). 
 
 
 
 

 
Fig. 4. Representation of Crack Opening Displacements As a Sum of Modal Terms 

 
Following the LFM formulation and considering Fig. 5a, the following relationship is hold : 

{ } { } [ ]{ }t t c u= −0 .                             (7)          
In the light of NFM and using Fig. 5b, Eq.(6) is written in the following incremental form:                

[ ] [ ]( ){ } { }s c du− = 0 .                                                             (8) 
Here the spring stiffness matrix [c] is represented by 
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with the following notations 
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         a) Traction-Displacement Diagram in LFM                        b) Traction-Displacement Curve in NFM 
Fig.5. The Relationship Between Traction and Crack Opening Displacement Used in LFM and in NFM 

 
In this study the simplest form of the matrix [c] is accepted. It has the form 

 [ ] [ ]c c I= ,                                   (11)     
where [I] denotes the identity matrix. Replacing Eq.(7) into Eq.(3) the following result in LFM is derived: 
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Taking into account that  
 { } [ ]{ }t c u0 0= ,                      (13) 

the released energy becomes 
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In the NFM the released energy can be obtained in an incremental form, based on current update of the 
cumulated energy by the corresponding increment, namely 

{ } { }G G t u G Gnew old
T

old= + = +∆ ∆ .                      (15) 
In the LFM the SIF for the first (opening) mode KBI B is related by the released energy by the expression 

  ( )K
GE

I = −1 2ν
,         (16) 

where E is the Young’s modulus and ν  is the Poisson’s ratio. Note that inertial effects are accounted for 
by the released energy in the above result. 
 
3. NUMERICAL EXAMPLE, RESULTS AND DISCUSSION            
The application of the proposed procedure is examined and demonstrated by an numerical test example of 
a simple square unsupported notched steel plate 0,96 m in side and with a central horizontal crack. The 
plate is subjected to self-equilizing uniform in-plane, sine in time, tension loads of an intensity 
q(t)=qsinθt, applied on the two opposite sides. Using double symmetry a quarter of the plate (Fig. 6) in 
the plane stress state within the middle horizontal plane is calculated considering the undamped steady 
state response. The opening mode of fracture is studied only. The DSIF is computed using a coarse  mesh 
and a single node release for the released energy computation as well a fine mesh and simultaneous 
release of four links to obtain more accurate values. The released length ∆a in both cases is the same. The 
following material properties, geometrical and loading parameters are specified: 
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E=2,1.10P

8
P kN/mP

2
P,  ν=0,3,  δ=0,01 m, q(t)=qsinθt=1000sinθt kN/m, q=1000 kN/m, 

σ( )t =σ sinθt=100000sinθt kN/mP

2
P,   σ = 100000 kN/mP

2
P,   a= 0,08 m,   ∆a=0,04 m. 

 
The natural frequences of the structure are computed by the Ritz’s vector analysis and by the eigenvalue 
analysis (through the Jacobi’s method) using the SAP2000 computer program. The quadrilateral ASOLID 
finite element (FE) based upon an isoparametric formulation is used for modeling. It has got of 4 nodes (8 
DOF) and 9 nodes (18 DOF) in the two cases respectively. The meshes includes 80 and 1073 nodes. Four 
FE with different dimensions are used. The nodal links on the whole crack length a+∆a=0,12 m are 
released. The links on the length a are initially released but the links on the length ∆a are released in 
addition. In the first case the vertical link at the initial node of the length ∆a is additionally released and 
the plate is separately computed under an amplitude external load q=1000 kN/m and a fictitious force F=1 
kN (F(t)=1.sinθt) in this node. In the second case the vertical links at four nodes on the length ∆a are 
simultaneously released in addition and the plate is calculated in five loading conditions: under amplitude 
external load q=1000 kN/m and a fictitious amplitude force  FBiB=1 kN  consecutively at each of these 
nodes. 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
                   a) A Coarse Mesh Used                                                 b) A Refined Mesh Used  
Fig. 6. Numerical Example - A quarter of A Notched Steel Cracked Plate Studied and Two Meshes Used  

 
The following values of the natural frequences ωBiPB

(1)
P and P

 
PωBiPB

(4)
P are obtained if a single or four links are 

released respectively: 
ωB1 PB

(1)
P≈2150 Hz,   ωB2 PB

(1)
P ≈2610 Hz,   ωB3 PB

(1)
P ≈2950 Hz,   ωB4 PB

(1)
P ≈4413 Hz,   ωB5 PB

(1)
P ≈5036 Hz,  ωB6 PB

(1)
P≈6166 Hz;  

ωB1 PB

(4)
P≈2126 Hz,   ωB2 PB

(4)
P ≈2640 Hz,   ωB3 PB

(4)
P ≈2941 Hz,   ωB4 PB

(4)
P ≈4439 Hz,   ωB5 PB

(4)
P ≈5225 Hz,  ωB6 PB

(4)
P≈6286 Hz. 

Ranging the load frequency θ in the steady state analysis in limits from 0,0 up to 1,1ωB6 PB

(4)
P the crack 

opening vertical displacement at the released 1 or 4 nodes on the length ∆a in each unique state and also 
under an  external uniform opening load of an amplitude intensity q are determinate. Within the 
resonance zones the densely values of θ are considered. The eigenvalue problem is solved by an author’s 
program applying the Jacobi’s method and then the fictitious nodal spring reactions (stiffness 
coefficients) and the crack modal vertical displacements at the released nodes for every examined value 
of θ are calculated. The released energy per unit crack length G and the DSIF are obtained by the same 
program for the same values of θ. 
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The results are analyzed. Comparisons with the known exact results from a static loading are presented in 
Fig. 7. The first three natural frequences ωBiPB

(4) 
Pand ωBiPB

(1)
P (i=1, 2, 3) are only used to construct these two 

curves in Fig. 7 where θ is ranging between 0,0 and 1,2ωB3 PB

(4)
P. The ratio KBI B-dynamic/KBI B-exact in a 

logarithmic scale is represented versus the input frequency/fundamental frequency ratio (θ/ωB1 B). KBIB-
dynamic is calculated by the Eq.(16) but KBIB-exact =σ πa  is taken as a static exact value of the SIF for an 
infinite notched plate in the two orthogonal directions, known in [2]. 
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 Fig. 7. Dynamic Stress Intensity Factor Ratio 

 

The DSIF is strongly dependent on the input frequency. It is seen from the Fig. 7, that when the input 
frequency θ is equal to zero (static analysis), the simultaneous release of four links provides the value of 
the SIF that is very close to the exact one (an relative error of 1,0 % only). Alternatively, the procedure 
with release of a single link produces an error of about 16,6 % in the same result. The mesh refinement 
near the crack tip as well the simultaneous release of larger number of nodes along the crack provides 
more accurate values of the DSIF. These values are significantly larger than the values of the static stress 
intensity factor obtained by the same meshes but under the appropriate static load  of an intensity  equal  
to the amplitude  dynamic load  value. It is clear from the Fig. 7 also, that the dynamic loads may lead to 
an considerable increase of the SIF and it should be taken into account in the design. Significant peaks of 
the DSIF are observed near the natural frequencies. The peak values of the two curves are slightly 
removed in the time domain because of the values of the corresponding natural frequences and also the 
rezonance zones in these two cases are different.  
 
4. CONCLUSIONS 
The  proposed general procedure is practicable and reliable enough and its application can be extended to 
more complex cases. The presented FEM technique is an effective tool for the DSIF estimation in the 
LFM. This rational and powerful technique requires a mesh refinement in the vicinity of the crack tip. 
The procedure extends the FEM application in the fracture mechanics. This approach can  be more 
effective in the NFM especially in analysis and design of mechanical engineering structures such as 
transport machines, motor industry and others. Direct time integration operators in the frequency domain 
are then applied. In the NFM the BEM is not powerful and versatile and even can be inapplicable for the 



DSIF determination. The essential contribution in this paper is the development and application of a FEM 
technique for the DSIF calculation using the released energy by simultaneous  release  of a few  nodes  
near  the crack  tip. 
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