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1 Introduction
In recent years a new scale of function spaces emerged from the �eld of
complex analysis, the so-called Qp-spaces. These spaces are de�ned in the
following way [1]: Let ∆ = {z : |z| < 1} be the unit disk in C, ϕa(z) =
(a − z)(1 − āz)−1 the automorphisms, which map the unit disk onto itself.
Then we can de�ne the following semi-norm

|f |Qp = sup
a∈∆

∫

∆

|f ′(z)|2(1− |ϕa(z)|2)pdxdy < ∞
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and we have
Qp = {f ∈ H(∆) : |f |Qp < ∞}

These Qp-spaces form a scale of function spaces with the following properties

D ⊂ Qp ⊂ Qq ⊂ BMOA, 0 < p < q < 1.

Moreover,
Q1 = BMOA,

where BMOA denotes the space of all analytic BMO-functions and

Qp = B, ∀p > 1,

where B complex Bloch space, i.e. B = {f ∈ H(∆) : sup
z∈∆

(1 − |z|2)|f ′(z)| <

∞}. Moreover, this scale of spaces was also generalized in di�erent ways to
higher dimensions [GKST] and [CD].

Also, in the last ten years emerged a new method for treating approxi-
mation problems in di�erent areas, mainly in signal and image processing,
called wavelet or Gabor analysis. Where the continuous part, i.e. the contin-
uous wavelet transform and its applications, are already quite a lot studied in
the framework of Cli�ord analysis, e.g. [C], [BS1], [BS2], [Mi] the same can-
not be said about its discrete counterpart, but without this part numerical
applications using wavelet analysis are unthinkable.

For the discrete wavelet transform and its corresponding multiresolution
analysis there exists an exhaustive theory in the one-dimensional case, but
the same cannot be said in higher dimensions. There is, of course, the direct
generalization for tensorial domains, i.e. domains which can be obtained
as a tensor product of intervals, e.g. rectangles and cubes. For classical
problems like image compression this seems to be enough (a photo is always
a rectangular domain), but if one wants to consider more general domains, i.e.
domains which are not invariant under translations and dilatations, one has
to �nd a new approach. Mainly, Fourier analysis methods, used for de�ning
scaling equations, �lters, etc., do not work so easily in these cases.

Nevertheless, a closer look at the above de�ned Qp-spaces reveals the
possibility to apply wavelet methods in this case. The unit disk has its own
group of automorphisms and the Qp-spaces are invariant under this group
making it ideally suited for a wavelet approach.

In this paper we want to outline the possibility to apply Multiresolution
analysis (MRA) to the study of Qp-spaces. We omit here the (in this setting
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rather complicated) discussion of scaling equations, �lter banks and the prac-
tical realization of the discrete wavelet transform in form of a fast wavelet
transform.

2 Preliminaries
In what follows we will work in H, the skew �eld of quaternions. This means
we can write each element z ∈ H in the form

z = z0 + z1i + z2j + z3k, zn ∈ R,

where 1, i, j, k are the basis elements of H. For these elements we have the
multiplication rules i2 = j2 = k2 = −1, ij = −ji = k, kj = −jk = i, ki =
−ik = j. The conjugate element z̄ is given by z̄ = z0 − z1i − z2j − z3k and
we have the property zz̄ = z̄z = ‖z‖2 = z2

0 + z2
1 + z2

2 + z2
3 . Moreover, we can

identify each vector ~x = (x0, x1, x2) ∈ R3 with a quaternion x of the form

x = x0 + x1i + x2j.

Also, in what follows we will work in B1(0) ⊂ R3, the unit ball in the real
three-dimensional space. B1(0) is a bounded, simply connected domain with
a C∞-boundary S1(0). Moreover, we will consider functions f de�ned on
B1(0) with values in H.

The group of Möbius transformations mapping the unit disk onto the unit
disk is given by

ϕa(z) = (a− z)(1− az), |a| < 1.

We now de�ne the generalized Cauchy-Riemann operator by

Df =
∂f

∂x0

+ i
∂f

∂x1

+ j
∂f

∂x2

and its conjugate operator by

Df =
∂f

∂x0

− i
∂f

∂x1

− j
∂f

∂x2

.

For these operators we have that

DD = DD = ∆3,
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where ∆3 is the Laplacian for functions de�ned over domains in R3. Func-
tions belonging to the kernel of D are called monogenic or regular functions.
Let us remark that if we de�ne the action of the above group of Möbius
transformations by

L(a)f(z) =
1− za

|1− az|3f(ϕa(z))

then the result will be again a monogenic function [GS2].
For more information about these topics and general quaternionic analysis

we refer to [GS1], [KS], [GS2], and [Sud].

3 Multiresolution analysis on Bergman spaces
In the classical one-dimensional setting multiresolution analysis is called a
sequence of imbedded subspaces Vj of L2(R), such that

1. ∩∞j=0Vj = {0}
2. ∪∞j=0Vj is dense in L2(R)

3. For any j ∈ Z: f(x) ∈ Vj i� f(2x) ∈ Vj+1

4. For any k ∈ Z: f(x) ∈ Vj i� f(x− k) ∈ Vj

There exists a scaling function φ(x) serving to construct a basis in each Vj,
via

Vj = span{φjk}k∈Z

with
φjk = 2j/2φ(2jx− k), j, k ∈ Z

The main issue of the wavelet approach now is to work with the orthogonal
complement spaces Wj de�ned by

Vj+1 = Vj ⊕Wj

Based on the function φ(x) one can �nd a function ψ(x), the so-called mother
wavelet, of which the translates and dilates constitute orthonormal bases of
the spaces Wj:

Wj = span{ψjk}k∈Z
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generated by the wavelets

ψjk = 2j/2ψ(2jx− k), j, k ∈ Z

Each function f ∈ L2(R) can now be expressed as

f(x) =
∑

k∈Z
cj0kφj0k(x) +

∞∑
j=j0

∑

i∈Z
djkψjk(x).

The transition from f(x) to the coe�cients cjk and djk is called the discrete
wavelet transform.

In the case of Cli�ord-valued functions over the Rn the corresponding
setting was already investigated by M. Mitrea [Mi]. He showed the exis-
tence and regularity of a dual pair of wavelet bases for the �Cli�ord� MRA
of L2(Rn). Of course, this setting is also not limited to the space L2, but can
be used for any Hilbert or Banach space over Rn or any tensorial subdomain.
We only remark that in case of a Banach space the orthogonal decomposition
is substituted by a direct decomposition and the discrete wavelet transfor-
mation cannot be obtained via the inner product of the wavelet basis with
the function f .

But, when we take a look into domains like the unit disk, the standard
setting does not work. Mainly, due to the fact that the groups are di�erent.
In the classical setting we use the group consisting of all translations and
dilatations. Therefore, conditions 3 and 4 mean nothing else than the space
L2(R) being invariant under translations and dilatations, which mean that
in the case of the unit disk we need Hilbert spaces which are invariant under
the automorphism group, the group of Möbius transformations, which map
the unit disk onto the unit disk.

Let us consider the simplest case, the case of a weighted Bergman space
de�ned by the norm

||f ||2p =

∫

B1(0)

|f(z)|2(1− |z|2)pdBz, p ≥ −1.

This space is a Hilbert space endowed with the inner product

< f, g >p=

∫

B1(0)

f(z)g(z)(1− |z|2)pdBz
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We already knew that the automorphism group of B1(0) consists of map-
pings of the form

ϕa(z) = (a− z)(1− az)−1, |a| < 1.

The problems now consists in �nding good replacements for the translations
by Z and the dilatations by 2j in our automorphism group. Principally,
the translations are of major importance because they correspond to the
construction of a basis in Vj or Wj.

Let us take a look at two possibilities.
In the �rst one we shall consider a in polar coordinates a = rξ, where

ξ ∈ S1(0). Then we take r = 2−j as a replacement of the dilatation part
and ξ = ξk generated by the Euler angles

(
2πk1

j
, 2πk2

j
, 2πk3

j

)
, ki = 0, . . . , j,

as a replacement for the translation part. Thus we can consider the spaces
Vj = Vj = span{φjk}k={0,...,j}3 generated by

φjk(z) =
1− 2−jzξk

|1− 2−jξkz|3
φ(ϕ2−jξk

(z))

as well as the spaces Wj = Wj = span{ψjk}k={0,...,j}3 generated by

ψjk(z) =
1− 2−jzξk

|1− 2−jξkz|3
ψ(ϕ2−jξk

(z)),

where φ and ψ are suitably chosen.
For the second approach we rewrite our Möbius transformation ϕa(z) in

the form
ϕa(z) = ϕr,p(z) = p(r − pzp)(1− rpzp)−1p

by choosing a = prp. Taking p = pk the rotations de�ned by Euler angles(
2πk1

j
, 2πk2

j
, 2πk3

j

)
, ki = 0, . . . , j we have the spaces Vj = span{φjk}k={0,...,j}3

and Wj = span{ψjk}k={0,...,j}3 now generated by

φjk(z) =
1− 2−jpkz pk

|1− 2−jpkzpk|3
φ(ϕ2−j ,pk

(z))

and
ψjk(z) =

1− 2−jpkz pk

|1− 2−jpkzpk|3
ψ(ϕ2−j ,pk

(z))
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again with a suitable chosen φ and ψ.
Let us remark that in both cases the translations are replaced by rota-

tions.
Due to the fact that the original Bergman space is invariant under our

Möbius transformations ϕa(z) and the fact that the rotations pk form a dis-
crete subgroup of the group of all rotations we get that in both cases our
spaces Vj satisfy conditions 1 to 4.

One could now argue about the existence of �suitably chosen� functions
φ and ψ, where �suitably chosen� means that φjk and ψjk form a Riesz basis
in Vj resp. Wj. For that we can take as a mother wavelet ψ(z) the functions
ψ(z) = 1 or the Cauchy kernel ψ(z) = z−b

|z−b|3 with a arbitrarily chosen b such
that |b| > 1. Let us remark that if we take b = 0 then we get for each space
Wj some kind of Eisenstein series.

Let us �nish the section with the following theorem:

Theorem 3.1 The discrete Wavelet transform Lψ of a function f with ||f ||p <
∞ is given by the vector

Lψf =

(∫

B1(0)

f(z)ψjk(z)(1− |z|2)pdBz

)

jk

.

4 Multiresolution analysis on Qp spaces
As we already mentioned in the introduction there are di�erent de�nitions
of Qp-spaces, depending on the di�erential operator. Using the gradient we
can consider the following de�nition by J. Cnops and R. Delanghe [CD]:

De�nition 4.1 Let f : B1(0) 7→ H a function de�ned over the unit ball in
R3. Then the Qp-space is the space of all monogenic functions, such that the
semi-norm

|f |Qp = sup
a∈B1(0)

∫

B1(0)

2∑

k=0

| ∂f

∂xk

|2(1− |ϕa(z)|2)pdB,

is �nite, i.e. Qp = {f ∈ ker D : |f |Qp < ∞}.

Using D we obtain the Qp-scales de�ned by K. Gürlebeck, U. Kähler,
M.V. Shapiro, and L.M. Tovar [GKST]:
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De�nition 4.2 Let f : B1(0) 7→ H again a function de�ned over the unit
ball in R3. Then the Qp-space is the space of all monogenic functions, such
that the semi-norm

|f |Qp = sup
a∈B1(0)

∫

B1(0)

|Df |2(1− |ϕa(z)|2)pdB,

is �nite, i.e. Qp = {f ∈ ker D : |f |Qp < ∞}.

For the sake of simplicity we will restrict ourselves to the case of the �rst
de�nition. Let us remark that in the second de�nition Df corresponds to
2∂x0f which allows a similar treatment as in the �rst case from the point of
view of MRA. The Qp-spaces de�ned via the gradient can be easily trans-
formed into Hilbert spaces endowed with the inner product

< f, g >= f(0)g(0) + sup
a∈B1(0)

∫

B1(0)

[
∇f(z) · ∇g(z)

]
(1− |ϕa(z)|2)pdB,

where
[
∇f(z) · ∇g(z)

]
denotes the Euclidean inner product of two vectors.

This allows us to use the same approach as in the previous section.
Due to the fact that these spaces are invariant under the group of auto-

morphisms we can de�ne our wavelet base ψjk in the same way as before.
The main di�erence resides in the discrete Wavelet transform:

Theorem 4.1 The discrete Wavelet transform Lψ of a function f ∈ Qp is
given by the supremum over all vectors

Lψ,af =

(∫

B1(0)

f(z)ψjk(z)(1− |ϕa(z)|2)pdBz

)

jk

,

therefore,
Lψf = sup

a∈B1(0)

Lψ,af.
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