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ABSTRACT i

Abstract

Most traditional methods in system identification are based on the analysis of measured
data in either the time or frequency domain. In recent years some procedures were

developed that apply wavelet analysis in the context of system identification.

The purpose of this study was to develop an algorithm that allows for identifying the
parameters of a finite element model that describes a tested mechanical system. A method
has been derived that determines the desired parameters by solving a system of equations
of motion in the time-scale domain. By using this representation, problems that are caused
by noise contamination of the measured data can be reduced. The results of numerical
simulations and an experimental study confirmed the benefits of applying wavelet analysis

in the proposed way.

A second emphasis was put on investigations with respect to a wavelet-based first level
damage indicator. Considerations of the impulse response wavelet coefficients’ energy
components led to a damage indicator for reinforced concrete structures. The findings of

an experimental study suggest a relatively high sensitivity of this indicator.



i KURZFASSUNG

Kurzfassung

Die meisten traditionellen Methoden der Systemidentifikation beruhen auf der Abbildung
der Mefiwerte entweder im Zeit- oder im Frequenzbereich. In jiingerer Zeit wurden im
Zusammenhang mit der Systemidentifikation Verfahren entwickelt, die auf der Anwendung

der Wavelet-Transformation beruhen.

Das Ziel dieser Arbeit war, einen Algorithmus zu entwickeln, der die Identifikation von
Parametern eines Finite-Elemente-Modells, das ein experimentell untersuchtes mechani-
sches System beschreibt, ermdglicht. Es wurde eine Methode erarbeitet, mit deren Hilfe
die gesuchten Parameter durch Losen eines Systems von Bewegungsgleichungen im Zeit-
Skalen-Bereich ermittelt werden. Durch die Anwendung dieser Darstellung kénnen Pro-
bleme, die durch Rauschanteile in den Mef3daten entstehen, reduziert werden. Die Ergeb-
nisse numerischer Simulationen und einer experimentellen Studie bestatigen die Vorteile

einer Anwendung der Wavelet-Transformation in der vorgeschlagenen Weise.

Ein zweiter Schwerpunkt wurde auf Untersuchungen hinsichtlich eines auf der Wavelet-
Transformation basierenden Indikators zur Schadenserkennung gelegt. Betrachtungen der
Energie-Komponenten von Wavelet-Koeffizienten einer Impulsreaktion fiihrten zu einem
Schadigungsindikator fiir Stahlbetontragwerke. Die Resultate einer experimentellen Un-

tersuchung lassen auf eine relativ hohe Empfindlichkeit dieses Indikators schlieflen.
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Notation

General Terms and Symbols

H, class of linear operators

N set of all non-negative integers
N, set of all positive integers

R set of all real numbers

R, set of all positive real numbers
7 set of all integers

D differential operator of Ath order
- integral operator of Ath order

K linear operator

[] matrix

{-} vector

" transpose of a matrix

{3" transpose of a vector

[ inverse of a matrix

[* generalised / pseudo inverse of a matrix

Il norm of a function, vector or matrix

()" complex conjugate
U mean value
(f,9) general inner product of f and g

vil



viil NOTATION

Latin Letters

A lower bound of a wavelet frame
A, series of scaling coefficients at scale m of an orthogonal

wavelet decomposition (approximation)

a scaling parameter in continuous wavelet analysis

Qo kth scaling coefficient at scale m of an orthogonal wavelet
decomposition

B upper bound of a wavelet frame

b translation parameter in continuous wavelet analysis

c viscous damping parameter

[C] viscous damping matrix

Cy admissibility constant for a wavelet

o kth wavelet coefficient at scale m of an orthogonal wavelet
decomposition

D (s) operator of normalised dilation

D adjoint operator of D

D,, series of wavelet coefficients at scale m of an orthogonal

wavelet decomposition (details)

E expectation value

E Young’s modulus

E;; wavelet coefficients’ energy component
e Euler number ~ 2.718282

F force

f,q function

f frequency [H z]

I natural frequency [H z]

fmn wavelet coefficient of an excitation series



7;7.].7 k’ l? m7 n
k

(K]

L*(R)

M

X

general function of time (signal)

time series of excitation

windowed signal

Fourier transform of a function f

projection of a function f onto a linear subspace V,,
projection operator of the wavelet in discrete wavelet ana-
lysis

adjoint operator of G

auto spectral density

order of a wavelet

coefficient of a wavelet in discrete wavelet analysis
normalised coefficient of a wavelet in discrete wavelet ana-
lysis

projection operator of the scaling function in discrete
wavelet analysis

adjoint operator of H

frequency response function (FRF)

coefficient of a scaling function in discrete wavelet analysis
wavelet coefficient of an impulse response function
normalised coefficient of a scaling function in discrete
wavelet analysis

impulse response function (IRF)

geometrical moment of inertia

imaginary unit /—1

indices, integers

stiffness parameter

stiffness matrix

space of real functions with [ |f (¢)[" dt < oo
R

integer, max. wavelet decomposition level



Greek Letters

ay

Brw

Iy (f.9)
At

Af, Aw

527_]
G
n;

NOTATION

mass
mass matrix

projection operator of a multi-scale analysis

risk measure

scale parameter

operator of translation

adjoint operator of T

time variable

weighting coefficient

subspaces of a multi-scale analysis

continuous wavelet transform with respect to a wavelet v
window function

basic function of a windowed Fourier transformation
time series of displacements, velocities, accelerations
normalisation coefficient

wavelet coefficients of noise in a signal

normalised autocorrelation coefficient of the scaling func-
tion’s coefficients

parameter for the calculation of connection coefficients
connection coefficient

time sampling rate

frequency sampling rate

modal logarithmic decrement

Kronecker symbol

modal damping ratio

threshold operator for wavelet shrinkage



time interval between instants of response and excitation,
resp.

wavelet coefficients of a noise-free signal

threshold for wavelet shrinkage

integer indicating order of differentiation or integration
eigenvalue of a matrix [A]

integer

mass density

time parameter

standard deviation

eigenvector matrix

scaling function

dilated and translated scaling function

mother wavelet

dilated and translated wavelet in continuous wavelet ana-
lysis

dilated and translated wavelet in discrete wavelet analysis
rad}

frequency [T

rad

natural frequency [T}

X1






INTRODUCTION 1

Introduction

A typical engineering task in the design phase of buildings and civil engineering structures
is the prediction of the structure’s response to an external loading. Usually, a numerical
model of the structural system is used in this context. Consequently, the quality of the

predictions depends to a great extent on the model’s quality.

The subject of system identification is the solution of the inverse problem, i.e. the iden-
tification of a system that describes the relation between an input and a known output
(figure 1). That means, the aim of system identification is the description of an existing
structural system by a model, based on experimentally obtained data. This data is often

obtained from dynamic tests of the structure.

SYSTEM

INPUT OUTPUT

(external loading) (e.g. civil engineering structure) | (structural response)

>
>

Y

Figure 1: Schematic representation of input-output relation of a structural system

Often it is desired to detect irregularities or changes of the considered structural system’s
properties that were caused by structural damage. The field of damage detection (or

damage identification) includes the following objectives:

1. Detection of presence of damage,
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2. Localisation of damage,
3. Severity assessment of damage (quantification) and

4. Prediction of structural safety.

If damage is regarded as a modification of the system’s parameters, the first three of these

four levels are related to system identification.

Traditionally, most approaches in system identification are based on the analysis of the
measured data either in the time or in the frequency domain. While frequency domain
approaches are not well suited to the consideration of a system’s properties with respect to
time, time domain methods are often very sensitive to noise in the data since all frequency

components present in the data are included into the analysis.

In order to overcome these disadvantages, several methods, that use time-frequency or
time-scale domain analysis, were developed in recent years. A considerable number of
these approaches is based on wavelet analysis. The objective of these developments range
from the extraction of signal feature in the context of damage detection over modal
parameter identification to the estimation of structural system parameters. In many
cases only comparatively simple systems are considered (single, two or three degree of
freedom systems). With respect to experimental applications, only very few examples are

reported, particularly in the context of civil engineering structures.

During tests on civil engineering structures, the structural response is usually measured
in the form of accelerations. However, often estimations of displacements or velocities are
required. An integration of measured accelerations can result in considerable errors due

to the presence of noise in the data.

Concerning structural health monitoring of civil engineering structures, the definition of
a sensitive and reliable indicator for first level damage detection is still the subject of

current research.

The objectives of this dissertation can be summarised as follows:
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Development of a methodology for a wavelet-based direct system parameter estima-

tion that uses solely measured accelerations and applied forces,

e Investigation of this method’s applicability to more complex systems and of its

accuracy with respect to the data’s noise content,

e Application of the derived method to data generated in dynamic tests on an existing

structural system,

e Investigations concerning a sensitive and applicable wavelet-based indicator for first

level damage detection in reinforced concrete structures.

Specific emphasis is put on the application of discrete wavelet analysis in order to benefit

from the advantages of the respective fast algorithms.

The theoretical background of wavelet analysis is explained in chapter 1. A number of
recent applications of wavelet analysis in system identification are summarised in chapter
2. De-noising by selective wavelet reconstruction, an important application in signal pro-
cessing, is described and applied to structural dynamics-related problems in chapter 3. In
chapter 4 relations for the representation of derivatives and integrals in both continuous
and discrete time-scale domain are derived. These relations are applied to the identifica-
tion of a system’s parameters in chapter 5. A proposal for a wavelet-based indicator for

first level damage detection on reinforced concrete structures is made in chapter 6.

The intention of the presented study is to contribute to the developments of wavelet-based
approaches in system identification. These techniques should combine the advantages of

fast numerical algorithms with those of time-scale domain representations.



Chapter 1

Fundamentals of Wavelet Analysis

In this chapter a brief introduction to wavelet analysis is given. The starting point is
the Fourier transform and the windowed Fourier transform. Following the reflections on
these methods, that are extensively utilised for analysing signals in the frequency and
time-frequency domain, respectively, wavelet analysis is introduced. First the continuous
wavelet transform is described before passing on to the discrete wavelet transform. The
multi-scale analysis, that the fast wavelet transformation algorithms are based on, is

explained.

The descriptions in this chapter are restricted to the one-dimensional wavelet transfor-
mation. For detailed derivations and further descriptions refer to the literature (e.g. [14]

[17], [34], [40]).

1.1 The Fourier Transform and the Windowed Fourier

Transform

As in other engineering disciplines, an important part of structural dynamics is the identi-

fication of certain properties of time-variable processes. In this context measured signals,



1.1. FOURIER TRANSFORM, WINDOWED FOURIER TRANSFORM bt

that can be interpreted as functions with respect to time, are often transferred into an-

other domain.

The most commonly used transformation method in signal analysis is the Fourier trans-
formation. The basic idea of the Fourier analysis is to describe a signal by means of an
infinite series of harmonic functions. The Fourier transform of a function f (¢) is defined

as:

£ 1 i —twt
f(w):\/?_w_l F(1) et de . (1.1)

Its inverse is given by:
1
V2

The Fourier transform is defined for real functions that are square-integrable. A function

f(t) = /f(w) et dw . (1.2)

f (t) belongs to the space L* (R), R := (—o0; +o0) if
/f2 () dt < oo. (1.3)

If the condition in equation 1.3 is satisfied and with the normalisation used in equations

(1.1) and (1.2) one has (e.g. [34])

|f @)

I = | 17 ] (15)

The application of the Fourier analysis has become very popular since the introduction

L=l (14)

with

N

of the Fast Fourier Transform method (FFT). Usually the Fourier analysis is applied to
finite time series assuming that the signals are periodically continuing outside the obser-
vation interval. The Fourier transform does not give information about how the frequency
contents of a signal behave with respect to time. Therefore the Fourier analysis is not

particularly appropriate for the investigation of non-linear and non-stationary problems.

The first important step in the analysis of signals in the time-frequency domain was the

introduction of the windowed Fourier transform. Basically, with the windowed Fourier
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transform the frequency contents of a signal within a time window are analysed. The
window is of constant length and is translated along the time axis. That means, the
Fourier analysis is only applied to a section of the entire signal. Within each of these

sections the signal is assumed to be stationary. Such a section is called windowed signal:

fu (8) = w(t) f(2) . (1.6)

The window function w (¢) must be square-integrable [34] and the product f (t) w (¢) has

to be an element of L? (R) as well.

By moving the window along the time axis, the complete time domain is covered. Conse-

quently the windowed signal f,, (¢) depends both on the time ¢ and the windows position 7:

Juo (1) =w(t—7) f(1) . (1.7)
By applying the Fourier transformation on such a windowed signal, one obtains the win-

dowed Fourier transform as a function of the frequency w and the window’s position 7:

JEw (w,7) = !

\/ﬂzw(t—T) f(t)e™tdt. (1.8)

If the Fourier transform w (w) of the window function w (¢) is also a window function
(0 (w) € L*(R), ww (w) € L*(R)), then equation (1.8) is called the short time Fourier

transform.

The resolutions in the frequency and time domains are generally different. They are
governed by the length and the frequency band width of the utilised window function.
For an “optimal” localisation in the time-frequency domain, the application of a function
proportional to the Gaussian function is recommended (e.g. [60], [40], [51], [13], [14]):

1 2
= g, = Tia 1.9
w =g Wk (1.9)

where a > 0 is a constant. The respective windowed Fourier transform is also called the

Gabor transform [27].

Fourier analysis decomposes a signal by means of elementary harmonic functions. For the

windowed Fourier transformation the decomposition is carried out partially. The basic
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functions usually are decaying harmonic functions of constant duration. The number of

oscillations within a window varies.

1.2 Introduction to Wavelet Analysis

Similar to the windowed Fourier transformation, the one-dimensional wavelet transfor-
mation projects a signal into a two-dimensional space. Analogous to equation (1.8) the

wavelet transform of a signal f (¢) is defined as:

W/ (a,b) /f (t_b) dt (1.10)

where ¢* () denotes the complex conjugate of ¢ (+). It is assumed that the mean value of

/w(t) dt =0. (1.11)

Both in the windowed Fourier transformation and in the wavelet transformation the signal

the function ¢ vanishes (e.g. [40]):

f (t) is multiplied by a function of two variables. In the case of the windowed Fourier

transform this is the function

WO (1) = e (t— 7) et (1.12)

V2T

The respective function for the wavelet transformation is

o =l () (1.13)

a

The functions ¥** are called wavelets. They are dilated and translated versions of
the mother wavelet ). As the basic functions of the windowed Fourier transformation,
wavelets are usually oscillating, rapidly decaying functions. However, in contrast to the
functions w*™ (t), the number of oscillations of the functions ¥*° (t) remains constant with

the changing width of the window. This means a wavelet is “stretched” or “squeezed”
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Figure 1.1: Ilustration of the basic functions for the Fourier transformation (left), the

windowed Fourier transformation (centre) and the wavelet transformation (right)

(dilated) along the time axis. For the windowed Fourier transformation the size of the
window remains constant while the number of oscillations changes. This principle is

illustrated in figure 1.1.

A typical example for a wavelet is the so-called “Mexican hat”:

2
t)=(1-1) ez,
the second derivative of the Gaussian function. The condition of equation (1.11) is satisfied
for the “Mexican hat”.

Large values of the scaling parameter a correspond with small frequencies. A change of
the parameter b results in a translation of the localisation point. Each 1 (¢) is located

at t = b.

It can be shown (e.g. [14], [60]) that the wavelet transform of a function f () can be
calculated by means of the Fourier transforms of this function, f (w) and of the dilated

wavelet, ¢ (aw). Equation (1.10) becomes then:

W/ (a ’f/f aw) e’ dw . (1.14)

Generally two types of the wavelet transformation can be distinguished:
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e the continuous wavelet transformation and

e the discrete wavelet transformation.

Their basic properties are briefly described in the following sections and verified by ex-

amples.

1.3 The Continuous Wavelet Analysis

For the continuous wavelet transformation, the wavelet 1)** can always be described by
an analytical function. Both the scaling parameter a and the translation parameter b
change continuously over R. It is excluded that a vanishes (a # 0). The continuous
wavelet transform is defined by equation (1.10). If ¢ (?) is a real function, equation

(1.10) becomes:

W/ (a,b) = |a| 2 7f(t) " (?) dt . (1.15)

Beside the assumption of the vanishing mean value (equation (1.11)), a wavelet must
satisfy the admissibility condition:
e

2
7Y W)
Cy=27 /wa < 0. (1.16)

Here v (w) denotes the Fourier transform of ¢ (¢). The inverse of the continuous wavelet

transform is given by

f(t)épZZ \/1W|W$(a,b)w* (t;b) dZde. (1.17)

For real wavelets equation (1.17) becomes

F(t) = Ciw 7 7 \/1|E|W$ (a,b) (t;b) d‘;fb. (1.18)

—00 —0O0
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A wavelet ¢ is called of order g € N [40] if its mean value and the first ¢ — 1 moments

vanish:
o

/t’w(t)dt:0,k:0,1,2,...,g—1 (1.19)

—0o0
and if the gth moment is finite and non-zero:

o0

/ 19 (t) dt #£ 0, . (1.20)

—00

Some examples for often applied wavelets are given in the following paragraphs.

1.3.1 Examples of Wavelets
The Haar Wavelet

The Haar wavelet has been known since 1910 [17]. It is defined by:

1 for 0<t< %
Yt) =< -1 for 1<t<1 . (1.21)
0 elsewhere
Its Fourier transform is given by:
- ’ iw 1 —cos (%
b (W) =2 —— ¢ 1-cos(3) (1.22)

V2T w

The Fourier transform of the Haar wavelet decays relatively slowly, as can be seen in
figure 1.2. Accordingly, the Haar wavelet does not localise well with respect to frequency.
However, it forms the simplest orthogonal base and can be easily applied as a wavelet for

the discrete wavelet transformation (section 1.4.)

The Gaussian Family

The wavelets of the Gaussian family are formed by the nth derivatives of the Gaussian
2
distribution function g (¢) = e~7. Each wavelet of this family is defined by:

b (t) = (=1)" S—; 5, neN. (1.23)
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1
0.3
voo07 —  [pw)
_1_
I I 0.0 /\ I |
0.0 0.5 1.0 0 50 100
+ W

Figure 1.2: The Haar wavelet (left) and the magnitude of its Fourier transform (right)

The respective Fourier transforms are:

~

(W) = (—iw)" e

v[G

(1.24)

The earlier mentioned “Mexican hat” also belongs to this family. The first three wavelets
of the Gaussian family are shown in figure 1.3. The localisation properties improve with

increasing order n.

The Morlet Wavelet

All the wavelets that have been introduced so far are real functions. One of the most
often applied complex valued wavelets is the Morlet wavelet. It is defined as the product

of a complex exponential function and the Gaussian function:

2
It]

Y (t) = elte 2, (1.25)

The Fourier transform is then

Y(w)y=e 2 . (1.26)
The wavelet transform is a complex valued function which is represented either by its real

and imaginary parts or by the modulus and phase.

1.4 The Discrete Wavelet Transformation

The continuous wavelet transformation, as introduced in section 1.3, projects a one-

dimensional signal f (¢) into the continuous time-scale domain. For most of the applied
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1.0 - 1.0
0.5 )
v 0.0 _\/X‘ b (w)’ 0.5
—0.54
~1.0 | | 0.0 | |
_5.0 0.0 5.0 0.0 2.5 5.0
t w
1.0 - Lo
0.5 '
v 0.04 5 (o ’
0.5
o5 Y (w)
—1.07 I | 0.0 I |
_5.0 0.0 5.0 0.0 2.5 5.0
t w
1.50 -
0.75 - L0~
Y 000 $@)| 054
—0.75 4
~150 | | 0.0 | |
_5.0 0.0 5.0 0.0 2.5 5.0
t w

Figure 1.3: The first, second and third derivatives (from top to bottom) of the Gaussian

function (left) and their Fourier transforms (right),

1.0 4 1.0
0.5 - )
v 004 b (w)‘ 0.5
—0.5 1
—1.0 — | 0.0 I |
—4.0 0.0 4.0 0 5 10
t w

Figure 1.4: The Morlet wavelet (left), the real part (solid) and the imaginary part
(dashed), and the magnitude of its Fourier transform (right)

wavelets, this leads to a redundancy of information in the wavelet transform and requires

a considerable number of numerical operations.
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For the continuous wavelet analysis, the wavelets (equation 1.13)
_1 _
Yt (1) = a7z ¥ ()

are used. Here are b € R and a € R with a # 0. The wavelet 1) must satisfy the admissi-
bility condition (1.16). In signal analysis it is sensible to restrict the scaling parameter to

positive real numbers (a € R;). As a consequence the admissibility condition (1.16) can

be modified to [17]:

2

dw = /lﬁ‘(Tw‘)‘dw < 0. (1.27)

—00

. 7° ¥ (w)
1/} =
|w]
0
For the discrete wavelet transform the parameters a and b become discrete values. The

scaling parameter a is chosen to be a power of a constant ag. The translation parameter

b is also determined based on a constant by. The parameters a and b are formed as:
A = " bypn = nbyag™ . (1.28)

with m,n € Z and ag > 1,by > 0 [17]. The choice of the constants ag, by depends on the

wavelet :
_m t—n bo aom _m —m
’ll)mm (t) = Qg 2 ’QZ) e — = Qg 2 ’QZ)(CLO t — TLbQ) . (129)
The system of functions {¢y,, (t);m,n € Z} in equation (1.29) forms a wavelet frame, if
AP < 320 KEvmall® < B ISP VfeL(R), (1.30)

where A and B are constants with A > 0 and B < co0. The constants A and B are called

the frame bounds. If A = B, a frame is called a tight frame [17], [40].

1.4.1 The Orthogonal Wavelet Transformation,
Multi-Scale Analysis

If ¥y, (t) forms a tight frame with the bounds A = B = 1 and if ¢, ,, is normalised such

that ||¢mn| =1, then ¢, forms an orthonormal base. That means one obtains, for
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arbitrarily chosen 1, j, k, [:

1 for 1 = jandk =1
(Wi, Vi) = : (1.31)

0 elsewhere

A well known group of discrete wavelets is given by the dyadic wavelets. They are formed

if ap = 2 and by = 1. With these parameters, equation (1.29) becomes

m
2

Y (1) = 272 4 (27 — n) . (1.32)

From equation (1.28) one can conclude that the dyadic wavelet transformation is a pro-
jection onto a dyadic grid:

a=2" b=n2". (1.33)

Such a dyadic grid is illustrated in figure 1.5. It can be easily deduced from figure 1.5
that the discrete scales can be interpreted as frequency bands. The discrete scales are
also referred as levels. The levels’ bandwidths of a dyadic wavelet transform are octaves.

A broader band width corresponds with a finer resolution in time.

scale

time

Figure 1.5: Dyadic wavelet grid



1.4. THE DISCRETE WAVELET TRANSFORMATION 15

Typically the data for a signal analysis is provided in digital form. That means, f (¢) is a
series of discrete values that has been sampled with a sampling rate At. These time series
may become very long, which sometimes results in a considerable amount of data that
has to be analysed. Consequently a fast numerical algorithm is required. With respect to
the discrete wavelet transformation, such an algorithm is usually based on a multi-scale

analysis.

The basic idea of a multi-scale analysis is that a signal f (¢) with a total length T = 1,
which has been sampled at a rate of At = 27", is decomposed into series at different
scales with a bandwidth of 2™, m € Z. Each of these scales corresponds to a subspace

Vi in L? (R):
{0}c...cvhbcVicVy,CcV,CV,yC...CL*R) . (1.34)

This decomposition is schematically illustrated in figure 1.6. A signal f in the subspace

L (R)

{0}

Figure 1.6: Scheme of a multi-scale analysis

V_, in L?(R) is split into a high frequency part and a low frequency part. The low
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frequency part is described by an orthogonal projection Py, f onto the subspace V) in V_;.
The subspace Wy in V_; contains the high frequency parts of f. The orthogonal projection
of fin V_1 onto Wy is Qg f. That means:

= Rf+ Qlf,

(1.35)
Vi = Wwe W.
If one follows the diagram in figure 1.6 it becomes apparent that
f=DPf+Qf (1.36)
and in consequence
f = Pf+Qf+Qlf. (1.37)

Therefore a signal f in L?(R) (m — — oo; P, f — f) can be described by the following

decomposition until a scale M:
M
f=Puf+ > Qf.fel’R). (1.38)
k=—00
Hence, one obtains for the orthogonal decomposition of L? (R):
M
L*(R) = Vy & P Wi. (1.39)
k=—00

If a signal f belongs to a subspace V,,, equations (1.38) and (1.39) become:

M
f" = Puf = Puf+ Y, Quf M >m, (1.40)
k=m+1
M
Vo =V @ @ Wi, M >m. (1.41)
k=m+1

The multi-scale analysis in the context of the orthogonal wavelet transformation assumes

the existence of a scaling function ¢, such that the subspace V,, is formed by the functions

{mn(t) =2"2¢ (2™t —n),n e}, (1.42)

Vin = {f =D tmn b 117 = D lamnl* < OO} : (1.43)

ne” nez
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The system of functions {¢y,,, n € Z} forms an orthonormal base of V,,,.

P, f = f™ can be developed by means of the base:
f™ = Puf = o b (1.44)
neZ
The scaling function ¢ satisfies the scaling condition:
¢(t) = V2 ha¢(2t —n), h, € R. (1.45)
neZ

It has the properties
/gb(t)dt =1 (1.46)

and

Y hy = V2> (-1)" h, = 0. (1.47)

ne”L neL
Based on such a scaling function ¢ a mother wavelet ¢ can be built:

Y(t) = V2 gao(2t —n), (1.48)

nez

where
n = <wa¢—1,n> = (_]-)n hl—n- (]_49)

With equation (1.11) one obtains for a wavelet of an orthogonal wavelet transformation

the property:
1
Y (t)dt = — gn = 0. (1.50)
Jron= 5%

The admissibility condition for a wavelet (1.16) is satisfied as well:

. 2
T |0 (w)
C¢:27r/ ™ dv = 2In2 < . (1.51)

The dilated and translated version of :

m
2

U () = 272 ¢ (27 — n) , m,n € Z (1.52)

is an orthonormal base for the subspace W,,.



18 CHAPTER 1. FUNDAMENTALS OF WAVELET ANALYSIS

If m = —1 is chosen, equation (1.42) becomes
¢ 1n(t) = V20 (2t —n) . (1.53)
Consequently, equation (1.48) can be re-written as

() = gad (2t —n). (1.54)

nez

Equation (1.32) can be re-arranged according to the following scheme [17]:

Vi () = 2729 (27™t — k)
(2 —k) = 22 Y ga o (27 — 2k —n)
nez

— (bmfl,skﬂrn <t> = 27”37%

¢ (27t — 2k —n)

wm,k (t) - Z gn ¢m—172k+n (t) - Z In—2k ¢m—1,n (t)

nezZ neL

(1.55)

Similarly it can be derived from equations (1.42) and (1.45):

m
2

G (t) = 272 ¢ (27"t — k) = > ook i (1) - (1.56)

ne”

If the wavelet ¢ and its respective scaling function ¢ form an orthonormal system the

following relations are satisfied ([53]):

(Piks Pit) = Oki, (1.57)
(Dik, jp) = Ofori > j, (1.58)
(Vigs Via) = 0ij Ok (1.59)
[oill = llvbiell = 1, (1.60)

where 6; ; denotes the Kronecker delta.
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Often used orthogonal wavelets are those of the Daubechies wavelets family [17]. There ex-
ist numerous other orthogonal wavelets, such as the Meyer wavelet, the so-called Coiflets,
the Symmlets or spline wavelets. The description of these wavelets is beyond the scope
of this work. Only some remarks on the Daubechies wavelets are made in the following

section.

The Daubechies Wavelets

For the sake of enhanced clarity it is useful to normalise the coefficients of the scaling

function and the wavelet, respectively:
hy = V2h,and g, = V2g, . (1.61)

The number of non-zero coefficients h,, and g,, respectively, is 2¢g, where g € N, denotes

the order of the respective Daubechies wavelet. Accordingly, equations (1.45) and (1.48)

become: 21
¢(t) = > hao(2t —n) (1.62)
n=0
2g—1 2g—1 ~
Y(t) = Gnd (2t —n) = Y (=1)"hoyy1n¢(2t — n) . (1.63)
n=0 n=0

A Daubechies wavelet of order g always satisfies the following conditions:

e It is compactly supported in the interval [0, 2g — 1],

e 7 (t) has g vanishing moments:

(e 9]

/tmwg(t)dt,m:(),...,g—l. (1.64)

With an increasing number of vanishing moments, i.e. with higher order g, ¢ (t) becomes

smoother.

In the following paragraphs it is described how the scaling functions of the Daubechies
wavelets can be calculated. However, first some properties of the scaling functions, or

rather their coefficients h,,, are summarised.
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It follows from equations (1.47) and (1.61) that

2g—1

S hy =2, (1.65)

Two further conditions that have to be satisfied by the coefficients h,, [60], [49] are the

condition of accuracy

[\

g—1
(-=1)*n™h, = 0, m =0,1,2,...,9g—1 (1.66)
n=0

and the condition of orthogonality

(2g—1—2m)
> hnhagom =0, m=12...,g-1. (1.67)

n=0

Furthermore, the orthogonality of the scaling function results in [49]:

[y

[\
<

o= 2. (1.68)

I
=)

n

The coefficients h,, of the scaling function of a Daubechies wavelet of order g can be

calculated utilising equations (1.65) to (1.68).

For further properties of the Daubechies wavelets and their scaling functions, refer to the

literature (e.g.[17], [49], [40], [34]).

Example 1.1. It is shown how the scaling function’s coefficients hy, of the Daubechies

wavelet D3 (order g = 3) are calculated: (1.65):

ho + hy + hy + hs + hy + hy = 2 (1.69)
(1.66):
ho — hy + hy — hy + hy — hs = 0 (1.70)
ho — hi + 2hy — 3hg + 4hy — 5hy = 0 (1.71)
ho — hi + 4hy — 9hg + 16hy — 25h; = 0 (1.72)
(1.67):

hohy + hihg + hohy + h3hs = 0 (1.73)
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ilo il4 + iLl iL5 = O (174)

(1.68):
B2+ h2+h2+h2+h2+hE=1 (1.75)

The solution of equations (1.69) to (1.75) is

oo — 1+V10+s j _ 54+V10+3s j _ 5=V10+s
0 16 ! 16 2 = 3

7 _5—\/170—5 7 _5—1—\/@—33 7 _1+\/170—s
hs 3 hy = ==Hg— hs = 16

with s = V5 + 2/10.

The coefficients h,, of the scaling functions of further Daubechies wavelets are given in

the literature (e.g. [17], [40], [49)).

With given coefficients h.,, the respective scaling function can be generated from the dila-
tion equations. One can start from a box function {¢p(t) =1, 0 <t < 1,
¢o (t) = 0 elsewhere} . The jth approximation of the scaling function is calculated
from the result of the previous step in an iteration that follows from the basic dilation

equation (1.62):
2g9—1

@) =D had' " (2—n) . (1.76)

n=0
This iteration is repeated until the difference between the functions ¢/ (t) and ¢/~ (¢) is
sufficiently small. In figure 1.7 the iteration is illustrated for the scaling function of the

D2 wavelet. The lines are drawn darker with converging results.

1.4.2 The Fast Wavelet Transformation

In section 1.4.1 the multi-scale analysis has been explained. It was shown, how a signal f
in a subspace V,,, can be described by projections of f onto the subspaces of V,,, (equations
(1.40), (1.41)). The dilated and translated scaling functions ¢,,, form an orthonormal

base of a subspace V,,, while the dilated and translated wavelets v,,,, are an orthonormal
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Figure 1.7: Iteration of the scaling function of the D2 wavelet

base of the subspace W,,. Hence, a discrete series f in the fundamental space V; can
be described by means of projections based on scaling functions and wavelets. It can be
derived from equation (1.40):

M
() = PRft Zf%k ZaMk¢Mk + 3 gt () - (177)
K

m=1
Consequently, a discrete series f(t) = (f, ¢ox) in Vy can be decomposed into a low
frequency part (f, ¢1 ) and a high frequency part (f, 1 ;). This decomposition can be
continued as a multi-scale analysis up to a level M. A discrete series A,, = (f, dmr)
that one obtains at a level m of a multi-scale analysis is an approximation of the series

Ap1 = (f, ¢m-1k), while the series D,,, = (f, ¢ ) contains the details of A,, ;.

With equations (1.55) and (1.56) follows:

(f Vi) = D gn (f2 Smorobsn) = D Gnok (f2 metin) (1.78)

neZ ne”
and
¢mk Z h ¢m—1,2k+n> - Z hn—Zk <.fa ¢m—1,n> . (179)
neZ nel

Hence, the inner product (f, ¢, ,) can be obtained by a discrete convolution of (f, ¢m—1,)

and the series of the wavelet’s coefficients g,,, taking only every other sample into account
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(down-sampling). Respectively, equation (1.79) describes how the inner product (f, ¢m.n)
is generated based on the scaling coefficients h,, and the series (f, ¢y,—1,,). Accordingly
the approximations A,, (scaling coefficients a,, ) and the details D,, (wavelet coefficients

dpmx) at a scale m and instant k& can be calculated as:

m k. = Z hn72k Am—1,k » dm,k = Z In—2k0m—1k - (18())

neZ neZ
That means, only the scaling function’s coefficients h,, and the wavelet’s coefficients g,
are required for the projection of a signal f onto the scales of an orthogonal wavelet

transform. In compact form equation (1.80) can be written as:
Amk = Ham,l,k, dm,k = Gam,l,k . (181)

The decomposition operators H and G are also called quadrature mirror filters. H is a

low-pass filter, G is a high-pass filter.

The algorithm of the fast wavelet transformation that was developed by Mallat [44] is given

schematically in figure 1.8. In inverse direction the series Ay = f can be reconstructed

H H H H H
f = A Ay Ay Apnr—a A
D, D, Day

Figure 1.8: Scheme of the decomposition of a series f by means of Mallat’s algorithm

from the approximation A,; and all details D,,, m = 1,..., M. For the reconstruction
the adjoint operators H and G of H and G, respectively, are applied. The reconstruction

of a signal is illustrated in figure 1.9.

Since in practice one usually has finite series to analyse, there arises the question about
the treatment of the signal’s borders. Often the implemented algorithms assume a peri-
odisation of the signal. In other cases it is supposed that the signal continues outside the

observation interval as a constant (e.g. zero or the value at the borders), linearly with
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Figure 1.9: Scheme of the reconstruction of a series f from the details and the approxi-

mation of the last decomposition level by means of Mallat’s algorithm

the slope at the respective border, or symmetrically to the respective signal’s border.
Further investigations about the topic of border distortions and respective algorithms can

be found in the literature, (e.g. [64], [46], [15]).

The algorithms that are implemented into the software package SLang [5] offer the choice

between the periodic assumption (circulant filter) and zero-padding (extended filter).



Chapter 2

Wavelets in System Identification —

a Review

Wavelet analysis has been employed to numerous problems that belong to the general
field of system identification in recent years. In this chapter a brief overview is given

about some respective approaches, without being exhausting.

The following sections are organised with respect to the identification of modal parameters
of linear time-invariant systems, the investigation of time-varying systems and the detec-
tion of structural damage by dynamic tests. Methods that are based on both continuous

and discrete wavelet analysis are presented.

2.1 Identification of Modal Parameters

Several attempts have been made in recent years to employ wavelet analysis for the
extraction of modal parameters of linear time-invariant systems from measured data. In
section 2.1.1 methods that are based on continuous wavelet transforms are summarised

while section 2.1.2 is concentrated on approaches that use discrete wavelet decompositions.

25
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2.1.1 Methods Based on Continuous Wavelet Analysis

An approach for the identification of natural frequencies and modal damping ratios by
means of wavelet transforms of free vibration response data with respect to the complex
Morlet wavelet ¢ (t) = e™v? e (section 1.3) was proposed in [61], [56] and [60]. As is
common in modal analysis (e.g. [26], [43], [33], [31], [61]), it is assumed that the system’s

free vibration response can be decoupled into contributions of N single modes j:

N
z(t) = Z A, e~%%n5t sin (\/1 — Cj2 wn,t + ¢j) ) (2.1)
j=1

where A; is the residue amplitude, ¢; denotes the modal damping ratio and w,, and
¢; refer to the undamped natural frequency and phase lag, respectively. The wavelet

transform of equation (2.1) for ¢; = 0 with respect to the Morlet wavelet is [56]:

N 2
Wi(a,0) = Va ) Aje ! ¢ (VImGon; ) /16wt (2.2)
j=1

Depending on the wavelet’s frequency wy, each scaling parameter a; is related to the
signal’s frequency w; by

w
aj = w_dljv (23)
J

assuming that both the signal and the analysing wavelet are sampled with the same
frequency. For a fixed a;, that is related to a frequency wgy, = 4/1 — Cj2 Wn;, equation
(2.2) becomes

2 . .
Wi (aj,b) = \/a; A; =Gt (0w —wp)” piwab AjeSaemgt g (2.4)

For a previously chosen a; (i.e. wy;) the respective modal damping ratio is determined

from the plot of the envelope in the semi-logarithmic scale.

A method for the estimation of the mode shapes by means of wavelet transforms with
respect to the Morlet wavelet is given in [52]. If Wj* (a,b) and Wg”f (a, b) respectively
denote the wavelet transforms of the signals at point k£ and at a reference point, their

ratio at scale a;
Wi* (a;,b)

e = Ok (2.5)
Ww ! (ajvb) ’
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is the kth component of the jth complex eigenvector. Theoretically, the quantity
Grj = Tk, + 1 Sk; should be constant for all b. However, for the application to real data

it is suggested in [52] to estimate the components of the eigenvectors as

e, = iz R [V (g ’bl)lie Ve (5, b0] (2.6)
Zl | Re? [ (ajabl)}

L D Re [ (o] e W (a5, ) 2
’ Sl T (Wi (aj, b))

A modal ‘quality index’ is introduced for the assessment of the reliability of the estimated

components of the jth mode shape vector ¢;:

0_2

wikw, et
Ckj = o zwng ) (28)
ka WwTEf
where Ty and Tyyres denote the standard deviations of W* (a;,b) and Wf;”}f (a;,b),

respectively, and U‘Q’Vi s refers to their covariance. If |¢y ;| is close to 1, a high reliability

for the estimation of ¢y ; is indicated.

In [4] a technique for the identification of natural frequencies and modal damping ratios

from a continuous wavelet analysis of the frequency response function (FRF) is proposed.

1
(w—1)?
transform is applied to the frequency response function H (w), the wavelet is given as a

The complex function ¥ (w) = is chosen as analysing wavelet. Since the wavelet
function of frequency rather than of time, in this case. It is shown, that the real and

imaginary parts of the respective wavelet transforms are related to each other by

Re (W} (a,0)] = 2Weei!! (a,b)

= 2Wi (a,b) (2.9)

and

Im [W (a,b)] = 2Wgi (a,b)

= —2wl (a,0) | (2.10)

It is postulated and verified by two numerical examples that the natural frequencies

and modal damping ratios can be estimated from the coordinates of the maxima of



28 CHAPTER 2. WAVELETS IN SYSTEM IDENTIFICATION - A REVIEW

Im [Wf (a,b)], @maz, and bygg,;:

Wnj = \/amaxj + bmamj ) (211>
Umaz;

¢ = Tmeas (2.12)
J wn,j

2.1.2 Methods Based on Discrete Wavelet Analysis

A wavelet-based approach for damping identification is proposed in [38]. Similar to the

logarithmic decrement that can be deduced from a free vibration z (t) of an SDOF system

1 x (t)
b = — —_ . 2.13
nT |z (t+nT) ' (2.13)
a wavelet-logarithmic decrement formula is derived:
1 Wi (a;,nT)
§; ~ v\ > 2.14
! (m—n)Tn W (aj,mT) A (2.14)

where j refers to the jth mode with a natural frequency w,,; that corresponds to the scale
a;.
For the identification of damping from the scaling coefficients obtained by a discrete
wavelet decomposition of free vibration data with 2% samples, that has been mapped to
an interval [0, 1], a discrete wavelet-logarithmic decrement is given in [38]:

2(M—j)
k—1

aj,l

§; ~ In k> (2.15)

@k
In equation (2.15) the terms a;; and a; refer to two maximal scaling coefficients at
decomposition level j, that means equation (2.15) can be interpreted as the classical
logarithmic decrement formula (2.13) applied to an approximation of the original signal

at level j, i.e. a filtered and down-sampled version of z ().

In order to improve the localisation of the extreme scaling coefficients a so-called “super-
abundant wavelet analysis” was applied. By means of this method the scaling coefficients
are mapped onto an equidistant, rather than on a dyadic, grid. The result is a constant

resolution at all decomposition levels, similar to the continuous wavelet transform.
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The proposed procedure was verified by a numerical simulation in [38] and applied to
data obtained from tests of an eight-storey building [30]. Since the method is based on
the assumption of an SDOF system, mode decoupling is necessary that was obtained by
a selective wavelet reconstruction, an approach that might be applicable if the data does

not contain significant contributions of close modes.

The response of a linear system z (¢) due to a given excitation f (¢) can be calculated by

means of the convolution integral

x(t) = /h(t —7) f(r)dr, (2.16)

v (t) = /h(@) f(t —0)do, (2.17)

where h (©) is the system’s impulse response function (h(©) = 0 for © > 0). It was
derived in [49], that the convolution in equation (2.17) can be completely replaced for

discrete response series with 27 samples by

z(te) = {hse}" {fin} - (2.18)

The vectors {h;;} and {f;;} in equation (2.18) contain the coefficients obtained from a

wavelet decomposition of the impulse response function (IRF) and the excitation:

{hj,k}T = {% {d1,1<h), d1,2(h), e ,dLQJ—1<h)} Yoy

1
W {dM,1(h), dM,2(h)> s 7dM,2"*M(h)} s

QJLM {aM,1(h), aM72(h), RN aM72JJVI(h)}}

{fj,k}T = {{d1,1<f)7 d1,2<f>7 ct 7d1,2J—1<f>} AR
{dM,l(f)a dM,Q(f)v SR dM,QJ—M(f)} )
{aria(f)s ania(f), - ansarn(f)}} (2.19)
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In [54] an approach is suggested for the estimation of the discrete IRF of a system, also
known as Markov parameters [31]. For the entire response data equation (2.18) can be

extended as:

[x]mxs = [hj7k]m><rl [fjvk]Tle : (220)

Here m, r, s and [ refer to the number of measured response series, the number of
input signals, the number of measured samples and the number of considered wavelet

coefficients, respectively. Equation (2.20) can be solved for [h; ] as

-1

hia) = (o] sl (U] Umal”) (2:21)

The impulse response functions with respect to time are eventually obtained by wavelet
reconstruction of the respective row vectors in [hy,,]. From equation (2.18) it becomes
obvious that the inverse dyadic coefficients in equation (2.19) can be applied to the wavelet
coefficients of either the IRF or the excitation. Accordingly, it can be decided by the

analyser if pre-processing of [f,,»| or post-processing of [h,, .| is preferred.

The proposed method for the identification of impulse response functions is verified in [54]
by means of numerical examples. In [55] these impulse response functions are used for
the identification of state space models. The respective mode shapes, natural frequencies

and damping ratios of the system are derived from the state space representation [3].

In order to improve frequency response functions (FRF), that were extracted from mea-

sured data, a wavelet-based method is proposed in [8] and [7]. According to [8], the FRF

is first estimated based on measured input and output data either as H (w) = ;EZ; or
H(w) = W Then both the real and imaginary parts of H (w) are smoothed by

means of a selective wavelet reconstruction, in this case by soft thresholding (chapter 3).
This procedure is slightly modified in [7] where an estimated FRF is first smoothed using

a Hanning window before wavelet shrinkage is carried out.
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2.2 Identification of Time-Varying Systems

Both continuous wavelet transforms and wavelet coefficients of a discrete wavelet decom-
position represent the characteristics of a signal in the time-scale domain. This feature is
obviously very stimulating if systems with time-varying properties are considered. Some
examples for the application of wavelet analysis with respect to the identification of non-

linear and linear time-varying systems are given in the following sections.

2.2.1 Methods Based on Continuous Wavelet Analysis

From the graphic representation of a continuous wavelet transform, it can be deduced how
the energy density of a signal is distributed with respect to time and scale (or frequency).
In [4] an example of a simulated free vibration response of an SDOF system is presented.
The ridge of the corresponding wavelet transform [12], [65] clearly shows a frequency shift

with respect to time, that indicates a non-linearity of the system.

A more detailed investigation of the impulse response of a non-linear system based on
wavelet analysis with respect to the Morlet wavelet and a method for the identification

of the system’s parameters are described in [58] and [60].

In modal analysis it is common to represent the impulse response of an MDOF system
by a modal superposition, as given in equation (2.1). The wavelet transform of the linear

combination (2.1) can be written as

/ & (w) ¥ (aw) €“m’dw . (2.22)
Aw

P

Wi (a,0) = WE™ (a,b) = vVa 'y
j=1
wnj

a

The wavelet transform in equation (2.22) is represented using the Fourier transforms of
x (t) and ¥ (t), as in equation (1.14). The ratio between the bandwidth of the basic wavelet
function Aw, and the scale parameter a gives the bandwidth of the dilated wavelet at

scale a.
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Relation (2.22) shows that the wavelet transform allows for a modal decoupling. The
identification approach suggested in [58] proposes the extraction of the ridge, skeleton
and backbone from the mode decoupled wavelet transform. The ridge is a curve that
connects the local extrema in the time-scale plane. The values of the wavelet transform
along the ridge form the respective skeleton. The projection of the skeleton’s envelope,

as a function of vibration amplitudes versus scale, is called the backbone curve.

According to [58] the system’s parameters can be estimated by calculating the instanta-
neous properties along the ridges and the application of curve fitting to both the skeleton’s
envelope and the backbone curve. The proposed method is applied in [58] to an SDOF
system with Coulomb friction and cubic stiffness contribution and to a 2-DOF system

with cubic stiffness non-linearity.

In order to describe the input-output relation of a system in the time-scale domain,
the ratio of the wavelet transform of the system’s response to that of the excitation is
introduced in [62] as the wavelet-based frequency response function (Hy (a, b)) or scale-
translation response function (STRF), as it is called in [37]:

Hy (a,b) = w. (2.23)

W, (a,b)

The similarity between equation (2.23) and the definition of the FRF for a linear system is
obvious. The important difference is, that the wavelet-based FRF is capable of describing

non-linearities and non-stationary processes. For the practical calculation, equation (2.23)

is modified to: i
~ Wil(a,b) Wy (a,b)

W/ (a,b) W/ (a,b)

which is very similar to a form of calculation of the classical FRF in modal analysis that

HW (a, b)

(2.24)

is known as H (w) (e.g. [26], [31]):

AiA(w) . (2.25)
f(w) [ (w)
In [62] the wavelet-based FRF is employed for the investigation of the non-linear behaviour

of an automobile seat—passenger system under real service conditions. The wavelet-based
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FRF is used in the sense of a transmissibility function, i.e. as a relation between the
accelerations measured at a mounting bolt of the seat and those at the seat/person inter-
face. Two resonances were deduced from the ridges of this transmissibility function. The
frequencies of these resonances varied significantly over the observation interval which is

interpreted as an indicator for non-linearities in the behaviour of the considered system.

An alternative method for the description of input-output relations in the time-scale

domain is introduced in [37], the cross wavelet transform:
WI* (a,b) = W/ (a,b) W7 (a,b) . (2.26)

The cross wavelet transform displays the similarities of the input f with a projection of the
output z at scale a and translation b. High values of the cross wavelet transform indicate
a vigorous response of the system to an input with corresponding scale at the respective
time instant. It is demonstrated in an example with an SDOF Duffing oscillator, that is
excited by a sweep force, how non-linearities of a system can be retrieved by comparing

the wavelet transform of the response with the cross wavelet transform.

An extension of the cross wavelet analysis technique for the assessment of MDOF systems

is presented in [59] by means of a 3-DOF system with cubic stiffness non-linearity.

2.2.2 Approaches Based on Discrete Wavelet Analysis

Assuming that the displacements x (t) due to a measured excitation f (¢) are known from
a test, the equation of motion for a linear SDOF system with viscous damping can be

expressed as [28]:
i1 (2) RASY)
m; Z ajr () F% + q Z aj () F% + kyaj, (z) = a;, (f) , (2.27)
k k

where a;, (), a;; (x) and a;; (f) respectively refer to the scaling coefficients of the dis-

placements and of the excitation at the discrete translations k& and [ at level j. The I’?’Z(n)

denote the connection coefficients of the nth derivative with respect to a certain wavelet
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at level j. More detailed descriptions about these connection coefficients are given in

section 4.2.

Accordingly, equation (2.27) represents the equation of motion for a linear, viscously
damped system using scaling coefficients of response and excitation rather than the re-
spective time series. The scaling coefficients can be interpreted as a low-pass filtered and
down-sampled version of the respective time series. As a result of the application of ap-
propriate connection coefficients, the response in equation (2.27) is completely described

by scaling coefficients of the displacements.

The formulation of the equation of motion (2.27) is the core of an identification procedure
that is presented in [28]. For noise corrupted data, a pre-processing of the measured
series by means of a selective wavelet reconstruction, applying hard thresholding (chapter
3), is suggested. For MDOF systems, equation (2.27) can be extended to matrix—vector

relations in the same way as in the time domain.

In a second step, equation (2.27) is rearranged such that the system’s parameters to be
identified are collected in a vector { P} while the scaling coefficients of the response are

assembled in a matrix. Provided that the system’s mass is known, one obtains

”Z 4 (¥) P%ﬂ(l)] laj, ()] | {P} = {a“ (f) — [M] {Z ajr () F;ZL(Z)}} |
k k (2.28)

If a sufficient number of scaling coefficients is taken into account, the solution of the

system of equations (2.28) yields the system’s parameters.

The performance of this method is demonstrated for an SDOF system and for a 2-DOF
system. The capability of identifying linear parameters, that show different kinds of time-
variance, is reported. The behaviour of the algorithm in the case of noise contamination

of the measured data was also tested.

The procedure introduced in [28] is extended for non-linear systems in [29]. The equation

of motion for a non-linear SDOF system is given by

mi + ci+kx +g(x, @) = f, (2.29)
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where ¢ (x,%) denotes a non-linear force that depends on displacements and velocities.
The approximation of the accelerations and velocities are represented in the same way as

in equation (2.27). It is shown for the assumption that
g(z, 1) =dxi, (2.30)
the product (x 4) can be approximated at level j by

m,m(1,0)
Zzam ajx (z) QT4 , (2.31)

with the 3-term connection coefficients of the differential operator

Qim0 _ / $(r—m) d(r—k) ¢(r—1) dr

With the assumption (2.30) one can re-formulate equation (2.29) in a similar form to

equation (2.27):

mZa]k F]l —i—cZaM()F]’( + kajy (z)

k 0) (2.32)
Hd Y D ajm (x) ajp (z) Q" = a;x (f) -
m k

The parameters m, ¢, k and d are obtained as the solution of a respective system of

equations pertinent to equation (2.28).

Even though derived and tested for a numerical simulation for an SDOF system described
by equations (2.29) and (2.30), this approach is not further developed. Instead it is

proposed in [29] to approximate the non-linearity as

g({L‘,l‘) = d <bj,k>¢j,l> . (233)

The scaling coefficients b;; have to be calculated based on prior knowledge of x and #.
Numerical tests are described in [29] for an SDOF system with different types of non-
linearities using the assumption of equation (2.33). For the identification of an unknown
non-linearity it is suggested to try different types of non-linearity and to detect the model

that results in the closest calculated response due to the experimental excitation compared
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with the measured values. The proposed procedure is verified by means of simulated tests

of SDOF and 2-DOF systems without considering noise contamination of the data.

All methods, mentioned so far, used the wavelet transformation more or less as a signal
processing tool. In [35] a procedure is submitted that uses a wavelet decomposition in
order to estimate a time-varying tangent stiffness of a system. The method is tested for
a b-DOF system using both simulated and experimental data. However, no results about

the identified time-varying system’s parameters are reported.

Several attempts for the application of discrete wavelet analysis in the context of the iden-
tification of time-varying systems are described in the literature. The examples mentioned
are limited to comparatively simple systems. Furthermore, the proposed procedures are
based on scaling coefficients (i.e. approximations) rather than on wavelet coefficients (i.e.

details).

2.3 Damage Detection

There is a great variety of problems that are included within the wide subject of damage
detection. The intentions strongly depend on the applications. They range from the
detection of the presence of a certain kind of damage inside a mechanical system, over
the observation of damage occurrence, up to the assessment of a structure’s condition by

certain indicators in the context of long time health monitoring.

This section is divided into two parts. The first part is concerned with the identification of
the occurrence or presence of damage, using wavelet analysis, while the second subsection

is devoted to wavelet-based damage indicators.

2.3.1 Presence and Occurrence of Damage

The detection of existing defects by means of efficient and non-destructive techniques is

of particular interest in context with rotating machinery parts such as gearboxes or ball
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bearings. The application of wavelet shrinkage (chapter 3) for the identification of rubbing
in a mechanical system, that results from some structural fault, is proposed in [23]. The
approach is based on the assumption that rubbing produces features in a measured signal
that result in very large wavelet coefficients at a certain level. Contributions related to
the defect are retained in the signal by applying an appropriate threshold. The presence
of such features in the de-noised signal are interpreted as an indicator for present rubbing.
The suggested method was implemented and integrated in an on-line condition monitoring

system for respective machinery.

The basic idea of the previously described technique is that of the detection of certain fea-
tures in a response signal. A related methodology is suggested in [60] for fault detection in
gearboxes. Here, the damage is detected by the assessment of certain patterns in the plots
of both the modulus and phase of the continuous wavelet transforms of the response data
with respect to the Morlet wavelet. Rather sophisticated algorithms for the extraction of
patterns are presented. These techniques are applied to the so-called scalogram, a plot of

the squared magnitudes of the continuous wavelet transform ‘Wj (a, b)z‘.

The methods proposed in [1], [32] and [2] are focused on the detection of the time instant
when damage occurs in a structure as might be the case during a strong earthquake. In
a numerical investigation of a linear SDOF system with viscous damping, in [1] damage
was simulated by superimposing short impulses with a random excitation. The instants
of occurrence of these simulated damage scenarios were detected as spikes in the wavelet

coefficient series of the response at selected decomposition levels.

Similar investigations are described in [32]. However, there the damage is simulated by
abrupt stiffness reductions of the SDOF system. The wavelet decomposition was applied
to response data recorded in a building during an earthquake. It is reported that certain
features in the wavelet coefficients coincide with observations of damage occurrence on
site. It is concluded from an investigation of the influence of noise in the measured
response data, that the detectability of damage, in terms of loss in stiffness, improves

with increasing damage intensity and decreasing noise corruption.
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Continuing the study in [32], the possibility of an improved detection of damage occurrence
is investigated in [2]. Tt was observed that spikes in the wavelet coefficient series of the
response due to an abrupt stiffness change are difficult to identify if the system was excited
by a random force. Better results were obtained from the plots of continuous wavelet
transforms with respect to the Morlet wavelet and of the windowed Fourier transform,
that clearly show a concentration of energy at frequencies that coincide with the system’s
natural frequencies at the respective damage states. It is deduced from the example
presented, that the continuous wavelet transform localises the system’s changes better in

time, while the windowed Fourier transform provides an enhanced frequency localisation.

2.3.2 Wavelet-Based Damage Indicators

The procedures summarised in the previous section deduced the presence or occurrence
of damage directly from certain features of wavelet transforms of measured data. In the
following examples either wavelet-based functions are proposed as a measure of damage
severity or damage is quantified by identified changes of the system’s parameters such as

stiffness or damping.

The use of wavelet coefficients’ statistics for damage identification is presented in [58], [60]
and [10]. Tt is illustrated by means of tests on drilling equipment [58] that the signal-to-
noise ratio (SN R) of measured response data can be interpreted as an indicator of damage.
Based on the assumption that the wavelet coefficients at the first & decomposition levels
solely represent noise, the so-called wavelet-based statistics is defined:
% (dpn 2

where m denotes the respective decomposition level. It is indicated that a large value S,,
refers to a high signal-to-noise ratio. In the example presented, transients in the signal,
that are due to damage, produce the desired information and consequently a large S,, (or

SNR) denotes damage.

A damage indicator, that is based on wavelet variance characteristics, is defined in [58] ,
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[10]:
_ _ T _ _
App = Hz} = oty {7} = {a}) - (2.35)
The vector {ji} contains the mean wavelet coefficient’s variances at the respective decom-
position level m from N data series measured in the initial (undamaged) state [58]:

N

_ 1 5
ji(m) = N; 0% (dmn) (2.36)
or using the logarithmic variances [10]
LN
- _ 2
ji(m) = N; log 02 (dym,n -) (2.37)

The respective mean wavelet variances obtained from tests on the structure in a respective
damaged condition are collected in the vector {Z}. The indicator defined in equation
(2.35) is employed in tests of a progressively damaged aluminium plate excited by a

random force.

A method that uses special wavelet filters in context with condition monitoring of rotating
machinery is introduced in [41]. Measured response data is filtered such that only com-
ponents of a single frequency, or of a number of selected frequencies, are retained. Special
combination wavelets are designed for filtering. The condition of the considered system
is then assessed by evaluating the filtered signals either in time or frequency domain (e.g.
by power spectra peak ratio). An enhancement of the filtered data with respect to noise

is obtained using autocorrelation.

A numerical simulation of an SDOF system excited by a random force is presented in
[57]. The system’s stiffness is changed abruptly. It is estimated from a slightly modified
version of the equation of motion in the time-scale domain:

m T c T T 1 e
- Wi (a,0) + - Wi (a,b) + Wi (a,b) = EWJ (a,b) + WS (a,b) (2.38)

<

where W (a,b) is the wavelet transform of an error. It is reported that the parameters {

and 7 are determined such that ‘Wg (a, b)}2 is minimised.
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Furthermore, in [57] a formula is given for estimating the wavelet transform of the nth

derivative of a given signal x (¢):

a” a

W™ (a,b) = (~1)" 1\/5 /x(t)z/}(")* (t‘b) dt . (2.39)

The derivation of equation (2.39) and further considerations about its application to
finite signals are given in section 4.1. In [57] relation (2.39) is used for the calculation of
the wavelet transforms of velocities and accelerations from observed displacements. It is
mentioned that in the example presented, a Daubechies wavelet is used as the analysing

wavelet for a continuous wavelet transformation.

Stiffness and damping coefficients of a 3-DOF lumped mass system are identified in [47].
It is assumed that accelerations were only measured at two degrees of freedom. In order
to overcome this lack of information, a neural network approach is studied. As input for
the neural network, formulations are used that were calculated by means of continuous
wavelet transforms with respect to the Meyer wavelet. The wavelet transforms of the
displacements and velocities are estimated from the simulated accelerations using the

respective relations derived in section 4.1.

Two damage indices that are based on wavelet packet analysis are proposed in [63]. It
is assumed that identical dynamic tests are carried out on a considered structure in an
undamaged state and in the damaged conditions. Repetitive testing within a structural
health monitoring scheme should then provide information about the structure’s condi-

tion. The damage indicators are calculated according to the following steps:

1. Full wavelet packet decomposition of the measured response signal — wavelet

packet components d;? (1),

2. Calculation of the wavelet packet component energies:
2
Ef = / (df (1) dt (2.40)

3. Extraction of the N largest E;?“, k=1...N,
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4. Calculation of the damage index, that is either the sum of absolute differences SAD:

N
SAD =3 |BF — B

(2.41)
k=1
or the square sum of differences SSD:
N N2
SSD =3 (BF - Bf) (2.42)
k=1

where E]k refers to the wavelet packet component energies computed for the undam-
aged (reference) condition. For the calculation of the damage indices, the respective

N largest differences are considered.

The structure’s condition is then assessed by comparison of the respective damage indi-

cator with a pre-defined threshold.

Discrete wavelet analysis is employed in [39] for crack location in a simply supported beam.
However, not the response data with respect to time is decomposed, but the displacements
at a certain time instant as a function of the beam’s length. A discontinuity in the wavelet
coefficient series at a certain level is interpreted as an indicator for the crack location. A
numerical example with 1024 measurement points is presented. This seems to be rather

impractical for a real test application.



Chapter 3

De-noising by Selective Wavelet

Reconstruction

In signal analysis and image processing, smoothing of the original data is often desired.
Since the original data is considered to be contaminated by noise, this smoothing is also

called de-noising.

Very good results in the research on appropriate de-noising techniques were obtained
with algorithms that are based on a selective wavelet reconstruction (e.g. [19], [22], [20],
[21]). In the following paragraphs the basic concept of this approach is described. Some

variations and enhanced algorithms are briefly explained.

3.1 Selective Wavelet Reconstruction

The concept of a selective wavelet reconstruction is basically that of a comparatively

simple thresholding procedure consisting of three steps:

1. Decomposition of the original (noisy) data, applying an orthogonal wavelet trans-

formation,

42
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2. Application of thresholding to the resulting coefficients,

3. Reconstruction of an estimate of the noise-free data based on the thresholded coef-

ficients.

It has to be mentioned, that thresholding is only applied to the detail coefficients. The
approximation on the coarsest decomposition level remains unchanged as a basic structure

of the processed data.

The assumption is that there is a given data series y, that has been observed over an
interval (0,1):

where e; denotes independent, identically distributed Gaussian noise with the (known)
standard deviation o. The unknown function to be recovered is f(¢). Its estimate is

denoted f (t).

An orthogonal wavelet decomposition of y yields the detail coefficients
di, = Ojp + 0z, j=1...M k=1..2. (3.2)

Here ©;, are the wavelet coefficients corresponding to the noise-free signal f while z; 5, are

those of the noise. The coefficients z;; are also independent and identically distributed.

The threshold rules are defined supposing that relatively few wavelet coefficients con-
tribute contents to the signal f. According to the respective threshold rule, only coeffi-
cients of the observed data that exceed a multiple of the noise level are retained. This

procedure is also called shrinkage.

Generally, one distinguishes between two thresholding operators; the so-called ‘hard’
threshold 7y and the ‘soft’ threshold ng. Hard thresholding keeps the samples exceeding

the positive threshold A, the remaining coefficients are set to zero:

mdy) Ao it |dig > A
O = " s . (3.3)

d;x
0 if |l < A
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The application of soft thresholding reduces the absolute values of the respective samples
by the threshold A, provided this difference is positive. Otherwise the respective coefficient

18 set to zero:

ns(dA) sgn (d;x) (|djk] —A) if (|djx] —A) > 0
Ox = PR g : (3.4)

d;k
0 it (djl = A) < 0

Several models for the definition of the threshold A\ were defined and are explained in
detail in [20] and [21]. A selection of these models and their implementation is described

in the consecutive section.

3.2 Estimation of Thresholds and Implementation

3.2.1 Definition of Thresholds

The estimation of the threshold, as introduced in the previous section, is based on the
assumption that the noise level is known. However, for measured data this is generally
not the case. Therefore the noise level has to be estimated first. In [22] and [20] it is
suggested considering the wavelet coefficients at the finest scale as representing exclusively
noise. According to this assumption, the standard deviation of the noise is approximated
by the median of the absolute of the wavelet coefficients at that level divided by 0.6745:

. median (|d;x|)

0.6745 (3:5)

Following the descriptions and the terminology in [22], [20] and [21], three versions of how

the thresholds A\ can be determined, are mentioned here:

o VisuShrink,
o RiskShrink,
e SUREShrink,

o HybridShrink.
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VisuShrink

The threshold A/ applied to a data set of n samples is defined as:
N o= ov2Inn. (3.6)

According to [20] a comparatively good visual appearance can be achieved by the appli-

cation of this estimator.

RiskShrink

In [20] a risk measure

R(é,@) - EH@ e (3.7)

2.n

was defined in order to assess the quality of the estimate. Depending on the number of
coefficients n, the threshold is applied to, the minimax threshold A} was obeyed. With
this threshold one obtains minimal risks R (C:), @) for soft thresholding.

Table 3.1 gives the thresholds A/ and \* with o =1 forn =27, j =6...16.

n 26 27 28 29 210 211 212 213 214 215 216

Ar o1 1.474 | 1.669 | 1.860 | 2.048 | 2.232 | 2.414 | 2.584 | 2.773 | 2.952 | 3.131 | 3.310

AV 12.884 | 3.115 | 3.330 | 3.532 | 3.723 | 3.905 | 4.079 | 4.245 | 4.405 | 4.560 | 4.710

Table 3.1: Thresholds A\* and A\ depending on the number of samples, the threshold is
applied on [20]

SUREShrink

SURE refers to Stein’s Unbiased Risk Estimate that is employed for the threshold’s
choice. The threshold \? is specified level-dependent, i.e. n in this case denotes the
number of wavelet coefficients on a scale j rather than the number of data samples. An

approximate risk for an estimate of the wavelet coefficients on a scale j is obtained by the
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Stein’s unbiased estimate of risk. The threshold A5 for a level j can be concluded from
the minimum of that risk. In fact, the threshold is selected from the wavelet coefficients

at the respective scale. The algorithm consists of the following steps:

1. given: vector {D;} = {d;1,... i}
2. form a vector {a}, that contains all (d;x)” in ascending order,

3. form a vector {b}, containing the cumulative sums of the elements in {a},:

{b}, = . )

4. form a vector {c}, = {n—1,n—2,...,1, O}T,

5. form a vector {s}, that is obtained by the linear combination of the vector {b},
with a vector that contains the products of the elements of {a}, and {c},:

( )

by + a1

bQ “+ agcy

s}, = | ,

\ W

6. estimate the risks:

( ( )

n—2+s1 s1—2
n—4-+so so—4
n . o . ’
n—2n+sn 1 Sn—2Nn
\ n V, \ + n J

7. determine the minimum of {R}, and the index i of (min {R},),

8. select the threshold \Y = ,/a;.
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HybridShrink

If only very few wavelet coefficients are nonzero, the application of the SURFEShrink
approach may result in a considerable loss of information in the estimate. Therefore, in
[21] a hybrid scheme is proposed. According to a certain criterion, it is decided whether
the threshold \J (SUREShrink) or the threshold Y (VisuShrink) should be applied to

the coefficients at a respective scale:

2 logn \ 3
)\V if |djvk| —1< (log2)
n n \/ﬁ
M — (3.8)

min (A5, \V) if

Notice that n denotes the number of wavelet coefficients at the respective scale rather

than the number of all coefficients in equation (3.8).

3.2.2 Implementation

All described thresholds can be applied for both hard and soft thresholding. Algorithms
for selective wavelet reconstruction based on the thresholds A%, A\, A3 and A\ are imple-

mented in the MATLAB *.m files that are available over the Internet (Wavelab library).

De-noising, as described above, is based on the assumption of independent and identically
distributed noise. Apart from SURFEShrink and the related HybridShrink approach, the
presented algorithms estimate the noise level presuming that the wavelet coefficients at the
finest scale contain only noise. Furthermore, wavelet shrinkage, according to the proposals
explained above, is solely applied to the details at the finest scales 1 < 7 < max.j in
order to preserve the basic low frequency characteristics of the original data. However,
sometimes there is a particular demand to filter out only contributions to the signal that
are represented by the wavelet coefficients at very few scales or low frequency contents.
The latter may be true, e.g. if the measured signal shows comparatively strong low

frequency features (nearly DC), that are not due to a mechanical motion, which should
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be measured. In this case a treatment of the coefficients representing the low frequency

contents of the signal is sensible.

Both the algorithms described, and a routine that allows for a selective filtering by setting
all coefficients at certain levels to zero, were implemented in the SLang software package

[5]. Two applications for the performance of these routines are given in examples 3.1 and

3.2.

Example 3.1. De-noising of a numerically simulated signal

Figure 3.1 shows the curve of a structural response that was obeyed by a numerical simula-
tion of a dynamic test with a sweep sine excitation and a signal obtained by superimposing

the original data with a vector containing Gaussian white noise. The signal-to-noise ratio

SNR — || signal|

~|Inoise]|

(3.9)
for the noise corrupted data is 2.66. The thresholds according to the rules VisuShrink,
RiskShrink, SUREShrink and HybridShrink were applied to the five finest scales of
the decomposition of the data with respect to the Daubechies-8 wavelet. Both hard and soft

thresholding were carried out. The resulting curves are given in figures 3.2 to 3.5. The

original curves are drawn in each diagram as grey lines.

2.0_ 2.0_

15 15_
1.0_
0.5_
0.0

-0.5_

-1.0_

-1.5
I I I I ! + I I I I
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Figure 3.1: Numerically simulated structural response due to a sweep excitation (left)

and noise corrupted version, signal-to-noise ratio = 2.66 (right)
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Figure 3.2: Data after hard (left) and soft (right) thresholding with respect to the thresh-
old \/
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Figure 3.3: Data after hard (left) and soft (right) thresholding with respect to the thresh-
old \*
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old A
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Example 3.2. Low frequency calibration of an accelerometer

Manufacturers of accelerometers usually guarantee a constant sensitivity of their sensors
within a certain frequency range. However, particularly for some civil engineering struc-
tures, it might be required to measure the structural response at frequencies below that
range as well. Therefore calibration of an available piezoelectric accelerometer was car-

ried out. The test setup is illustrated in figure 3.6.

accelerometer shaker with integrated
displacement transducer

L  Sensor Signal Conditioner Data Acquisition Unit

Figure 3.6: Test setup for the calibration of an ICP accelerometer

The accelerometer was mounted on a servo-hydraulic shaker with an integrated displace-
ment transducer. Both the displacements of the actuator and the accelerometer’s signal
were measured simultaneously. The shaker was driven in such a way that the amplitudes
of the accelerations behaved approximately like a sweep function with constant amplitudes.
The accelerometer’s sensitivity, as a function of frequency, is obtained by setting the au-
tospectra of the accelerometer’s signal and of the actuator’s accelerations, respectively,

relative to each other. The latter can be derived from the measured displacements of the
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actuator.
GAA,acc (CU)

Hacc - .
(w) GAA,shaker (w)

(3.10)

The respective raw and de-noised autospectra are shown in figure 3.7 (grey curves). Figure
3.8 gives the wavelet transforms of the measured spectra with respect to the Daubechies-
5 wavelet. Hard thresholding the wavelet coefficients of the measured autospectra, based
on the threshold \;, yields the black curves in figure 3.7. The grey curve in figure 3.9
indicates the sensitivity function that is obtained from the raw spectra. The sensitivity

derived from the de-noised autospectra is marked by the black line.

rms autospectrum - voltage of the accelerometer rms autospectrum - accelerations of the actuator
[mVL [m/sA2]
:'Z‘ 0.20
4:0: 4 F r 4 4 0.15
. M | | M H MM WW M W WW”W H 010
203 MM | W i m\\ ﬂ“ JF { ‘ \*“‘\“‘ i 0.05
10, “w Pm M“{j ﬂ M u[ m W ’H! 1"‘1”“1%11& "\“\“ “ 1l Nll .
O.%‘.LO 0!5 1!0 1. 5 2. 0 2. 5 3. 0 3I5 4 0 [Hz] O.%‘.LO 0.5 1!0 1.5 2.0 2.5 3.0 3.I5 4j0 [Hz]

Figure 3.7: RMS autospectra of the accelerometer’s voltage (left) and the actuator’s
acceleration (right): raw data (grey) and de-noised series (black), hard thresholding at
the five finest scales (D6 wavelet) with respect to A}
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Figure 3.8: Wavelet coefficients of the RMS autospectra of the accelerometer’s voltage

(left) and the actuator’s acceleration (right), decomposition with respect to the D6 wavelet

sensitivity function of the accelerometer
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Figure 3.9: Sensitivity of the accelerometer with respect to frequency: function obtained

from raw data (grey) and with de-noised series (black)
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3.3 Enhanced De-noising Algorithms

The data that one obtains after the application of selective wavelet reconstruction may
sometimes show distortions that are not due to noise corruption. These distortions are
caused by a precise alignment between certain features in the signal and features of the
analysing function [16]. In order to suppress such alignments, a method is proposed in [16]
that shifts the signal, either in time or in frequency, prior to de-noising and re-shifting.
Since signal shifting that avoids an alignment of respective features at one location may
result in such an alignment at another sample, it is suggested analysing the whole range

n of possible shifts and averaging the results:
Average (Shift — De-noise — Unshift), .

This procedure leads to a result that does not depend on a particular shift. It is therefore

called translation-invariant de-noising or cycle-spinning.

Another approach for the improvement of the de-noising follows an iteration that is de-
scribed in [48] and illustrated in figure 3.10. Selective wavelet reconstruction is not only
applied to the signal but also to the difference A between the original signal and the es-
timate f . The iteration is repeated until the standard deviation of the difference remains

within a predefined range.
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Flow diagram of the enhanced selective wavelet reconstruction according to



Chapter 4

Derivatives and Integrals in Wavelet

Analysis

In dynamic tests, the structural response is usually measured as either displacements,
velocities or accelerations. In the case of tests on civil engineering structures, it is common
to use accelerometers or geophones that measure vibration velocities. It is often desired

to obtain derivatives or integrals of the measured signals.

This chapter is devoted to the topic of how the wavelet transforms of derivatives or inte-
grals of a signal can be obtained directly. First the respective relations for the continuous
wavelet transform are derived. In section 4.2, the concept of connection coefficients is
described. It is shown how the details of the derivative or the integral of a signal can be
calculated directly from an orthogonal wavelet decomposition of the signal. The relations

that are derived in this chapter are verified by some examples in appendix C.

4.1 Continuous Wavelet Transforms

It is assumed that there were displacements measured in a test. The measured signals,
the respective velocities and accelerations should be analysed in the continuous time-scale

domain.

26
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4.1. CONTINUOUS WAVELET TRANSFORMS

The starting point is the wavelet transform of the displacement series x () with respect

to a real wavelet ¢”:

W2, (a,b) = % fx(t) W (t;b) dt (4.1)

—00
It is supposed that the wavelet 1" is the second derivative of a wavelet :

b, &y Ay
V=g T (4.2)

Provided that the function v is a wavelet and its first two derivatives exist, the functions
Y’ and ¢" are also wavelets [40].

Integrating equation (4.1) by parts results in

Wi (ah) = <= | (2@ t;b - Ooj:(t)z// t;b a|l . @3
val, g =

=0

If ¢, ¢ and ¢" are wavelets, it follows that ¢ and v’ are continuous functions and

—00

YY" € L*(R). Accordingly,
fim /() = lim_ @) = im () = lm_$(t) = 0. (1.4

t—o00

Consequently, the underbraced term in equation (4.3) vanishes.

Partial integration of equation (4.3) gives:

W, (a,b) = \‘;—; (i(t)@b(t_b))‘io 4 ]Ox(t)@z)(t;b) a|l . @s)

a
-
=0

From equations (4.3) and (4.5) one can easily deduce that

Win(a,b) = —aWi (a,b) = a> W (a,b) . (4.6)

Consequently, in the case that displacements were measured in a test, the wavelet trans-

forms of the accelerations with respect to a wavelet ¢ can be described similarly by a
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wavelet transform of the displacements:

) 17 t—b
Wi(a,b) = — v ()Y | —— ) dt
sat) = o= [e0w(50)
1 t—0b\\|~ T t—b
o (- ()
ava \( ©) a e ©) a (4.7)
-0
1 t—0b\\|~ T t—b
_ t n dt
wan | oo (D)) + [0 ()
;,O —Oo
Hence
measured quantity | WT of z (¢) WT of 2 (t) WT of & (t)
T _ T 2 T
x (t) Wy (a,b) - W) (a,b) = - Wi (a,b)
i () — %Wj (a,b) Wi (a,b) — ﬂ; Wi, (a,b)
P (t CRuyi (g b C (g W, (a,b
(1) LW (b)) - CELWE (@) WE ()

Table 4.1: Relations between the wavelet transforms of displacements, velocities and

accelerations

In numerical algorithms for the calculation of the continuous wavelet transforms, in gen-
eral normalised wavelets are applied. Therefore a normalisation coefficient z, has to

be introduced into equations (4.6) and (4.8). Table 4.1 gives the relations between the
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wavelet transforms (WT) of z(t), @ (t) and & () dependent on the respective measured

data, provided that the three functions 1, 1" and )" are wavelets.

This condition is, for example, true if a derivative of the Gaussian function is chosen
as the analysing wavelet . The derivatives of the Gaussian function form a family of
wavelets (section 1.3.1). If the wavelets are normalised such that ||¢||> = 1, as e.g. in the
Wavelet Toolbox of the software package MATLAB [46] the normalisation coefficients for

the first three derivatives of the Gaussian function become:

t2
Y = te<77> — 2z = —0.89324
t2
Yo= (2 —-1) ) zp = 0.51571 (4.9)
wl/ = (t3 —3t) 6( %> — Zyr = 0.23063

Since measured time series are always finite, the integration can only be carried out over

the finite observation interval (0 < t < T'). Accordingly equation (4.1) becomes

Wi, (a,b) = \[/ ( b) dt . (4.10)

Integrating equation (4.10) by parts twice one obtains
t—2>b
)
a

(S (
{ e (57) o ()
o (e (T

W;J:” (CL, b) —

Bk
Q [\e}

E\@
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Provided that the system is in static equilibrium both at the beginning and at the end of
the test (2 (0) =2 (T) =% (0) = & (T) = 0), as it is approximately true for free vibration
tests, the second term in equation (4.11) vanishes. If this condition cannot be completely
satisfied, this term is still nearly zero for most (a,b) since the wavelets ¢ and 1)’ are

usually rapidly decaying functions.

Some examples for the application of the derived relations are given in appendix C.

4.2 Discrete Wavelet Calculus and Connection

Coefficients

The use of linear operators in context with discrete wavelet analysis, such as e.g. convo-
lution operators [6] or differential operators [53], have been investigated in previous years.
A more general approach is described in [45], where the derived relations are not limited
to one particular type of operators but apply to a whole class of linear operators. The

following sections are to a great extent based on [45].

4.2.1 Orthogonal Wavelets and Linear Operators
Relations between Translation and Dilation

First some general relations between a linear operator I and both translations and nor-
malised dilations are given. The group of translations with respect to a real parameter 7
is defined by:

T(r) = f(t) = f(t—71), t,TER, (4.12)

while
D(s) = f(t) — V/sf(st), s>0 (4.13)

denotes the group of normalised dilations.
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All 7 € R and s > 0 satisfy the relations:
T(m + =T T ,
(71 +72) (11) T'(72) (4.14)
D (81 82) =D (51) D (32) )
T T(-1),
! (7) (=) (4.15)
D(s) = D(s™),

where T and D are the adjoint operators of 7" and D, respectively.

The rule for the sequential exchange of translation and dilation is given by

T(r) D(s) = D(s)T (r5) (4.16)
To the inner products of the translated and dilated versions of two functions f and g
applies
(T'(r) [, 9) = (/, T(=7)9), (4.17)
(D(s) f. g) = {f, D(s7)g)
and accordingly
(D(s)T (1) f, 9) = (/. T(=7)D(s7") g) (4.18)
With the notation
D (s, 1) D (s) T (1) (4.19)
one obtains
D(s, 1) = D(s‘l,—g) : (4.20)
D(Sl, 7'1) D(SQ, TQ) = D(Sl 82,T2+827'1) s (421)
(D(s,7)fr9) = (£ D (s =2)g) (4:22)
and consequently
(D (s1,71) f, D(s2, ) g) = <f, D (i_j Ty — z_jﬁ) g> . (4.23)

The dilated and translated versions of the scaling function and of the wavelet, respectively,

as defined in equations (1.42) and (1.52), can be re-written in the form

Gmn = D (27", n) ¢, (4.24)
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Y = D (Q*m, n) Y. (4.25)

The scaling function and the mother wavelet (equations (1.42) and (1.48)) in their nor-

malised forms become

2g—1
¢(t) = > haD(2,n)¢, (4.26)
n=0
2g—1
V() = > gaD(2,n)¢. (4.27)
n=0
Hence
2g—1
D(s,7)¢ = Y h,D(2s,n+27)¢, (4.28)
n=0
2g9—1
D(s, 7)) = > guD(2s,n+27)1). (4.29)
n=0
For s = 2™ and 7 = k one obtains
2g—1
D (2—771’ k:) ¢ - ¢m,k = Z hn ¢m—1,2k+n (430)
n=0
and
2g—1
D (2_7”’ k:) w - wm,k = Z gn ¢m—172k+n (431)
n=0

that is equivalent to equations (1.55) and (1.56).

Differential and Integral Operators

According to [45], a class of linear operators H), can be defined. The differential operator
D* and the integral operator Z* belong to H,:

A

d
D = o DN e Hy, A\ = 1,2,..., (4.32)

" =D*reH,N=1,2,... (4.33)

With A\ = 1 Z! = 7T is defined as

I = / f(r)dr (4.34)
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This class of operators H is particularly characterised by the following permutability
relations:

KT (r) = T(r) K, (4.35)
KD(s) = s*D(s) K. (4.36)

With equations (4.23) and (4.36) one obeys for any K € H,

(CD (51, 7) f, D (52, ) g) — ) </c /D (3_ - S_T) g> s
From equation (4.14) and with D (1, 7) = D (1) T'(1) = T (7) one can conclude
<’CD(57 7_1) f7 D(Sv 7_2)g> = S)\ <’Cf7 T(72_71)9> : (438)

If a linear operator I € H, is applied to a dilated and translated version of the scaling
function ¢, one obtains with equation (4.26)

2g9—1

KD(s,7)¢ = KD(s, 7)Y haD(2 n)¢

n=0
2g—1

— ZhnICD(s, 7)D (2, n)¢

2g—1

= > KD(s)T(r) D(2) T (n)¢.

Applying equations (4.14), (4.16), (4.35) and (4.36) yields

KD (s, 7)p = Z_hnICD(S)D(2)T<2T)T<n)¢
= 3 ho KD (2s) T (217 +n) ¢

n=
2g—1

= > hy (25)*D(25) KT (21 +n) ¢

2g9—1

= > ha (25D (25) T (27 +1n) K¢

KD(s, 7)o = (2s) i hyD (25,21 +n) K¢ . (4.39)

n=0
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This means that the derivative or the integral of a translated and dilated version of
the scaling function ¢ can be calculated based on the dilations and translations of the
respective derivative or integral of the scaling function. A very similar expression can be

derived for the wavelet :

KD (s, 1) = (29 gn D (25, 27 +n) Ko . (4.40)

4.2.2 Connection Coefficients

Provided that there is a signal given that can be decomposed by a multi-scale analysis,
the wavelet coefficients of a derivative or an integral of the signal can be determined by
means of so-called connection coefficients. It is assumed that the translated and dilated
versions of the scaling function and the wavelet, respectively, ¢,,, = D (27, n) ¢ and
Ymn = D (27, n)1, as given in equations (4.24) and (4.25), are known. Then one can

define the following connection coefficients of a linear operator IC € H), as:

L7 (6.0) = (Kdig: dra) - (4.41)
Ly (0, 0) = (Kdbug, na) (4.42)
L3 (6,0) = (Koijs ) (4.43)
L (0, 0) = (Kt g, da) - (4.44)

The connection coefficients in equation (4.41) at the basic scale, i.e. i = k = 0, can be

denoted in compact form:
0,1
Fé‘ = Lo (¢, ) - (4.45)
With 5 = 0 one gets the coefficients T that are called the fundamental connection

coefficients of the operator .

For a linear operator K € H,, the respective connection coefficients satisfy the relations:
kyl 3 k*’,l*Q(k_l) y
I (f9) = 24 Ioo' "(f,9) (4.46)

IH(f.g) = 2° T4 (£9) = 27157 (f.9) | (4.47)
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Coin (f9) = T (f9) = Tig? (f.9) (4.48)
I (f,9) = Th(f,9) = To7 (f.9) (4.49)
T3 (f,9) = 2T (f.g) - (4.50)

In equations (4.46) to (4.50) for f and g, the functions ¢ and 1 can be inserted in any

combination.

All connection coefficients of an operator K with respect to a wavelet 1 can be calculated
if the respective fundamental coefficients I') are known. The fundamental coefficients of a
differential operator D* or an integral operator Z* are determined by solving the system

of linear equations

2g9—2
Z /Bkvl/ ngg - - Z Ay 12k Gl/ ) (451)
v=0 U€N+

with the normalised autocorrelation coefficients «,, of the real normalised scaling function’s

coefficients hy, (equation (1.61))
L > hih (4.52)
a, = = v :
9 k k TVk+
From equation (1.65) follows
ap = 1. (4.53)

For orthogonal wavelet systems, the autocorrelation coefficients with even subscripts
vanish:

az = 0,m €N, . (4.54)

The values f, in equation (4.51) are obtained from

Bro = gy + (1 = d0,) (=1)" azmen 27 6ty - (4.55)
The coefficients G, in equation (4.51) depend on the operator K, i.e. on A. They are
listed in table 4.2 for the operators D!, D2, I' and Z2.

Since G, is zero for all differential operators, the respective right hand sides of the system

of equations (4.51) vanish. Consequently, an additional non-homogeneous condition is
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operator: | D? | D' | Tt | 7?
G, 0 0 1| v

Table 4.2: Values of the coefficients G, with respect to differential and integral operators

of first and second order

required for the calculation of the respective fundamental coefficients of the operators D*.

This condition is given by:

ATy = (DM, vo=2-2g,...,0,...,29—2. (4.56)

Furthermore, the fundamental connection coefficients of the operators D* and Z* satisfy
the relation

v = (-D)MT,Y + G, . (4.57)
With equation (4.57), the introduction of negative superscripts v in equation (4.56) can

be avoided.

The fundamental connection coefficients T of the operators D!, D? I' and Z? are given
in appendix B. If the connection coefficients of a differential operator should be applied, it
must be ensured that the respective scaling function and wavelet are differentiable at the
respective order. That means, a solution of the system of equations (4.51) and (4.56) may
exist but must not be applied if the respective wavelet is not differentiable. Therefore,

e.g. tables B.1 and B.3 do not contain any I'fj for the Daubechies wavelet D2.

4.2.3 Application of Connection Coefficients

Recalling equation (1.77), a signal f (¢) can be described by its wavelet decomposition as

follows:

Z anke Park (¢ Z Z At Y (T) - (4.58)

The application of a linear operator K € H), gives

M
k

m=1
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The scaling coefficients of equation (4.59) are obtained as the inner product with the

scaling function at the basic level:

M
(K@), dou(t)) = Z ark (K dark (1), ¢ou (t)) + Z Z A (K mr (), G0 (1)) -
k m=1k
(4.60)
Deploying equations (4.41) and (4.44), this relation becomes

M
(L), dog(t Za’MkFMk b, ¢) + Z dekr(r)nlk Y, ¢) . (4.61)

Consequently, the scaling coefficients of a signal’s derivative or integral can be described
by an orthogonal wavelet decomposition of the original signal and the appropriate wavelet

connection coeflicients.

According to equation (1.77), a signal can be interpreted as an approximation at the basic

decomposition scale:

) =Y aodor(t) - (4.62)

k

Hence

K@) = Z aox K do () - (4.63)

Therefore
<’Cf< (bOl Zaom Ok; (b, ) . (464)

With the relations in equations (4.49) and (4.57) it can be deduced that only the original
signal and the fundamental connection coefficients ') are required for the approximation
of an integral or a derivative of the signal. The respective algorithm can be summarised

by two steps:

1. calculate an approximation of the derivative or integral of the given signal at the
basic level utilising the fundamental connection coefficients T, of the respective

linear operator and

2. subsequent wavelet decomposition of this approximation.
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The principle of this approach is illustrated in figure 4.1, where the approximations and
details of the respective decompositions at a level m are denoted by A,, and D,,, respec-

tively (see section 1.4.2).

Ay D, Ay D, Ay D, Ay D, Ay D,
NI I I I
Ao D, Ao D, Ao D, Ao D, Ao D,
AM& AM& AM& An-1 An-1
N I I I N
An Dy An Dy An Dy An Dy An Dy

Figure 4.1: Flow diagram of the application of differential and integral operators (funda-

mental connection coefficients) and wavelet decomposition

The accuracy of the proposed approach depends on the properties of the signal and the
applied mother wavelet. Border distortions may occur as well as deviations from the

theoretical results at the coarsest scales.

If the proposed concept is applied for the estimation of a signal’s derivative, the differen-
tiability of the respective mother wavelet has to be considered. As mentioned earlier, e.g.

the second order derivative of the Daubechies wavelet D2 is not defined.
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4.2.4 Implementation of the Concept of Connection Coefficients

The fundamental connection coefficients for both the first and second order differentiation
and integration with respect to the Daubechies wavelets of genus 2 to 10 were calculated
and are listed in appendix B. The operators D!, D? Z' and Z? based on wavelets of
the Daubechies family were implemented into the SLang software package ("wavelet
derivative” and "wavelet integrate” commands) [5]. The examples in appendix C

demonstrate the performance of the implemented algorithms.



Chapter 5

Direct Parameter Estimation

The dynamic behaviour of a linear viscously damped system is governed by the system

of differential equations

(M) {z ()} + [C]{z (@)} + [K] {= (@)} = {f )}, (5.1)

where [M], [C] and [K] refer to the system’s mass, damping and stiffness matrices, re-
spectively, while the displacements, velocities and accelerations at a time instant ¢ are
given by the vectors {z ()}, {Z (¢t)} and {Z (¢)}. The vector {f (¢)} denotes the excitation

of the system.

The inverse problem is dedicated to the identification of the system’s parameter matrices
from measured structural response and excitation. For linear time-invariant systems, the

matrices [M], [C] and [K] are constant throughout the whole test.

Usually, the structural response of a civil engineering structure is measured in dynamic
tests as accelerations or as velocities. The numerical integration of measured data, that
almost always incorporates noisy contributions, causes problems. Therefore, the formu-
lation of equation (5.1) based on measured data seems to be impractical for the solution
of the inverse problem. However, in conjunction with the concepts developed in chapter
4, a wavelet-based representation of the equation of motion (5.1) provides an expedient

base in this context, as shown in this chapter.

70
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In section 5.1 it is shown how the complete equation of motion for a linear time-invariant
system can be represented in the time-scale domain utilising continuous wavelet trans-
forms of measured accelerations. A related approach, that is based on discrete wavelet
analysis, is described in section 5.2. The performance of the derived technique is verified

by means of examples.

5.1 Continuous Wavelet Analysis Approach

For linear time-invariant systems the transformation of the equation of motion (5.1) into

the time-scale domain with respect to a wavelet ¢)” results in
(M) {WE, (a,b)} + [C] {Wi (a,0)} + [K] {WE (a,b)} = {Wg/, (a, b)} . (52)

Employing the relations derived in section 4.1, equation (5.2) can be re-written as

& Zap! & Z &
(M] {WE, (a,b)} — a [C] ;ﬂ (W (a,0)} + a® [K] zj/ (Wi (a,0)} = {Wj,, (a, b)} .
(5.3)
According to equation (5.3), a complete set of equations of motion in the time-scale

domain can be formulated based on wavelet transforms of accelerations and excitations.

Assuming that both the accelerations and the excitations are known from a dynamic test,
equation (5.3) can be re-arranged for a single-degree-of-freedom (SDOF) system in the
form

m

i Ay i 2 Ay yrri _wt
{Ww,, (a,b), a 5 Wi (a,b), a o Wi (a, b)} c = Wy (a,b) . (5.4)
k

The parameters m, ¢ and k can be obtained by solving a system of equations that is
based on the wavelet transforms of both measured accelerations and excitation at three

coordinate pairs (a, b).

If the measured data is noise corrupted, equation (5.4) should be set up for more than
three coordinate pairs (a,b). This results in an overdetermined system of equations that

can be solved for the parameter vector by a least-squares method.
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Equation (5.4) can be easily adapted to multi-degree-of-freedom (MDOF) systems. One

obtains
(W (a,b)] {p} = {Wj,, (a, b)} . (5.5)

The vector {p} refers to the collection of system parameters, the matrix [W“” (a, b)] con-
tains the respective wavelet transforms of the measured accelerations. The structure of

the matrix [W"” (a, b)] is shown a for five-degree-of-freedom system in example 5.1.

Example 5.1. Linear 5-DOF system

The identification approach described in this section was verified by means of a numerical
simulation. The considered system is the 5-DOF system shown in figure 5.1. The system’s
parameters are listed in table 5.1. A resonance test was simulated by numerically exciting

the system at DOF 2 with the sweep force given in figure 5.2. As analysing functions, the

|

I5
—
Y

k’l,Cl k?l,Cl h=1
T2

I§

ks, ¢ ko, co h=1
I3

Y

k?g,Cg h=1
Tq

k?4,C4 h=1
s

Y

o ol ol
& o @
o o ()
o i o
& S )
Y

]{Z5,C5 h=1

L

Figure 5.1: Five-degree-of-freedom system
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first three wavelets of the Gaussian function’s derivatives family were chosen:

+2

Y = te(_;), W = (£ — 1) e<_7), "= (£* — 3t) o-7).

The respective wavelet transforms were calculated using the MATLAB Wavelet Toolbozx.
Assuming that the lumped masses m; were known, equation (5.5) becomes, for any coor-

dinate pair (a,b)

(W (a,0)] {p} = {Wh (@.0)} — M] {W, (a,0)} . (5.6)

For a single coordinate pair (a,b) the matriz [W# (a,b)] is constructed as

(W (a,b)] =
[ (Wi —wi) (Wi - W) 0 0 o1
0 (Wyz =Wii) (Wi = Wi2) 0 0
0 0 (Wi — W) (Wi — Wi?) 0
0 0 0 (Wi —wis)  (Wir —wit)
0 0 0 0 Wir :
(Wi —wie) (W =) 0 0 0
0 Wiz —wie) (W =wie) 0 0
0 0 (We = W) (Wi =wie) 0
0 0 0 (Wi =wie) (Wge =)
I 0 0 0 0 W, |
(5.7)
where W;ff = a% W;Zf} (a,b) and ng = a? :Zj' Wf;’ (a,b). The parameter vector {p}
contains the system’s stiffness and damping parameters
{p} = {c1, o, ¢3, 4, c5, Ky, ko, ki, Ky, k5}T (5.8)

The influence of noise within the data on the identification’s accuracy was investigated
by adding Gaussian white noise to both the accelerations and the excitation. Three levels
of noise intensity were considered: 1 %, 2 % and 5 %, where the percentage indicates

the standard deviation of the respective random vector in relation to the “clean” data’s
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mass parameter | value || stiffness parameter | value damping parameter | value
my 1.00 ky 300.00 1 10.00
mo 1.25 ko 600.00 Co 9.00
mg 1.50 ks 900.00 3 8.00
my 1.75 ky 1200.00 4 9.00
ms 2.00 ks 1500.00 Cs 10.00

Table 5.1: Lumped masses m;, stiffness parameters k; and damping coefficients c; of the

5-DOF system

maximum. Figure 5.2 shows details of the excitation and the accelerations at DOF 2 near
resonance with a noise contamination of 2 %. The respective wavelet transforms are given

i figure 5.4. The frequency contents of the two series are illustrated in figure 5.3.

0.1+ 0.2+
0.1 7
0.0 0.0
—0.1 +
—0-19 | | —0.2 T I
6.0 9.0 12.0 6.0 9.0 12.0
t [s] t [s]

Figure 5.2: Details of the time series of the exciting force (left) and the accelerations at

DOF 2 (right) — noise level 2 %
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0.15 0.3
0.10 + 0.2 4
0.05 0.1+
0.00 T T ] 0.0 T T ]
0.0 20.0 40.0 60.0 0.0 20.0 40.0 60.0
w w

Figure 5.3: Magnitudes of the Fourier transforms of the exciting force (left) and the

accelerations at DOF 2 (right) — noise level 2 %
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500 1000 1500 2000 500 1000 1500 2000

Translation b Translation b

Figure 5.4: Wavelet transforms with respect to the wavelet ¢” of the exciting force (left)

and the accelerations at DOF 2 (right) — noise level 2.0 %

In order to wvalidate the performance of the identification based on continuous wavelet
transforms, the results were compared with those obtained from a related procedure that

can be derived from applying the Fourier transformation to the equation of motion:

) {3} + [ {“j)} s {”””fj‘”} ~ {fw) . (5.9

For the identification, both Fourier coefficients and wavelet transforms were selected in the
vicinity of the first resonance (6.136 < w < 12.272; 8 < a < 64, 750 < b < 1250).
For the wavelet-based approach each parameter set was calculated on the base of the wavelet
transforms at seven coordinate pairs (a,b) taken at a dyadic grid such that redundancy
was reduced. This means, each system of equations that was solved by means of a least
squares method contained the wavelet transforms at the coordinates (a;,b;), (a;, b; + a;),
(aj,bj + 2a;), (aj,b; + 3a;), (2a;,b; + %), (2 a;,b; + 5%) and (4aj, b; + 3%) In total
164 sets of parameters were calculated. It became obvious from a statistical analysis that
the results were not normally distributed. Therefore, it was decided to consider the his-

tograms’ peak values as identified parameters rather than the mean values. The identified
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orig. ident. | error ident. error ident. error ident. error
value | no noise | [%] || 1% noise | [%] | 2% noise | [%] || 5% noise | [%)]

ky | 300.00 || 299.61 | 0.13 304.66 1.55 292.44 2.67 283.26 5.58
ko | 600.00 || 599.26 | 0.12 601.77 0.29 597.05 0.49 606.93 1.16
ks | 900.00 || 899.03 | 0.11 895.77 0.47 886.57 1.49 908.36 0.93
ky | 1200.0 || 1198.6 | 0.12 1193.5 0.54 1191.7 0.69 1155.9 3.67
ks | 1500.0 || 1498.3 | 0.11 1493.9 0.41 1494.8 0.35 1502.7 0.18
c; | 10.00 9.998 0.02 10.027 0.27 9.543 4.57 10.252 2.52
ce | 9.00 8.989 0.12 8.714 3.18 9.253 2.81 6.204 31.07
cs | 8.00 8.007 0.09 8.632 7.90 8.086 1.08 8.736 9.20
cy | 9.00 9.007 0.08 8.568 4.80 7.573 15.85 8.588 4.58
cs | 10.00 10.009 | 0.09 10.190 1.90 10.060 0.60 8.769 12.31

Table 5.2: Identified parameters k; and ¢; with respect to the level of noise contamination

— wavelet-based approach

parameters k;, ¢; and the respective errors

k'ori — Kk
err (kj) = Ksori .10 x 100% , (5.10)
kj,om'g
err (c;) — |Geris = Cianl 4050, (5.11)
Cj,orig

are summarised in tables 5.2 and 5.3. For the wavelet-based technique the listed parameters
are the central values of the respective histogram’s class. The histograms of the results from

the wavelet-based approach, collected in appendix D.1, were computed for 41 classes.

The results of the investigations in example 5.1 suggest that the method presented in
this section leads to acceptable results that are of slightly higher or similar accuracy to
those that were obtained by means of a related approach based on the Fourier transforms
of the measured data. The quality of the results depends considerably on the choice of
the coordinates (a, b) at which the wavelet transforms are extracted for the identification.
Generally, the best results were achieved when the wavelet transforms that represent the

highest contributions to the system’s response energy were included into the analysis.
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orig. ident. | error ident. error ident. error ident. error
value || no noise | [%] || 1% noise | [%] || 2% noise | [%] || 5% noise | [%]

ky | 300.00 || 297.82 | 0.73 293.79 2.07 277.81 7.40 201.07 | 32.98

ko | 600.00 || 595.62 | 0.73 586.6 2.23 978.03 3.66 428.79 | 28.53

ks | 900.00 || 894.06 | 0.66 886.64 1.48 854.14 5.10 646.71 | 28.14

ky | 1200.0 | 1193.3 | 0.56 1180.2 1.67 1147.3 4.39 913.79 | 23.85

ks | 1500.0 || 1492.1 | 0.53 1474.8 1.68 1438.3 4.11 1169.3 | 22.05

¢ | 10.00 9.9124 | 0.88 9.7836 2.16 9.2774 7.23 6.569 34.31

ce | 9.00 8.9922 | 0.87 8.5874 4.58 8.8914 1.21 9.341 3.79

cs | 8.00 8.0483 | 0.60 9.0213 | 12.77 7.4633 6.71 7.625 4.69

cy | 9.00 9.0012 | 0.01 8.7648 2.61 7.5661 | 15.93 6.636 26.26

cs | 10.00 10.006 | 0.06 9.9233 0.77 9.301 6.99 8.769 6.75

Table 5.3: Identified parameters k; and ¢; with respect to the level of noise contamination

— Fourier transform-based approach

5.2 Discrete Wavelet Analysis Approach

It has to be mentioned that a considerable drawback is inherent in the method described
in section 5.1. The calculation of continuous wavelet transforms involves a large number
of numerical integrations and is thus relatively time consuming. Therefore, an approach

that is based on discrete wavelet calculus and multi-scale analysis is given in this section.

5.2.1 Derivation of the Approach

Any one-dimensional discrete signal can be represented by an orthogonal wavelet decom-
position (equation (1.77))
M
= Zan,kaM,k (t) + Z Z mk,lvz)mk
k k. m=1
Since the wavelet transformation is a linear transformation, the equation of motion for a

linear time-invariant system (5.1) can be re-written, for any instant k, at decomposition
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level m (rather than time t) as:

(M) {di i} + (€] {dis} + (K] (i} = {dli} (5.12)

where the vectors {dﬁm}a {dﬁlvk}, {dﬁm} and {dfnk} respectively contain the wavelet
coefficients of the accelerations, velocities, displacements and excitation at level m and
instant k. This means, the equation of motion can be transposed from the time domain
to the discrete time-scale domain. With respect to practical application, the wavelet
coefficients in equation (5.12) should be multiplied by weighting coefficients u,, that have

to be chosen by the analyst for each considered scale m.

Equation (5.12) uses the wavelet coefficients of accelerations, velocities and displacements.
However, from dynamic tests, usually only accelerations are available. For the estimation
of velocities and displacements in the sense of integrals of accelerations the concept of
connection coefficients (section 4.2) is suggested. The same approach can be employed if
displacements or velocities were measured. However, when utilising connection coefficients
of differential operators, the differentiability properties of the respective basic wavelet have

to be taken into account.

Assuming that the excitation is known and interpreting a measured discrete series of
accelerations 7 (k) as a series of scaling coefficients at the basic decomposition scale, the

following algorithm can be developed:

1. Calculate approximations of displacements and velocities using the respective con-

nection coefficients.

2. Decompose the respective approximations into its wavelet coefficients by means of

a multi-scale analysis (scheme in figure 4.1).

3. Select coordinates m, k of wavelet coefficients that are to be included into the

identification.
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4. set up the system of equations for the identification of the system matrices’ elements:

.
mi

mio

My n

C1,1

(6], ] [ 377 b = el (5.13)

\ ’ 7
If the mass matrix is assumed to be known, the contributions of the inertia forces
in equation (5.13) can be shifted to the right hand side by subtraction. The matrix
on the left hand side of equation (5.13) should have more rows than the parameter

vector which is obtained by considering a sufficient number of coordinates (m, k).

5. Solve the system of equations (5.13) for the parameter vector and re-arrange the

solution in the respective system matrices.

It should be mentioned that an approach which is related to the method presented in this
section is described in [28]. However, there the estimation of the response is limited to
the base of measured displacements. The accelerations and velocities are approximated
by means of the connection coefficients of differential operators given in [53]. Further-
more, the scaling coefficients rather than the wavelet coefficients are used in the system
of equations. This means, only high-frequency components are omitted, all low-frequency
contributions remain within the selected coefficients. In the case of approximating the
accelerations and velocities by differentiating displacements, this concept might be prac-

ticable. But using scaling (rather than wavelet) coefficients obtained by decomposition
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of an approximation that was estimated by integration of measured accelerations usually

incorporates considerable errors.

5.2.2 Solution Methods

It seems to be self-evident to solve the problem (5.13) by means of a least squares approach:

= [l ("] {{dha) - 0 [} (514

In equation (5.14) the mass matrix is considered to be known. If the matrices [C] and
[K] are assumed to be symmetric, one can always force the result of equation (5.14) to be
elements of symmetric matrices by respective arrangement of the matrices’ and vectors’

elements that form the system of equations.

Another possibility to obtain symmetric matrices [C] and [K| by means of matrix opera-
tions can be derived as follows. Provided that the matrix [M] is known, equation (5.12)
can be written as

[K]nxn [d;,k]nxj + [C]nxn [dfn,k]nxj = [dfn,k] o [M]nxn [di,k]nxj ) (515>

nxj

where the matrices [d%k}, y=uwx, T, T, f contain j wavelet coefficients with respect to n
degrees of freedom. Accordingly, equation (5.15) can be re-written as
T T - T [K]
€]
with

RHS] = [d],,| = (M] [d..] - (5.17)

m,k

Post-multiplying equation (5.16) by its transposed yields

K] T ] T T
D] o K" (€] (D) = [(rHS) [RES)" (5.18)
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m,k

where [D] = [[dﬁm,k}T [dE ]T] If [D]" denotes the pseudo inverse of [D], obeys

B g ] = K K] (K][CT
€] CIKT" (et (519)
+ T y+T [A] [B]
= [DI" [RHS] [RHS] [D]" =
] [H]

Provided that the upper left and the lower right n x n submatrices [A], [H] in equation

(5.19) are positive definite, the symmetric matrices [K| and [C] can be deduced as

(K] =[]} = [@4]" [diagy/Aa] [@4] (5.20)
C] = [H]? = [@4]" |[diagy/Au| [@n] | (5.21)
€] = [K]7" [B] (5.22)
€] = [G) (K] (5.23)
K) = (B [C]" . (5.24)
K] = [c)] (6] - (5.25)

Consequently, equation (5.19) provides a series of several relations for the determination of
the matrices [K] and [C]. If two of equations (5.20) to (5.25) were used for the estimation
of [K] and [C], the remaining relations can be utilised for the assessment of the identified

results.

Furthermore, if the considered system satisfies the modal theory, it follows that
(K] [C] = [CT K], (5.26)

hence

(6] =[6]" = [B] = [B]" . (5.27)

By means of both the least squares analysis (5.14) and the described matrix relations
(5.19) to (5.25), it can be ensured that the identified matrices are symmetric. However,

if the right hand side in equation (5.14) is ill-conditioned, the least squares method may



82 CHAPTER 5. DIRECT PARAMETER ESTIMATION

lead to negative parameters or negative diagonal elements in [K] and [C]. Similarly, one
might obtain negative eigenvalues for the submatrices [A] and [H] in equation (5.19) if
the right hand side is ill-posed. In that case, it is not possible to identify positive definite
system matrices [K] and [C].

A third alternative for the identification of the matrices [K] and [C] is the formulation of

an optimisation problem with the objective function
|y [d,0) + 101 (i) + K] [d,] = [af,]| = min . (528)

Basically, this is a least square error minimisation, i.e. the result should be the same as
that obtained from equation (5.14). However, the mathematical procedure is different
from the matrix calculus in the approach described by equation (5.14). It can be ensured
that the resulting matrices are symmetric and have no negative diagonal elements, by
arranging the optimisation variables appropriately and by definition of respective bound-
ary values for the variables. Moreover, parameters of finite elements of a more complex
system can be identified using the optimisation approach if the algorithm is connected to
a structural analysis program. With the approaches based on matrix operations, this is

only possible for very simple systems.

All three methodologies for the solution of the inverse problem were tested in examples

that are described in the following section.

5.2.3 Verification

The performance of the algorithm presented in section 5.2.1 is illustrated in this sec-
tion. Both the identification of linear time-invariant MDOF systems and the detection
and quantitative identification of damage during an observation interval are shown in
numerical examples. The robustness of the proposed technique, with respect to noise

contamination of the measured data, is investigated.

For the verification of the proposed method’s capability to identify models of existing

systems based on experimental data, tests were carried out with a locally damaged steel
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beam.

Example 5.2. 5-DOF system, sweep excitation

As in example 5.1, the response of the 5-DOF system shown in figure 5.1, due to a sweep
force acting at DOF' 2, was numerically simulated for 4096 time instants sampled at a
rate of At = 0.01s. The time series and the respective wavelet decompositions of the
excitation and of the response at DOF' 1 are given in figure 5.5. The system’s parameters

were identified utilising the wavelet coefficients at the 690 coordinate pairs listed in table

5.4,

EXCITATION - DOF 2 Acceleration ~ ACCELERATIONS - DOF 1
Force [N] [m/s?2]
0.15 0.3

0.1
0.05 ‘“MM

0.0
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Figure 5.5: Time series (top) and wavelet coefficients (bottom) of the excitation (left) and

the accelerations at DOF 1 (right), analysing wavelet D3

Two of the three solution methods presented in section 5.2.2 were applied to this ezample,
the least squares solution approach and the optimisation technique. The results of the
matriz calculus procedure are not reported. A disadvantage of this method is that a priori

knowledge about the matrices structures cannot be incorporated into the identification. Not
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level | begin sample | number of samples

3 100 400
4 40 190
5 20 80
6 10 20

S = 690

Table 5.4: Coordinates of wavelet coeflicients selected for the identification

only is the number of unknowns larger than necessary, but also considerable defects can

occur in the off-diagonal terms that should be zero.

In a first step, all selected coefficients were included into the system of equations to be
solved. The respective results are summarised in table 5.5. The identified parameters are
very similar for both the least squares method and the optimisation. A decrease in accuracy
can be observed with increasing noise contamination of the simulated data. However, with
respect to the level of noise contamination, the quality of the results can be considered as

comparatively close to the true values.

In a second attempt, the wavelet coefficients at 690 coordinates were selected for each
system of equations according to the scheme in figure 5.6. By moving a 590 samples
wide window along the selected coefficients vector, 100 systems of equations and resulting
parameter sets were obtained. Figure 5.7 illustrates the identified results for the parameters

ks and c3. The respective diagrams for all parameters are collected in appendiz D.2.

Figures D.5, D.6 and tables D.1, D.2 in appendix D.2 show that the results vary only
slightly for the different systems of equations. The respective mean values are very close
to the solutions summarised in table 5.5. Both solution methods applied resulted in nearly

tdentical parameter sets.

In order to assess the confidence in the results obtained, a statistic investigation was
carried out. The identification was repeated 300 times with different sets of random vectors

for the case of a signal-to-noise ratio SNR = 5. A comparison of the mean values and
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orig. value least squares approach optimisation
no noise | SNR=10 | SNR=5 || nonoise | SNR=10| SNR=5
ky 300.00 296.86 295.89 296.07 296.86 295.90 296.09
ko 600.00 591.48 590.48 583.09 591.43 590.42 582.99
ks 900.00 886.69 874.48 850.04 886.60 874.36 849.87
ks | 1200.00 1183.9 1173.6 1141.8 1183.8 1173.5 1141.6
ks | 1500.00 1481.0 1478.5 1464.8 1480.9 1478.4 1464.7
1 10.00 9.923 9.850 9.691 9.922 9.849 9.690
Co 9.00 8.913 9.027 9.215 8.913 9.028 9.215
3 8.00 7.937 8.194 8.366 7.936 8.193 8.361
4 9.00 8.884 8.376 7.529 8.884 8.371 7.512
Cs 10.00 9.939 9.487 8.831 9.938 9.485 8.829

Table 5.5: Identified parameters obtained as solutions of systems of equations including

all selected parameters

| 590 |

ds dy dsy | dek

| 400 | 190 L 80 4 20
| | | | |

Figure 5.6: Scheme of the wavelet coefficients’ selection for the identification

standard deviations of ks, obtained from the least squares identifications with the respective
results of the optimisation is given in figure 5.8. The black curves mark the identified
mean values. The grey curves, that are almost identical with the black lines, refer to the
standard deviations of the respective identifications. A collection of diagrams, such as
shown in figure 5.8, can be found for all parameters in appendix D.2. It can be observed,

that the parameters obeyed from the identifications using different noise vectors, scatter
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more strongly than the solutions of one single identification. The standard deviations of
the single identifications obtained as optimisation results are slightly higher than those of

the least squares solutions, but still very small.

orig. value least squares approach optimisation

@ o (ki) o (ki) m o (ki) o (k:)

i

(%) (%) (F:) (F:)

ky 300.00 299.39 | 0.00050562 | 0.011241 |} 299.16 | 0.00094018 | 0.011663
ko 600.00 278.83 | 0.00033073 | 0.010629 || 577.92 | 0.0010942 | 0.011084
ks 900.00 864.57 | 0.0001925 | 0.010055 || 863.45 | 0.0012511 | 0.0087392
ky 1200.00 1142.1 | 0.00035861 | 0.014296 | 1144.6 | 0.0018707 | 0.013605
ks 1500.00 1465.5 | 0.00016878 | 0.0075187 || 1462.6 | 0.0010011 | 0.0070201

Table 5.6: Mean values of the identified mean stiffness parameters, mean levels of confi-
dence of the single identifications and levels of confidence of a series of identified param-

eters

If the series of all identified parameter sets, i.e. using different noise vectors, are con-

sidered, one can observe that the levels of confidence in the results obtained by the two

[N/m] STIFFNESS PARAMETER k_3 DAMPING PARAMETER c_3
[Ns/m]
90
898 0O SNR=5 8.40 E 5 5 5 o0 8858588 0 SNR=5
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Figure 5.7: Identified parameters k3 (left) and ¢z (right), 590 coefficients per system of

equation, least squares solution (top) and optimised values(bottom)
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Figure 5.8: Statistical analysis of k3 stiffness parameters identified, mean values (black

curves), standard deviations of the single identifications (grey curves), comparison be-

tween least squares solutions (left) and optimisation results (right)

orig. value least squares approach optimisation
- o () o () - o () o (c)
(@) = = (@) - —
(@) (@) (@) (@)
c1 10.00 9.7757 | 0.00035307 | 0.011565 || 9.7589 | 0.00048669 | 0.011699
Co 9.00 9.0223 | 0.00073089 | 0.021792 || 9.0200 | 0.0017958 | 0.022537
3 8.00 7.7554 | 0.0013243 | 0.039384 || 7.7492 | 0.0017341 | 0.038581
4 9.00 8.1401 | 0.0032149 | 0.090316 | 8.1148 | 0.0056418 | 0.090012
cs 10.00 9.5352 | 0.00060757 | 0.052998 || 9.5593 | 0.0023767 | 0.052553

Table 5.7: Mean values of the identified mean damping parameters, mean levels of confi-

dence of the single identifications and levels of confidence of a series of identified param-

eters

methods employed are approximately identical. It has to be noted that the results are in-

fluenced by the choice of the weighting coefficients wu,,. An indicator for inappropriate

weighting is e.q. if the curves in diagrams such as in figure 5.7 show strong irreqularities

at positions where wavelet coefficients at another scale enter into the system of equations.

Example 5.3. 5-DOF system, base excitation

This example is focused on the detection of damage occurrence during an observation
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interval. A horizontal random base acceleration was applied to the 5-DOF system that is
tllustrated in figure 5.1. The excitation and the response at the structure’s top are given
in figure 5.9. Damage was simulated as an abrupt 10 % drop of the stiffness parameter
ks in conjunction with an increase of the damping parameter ¢y by 10 %.

Acceleration ~ BASE ACCELERATIONS Acceleration ~ ACCELERATIONS - DOF 1
[m/s?2] [m/s”2]

| | | | | | | |
0.0 1000 2000 3000 4000 0.0 1000 2000 3000 4000

Time [samples] Time [samples]

Figure 5.9: Time series (top) and wavelet coefficients (bottom) of the base accelerations

(left) and the accelerations at DOF 1 (right), analysing wavelet D3

It was decided to include the wavelet coefficients at the first siz decomposition levels into
the analyses. Consequently, the resolution in time was determined by the resolution at the
coarsest level, i.e. at level 6. Accordingly, 50 sets of wavelet coefficients at coordinates on

a dyadic grid, as shown in figure 5.10, were formed for the identification.

The identified parameters ks and c4 are shown in figure 5.11 for both the situation of
non-noisy data and of a noise corruption with an SNR = 50. For stronger noise con-
tamination levels, the abrupt parameter changes could not clearly be deduced from the
diagrams. Slightly better results were obtained for an SDOF system, where a 5 % change

in both stiffness and damping could still be detected from data with a signal-to-noise ratio
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level 1 ‘ ‘

32 samples

level 2

16 samples

level 3

8 samples

level 4

4 samples

level 5

2 samples

level 6

1 sample

> =63 samples

Figure 5.10: Scheme of the wavelet coefficients’ selection for the identification

of 20. The results presented were calculated by means of the least squares approach. It

was observed that the parameters obtained from an optimisation varied too strong for a

clear identification of the parameter’s changes.
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Figure 5.11: Parameters k4 (left) and and ¢4 (right), identified using non-noisy data (top)

and noise contaminated data with SNR = 50 (bottom), grey lines mark the original

values

Example 5.4. Simply supported beam, impulse load

For the system in examples 5.2 and 5.3, complete information about both accelerations

and excitations at all degrees of freedom was assumed. However, the structural response

can be measured only at a limited number of points in a test.

Usually, sensors that

measure translational accelerations are used. As an example for an application to a typical

structural member, a free vibration test of a simply supported beam, as shown in figure
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Figure 5.12: Simply supported beam, structural system and cross section

VERTICAL ACCELERATIONS - NODE 3 VERTICAL ACCELERATIONS - NODE 5
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Figure 5.13: Time series (top) and wavelet coefficients (bottom) of the accelerations at
DOF 3 (left) and the accelerations at DOF 5 (right), undamaged structure, analysing
wavelet D3

5.12, was simulated numerically. A vertical impulse load was applied at node 6.

The wvertical accelerations at nodes 3, 5 and their wavelet decompositions with respect to

the wavelet D3 are given in figure 5.13.
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Since the measured response data refers to a reduced model, a direct solution method
cannot be applied for the identification of the elements’ stiffness and damping parameters.
Therefore, only the optimisation routine was used in this case. In each optimisation step,
the complete system matrices were created, based on a selected set of parameters. Then
the system matrices were reduced to the dimension of the measured degrees of freedom

utilising the procedure for an improved reduced system model (IRS), developed in [50].

Successive damage, occurring between subsequent tests, was simulated by reducing element
stiffness values and increasing the respective damping parameters simultaneously. Four
stages of simulated damage were considered. The identified values of the Young’s moduli
and material damping coefficients are summarised in table 5.8. These results were obtained

based on data that was not contaminated by noise.

The values in tables 5.8 and 5.9 suggest a comparatively good performance of the pro-
posed method. However, it became evident that the algorithm behaved very sensitively with

respect to noise in the data.

state E, Es Es Ey Es Es E; Es
N ) N 3 N S 2 M ) I v N b
0 2.984el10 2.982e10 2.982el10 2.981el0 2.981el0 2.981el0 2.982e10 2.984e10
(3.0e10)  (3.0e10)  (3.0e10) (3.0e10) (3.0e10) (3.0el0) (3.0e10) (3.0el0)
1 2.989e10 2.955e10 2.973el0 2.665el0 2.675el0 2.962e10 2.979e10 2.942e10
(3.0e10)  (3.0e10) (3.0e10) (2.7€10) (2.7e1l0) (3.0e10) (3.0e10) (3.0el0)
2 2.963e10 2.968¢10 2.670e10 2.670el0 2.670el0 2.670e10 2.966el0 2.966e10
(3.0e10)  (3.0e10) (2.7e10) (2.7€10) (2.7el0) (2.7e10) (3.0e10) (3.0e10)
3 2.970e10 2.670el0 2.672e10 2.672¢10 2.672e10 2.672¢10 2.671el0 2.966e10
(3.0e10) (2.7e10) (2.7el0) (2.7e10) (2.7e10) (2.7e10) (2.7e10) (3.0el0)

Table 5.8: Identified Young’s moduli (original values in brackets)

Example 5.5. Damage localisation, experimental verification

Stmilar tests to that numerically simulated in example 5.5 were performed for a steel
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state 1 Cy C3 Cy Cs Cg c7 cs
I 1 B 1 N ) N ) N - B - B 1
0 4.000e6 4.000e6 3.999e6 4.000e6 4.000e6 3.999e6 4.000e6 4.000e6
(4.0e6) (4.0e6) (4.0e6) (4.0e6) (4.0e6) (4.0e6) (4.0e6) (4.0e6)
1 3.973e6 3.821e6 3.964e6 4.281e6 4.291e6 3.960e6 3.825e6 3.974e6
(4.0e6) (4.0e6) (4.0e6) (4.4e6) (4.4e6) (4.0e6) (4.0e6) (4.0e6)
2 3.808¢6 3.851e6 4.194e6 4.225e6 4.225e6 4.194e6 3.852e¢6 3.808e6
(4.0e6) (4.0e6) (4.4e6) (4.4e6) (4.4e6) (4.4e6) (4.0e6) (4.0e6)
3 3.756e6 4.067e6 4.126e6 4.131e6 4.127e6 4.121e6 4.070e6 3.757e6
(4.0e6) (4.4e6) (4.4e6) (4.4e6) (4.4e6) (4.4e6) (4.4e6) (4.0€6)

Table 5.9: Identified damping coefficients (original values in brackets)

beam. Figures 5.14 and 5.15 show the test set-up. Local structural damage was simulated

by cutting the beam’s lower flange five times at two positions, respectively (figure 5.15).

cuts

l Emp

[

R T s
0.60 ! 0.50! 0.50! 0.50! 0.50! 0.50! 0.50! 0.60
0.10 4.20 0.10
4.40 ]

Figure 5.14: Tested steel beam — test set-up

30mm

The beam was excited to free vibration by a vertical hammer impact. The response was

measured in the vertical direction by means of accelerometers at seven positions. Simulta-

neously, the impulse force generated by the hammer was recorded. Examples for the time

series and wavelet decompositions of the exciting force and of the respective response are

gwen in figures 5.16 and 5.17.
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Figure 5.15: Tested steel beam — test set-up (left), cuts between accelerometers 3 and 4
(right)

FORCE - POSITION 2 FORCE - POSITION 2
force [N] force [N]
20 20

0.0 0.0

-20 -20

-40 -40

-60 -60

-80

-80
| | | | | | | | | | | |
00 01 02 03 04 05 06 07 08 09 10 0.045 0.050  0.055

| | I I 1
0.060 0.065 0.070 0.075  0.080
time [s]

time [s]

ACCELERATIONS - POSITION 2
accelerations [m/s"2]

3.0
2.0
1.0
0.0
-1.0

-2.0

00 01 02 03 04 05 06 07 08 09 10
time [s]

Figure 5.16: Measured time series of impulse force (top, left), detail of impulse force (top,

right), measured time series of accelerations at position 2 (bottom)

The tests were repeated ten times. From each set of measured data, one set of parameters
was identified. These parameters were based on a finite element model consisting of ten

beam elements and additional masses at the nodes that were located at the accelerometers’

positions.
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Figure 5.17: Wavelet decompositions of the measured impulse force (left) and of the

measured accelerations at position 2 (right), analysing wavelet - DaubechiesD3

As described in example 5.5, the optimisation scheme was employed for the identification
of the elements’ stiffness and damping. It was assumed, that the system parameters were
constant along the length of each element. The stiffness was estimated by optimising
for the Young’s modulus rather than geometry of the elements’ cross sections. Similarly,
viscous damping parameters were considered as unknowns that determined the elements’
damping properties. The mass was considered as known. All parameters were identified

based on wavelet coefficients at scales 2, 3, 4 and 5.

The identified parameters, as obtained from all ten data sets, are illustrated in figure 5.18.
The grey lines in the plot of the Young’s moduli mark the lower and upper bounds and the
start values for the optimisation, respectively. One can clearly detect significant stiffness
reductions for the elements that correspond to the damage positions in the test specimen.
For the elements adjacent to the damaged zones, stiffness values were obtained that are far
beyond realistic parameters for a steel beam. However, this effect is due to the simplified
modelling of local damage by homogeneous finite elements of considerably larger extension

than the size of the damaged zone.

With respect to the identified damping parameters, it has to be intimated that the estimated
results barely differed from the initial values, regardless which values were chosen at the

beginning of the optimisation. This observation indicates a negligible influence of the
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Figure 5.18: Identified sets of Young’s moduli (left) and damping parameters (right) with

respect to the beam’s longitudinal axis

damping if viscous damping that is proportional to the element stiffness is assumed. The

very weak damping was already obvious during the tests.

In table 5.10 the average natural frequencies of the estimated models’ first five bending

modes are compared with those identified from the measured data. The average MAC

values (e.g. [26])

2

Z (Pi,modet) ; (Piident);
=1

( <¢i,model>j <¢i,model>;> (Z ((bi,ident)j (‘bi,ident);)
j=1

~ (5.29)

for the corresponding mode shapes are summarised in table 5.11. The identified natural

M AC; (ident, model) =

3

frequencies and mode shapes were determined by means of the Ibrahim time domain method

(ITD) [33].

It can be deduced from this example, that the proposed method of wavelet-based direct
parameter estimation is an appropriate tool for the identification of a finite element model
that represents a tested structural element. Local damage could be identified, even based

on a very simplified model. The modal parameters of the identified model agree relatively

good with those of the tested system.
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Jnmodet [H 2] | fameas [Hz] | error [%] mode shape of the model
3.6565 3.8274 4.465 »
14.156 16483 | 14.118 {\/
32.171 453 | 0257 | e S~
71.209 72.207 1.382 M/
104.60 106.35 1.646 S T~

Table 5.10: Average natural frequencies of the estimated models and identified from

measured data

0.96441

0.00013946

1.4692e-05

5.0824e-06

8.6054e-05

9.0692e-06

0.93744

0.00075311

4.6988e-05

2.3042e-06

4.045e-07

0.00047522

0.91086

7.1701e-05

3.4854e-05

1.0774e-07

9.9969e-06

7.8325e-06

0.88111

0.00019247

3.3422e-07

4.1914e-06

2.6346e-05

0.001211

0.97829

Table 5.11:

Average MAC values




Chapter 6

Assessment of Progressive Damage

Damage detection and structural health monitoring have become fields of increasing in-
terest to civil engineers in recent years. Among numerous methods, approaches that are
based on the observation of the dynamic behaviour of a structure were developed (e.g.
9], [18], [42], [36], [11]). Many of these techniques use identified modal parameters in

some way for the detection and localisation of structural damage.

As pointed out in section 2.3, techniques that utilise wavelet analysis in context with dam-
age detection were suggested by several researchers. Inspired by one of these proposals,
investigations about the characterisation of a structural element’s damage state, based on

the energy components of free response signal’s wavelet decompositions, were carried out.

6.1 Signal Energy-Based Damage Assessment

The assessment of a structure’s damage state, by means of free vibration response signal’s
energy, is suggested in [63] (see section 2.3). It is proposed to calculate a complete wavelet
packet decomposition of response signals that were obtained from free vibration tests of
the structure at different stages of damage. The excitation is assumed to be identical in

all tests. The damage indices developed in [63] are based on the comparison of the energy

97
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components of wavelet packet decompositions of response signals, measured at certain
stages of damage, with a set of reference energy components. The degree of the sum of
these absolute differences, or their squares, are interpreted as a measure for structural
damage. The indices presented in [63] do not consider whether the respective differences
of energy components are positive or negative. Furthermore, these damage indices were
directly calculated from measured response data. This means an exact repetition of the

test, i.e. the excitation, is required.

The two latter remarks gave reason to investigate how the system’s response energy com-
ponents change with progressive structural damage and if the restriction of ensuring an
exactly repeated excitation for each test can be avoided. With respect to continuous struc-
tural health monitoring, particularly the dependence on performing identical tests has to
be considered as being difficult in practice. Accordingly, an appropriate normalisation of

the response data would be beneficial.

If the excitation of the system is known, an obvious normalisation of the response is that
with respect to the exciting force. This results in the impulse response function or its
wavelet decomposition. Another possibility is to normalise the response at one location
in the structure to that, measured at another position, which leads to a transmissibility
function. The consideration of transmissibility functions and their wavelet decompositions

seems to be rather suitable in the context of continuous structural health monitoring.

The investigations presented in this chapter comprised the following steps:

1. Calculation of the wavelet coefficients of the impulse response or the transmissibility
functions by means of data obtained from dynamic tests with a known impulse

excitation according to [49].

2. Selection of wavelet coefficients that significantly contribute to the characteristics
of the respective function (definition of scales and number of wavelet coefficients at

these scales).
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. Calculation of the energy components F; ; for the selected wavelet coefficients

Eiy = d,; 2", (6.1)
where 7 is the index of the respective decomposition level.

Calculation of the total energies at the respective scales E; and of all considered

components tot.E:

Ei - ZEi,j7 (62)
J

Comparison of the respective energy components and their sums at different stages

of structural damage.

Description of the Tests

l Fstat

accelerometers
Emp
| | z

- 0 N TR N MO T . )
- 1 2 3 4 5 67 =
O
0.12
.20 ‘ 0.20 ‘ 0.315 ‘ 0.235‘ 0.235‘ 0.315 ‘ 0.20 ‘ 0.20
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0.10 1.90 0.10
2.10 [m)]

Figure 6.1: Test set-up, simply supported reinforced concrete beam

The data that was analysed, as described in the previous section, was collected in tests

of a progressively damaged reinforced concrete beam. The structural damage was caused

by incrementally increased static loading. The test set-up and the specimen’s dimensions

are illustrated in figures 6.1 and 6.2.
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Figure 6.2: Test specimen in the laboratory

The tests were carried out within a series of tests on 20 identically designed reinforced

concrete elements. A detailed description of this test series is given in [24] and [25].

The history of the static load increments and a description of the respective damage
features are summarised in table E.1 and in figures E.1 and E.2 in appendix E.1. Dynamic
tests were carried out on the unloaded structure in the virgin state and after each static
load step. The system was excited to a free vibration by imposing a vertical impact force
F,,, at position 5. Both the accelerations at seven positions and the excitation force were

measured simultaneously at a sampling rate of 0.9766 ms.

The collected data was analysed according to the scheme developed in section 6.1. The
results of the data analysis and respective conclusions are described in the following

section.

6.3 Assessment of the Test Results

In this section, the most significant results of the energy component analysis for the tests

described in section 6.2 are summarised. The diagrams, tables and figures that are given
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here are a selection obtained from the experimental data for specific measurement points.
There were several measurement locations for which similar results were obtained. Nev-
ertheless, it should be noted that it was deduced from the investigation, that the sensor’s

location is of considerable importance with respect to structural health monitoring.

Often, the change of the system’s natural frequencies is considered as an indicator of
structural damage, as suggested for example in [36]. The natural frequencies of the first
mode identified for the investigated reinforced concrete beam are shown in figure 6.3.
46.0
44.0 \
42.0
falHZ] 400

38.0
36.0
34.0

0.0 2.0 10.0 15.0 20.0 25.0 30.0

static load Flar

Figure 6.3: Identified first natural frequencies of the beam

For the investigations of the energy components according to the descriptions in section
6.1, the five finest scales of the impulse response and transmissibility functions, respec-

tively, were taken into account. The coordinates considered are collected in table 6.1.

Decomposition level: 1 2 3 4 5

sample numbers: 1...4011...40|1...40|1...161...6

Table 6.1: Coordinates of the considered wavelet coefficients’ energy components

At the selected coordinates, the energy components F;; were determined according to
equation 6.1. The sums of these energy components at each considered scale and their
total sum were calculated. Figures 6.4 and 6.5 show examples for the developments of

the energy component sums with progressive damage.
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Figure 6.4: Relative energy components, impulse response function, channel 2
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Figure 6.5: Relative energy components, transmissibility function channel 5 — channel 2

From the diagrams in figures 6.4 and 6.5,it can be deduced that the application of the
total energy component sums might not necessarily provide clear information concerning
the assessment of structural damage. However, the curves that were obtained for the
energy component sums at selected levels suggest a considerable decrease with progressing

damage. The respective degradation is considerably more significant than that of the first
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natural frequency.

The energy decrease at specific scales is caused by increasing damping due to cracks in
the beam and by a reduction of the natural frequency, which results in a shift of the signal
energy components to coarser scales. These conclusions can be drawn from figures 6.6
and 6.7 that give an overview about the energy component distributions at the selected

scales with respect to the state of damage.

By studying the diagrams in figures 6.6 and 6.7, it can be observed that the pattern
of the energy components’ distributions changes with progressive damage. The energy
at specific levels is increasingly concentrated in fewer components. This feature becomes
more obvious if the relative energy components are considered (figures 6.8 and 6.9). These
values were obtained by dividing the individual energy components by the sum of the
components at the respective scale. Both the 4th level’s energy components of the impulse
response function of DOF 2 with respect to an excitation at DOF 5 and the 2nd level’s
energy components of the transmissibility function of DOF 2 with reference to DOF 5
show a high energy concentration in very few components after the cracks became wider

than 0.05...0.1 mm.

The observations described in this section suggest, that wavelet-based energy compo-
nents of normalised response signals can be utilised as an indicator of structural damage
detection, provided that the monitoring set-up is appropriately calibrated. Calibration
means in this context the choice of appropriate sensor locations and the selection of en-
ergy component coordinates. Nevertheless, further analyses of data collected from tests of
progressively damaged structures is required in order to draw more general conclusions.
In particular, the research should be concentrated on the investigation of correlations
between the degree of damage and both the energy component degradation and patterns

of the wavelet-based energy components.
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Figure 6.6: Absolute energy components, impulse response function, excitation DOF 5,

response DOF 2
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Conclusions

The research described in this dissertation attempted to develop a wavelet-based method
that allows the direct identification of a system’s parameters from data generated in
dynamic tests of a structure. Of specific interest was the application of fast algorithms
and the need for an algorithm that requires the response data solely in the form of
accelerations. It was intended that the method is applicable to multi-degree-of-freedom
systems and to existing structural elements and structures that are typically found in civil

engineering.

Approaches were derived that are based on representations of the equation of motion
in both continuous and discrete time-scale domain. Special emphasis was put on an
algorithm that uses the orthogonal wavelet transformation and the concept of connec-
tion coefficients. It was found in numerical simulations that the parameters of linear
time-invariant systems can be identified with a relatively high accuracy, even if the sim-
ulated data was contaminated by noise. In the examples, the stiffness terms identified
agreed better with the original values than the viscous damping parameters. Difficul-
ties became apparent when the occurrence of relatively weak parameter changes during
the test (abrupt damage) should have been identified from noise-corrupted data. The
correct identification of a simply supported beam’s parameters based on simulated and
noise-contaminated translational accelerations due to an impulse force also occurred to

be problematic.

The applicability of the proposed method to experimental data was demonstrated for

laboratory tests of a steel beam. It was possible to identify a finite element model of this
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system that reflected the damage of the structure at two locations comparatively well.

A possible explanation for the relatively good performance of the proposed method is
that the time-scale representation of a structure’s dynamic response gives a more detailed
description of the system’s characteristic properties than the information that can be

derived from either a time series or its Fourier transform.

The method’s performance seems to be better in cases where the signal’s energy is dis-
tributed to a larger number of time-scale coordinates. The solution of the respective
system of equations then implies an averaging of more samples, which is beneficial with
respect to noise-corrupted data. Regarding the detection of damage occurrence during the
measurement, it should be noted that a more accurate time localisation is only obtained
if fewer wavelet coefficients are taken into account. However, that consequently means
that the solution is an average of very few samples and is accordingly less reliable if noise

is present in the measured data.

A prerequisite for satisfactory results seems to be, that the significance of the secondary
degrees of freedom, i.e. those for which no response measurements are available (e.g.
rotations), is considerably smaller than that of the primary degrees of freedom. This
condition has an influence on the accuracy of the reduced system, that the system of

equations to be solved is based on.

All systems considered were weakly damped, as is typical for civil engineering structures.
Accordingly, the damping’s influence on the system’s dynamic behaviour is less significant
than that of the stiffness parameters. Therefore the identification of realistic damping
coefficients becomes very problematic as soon as the measured data is erroneous and

contaminated by noise.

The proposed parameter estimation method is based on simultaneous measurements of
both the excitation and the structural response during a dynamic test. Consequently,
it cannot be directly applied to situations where only information about the structural
response is available. The method’s performance depends on the choice of the degrees

of freedom, for which the structural response can be measured, on the selection of the
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wavelet coefficients to be taken into account and on their respective weighting in the

analysis.

The second focus of this dissertation was on investigations regarding progressive dam-
age of a reinforced concrete beam and the derivation of a sensitive, wavelet-based first
level damage detection indicator. The analysis of experimental data, as obtained from
free vibration laboratory tests, has shown a relationship between the structure’s dam-
age condition and the wavelet-based signal energy components of impulse response and

transmissibility functions, respectively.

It was found, that an appropriate selection of observed energy components can result in an

indicator that is considerably more sensitive than the structure’s first natural frequency.

These promising results are probably caused by two phenomena:

1. Compared to an undamaged condition, a higher dissipation of initial kinetic en-
ergy takes place due to friction between reinforcement and concrete and within the

cracked zones of the concrete.

2. A decrease of the structure’s natural frequencies results in a shift of free vibration

signal’s energy contributions to coarser scales.

These observations were made by assessing data that was obtained from laboratory tests
on a single specimen. In order to draw more general conclusions, data from both other
in-situ and laboratory tests should be analysed. In this context, the calibration (i.e. the

selection of the energy components’ coordinates) has to be investigated in more detail.

Generally, one can conclude that the described investigations led to promising and en-
couraging results. Future research should include the application of wavelet analysis to
system identification methods that are solely based on structural response measurements
(output-only methods). Furthermore a sensitivity investigation concerning the choice of
the analysing wavelet could be of interest. It is recommended to continue the investiga-
tions with respect to the proposed first level damage indicator using data from in-situ

tests and from long term structural health monitoring.
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Appendix A

SLang Commands Related to
Wavelet Analysis

The following table gives an overview of the commands within the SLang software sys-
tem that are related to wavelet analysis. The algorithms implemented use the wavelets

D2...D10 as basis functions. For more detailed descriptions refer to [5].
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Command

Short description

wavelet

derivative

Calculation of the scaling coefficients of the first- or second-order
derivative of a given series of scaling coefficients (approximation) at
the same decomposition level; the algorithm is based on the concept

of connection coefficients (section 4.2)

wavelet

extract

Extraction of the scaling or wavelet coefficients, respectively, at one
particular level from the results of an orthogonal wavelet decompo-

sition

wavelet

integrate

Calculation of the scaling coefficients of the first- or second-order
integral of a given series of scaling coefficients (approximation) at
the same decomposition level; the algorithm is based on the concept

of connection coefficients (section 4.2)

wavelet

reconst

Reconstruction of a data series from its wavelet decomposition; it
can be specified whether a complete reconstruction at the basic level

is desired or if only an approximation at a certain decomposition

level should be obeyed

wavelet

shrink

De-noising by wavelet shrinkage (chapter 3); both hard and soft
thresholding can be applied to a given series of wavelet coefficients,
it can be specified if the coefficients at all available levels should be

treated or, rather, a selection

wavelet

transform

Wavelet decomposition of a given data series; two options for the
treatment of the data at the borders are implemented: zero-padding
(extended filter) and periodic continuation (circulant filter, re-

striction to 2" samples)

wavelet

view

Surface plot of either wavelet or scaling coefficients on the decom-

position grid

Table A.1: Summary of the SLang commands related to wavelet analysis
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D2 D3 DA D5 D6

I 0 0 0 0 0

Tt | 0.666666666666667 0.745205479452055  0.793009504971173  0.82590601185172  0.850136661560152
T2 | -0.083333333333333 -0.145205479452055 -0.191998970797716 -0.22882018706764 -0.258552944142891
I 0 0.014611872146119  0.033580207051186  0.05335257193322  0.072440589998611
I 0 0.000342465753425  -0.002224049670590 -0.00746139636627 -0.014545511043685
I 0 0 -0.000172206190015  0.00023923581976  0.001588561543868
I 0 0 8.40850522402e-07  5.4047301701e-05  -4.29689145315¢-06
I’ 0 0 0 2.5241178127¢-07  1.20265751913¢-05
rs 0 0 0 2.6968610027¢-10  -4.20691208857¢-07
I 0 0 0 0 2.89966165561e-09
o 0 0 0 0 -7.02570406758¢-13

Table B.1: Fundamental connection coefficients of the D! operator for the Daubechies wavelets
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D7 D8 D9 D10
I 0 0 0 0
TL | 0.868743914525375  0.883446046082935  0.89531640583465  0.905071221614378
2 | -0.282965094527508 -0.303259351474408 -0.32031206224778 -0.334784414707492
I3 | 0.090189066219651  0.106364068289865  0.12095364935918  0.134054665241335
T4 | -0.022687411016149 -0.031290147839450 -0.03995272188592  -0.048427300291597
TS | 0.003881454657886  0.006958379114893  0.01061693066926  0.014669350195606
6 | -0.000337344047661 -0.001031530212556 -0.00210340281069 -0.003526026907832
7 | -4.23639468409¢-06  7.66770694852¢-05  0.00027812077691  0.000631219734500
I8 | 1.65016792303e-06  2.45199290781e-07  -1.9620437693e-05 -7.66834890137¢-05
9 | 2.18711306275¢-07  3.99381276419¢-08  4.8782469128¢-07  5.49729337265¢-06
T | -4.18302068890e-10 -7.20794642299¢-08  -1.0361220744e-07  -2.67261853837¢-07
Ti | 1.20390290231e-11  -9.69697850826e-10  1.5966863096e-08  3.41578775038¢-08
T2 | 4.74101191102e-15  -7.03013516074e-13  8.1373915262e-10  -1.70165941499¢-09
s 0 3.65597558140e-14  5.3818998088¢-13  -3.69646596092¢-10
it 0 2.60393742535¢-14  4.5629712928¢-14  -3.35920819624¢-12
Il 0 0 -2.3869629162¢-15  -7.24636080721¢-14
I 0 0 -2.5337076046¢-15  -4.53169522673¢-14
Y 0 0 0 -4.84319059812¢-14
I 0 0 0 -5.14663386064¢-14

Table B.2: Fundamental connection coefficients of the D! operator for the Daubechies wavelets (continued)

Vel
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D3 D4 D5 D6
[ | -5.2678571428571 -4.16597364094082 -3.8349943129026 -3.68606348186489
[y | 3.3904761904762  2.64207020826198  2.4147903506376  2.31186656349234
I'2 | -0.8761904761905 -0.69786910439798 -0.6495021898296 -0.63073324291674
I3 | 0.1142857142857  0.15097289962331  0.1809535500487  0.20490546941864
[y | 0.0053571428571 -0.01057272777808 -0.0299079804265 -0.04936161063956
I 0 -0.00163037688659  0.0007946205551  0.00647806104529
rs 0 1.5921648176e-05  0.0003671453850  -6.5696290229¢-05
ry 0 0 1.656545510e-06  -5.4363378969e-05
rs 0 0 3.540607920e-09  -3.4660860109e-06
ry 0 0 0 2.6299857403e-08
Iy 0 0 0 -1.2584059863e-11

Table B.3: Fundamental connection coefficients of the D? operator for the Daubechies wavelets
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D7

D8

D9

D10

I
Tg
I3
I
I
I5
I
I
r5
TG
T
Ty
ri
Iy
Ty
Iy
ris
Ty

18
F0

-3.604515525832060
2.255045787924190
-0.621497674632171
0.223359102218610
-0.067052362291480
0.013963689191936
-0.001605235463808
4.15664409804e-05
1.40111557812¢-06
1.48618332204e-06
2.06552905366¢-09
1.63477702421e-10
8.01550715291e-14
0

o o o o O

-3.55369228990740
2.21914659389190
-0.61561414656071
0.23717805822281
-0.08226639998019
0.02207029188649
-0.00409765688955
0.00045167920308
-2.3982284899¢-05
2.0904233618e-06
-3.7230775684e-07
-1.0585882797e-08
-5.8344185255¢-11
2.8831888778e-14
-2.8048472266e-13
0

0
0
0

-3.518861054971920
2.194072687181210
-0.610929112262259
0.247332322768392
-0.094970844780534
0.030068613621381
-0.007248478692483
0.001230499099979
-0.000133610007975
9.13093080831e-06
-7.34346861918e-07
4.75556745436e-08
6.37034472004e-09
4.90890941438e-11
5.18159970086¢-14
-2.60644296851e-13
-2.96949513974e-13
0
0

-3.49323818665597
2.17521749406950
-0.60668942081749
0.25469743964057
-0.10542969300851
0.03758004182651
-0.01078072257004
0.00235727080481
-0.00036938799318
3.8524520380e-05
-2.5793034928e-06
1.2229721863e-07
6.1143742381e-09
-2.2197506452e-09
-4.9963249511e-11
-1.2504285715e-14
2.6084732330e-13
2.9114612344e-13
3.2637629876e-13

Table B.4: Fundamental connection coefficients of the D? operator for the Daubechies wavelets (continued)
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D2 D3 D4 D5 D6
I 0.5 0.5 0.5 0.5 0.5
T} | -0.044444444444444  -0.058612358989718 -0.065801945369910 -0.070234135008304 -0.073266395252120
T2 | 0.001388888888889  0.008967848407707  0.014902834677927  0.019417154580372  0.022924991783950
I3 0 -0.000327443346311  -0.001969668303639  -0.003988251932312  -0.006010399690767
I 0 -1.91861335731e-06  5.66161558737e-05  0.000434229400092  0.001062833812129
I3 0 0 2.43349185025e-06  -6.54434121813e-06  -9.45371272166e-05
IS 0 0 -2.97057108246e-09  -1.04478691550e-06  4.40679739989¢-08
7 0 0 0 -1.74214455961e-09  2.83278837951e-07
I 0 0 0 -4.65216948907¢-13  5.90884105550e-09
I 0 0 0 0 -1.70335869034e-11
I3 0 0 0 0 1.00525211412¢-15

Table B.5: Fundamental connection coefficients of the Z! operator for the Daubechies wavelets
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D7 D8 D9 D10

) 0.5 0.5 0.5 0.5

['§ | -0.075478591224536 -0.077164879285836 -0.0784924361569140 -0.0795640831493365
[2 | 0.025714219784524  0.027977006084842  0.0298446184333445  0.0314092492989984
I3 | -0.007900403905539 -0.009617279014061 -0.0111585240484624 -0.0125366012048803
'3 | 0.001840233540706  0.002688282079488  0.0035559754313218  0.0044124636812310
Iy | -0.000280123215512 -0.000552988850606 -0.0008933354941876 -0.0012811388644637
I8 | 2.05726479595e-05  7.34031770243e-05  0.0001635084450405  0.0002901014356903
7 | 1.95907284708e-07  -4.60760574241e-06  -1.927308908745e-05  -4.776901768542¢-05
[ | -4.91892279168e-08  -4.35037461723e-08  1.092578509252¢-06  5.096887515326¢e-06

[y | -3.90442297871e-09  2.26207024222¢-09  -1.594290441931e-09  -2.750409749638e-07
L% | 3.52324087487e-12  1.51162315189%¢-09  1.966732393485e-09  4.423519794581e-09

gt | -5.37605144262e-14  1.48456307814e-11  -3.909572909594e-10  -8.323470523416e-10
[ | -6.09519606940e-18  -6.42046556422e-15  -1.446718115734e-11  5.750230740006e-11

re 0 -4.71498380701e-17  4.452831635012e-15  7.449990778787e-12

rt 0 -1.79171262101e-17  -3.015485239851e-16  4.516758455848e-14

IS 0 0 -8.000918772060e-18  1.870848909167¢-16

I 0 0 1.898362717218e-17  5.317283053141e-18

ry’ 0 0 0 1.986397014814e-18

IS 0 0 0 -5.743886735155¢-18

Table B.6: Fundamental connection coefficients of the Z' operator for the Daubechies wavelets (continued)
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D2 D3 D4 D5 D6
'Y | 0.118333333333333  0.110600674207709  0.107639589324152  0.106108055921084  0.105179044087399
Ly | -0.017777777777778  -0.016870315169910 -0.015915686964025 -0.015239216437051 -0.014753079295697
2 | 0.000277777777778  0.003285032930782  0.004432053354856  0.004919792458118  0.005136934500892
r3 0 -4.82468498663e-05 -0.000675569822788 -0.001212154233063 -0.001604701185509
Ly 0 -1.41348192970e-07  5.66087445167e-06  0.000144541870607  0.000329813462491
ry 0 0 4.14816297907e-07  -1.63346821844e-07  -3.17369940379e-05
rs 0 0 -2.53183759341e-10  -1.61587875639¢-07  -1.22128817332e-07
ry 0 0 0 -2.17755245377e-11  3.52967860371e-08
rs 0 0 0 -2.90468338029¢-15  9.67661272750e-10
ry 0 0 0 0 -1.06077443710e-12
Y 0 0 0 0 3.00814348026e-17

Table B.7: Fundamental connection coefficients of the Z? operator for the Daubechies wavelets
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D7 DS D9 D10
[Y | 0.104556349220771  0.104109530772902  0.103772797892794  0.103509557117463
[} | -0.014389286137538 -0.014106897542419 -0.013881110559761 -0.013696270486802
I'2 | 0.005228756630471  0.005257932255985  0.005254448632853  0.005233728351440
I3 | -0.001882884202806 -0.002079186574136 -0.002218102613877 -0.002316747634179
I'4 | 0.000513729275104  0.000678101187128  0.000818430961948  0.000935707910123
I3 | -8.90230060886e-05 -0.000160283050490 -0.000236281190079 -0.000311258007053
[ | 7.17271469638¢-06  2.39122990529¢-05  4.88875004764e-05  7.97454234762¢-05
I7 | 3.09187130751e-08  -1.67645916882e-06 -6.40701177669e-06 -1.46318513146e-05
I8 | -3.52034741978¢-09  -3.17340151870e-10  4.04015473425¢-07  1.71256151613e-06
9 | -6.16612799829¢-10  -7.27900305366e-10  -2.41385323895¢-09  -9.91067395382e-08
[0 | 2.78066620992¢-13  2.09954748202e-10  4.48405303336e-10  1.04858440019e-09
it | -4.24360611385¢e-15  2.65849376051e-12  -4.24099547619e-11  -1.11719236302e-10
[32 | 1.55237557347e-18  1.24764138121e-15  -2.38526799789%¢-12  1.93215408993e-12
Iy 0 -1.48809313597e-18  -6.01672941544¢-16  1.11018280547¢-12
I 0 1.19466766149¢-18  -1.42590234225¢-17  8.56313200881e-15
I 0 0 2.85331680282¢-20  1.50528067343e-17
[ 0 0 -3.91944120452e-20  9.48122262234e-18
Ly 0 0 0 3.58271754981e-18
I 0 0 0 3.01741040487¢-19

Table B.8: Fundamental connection coefficients of the Z?2

operator for the Daubechies wavelets (continued)
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Appendix C

Examples — Differentiation and

Integration

Example C.1. Continuous wavelet analysis — analytical function

The relations that were derived in section 4.1 are verified by means of an analytical func-
tion. It is shown, how the continuous wavelet transforms of the Gaussian function and its
first derivative can be reproduced, based on appropriate wavelet transforms of the Gaus-
stan function’s second derivative. Similarly, wavelet transforms of the third and fourth
derivatives of the Gaussian function are estimated by wavelet transforms of the Gaussian

function’s second derivative also. The Gaussian function and its first four derivatives are

given by:
g(t) = e‘g, (C.1)
dgc]l—tt) = —tefg, (C2)
dilgt(;) — (2 —1) 5 7 (C.3)
d:;g;gt) = (3t e, (C4)
% = (t' — 6 + 3) 5 (C.5)

The first three wavelets of the Gaussian family were chosen as analysing wavelets.

131



132 APPENDIX C. EXAMPLES — DIFFERENTIATION AND INTEGRATION

For the numerical investigations, the functions described by equations (C.1) to (C.5) were
approximated by 250 samples for —6 < t < 6. A plot of the second derivative of the

Gaussian function is given in figure C.1.

1.0
0.5

0.0

-1.0 ‘
-10.0 -5.0 0.0 5.0 10.0

Figure C.1: Second derivative of the Gaussian function (t* — 1) e™ 2

The wavelet transforms at the first 100 scales were computed by means of the MATLAB
Wavelet Toolbox. The results are presented in figures C.2 to C.5, the respective upper
diagrams showing the wavelet transform of the analytical function and its estimation based
on the Gaussian function’s second derivative. The visual appearance suggests a general
identity of the two coherent images. Underneath the diagrams of the wavelet transforms
i figures C.2 to C.5, a plot of their absolute differences is given. Some relatively small
divergences can be observed that mainly occur at scales where the wavelet transforms have

only small values.
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Figure C.2: Wavelet transform of the Gaussian function with respect to the third Gaussian
wavelet (top left), scaled wavelet transform of the Gaussian function’s second derivative
with respect to the first Gaussian wavelet (top right), absolute differences between the

two wavelet transforms (bottom left)
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i e

b

Figure C.3: Wavelet transform of the Gaussian function’s first derivative with respect
to the third Gaussian wavelet (top left), scaled wavelet transform of the Gaussian func-
tion’s second derivative with respect to the second Gaussian wavelet (top right), absolute

differences between the two wavelet transforms (bottom left)
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6301

b

Figure C.4: Wavelet transform of the Gaussian function’s third derivative with respect
to the first Gaussian wavelet (top left), scaled wavelet transform of the Gaussian func-
tion’s second derivative with respect to the second Gaussian wavelet (top right), absolute

differences between the two wavelet transforms (bottom left)
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b

Figure C.5: Wavelet transform of the Gaussian function’s fourth derivative with respect
to the first Gaussian wavelet (top left), scaled wavelet transform of the Gaussian func-
tion’s second derivative with respect to the third Gaussian wavelet (top right), absolute

differences between the two wavelet transforms (bottom left)
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Example C.2. Continuous wavelet analysis — numerically simulated structural

response

The structural response of a single degree of freedom system due to an excitation by a

sweep force was simulated numerically. The displacements, velocities and accelerations

are shown in figure C.6.

DISPLACEMENTS

0.0 5.0 10.0 15.0 20.0 time [s]

VELOCITIES

[m/'s]

1.5
1.0
0.5

0.0

0.0 5.0 10.0 15.0 20.0 time [s]

ACCELERATIONS
[m/ s72]

15.0
10.0
5.0
0.0
-5.0
-10.0

-15.0 | | |
0.0 5.0 10.0 15.0 20.0 time [s]

Figure C.6: Numerically simulated structural response of an SDOF system
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Utilising the same approach as described in example C.1, the wavelet transforms of the ve-
locities were approximated by wavelet transforms of the accelerations and displacements,
respectively (figures C.7 and C.8). Furthermore, the wavelet transform of the displace-
ments was estimated by a wavelet transform of the accelerations (figure C.9) and vice
versa (figure C.10). Again, the plots of the corresponding wavelet transforms appear to
be approximately identical. However, from the divergence plots at the bottom of figures
C.7 to C.10, one can identify border distortions that are due to the fact that the system’s

response is not zero end of the observation interval.
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4906

5

4912

b

Figure C.7: Wavelet transform of the velocities with respect to the third Gaussian wavelet
(top left), scaled wavelet transform of the accelerations with respect to the second Gaus-

sian wavelet (top right), absolute differences between the two wavelet transforms (bottom

left)
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a a
st cuts
s o4
b b
|
a
057

b

Figure C.8: Wavelet transform of the velocities with respect to the first Gaussian wavelet
(top left), scaled wavelet transform of the displacements with respect to the second Gaus-

sian wavelet (top right), absolute differences between the two wavelet transforms (bottom

left)
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Figure C.9: Wavelet transform of the displacements with respect to the third Gaussian
wavelet (top left), scaled wavelet transform of the accelerations with respect to the first

Gaussian wavelet (top right), absolute differences between the two wavelet transforms

(bottom left)
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A

28
o4

Figure C.10: Wavelet transform of the accelerations with respect to the first Gaussian

S

b

wavelet (top left), scaled wavelet transform of the displacements with respect to the third
Gaussian wavelet (top right), absolute differences between the two wavelet transforms

(bottom left)
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Example C.3. Discrete wavelet calculus — analytical function

Analogous to example C.1, the relations between the wavelet decompositions of the Gaus-
stan function and its derivatives with respect to the Daubechies wavelet D6 were inves-
tigated. Based on the concept of connection coefficients, as explained in section 4.2, the
respective wavelet coefficients were estimated from the second derivative of the Gaussian

function.

Figures C.11 to C.14, that contain the results, have a similar significance to those in ex-
amples C.1 and C.2: top left image — wavelet decomposition of the respective analytical
function; top right image — wavelet decomposition of the approximation obeyed by the
Gaussian function’s second derivative; bottom left — difference between the two wavelet
decompositions. All plots indicate that the wavelet decompositions of the respective ana-
lytical function and that of its approximation are almost identical. The deviations seem

to be within a negligible range.
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2.49 2.49
1431 1431

0.367 0.367

= . = ..

1.92
0.345

-1.231

- . B ..

Figure C.11: Wavelet decomposition of the Gaussian function with respect to the D6
wavelet (top left), wavelet decomposition of the estimate of the Gaussian function that
was obtained based on the Gaussian function’s second derivative (top right), absolute

differences between the two wavelet decompositions (bottom left)
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-3.355

4538,

-3.355

—4.5?E'5_1

1121

I .

Figure C.12: Wavelet decomposition of the Gaussian function’s first derivative with re-
spect to the D6 wavelet (top left), wavelet decomposition of the estimate of the Gaussian
function’s first derivative that was obtained based on the Gaussian function’s second

derivative (top right), absolute differences between the two wavelet decompositions (bot-

tom left)
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=6.501
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—8.6'].:7_1
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2TY,

Figure C.13: Wavelet decomposition of the Gaussian function’s third derivative with re-
spect to the D6 wavelet (top left), wavelet decomposition of the estimate of the Gaussian
function’s third derivative that was obtained based on the Gaussian function’s second
derivative (top right), absolute differences between the two wavelet decompositions (bot-

tom left)
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-0.870
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Figure C.14: Wavelet decomposition of the Gaussian function’s fourth derivative with re-
spect to the D6 wavelet (top left), wavelet decomposition of the estimate of the Gaussian
function’s fourth derivative that was obtained based on the Gaussian function’s second
derivative (top right), absolute differences between the two wavelet decompositions (bot-

tom left)



148 APPENDIX C. EXAMPLES — DIFFERENTIATION AND INTEGRATION

Example C.4. Discrete wavelet calculus — numerically simulated structural

response

The concept of representing wavelet decompositions of integrals or derivatives of a given
signal by means of connection coefficients was also applied to the numerically simulated
structural response series that are shown in figure C.6 (example C.2). As in example
C.3, both the applied connection coefficients and the wavelet decompositions were based
on the Daubechies wavelet D6. In figures C.15 to C.18, the respective wavelet coefficients
(top diagrams) and the deviations (bottom plots) are mapped. Apparently, in this case
the method proposed reproduces integrals of a given function more accurately than its

deriwatives. This particularly applies to the second derivatives.

Figure C.19 gives a closer look at the wavelet coefficients of the acceleration (black curves)
and the estimated ones that were obtained from the displacement series (grey curves) at
levels 1 to 8. Where the grey curve is interrupted, it exceeds the range of the diagram that

was scaled such that the important features of the curves can be observed.

From these diagrams, it becomes obvious that border distortions are amplified by applying
the connection coefficients. In this case the border distortions mainly occur at the end
of the interval. This is due to the artificial extension of the given data by zeros in both
directions. In some cases it was observed that better results could be obtained by apply-
ing the first-order differential connection coefficients twice, rather than the second-order

differential connection coefficients.

Additionally, it is observed, that the application of the second-order differential connection
coefficients produces some high frequency contents in the estimate that are not contained

in the original acceleration series.
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-5.704
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Figure C.15: Wavelet decomposition of the velocities with respect to the D6 wavelet (top
left), wavelet decomposition of the estimate of the velocities that was obtained based on
the accelerations (top right), absolute differences between the two wavelet decompositions

(bottom left)
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Figure C.16: Wavelet decomposition of the velocities with respect to the D6 wavelet (top
left), wavelet decomposition of the estimate of the velocities that was obtained based on
the displacements (top right), absolute differences between the two wavelet decomposi-

tions (bottom left)
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Figure C.17: Wavelet decomposition of the displacements with respect to the D6 wavelet
(top left), wavelet decomposition of the estimate of the displacements that was obtained
based on the accelerations (top right), absolute differences between the two wavelet de-

compositions (bottom left)
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Figure C.18: Wavelet decomposition of the accelerations with respect to the D6 wavelet
(top left), wavelet decomposition of the estimate of the accelerations that was obtained
based on the displacements (top right), absolute differences between the two wavelet

decompositions (bottom left)
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Figure C.19: Wavelet coefficients of the original accelerations (black curves) and of the

estimated accelerations, based on displacements (grey curves) at the first eight levels of

the decomposition with respect to the D6 wavelet



Appendix D

Examples — Direct Parameter

Estimation

D.1 Example 5.1 — Diagrams
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D.1. EXAMPLE 5.1 - DIAGRAMS

MEAN = 299.62, SIGMA = 0.098986

MEAN =9.9947, SIGMA = 0.011605

Object HISTOGRAM

Object HISTOGRAM

1.0E1 9.0E1
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08 4.0
04 i
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o1 10_
0.0 } 1 il 00, —1 ™ o —
2002 2093 2094 2995 2096 2997 2998 2999 3000  300.1 30020 996.0 997.0 998.0 999.0 10000 10010 10020 10030  1004.0E-2
STEME e Stnctural Language, Version 4.2 Created on 30-Sep-2002. STANE g Structural Language, Version 4.26. Greated on 30-Sep-2002.
MEAN = 599.32, SIGMA = 0.11089 MEAN = 8.9935, SIGMA = 0.013885
Object HISTOGRAM Object HISTOGRAM
9.0E! 6.0E1
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STEME e Stnctural Language, Version 4.2:6. Created on 30-Sep-2002. STANE g Structural Language, Version 4.26. Greated on 30-Sep-2002.
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‘STANE e Strucural Language, Version 4.26. Created on 30-5ep-2002
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Figure D.1: Histograms of the parameters identified by the wavelet-based method in

example 5.1, no noise — stiffness parameters (left) and damping coefficients (right)
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Figure D.2: Histograms of the parameters identified by the wavelet-based method in

example 5.1, noise level 1 % — stiffness parameters (left) and damping coefficients (right)
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MEAN = 294, SIGMA = 15.792
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‘STANE e Strucural Language, Version 4.26. Created on 30-5ep-2002.
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MEAN = 275.31, SIGMA = 30.136 MEAN = 9.5001, SIGMA = 2.0087
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Figure D.3: Histograms of the parameters identified by the wavelet-based

method in

example 5.1, noise level 2 % — stiffness parameters (left) and damping coefficients (right)
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MEAN = 211.41, SIGMA = 96.891

MEAN = 8.8204, SIGMA = 8.2964
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‘STANE e Strucural Language, Version 4.26. Created on 30-5ep-2002.

Figure D.4: Histograms of the parameters identified by the wavelet-based method in

example 5.1, noise level 5 % — stiffness parameters (left) and damping coefficients (right)

‘STANZ e Swuctral Language, Version 4 2. reated on 30-5ep-2002
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D.2 Example 5.2 — Diagrams and Tables
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Figure D.5: Example 5.2 — Identified stiffness parameters, least squares solution (left) and

results of optimisation (right)
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Figure D.6: Example 5.2 — Identified damping parameters, least squares solution (left)

and results of optimisation (right)
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orig. value mean values standard deviations

no noise | SNR=10 | SNR =5 || no noise | SNR=10| SNR=5
kq 300.00 296.87 296.08 296.59 0.0038 0.0594 0.1112
ko 600.00 591.40 590.78 584.49 9.1e-13 0.1130 0.2338
ks 900.00 886.42 875.64 854.29 0.0067 0.0829 0.1669
ky | 1200.00 1183.5 1171.9 1140.7 1.6e-12 0.1567 0.3489
ks | 1500.00 1480.8 1479.3 1469.7 4.6e-13 0.1261 0.2062
1 10.00 9.922 9.852 9.705 3.49e-5 7.06e-4 1.54e-3
Co 9.00 8.915 9.017 9.178 5.02e-5 2.82e-3 8.50e-3
3 8.00 7.938 8.207 8.393 6.72e-5 2.36e-3 7.86e-3
4 9.00 8.880 8.490 7.757 8.90e-5 6.52e-3 0.0206
Cs 10.00 9.937 9.431 8.739 4.69e-5 3.78e-3 6.97e-3

Table D.1: Example 5.2 — Identified parameters, least squares solution — mean values and

standard deviations (figures D.5, D.6)

orig. value mean values standard deviations
no noise | SNR=10 | SNR =5 || no noise | SNR=10| SNR=5
kq 300.00 296.86 295.96 296.21 6.45e-3 0.0574 0.1572
ko 600.00 591.41 590.50 583.58 0.0195 0.2136 0.6619
ks 900.00 886.54 874.86 851.78 0.0746 0.4941 1.5972
ks | 1200.00 1183.6 11741 1144.4 0.1068 1.1424 2.8230
ks | 1500.00 1480.8 1478.9 1466.9 0.0753 0.1938 1.3451
1 10.00 9.922 9.852 9.699 3.21e-4 1.66e-3 5.54e-3
Co 9.00 8.914 9.023 9.200 7.91e-4 7.91e-3 0.0253
3 8.00 7.937 8.194 8.369 3.85e-4 5.47e-3 0.0128
4 9.00 8.883 8.404 7.598 1.03e-3 0.0293 0.0508
Cs 10.00 9.938 9.478 8.828 7.85e-4 0.0177 0.0366

Table D.2: Example 5.2 — Identified parameters, optimisation results — mean values and

standard deviations (figures D.5, D.6)
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Figure D.7: Example 5.2 — Statistic analysis of identified stiffness parameters, mean values
(black curves), standard deviations of the single identifications (grey curves), comparison

between least squares solutions (left) and optimisation results (right)
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Figure D.8: Example 5.2 — Statistic analysis of identified damping parameters, mean

values (black curves), standard deviations of the single identifications (grey curves), com-
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Appendix E

Progressive Damage — Experiments

E.1 Description of progressive damage

Load step | Flaar number of Descriptions
[EN] | visible cracks

0 0.0 - no visible cracks, system before static loading

1 2.5 - no visible cracks

2 4.0 7 e 7 cracks in a 60cm wide zone around
midspan,

e depth of cracks =~ 3...4¢cm,
e width of cracks < 0.05mm

3 5.0 13 e 13 cracks in a 90 cm wide zone around
midspan,

e depth of cracks < 5cem,

e width of cracks < 0.05mm

4 7.0 17 e 17 cracks in a 140 cm wide zone around
midspan,

e depth of cracks =~ 6...7cm,

e width of cracks > 0.05mm

table continues

164
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Load step

Fstat
[kN]

number of

visible cracks

Descriptions

9.0

19

e 19 cracks in a 140 cm wide zone around
midspan,

e depth of cracks < 7.5¢cm,

e width of cracks < 0.1 mm

11.0

21

e 21 cracks in a 150 cm wide zone around
midspan,

e depth of cracks ~ 7...8¢cm,

e width of cracks < 0.15mm

14.0

25

e 25 cracks in a 160 cm wide zone around
midspan,

e depth of cracks ~ 8 cm,

e width of cracks ~ 0.15...0.2mm

17.0

26

e 26 cracks in a 160 cm wide zone around
midspan,

e depth of cracks ~ 8 cm,

e width of cracks ~ 0.25...0.3mm,

e width of some cracks when structure is un-
loaded =~ 0.05 mm

20.0

26

e 26 cracks in a 160 cm wide zone around
midspan, branching of some cracks,

e depth of cracks =~ 8 em,

e width of cracks ~ 0.3...0.35mm,

e width of cracks when structure is unloaded
~ 0.05 mm

10

25.0

26

e 26 cracks in a 160 cm wide zone around
midspan, further branching of cracks,

e depth of cracks ~ 8 cm,

e width of cracks ~ 0.35...0.4mm,

e width of cracks when structure is unloaded
~ 0.05...0.1mm

table continues
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Load step | Flaar number of Descriptions
[kN] | visible cracks

11 30.0 27 e initial cracks due to shear stresses near the
supports,

e depth of cracks ~ 8 c¢m,

e width of cracks ~ 0.35...0.4mm,

e width of cracks when structure is unloaded
~ 0.05...0.1mm

12 33.76 e growth of the cracks’ lengths around
midspan,
e structural failure, failure of the beam’s

compression zone

Table E.1: Tests of a reinforced concrete beam — Descrip-

tion of progressive damage



E.1. DESCRIPTION OF PROGRESSIVE DAMAGE 167

load step 1 — Fyqp = 2.5kN

load step 3 — Fir = 5.0kN load step 4 — Fyqp = 7.0kN

load step 5 — Fyq = 9.0kN load step 6 — Fior = 11.0EN

Figure E.1: Tests of a reinforced concrete beam — Zone around midspan, progressively

damaged (load steps 1 ...6)
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load step 7 — Fyor = 14.0kN load step 8 — Fyo = 17.0EN

load step 9 — Fior = 20.0kN load step 10 — Fyqr = 25.0kN

load step 11 — Fyqr = 30.0kN load step 12 — Fyqr = 33.76kN - failure

Figure E.2: Tests of a reinforced concrete beam — Zone around midspan, progressively

damaged (load steps 7 ...12)
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Zusammenfassung in Deutsch

Einfiihrung

Gegenstand der Systemidentifikation ist die Losung des inversen Problems der Struk-
turmechanik. Das bedeutet, es ist ein Modell zu identifizieren, das ein bestehendes me-
chanisches System (z.B. ein Tragwerk) beschreibt. Die Eigenschaften des Modells werden
dabei aus experimentell ermittelten Daten der Einwirkungen (duflere Krafte) und der
Strukturreaktionen abgeleitet. Haufig werden diese Daten aus dynamischen Versuchen

gewonnen.

In den meisten bisher entwickelten Methoden der Systemidentifikation werden die gemesse-
nen Daten entweder im Zeitbereich oder im Frequenzbereich analysiert. Erst in jiingerer
Zeit wurden Verfahren entwickelt, die auf Darstellungen der Mefreihen im Zeit-Frequenz-
Bereich basieren. Bei einer Reihe dieser Ansétze wird die Wavelet-Transformation angewen-

det.
Die Zielsetzung dieser Arbeit bestand im wesentlichen aus folgenden Punkten:
e Entwicklung einer Methode, die gestattet, Parameter eines Finite-Elemente-Modells
direkt aus im Versuch gemessenen aufleren Kraften und daraus resultierender Bau-

werksbeschleunigungen zu identifizieren. In Erwartung bestimmter Vorteile wurde

fiir die Datenanalyse die Anwendung der Wavelet-Transformation angestrebt.

e Es sollte untersucht werden, ob die Wavelet-Transformation fiir die Erarbeitung
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eines empfindlichen Indikators zur Erkennung von Schéden in einem Stahlbeton-

tragwerk geeignet ist.

Mit der Arbeit wurde beabsichtigt, einen Beitrag zur Entwicklung von Anwendungen der

Wavelet-Transformation auf dem Gebiet der Systemidentifikation zu leisten.

Kapitel 1: Grundlagen der Wavelet-Transformation

Ausgehend von der haufig angewendeten Fourier-Transformation und der gefensterten
Fourier-Transformation wird in die kontinuierliche Wavelet-Transformation eingefiihrt.
Die Grundidee wird erldutert und die Definition wird gegeben. An Hand von Beispielen

wird gezeigt, welche Eigenschaften Wavelets haben.

Der Ubergang von der kontinuierlichen zur diskreten Wavelet-Transformation wird darge-
stellt. Die der schnellen Wavelet-Transformation zugrunde liegende Multi-Skalen-Analyse
wird beschrieben. Am Beispiel der Daubechies-Wavelets wird gezeigt, dafl orthogonale
Wavelets und die zugehorigen Skalierungsfunktionen durch wenige Koeffizienten beschrie-
ben werden konnen. Die Ermittlung dieser Koeffizienten wird an einem Beispiel demon-

striert.

Kapitel 2: Wavelets in der Systemidentifikation — eine

Rezension

In den zuriickliegenden zehn Jahren wurde die Wavelet-Transformation in unterschied-
licher Weise fiir die Bearbeitung von Problemstellungen der Systemidentifikation genutzt.
Eine Reihe solcher Entwicklungen verschiedener Autoren sind in Kapitel 2 zusammenge-
faft. Einige Methoden basieren auf der kontinuierlichen Wavelet-Transformation, andere

auf diskreten Wavelet-Zerlegungen.
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Im ersten Abschnitt sind Verfahren beschrieben, die der Identifikation von modalen Pa-

rametern und Impulsreaktions- bzw. Frequenzgangfunktionen dienen.

Aus Wavelet-Transformierten lassen sich Informationen iiber den Frequenzgehalt eines
analysierten Signals mit Bezug zur Zeit ablesen. Daher ist es naheliegend, die Wave-
let-Transformation im Zusammenhang mit zeitlich veranderlichen Systemen einzusetzen.
Die Bandbreite der vorgeschlagenen Methoden reicht von der Erkennung nichtlinearen Sy-
stemverhaltens bis hin zur Identifikation von Systemparametern nichtlinearer oder zeitlich
veranderlicher linearer Systeme. Die Qualitat der vorgestellten Ergebnisse ist sehr unter-
schiedlich. Meist sind die Anwendungen auf sehr einfache Systeme beschrankt. Die Ver-
fahren, in denen die diskrete Wavelet-Transformation zur Anwendung kommt, bauen auf
der Beschreibung des Systemverhaltens durch Skalierungskoeffizienten (Approximationen)

auf, das heiflit auf TiefpaB-gefilterten Zeitreihen.

Der dritte Abschnitt befafit sich mit Anwendungen im Zusammenhang mit der Schadens-
erkennung. Einige der beschriebenen Anwendungen sind darauf gerichtet, aus kontinuier-
lichen oder diskreten Wavelet-Transformierten gemessener Signale bestimmte Muster ab-
zulesen, die beispielsweise auf Schaden an rotierenden Maschinenteilen hinweisen oder auf
den Zeitpunkt, zu dem ein Schaden in einem elasto-mechanischen System (z.B. Bauwerk)

eintritt, schlieflen lassen.

Eine zweite Gruppe von Veroffentlichungen befafit sich mit der Definition von Indika-
toren zur Erfassung einer vorhandenen Schédigung in einem elasto-mechanischen System.
Wiéhrend einige Methoden auf einem zu identifizierenden Strukturmodell beruhen, werden

in anderen Herangehensweisen alleine Eigenschaften der gemessenen Signale ausgewertet.

Kapitel 3: Selektive Wavelet-Rekonstruktion

Bestandteil einiger der in Kapitel 2 beschriebenen Techniken ist eine selektive Wavelet-
Rekonstruktion. Diese Methode findet in vielen technischen Disziplinen Anwendung.

Haufig wird sie genutzt, um Rauschanteile aus Signalen zu entfernen. Deshalb wird auch



172 Zusammenfassung

oft vom Entrauschen (De-noising) gesprochen.

Der Algorithmus besteht aus drei Schritten:

1. Wavelet-Zerlegung des urspriinglichen Signals,
2. Schwellwertbehandlung der Wavelet-Koeffizienten,

3. Rekonstruktion eines gefilterten Signals aus den modifizierten Wavelet-Koeffizienten.

Eine Reihe von Ansatzen fiir die Schwellwertermittlung, die der Literatur entnommen
sind, wird vorgestellt. Die Vorgehensweise wird auf ein numerisch erzeugtes Signal und
im Zusammenhang mit der experimentellen Ermittlung des Ubertragungsverhaltens eines

Beschleunigungsaufnehmers getestet.

Kapitel 4: Ableitungen und Integrale von Wavelet-

Transformierten

Zunachst wird hergeleitet, wie Ableitungen und Integrale eines Signals im Zeit-Skalen-
Bereich einer kontinuierlichen Wavelet-Transformation dargestellt werden kénnen, ohne
das urspriingliche Signal im Zeitbereich zu differenzieren beziehungsweise zu integrieren.
Die Voraussetzung fiir die beschriebene Vorgehensweise ist die Existenz eines zweifach

differenzierbaren Wavelets, dessen erste beiden Ableitungen ebenfalls Wavelets sind.

Anschlieend wird in das Konzept der Verbindungskoeffizienten eingefiihrt, auf dessen
Grundlage Wavelet-Zerlegungen von Ableitungen oder Integralen eines Signals berech-
net werden konnen. Es wird erlautert, wie sich die Verbindungskoeffizienten fiir die
Differentiations- und Integrationsoperatoren erster und zweiter Ordnung bestimmen lassen.
Fiir die Daubechies-Wavelets zweiter bis zehnter Ordnung wurden die entsprechenden

Grundkoeffizienten berechnet.

An Hand mehrerer Beispiele wird die Genauigkeit der vorgestellten Berechnungsweise

untersucht.
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Kapitel 5: Direkte Parameterabschatzung

Die in Kapitel 4 beschriebenen Beziehungen werden fiir die Abschétzung von System-
parametern eingesetzt. Es wird angenommen, dafl im Versuch die Systemreaktion an
wesentlichen Freiheitsgraden sowie die dynamische Anregung gemessen werden. Bei bau-
dynamischen Untersuchungen werden die Systemreaktionen in der Regel in Form von
Beschleunigungen gemessen. Fiir den vorgeschlagenen Algorithmus konnen diese Infor-

mationen allerdings auch als Geschwindigkeiten oder Verschiebungen vorliegen.

Die Systemparameter werden durch Losen eines Gleichungssystems, das man durch ent-
sprechendes Umstellen der Bewegungsgleichungen im Zeit-Skalen-Bereich einer kontinuier-
lichen oder diskreten Wavelet-Transformation erhalt, bestimmt. Die Leistungsfahigkeit
der entwickelten Vorgehensweise wurde in numerischen Beispielen untersucht. Fir die
Losung des Gleichungssystems, das sich auf der Grundlage der diskreten Wavelet-Koeffi-

zienten ergibt, werden zwei verschiedene Ansitze angewendet.

Die Untersuchungen ergaben, dafl die Parameter eines linearen Systems auch bei verhalt-
nisméfig hohen Storanteilen in den MeBwerten relativ genau bestimmt werden koénnen.
Die Genauigkeit der Ergebnisse 148t sich durch eine geeignete Auswahl und Gewich-
tung der in die Rechnung einflieBenden Wavelet-Koeffizienten erhohen. Konnen im Ver-
such die Reaktionen nicht an allen fiir das Systemverhalten wesentlichen Freiheitsgraden
aufgezeichnet werden, sinkt die erzielbare Genauigkeit der Resultate mit zunehmenden

Storanteilen in den Signalen.

Untersuchungen hinsichtlich der Identifikation plotzlich auftretender Systemparameteran-
derungen ergaben ebenfalls zunehmende Probleme mit steigendem Rauschanteil in den

Mefreihen.

Fir die praktische Anwendung der Identifikationsmethode wurden Ausschwingversuche
mit einer Impulsanregung an einem Stahltrager durchgefiihrt. Der Querschnitt des Tragers
war an zwei Stellen durch Einschnitte reduziert. Durch die Auswertung der aufgezeich-
neten Daten mit dem vorgestellten Verfahren lieen sich diese UnregelméaBigkeiten im

System lokalisieren.
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Kapitel 6: Erfassung fortschreitender Schadigung

Zur Einschatzung des Zustands eines zunehmend geschadigten Stahlbetontragwerks wird
vorgeschlagen, die Energie-Komponenten der Wavelet-Zerlegungen von relativen Aus-

schwingsignalen zu untersuchen. Die Vorgehensweise beinhaltet die folgenden Schritte:

1. Ermittlung der Wavelet-Koeffizienten der Impulsreaktions- bzw. der Impulsiiber-

tragungsfunktionen aus den MefSwerten,

2. Auswahl der die jeweilige Funktion im wesentlichen charakterisierenden Wavelet-

Koeffizienten,
3. Berechnung der Energie-Komponenten aus den ausgewahlten Wavelet-Koeffizienten,
4. Bestimmung der Gesamtenergie auf den ausgewahlten Skalen,

5. Vergleich der Energie-Komponenten der Signale bzw. ihrer Summen, die aus Ver-

suchen an der Struktur in verschiedenen Schadigungszustanden ermittelt wurden.

Ein Stahlbetonbalken wurde im Labor experimentell untersucht. Die schrittweise gestei-
gerte statische Belastung fiihrte zu einer zunehmenden Schadigung des Systems. Zwischen

den einzelnen Belastungsstufen wurden Ausschwingversuche durchgefiihrt.

Durch Auswertung der im Versuch aufgezeichneten Daten wurde festgestellt, dafl sich bei
geeigneter Auswahl der Wavelet-Koeffizienten mit zunehmender Schadigung wesentlich
starkere Veranderungen aus den Energie-Komponenten ablesen lassen als aus den Eigen-
frequenzen. Um allgemeine Schlufolgerungen zu einem praktisch anwendbaren Schadens-
index treffen zu konnen, sind allerdings die Ergebnisse weiterer Versuchsreihen auszuwer-

ten.

Schlufifolgerungen

Ausgangspunkt fiir diese Arbeit war die Annahme, dafi die Wavelet-Transformation Vor-

teile bei der Bearbeitung von Aufgaben auf dem Gebiet der Systemidentifikation bietet.
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Auf der Grundlage theoretischer Grundlagen wurde eine Methode entwickelt, die ermog-
licht, Parameter eines Finite-Elemente-Modells aus im Versuch gemessenen Anregungen
und sich daraus ergebenden Bauwerksbeschleunigungen zu ermitteln. Als besonders ef-
fizient hat sich dabei die Anwendung der diskreten Wavelet-Transformation und der in
diesem Zusammenhang verwendeten schnellen Algorithmen erwiesen. Durch die Ein-
bindung entsprechender Routinen in das Programm SLang wurde eine gute Verbindung

zwischen Datenanalyse und Strukturberechnungen hergestellt.

In numerischen Untersuchungen wurde eine verhaltnisméafig niedrige Anfalligkeit des Ver-
fahrens in Hinsicht auf Storanteile in den gemessenen Signalen festgestellt. Die Genauigkeit
der Ergebnisse nimmt ab, wenn nur wenige Meflwerte in die Analyse einbezogen werden
und wenn die Systemreaktion an fiir das Strukturverhalten wesentlichen Freiheitsgraden
nicht gemessen werden kann. Mit der vorgeschlagenen Vorgehensweise konnte ein Modell
eines experimentell untersuchten Stahltrégers identifiziert werden, das sowohl die modalen

Eigenschaften als auch lokale Querschnittsreduzierungen erfafit.

Die diskrete Wavelet-Transformation wurde weiterhin fiir die Beurteilung des Schadi-
gungszustands eines experimentell untersuchten Stahlbetonbalkens angewendet. Dabei
hat sich gezeigt, dal aus den Energie-Komponenten der Wavelet-Zerlegungen von Aus-

schwingsignalen ein relativ empfindlicher Schadigungsindikator abgeleitet werden kann.
Aufbauend auf die im Rahmen dieser Arbeit erzielten Ergebnisse wird empfohlen, weitere
Untersuchungen durchzufiihren:

e hinsichtlich des vorgeschlagenen Schidigungsindikators,

e zur Anwendung der Wavelet-Transformation auf Verfahren, die keine gemessenen

Einwirkungen erfordern und

e in Hinblick auf den Einflufl der Auswahl des jeweils verwendeten Wavelets auf die

Qualitat der Ergebnisse.



