

Page 1 of 10

Towards Domain-Oriented Semi-Automated Model Matching for
Supporting Data Exchange

H. Wang, B. Akinci, J. H. Garrett, Jr.

Department of Civil and Environmental Engineering

Carnegie Mellon University, USA

O. Akin, M. T. Turkaslan-Bulbul, I. Gursel

School of Architecture

Carnegie Mellon University, USA

Summary
The process of matching data represented in two different data models is a long-
standing issue in the exchange of data between different software systems. While the
traditional manual matching approach cannot meet today’s demands on data
exchange, research shows that a fully automated generic approach for model matching
is not likely, and generic semi-automated approaches are not easy to implement. In this
paper, we present an approach that focuses on matching data models in a specific
domain. The approach combines a basic model matching approach and a version
matching approach to deduce new matching rules to enable data transfer between two
evolving data models.

1. Introduction
The exchange of data among different data models is a long-standing challenge in the
application of information technology in almost all engineering-oriented domains. When
one application tends to share data with others, data must be converted from a specific
problem-oriented data model to another public more generic data exchange standard.
This leads to a need to represent many different specific data models using the public
data exchange standard without losing data. Since it is highly unlikely to change an
internal data model according to a standard public model, matching of the data
represented internally to the standard way of representing those data is necessary.
The challenges in such data exchange become more pronounced when the specific
problem-oriented data model and /or the public data model are changing frequently.

Traditionally, such model matching activities are performed by domain experts and it is
knowledge-based and time-consuming work. This manual matching approach is
becoming an increasingly common and difficult problem given the rapidly growing use
of specific domain -oriented data models. Furthermore, since some of these specific
domain-oriented data models and the data exchange standards themselves are
continuously evolving , a manual model matching approach becomes an unsustainable
solution to solve data exchange problems.

Several researchers have worked on develop ing intelligen t approaches to convert one
data model to another (Li et al. 1994, Madhavan et al. 2001, Milo et al. 1998, Mitra et
al. 1999, Palopoli 1998). Prior experience on this area shows that a general-purpose
fully automated approach for model matching is extremely difficult and impractical

Page 2 of 10

(Rahm et al. 2001). It is difficult for a software application to understand the data
representations fo r different models since the models might differ both semantically
and syntactically.

A semi-automated match ing approach is much more achievable, especially when
performed within only one specific domain. Human intervention can improve model
matching from two aspects. First, a human expert is able to set up a matching context,
by applying domain constraints or configuring heuristic parameters, to speed matching.
Second, a domain expert can correct some errors during the matching procedure then
train that matching procedure to avoid future errors. Therefore, compared to a fully
automated approach, a domain-specific semi-automated approach that utilize s prior
matching knowledge and domain knowledge will undoubtedly lead to better
performance and accuracy.

The goal of the research discussed in this paper is to develop approaches to improve
the data model matching process by utilizing prior matching rules and domain
knowledge. This specific research activity is part of a larger research project to
evaluate the effectiveness of the Industry Foundation Classes (IFC) data exchange
standard in supporting Building Commissioning (BC) related activities.

The IFC data exchange standard is an effort initiated by International Alliance for
Interoperability (IAI) to enable interoperability between different software systems in the
Architectural/Engineering/Construction (A/E/C) and Facilities Management (FM)
industries (IAI 2003). Building commissioning is a systematic process of determining
that interacting building systems and components perform consistently with design
intent and the owner specified performance requirements (Oregon Office of Energy
1997). A continuously evolving BC data model is being created in this larger research
effort and we have been exploring how well the IFC data exchange standard can
represent the data items in the BC model. Since both data models, the BC and the IFC,
have been changing frequently, we are testing the ability of the most up-to-date IFC
release to represent the most up-to-date version of the BC model using a semi-
automated test rig. A primary requirement of this test rig is a means to perform a quick
and effective data model matching process between the BC and IFC models. When
developing this test rig, we keep in mind that the issue of matching between two
models has far more implications than the matching of BC and IFC models and hence
we are working on generalizing our approach and the lessons-learned for a general
model-matching domain.

2. Background

2.1 Semi-Automated model matching approaches
Model matching produces a correspondence between elements of two input models
(Rahm et al. 2001). It is a common research topic in the area of data integration, e-
business and data mining. Manual matching is a tedious and time-consuming job.
When the scales and complexity of models become larger, manual matching suffers
from being burdensome and error-prone. Several existing research projects
demonstrate that a semi-automated schema matching approach is a good means of
provid ing some support for manual data model matching (Li et al. 1994, Madhavan et
al. 2001, Milo et al. 1998, Mitra et al. 1999, Palopoli 1998).

Page 3 of 10

Individual algorithms, such as linguistic comparison, structure analysis, and
combination of multiple matching approaches, have been verified to work well (Rahm
et al. 2001). A widely used linguistic comparison approach is name -based matching. It
matches elements with equal or similar names. This approach often requires a
thesauri or dictionary to find equality of synonyms or acronyms. Another common
matching approach is structure -level comparison. It calculates structure similarity of the
contexts in which the elements occur in two models using a measure of similarity
(Madhavan et al. 2001). For example, it searches for similarities of the patterns formed
by the model element, its ancestor, siblings and child elements in two models. Some
approaches also utilize artificial intelligence algorithms, such as machine learning,
which extracts data model matching knowledge from training cases selected by domain
experts (Doan et al. 2001).

2.2 Version matching approaches
Besides model matching, research based on comparing different versions of the same
data model is also relevant in this research. When a new version of either the BC
model or the IFC standard is released, version ma tching is a viable approach. Version
matching is the matching between different releases of the same model, so it is actually
a specialization of the matching between different models (Ge, 2002). Model evolution
is a common issue since both problem-oriented and generic models are often changed
to take account of new content that must be represented .

In the context of our research, both the source model, the Building Commissioning data
model, and the target model, the IFC data exchange standard, are under development
and are frequently changing . Compared to a data model matching approach, a version
matching approach is relatively easier to implement because a new version of a data
model is usually built upon its previous version. Therefore, given two frequently
changing data models associated with the context of our research domain, one goal is
to determine how to obtain matching knowledge from the last matching process applied
between the previous two model versions.

An IFC version matching framework, created by Amor and Ge, was able to verify that
complexity of matching between IFC versions can be reduced significantly because of
the fact that a new IFC version is built upon its prior version (Amor and Ge 2002). Test
cases show that more than 65% of the IFC entities and types in release R2.0 can be
matched automatically from release 1.5.1 using basic algorithms, such as name
matching and structure comparison . After knowing the difference between versions, a
new set of matching rules can be deduced from the previously used set.

2.3 Domain knowledge -based approaches
It is also our intention to further support the data model matching activities using
domain knowledge and constraints. The integration of domain knowledge and
constraints, which are often not embedded in the data models themselves, can improve
matching accuracy by aiding software in removing ambiguous matching results. Using
domain knowledge also results in utilizing basic matching algorithms, for example by
supplementing the dictionary used in name matching with specific terms from the
domain being represented by the data models.

The LSD (Learning Source Description) system uses an improved machine-learning
algorithm that combines matching results of multiple basic match ing algorithms (Doan

Page 4 of 10

et al 2001). It allows domain constraints, which provides supplement model properties,
e.g. frequency that a specific term could be used, to be incorporated with basic
matching algorithms, as an additional source of knowledge. Such additional usage of
domain knowledge and constraints can improve the accuracy by 7-13% in its test
cases (Doan et al, 2001). Since our research focuses on models within one specific
domain, we expect domain constraints can boost the matching accuracy.

3. Towards Domain Oriented Semi-Automated Model Matching

3.1 Research Goals
In this research, we are designing and implementing a test procedure to evaluate the
degree to which the IFC data exchange standard supports the exchange of BC data in
the post-construction and facility management phase of building commissioning. This
test procedure is intended to provide a quick and effective assessment of the degree to
which BC data is able to be matched to the IFC data exchange standard when BC
models and IFC releases are frequently changing.

We plan to generate match ing rules from existing matching knowledge and combine
that knowledge with results from version matching. That is, given 1) matching rules
between a version of source model, S1, and target model, T, and 2) the difference
between S1 and a new version of source model, S2, we can deduce new rules for
matching S2 to T (Rahm et al 2001). This approach is expected to work better than
generic approaches to model matching because it can get support from domain
knowledge and existing matching rules that are created manually from the first one or
two versions of a data model.

3.2 Research Roadmap
This research project is a multi-year, multi-stage endeavor. For the entire project, we
will create three prototypes of the BC-IFC matcher using three increasingly difficult
approaches based on where and how matching rules are declared.

1. Statically Embedded Rules: The matching rules are embedded in the source code
of matcher application because it is easy to implement such a prototype. The
purpose of this stage is to discover initial matching rules manually and test the
effectiveness of using these deduced matching rules. This prototype helps us
explore how well new matching rules can be deduced from old ones.

2. Manually Generated Declarative Rules: This is a transition step between manually
matching and semi-automated matching. We will e xtract matching rules from the
source code created in the last stage and select a proper representation of these
rules to separate the matching rules from the corresponding implementation codes.
The matching rules will be stored in an external file that contains manually declared
rules and that could be updated independently. Domain knowledge is also
determined and added at this stage .

3. Semi-Automated Generated Declarative Rules: The purpose of this stage is to
develop a matcher application to generate matching rules desired by the matcher
application. Compared to manually generated rules in approach 2, the semi-
automated matcher attempts to deduce matching rules automatically where
possible. The difference between versions could be obtained by comparing their

Page 5 of 10

semantic meanings and structures. Given prior matching rules and differences
between a new version and the prior one , the matcher can deduce new matching
rules.

To date, we have completed the first level approach. A Java application has been
developed to test the data model matching between a version of the BC model and
three recent releases of the IFC data exchange standard: R2.0, R2x and R2x2. Based
on the experience and the lessons learned from this matching approach, we are in the
process of implementing the second prototype focusing on manually generating
declarative rules.

4. Approach for Statically Embedded Matching Rules

4.1 Manual creation of statically embedded rules
To implement the first level of the data model matching approach, we developed
match ing rules by comparing the BC model and the three IFC data exchange releases
manually. We compared the BC entities and their attributes to each release of the IFC
data exchange standard to build three IFC class diagrams that represent the BC
model. To evaluate the effectiveness of the matching process, we define three levels of
matching:

• Fully matched indicates that the IFC release not only has a category to
represent the class or attribute in the BC model, but also possesses a proper
entity to represent it exactly.

• Partially matched means that the BC and the IFC models have different
representations for the same class or attribute that could be matched
effectively, but at least one constraint, for example value type or the scope of a
value, is not matched. For example, the location attribute of the equipment
entity in the BC model is a string type, while IFC adopts a geometric type of
data to represent such an attribute.

Figure 1 Partial Building Commissioning Data Model

Page 6 of 10

• Not matched means that neither a class nor an attribute was available in the
corresponding IFC release to provide a representation of the BC attribute or a
class.

Among all current BC entities, relationships and attributes in the BC model (see Figure
1), about 30 percent of those data items can be fully matched to the entities in the most
recent release of the IFC data exchange standard, R2x2 . For example, in IFC R2x2,
BC Equipment entity, which stands for HVAC equipment, is represented by IfcElement
and Event entity, which stands for building commissioning activity, is expressed by
IfcTask. IfcRelAssignToProcess entity is used to represent three kinds of relationships
between Equipment and Event entities: Specification, System_Context_Inspection, and
Functional_Inspection.

4.2 System architecture of matcher framework
We then developed a prototype data model matching application that embedded the
matching rules learned from the manual matching activity described in Section 4.1.
Figure 2 presents a system component diagram of our first level BC-IFC data model
matcher prototype. It contains the following major components:

Instance

Class Library

Class Generator

Model Schema

BC IFC R20 IFC R2x IFC R2x2

BC Data STEP21 Reader STEP21 Writer

BC IFC R20 IFC R2x IFC R2x2

IFC Data

Matcher Manager
BC-IFC R20 Entity Matchers

BC-IFC R2x Entity Matchers

BC-IFC R2x2 Entity Matchers

Future extension

Generate

Refer

Data Input

Figure 2 System Components of Matching BC to IFC

Page 7 of 10

• Class Generator: This component is a utility to generate Java class library files
from a model definition file which is saved in EXPRESS (ISO 1994) language.
The class generator parses an EXPRESS schema file and creates Java class
definition for each declared entity and type in the model. It gives us capability of
updating class library definition automatically when the BC data model or the
IFC data exchange standard changes. As a result, this ensures the class library
definition consists of the most up-to-date models and speeds our development
by reducing code generating time significantly.

• Entity Matcher: This component applies the matching rules to convert instances
of one data model to instances of another data model. A data model matcher
processes the entities existing in one model and generates corresponding
entities in the other model. One matcher only serves one type of BC entities and
generates result entities of one specific version of the IFC data exchange
standard . That is, for each BC entity, we develop three entity matchers to
generate IFC R20, R2x and R2x2 entities respectively. The input parameter of
entity matcher is a BC object and the output is a set of IFC objects that
represent the corresponding BC object.

• Matcher Manager: This component manages and coordinates the matcher
application. It specifies a public interface through which external applications
can operate entity matchers. It provides for entity matchers by defining
infrastructure where the matcher works, establishing workflow of matching
procedure and the internal interfaces through which one component can invoke
services of other components.

• STEP21 Reader/Writer: This component is a STEP21 (ISO 2002) format data
file parser for Java. The reader parses a STEP21 data file and generates
instances for each declared entity, while the writer can output the class
instances to a data file in STEP21 format.

4.3 Description of Current Matching Workflow
To perform data model matching, the first step is to generate a Java class library. Both
the BC model and the IFC data exchange standard are defined in the EXPRESS
language files. The class generator parses these files to create a Java class definition
for each declared BC or IFC entity and type. This is a one-time task, only required
when a new version of a model is released.

The second step is to input the source data model. The STEP21 reader reads a data
file where BC data is represented in STEP21 format. For each declared BC entity, the
reader looks up correct Java class definition generated in the last step, then constructs
an instance of that class in Java and initializes this BC instance with the values in the
data file.

The third step has the matcher manager iterating over all BC instances. Given the
target IFC version and which BC entity is being matched, the manager selects an
appropriate entity matcher for each BC instance. The entity matcher uses embedded
matching rules to create desired IFC instances.

The fourth and last step is to save the IFC results in a data file by the STEP21 writer.
SInce the output is in STEP21 format, any applications that support the STEP21
standard can parse this file.

Page 8 of 10

4.4 Experience and Lessons Learned from the Manual Matching
The current BC model is not a complicated and a large-scale domain-specific model,
however, it was still a very time-consuming job to find manually all matching rules
between the BC model and the IFC exchange standards. It is difficult to locate one IFC
attribute that exactly matches a required value type, the scope of a value and semantic
meaning, especially if one recognizes that the IFC may have multiple ways to represent
the same concept in the BC model.

The concept of implementing matching rules in the source code is straightforward
because it statically declares match ing rules within the matcher classes. However, this
approach has major limitations when one has to change the existing code to reflect the
matching between a new BC model and/or a new IFC release. We usually obtain new
matching rules by merging changes between two releases, such as name changing,
into the existing matching rules. For example, the BCEvent entity of the BC model is
matched to the IfcWorkTask entity under IFC R2.0. Given the fact that IfcWorkTask is
renamed to IfcTask in IFC R2x, we can match the BCEvent entity to IfcTask under IFC
R2x. When a new BC attribute is inserted, we had to manually re-scan each IFC
schema to locate proper counterparts and then re-write, re -compile and re-deploy each
individual matcher class in the first level matcher prototype. Additionally, although the
IFC data exchange standard has a relative ly stable core platform, some of its external
domains such as the HVAC domain, change significantly between versions. This
situation makes our test procedure utilizing statically embedded rules less effective and
encourages us to develop an automated or semi-automated approach to speed up the
matching procedure.

Meanwhile, the manually declared matching rules for three IFC releases verify that both
the BC model and the IFC model could apply a version matching approach to their new
version to find the difference between the versions. The fact that a new version is
oftentimes built upon its prior version makes an automated or semi-automated version
matching approach possible. Among the IFC entities and attributes related to building
commissioning, over 60 percent of classes and data entities between the last two
versions of IFC were overlapped.

5. Proposed Semi-Automated Approach
Figure 3 illustrates an initial architecture of our proposed semi-automated matching
approach developed based on what we learned from the first level prototype described
in Section 4. It is our assumption that the two data models being matched are in the
same application domain, for example in the A/E/C domain. The approach is intended
to work at the schema level and will be supported by dictionary and thesauri based
matching approach and existing matching rules to find matches between the data
models.

First, the identified data model, either the source model or the target one, will be
parsed into an internal model representation, which records necessary properties of
each element of the model, such as its superclass, attribute list, value type and value
constraints. Then, a version matcher will compare this internal representation with the
representation of the model’s prior version, to find the differences, if there is any,
between these two versions. Linguistic matching and structure analysis are two

Page 9 of 10

possible version matching algorithms that we are intending to use to compare different
versions. If a version change log exists, it will be an important source to aid matching.

After version matching, new matching rules for the source and target data models can
be generated via a variety of approaches. For example, one is to combine the version
difference information obtained in the last step with existing matching rules for old
versions to deduce new matching rules. Another approach is to continuously use
linguistic matching, structure analysis and/or artificial intelligence algorithms to build
matching rules. These approaches could be applied either jointly or separately and
both approaches will use domain knowledge to improve their accuracy. One example
of domain knowledge is additional thesauri and dictionaries to support better name
matching. The final stage of result checking will still be the responsibility of the domain
expert, who will be able to correct matching errors and to pick the proper matching
result from a list of possible matches. Finally, the newly generated matching rules will
be recorded as existing knowledge to be used the next time this version must be
matched to another model.

6. Conclusion
In this paper, we discussed our ongoing research to perform fast and effective specific
domain model matching. Experience and lessens learned from our manual model
matching clearly demonstrate the need for an approach to conduct domain-oriented
model matching effectively, especially when models are changing frequently. This
approach combines basic model matching and version matching approaches.
Compared to a generic model matching approach, our approach applies domain
knowledge and constraints to improve matching accuracy. We also present our

Internal Model
Representation

Source Model Target Model

Internal Model
Representation

Model Matcher

Dictionary

Schemas

Prior Matching and

Domain Knowledge

Matching Rules

Version Matcher Version Matcher

Figure 3 System architecture of domain matcher

User Correction

Model Data

Knowledge

Page 10 of 10

proposed research roadmap to implement a semi-automated domain -oriented data
model matching approach.

Acknowledgements
The material in this paper is based upon work supported by the National Institute for
Standards and Technology under Grant No.60NANB2D0158. We thank Kent Reed and
George Kelly from NIST for their professional insights in this research.

Reference
Akin, O., Turkaslan -Bulbul, T., Brown, S., Kim, E., Akinci, B., Garrett, J. (2003),
Comparison of ASHRAE Guidelines with Building Commissioning Practice, National
Conference on Building Commissioning, California

Amor, R.W. and Ge, C.W. (2002), Matching IFC Versions, Proceedings of the EC-PPM
Conference on eWork and eBusiness in AEC, Portoroz, Slovenia

Doan, A., Domingos, P., and Levy, A. (2001), Reconciling Schemas of Disparate Data
Sources: A Machine-Learning Approach, Proc ACM SIGMOD Conf

Ge, C.W. (2002), A Semi-Automated Schema Version Mapping Framework , MSc
thesis, University of Auckland, Auckland, New Zealand,

ISO (1994), ISO 10303 Part 11 Description methods: The EXPRESS language
reference manual, http://www.iso.org

ISO (2002) ISO 10303 Part 21 Implementation methods: Clear text encoding of the
exchange structure , http://www.iso.org

IAI (2003) Industry Foundation Classes, http://www.iai-international.org

Li, W, and Clifton C (1994), Semantic integration in heterogeneous database using
neural network. In: Proc 20 th Int. Conf On Very Large Data Bases, pp. 1-12

Madhavan, J., Bernstein, P.A., and Rahm, E. (2001), Generic Schema Matching with
Cupid. In: Proc 27th Int. Conf. On Very Large Data Bases, pp 49 -58

Milo , T, and Zohar, S. (1998), Using Schema matching to simplify heterogeneous data
translation. In: Proc 24th Int. Conf On Very Large Data Bases, pp. 122-133

Mitra, P., Wiederhold, G. and Jannink, J. (1999), Semi-automatic integration of
knowledge sources. In: Proc of Fusion’99, Sunnyvale, USA

Palopoli, L., Sacca D., Ursino D. (1998), Semi-automatic, semantic discovery of
properties from database schemas. In: Proc Int. Database Engineering and
Applications Symp. (IDEAS), IEEE Computer, pp244-253

Rahm, E. and Bernstein P. A. (2001). A survey of approaches to automatic schema
matching. VLDB Journal, 10:334--350.

