ON ONE SYSTEMIC DEVELOPMENT OF THE PROBLEM OF ALLOCATION

A.A. SALPAGAROVA / P.I. TEMIRBULATOV

Problem of discretic programming in conditions of manycriterial is considered. Set of work, being subject to fulfilment, is available. Are certain also: set of the executors; set, machines; set of resources (materials, semifinished items and etc.) and other set. As a functional complex name set, which will be formed, when on one representative of each of the specified sets is nominated to one working place. The allowable decision of a examined problem represents set of not crossed complexes provided that, for each working place one functional complex is certain in the accuracy.

The elementary case of a formulated above problem is known under the name " a problem about purposes " [1], when the complex is defined as a pair " an executor - working place ". In case of three-element complexes we come to a problem about three-combinations. In a general case the complex consists from m of elements and the problem of formation of m-element complexes is formulated on the m-colour column.

For the mathematical formulation of examined problems used the following designations: G=(V, E) - n-toped of the columns, in which to each edge $a \in A$ are attributed of weight $w_v(e) \ge 0$, v=1,2,..., N; V_k - a subset of tops $v \in V$, painted in colour k, $k = \overline{1,m}$. In a general case the allowable decision of a problem is such subcolumn $\tilde{o} \in (V, E_x)$, $E_x \in E$, in which each component of conectingis a complete t- toped subcolumn , the tops of which are painted in various colours and thus for given whole τ condition $2 \le t \le \tau$ is carried out; X=X (G) = {x} - set of all allowable decisions (SAD) on given to column G. In a case $\tau=2$ we receive a problem about pair-combinations on m- the colour column; in a case $t=\tau=3$ we receive a problem about three-combinations on the m-colour column. On SAD \tilde{O} vector-objective function (VOF) is certain

$$F(x) = (F_{1}(x), F_{2}(x),..., F_{N}(x))$$
(1)

$$F(x) = \sum_{e \in E_{x}} w(x) \to \min, v=1,2,..., N_{1}, N_{1} \le N,$$
(2)

$$F(x) = \max_{e \in E} w(x) \to \min, v=N_{1}+1, N_{1}+2,..., N.$$
(3)

VOF (1) with criteria of a kind MINSUM (2) and MINMAX (3) at N \geq 2 determines paret set $\tilde{X} \subseteq \tilde{O}$ [1]. "The best" decision gets out of complete set of alternatives (CSA) \tilde{O}^0 . CSA such subset $X^0 \subseteq \tilde{X}$ Refers to as which has the minimum capacity $|\tilde{O}_0|$ at fulfilment of a condition F (X^0) =F (\tilde{X}) [1].

It is accepted to speak, that the examined problem has properties of completeness (cvazycompleteness), if for any column G= (V, E) will be such meanings of weights $w_v(e)$, v=1,2,..., m, $e \in E$, at which equality $\tilde{O}^0 = \tilde{X} = \tilde{O}$ are carried out (parities $\tilde{O}^0 = \tilde{X} = \tilde{O}$ are carried out). In [1] is shown, that the problem about pair-combinations on one-colour (i.e. ordinary) column is complete, if in (2) meaning $N_1 \ge 2$. We shall formulate the following integration of this result

The theorem 1. At any m \geq 1 and N₁ \geq 2 problems about 2- and 3-combinations are complete.

The theorem 2. If $N_1 \le 1$, at any $m \ge 1$ and any even $n \ge 8$ two-criteria the problem about pair-combinations on m-colour n-toped to the column is cvazycompleteness.

The theorem 3. If $N_1 \le 1$, at any m ≥ 2 and any n ≥ 9 , divisible 3, the problem about three-combinations on m-colour n-toped to the column is cvazycompleteness.

Through $\mu_2(n, m)$, $\mu_3(n, m)$ we shall designate the maximum capacity SAD according to problems about 2- and 3-combinations on m-colour n-toped column. From the theorem 3 follows, that in case of fulfilment of property of completeness as the bottom estimation of computing complexity of a finding CSA for a examined problem it is possible to accept meaning of the maximum capacity (q (n, m), $q = \overline{2,3}$. In this connection we result the exact formulas of calculation $\mu_q(n, m)$.

The theorem 4. For problems about combinations the exact formulas are correct:

 $\mu_{2}(n, 3) = \left[\binom{n/3}{n/6} \binom{n}{6}! \right]^{3}, \quad \text{at n, divisible two;} \\ \mu_{3}(n, 3) = (1!)^{2}, \ 1 = n/3, \quad n \text{ is divisible 3;} \\ \mu_{3}(n, 4) = \left[\binom{n/4}{n/12} \binom{n/6}{n/12}^{4} \binom{n}{12}! \right]^{8}, \text{ n is divisible 12.}$

THE LITERATURE

1. Emelichev V.À., Perepeliza V.À. Complexity discretic manycriterials of problems //Discretic mathematics.-1994.- V.6.