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Abstract

In this paper we revisit the so-called Bergman kernel method (BKM) for solving confor-
mal mapping problems. This method is based on the reproducing property of the Bergman
kernel function. The construction of reproducing kernel functions is not restricted to real
dimension 2. Results concerning the construction of Bergman kernel functions in closed
form for special domains in the framework of hypercomplex function theory suggest that
BKM can also be extended to mapping problems in higher dimensions. We describe a
3-dimensional BKM-approach and present two numerical examples.

1 Introduction

Let
�

be a bounded simply-connected domain with boundary � � in the complex ��� plane �����	�
����� , and let ����� � � denote the Hilbert space of all square integrable functions which are
analytic in

�
. Consider the inner product in � � � � ������ ��� ��� � � ��� ��� � ���! �"� ��� � � � ��� �$#%	&#'�(�

assume w.l.o.g. that )�* � and let +,�.- � ) � be the Bergman kernel function of
�

with respect to) . Then, the kernel function +,�.- � ) � is uniquely characterized by the reproducing property�/� � +,�.- � ) ��� � � ��) �0�21 � *3� � � � � - (1)

2 The Bergman kernel method for numerical conformal mapping

There are several methods for solving conformal mapping problems. In contrast to most con-
formal mapping techniques, the approximation of the solution obtained by using the Bergman
kernel method (BKM) is an analytic function.

The BKM is a method for approximating the mapping 4 which maps conformally
�

onto
the unit disc 5768�:9<;=6?> ;@> �BADC , in such a way that 4E��) � �B) and 4GFH��) �I� ) . The method is
based on the reproducing property (1) of the kernel function and on the well known relation of+,�J- � ) � with 4 , 4E��� � �LK M+,��) � ) � �/NO +,�QP � ) �.# P � (2)

(see [1, 4, 5]). More precisely, the BKM involves the following four steps:

S1: Choose a complete set of functions 9<R<S C�T � for the space ����� � � .
S2: Orthonormalize the functions 9<RUS CUV � by means of the Gram-Schmidt process to obtain an

orthonormal set 9<R�WS C V � .
1
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S3: Approximate the kernel function +,�J- � ) � by the Fourier sum+ V ��� � ) � � VX S$Y � � +,�J- � ) ��� R WS � R WS ��� � � VX SZY � R WS ��) � R WS ��� � (3)

S4: Approximate 4 by 4 V ��� � �=K M+ V ��) � ) � �[NO + V �HP � ) �.# P0- (4)

The second step of the BKM involves the use of the Gram-Schmidt process which can be
extremely unstable. For this reason we use Maple, as this system provides integration routines
so that the inner products involved in the construction of the Gramian matrix can be computed
without any loss of accuracy (cf. [7]).

For example, in the case of the squared domain\ 6]�^9��_� 	�
���� 6`> 	 > �A � > � > �AaC �
the BKM details are as follows:

The usual choice of the basis set in step S1 is to take the monomials A � � � � � �cbUbUb . In this
example, because of the symmetry of d it suffices to consider the monomials A � �"e � �Df �cbUbUb , the
other inner products being zero, (see Gaier [4]). Denoting by g the number of monomials used,
we have, for example, for gh�i , R � � A and R � �j� e -
The corresponding ON functions areR W� � Ai and R W� � AkDlnm AUo%o 
 AUpo )Dq m Aco%o � e �
the approximation + � to the Bergman kernel function is+ � ��� � ) � � r oo )Dq 
 A ) pA i A l � e
and finally, the approximation 4 � to the conformal mapping function is4 � ��� � � AkDl m A<p kDk M � 
 i Ai p i o i m A<p k%k M �DsU-
Denote by t V the error estimate obtained by sampling the function > A �u>v4 V ��� � >w> at a number of
test points on � \ . The following table contains the values of t V and the errors x V corresponding
to results presented in [7], for several values of g .g i y A r i l i rt V i�-]iaxu�,i p -]iDxu�zy A - p xu� A k q�-{)%xu��i p p -{)%xu��i kx V – A -{q%xu� r A - p xu� A k A -8)%xu��i�q –

TABLE 1. Errors estimates for the square

The results x}| and x ��~ were obtained by Levin et al [8] and Papamichael et al [9], respec-
tively, and are the best possible. The result x � f was obtained by Jank [7] by using the Maple
system. At that time it was not possible to reach values of g � A r . Now it is clear that by
using the Maple system and thus avoiding, whenever it is possible, the numeric Gram-Schmidt
process, it is possible to obtain better results.
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3 From � to �
The construction of reproducing kernel functions is not restricted to real dimension 2. In-
deed, the two complex variable case has been already considered by Bergman himself (c.f.[1]).
Moreover, results concerning (and restricted to) the construction of Bergman kernel functions
in closed form for special domains in the framework of hypercomplex function theory (which
not supposes the consideration of spaces corresponding to even real dimensions) can be found
in [2, 3, 10, 11]. They suggest that BKM can also be extended to mapping problems in higher
dimensions, particularly 3 or 4-dimensional cases.

We describe such a generalized BKM-approach and present numerical examples obtained by
the use of specially developed software packages for quaternions. A general and more rigorous
exposition with more technical details and examples will be published elsewhere. We will use
the notations of [6] without repeating them here.

3.1 The Bergman Kernel Method

Let
�

be a bounded simply-connected domain in ��� and consider the � -valued functions de-
fined in

�
: 436D� ��� � e��� �4?� 	(� �� O 4 O � 	(��
 � � 4 � � 	(�n
 � � 4 � � 	(��
 � � 4 � � 	(���

where 	 ��� 	 O �$	 � �$	 � � *�� � , � O 68� A , � � � � � � � � are the canonical quaternionic units and 4D�
are real valued in

�
functions. On the set � � � � � � � define the quaternionic Cauchy-Riemann

operator 5�� �� 	 O 
 � � �� 	 � 
 � � �� 	 � �
and recall that a � � -function 4 is called left-monogenic (resp. right-monogenic) in a domain

�
if 5�4��j) � in

�
( resp. 4G5:�j) in

� � -
Now denote by ���� � � � � � the right-Hilbert space of all square integrable � -valued functions,
endowed with the inner product:� 4?��� �0� � ��� ��� � �! 4?��� � � ��� ��#�� - (5)

The right linear set ���� � � � � ��� ker 5 is a subspace in ���� � � � � � and has also a unique repro-
ducing kernel +,��� ����� , i.e� +,�.- ������� 4 � �u4?� ���0��1 43*3� �� � � � � ��� ker 5h- (6)

and if we now take an orthonormal complete system of functions 9<R�WS C then it can be proved a
Fourier series expansion for all functions 43*3���� � � � � ��� ker 5

4?��� � � TX SZY � R WS ��� � � R WS � 4 �
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and therefore +,��� ����� � TX S$Y � R WS ��� � � R WS � +,��� ������� � TX S$Y � R WS ��� � R WS � ��� - (7)

It is well known that the monogenic Fueter polynomials are a complete set of functions (see p.e.
[6]) and thus steps S1 - S3 can be rewritten easily in order to obtain a numerical procedure to
construct approximations to + similar to the complex case.

All these results underline that the Clifford analysis and one complex variable analysis are
closely connected. Thus, if we go further and introduce

S4 Compute 4 V ��� � �j� V �[NO + V �HP � ) �Z# P0�Egh� A � i �cbUbUbG�
where � V denotes some constant (depending on + V ��) � ) � ), shall we get a “mapping” function
from the domain

�
to a sphere?

Before attempting to answer this question, we should make some remarks.

Remark 1. The polynomials RUS are in
�j� ��� ��j� 6]� span �`9 A � � � � � � C , but the corresponding

ON polynomials R WS are, in general, in � � � ��e . This means that the kernel function + and the
mapping function 4 are, in fact, functions from

�
in � e .

Remark 2. From the geometric and practical point of view, we would like 4 to map domains��� � � to a sphere (for the moment, not necessarily the unit sphere).

Remark 3. It can be proved easily that if a function 4 of the form 4��4?��� � �u4 O ��� �U
 4 � ��� � � � 
4 � ��� � � � � is left-monogenic then 4 is also right-monogenic. Conversely, if a function of the form4��4E��� � �u4 O ��� ��
 4 � ��� � � � 
 4 � ��� � � � 
 4 � ��� � � � � is monogenic from both sides and is such that �¡ * � 6¢4?� ¡ � ��) � then, 4 � ��) � i.e. 4£6%�I� � � � � ���"-
Remark 4. We do not expect 4 to be right monogenic from both sides. We recall that Möbius
transformations are the only conformal mappings in ��¤?¥ � � �H¦¨§©i � , but quaternionic Möbius
transformations themselves are neither left nor right monogenics. However, the results pre-
sented in Remark 3 give the motivation for the numerical procedure we propose for computing4 in step S4 of BKM.

S4.1 Approximate the mapping function � 6 � � � by� V ��� � � ��NO + V �QP � ) �Z# P0��gª� A � i �«bUbUb (8)

S4.2 Approximate the mapping function 4 by “cutting” the “ � � -part” in (8), i.e. if � V is of the
form � V ��� � � �!¬ O.V ��� �2
 �!¬ � V ��� � � � 
 �!¬ � V ��� � � � 
 �!¬ � V ��� � � � � (9)

then construct the function 4 V from
�

into � � � ��� by means of4 V ��� � � �!¬ O.V ��� �2
 �!¬ � V ��� � � � 
 �!¬ � V ��� � � � - (10)
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3.2 Numerical examples

We apply now the above technique to a cube and a L-shaped domain. Consider first the cube® 6]�©9�� 	2�¯�&� � � *h� � 6G> 	 > �A � > � > �A � >v�(> �jADC -
For °±�ui the ON polynomials in step S2 areR W� � �s ~ m k )�� 	 � � � 	 �O ��i 	 � 	 O � � �0�R�W� � ���� e m A q�� A q 	 � 	 � � A q 	 � 	 O � � �zq 	 � 	 O � � 
 � p 	 � � � p 	 �O � � � ���R W� � ���� m A )��J� 	 � � � 	 �O 
 i 	 �� ��i 	 � 	 O � � 
 i 	 � 	 � � � � -
and the image of

®
by the BKM approximation 4 � � is illustrated in Figure 1(a).

The analysis of the “ � � -part” in (9), i.e. � ¬ � ² ��� � shows some evidence that as ° grows this
function gets smaller. However we did not go further than ° � A q , as our program becomes
very time consuming. Figure 1(b) corresponds to the plot of � ¬ � � e ��� � , where �³*©9�� 	2�¯�&� � � *���´6 	 � A � > � > �uA � > �(> �AaC .
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FIGURE 1. The mapping functions 4 � � � ® � and � ¬ � � e ��� �
Consider now the L-shaped domain presented in Figure 2(a). The BKM result for °µ� r is

illustrated in Figure 2(b).
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FIGURE 2. An L-shaped domain

It is well known that for a 2-dimensional L-shapped domain, the classical BKM gives very
poor approximations to the conformal mapping function 4 as this function has a serious branch
point singularity (see [9] for all the details). Although we do not have for the moment a the-
oretical justification for the remarkable results achieved by the BKM proposed, even for small
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values of ° and a “difficult” domain, we are convinced that this BKM-approach for 3 dimen-
sional cases works and it is useful to continue the investigation in this direction.
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