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Summary 
The process of matching  data represented in two different data models is a long-
standing issue in the exchange of data between different software systems. While the 
traditional manual matching approach  cannot meet today’s demands on data 
exchange, research shows that a fully automated generic approach for model matching 
is not likely, and generic semi-automated approaches are not easy to implement. In this 
paper, we present an approach that focuses on matching data models in a specific 
domain. The approach combines a basic model matching  approach and a version 
matching approach to deduce new matching rules to enable data transfer between two 
evolving data models.  

1. Introduction  
The exchange of data among different data models is a long-standing challenge  in the 
application of information technology in almost all engineering-oriented domains. When 
one application tends to share data with others, data must be converted from a specific 
problem-oriented data model to another public more generic data exchange standard. 
This leads to a need to represent many different specific data models using the  public 
data exchange standard without losing data. Since it is highly unlikely to change an 
internal data model according to a standard public model, matching of the data 
represented internally to the standard way of representing those data is necessary.  
The challenges in such data exchange become more pronounced when the specific 
problem-oriented data model and /or the public data model are changing frequently. 

Traditionally, such model matching activities are  performed by domain experts and it is 
knowledge-based and time-consuming work.  This manual matching approach is 
becoming an increasingly common and difficult problem given the rapidly growing use 
of specific domain -oriented data models. Furthermore, since some of these specific 
domain-oriented  data models and the data exchange standards themselves are 
continuously evolving , a manual model matching approach becomes an unsustainable 
solution to solve data exchange problems.    

Several researchers have worked on develop ing intelligen t approaches to convert one 
data model to another (Li et al. 1994, Madhavan et al. 2001, Milo et al. 1998, Mitra et 
al. 1999, Palopoli 1998).  Prior experience  on this area shows that a general-purpose 
fully automated approach for model matching is extremely difficult and impractical 
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(Rahm et al. 2001). It is difficult for a software application to understand the data 
representations fo r different models since the models might differ both semantically 
and syntactically.  

A semi-automated match ing approach is much more achievable, especially when 
performed within only one specific domain. Human intervention can improve model 
matching from two aspects. First, a human expert is able to set up a matching context, 
by applying domain constraints or configuring heuristic parameters, to speed matching. 
Second, a domain expert can correct some errors during the matching procedure then 
train that matching procedure to avoid future errors. Therefore, compared to a fully 
automated approach, a domain-specific semi-automated approach that utilize s prior 
matching knowledge and domain knowledge will undoubtedly lead to better 
performance and accuracy.   

The goal of the research discussed in this paper is to develop approaches to improve 
the data model matching process by utilizing prior matching rules and domain 
knowledge. This specific research activity is part of a larger research  project to 
evaluate the effectiveness of the Industry Foundation Classes (IFC) data exchange 
standard in supporting Building Commissioning (BC) related activities.  

The IFC data exchange standard is an effort initiated by International Alliance for 
Interoperability (IAI) to enable interoperability between different software systems in the 
Architectural/Engineering/Construction (A/E/C) and Facilities Management (FM) 
industries (IAI 2003). Building commissioning is a systematic process of determining 
that interacting building systems and components perform consistently with design 
intent and the owner specified performance requirements (Oregon Office of Energy 
1997). A continuously evolving BC data model is being created in this larger research 
effort and we have been exploring how well the IFC data exchange standard can 
represent the data items in the BC model. Since both data models, the BC and the IFC, 
have been changing frequently, we are testing  the ability of the most up-to-date IFC 
release to represent the most up-to-date version of the BC model using  a semi-
automated test rig.  A primary requirement of this test rig is a means to perform a quick 
and effective data model matching process between the BC and IFC models.  When 
developing this test rig, we keep in mind that the issue of matching between two 
models has far more implications than the matching of BC and IFC models and hence 
we are working on generalizing our approach and the lessons-learned for a general 
model-matching domain.  

2. Background  

2.1 Semi-Automated model matching approaches 
Model matching produces a correspondence between elements of two input models 
(Rahm et al. 2001).  It is a common research topic in the area of data integration, e-
business and data mining. Manual matching is a tedious and time-consuming job.  
When the scales and complexity of models become larger, manual matching suffers 
from being burdensome and error-prone.  Several existing research projects 
demonstrate that a semi-automated schema matching approach is a good means of 
provid ing some support for manual data model matching (Li et al. 1994, Madhavan et 
al. 2001, Milo et al. 1998, Mitra et al. 1999, Palopoli 1998).  
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Individual algorithms, such as linguistic comparison, structure analysis, and 
combination of multiple  matching approaches, have been verified to work well (Rahm 
et al. 2001). A widely used linguistic comparison  approach is name -based matching. It 
matches elements with equal or similar names.  This approach often requires a 
thesauri or dictionary to find equality of synonyms or acronyms. Another common 
matching approach is structure -level comparison. It calculates structure similarity of the 
contexts in which the elements occur in two models using a measure of similarity 
(Madhavan et al. 2001).  For example, it searches for similarities of the patterns formed 
by the model element, its ancestor, siblings and child elements in two models. Some 
approaches also utilize artificial intelligence algorithms, such as machine learning, 
which extracts data model matching knowledge from training cases selected by domain 
experts (Doan et al. 2001). 

2.2 Version matching  approaches 
Besides model matching, research based on comparing different versions of the same 
data model is also relevant in this research.  When a new version of either the BC 
model or the IFC standard is released, version ma tching is a viable approach. Version 
matching is the matching between different releases of the same model, so it is actually 
a specialization of the matching between different models (Ge, 2002).  Model evolution 
is a common issue since both problem-oriented and generic models are often changed 
to take account of new content that must be represented .  

In the context of our research, both the source model, the Building Commissioning data 
model, and the target model, the IFC data exchange standard, are under development 
and are frequently changing . Compared to a data model matching approach, a version 
matching approach is relatively easier to implement because a new version of a data 
model is usually built upon its previous version. Therefore, given two frequently 
changing data models associated with the context of our research domain, one goal is 
to determine how to obtain matching knowledge from the last matching process applied 
between the previous two model versions.  

An IFC version matching framework, created by Amor and Ge, was able to verify that 
complexity of matching between IFC versions can be reduced significantly because of 
the fact that a new IFC version  is built upon its prior version (Amor and Ge 2002).  Test 
cases show that more than 65% of the IFC entities and types in release R2.0 can be 
matched automatically from release 1.5.1 using  basic algorithms, such as name 
matching and structure comparison . After knowing the difference between versions, a 
new set of matching rules can be deduced from the previously used set.  

2.3 Domain knowledge -based approaches 
It is also our intention to further support the data model matching activities using 
domain knowledge and constraints. The integration of domain knowledge and 
constraints, which are often not embedded in the data models themselves, can improve 
matching accuracy by aiding software in removing ambiguous matching results. Using 
domain knowledge also results in utilizing basic matching algorithms, for example by 
supplementing the dictionary used in name matching  with specific terms from the 
domain being represented by the data models.  

The LSD (Learning Source Description) system uses an improved machine-learning 
algorithm that combines matching results of multiple  basic match ing algorithms (Doan 
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et al 2001). It allows domain  constraints, which provides supplement model properties, 
e.g. frequency that a specific term could be used, to be incorporated with basic 
matching algorithms, as an additional source of knowledge. Such additional usage of 
domain knowledge and constraints can improve the accuracy by 7-13% in its test 
cases (Doan et al, 2001). Since our research focuses on models within one specific 
domain, we expect domain constraints can boost the matching accuracy. 

3. Towards Domain Oriented Semi-Automated Model Matching  

3.1 Research Goals 
In this research, we are designing and implementing a test procedure to evaluate  the 
degree to which the IFC data exchange standard supports the exchange of BC data in 
the post-construction and facility management phase of building commissioning. This 
test procedure is intended to provide a quick and effective assessment of the degree to 
which BC data is able to be matched to the IFC data exchange standard when  BC 
models and IFC releases are frequently changing.  

We plan to generate  match ing rules from existing matching knowledge  and combine 
that knowledge with results from version matching. That is, given  1) matching rules 
between a version of source model, S1, and target model, T, and 2) the difference 
between S1 and a new version of source model, S2, we can deduce new rules for 
matching S2 to T (Rahm et al 2001). This approach is expected to work better than 
generic approaches to model matching because it can get support from domain 
knowledge and existing matching rules that are created manually from the first one or 
two versions of a data model.  

3.2 Research Roadmap 
This research project is a multi-year, multi-stage endeavor. For the entire project, we 
will create three prototypes of the BC-IFC matcher using three increasingly difficult 
approaches based on where and how matching rules are declared. 

1. Statically Embedded Rules: The matching  rules are embedded in the source code 
of matcher application because it is easy to implement such a prototype. The 
purpose of this stage is to discover initial matching rules manually and test the 
effectiveness of using these deduced matching rules. This prototype helps us 
explore how well new matching rules can be deduced from old ones.  

2. Manually Generated Declarative Rules: This is a transition  step between manually 
matching and semi-automated matching. We will e xtract matching rules from the 
source code created in the last stage and select a proper representation of these 
rules to separate the matching rules from the corresponding implementation codes.  
The matching rules will be stored in an external file that contains manually declared 
rules and that could be updated independently.  Domain knowledge is also 
determined and added at this stage .  

3. Semi-Automated Generated Declarative Rules:  The purpose of this stage is to 
develop a matcher application to generate matching rules desired by the matcher 
application. Compared to manually generated rules in approach 2, the semi-
automated matcher attempts to deduce matching rules automatically where 
possible. The difference between versions could be obtained by comparing their 



 

Page 5 of 10 

 

 

 

semantic meanings and structures. Given prior matching rules and differences 
between a new version and the prior one , the matcher can deduce new matching 
rules.  

To date, we have completed the first level approach. A Java application has been 
developed to test the data model matching between a version of the BC model and 
three recent releases of the IFC data exchange standard: R2.0, R2x and R2x2. Based 
on the experience and the lessons learned from this matching approach, we are in the 
process of implementing the second prototype focusing on manually generating 
declarative rules. 

4. Approach for Statically Embedded Matching Rules 

4.1 Manual creation of statically embedded rules 
To implement the first level of the data model matching approach, we  developed 
match ing rules by comparing the BC model and the three IFC data exchange releases 
manually. We compared the BC entities and their attributes to each release of the IFC 
data exchange standard to build three  IFC class diagrams that represent the BC 
model. To evaluate the effectiveness of the matching  process, we define  three levels of 
matching: 

• Fully matched indicates that the IFC release not only has a category to 
represent the class or attribute in the BC model, but also possesses a proper 
entity to represent it exactly. 

• Partially matched means that the  BC and the IFC models have different 
representations for the same class or attribute that could  be matched 
effectively, but at least one constraint, for example value type or the scope of a 
value, is not matched. For example, the location attribute of the equipment 
entity in the BC model is a string type, while IFC adopts a geometric type of 
data to represent such an attribute. 

Figure 1 Partial Building Commissioning Data Model 
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• Not matched means that neither a class nor an attribute was available in the 
corresponding IFC release to provide a representation of the BC attribute  or a 
class. 

Among all current BC entities, relationships and attributes in the BC model (see Figure 
1), about 30 percent of those  data  items can be fully matched to the entities in the most 
recent release of the  IFC data exchange standard, R2x2 . For example, in IFC R2x2, 
BC Equipment entity, which stands for HVAC equipment, is represented by IfcElement 
and Event entity, which stands for building commissioning activity, is expressed by 
IfcTask. IfcRelAssignToProcess entity is used to represent three kinds of relationships 
between Equipment and Event entities: Specification, System_Context_Inspection, and 
Functional_Inspection. 

4.2 System architecture of matcher framework 
We then developed a prototype data model matching application that embedded the 
matching rules learned from the manual matching activity described in Section 4.1. 
Figure 2 presents a system component diagram of our first level BC-IFC data model 
matcher prototype. It contains the following major components:  

Instance 

Class Library 

  

Class Generator 
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BC IFC R20  IFC R2x  IFC R2x2  

BC Data STEP21 Reader STEP21 Writer 
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Data Input 

Figure 2 System Components of Matching BC to IFC 
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• Class Generator: This component is a utility to generate Java class library files 
from a model definition file which is saved in EXPRESS (ISO 1994) language. 
The class generator parses an EXPRESS schema file and creates Java class 
definition for each declared entity and type in the model. It gives us capability of 
updating class library definition automatically when the BC data model or the 
IFC data exchange standard changes.  As a result, this ensures the class library 
definition consists of the most up-to-date  models and speeds our development 
by reducing code generating time  significantly.  

• Entity Matcher: This component applies the matching rules to convert instances 
of one data model to instances of another data model. A data model matcher 
processes the entities existing in one model and generates corresponding 
entities in the other model. One matcher only serves one type of BC entities and 
generates result entities of one specific version of the IFC data exchange 
standard . That is, for each BC entity, we develop three entity matchers to 
generate IFC R20, R2x and R2x2 entities respectively. The input parameter of 
entity matcher is a BC object and the output is a set of IFC objects that 
represent the corresponding BC object. 

• Matcher Manager: This component manages and coordinates the matcher 
application. It specifies a public interface through which external applications 
can operate entity matchers. It provides for entity matchers by defining 
infrastructure where the matcher works, establishing workflow of matching 
procedure and the internal interfaces through which one component can invoke 
services of other components.  

• STEP21 Reader/Writer: This component is a STEP21 (ISO 2002) format data 
file parser for Java. The reader parses a STEP21 data file and generates 
instances for each declared entity, while the writer can output the class 
instances to a data file in STEP21 format.  

4.3 Description of Current Matching Workflow 
To perform data model matching, the first step is to generate a Java class library. Both 
the BC model and the IFC data exchange standard are defined in the EXPRESS 
language files. The class generator parses these files to create a Java class definition 
for each declared BC or IFC entity and type. This is a one-time task, only required 
when a new version of a model is released. 

The second step is to input the source data model. The STEP21 reader reads a data 
file where BC data is represented  in STEP21 format. For each declared BC entity, the 
reader looks up correct Java class definition generated in the last step, then constructs 
an instance of that class in Java and initializes this BC instance with the values in the 
data file. 

The third step has the matcher manager iterating over all BC instances. Given the 
target IFC version  and which BC entity is being matched, the manager selects an 
appropriate  entity matcher for each BC instance. The entity matcher uses embedded 
matching rules to create desired IFC instances. 

The fourth and last step is to save the IFC results in a data file by the STEP21 writer. 
SInce the output is in STEP21 format, any applications that support the STEP21 
standard can parse this file. 
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4.4 Experience and Lessons Learned from the Manual Matching  
The current BC model is not a complicated and a large-scale domain-specific model, 
however, it was still a very time-consuming job to find manually all matching rules 
between the BC model and the IFC exchange standards.  It is difficult to locate one IFC 
attribute that exactly matches a required value type, the scope of a value and semantic 
meaning, especially if one recognizes that the  IFC may have multiple ways to represent 
the same concept in the BC model. 

The concept of implementing matching rules in the source code is straightforward 
because it statically declares match ing rules within the matcher classes. However, this 
approach has major limitations when one  has to change the existing code to reflect the 
matching between a new BC model and/or a new IFC release. We usually obtain new 
matching rules by merging changes between two releases, such as name changing, 
into the existing matching rules. For example, the BCEvent entity of the BC model is 
matched to the IfcWorkTask entity under IFC R2.0.  Given the fact that IfcWorkTask is 
renamed to IfcTask in IFC R2x, we can match the BCEvent entity to IfcTask under IFC 
R2x. When  a new BC attribute is inserted, we had to manually re-scan each IFC 
schema to locate proper counterparts and then re-write, re -compile and re-deploy each 
individual matcher class in the first level matcher prototype. Additionally, although the 
IFC data exchange standard  has a relative ly stable core platform, some of its external 
domains such as the HVAC domain, change significantly between versions. This 
situation makes our test procedure utilizing statically embedded rules less effective and 
encourages us to develop an automated or semi-automated approach to speed  up the 
matching procedure. 

Meanwhile, the manually declared matching rules for three IFC releases verify that both 
the BC model and the IFC model could apply a version matching approach to their new 
version to find the difference between the versions. The fact that a new version is 
oftentimes built upon its prior version makes an automated or semi-automated version 
matching approach possible. Among the IFC entities and attributes related to building 
commissioning, over 60 percent of classes and data entities between the last two 
versions of IFC were overlapped.  

5. Proposed Semi-Automated Approach 
Figure 3 illustrates an initial architecture of our proposed semi-automated matching 
approach  developed based on what we learned from the first level prototype described 
in Section 4.  It is our assumption that the two data models being matched are in the 
same application domain, for example  in the A/E/C domain. The approach is intended 
to work at the schema level and will be supported by dictionary and thesauri based 
matching approach and existing matching rules to find matches between the data 
models. 

First, the identified data model, either the source model or the target one, will be 
parsed into an internal model representation, which records necessary properties of 
each element of the model, such as its superclass, attribute list, value type and value 
constraints. Then, a version matcher will compare this internal representation with the 
representation of the model’s prior version, to find the differences, if there is any, 
between these two versions. Linguistic matching and structure analysis are two 
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possible version matching algorithms that we are intending to use to compare different 
versions. If a version change log exists, it will be an important source to aid matching.  

After version matching, new matching rules for the source and target data models can 
be generated via a variety of approaches.  For example, one is to combine the version 
difference information obtained in the last step with existing matching rules for old 
versions to deduce new matching rules. Another approach is to continuously use 
linguistic matching, structure analysis and/or artificial intelligence algorithms to build 
matching rules. These approaches could be applied either jointly or separately and 
both approaches will use domain knowledge to improve their accuracy. One example 
of domain knowledge is additional thesauri and dictionaries to support better name 
matching. The final stage of result checking will still be the responsibility of the domain 
expert, who will be able to correct matching errors and to pick the proper matching 
result from a list of possible matches. Finally, the newly generated matching rules will 
be recorded as existing knowledge to be used the next time this version must be 
matched to another model. 

 

6. Conclusion 
In this paper, we discussed our ongoing research to perform fast and effective specific 
domain model matching. Experience and lessens learned from our manual model 
matching clearly demonstrate the need for an approach to conduct domain-oriented 
model matching  effectively, especially when models are changing frequently. This 
approach combines basic model matching and version matching approaches. 
Compared to a generic model matching approach, our approach applies domain 
knowledge and constraints to improve matching accuracy. We also present our 
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Figure 3 System architecture of domain matcher 
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proposed research roadmap to implement a semi-automated domain -oriented data 
model matching approach.  
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