
Interaction of Data Bases and Graphical Interfaces in Civil
Engineering

Dipl.-Ing. Irina Biltchouk, Technische Universität Berlin (biltchouk@gmx.de)
Prof.Dr.Dr.h.c.mult. Peter Jan Pahl, Technische Universität Berlin (pahl@ifb.bv.tu-berlin.de)

Summary
Applications for civil engineering tasks usually contain graphical user interfaces for the
engineering processes. Persistent objects of the applications are stored to data bases. The
influence of the interaction between a graphical user interface and a data base for the
development of an civil engineering application is investigated in this paper. A graphic
application for the linear elastic analysis of plane frames, which was previously developed with
standard tools of the Java platform, is compared to a redesigned implementation using a
generalized data base for persistent objects.

The investigation leads to the following results :
 - A strict distinction between persistent and transient objects influences the class structure
 of an application, in particular the class structure of a graphical user interface.
 - The structure of an application depends on the logic for updating of references to
 persistent and transient graphical objects after an application is read from a file.
 - The complexity of the reference management can usually be handled better by just in
 time referencing associated with String - identifiers rather than by automated referencing
 associated with Name- identifiers.

1 Introduction
The information sets of civil engineering are traditionally ordered with documents. The
advantages and disadvantages of a document - independent structure of civil engineering
information are being studied in the DFG project “Investigation of Structures in Information
Sets of Civil Engineering”. The following generalized system components are developed for
this purpose :
 - a data base for objects with persistent identifiers
 - a component for composition and decomposition of dynamic relations between objects
 - a component for composition and decomposition of models
 - a component for visualization of applications
 - an updater for modifications of a data base
 - a navigator for a data base

For each of these components, an application using that component is compared to a standard
Java implementation of the same application in order to evaluate the influence of the new
concepts on the structure and functionality of the software and its interfaces.

In this paper, a graphic application (linear elastic analysis of plane frames), which was
previously developed with standard tools of the Java platform, is compared to a redesigned
implementation using a generalized data base for persistent objects. The differences between the
class structures of the two applications are presented and evaluated in section 4. In the
redesigned application, a solution with String identifiers for encapsulated objects is compared to
a solution with Name- identifiers. The influence of the data type of the identifiers on the
complexity of the application is evaluated in section 5.

Page 1 of 1

2 Data base

2.1 Concept
The data base which is used in this paper was presented at the IKM 2003 (Biltchouk and Pahl
2003). Its properties can be summarized as follows :
 - Classes using the data base do not require a special definition.
 - The storage space of the data base consists of a working space and binary files (Fig.1).
 - Each object is addressed in the methods by its name, independent of its place of storage.
 - The application developer chooses the file in which the object is stored.
 - An object is automatically loaded from file to the working space when it is needed in a
 method.
 - References between objects can be set automatically at a point in time chosen by the
 application developer.
 - The data structure of an application is automatically preserved in the data base.

 interface

 working space

file 1 file 2 autoFile file n

Fig.1 Storage space of an data base

All persistent objects of an application have unique names. An object is called named if its
persistent identifier is stored in its body. The named objects interact with the persistent objects
of the Java platform, for example collections and graphical objects, which can not be named.
Unnamed objects are therefore stored in the data base with handles, i.e. names which are
automatically assigned by the base. The reference of an object is obtained by calling
getObject(name). Since named objects are stored with special methods of the data base and
unnamed objects by Serialization, named objects should be used wherever it is possible.

3 Test case : Linear elastic analysis of plane frames
Figure 2 shows a window for the linear elastic analysis of plane frames. This graphical user
interface permits the definition, change and removal of nodes, bars, supports and loads and the
specification of their properties with editors.

Page 2 of 2

Fig.2 Screen image of the running application

The properties of the structure and its behavior are presented in editors for nodes and bars, in
diagrams for the displacement and stress resultants in bars and in diagrams of the deformed
structure which can be scaled by the user. The interaction is controlled with menus, control
buttons, mouse clicks in the grid of the graphic panel and special key functions.

4 Analysis of the class structure

4.1 Analysis of the standard Java application
4.1.1 Components of the application
The test application for the linear elastic analysis of plane frames has the two main components
(Fig.3):
 - the product model of the application including the structural analysis
 - the visualization model for the graphical frame and the structural frame.

product model visualization model

Fig.3 Structure of the standard Java application

The product model describes a plane frame consisting of nodes, bars, supports and loads. It
contains the methods for the linear elastic analysis of the frame. The visualization model
describes the structure of the menu bar as well the component, function, graphic and message
panels and manages the transactions. Typical transactions are the definition, change and
removal of nodes, bars, supports, loads. The editors for the properties are automatically offered
at suitable locations on the graphical panel. The visualization model also contains methods for
the presentation of the structural behavior, in particular the displacements and support reaction
at the nodes, diagrams of the deformation and variation of stress resultants in the bars and

Page 3 of 3

overall presentation of the deformed frame. Objects in the two components of the application
reference each other.

4.1.2 Storage
The structure of the application is implemented with standard Java tools. The persistent objects
are serialized to the file at the end of the session and recovered by deserialization at the
beginning of the next session. An object output stream is created to store the objects to the file.
The application developer specifies the references of the persistent objects for the stream. An
object can be serialized if its class implements the interface Serializable. All non - static and
non - transient fields of the object are stored to the file. An object input stream is created to read
the objects from the file. The objects are read from the file and recovered in the same sequence
in which they were written to the file. The persistent attributes of an object are set to the values
which are read from the file. The transient attributes are set to default values.

4.1.3 Reconstruction of the references
The reconstruction of the references is analyzed in the following examples.

The attributes of the graphical panel object contain persistent and transient information.
Information like the color of lines or the visibility of loads in the graphical panel is persistent. In
contrast, the references of the editors are transient attributes of the graphical panel object : the
editors are not serialized. When the attributes of the graphical panel are read from the file and
the graphical panel object is reconstructed, the references of the editors must be set to the
current values, which in general differ from the values when the graphical panel was stored.

When an application is stored in the file, the check box item which indicates the visibility of the
loads in the graphical panel is set to a specific value. The menu bar and the check box item are
transient and therefore not stored. The attributes of the graphical panel object including the
variable status of the check box item as a persistent variable are written to the file. When the
application is read from the file, the current setting of the check box item in the window may
differ from the setting when the application was stored. The current menu bar object must
therefore know the reference of the reconstructed graphical panel object in order to read the
value of the check box item and to set its image accordingly.

Different product and visualization models use the same window as graphical user interface.
Therefore the function to manage the setting of the references is a part of the window class. This
class contains the list of persistent and transient objects whose references have to be updated
after the application has been read from the file.

4.1.4 Conclusions
The analysis of the application class structure leads to the follows conclusions :
 - Objects of the graphical user interface contain both persistent and transient attributes.
 - The persistent and transient objects reference each other. Therefore the references
 have to be reconstructed by application logic after an application is read from a file.
 - The storage of the persistent objects and the reconstruction of the references are
 managed by the visualization model.

4.2 Analysis of the application with the data base
4.2.1 Components of the application
The application for the linear elastic analysis of plane frames using the data base (Fig. 4) has
two new components in addition to the components of the standard Java application :

Page 4 of 4

 - the root for the components of the application
 - the data base for the storage of the persistent objects.

visualization model data baseproduct model

root

Fig.4 Structure of the application with the data base

The root contains static methods which return the references of the main components of the
application, in particular the references of the product model, the visualization model and the
data base. The class which implements the methods for the root is called the root class and by
convention is named Session. The root class contains methods which are required to adjust the
references of the main components of the application after the application is read from the file.

4.2.2 Class structure of the graphical user interface
The application with the data base is structured in such a way that the benefits of the data base
management can be utilized for the application. This requires the strict separation of persistent
and transient objects. In addition, the distinction between named classes developed in an
application and unnamed classes of the platform, whose objects are managed with handles, is of
advantage for the application.

Intentional distinction between persistent data dependent on the product model and persistent
data independent of the product model contributes to a clean structure of the visualization model
(Fig.5).

visualization model

persistent visualization
model

data dependent on
the product model

transient visualization
model

data independent of
the product model

Fig.5 Structure of the visualization model

In the standard Java application, the properties of the graphical panel are attributes of a single
object. In contrast, the properties of the same graphical panel in the application with the data
base are attributes of following three objects :
 - an object of the named class ViewFrame which contains the persistent visualization data
 dependent on the structural frame.
 - an object of the named class ViewPanel which contains the persistent visualization data
 independent on the structural frame.

Page 5 of 5

 - an object of class GraphicsPanel which contains the transient information for the
 visualization.

4.2.3 Storage
The application is stored in two types of file. The first type consists of the file which is unique
to the application and contains the persistent attributes of the data base object such as a last
assigned handle, the set of the user identifiers and the list of the open files of the session as well
as the names of the product and the visualization model. This file is called the application file. It
is read at the beginning and stored at the end of the session. The other files are specified by the
user and contain the persistent objects of the product and the visualization models which are
stored with methods of the data base. The method storeSession() of the root class calls the data
base to write its persistent attributes to the application file. The root class also recovers the data
base object with its persistent attributes from the application file before the product and
visualization model are read from a file. The names of the product and visualization models
which are read from the application file are used to call the data base to read the product and
visualization models from a file.

4.2.4 Reconstruction of references
The reference of the Class - object of the root class can be addressed from any method of the
application at any point in time. If the product model is read from a file, its reference in working
space is recorded in the Class - object of the root class and replaces the reference of the previous
product model. If the Class - object of the root class is called to return the reference of the
product model it now returns the new reference. It is the responsibility of the application
developer to make sure that he always uses the updated references of the product model. The
references of the data base and the visualization model are reconstructed analogously.

The reference of a persistent object after storage in a file will differ from its reference before
storage. If a method of the application uses a persistent object, the current reference of the
object can be obtained from the data base at every point in time by specifying the name of the
object.

4.2.5 Conclusions
The analysis of the class structure of the application with the data base leads to the following
conclusions :
 - The strict distinction between persistent and transient objects influences the structure of
 the application, in particular the class structure of the graphical user interface.
 - The application has a root class whose Class - object can be referenced during a session.
 - The root class is responsible for the storage of the persistent attributes of the data base
 object to the application file and for the reconstruction of the data base object with its
 persistent attributes which are read from the application file.
 - The root class records the references of the main components of the application.
 - The methods of the root class implement the logic which updates the references of the
 main components.
 - The methods of the application obtain the current references of the persistent objects of
 the product and the visualization models from the data base just in time.

Page 6 of 6

5 Identification of encapsulated objects

5.1 Introduction
The data base management differentiates between dependent and independent objects. An object
is independent if the application developer calls the data base to write or to read the object. An
object B is directly dependent on an object A if an attribute of A is an identifier of B. An object
is called encapsulated if it is in one of following forms :
 - a dependent named object
 - a named or unnamed object which is an element of a set object
 - a named or unnamed object which is an element of an array
An object is called open if it is not encapsulated. An open object is an independent named
object, a set object or an array.

The open objects are identified in the data base either by a unique name of data type String or
by an automatically assigned handle of data type char[]. An encapsulated object is identified
either persistently by its unique name or handle, or transiently by its reference in the working
space. The data base provides two types of persistent identification for encapsulated objects :
 - objects of date type String
 - objects of data type Name which contain the String name or handle of encapsulated
 object and its reference in working space.

If an object is identified by a name or handle, its reference is obtained as return value of the
method getObject(name) of the data base. If an object A contains encapsulated objects which
are identified with Name- objects, their references are obtained as follows :
 - The method setReferences(A) of the data base is called.
 - The method uses the reflection concept of Java to find the attributes of data type Name of
 object A.
 - The name or handle in the Name- object is used to read the reference of the encapsulated
 object from the object map of working space (WSP) as is shown in figure 6.
 - The reference is entered in the Name- object.

The method removeReferences(A) sets the references in all Name-objects of A to null.

object map of the file

Name

entry

b

"b"

"b"

offset length type object body

object body

bString id

object map of WSP

WSP

file

entry object

b

b

Fig.6 Concept of a Name - object

Assume that an encapsulated object X is moved from working space to a file. Its reference in
working space is no longer valid. Assume that the object X is later read from the file. The new
reference of X in working space must be entered in all objects which encapsulate X. The choice
of the type of the identifier for the encapsulated objects influences the management of their

Page 7 of 7

references at this stage. In the following, three possible concepts for the management of the
references of encapsulated objects which are based on the two types of the identifiers are
discussed and evaluated.

5.2 Concept A
The encapsulated objects are identified with names of data type String. Before a method of the
application accesses an object for the first time, the data base must be called to get its reference.
The method getObject(name) of the data base returns the current reference of the object in
working space. If the objects is not in working space, the data base management looks for the
object in the open files. If the object is found, it is read into working space and its reference is
returned to the method of the application. If the object does not exist in the data base, the return
value of the method is null.

This concept has the advantage that the correctness of the reference of an object is assured. If
the object is moved from working space to a file and then read from the file to working space,
the data base gets the correct reference at every point in time. The application developer does
not need to control the validity of references if the object is encapsulated at different places in
an application. The concept has the disadvantage that the references cannot be set or removed
automatically by a method of the data base, because the String - identifier cannot be
distinguished from other String - attributes of an object.

5.3 Concept B
The encapsulated objects are identified with Name- objects. If an encapsulated object is created,
removed from working space to a file or read from the file to working space, the application
developer specifies all open objects which encapsulate the given object. He chooses points in
time for setting and removing the references in the corresponding Name- objects by calling the
methods setReferences(openObject) or removeReferences(openObject) of the data base. These
methods automatically update the references in all Name- objects of the open object. The
application developer uses knowledge of the logic of the application to assure that references are
correctly updated before they are used.

5.4 Concept C
The encapsulated objects are identified with Name- objects. If an object is created, removed
from working space to a file or read from a file to working space, the data base management
automatically determines all open objects which encapsulate the given object. The references in
the Name- objects of the open objects are automatically updated. This concept has the
advantage that the validity of the references in the Name- objects is automatically guaranteed by
the data base.

Concept C can be implemented if one is willing to double the required storage space for
identifiers (symmetric referencing). Whether such a procedure is advantageous dependents on
the properties of the specific application. Since the data base is designed to be independent of
the specific application, it has been decided to provide the implementation of concept C in the
model management of the overall system. The model management is in parts application-
dependent.

5.5 Choice of concept
Each of the concepts A, B and C can be used for the management of encapsulated objects. The
three concepts differ in the manner in which references are set and in the degree to which the
validity of the references is guaranteed at a given point in time. In concept A the application

Page 8 of 8

developer himself assures the validity of the references by obtaining them from the data base
just in time. In concept B the references of groups of objects are set with a single statement. It
depends on the specific application whether the sequence of operations is such that the
consequences of setting the references at a particular point in time can be foreseen reliably by
the application developer. If concept C is used, the data base is responsible for the validity of
the references.

The concepts A and B were tested with the redesigned application for the linear elastic analysis
of plane frames. The results show that the logic for the determination of the points in time for
the automatic transformation of names or handles to references of encapsulated objects is
complex and prone to mistakes in big applications. In order to avoid the resulting errors,
concept A was chosen for final redesign of the application. Since an object is usually accessed
several times after its reference has been obtained, both the programming effort and the
execution time required for this method are fairly low relative to the overall requirements for the
application. The runtime behavior is not affected significantly by the redesign. The transparency
of the class structure and suitability of the software for future expansions are significantly
enhanced.

Concept C was not evaluated in the redesign. It will be evaluated in connection with
development of the model management.

6 Results of the redesign
The external appearance and functionality of the plane frame analysis application was
maintained unchanged in the redesign of the application (Fig.7).

Fig.7 Displacements and stress resultants in a selected bar

Page 9 of 9

The modifications consist in changes of the class structure and in the access methods for the
objects of the application. The following examples are typical for the type of changes that were
made.

Figure 8 shows a part of the class structure of the redesigned application. Class Session is the
root class of the application. Class Frame describes the product model of a structural frame. An
object of class Frame contains sets of nodes, bars, supports, node loads and bar loads. The
persistent information for the visualization which is dependent on a structural frame is contained
in an object of data type ViewFrame. The persistent information for the visualization which is
independent of a structural frame is contained in an object of data type ViewPanel. Class
Display extends the JFrame of Java and is a graphical frame of the graphical user interface.
Class GraphicsPanel contains the transient information for the visualization and manages
transactions. The MenuBar is used to select the menus : model, display and files. The toggle
buttons for nodes, bars, supports, node loads and bar loads are collected in the ComponentPanel.
The functionality of the user graphical interface is controlled with buttons for analysis, report
the state of a node or a bar, show diagrams for the displacement and stress resultants in bars and
diagrams of the deformed structure, copy a frame component, change a color of lines, zoom and
remove in the ActionPanel. The GlassPane protects the content panel of the display while the
mouse is dragged to define the zoom box.

Session

Frame

Node

Bar

Support

NodeLoad

BarLoad

ViewFrame ViewPanel BaseDisplay

GraphicsPanel

MenuBar

ComponentPanel

ActionPanel

GlassPane

Fig.8 Part of the class structure of the redesigned application

Figure 9 shows a part of the method paintComponent(Graphics g) of the class GraphicsPanel. It
is used to illustrate the access to the objects in the redesigned application. The access to the
persistent information describing the visibility of supports on the graphical user interface is
programmed in line 4. The root class Session is called for the current reference of the
ViewFrame which contains the boolean attribute drawSupports. If the value of the attribute is
true, the supports are drawn. The support set of the structural frame is accessed in line 5. Lines 7
and 8 illustrate the access to the encapsulated support objects which are identified with String -
names in the support set. The root class Session is called for the current reference of the data
base. The method getObject(name) of the data base uses the specified name of the support to
find its reference in working space. The method draw(g) of the support object is then executed.

Page 10 of 10

1 public void paintComponent(Graphics g)
2 { …
3 // draw the supports
4 if (Session.getViewFrame().drawSupports)
5 { iter = Session.getFrame().getSupportSet().iterator() ;
6 while(iter.hasNext())
7 { name = (String)iter.next() ;
8 support = (Support)Session.getBase().getObject(name) ;
9 support.draw(g) ;
10 } }
11 …
12 }

Fig.9 Part of method paintComponent in class GraphicsPanel

7 Conclusions and perspectives

7.1 Conclusions
The redesign of the existing application in order to use the functionality of the data base
management has let to the identification of three concepts on which future implementations of
applications will be based :

1. The class structure of the application must support a clean decomposition into persistent
 and transient objects.

2. The reconstruction of the persistent objects and the resetting of the references after an
 application is loaded from a file must be planned systematically. The root concept which
 is presented in this paper may be compared to the earthing of electrical circuits. It creates
 a fixed point which permits all methods of an application to address every object at every
 point in time.

3. Several methods are available for the reconstruction of references after encapsulated
 objects have been loaded from files. The responsibility for correct references can be
 shifted to the application developer or to the system components. The choice should be
 left with the application developer.

7.2 Perspectives
The application for linear elastic analysis of plane frames which is presented in this paper has a
single visualization model. The application will be extended to include more than one
visualization model for the same product model.

The graphical user interface in the present application is constructed with the usual Java
components JPanel, JTextField, JButton etc. The acceleration of the development of the
graphical user interfaces by interactive graphic construction, including the establishment of data
flow between interface and data base, is under investigation.

8 Acknowledgement
The reported research was conducted in the research project DFG- Gz. PA 162/9-1
“Investigation of Structures in Information Sets of Civil Engineering” of the Deutsche

Page 11 of 11

Forschungsgemeinschaft (German Research Foundation DFG). We wish to thank the foundation
for its support.

9 References
Biltchouk, I. and Pahl, P.J. 2003. Entwicklung einer Datenbasis für Anwendungen im Bauwesen.
In digital proceedings of “Internationales Kolloquium über Anwendungen der Informatik und
Mathematik in Architektur und Bauwesen (IKM)”. Bauhaus-Universität Weimar. Germany.

Raphael, B. and Smith, I.F.C. 2003. Fundamentals of Computer - Aided Engineering. John
Wiley & Sons Ltd. West Sussex.

Page 12 of 12

