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1. Introduction. 
 

There is a great diversity of theoretical frameworks in which the problem of 
structural identification has been formulated. In some cases this problem is solved as an 
inverse problem of differential equations, in other cases as a problem of optimization 
[cf. 1]. 1 

However, in such approaches, ill-conditioning and non-uniqueness in the solutions 
are inevitable difficulties. In order to overcome these obstacles, the present author 
applied a more geometrical method which is based on the group theory and the group 
representation theory [cf. 5,8]. 

In the first stage the group – theoretical analysis of some fundamental concepts of 
stochastic dynamics: stochastic processes and functional series of Volterra – Wiener 
type has been undertaken. The group representations (GR) theory has been introduced 
into stochastic dynamics. It has been shown that the symmetry is a typical phenomenon 
for the models of stochastic mechanics [cf. 2] in contrast to the geometrical symmetry 
of systems of bodies in the space. 
The analysis of the symmetry (GR) of the moment functions of order m for stochastic 
processes is the basic, original concept of the work. The following groups: symmetric 
Sm, special affine SAff(m), general linear GL(n,ℜ), GL(n,C) and their subgroups as 
well as some gauge symmetries play the main role in the models considered. 

In the second stage the informational entropy [cf. 3,4] has been introduced as a 
measure of the randomness in the identified models. 
Some basic problems of identification of the systems can be effectively solved as 
problems in the GR theory. The theorems concerning the symmetries of moment 
functions and multispectra as well as the uniqueness of the system kernels have been 
proved. 
The problem of ill-conditioning is formulated in terms of the information entropy. For 
the simple model of a discrete cantilever structure the observed regularities have been 
tested numerically. 
 
 
2. Group properties of moment functions. 
 
The present author has observed that symmetries of moment functions of stochastic 
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processes  play an important role in identification of systems. They provide the group- 
theoretical method of choice of the model structure and the model parameters. Let X(t), 
t∈ , be a scalar, real-valued stochastic process. The process is described by the 
moment functions of order m: 

ℜ

 
K(t1, …, tm) = E(X(t1) ...X(tm)),     (2.1) 

 
where E(-) is the expectation operator. 
Let B be the group of all bijections, B:  → [cf.6]. mℜ mℜ
The symmetry group GK of the moment functions is defined as follows: 
 

GK = {B | K (B(t1, …, tm)) = K(t1, …, tm)}    (2.2) 
 
Every such a group includes the symmetric (permutation) group Sm but can be richer 
than it. 
 In ℜ also the group of special translations acts: m

 
ST(m):(t1, … , tm) → (t1+τ, ... , tm+τ), τ∈ℜ.    (2.3) 

 
The direct product of Sm and ST(m) is defined as the special affine group: 
 

SAff(m) = Sm × ST(m)     (2.4) 
 
The reader can check 
Proposition1. 
The quotient group of the special affine group with respect to the subgroup of special 
translations is isomorphic to the symmetric group: 
 

SAff(m) / ST(m) ≅ Sm     (2.5) 
 
The above proposition is an analogy of the so-called fundamental theorem of solid state 
physics for the space group and the point group. 
Proposition 2. 
The special affine group is the symmetry group of the moment functions of stationary 
stochastic processes. 
Example 1. 
For m = 3, the moment function of the stationary process follows from definition (2.1): 
 

∀t∈ℜ, K(τ1, τ2) = E(X(t)X(t+τ1)X(t+τ2)    (2.6) 
 
The symmetry group of  (2.6) is SAff(3) = S3 × ST(3) 
The irreducible representation of this affine group is given by the following six 
matrices: 
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This matrix group is isomorphic to the point crystallographic group C3v.  
For the vector stochastic processes, the moment functions of the order m are defined by: 
 

Kij … z (t1, … , tm) = E(Xi(t1) …Xz(tm)),   (2.8) 
     m – times 
where i,j, ..., z = 1, 2, … , n 
 
In this case the symmetry group acts simultaneously on the indices and on the time 
arguments. 
Example 2. 
For m = 3, the moment functions of the vector stochastic process have the following 
symmetries: 

Kijk(τ1, τ2) = Kjik(-τ1, τ2- τ1) =       
= Kikj(τ2, τ1) = Kkji(τ1- τ2, τ2)  =      
= Kkij(-τ2, τ1- τ2) = Kjki(τ2- τ1,- τ1),    (2.9) 

where 
Kijk(τ1, τ2) = E(Xi(t) Xj(t+τ1)Xk(t+ τ2)),   (2.10) 

∀t∈ℜ; i,j,k = 1,2, ..., n. 
This concludes the example. 
 
We now take up the problem of symmetries of the multispectra defined by the Fourier 
transform: 
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i,j,...z = 1,2,...n. 
 
We should not to mix up the index „i” with the imaginary unit.  
Let D(π) be the irreducible representation of the moment functions in (2.11), π∈Sm. 
Proposition 3. 
The irreducible ((m-1) dimensional) representation of the symmetry group of the 
multispectra consists of the matrices:  

(DT(π))-1, ∀ π∈Sm     (2.12) 
 
Example 3. 
In the case m=2, S2 ≅ D(π) ={1, -1} 
and 

Sij(-iω) = Sji(iω)     (2.13) 
Moreover  
 

( ) ( ),iSiS ijij ω=ω−      (2.14) 
 

where the bar denotes the complex conjugation.  
Therefore the spectral matrix is Hermitian which follows, as we have shown, from the 
invariance of the correlation function in (2.11) with respect to the group SAff(2) = 
S2×ST(2). 
 



3. Identification of the Volterra kernels in the vector case. 
 
Let the following functional series be the constitutive equation of a nonlinear, n DOF 
system with the vector stochastic inputs Xj(t): 

( ) ( ) ( ) ( ) ( ) ...ddtXtX,hd)t(XhtY 212k1j21ijk11j1iji +τττ−τ−ττ+ττ−τ= ∫ ∫∫
∞

∞−

∞

∞−
 (3.1) 

where i,j = 1,2,…,n  
and the summation convention has been assumed. 
Functions hij…z (τ1,…, τm-1) are the deterministic Volterra kernels of order m-1. 

m - times 
We shall identify the kernels by a generalization of the Wiener approach developed for 
scalar stochastic processes (cf. [7]). 
Let  us consider, without restricting generality, the case m = 3 (i.e. only the kernel of 
second order is nonzero). 
We assume the inputs as the Gaussian white noises with the correlation matrix of the 
form Krs(τ) = δrsδ(τ), where δrs is the Kronecker delta and δ(τ) is the Dirac delta. 
After some calculations one obtains: 
 

E(Yi(t)Xs(t-τ1)Xr(t-τ2)) = hisr (τ1,τ2) + hirs (τ2,τ1)   (3.2) 
 
It is seen that in order to get the unique solution one has to assume in the kernel the 
symmetry of the type described by eq. (2.9). 
 
 
4. Model and parametric identification in the frequency domain. 
 
Let H(iω) be the Fourier transform of the first – order kernel hij(τ) (see eq. (3.1)): 

( ) ( ) ( )∫
∞

∞−
τωτ−τ=ϖ diexpi hH      (4.1) 

It can be shown that in structural dynamics models, H(iω) is an element of the general 
linear group GL(n, C) (for every ω∈ℜ). 
Let the spectral matrix Sx(iω) at the input be an element of the set of the Hermitian 
matrices (see eqs. (2.13), (2.14)) of dimension n × n. 
We shall consider the action of the group GL(n C) on the set of the Hermitian matrices, 
for every ω∈ℜ.  
Therefore this authomorphism gives us the governing equation in the frequency domain. 
Moreover it can be regarded as a gauge symmetry in this domain. 

( )ωω ω = ω i)i()i()(i T
xy HSΗS     (4.2) 

The invariant of such an action is the rank of the matrices: 
 

∀ω∈ℜ, rank(Sy(iω)) = rank(Sx(iω))    (4.3) 
 

This relation can be useful in description of experiments on real structures. 



By using the modal decomposition of the dynamical system it is possible to distinguish 
an Abelian subgroup in the group GL(n, C). The elements of this subgroup have the 
following form: 

H0 (iω) = (-ω2I + 2ω0 c iω + ω0
2)-1    (4.4) 

where  
ω0 = diag(ω01, ω02,..., ω0n)     (4.5) 

is the diagonal matrix of the eigenvalues, 
c = diag(c11,c22,..., cnn)     (4.6) 

is the diagonal matrix of the modal damping coefficients. 
This formulation gives us the possibility of parametric identification of the system, 

under environmental excitation of the white noise type with unknown intensities. 
Example 4. 
The cantilever offshore structure as a two-degree-of-freedom model has been 
considered. 
The spectral densities of the response in some interval are given in Fig. 1. From 
eqs. (4.2) and (4.4) an algebraic nonlinear equation for the modal parameters follows. 
Application of the assumption of the input  invariance in the frequency domain leads to 
the unique solution: 
 

ω0 = diag(9,0; 10,35) ;
s

rad

 
       c = diag(0,12; 0,10) [-] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Spectral densities at the output of the system: q = (y1,y2) 
 
 
5. Information entropy and symmetry. 
 
We can regard the information entropy as a measure of randomness in the structural 
models (cf [3], [4]). 
However, there is a special group-theoretical argument making clear that the very 
concept of the entropy has some connection with the symmetry. 



We recall that the determinant of a matrix can be defined as: 
 

∑
π

ππππ= ,k...kk)(sgndet n)n(2)2(1)1(K    (5.1) 

where the sum is taken over all the elements π of the symmetric group Sn. 
In the range of the second – order theory the entropy H(n) is defined by the determinant 
of the covariance matrix Kn×n: 

( ) )dete2ln(
2
1)n(H nn

n
×π= K      (5.2) 

n denotes here the product of the number of mesh nodes and the dimension of the vector 
random field (cf. [3]). 
Eq. (5.2) describes the entropy of a continuous distribution with the normal probability 
density function. An unexpected result is that in some cases, the greater randomness at 
the input (measured by the entropy) does not lead to the greater randomness at the 
output (cf. [4]). Moreover, the ill-conditioning can be caused by the choice of 
differentiable covariance functions, as the study of the entropy reveals. 
 
 
6. Concluding remarks. 
 
The symmetries of the moment functions play an important role in identification of 
systems. The group-theoretic approach underlines the unity of the mathematical 
description of the symmetries and gives some results of the practical value. 
 
 
References 
 
1. O. Nelles, “Nonlinear System Identification”, Springer Verlag, Berlin, Heidelberg, 

New York, 2001. 
2. H. Walukiewicz, E. Bielewicz, J. Górski, Simulation of non-homogeneous random 

fields for structural applications, Computers & Structures, vol. 64, No. 1-4, pp.491-
498, 1997. 

3. H. Walukiewicz, Information entropy of random fields in modeling of structures, 
Colloquium EUROMECH 372, Blaise Pascal University, Clermont-Ferrand, (Eds. 
O.D. Ditlevsen, J.C. Mitteau), pp. 165-170, 1997. 

4. S. Opoka, H. Walukiewicz, Informational entropy in simulation of one- dimentional 
random fields, TASK Quarterly 6, No. 3, pp. 379-385, 2002. 

5. G. James, A. Kerber, “ The representation theory of the symmetric group”, 
Encyclopedia of Mathematics. Reading: Addison Wesley, 1981. 

6. J. Rychlewski, “Symmetry of causes and effects” (in Polish), Polish Scientific 
Publishers, Warsaw, 1991 

7. M.Schetzen, “The Volterra and Wiener theories of nonlinear systems”, N.Y., 
Toronto, John Wiley and Sons, 1980 

8. A.Wawrzyńczyk, “Group Representations and Special Functions”, Polish Scientific 
Publishers and D.Reidel Publishing Company, Warsaw, 1984. 

 
 


