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Summary
An  integrated modeling of freeway traffic is developed, whose implementation in an uniform com-
puter–aided simulation model facilitate comparative evaluation and systematic coupling of several
traffic simulations, traffic controls, traffic measurements and traffic scenarios. The integrated mo-
deling of freeway traffic is a basic mapping of freeway networks, control methods, measurements
and different simulations of traffic flow.

Commonly, the simulation of traffic flow bases on microscopic, macroscopic or mesoscopic traffic
modeling. A microscopic modeling featuring descriptive rules is developed. A macroscopic mode-
ling consisting of Navier–Stokes–like equations is considered. An integration of the microscopic
modeling in any macroscopic modeling leads to a novel rule–based mesoscopic modeling. The
three different modelings are numerically approximated by different numerical methods. In parti-
cular, the finite element method can successfully be applied to the macroscopic modeling.

The simulation programs evolved from implementations of numerical approximations of the three
modelings are verified for usefulness in perturbation analysis and comparison of simulation results
with detector data. Both the microscopic and the macroscopic simulation are able to reproduce typi-
cal traffic phenomena like traffic jams or stop–and–go waves. Choosing a suitable velocity–distan-
ce–relation the mesoscopic simulation proves a consistent link between microscopic and macros-
copic simulations. The velocity–distance–relation respectively the velocity–density–relation are
the decisive parameters of the shown simulations. Due to changes of these parameters, the simula-
tion reacts very sensitively.

1   Freeway Traffic
Freeway traffic characterizes translocations of people or goods via vehicles in a freeway network.
The behavior of vehicles and their interactions in a freeway network forms a traffic flow. The traffic
flow should be interferenced by traffic control methods like static or variable traffic signs. The reali-
zation of an efficient traffic control system requires data obtained by traffic measurements.

An integrated modeling of freeway traffic has to consider the components traffic flow in the freeway
network, traffic control and traffic measurement as well as the dependencies and influences bet-
ween these components (see figure 1). Furthermore the modeling should be integrated in the simu-
lation of traffic flow, traffic control and traffic measurement to be used for short–term forecasts.
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Figure 1: Dependencies and influences between traffic flow , traffic control, traffic measurement and traffic modeling



1.1   Freeway Network
A freeway network is the basis for freeway traffic. It is characterized by its network structure. In
order to model this structure, it is advisable to decompose the network in small uncomplex sections.
The sections and their correlations are mapped as nodes and edges in directed or bipartite graphs
(Pahl and Damrath 2002). The geometry of a section is modeled by a cell. The geometry of a free-
way network is a graph of cells called cellcomplex (Milbradt 2001).

Different traffic problems need different detailed modelings of the freeway network. For example,
finding an optimal route through the network requires a shortest path algorithm (Rose 1996) in a
less detailed graph of the network. Whereas a simulation of traffic flow demands a very detailed
graph of the network.

In order to consider different traffic problems a hierarchical system of freeway networks with diffe-
rent levels of detail is modeled. In this modeling a freeway network consists of seversal freeways,
a freeway consists of to contrariwise directed carriageways and a carriageway consists of parallel
lanes. A freeway network is decomposed in freeway sections by cross sections of the freeway com-
pletely. The structure of a cellcomplex with two different kinds of sections, like interchanges and
freeways between this interchanges, is a bipartite graph (see figure 2). A freeway section is decom-
posed in carriageway sections, a carriageway section is decomposed in segments and cross sections
and a segment or a cross section is decomposed in segment lanes or cross section lanes.
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Figure 2: Hierarchical system of a freeway network with different levels of detail

Essential for this hierarchical system is the consistence of structure, geometry and physics between
different levels of detail. Each subcellcomplex or rather each subgraph on a level is unequivocally
mapped to one cell respectively  one node on the next higher level. The geometrical and structural
consistence is guaranteed. The physics of the freeway network as well as the physics of traffic flow,
traffic control methods and traffic measurements in the network must also be consistent between
the different levels and between adjacent sections in a network of the same level.



1.2   Traffic Control
Traffic control has to be considered by operational traffic methods in an integrated modeling of free-
way traffic. In principal, two different kinds of traffic methods exists. Firstly there are static me-
thods like traffic signs or long term road works. Secondly there are dynamic methods like alterna-
ting direction signs or light–signal systems. Methods interference traffic flow on a carriageway
either at a position, for instance by a direction sign, or in a range, for instance by a speed limit (see
figure 3). With the decomposition of a freeway network, shown in figure 2, a method at a position
is modeled as a component at a cross section lane. This cross section based component allows modi-
fications of downstream traffic flow behavior. A method in a range of a carriageway is modeled
as a component at a segment lane. This segment lane based component acts as a resistance for the
traffic flow.
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Figure 3: Modeling of traffic control measures on a carriageway section

1.3   Traffic Measurement
Traffic measurements are used to collect data of the traffic flow on a carriageway section. The traffic
data allow statements about spatial and temporal processes of traffic state values on the section.
Normally traffic measurements are either momentary measurements or local measurements.

A momentary measurement leads to a spatial distribution of vehicles on a segment of the carriage-
way at a particular time. The proportion of the counted vehicles to the segment length is a characte-
ristic value for traffic density. Two short–delayed momentary measurements allow the determina-
tion of the relevant mean velocity. One possible momentary measurement is a photo of the segment.
A momentary measurement is modeled by several components at the segment lanes of the shown
decomposition of a freeway network.

A local measurement leads to a temporal distribution of vehicles at a cross section of the carriage-
way during a time interval. The proportion of the counted vehicles to the time interval is a characte-
ristic value for traffic volume. Two near–displaced local measurements allow the determination of
the relevant mean velocity.  Possible instruments for a local measurement are detectors like radars
or induction loops. A local measurement is modeled by several components at the cross section
lanes of the shown decomposition of a freeway network.
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Figure 4: Modeling of traffic measurements on a carriageway section



1.4   Traffic Flow
Traffic flow is determined by the movements and interactions of the vehicles on a carriageway in
one direction. It is discribed in a space–time diagram (see figure 5). The diagram plots the positions
of all vehicles on a carriageway section at each time in a particular time interval. A motion curve
for every vehicle in the traffic flow occurs. The curve discribes the vehicle motion on the section
in the time interval. The gradient at each point of the motion curve is equivalent to the velocity of
the accordant vehicle.
There are some essential characteristics to discribe traffic flow: Traffic density characterizes vehi-
cles in a section at a time. Traffic volume characterizes vehicles at a position in a time interval. Mean
velocity is the average of all vehicle velocities in a traffic flow. Definitions of this characteristics
depends on various control regions. A spatial density �s  and mean velocity vs  is defined in a spatial
control region (see figure 5a) at position x at time t with a length �x as follows:

�s :� ns (x,�x, t)
�x vs :� 1

ns
�

ns

a�1

va (x,�x, t) (1)

A traffic volume is not definable in a spatial control region. A temporal volume qt  and mean velocity
vt  is defined in a temporal control region (see figure 5b) at position x at time t with a time length
�t as follows:

qt :� nt (x, t,�t)
�t vt :� 1

nt
�

nt

a�1

va (x, t,�t) (2)

A traffic density is not definable in a temporal control region. A spatiotemporal density �st , volume
qst  and mean velocity vst  is defined in a spatiotemporal control region (see figure 5c) at position
x at time t with a length �x and a time length �t as follows:

�st :� �

nst

a�1

�ta �(�t �x) qst :� �

nst

a�1

�xa �(�t �x) vst :� �st
qst

(3)

Coherences of characteristics are only allowed in the same control region. The well known flux
relation is only valid for density, volume and mean velocity in a spatiotemporal control region:

qst � �st � vst (4)
The values of a momentary measurement are equal to the characteristics of a spatial control region.
The values of a local measurement are equal to the characteristics of a temporal control region. The
flux relation (4) is neither applicable for momentary nor local measurement data. Presently, a traffic
data measurement in a spatiotemporal control region is not available.

x

t

xx

�t

�x

t
x

�t

x

�x

a) b) c)

Figure 5: Spatial, temporal and spatiotemporal control region in a space–time diagram

Traffic flow in a freeway network is mapped by various modelings. Microscopic modelings discri-
be each vehicle individually. Macroscopic modelings treat the traffic flow like a continuous fluid
flow. Mesoscopic modelings are links between microscopic and macroscopic modelings.



2   Microscopic Modeling
Microscopic modeling maps traffic flow as a set of individual vehicles. Each vehicle is identifiable
and is modeled. The behavior of a vehicle depends on its own drive and on influences of its environ-
ment. The basic microscopic modeling is the so–called Follow–the–Leader modeling, in which the
motion of a vehicle a depends on the distance and the velocity diffence to a leading vehicle b (e.g.
Gazis, Herman and Rothery 1961).
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Figure 6: Microscopic modeling of traffic flow as a set of individual interacting vehicles

The behavior of vehicle a will be modeled by two conditional equations. The first conditional equa-
tion is the temporal derivation of its position xa(t) at time t. This is equal to its velocity va(t):

dxa(t)
dt � va(t) (5)

The second conditional equation for vehicle a is the temporal derivation of its velocity va(t) at time
t. This is equal to its acceleration aa(t):

dva(t)
dt � aa(t) (6)

Microscopic modelings differ in varying mappings of the acceleration. In this case a rule–based
modeling of the acceleration is developed:

aa(t) �

�

�

v0
a � va(t)

�0
a

Vs
a(�xa) � va(t)

�s
a

�
�v2

a
�xa � lb
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, �(X) � 	
0 if X 
 0
1 if X � 0 (7)

There are Heaviside functions �(X) in equation (7), working like an if–statement in a computer
language, to manage the use of each rule in a line of equation (7):
• Rule 1 (desired velocity) arranges the behavior of the vehicle a without any outside influences.

Vehicle a adapts its velocity va(t) to its desired velocity v0
a with a relaxation time �0

a.
• Rule 2 (safe distance) arranges the behavior of vehicle a behind a leading vehicle b. Vehicle a

try to keep a safe distance to the leading vehicle b. This means, that vehicle a adapts its velocity
va(t) to a velocity Vs

a depending on the distance �xa(t) � xb(t) � xa(t) between the vehicles.
The velocity–distance–relation Vs

a is a strictly monotonic increasing curve, which runs from
Vs

a(0) � 0  to Vs
a(�xa � safe distance) � v0

a. The velocity–distance–relation Vs
a can hardly be

determined, because different vehicles and different drivers differ extremely in their behavior.
• Rule 3 (braking) arranges the behavior of vehicle a when the safe distance to the leading vehicle

b cannot be adhered and vehicle a has to slam on the brakes. According to the kinetic laws the
required braking is directly proportional to the square of the velocity difference �va(t) �
vb(t) � va(t) and indirectly proportional to the distance �xa(t) between the vehicles.

The rule–based modeling is plain and may be modified and updated easily at any time. For example,
the sharply form of the Heaviside function �(X) can the replaced with a softer form like a fuzzy–
function. Or the rules in equation (7) can upgraded with additional rules for multi–lane traffic.



The modeling of a multi–lane traffic is illustrated in the following figure with a vehicle a on lane
1 and several vehicles, which are leading or following this vehicle on lane 0, lane 1 or lane 2.
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Figure 7: Microscopic modeling of multi–lane traffic flow

Vehicle a on lane ya(t) at time t changes the lanes with �ya(t) during the time interval dt:

ya(t � dt) � ya(t) � �ya(t) mit �ya(t)  {
� 1, 0, 1} (8)

The lanes changing �ya consists of a rule for overtaking to the left–hand lane �y�a  and a rule for
pass back to the right–hand lane �y�a :

�ya � �y�a �
�1 � �y�a � � �y�a (9)

�y�a � ��v0
a � Vs

a�xb � xa�� � ��Vs
a�xbl � xa� � va� � ��Vs

al
�xa � xal� � val�

�y�a � ��Vs
a�xbr � xa� � va� � �(Vs

ar(xa � xar) � var)

3   Macroscopic Modeling
Macroscopic modeling maps traffic flow as a continuous unity of “fluidized” vehicles. No vehicle
in the traffic flow is identifiable. The traffic flow is characterized by macroscopic state values like
density, volume and mean velocity, which is associated with each other by the flux relation. Follo-
wing this approach a traffic flow is treated as a continuous fluid flow in fluid dynamics (first pu-
blications by Lighthill and Whitham 1955).
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Figure 8: Macroscopic modelings of traffic flow as a continuous unity of “fluidized” vehicles

The behavior of state values in a continuous traffic flow is modeled by two conditional equations.
The first conditional equation is the well–known equation of continuity, which assures the conser-
vation of mass or rather the number of vehicles in a one–dimensional space:

��(x, t)
�t �

�q(x, t)
�x � 0 (10)

 The second conditional equation is an equation of motion with a derivation of the mean velocity:

�v(x, t)
�t � v(x, t)�v(x, t)

�x � a(x, t) (11)

Macroscopic modelings differ in varying mappings of the acceleration in equation (11). One alter-
native is to transfer the shallow water equation for fluid flow to a Navier–Stokes–like equation for
traffic flow (Kühne 1991):

a(x, t) � V(�) � v(x, t)
� �

1
�(x, t)

�p(x, t)
�x �

�

�(x, t)
�

2v(x, t)
�x2 (12)



The first term on the right side of equation (12) is an adaptation term. It models the adaption of the
mean velocity v(x, t) to a mean velocity V(�) with a relaxation time �. The velocity–density–rela-
tion V(�) is the well–known fundamental diagram of traffic flow. It is a strictly monotonic decrea-
sing curve, which runs from V(0) � v0 to V(�(x, t) � �max) � 0, whereas �max is the density in
a standing traffic jam. V(�) is only defined for a homogeneous and stationary traffic flow. This
means all vehicles drive equidistant with the same velocity. Such a hypothetical traffic flow cannot
be measured in a freeway network.

The second term is a so–called pressure term modeling influences of a local pressure p(x, t) �
c2

� �(x, t) with a propagation velocity c. The third term is a viscosity term weighted with a dyna-
mic viscosity �.

4   Mesoscopic Modeling
Mesoscopic traffic modeling is a consistent link between microscopic and macroscopic modelings.
The link is reached by a transition from a microscopic to a macroscopic modeling. The usual transi-
tion with the theory of stochastic processes (Helbing 1999) is very extensive. Thus a mesoscopic
modeling is developed from the plain rule–based microscopic modeling in chapter 2.

Mesoscopic modeling bases on a distance–density relation establishing a link between the distance
of two sequenced vehicles in a microscopic modeling and the density in a macroscopic modeling.
If a vehicle a is at time t at the position x, then the leading vehicle b is at position x+s.
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Figure 9: Distance–density relation as a basis of a mesoscopic modeling

A macroscopic modeling discribes the number of vehicles by traffic density. The number of vehi-
cles between the positions x and x+s is exactly one, hence the density between x and x+s is exactly
one. The distance between two vehicles is modeled by an integral of density from x to x+s:

�

s

0

�(x � �, t) d� � 1 � 
 0 s 
 0 (13)

The conditional equations of the mesoscopic modeling contain the distance–density relation (13),
the equation of continuity (10) and an equation of motion (11). According to the equation (7) the
acceleration a(x, t) is composed by three terms:

a(x, t) �

�

�

v0
� v(x)
�

Vs(s) � v(x)
�

�
(v(x � s) � v(x))2

s � l

�
�1 � ��v0 � Vs(s)��

� ��v0
� Vs(s)�

� �(v(x) � v(x � s))
� �(v(x) � Vs(s))

(14)

The first term is the rule of driving with desired velocity. The second term is the rule of keeping
a safe distance to a leading vehicle. The third term is the rule of braking behind a leading vehicle.
Futher information to this mesoscopic modeling, particularly to its consistence and an update for
multi–lane traffic, can be extract from (Rose 2003).



5   Numerical Realization
The modelings in chapters 2, 3 and 4 consist of continuous conditional equations. These nonlinear
partial differential equations cannot be solved analytically. They have to be solved numerically.
There are several numerical methods to convert the continuous equations in discrete equations. The
implementation of these discrete equations leads to simulations allowing comparative calculations
and forecast calculations. The numerical methods are for instance finite volume methods, finite dif-
ference methods, finite element methods or cellular automatons. Exemplary, a finite element me-
thod will be applied to the macroscopic modeling in chapter 3 and a finite difference method will
be applied to the mesoscopic modeling in chapter 4.

5.1   Finite Element Method for the macroscopic modeling
In the finite element method the progression of the unknown state values will be approximated by
simple functions, which have to approximate the real progression as much as possible (e.g. Zienkie-
wicz and  Taylor 2000). For the macroscopic modeling of  traffic flow on a carriaggeway section,
the approximation functions should be piecewise limited on the segments.

The conditional equations of the macroscopic modeling are the equation of  continuity (10) and the
Navier–Stokes–like equation of motion (11) with (12). This system of nonlinear partial differential
equations is written in a matrix notation:

�u
�t � A �u

�x � B �
2 u

�x 2 � f (15)

u (x, t) � �
� (x, t)
v (x, t)�    A � �

v
c 2

��

�

v�    B � �

0
0

0
����    f � �

0
1
�

(V (�) � v)�

First, the infinite space of solution will be approximated in a finite space, which is spaned by N
linear shape functions �i(x). The numerical solution u~(x, t) is discribed as a linear combination of
the shape functions �i(x) and the discrete state vectors ci(t):

u (x, t) � u~ (x, t) ��

N

i�1

c i (t) � i (x) c i (t) � �
� i (t)
v i (t)� (16)

Inserting the numerical solution u~(x, t) in the matrix notion (15) leads to a defect d(u~):

d (u~) ��

N

i�1

� i (x)
�c i (t)
�t ��

N

i�1

A
�� i (x)
�x c i (t) ��

N

i�1

B
�

2 � i (x)
�x 2 c i (t) � f (17)

The target of the numerical methods is to minimize this defect, for instance with an Upwind–Pe-
trov–Galerkin method:

�

L

0

�I � j (x) � 	A
��j(x)
�x � d (u~) dx � 0 (18)

The Upwind–Petrov–Galerkin method (18) is an upgrading of the well–known standardised Galer-
kin method. The solution of the Galerkin method tends to oscillate. The Upwind–Petrov–Galerkin
method damps this oscillations with a damping term weighted with an upwind–coefficient 	�

An analytical or numerical integration of the equations (18) leads to a global system of equations,
whose solution follows either by creation of the inverse M�1 or by the usage of a solver. The finite
element method for the macroscopic traffic modeling, particularly a proposal for an appropriate
upwind–coefficient 	, is expatiated in (Rose 2003).

The results of the finite element method for the Navier–Stoke–like traffic flow modeling are nearly
the same as the results of a finite difference method by (Kerner, Konhäuser and Schilke 1996).



5.2   Finite Difference Method for the mesoscopic modeling
In the finite difference method the progression of the unknown state values will determined for va-
lues at discrete points on a grid. Differential quotients between adjacent grid points will be replaced
with difference quotients. In the mesoscopic modeling of  traffic flow on a carriaggeway section,
the grid points are the cross sections. The conditional equations are the distance–density relation
(13), the equations (10), (11) and (14). The numerical solution of (13) is a piecewise linear integra-
tion over each segment of the considered carriageway.

xx j�1 x j x j�2x j�1

� i
j�1

� i
j � i

j�1
� i

j�2

� (x)

x j�3 x j�4

� i
j�3 � i

j�4

1

s i
j

s

Figure 10: Integral of the density from x j to x j � s i
j on the discrete carrigaeway section

Replacing the differential quotients with difference quotients leads to the following equations:

��i
j

�t � vi
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j
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(20)

These equations are calculated implicit or explicit in every step of a time–step–method like the
Runge–Kutta method or Fehlberg method. The numeric stability of an explicit time–step–method
is guaranteed by fulfilling the Courant criterion at every cross section in every time step.

6   Computer Simulations
An implementation of the numerical realization of a traffic flow modeling leads to a computer simu-
lation of traffic flow. The Simulation assists a traffic engineer with the analysis of traffic situations
in a freeway network and the development of traffic control methods. The correctness and the quali-
fication of a traffic flow simulation for a concret traffic problem will be determined with a pertuba-
tion analysis and a comparison of simulation results and measurement results.

6.1   Perturbation Analysis
The perturbation analysis is a comparative study of effects by a small perturbation to an undisturbed
taffic state. At various densities, an initially homogeneous traffic flow on an annulus carriageway
will be disturbed with either no perturbation, a local perturbation (for instance by a short braking
of one vehicle) or a global perturbation (for instance by a natural fluctuations in the traffic flow).
Several simulations with the microscopic modeling, the macroscopic modeling and the mesoscopic
modeling are almost showing quantitative nearly the same results with similar parameters.



Without a perturbation, the homogeneous traffic flow in all simulations doesn’t change. At this in-
itial state, the computer simulations are correct. An initially local perturbation in a micorscopic si-
mulation with a few vehicles on the ring disappears after a short time. Successive increasing of the
vehicle number in the initial state produces traffic jams, stop–and–go waves and wide jams.
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Figure 11: Motion curves of the microscopic traffic flow simulation in chapter 2

A local perturbation in a macorscopic traffic flow simulation with a low initial density disappears
after a short time. Successive increasing of the initial density produces traffic jams, stop–and–go
waves and wide traffic jams like in the micoscopic traffic flow simulations.
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Figure 12: Density progressions of the macroscopic traffic flow simulation in chapter 3

The same results for a local perturbation occurs in a mesoscopic traffic flow simulation. A global
perturbation in all three traffic flow simulations produces similar traffic phenomena  (see figure 13).
Only the formation of the phenomena takes a little bit longer.
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Figure 13: Density progressions of the mesoscopic traffic flow simulation in chapter 4

All simulations of the three modelings with nearly the same parameters leads to similar typical traf-
fic phenomena. At this, the most important parameter is the velocity–distance relation respectively
the velocity–density relation. The other parameters influence only the appearance of the traffic phe-
nomena. The character of the fundamental diagram decides the appearance of a traffic phenomen.
Furthermore the mesoscopic simulations turn out to be the link between the microscopic simula-
tions tending towards many small oscillations in the calculated traffic flow and the macroscopic
simulations tends towards a smooth progression of traffic flow.



6.2   Comparison of Simulation Results and Measurement Results
The comparison of simulation results and measurement data gives information about the ability of
the modeling to reproduce measuring traffic phenomena. A qualified traffic region for the compari-
son is a carriageway section of the german freeway A5 near Frankfurt am Main. The 1–minute data
allow the identification of several traffic phenomena. They will be compared with results of corres-
ponding macroscopic and mesoscopic simulations on the basis of two traffic scenarios.
The first traffic scenario is dealing with the formation and the release of a stationary traffic jam (see
figure 14). Both the macroscopic simulations and the mesoscopic simulations are able to reproduce
the measurement data. At this, the quality of the measurement data didn’t allow a determination
of the quality of the simulation results.
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Figure 14: Traffic scenario 1: formation and release of a stationary traffic jam

The second traffic scenario is dealing with a moving traffic jam (see figure 15). Both the macrosco-
pic simulations and the mesoscopic simulations are able reproduce the measurement data. The qua-
lity of the simulation results is hardly determinable again.
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Figure 15: Traffic scenario 2: moving traffic jam

All traffic flow simulations of the scenarios react very sensitive to changes of the model parameters.
The qualified parameters of a simulation for one traffic scenario are  not transferable to the same



simulation for another scenario or to another simulation for the same scenario. The fundamental
diagram is also the most important parameter for the comparison between simulation results and
measurement data. It decides the appearance of traffic phenomena. The investigations have shown
that data editing of the measured data for traffic jam situations on the basis of conventional methods
is inadequate, that parameters of the simulation methods from the traffic measurements cannot be
determined systematically and methods for traffic control must also be allowed for the simulation.

7   Endnotes
Essential fundamentals for a design of a program system are developed that allows an integrative
framework for a comparative assessment and a systematic coupling of the traffic measurements,
traffic management strategies and traffic simulations. The modeling components of the freeway
network, traffic measurement, traffic control and traffic flow have to be integrated in the program
system. With this system a systematic and comparative analysis of dynamic forecasts is possible.

The fundamentals allow the computational realization of a freeway network with heterogeneous
modeled traffic flow. Different carriageway sections with different microscopic, macroscopic or
mesoscopic modeling of traffic flow is developed and combined to one freeway network. Thus the
transition from one section to an adjacent section has to be mapped consistently.

A simulation of traffic flow requires a qualified determination of the model parameter, especially
the fundamental diagram as the driving force of traffic flow. There are no methods zu determinate
this parameter except theoretic assessable scopes and experience values. A systematic analysis of
the qualitative influences of the model parameter in reproducible reference scenarios is required
to determine this parameters from measured traffic data.
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