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Summary 
Individual views on a building product of people involved in the design process imply different 
models for planning and calculation. In order to interpret these geometrical, topological and 
semantical data of a building model we identify a structural component graph, a graph of room 
faces, a room graph and a relational object graph as aids and we explain algorithms to derive 
these relations. The application of the technique presented is demonstrated by the analysis and 
discretization of a sample model in the scope of building energy simulation. 

1 Interpretation of product model based geometry 
In order to promote the application of three-dimensional modeling techniques within the design 
process and to substitute the still popular draft-oriented two-dimensional modeling approach, 
we think that it is of major importance that simulation applications themselves do support these 
techniques. In the paper on hand, we make a contribution to this improvement by discussing 
algorithms with respect to analysis and interpretation of product model based geometry in order 
to prepare data as input for further preprocessing.  

Concerning this linking of computer aided geometric design tools with numerical simulation 
techniques, one of the major problems are the different views on a ‘building product’ of people 
involved in the design process. Based on these individual views, different models for planning 
and calculation are derived, i.e. the collaboration of disciplines is complicated due to the 
pretended lack of a common model.  

Furthermore, within the design process the application of detailed simulation techniques is often 
avoided, because the amount of work necessary to define a numerical model is still rather high. 
Depending on the simulation task, a building model, for example, has to be decomposed into a 
set of zones in order to perform a building energy simulation, or the building topology and the 
components semantics have to be analyzed according to a structural simulation. 

The capability of exchanging data between construction and simulation applications is desirable 
to remedy the time consuming and error-prone process of obtaining and sharing these data. In 
our opinion, the Industry Foundation Classes (IFC) are a promising basis for a solution in order 
to ensure software interoperability in the building industry (IAI 2003). The IFC are an object-
oriented and semantical model of all components, attributes, properties and relationships of and 
within a building product and contain information about the design process, the whole life-cycle 
up to a building's disposal. 

A major problem of handling geometrical information (independently whether these 
informations are obtained from a building product model or directly from a three-dimensional 
CAD model) is the interpretation and utilization of these data with respect to specific tasks. In 
order to interpret geometrical and topological data of a building model we identify a structural 
component graph, a graph of room faces, a room graph and a relational object graph as aids. 
Following the definition of these graphs, we explain algorithms to derive these relations. 
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2 Structural component graph, graph of room faces and room graph 
Starting from topological and geometrical information contained in a B-rep representation of a 
building model, different data structures are distinguished with respect to the kind of relations 
being stored within a model. Among these, radial-edge or winged-edge data structures are 
common representatives. For a review refer to e.g. (Bungartz et al. 1996). 

We identify four graphs being necessary in order to analyze the topological structure of a 
building and the relations between its individual components. Object semantics, if availiable, 
may represent local situations improperly due to their inherent context dependency in the sense 
of the above mentioned individual views on the product. Consider, for example, wall 
intersections or support definitions from the point of view of an architect compared to the views 
of a structural and an HVAC engineer. 

 

 

 

 

 

 

 

 
Figure 1: Structural component graph (left-hand side), graph of room faces (center), room graph (right-hand side). 

Using the geometrical model of a building, we create a so-called structural component graph 

  (1) 

which defines the relation RPC of plane connections between the set of all B-rep volume bodies 
MB. Precondition is the decomposition of the entire model into a so-called connection model, 
which is described in the next section. Using the local regularity of a radial-edge data structure, 
the topological relations RNF between all faces of the solid model MF can be derived by the 
graph of room faces 

  (2) 

being necessary in order to extract a set of minimum closed B-rep bodies of the model, each 
representing an indoor air volume. Thereby, the sense of orientation is an important property of 
faces. Using these relations, we determine the room-graph 

  (3) 

by partitioning GF into equivalence classes and subsequent condensation, which is described in 
Section 4. Knowing the set of indoor air volumes MAV, we classify components of MB. For 
example, walls can be identified as being outside, interzonal or inside walls. The latter analysis 
requires the definition of the relation RI, which defines adjacencies between components MB and 
air volumes MAV, and can be expressed by the relational object graph 

  . (4) 

The following sections describe algorithms to derive these relations. 
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3 Connection model definition 
First of all, we transfer geometric data contained in a building (product) model into a solid B-
rep volume model, which we denote as collectivity . During this process, the building 
fabric is analyzed with respect to its layer structure. Components with intersections, such as 
walls, are blended accordingly. For parsing physical IFC data, we use toolbox. The procedure is 
described in (van Treeck 2004) in detail. 

 

 

 

 

 

 

Figure 2: Example of decomposition of collectivity Ω (left-hand side) into connection model (right-hand side). 

The collectivity Ω is decomposed into the connection model MB. In order to accomplish this, we 
need another relational graph denoting plane connections between all components of Ω. At 
those locations with coinciding elements of Ω, components are decomposed into so-called 
coupling objects MK and difference objects MD, each representing a rigid body ⊂ MB. The set of 
coupling objects can be further subdivided into a set MK1 of connection bodies of the base model 
and the set MK2 of connection bodies of the connection model (see Figure 2). We obtain 

 . (5) 

Having r coupling elements ai of the base model with i=1,...,r, s coupling objects bi of the 
connection model with j=1,...,s and t difference objects dk with k=1,...,t, we can write 

 

  (6) 

 

Combination of both sets MK and MD results in the set of all connection objects MB. Hence, the 
set of all points PB of all n connection objects MB is again part of the collectivity Ω: 

 

  (7) 

 

The recursive decompositioning process which makes use of boolean operations is described in 
the contribution of (Romberg 2004) within the proceedings on hand in detail. It is important to 
note, that, in the sense of a vef-graph based data structure, local intersections between difference 
objects result in common edges and/or nodes only. This behaviour will be advantageous with 
respect to the succeeding analysis where the connection model serves as precondition. Based on 
the connection model, the relation RPC is obtained. It denotes the occurence of plane connections 
between all coupling and difference objects. The structural component graph is an undirected 
and symmetric graph. 
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4 Partitioning into equivalence classes and condensation 
Based on the connection model definition and the structural component graph, we now extract 
the set of minimum closed B-rep shells MAV contained within a model, i.e. indoor air volumes 
and hulls. The idea is to recursively analyze adjacency relations between all faces of objects 
being part of the set MB. 

In order to extract air volumes, various techniques are commonly used. A well-known method 
makes use of the definition of the polygonal shape of a ground plane. The area being obtained is 
extruded using a sweeping model. A different approach utilizes an algorithm to find a convex 
hull based on a set of vertices, which e.g. is obtained from surrounding faces. The deficiencies 
of these techniques are obvious. In the former case, a unified room height is assumed and 
connections between rooms cannot be taken into account. The latter method is restricted to 
convex bodies; shapes with reentrant angles are not permitted. However, especially buildings 
are 'affected' by e.g. inclosed columns and typically non-convex shapes. We think that the 
techniques mentioned are not suitable to derive a room graph or to supply simulation tools with 
appropriate data (e.g. for the meshing process required for an indoor air flow simulation).  

The analysis based on graph theory presented in this section allows for identifying closed and 
non-closed bodies contained within a model, independently whether being convex or non-
convex or whether existing in a manifold or non-manifold environment. In order to reduce 
complexity, we shall consider plane faces only. It should be mentioned that the algorithm is 
universally valid, because the analysis is of intrinsically topological nature. 

4.1 Collapsing to radial-edge data structure 
The faces of all entities contained in the set of connection objects MB are copied to the set of all 
faces MF. Subsequently, the sense of orientation of these faces, i.e. the direction of their normal 
vectors, is reversed, in order to find indoor air volumes rather than defining rigid bodies now. 
Topology of a B-rep model assumes by definition that face normals point to the exterior side of 
a solid body. 

 

 

 
 

 

 

 
Figure 3: Inversion of the sense of orientation of all faces contained in the connection model. 

Due to the dependence of the following analysis on the model consistency, we collapse the 
given B-rep model into a radial-edge data structure. Vertices, edges and faces are now unique, 
i.e. there exists exactly one instance at the same location. Vertices are conflated in an epsilon 
environment in order to smooth inaccuracies due to multiple model transformations and round-
off errors. Inconsistencies with respect to modeling failures are detectable because the approach 
also provides sets of incomplete, i.e. non-closed, B-rep bodies. These modeling inaccuracies can 
be visualized, e.g. by highlighting the wireframe body of the boundary of a non-closed body.  
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The hierarchy of our radial-edge data structure implements vertices, edges, coedges, loops, faces 
and bodies. The basic structure was chosen in accordance with the ACIS geometric kernel 
(Corney 2001). Edges know about their start/end vertex and geometry and thus have an 
orientation. A face object aggregates a normal vector and a list of loops and 'possesses' 
geometry. Loops describe the polygonal shape of sub-faces by each aggregating a list of 
coedges. Coedges themselves serve as a topological element, point to their underlying edge and 
have an orientational sense with respect to this edge. Edges aggregate a set of all coedges 
pointing to themselves, the so-called partner coedges. Coedges are aligned in a mathematically 
positive sense around a corresponding face normal, if not representing a hole. Coedges of faces 
coinciding at common edges have a reversed sense of orientation if these faces belong to the 
shell of a valid closed B-rep body (see Figure 4, rule of Möbius). 

 
 

 

 

 
Figure 4: Rule of Möbius, explanation see text. (Bungartz 1996). 

In a next step, plane connections between connection objects are removed, because these faces 
obviously do not belong to the value set of air volumes or hulls (see Figure 5). These 
connections are defined by the relation RPC. 

 

 

 

 

Figure 5: Removal of plane connections between components. 

Furthermore, coinciding edges are detected and decomposed accordingly. For example, this case 
may occur in situations where objects being intermitted by an opening are in contact with a 
continuous floor plate (van Treeck 2004). 

4.2 Topological analysis 
Precondition for the analysis of adjacency relations between faces of the set MF is the 
knowledge of the relation RNF of the graph of room faces GF. This relation depends on the 
topological and geometrical configuration of the elements in space. For a definition of terms it 
is referred to (Pahl and Damrath 2001). 

We explain topological relationships using the following example. Figure 6 shows the model of 
an indoor air volume with inclosed column. The graph of room faces denotes connections 
between faces having edges in common. Nodes within the graph correspond to faces in the 
model. The body consists of ten faces, while two of them contain holes. Accordingly, e.g. the 
face at the top is adjacent to eight faces: four 'outside walls' and four faces belonging to the 
column. Within the graph this is equivalent to a node with eight links. 

In the sense of graph theory we extract connected components of the graph GF. Consider a 
relation RF,a ⊆ MF × MF which denotes connections between all faces of MF having common 
edges in the sense of Figure 6. Obviously, an indoor air volume can be represented by a 
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connection component, while a connection component not necessarily represents an air volume. 
As topological criterion for a connection component describing a closed air volume body it is 
required that  

(i) the connection component must not contain leaf edges, i.e. edges being adjacent to 
a single face only, and  

(ii) each edge of each face has exactly one connection to another face and there exists a 
path between two vertices in the graph, i.e. each face in the model. 

Hence, components are basic cyclic connected. Sub-graphs are blocks and free of articulation 
vertices. 

 

 

 

 

 

 
Figure 6: Graph of room faces of indoor air volume with inclosed column. 

4.3 Geometrical analysis 
We now add a geometrical criterion within the analysis of adjacency relations: Each connection 
component shall enclose a smallest volume respectively. Thereby, the validity of the sense of 
orientation of connected faces will play a role. Furthermore, because we intend finding a set of 
minimum closed B-rep bodies, we consider immediately neighboring faces with respect to their 
edge in common, if more than two faces are connected to that edge. 

As mentioned above, the rule of Möbius tells us about the sense of orientation of codeges being 
reversed in this case. With respect to relation RF,a, this implies the extension RF,o ⊆ MF × MF 
defining an appropriate correlation of the orientational sense. We write 

  , (8) 

i.e. there exists a regular pair (fi ,fj) with each element having a coedge with the same underlying 
edge and a reversed sense of orientation. (The subscript 't' of the operator denotes a reference to 
topological (sub-)elements within the hierarchy.) 

If more than two faces are connected to an edge, i.e. if the set of partner coedges contains more 
than two elements, we have to choose the face yielding the smallest volume respectively. 
Thereby, the radial-edge data structure allows for organizing a set of coedges. Coedges are 
grouped in mathematically negative sense around their edge er . We define a so-called radial-
edge vector ir

r
 as cartesian product of a coedge vector icr  and the normal vector of the 

underlying loop inr . The vector ir
r

 points into its corresponding face; in case of holes, the 
orientation is reversed. 

  (9) 

Hence, the problem is reduced by one dimension. Using this radial-edge vector and according to 
Figure 7, angles between neighboring faces with respect to the edge er  can be readily computed 
and coedges can be arranged. For example, Figure 7 shows an edge er  with three connected 
faces. The sorted list of coedges results in the set },,{ 4,24,33,1 ccc rrr

. 
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Figure 7: Analysis of spatial arrangement of coedges icr  with respect to underlying edge er . 

The latter criterion can be expressed using the weighted relation RF,w ⊆ MF × MF, which 
evaluates the spatial arrangement of codeges with respect to an underlying edge. This relation is 
anti-reflexive, i.e. free of loops. The undirected graph becomes a directed graph. If we define 
the angle ),( cba

rr
r∠=ϕ  with πϕ 20 ≤≤  as the angle between vectors b

r
 and cr  in a plane 

normal to vector ar , if vector b
r

 is rotated in a mathematically positive sense into vector cr , we 
get 

  , (10) 

where the weighting set of elements wFji W ,, ∈ω  is defined by 

  . (11) 

 

 

 

 

 

 

Figure 8: Visualization of relations RF,o (left-hand), RF,w (center) and RNF (right-hand). 

Consider again the example sketched in Figure 7 where the three faces f1, f2 and f3 are aligned 
around their common edge. Relation RF,o describes the property of same orientations concerning 
adjacent faces. By joining faces f2 and f3, we are not able to create a part of the surface of a valid 
volume body. Relation RF,w evaluates the geometrical alignment with respect to the angular 
dependencies. Assume °= 301ϕ , °=1502ϕ  and °= 2603ϕ , thus °= 1202,1δϕ  and 

°= 1103,2δϕ . Neglecting the topological criterion, the next neighboring face for f3 results in f2 
and not f1, because °<° 230110  (compare to Figure 8, center). 

Concatenating relations RF,o and RF,w finally yields the relation RNF ⊆ MF × MF. Using RNF, we 
obtain a symmetric, anti-reflexive and unweighted graph of room faces GF. 

  (12) 
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4.4 Condensation to room graph 
Finally, the graph GF can be partitioned into n basic equivalence classes ][ iλ  with i=1,...,n 
using the equivalence relation ZNF. The latter is obtained by evaluating the reflexive-transitive 
hull of relation RNF ⊆ MF × MF. The stability index s thereby is the smallest exponent if the 
result of the union is not affected by additional terms Rm with m>s. 

  (13) 

Hence, the set MF can be condensed to the quotient set MAV using the mapping AVΦ . We obtain 
a reduced graph GAV = (MAV ; RR) which we denote as room graph: 

  (14) 

  (15) 

Hence, a closed B-rep shell is obtained if and only if a sub-graph being determined by a 
representative iλ  denotes a basic cyclic connected component, i.e. the sub-graph contains cycle 
and separation edges only. 

 

 

 

 

 

 

 

 

Figure 9: Indoor air volume extraction of two rooms being connected by an open door.  
The left-hand side shows parts of the connection model. On top of the right-hand side, an 'invalid' air volume is 
depicted (half space), the bottom picture shows the valid closed B-rep shell, i.e. the resulting indoor air volume. 

At a first glance it may be assumed that the algorithm actually finds the set of indoor air 
volumes only. As an example, Figure 9 shows results being obtained in the case of two rooms 
being connected by an open door. Besides the air volume, we also get the hull of the model. The 
hull corresponds to a half space, because all face normals point to the interior.  

If we use the Gauß integral theorem in order to compute volumes of bodies ])([ iV λ , we can 
add another criterion for identifying those situations. By replacing the volume-integral in the 
numerical quadrature with a face-integral, we obtain negative but finite values as indicators.  

Moreover, we separate the set MAV into a set of valid indoor air volumes MAV,valid, a set of invalid 
volumes MAV,invalid and a set of non-closed B-rep bodies MAV,incomplete. In cases, where the number 
of elements of MAV,incomplete is greater than zero, we can identify modeling inaccuracies. 

  (16) 

Assigning elements to their corresponding equivalence classes is achieved by forming the 
reflexive-transitive hull of the adjacency relation for cyclic edges ∗

ZNFR , : 
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  (17) 

 

In this sense, a closed B-rep shell is determined by a basic cyclic connected graph, if the above 
mentioned topological and geometrical criteria with respect to the definition of rigid bodies are 
fulfilled: Surfaces can be identified als being closed, faces have an orientation and faces are not 
allowed to intersect with themselves. 

Knowledge of these graphs allows for immediately identifying building components, such as 
walls, being, e.g., outside or interzonal walls. We obtain the relational object graph by correla-
ting structural components with air volumes. The whole procedure is described in (van Treeck 
2004) in detail. 

5 Example: Discretization within the scope of building energy simulation 
As application, we briefly sketch the decomposition of a complex sample building with respect 
to building energy simulation. Having the room and relational object graph, it is straightforward 
to discretize a model for a multizone thermal building simulation or to obtain a geometric model 
which serves as input for mesh generation for a simulation of the interior flow regime. 

 

 

 

 

 

 

 
Figure 10: Sample model with atrium and triangulated surface mesh of all extracted indoor air volumes. 

 

 

 

 

 

 

 

 

Figure 11: On the left-hand side, the set of extracted indoor air volumes is visualized. Air volumes can be grouped to 
zones (right-hand picture) and the semantics of building components can be identified accordingly. 
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Figure 10 shows on the left-hand side a sample office building consisting of three storeys with 
integrated atrium. Application of the presented technique yields a connection model (see right-
hand detail of Figure 11), the set of all indoor air volumes contained within the model as 
demonstrated on the left-hand side of Figure 11 and the hull of the model. On the right-hand 
side of Figure 10 a (delauney-) triangulated surface mesh of all air volumes is displayed which 
can serve as input for a CFD code.  

Using the room graph and the relational object graph it becomes obvious from Figure 11 that 
the semantics of building components, for example with respect to building energy simulation, 
can be easily obtained. Air volumes can be grouped to zones accordingly. It is important to note 
that this approach allowes both, the derivation of an object-oriented model being required in 
order to set up a thermal multizone building simulator, and, on the other hand, providing 
geometrical data for a high-resolution simulation of building physics. Moreover, preconditions 
for a coupling of both techniques are accomplished. The coupling of thermal building 
simulation with CFD techniques is subject to a current research project. 
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