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The idea to calculate solutions of boundary value problems by using finite differences is very 
old. Sixty years ago first attempts were made to consider solutions of discrete Cauchy-
Riemann equations as a class of discrete analytic functions. We refer for instance to [1], [2], 
[4], [10], [13] and [14]. In order to establish a discrete function theory some main problems 
are to overcome: We need a discrete analogue of the Cauchy integral and we are looking for a 
factorization of the two-dimensional real Laplacian into two adjoint Cauchy-Riemann 
operators. Furthermore we are confronted with the problem, that discrete analytic functions do 
not form an algebra with respect to the usual complex multiplication. These are reasons, why 
there was no essential progress in discrete function theories over a long period of time. A 
series of work in Clifford analysis has shown, that a commutative algebra is not necessary to 
adapt function theoretic methods to the solution of boundary value problems. We find a 
survey and a collection of examples in [5] and [15]. These works were inspired by analogous 
ideas in the field of discrete potential theory. Main results on this field are published in [16] 
and [3] and later in [11]. 
In the following we define difference operators that realise the factorization of the real 
Laplacian into two adjoint Cauchy-Riemann operators. Based on the existence of a discrete 
fundamental solution we define a discrete version of the T -operator, that is right-inverse to 
the discrete Cauchy-Riemann operator. In relation with this operator a discrete Borel-Pompeiu 
formula is presented. Furthermore a decomposition of the space  into the space of discrete 
analytic functions and its orthogonal complement is possible. By introducing the orthopro-
jectors  and Q  we can prove properties that guarantee the existence and uniqueness for 
the solution of discrete Stokes problems. In addition we state a problem that is equivalent to 
the Navier-Stokes problem and can be used in an iteration procedure to describe the solution 
of the discrete Navier-Stokes equation. For a special case of the Navier-Stokes equations we 
are able to calculate discrete potential and stream functions. The adapted model includes 
important algebraical properties and can immediately be used for numerical calculations. 
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1. Approximation of the Cauchy-Riemann Operators in the Complex Plane 
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These difference operators have the important property 
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2. Discrete Fundamental Solution 
 

Each 2x2-matrix , which is a solution of the system   with 
 is called discrete fundamental solution. In this notation the discrete Cauchy-

Riemann operator acts on each column of . We obtain the following representation 
formulas: 
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3. Right Inverse Operator and the Discrete Borel-Pompeiu Formula 
 

We consider a bounded domain G  and denote by  the discrete domain. 
Using the notation  we define the 
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where in the union of boundary parts hiγ − , i 1, , 4= K  inner corners are  counted only once and 
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For the proof we refer to [12]. We remark, that the summand T f  is only added in 
order to get a special structure of the discrete Borel-Pompeiu formula. The summation runs 
over boundary points and the factor  causes that this summand of the operator T  tends 
more quickly to zero as  than  . In a similar way we can define an operator 

 such that   For the details we refer to [7].  
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In a similar way a Borel-Pompeiu formula can be proved, which is based on the operators T  
and . For the details we refer to [7]. 
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4. Orthogonal Decomposition of the Space l G  2 ( )h
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5. Discrete Stokes- and Navier-Stokes  Problems in the Plane 
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where ρ  is the density, µ  the viscosity, p the pressure of the fluid, 0f  and 1f  are the vector 
components of the exterior forces, u  and u  are the velocity components of the fluid inside 
the domain, 

0 1

( )mhϕ  is a measure for  the compressibility of the fluid and 0ψ  and 1ψ  are the 
velocity components on the boundary. 
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For the proof we refer to [8]. We remark that the system (2) is only solvable, if a necessary 
condition between ( )mhϕ  and  ( )rhψ  is fulfilled. 
Based on the Stokes problem we will present a possibility to solve the Navier-Stokes 
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The proof is published in [8]. Based on Theorem 5 an iteration procedure can be established 
in order to calculate the solution of the problem (3): 
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is expressed by the solution  of a Stokes problem. 
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6. Potential- and Stream Functions 
 

We consider now a special case of the stationary Navier-Stokes equations. We write the 
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For the details we refer to [9]. The behaviour of the calculated stream lines is presented in the 
following picture: 
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Figure 1:  Behaviour of the stream lines in the discrete case 
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