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1 Introduction 

The revitalization of existing structures belongs to the frequently tasks in urban reconstruc-
tion processes. The adaptation for new requirements will commonly affect substantial 
changes in the general configuration of structures. The resulting revitalized structures are 
characterized by a hybrid design, where old and new, identical or diverse materials and 
members will be coupled in different ways. In the planning stage the treatment of these sys-
tems leads to application of complex and hybrid mechanical models respectively. High per-
formance numerical instruments have to be applied for solving not only analysis but also tar-
geted design problems.  

The development of the Finite Element Method in the last centuries leads to the availability of 
a huge amount of numeric tools for the analysis of non-linear structures. Besides dominating 
technologies performing incremental iterative solving strategies methods based on mathe-
matical optimization are increasingly applied. These optimization algorithms are principally 
qualified for solving several classes of initial and boundary value problems. The application 
of these algorithms is beneficial if bounding conditions have to be fulfilled while considering 
design objectives. Especially the design tasks in civil engineering correspond to this type of 
numerical interface. That’s why mechanical problems can be descriptively formulated as op-
timization problems. The advantages over strategies basing on the solution of several linear 
equilibrium systems result from using inequality condition i.e. for the formulation of limit state 
conditions (i.e. plasticity-, contact conditions) and result from the presence of an objective 
function for the specification of design intentions. The non-linear behavior of structures can 
be formulated as a combination of non-linear equality and inequality conditions. The applica-
tion of that method offers multifaceted possibilities supporting the solution of analysis and 
design problems in engineering [6,7]. 
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Besides the development of alternative solving strategies several research activities have 
their focus on the improvement of the quality of the results. A lot of proposals deal with the 
alternation of the basis polynoms or the amount of nodes belonging to an element. Alterna-
tively methods for the adaptive mesh improvement have been developed. The application of 
these methods typically leads to an increase in the amount of unknowns. On the other hand 
most optimization algorithms perform better with less design parameters and subsidiary con-
ditions.  

These problems can be avoided while having still a high quality approximation. It can be 
done by breaking down the traditional finite element boundaries. This strategy has been ap-
plied by so-called meshless or element free technologies. One representative is the Element 
Free Galerkin Method (EFG) proposed by Belytschko et. al. [1,2]. This method was success-
fully applied in structural engineering solving non-linear analysis problems. The application 
leads to structural matrices with fewer unknowns but with more density (bandwidth). A 
graphical comparison of the matrix structure between a similar FE and alternatively EFG 
modeled structure is given in Fig. 1.1. 

 

          

Fig. 1.1 Graphical comparison of the stiffness matrices according to FE (left) and EFG (right) 

 

Because of the hybrid character of mechanical models in revitalization planning processes 
the use of hybrid technologies is advantageous. In this paper at first these mechanical rela-
tions will be formatted for the use with mathematical optimization algorithms. Secondly a 
simple coupling technique will be used for connecting mixed EFG and FE domains [4]. 
Thirdly the models derived will be adopted for design purposes of non-linear loaded hybrid 
structures. The results will be compared with common FE solutions. The elastic and elasto-
plastic state of structures according to a given load intensity as well as it’s plastic limit state 
will be considered. 

2 Mechanical model 

2.1 Derivation of the optimization model for single domains 

Optimization models usable for structural design can be directly derived from extremum prin-
ciples [3]. For analysis of the plastic limit state the static principle of plastic limit state equilib-
rium can be discretized directly either with FE or EFG methods. One commonly used formu-
lation is the ultimate limit load problem: 



Maxp →            (1) 

VpT ∈ϕ=σ∇          (2) 

λ∈≤σ S0)(f          (3) 

s0
T Sn ∈σ=σ .         (4) 

The value p is an intensity factor scaling the variable loads. Using a ideal plastic material law 
and simplifying the yield condition (4) as a linear function, a general problem can be specified 
that can be solved by means of linear programming [3]. The principle of matrix assembly for 
a single domain problem can be taken from Table 2.1.  

 

Tab: 2.1 Optimization tableau for plastic limit load analysis (single domain) 

design variables s Fsup p 1   

objective function   -1  → Min 

equilibrium cond. AT Asup - fm - fd = 0 

static boundary conditions AS
T   - s0 = 0 

plasticity condition AP
T   - slim ≤ 0 

 

As and AP are the coefficient matrices and s0 and slim the constant parts of the static boundary 
and plasticity conditions. Asup is the matrix of the support forces Fsup. The vector fm and fd con-
tain the moving and dead loads applied to the structure. The vector s contains stresses 
or/and internal forces. 

The Matrix A is the gradient matrix of the shape functions for FE 

nFEMuH)x(u =            (5) 

or if appropriate for the shape functions according to EFG 

iEFGuH)x(u =   .          (6) 

The derivation of the shape function matrices HFEM for finite elements is widely known, 
whereas the derivation of HEFG can be achieved according to [2]: 
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The matrices B1 and B2 are dependencies of the basis vector p and the weight function w 
that can be chosen i.e. as a cubic spline interpolation function for radius r [5]: 
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According to the idea of the EFG-method the moving least square sum (MLS) for the un-
known coefficients a and ui will become a minimum 

MinJ
n

i
i →Φ= ∑ . Φi = B1a² - 2B2aui + ui

2      (11) 

Equation (5) can be treated according to known finite element achievements. Necessary in-
tegrations will be done with help of an underlying (simple, mostly orthogonal) net using the 
Gaussian approach. That’s why the EFG is easily introducible into given computational appli-
cations. 

 

2.2 Connecting EFG and FEM 

While considering hybrid structures it can be necessary to decompose the structure into dif-
ferent model domains that can be treated alternatively: 

• single domain models (either FE or EFG) or 

• mixed domain models (FE and EFG). 

Because of the non-direct compatibility between the unknowns ui of the meshless model and 
the nodal deformations un of the FE solution it is necessary to provide a interface or trans-
formation relation. It can be easily done by utilize the shape functions matrices HFEM and HEFG 
of Eq. (5) and (6). Equating both conditions leads to 

nFEMiEFG uHuH =            (12) 

that can be directly applied for all interface points between two domains.   

 

Tab: 2.2 Tableau for plastic limit load analysis (domains 1 and 2) 

design variables s1 s2 Fsup,1 Fsup,2 Fc p 1   

objective function      -1  → Min 

A1
T  Asup,1  Hi,1

T - fm,1 - fd,1 = 0 
equilibrium cond. 

 A2
T  Asup,2 - Hi,1

T - fm,2 - fd,2 = 0 

AS,1
T      - s0,1 = 0 static bnd. condi-

tions  AS,2
T     - s0,2 = 0 

plasticity condition AP,1
T      - slim,1 ≤ 0 

  AP,2
T     - slim,2 ≤ 0 

 



In Tab. 2.2 the optimization tableau for solving the plastic limit load problem is given. The 
number of unknowns will increase with the vector of coupling forces Fc along then domain 
interface. 

The state of the structure according to a given load intensity can be analyzed using a quad-
ratic optimization routine. The extended model contains material (linear elastic – ideal plastic) 
and compatibility conditions in the objective function as well as the subsidiary conditions 
given in Tab. 2.2. The altered objective function for the mixed domain problem is shown in 
Tab. 2.3. The matrix Q is the flexibility matrix.  

 

Tab. 2.3  Objective function for state analysis 

design variables s1 s2 Fsup,1 Fsup,2 Fc p = const 1   

s1
T

 Q2       
objective function 

 s2
T

 Q2      
→ Min 

 

3 Examples 

In this chapter the finite element and meshless models presented in this paper will be dis-
cussed with help of two simple examples. For comparability of the solutions derived with sin-
gle and mixed domain models for both FEM and EFG the same configuration of the mesh 
and Gaussian quadrature is chosen. This results in models with identical number of un-
knowns. For the finite element modeling of shear walls a standard 4-nodes finite element 
with bilinear shape function is used. The EFG part applies a bilinear basis and circular sup-
port functions.  

 

 

Fig. 3.1 Structural System and Parameters 

 

Parameters: 

E = 3000 MN/m² ν = 0.3 

w = 0.15 m (shear wall thickness) 

ABeam = 0.4m²  IBeam = 0.021 m4
 

AColumn = 0.25m² IColumn = 0.00521 m4 

Fwind = 2.0 kN/m² 



3.1 Coupled shear wall and beam column structure 

In Fig. 3.1 a hybrid beam-column-shear wall structures is given. The structure is loaded by 
dead loads and a variable horizontal load.  

In this structure two different types of models are connected. For the wall structure part the 
EFG is used, whereas for the beam and columns common FE beam elements are applied. 
Because of the pure quality of element free results for beam structures this decomposition is 
always recommended. Fig. 3.2 shows the discretization of the two domains and the interface 
points. 

 

 

Fig. 3.2 Connections points between EFG and FE part of the model 

 

Following state and limit state analysis configurations will be discussed: 

1. Elastic state with load intensity p = 1.0 

2. Plastic limit state with equal yield limitations in both tension and pressure direction 

3. Plastic limit state with different yield limitations in tension and pressure direction 

 

In this example simple non-interacting uniaxial plasticity conditions for the stresses and inter-
nal forces will be used. Selected results of the calculation are given in Fig. 3.3 – 3.6. The 
plastic limit load is 2.85. Despite the relatively coarse mesh in the wall section the resulting 
stress distribution is continuous. This applies also for the linear and nonlinear stress distribu-
tions. 



  

Fig. 3.3 Elastic Response σx (case1)   Fig. 3.4 Elastic Response σy (case 1) 

  

Fig. 3.5 Plastic Deformation (case 3)   Fig. 3.6 Plastic Response σy (case 2,3) 

 

3.2 Coupled shear wall system 

The analysis will be continued with a coupled wall system according to Fig. 3.7.  

 

Fig. 3.7 Structural System and applied loads 

Parameters: 

E = 3000 MN/m² ν = 0.3 

w = 0.15 m (shear wall thickness) 

Fwind = 1.0 kN/m² 



 

Fig. 3.8 System, Deformation for case 2 elastic p= 1.0 and case2 elasto-plastic p=1.835 

 

For examination purposes three cases will be considered: 

1. Both walls are FE-discretized 

2. Wall 1 will be EFG and wall 2 FE modeled 

3. Both walls will have an EFG discretization 

 

Table 3.1 Results 

Modell Elastic calculation Elastic-Plastic calculation 

case wall 1 wall2 
Intensity 

factor 
max u 
[mm] 

Intensity 
factor 

max u 
[mm] 

Intensity 
factor 

max. u 
[mm] 

1 FE FE p=1.0 3.0 p=1.0 3.2 1.835 18.0 

2 EFG FE p=1.0 3.1 p=1.0 3.3 1.835 28.5 

3 EFG EFG p=1.0 3.2 p=1.0 3.4 1.835 196.2 

 

 

Fig. 3.9  Elastic Response (case 2, p=1.0) 



 

Fig 3.10  Elasto-Plastic Response (case 2, p=1.0) 

 

Fig 3.11  Elasto-Plastic Response (case 2, p=1.853) 

 

For all cases an elastic state and plastic limit state analysis will be performed. The results are 
listed in Table 3.1. As visible in the mixed structure results (Fig. 3.8 to 3.11) the EFG-
discritization has an advantage in representing the stress distribution in the structure. In limit 
state analysis the difference in modeling is not so important for the determination of the ulti-
mate limit load itself. But it is essential for the approximation of the resulting stresses and 
deformations. It should be stated that the FE solution can be approved by refining the mesh 
or using better element formulations. 

 

4 Conclusions 

The investigations show a good adaptability of the meshless methods to the design of hybrid 
structures by using optimization strategies. As well as single domain models, mixed domain 
models can be used. With this method the advantages of both finite element and meshless 
methods can be utilized most suitable.  With the property of a minimum amount of unknowns 
by maintaining an adequate quality of the results the application of mixed finite element and 
meshless methods is a promising alternative to traditional methods in structural analysis and 
optimization. 
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