ON ONE SYSTEMIC DEVELOPMENT OF THE PROBLEM OF ALLOCATION

A.A. SALPAGAROVA / P.I. TEMIRBULATOV

Problem of discretic programming in conditions of manycriterial is considered. Set of work, being subject to fulfilment, is available. Are certain also: set of the executors; set, machines; set of resources (materials, semifinished items and etc.) and other set. As a functional complex name set, which will be formed, when on one representative of each of the specified sets is nominated to one working place. The allowable decision of a examined problem represents set of not crossed complexes provided that, for each working place one functional complex is certain in the accuracy.

The elementary case of a formulated above problem is known under the name " a problem about purposes " [1], when the complex is defined as a pair " an executor - working place ". In case of three-element complexes we come to a problem about three-combinations. In a general case the complex consists from m of elements and the problem of formation of m-element complexes is formulated on the m-colour column.

For the mathematical formulation of examined problems used the following designations: $\mathrm{G}=(\mathrm{V}, \mathrm{E})-\mathrm{n}$-toped of the columns, in which to each edge å $\in \AA$ are attributed of weight $w_{v}(e) \geq 0, v=1,2, \ldots, N ; V_{k}-a$ subset of tops $v \in V$, painted in colour $\mathrm{k}, \mathrm{k}=\overline{1, m}$. In a general case the allowable decision of a problem is such subcolumn $\tilde{o} \in\left(V, E_{x}\right), E_{x} \in E$, in which each component of conectingis a complete t - toped subcolumn, the tops of which are painted in various colours and thus for given whole τ condition $2 \leq t \leq \tau$ is carried out; $X=X(G)=\{x\}$ - set of all allowable decisions (SAD) on given to column G. In a case $\tau=2$ we receive a problem about pair-combinations on m - the colour column; in a case $\mathrm{t}=\tau=3$ we receive a problem about three-combinations on the m-colour column. On SAD Õ vector-objective function (VOF) is certain

$$
\begin{align*}
& \mathrm{F}(\mathrm{x})=\left(\mathrm{F}_{1}(\mathrm{x}), \mathrm{F}_{2}(\mathrm{x}), \ldots, \mathrm{F}_{\mathrm{N}}(\mathrm{x})\right) \tag{1}\\
& \mathrm{F}(\mathrm{x})=\sum_{e \in E_{x}} \mathrm{w}(\mathrm{x}) \rightarrow \min , \mathrm{v}=1,2, \ldots, \mathrm{~N}_{1}, \mathrm{~N}_{1} \leq \mathrm{N}, \tag{2}\\
& \mathrm{~F}(\mathrm{x})=\max _{e \in \mathbb{E}} \mathrm{w}(\mathrm{x}) \rightarrow \min , v=\mathrm{N}_{1}+1, \mathrm{~N}_{1}+2, \ldots, \mathrm{~N} .
\end{align*}
$$

VOF (1) with criteria of a kind MINSUM (2) and MINMAX (3) at $\mathrm{N} \geq 2$ determines paret set $\widetilde{X}_{\subseteq} \subseteq \tilde{O}$ [1]. "The best" decision gets out of complete set of alternatives (CSA) $\tilde{\mathrm{O}}^{0}$. CSA such subset $\mathrm{X}^{0} \subseteq \widetilde{X}$ Refers to as which has the minimum capacity $\left|\tilde{\mathrm{O}}_{0}\right|$ at fulfilment of a condition $\mathrm{F}\left(\mathrm{X}^{0}\right)=\mathrm{F}(\widetilde{X})$ [1].

It is accepted to speak, that the examined problem has properties of completeness (cvazycompleteness), if for any column $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ will be such meanings of weights $w_{v}(e), v=1,2, \ldots, m, e \in E$, at which equality $\tilde{O}^{0}=\widetilde{X}=\tilde{O}$ are carried out (parities $\tilde{O}^{0}=\widetilde{X}=\tilde{O}$ are carried out). In [1] is shown, that the problem about pair-combinations on one-colour (i.e. ordinary) column is complete, if in (2) meaning $\mathrm{N}_{1} \geq 2$. We shall formulate the following integration of this result

The theorem 1. At any $m \geq 1$ and $\mathrm{N}_{1} \geq 2$ problems about 2- and 3-combinations are complete.

The theorem 2. If $\mathrm{N}_{1} \leq 1$, at any $\mathrm{m} \geq 1$ and any even $\mathrm{n} \geq 8$ two-criteria the problem about pair-combinations on m-colour n-toped to the column is cvazycompleteness.

The theorem 3. If $\mathrm{N}_{1} \leq 1$, at any $\mathrm{m} \geq 2$ and any $\mathrm{n} \geq 9$, divisible 3 , the problem about three-combinations on m-colour n-toped to the column is cvazycompleteness.

Through $\mu_{2}(\mathrm{n}, \mathrm{m}), \mu_{3}(\mathrm{n}, \mathrm{m})$ we shall designate the maximum capacity SAD according to problems about 2- and 3-combinations on m-colour n-toped column. From the theorem 3 follows, that in case of fulfilment of property of completeness as the bottom estimation of computing complexity of a finding CSA for a examined problem it is possible to accept meaning of the maximum capacity ($\mathrm{q}(\mathrm{n}$, $\mathrm{m}), \mathrm{q}=\overline{2,3}$. In this connection we result the exact formulas of calculation $\mu_{\mathrm{q}}(\mathrm{n}, \mathrm{m})$.

The theorem 4. For problems about combinations the exact formulas are correct:

$$
\begin{aligned}
& \mu_{2}(\mathrm{n}, 3)=\left[\binom{n / 3}{n / 6}\left(\frac{n}{6}\right)!\right]^{3}, \\
& \mu_{3}(\mathrm{n}, 3)=(1!)^{2}, \mathrm{l}=\mathrm{n} / 3, \\
& \mu_{3}(\mathrm{n}, 4)=\left[\binom{n / 4}{n / 12}\binom{n / 6}{n / 12}^{4}\left(\frac{n}{12}\right)!\right]^{8}, \mathrm{n} \text { is divisible two; }
\end{aligned}
$$

THE LITERATURE

1. Emelichev V.À., Perepeliza V.À. Complexity discretic manycriterials of problems //Discretic mathematics.-1994.- V.6.
