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The analysis of dynamic behaviour of pre-stressed systems under 
polyharmonic excitations 

Dr. V.E. Volkova, PhD., Associate Professor, Dniepropetrovsk National University of Railway Transport, 
Dniepropetrovsk, Ukraine (drvev@pisem.net)) 

Summary 
Pre-stressed structural elements are widely used in large-span structures. As a rule, they have 
higher stiffness characteristics. Pre-stressed rods can be applied as girders of different purpose, 
and as their separate parts, e.g. rods of trusses and frames. Among numerous ways of pre-
stressing the compression of girders, trusses, and frames by tightenings from high-strength 
materials is under common application. 

1 Peculiarity of dynamic behaviour of pre-stressed systems  
The non-linearity of pre-stressed systems dynamic models, as a rule, is a consequent 
with non-linearity of their stiffness characteristics. In contrary to simple rod, the 
dynamic behaviour of rod pre-stressed by tightening, is connected to operating of 
tightenings reaction forces. The influence of a tightening on oscillating rod is reflected, 
at first, in operating longitudinal forces compressing each span of a rod; at second, to 
concentrated shear forces put in tightening attachment points; at third, to bending 
moments applied  in cross sections of a rod. During oscillations these forces not only 
change their value, but also they are turn at the same segment of a tightening, by 
reactions which one they are [3]. 
Peculiarity of studied systems dynamic behaviour is: 
- dependence of an oscillation frequency to amplitude; 
- capability of stalling sub- and superharmonic oscillations; 
- existence of great number periodic regimes at fixed frequency of excitement. 
These phenomena can lead to destruction or installation of emergency regimes in 
dynamic systems. Strength definition and the fatigue life of pre-stressed elements 
correctly is impossible neglecting of their non-linearity. 

2 Free oscillations of pre-stressed rods 
Let's consider oscillations of a hinged rod of length l . It is suspossed, that the rod has 
uniform cross section. The tightening is attached to centre of gravity of end sections. 
The geometrical and structural schemes are given in Fig. 1. 
The differential equation of free transversal oscillations of this rod has a view [1] 
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where EIB =  is flexural stiffness; y  is co-ordinate transversal displacement of a rod; 
x  is co-ordinate  along a centreline of a rod; N  is reaction force of a tightening, which 
one is determined under the formula 
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where *N  is controlled tension of a tightening; EF  - compression stiffness of a rod; m  
is per unit length weight of a rod; t  is time, in seconds. 
 

a) 

 
b) 

 
Figure 1 

The geometrical and structural scheme is central pre-stressed  rod  

The solutions of Equation (1) can be given in form 
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If we  substitute value of tightening reaction in equation (1) and section variables, we 
can receive an equation of free oscillations is central of pre-stressed rood[2] 
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The given equation is similar to an Duffing equation 
 

03 =φβ+φα+φ&& .       (4) 
 

The coefficient α  can obtain both positive and negative values depending on a level of 
pre-stressing. In most cases, controlled tension in a tightening does not exceed Euler 
force ( E

nNN <* ) that is why coefficient α  has positive value. So, investigated 
dynamic system is rigid. It has one steady equilibrium state. Otherwise, at 

0,* <α> E
nNN  - the system has three non-adjacent equilibrium state (system with 

double-well potential). The smoothness of deforming for such elements is upset and 
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discontinuous transition from one steady equilibrium state to other, non-adjacent [1] at 
definite level of outer excitement.  

3  Methods of the analysis of dynamic behaviour pre-stressed systems 
Traditionally at the analysis of systems dynamic behaviour the experimental records of 
time processes ( )tφ , phase trajectories  ( )φφ ,&  are used. But not always enough precise 
and full description of real objects can be constructed on their basis. As demonstrate 
results, these time processes and the spectral characteristics in some cases don’t give the 
answer to question: "whether  system linear or not? "[2]. It is connected with the fact 
that at nonresonant regimes of oscillations are close to monoharmonic. The known part 
of error can also be brought by an error in selection of a discretization step at processing 
of results. 
The structure of the phase diagrams ( )φφ ,&  gives more complete information. It allows to 
make considerations about periodicity of dynamic processes and existence of singular 
points conforming to steady or unstable equilibrium state, but does not give a possibility 
to determine their position. 
Other selection of phase planes parameters is also possible. The phase plane ( )φφ ,&&  is of 
great interest. It is connected that the power dependencies on it are interpreted most 
visually. In particular, the area, restricted by curve ( )φφ&&  equals to activity, and the 
circumvention of its counter-clockwise corresponds to energy loiter system. Besides the 
relation ( )φφ&&  is mirror symmetrical relative an axis φ  to the graphs of restoring 
characteristic change [2]. The graphs ( )φφ&&  allows to establish a kind and level of non-
linearity of a system. 
Except for the suggested phase diagram ( )φφ ,&&  for the analysis of system dissipative 
properties the phase diagram ( )φφ &&& ,  can be used. The main difficulty on phase diagrams 
( )φφ ,&&  and ( )φφ &&& ,  construction consists in necessity to exclude parameter of time t . 
Analytically to execute this operation it is not always possible. The majority of 
measuring devices is registered the changes of displacement, velocity and accelerations 
of investigated systems points in time. Taking sequentially the pairs of values of 
parameters ( )tφ&&  both ( )tφ  or ( )tφ&&  and ( )tφ& , it is possible to form this phase 
trajectories. 

4 Technique of computing modelling 
Let’s investigate forced oscillations of systems drawing by non-linear differential 
equation of a view 
 

tP ω=φβ+φα+φε+φ cos3&&& ,      (5) 
 
where ε  is damping coefficient; βα,  - are coefficients determining nature of non-linear 
restoring force, ω,P  - characteristic of an outer excitement. In order to obtain relations 

( )tφ&& , ( )tφ& , ( )tφ  the software was developed. The fourth order Runge-Kutta method had 
been used in its. The integration step was adopted from a stability condition of a 
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numerical integration procedure at different parameters of an equation (4). It has 

,
600
Tt =∆  where T  - a period of free oscillation, it provided stability of procedure.  

It is known, that the free oscillations of non-linear systems are not monoharmonic. For 
an estimation of influencing of separate harmonics in the software the unit of spectral 
analysis had been formed. It was realised on the basis of algorithm of a fast Fourier 
transform.  

5 Analysis of a obtaining results 
The investigation of free oscillations selected for dynamic systems depicted by an 
equation (7), was conducted at following values of parameters: 15.0 −=ε s ; 

227660000 −−=β sm ; the coefficient α  was received for rigid systems equals 
28.40 −=α s , amplitude of an outer excitement is 15.1 −= msP   

In a fig. 2 and 3 the results of investigation for resonant and nonresonant oscillatory regimes of 
rigid systems are shown.  
Analysing phase trajectories on planes ( )φφ &&,  shown in a fig. 2, it is possible to make the 
conclusion about a symmetry of the elastic characteristic.  
  
a) 

 

b) 

 
Figure 2 

The time processes, spectral characteristics and phase trajectories of a “rigid” system: a) of resonance oscillations on 
frequency of a excitement; b) nonresonant oscillations on frequency of a excitement. 

The kind of relation drawing system elastic characteristic is possible to establish by using 
methods of an analytical geometry. So, the phase trajectories on planes ( )φφ &&,  for oscillations 
on frequency of a fundamental component look like a cubic parabola. The phase trajectories of 
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resonance oscillations have the greatest number of points. That is why, they are of great interest. 
The method of least squares is possible to use for definition of values of parameters α  and β , 
in the supposition of a normal distribution of measurements errors.  
 
a) 

 

b) 

 
Figure 3 

The time processes, spectral characteristics and phase trajectories of a “rigid” system: а) symmetrical combinative 
oscillations; б) of a subharmonic oscillation 

a) 

 

b) 

 
 c) 

 

 

Figure 4 

Graphs of response curves of symmetrical combinative oscillations  

Influence of ultraharmonic oscillations and subharmonic oscillation results in change of time 
processes ( )φ&&,t , they have polyharmonic nature, and to appearance of adding closed loops of 
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phase trajectories  ( )φφ &&,  and ( )φφ &&& , , position and orientation which one depend on the order of 
harmonicses. 
The analysis of system dynamic properties on the basis of time processes having polyharmonic 
nature is difficult. In most cases both response of a system and outer excitement measured. It is 
possible to simplify a procedure of investigation excluding an outer excitement from parametric 
relations ( )φφ&&  (see a fig. 4).  

The development of qualitative methods of dynamic systems investigation suggested by the 
author is an effective means of the analysis and identification of dynamic systems. 
Simultaneous usage of all three kinds  of signals, registered in time, namely displacement, 
velocity and acceleration allows considerably to expand possibilities of existed methods of 
investigation. 
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