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Abstract

Phylogenetics is the study of evolutionary relationships between biological entities;
phylogenetic trees (phylogenies) are a visualization of these evolutionary relationships.
Accurate approaches to reconstruct phylogenies from sequence data usually result in NP-
hard optimization problems, hence local search heuristics have to be applied in practice.
These methods are highly accurate and fast enough as long as the input data is not too large.
Divide-and-conquer techniques are a promising approach to boost scalability and accuracy
of those local search heuristics on very large datasets. A divide-and-conquer method breaks
down a large phylogenetic problem into smaller sub-problems that are computationally
easier to solve. The sub-problems (overlapping trees) are then combined using a supertree
method. Supertree methods merge a set of overlapping phylogenetic trees into a supertree
containing all taxa of the input trees. The challenge in supertree reconstruction is the way
of dealing with conflicting information in the input trees. Many different algorithms for
different objective functions have been suggested to resolve these conflicts. In particular,
there are methods that encode the source trees in a matrix and the supertree is constructed
applying a local search heuristic to optimize the respective objective function. The most
widely used supertree methods use such local search heuristics. However, to really improve
the scalability of accurate tree reconstruction by divide-and-conquer approaches, accurate
polynomial time methods are needed for the supertree reconstruction step.

In this work, we present approaches for accurate polynomial time supertree reconstruction
in particular Bad Clade Deletion (BCD), a novel heuristic supertree algorithm with
polynomial running time. BCD uses minimum cuts to greedily delete a locally minimal
number of columns from a matrix representation to make it compatible. Different from
local search heuristics, it guarantees to return the directed perfect phylogeny for the input
matrix, corresponding to the parent tree of the input trees if one exists. BCD can take
support values of the source trees into account without an increase in complexity. We show
how reliable clades can be used to restrict the search space for BCD and how those clades
can be collected from the input data using the Greedy Strict Consensus Merger. Finally,
we introduce a beam search extension for the BCD algorithm that keeps alive a constant
number of partial solutions in each top-down iteration phase. The guaranteed worst-case
running time of BCD with beam search extension is still polynomial. We present an exact
and a randomized subroutine to generate suboptimal partial solutions.

In our thorough evaluation on several simulated and biological datasets against a
representative set of supertree methods we found that BCD is more accurate than the
most accurate supertree methods when using support values and search space restriction on
simulated data. Simultaneously BCD is faster than any other evaluated method. The beam
search approach improved the accuracy of BCD on all evaluated datasets at the cost of
speed. We found that BCD supertrees can boost maximum likelihood tree reconstruction
when used as starting tree. Further, BCD could handle large scale datasets where local
search heuristics did not converge in reasonable time. Due to its combination of speed,
accuracy, and the ability to reconstruct the parent tree if one exists, BCD is a promising
approach to enable outstanding scalability of divide-and-conquer approaches.
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Zusammenfassung

Die Phylogenetik studiert die evolutionären Beziehungen zwischen biologischen Entitäten.
Phylogenetische Bäume sind eine Visualisierung dieser Beziehungen. Akkurate Ansätze zur
Rekonstruktion von Phylogenien aus Sequenzdaten führen in der Regel zu NP-schweren
Optimierungsproblemen, sodass in der Praxis lokale Suchheuristiken angewendet werden
müssen. Diese Methoden liefern akkurate Bäume und sind schnell genug, solange die
Eingabedaten nicht zu groß werden. Teile-und-herrsche-Verfahren sind ein vielversprechender
Ansatz, um Skalierbarkeit und Genauigkeit dieser lokalen Suchheuristiken auf sehr
großen Datensätzen zu verbessern. Beim Teile-und-herrsche-Ansatz zerlegt man ein
großes phylogenetisches Problem in kleinere Teilprobleme, die einfacher und schneller
zu lösen sind. Die Teilprobleme, in diesem Fall überlappende Teilbäume, müssen dann
zu einem gesamtheitlichen Baum kombiniert werden. Superbaummethoden verschmelzen
solche überlappenden phylogenetischen Bäume zu einem Superbaum, der alle Taxa der
Eingangsbäume enthält. Die Herausforderung bei der Superbaumrekonstruktion besteht
darin, mit widersprüchlichen Eingabebäumen umzugehen. Es wurden viele verschiedene
Algorithmen mit unterschiedlichen Zielfunktionen entwickelt, um solche Widersprüche
möglichst sinnvoll aufzulösen. Verfahren, die auf der Kodierung der Eingabebäume als
Matrixrepräsentation basieren, sind am weitesten verbreitet. Die zum Auflösen der Konflikte
verwendeten Zielfunktionen führen in der Regel zu NP-schweren Optimierungsproblemen,
sodass in der Praxis auch hier lokale Suchheuristiken zum Einsatz kommen. Da diese
Ansätze nicht wesentlich besser mit der Größe der Eingabedaten skalieren als die direkte
Rekonstruktion aus Sequenzdaten, werden für die Superbaumrekonstruktion in Teile-und-
herrsche-Ansätzen akkurate Polynomialzeitmethoden benötigt.

Diese Arbeit beschäftigt sich mit der akkuraten Rekonstruktion von Superbäumen in
Polynomialzeit. Wir präsentieren Bad Clade Deletion (BCD), eine neue Polynomialzeit-
heuristik zur Superbaumrekonstruktion. BCD verwendet minimale Schnitte in Graphen,
um eine minimale Anzahl von Spalten aus der Matrixrepräsentation zu löschen, sodass
diese konfliktfrei wird. Im Gegensatz zu lokalen Suchheuristiken garantiert BCD die
Rekonstruktion einer perfekten Phylogenie, sofern eine solche für die Eingabematrix existiert.
BCD ermöglicht es, Gütekriterien der Eingabebäume zu berücksichtigen, ohne dass sich
dadurch die Komplexität erhöht. Weiterhin zeigen wir, wie zuverlässige Kladen verwendet
werden können, um den Suchraum für BCD einzuschränken und wie man diese mit Hilfe des
Greedy Strict Consensus Mergers aus den Eingabedaten gewinnen kann. Schließlich stellen
wir eine Strahlensuche für BCD vor. Diese erlaubt es eine bestimmte Anzahl suboptimaler
Teillösungen (anstatt nur der optimalen) zu berücksichtigen, um so das Gesamtergebnis zu
verbessern. Die Worst-Case-Laufzeit der Strahlensuche ist immer noch polynomiell. Zur
Berechnung suboptimaler Teillösungen stellen wir einen exakten und einen randomisierten
Algorithmus vor.

In einer ausführlichen Evaluation auf mehreren simulierten und biologischen Datensätzen
vergleichen wir BCD mit einer repräsentativen Auswahl an Superbaummethoden. Wir haben
herausgefunden, dass BCD bei Verwendung von Gütekriterien und Suchraumbeschränkung
auf simulierten Daten genauer ist als die akkuratesten evaluierten Superbaummethoden.
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Gleichzeitig ist BCD deutlich schneller als alle evaluierten Methoden. Die Strahlensuche
verbessert die Qualität der BCD-Bäume auf allen Datensätzen, allerdings auf Kosten
der Laufzeit. Weiterhin fanden wir heraus, dass ein BCD-Superbaum, der als Startbaum
verwendet wird, die Qualität einer Maximum-Likelihood-Baumrekonstruktion verbessern
kann. Außerdem kann BCD Datensätze verarbeiten, die so groß sind, dass lokale
Suchheuristiken auf diesen nicht mehr in angemessener Zeit konvergieren. Aufgrund der
Kombination aus Geschwindigkeit, Genauigkeit und der Fähigkeit, den Elternbaum zu
rekonstruieren, sofern ein solcher existiert, ist BCD ein vielversprechender Ansatz um die
Skalierbarkeit von Teile-und-herrsche-Methoden entscheidend zu verbessern.



Acknowledgements

First and foremost, I thank my supervisor Sebastian Böcker. He found a great balance
between giving me the freedom and confidence to realize my own ideas and guiding me into
promising directions. He always had an open door for questions and discussions, came up
with new ideas whenever we needed one and kept me motivated even in lean periods. I
thank Arndt von Haeseler for motivational and helpful discussions as at Phylomania or
during my visit in Vienna as well as for being my second advisor. I am very grateful to
Franziska Hufsky for her advice and knowledge in scientific writing, for proofreading this
thesis and for giving many helpful suggestions to improve the readability. Another special
thank for proofreading large parts of this thesis goes to Lisa Schmölz. I am grateful to the
members of our research group for the amazing working atmosphere; work is always fun
with you guys. In particular, I thank my office neighbour Marcus Ludwig for always having
a sympathetic ear for my ideas and questions although they were not related to his research
field. Furthermore, I thank Thasso Griebel for hiring me as a student research assistant and
thereby bringing me to Sebastians group, and for its great work on the EPoS framework
which was a great basis for developing algorithms in phylogenetics. A special thank goes to
Kathrin Schowtka for her kindness and patience while helping with bureaucracy or taking
over administrative work, so that we can mainly focus on science.

I gratefully acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG),
within the project “FlipCut supertrees: Computing larger, better phylogenies faster”
(BO 1910/12), to undertake my PhD.

I thank my friends in Jena for making me happy, for being my memory, and for their
great support during the process of writing. Finally, I thank my mother for always believing
in me and supporting me. Also, I thank my ”little” brother for motivating me by always
being interested and impressed by the things I have been working on.

vii





Preface
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of Professor Sebastian Böcker at the Friedrich-Schiller-Universität Jena. My research was
financed by the project ”FlipCut supertrees: Computing larger, better phylogenies faster”
funded by the Deutsche Forschungsgemeinschaft (DFG) and later by the university’s basic
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solutions in Bad Clade Deletion supertrees. PeerJ, 2018.

I also participated in the software development of SIRIUS [15] and the CSI:FingerID web
service [41]. As student research assistant I participated in the development of EPoS [64]
and FlipCut [21]. I wrote my diploma theses on cut enumeration strategies for FlipCut.

This thesis consists of six chapters; the main results are presented in Chapters 4, 5 and 6.
Chapter 4 describes the algorithms to maximize the resolution of the Greedy Strict Consensus
Merger supertrees by simultaneously preventing unsupported (bogus) clades. Sebastian
Böcker and I developed different new scoring criteria for the tree merging order (see
Section 4.4) and randomization strategies (see Section 4.6). Algorithm implementation,
parallelization and evaluation as well as data simulations (see, SMIDGenOG in Section 3.2.2)
was done by me. This work has been presented by me at the German Conference on
Bioinformatics (GCB 2015) and is published in [54]. Chapter 5 presents the Bad Clade
Deletion (BCD) supertrees algorithm. Sebastian Böcker and I introduced a new objective
function that better suits the greedy manner of the FlipCut idea and allows for several
algorithm engineering tricks. We developed a search space reduction based on a given
set of clades and graph weighting functions to use support values of the source trees.
Algorithm implementation, parallelization and evaluation as well as data simulations (see,
SMIDGenOG-5500 in Section 3.2.3) was done by me. This work is published in [55].
Chapter 6 introduces a Beam Search algorithm to consider suboptimal partial solutions
within the BCD algorithm. Sebastian Böcker and I developed the beam search algorithm. We
developed an exact vertex-cut enumeration algorithm and a vertex-cut sampling algorithm.
Algorithm implementation and evaluation was done by me. This work is published in [56].

For the remainder of this thesis, I will use “we” as the first person pronoun, as it is common
in scientific literature. This may be interpreted as “the reader and I” or as “my collaborators
and I”, whichever suits best in the situation.
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1 Introduction

Phylogenetics is the study of evolutionary relationships between biological entities; the
amount of evolution that took place can be seen as the central criterion to compare those
entities. Biological entities can be species, individuals or genes and are referred to as taxa.
Phylogenetic trees (phylogenies) are a visualization of these evolutionary relationships. The
leaves of a phylogenetic tree correspond to the extant entities (taxa) whereas the inner
nodes are common ancestors.

Where do we come from, what is the ”origin of species” [37]; or simply, the search for the
”Tree of Life” are the most obvious questions, that the field of phylogenetics tries to answer.
CIPRES1 (Cyber Infrastructure for Phylogenetic Research), ATOL2 [104] (Assembling
the Tree of Life project) and ”the Open Tree of Life”3 [73] are large inter-institutional
projects that aim at reconstructing the ”Tree of Life”. Besides this fundamental question
many other applications exist. For example, phylogenetics has been used to determine
the origin of HIV-1 [90, 132, 156], for drug discovery [152], to identify disease associated
mutations [18], for vaccine strain selection [25, 60, 143], to reveal the global migration of
pathogens [118], for protein structure prediction [157] as well as for gene [28] and protein
function prediction [44, 93].

A rooted phylogenetic tree is often a sufficient model to describe the evolution of species.
However, some evolutionary processes, such as horizontal gene transfer or hybridization
(when two species form a new species), do not allow for a treelike representation. In
such cases, phylogenetic networks are a better representation [80]. In this thesis, we will
concentrate on treelike evolution and its reconstruction. Phylogenies are reconstructed from
a set of characters that allow to discriminate the taxa of interest. Initially, such characters
were morphological traits whereas nowadays, molecular sequences are the characters of
choice. Since the number of trees grows superexponentially with the number of taxa,
computational methods are essential even for small problem sizes. To use computational
approaches for phylogeny reconstruction, we store the characters in a matrix where each
line corresponds to a taxon and each column is a character. We will focus on molecular
sequence alignments as character matrices. Accurate approaches to reconstruct phylogenies
from sequence data usually result in NP-hard optimization problems, so that heuristics
have to be applied in practice. Often, non-deterministic local search heuristics are used to
reconstruct accurate trees in a reasonable amount of time under sophisticated statistical
models.

In the earlier days of molecular phylogenetics, the availability of molecular data was often
a limiting factor. In this context, supertree methods, which combine trees with overlapping
taxon set into a large tree containing all of the taxa, became popular. Merging smaller
trees together enables a fast and straightforward possibility to combine incomplete data
from various sources. With increasing availability of sequence data, combining data on the

1http://www.phylo.org/
2http://tolweb.org/
3https://tree.opentreeoflife.org
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2 1. Introduction

sequence level turned out to be the more accurate approach. Since evolution of different
loci can be contradictory, combining molecular data introduced the problem of ”gene tree
species tree reconciliation”. In times of 3rd generation sequencing, where (re-)sequencing
starts becoming cheaper than storing the raw data, sequence availability is no longer a
limiting factor. Nowadays, the tree reconstruction methods struggle processing the large
amounts of data available in reasonable time and with sufficient accuracy. While increasing
sequence lengths can be handled fairly well by massive parallelization [91, 119], this does
not really address the challenge of searching in a tree space increasing exponentially with
the number of taxa. In this context, supertree methods become important again as part of
divide-and-conquer approaches [116] that cut large datasets into handy bits for accurate
but computational intense methods. Here, supertree methods are used to merge the smaller
pieces into an overall solution. Whereas the decomposition into pieces can be done in
polynomial time, the supertree reconstruction is usually done by local search heuristics that
solve an NP-hard problem. Even if this optimization is much faster to compute (Maximum
Parsimony) than the one used to estimate a tree from sequence data (Maximum Likelihood),
we still search an exponentially growing tree space using a local search heuristic.

In this thesis, we present approaches for polynomial supertree reconstruction with
accuracy comparable to the established local search heuristics. This thesis is structured
as follows: In Chapter 2 we give the theoretical background for understanding this thesis,
namely graph theoretical basics, formal definitions from computational phylogenetics and
an overview about the current state of the art and open problems. Chapter 3 describes
setup, criteria and data we use to evaluate the presented methods. We evaluate on multiple
simulated and biological datasets and compare against a representative set of other methods.
Chapter 4 covers our work on improved scoring functions and tree merging strategies for
the Greedy Strict Consensus merger. We focused in particular on reducing the amount of
unsupported clades, so that these clades can be used for search space restriction without
the risk of adding too many unsupported clades to the supertree. We found a scoring
function that significantly reduces the amount of unsupported clades by simultaneously
improving the number of reliable clades. In Chapter 5 we present a new polynomial time
supertree method called, Bad Clade Deletion (BCD). The method is a greedy heuristic that
minimizes the number of clade deletions and guarantees to return a supertree compatible
with all input trees if those are compatible. Our evaluation shows that our new method
is faster and can be more accurate than leading supertree methods when using support
values from the input trees. Chapter 6 treats a beam search extension for the greedy BCD
algorithm that allows to consider a fixed number of suboptimal partial solution. We present
an enumeration and a sampling algorithm to compute suboptimal solutions. The beam
search improved the accuracy on every dataset at the cost of an increased running time.
Finally, Chapter 7 concludes the thesis by recalling the main results, presenting an outlook
on further applications and discussing possible strategies for the integration of BCD in
divide-and-conquer approaches.



2 Phylogenetic tree reconstructions and
their Theoretical Notation

In this chapter, we give a brief overview about the theoretical concepts, techniques and
problems that are required to understand this thesis. First, we define all necessary graph
theoretical basics (see Section 2.1). Second, we give formal definitions about phylogenetic
trees, give a short introduction how to estimate them from molecular data and explain some,
in this context, widely used methods (see Section 2.2). Based on this introduction we briefly
discuss problems and concepts of large scale phylogeny reconstruction (see Section 2.2.2).
Furthermore, we explain all necessary basics about supertree reconstruction (see Section 2.3)
and how supertrees can be used in practice (see Sections 2.4 and 2.5). In this context, we
will give a more detailed introduction into divide-and-conquer approaches as a promising
strategy for large scale phylogeny reconstruction and explain how polynomial time supertree
methods can be beneficial in this context (see Section 2.5).

For all introduced fields, we can cover only the most important aspects needed to
understand this work. We refer interested readers to relevant textbooks: Nei and Kumar
[115] for phylogenetics, Bininda-Emonds [12] for phylogenetic supertrees, Felsenstein [50],
Huson et al. [80], Semple and Steel [154] and Warnow [181] for methods in phylogenetics.

2.1 Graph Theoretical Definitions

Here, we give graph theoretical definitions needed for a formal definition of phylogenetic
concepts and to describe and understand the graph theoretical algorithms presented later
on in this thesis. For further information about graph theory, we refer to Diestel [40].

Definition 1 (Graph). An (undirected) graph G = (V,E) is the pair of a vertex set V
and the edge set E ⊆ {e ⊆ V : |e| = 2}. Vertices as well as edges can be weighted. The
weight ω(e) of an edge e ∈ E is a function ω : E → R≥0. Analogously, the weight ωV (v) of
a vertex v ∈ V is a function ωV : V → R≥0. An edge e is called incident to a vertex v if
v ∈ e holds.

Definition 2 (Directed graph – digraph). A digraph D = (V,A) is a graph with vertex set
V and arc set A ⊆ V × V of ordered pairs (v, w) with v, w ∈ V . An edge (v, w) is called an
outgoing arc of v whereas (w, v) is called an incoming arc of v. For a digraph D = (V,A),
the corresponding (undirected) graph G = (V,E) is the graph where for each arc (u, v) ∈ A
there exists an edge {u, v} ∈ E.

Definition 3 (Degree). The degree d(v) of a vertex v ∈ V is the number of edges e ∈ E
with v ∈ e. For digraphs, we differ between outdegree d+(v) and indegree d−(v) where
d(v) = d+(v)+ d−(v). The outdegree of a vertex is the number of its outgoing arcs whereas
its indegree is the number of incoming arcs.

3



4 2. Phylogenetic tree reconstructions and their Theoretical Notation

Definition 4 (Adjacency). Two vertices u, v ∈ V are adjacent if there exists an edge
{u, v} ∈ E. Analogous to the degree, for digraphs we differ between incoming and outgoing
adjacency.

Definition 5 (Trails, paths, cycles and circles). In a graph G = (V,E), a trail is an
alternating sequence v1, e1, v2, e2 . . . , ek−1, vk of vertices vi ∈ V and distinct edges ei ∈ E,
with ei = {vi, vi+1} for all 0 < i < k. A path is a trail in which all vertices are distinct. A
trail is called cycle if v1 = vk. A circle is a cycle where v1, . . . , vk−1 is a path. In a tree T
the path that connects the two vertices u and v, is denoted a uTv.

Definition 6 (Chords and chordal (triangulated) graphs). Given a graph G(V,E) and
a cycle defined by the vertex set V ′ ⊆ V and the edge set E′ ⊊ E. A chord is an edge
{u, v} /∈ E′ : u, v ∈ V ′. G is called chordal (triangulated) if all cycles in G with length > 3
have a chord.

Definition 7 (Connectivity). A graph G(V,E) is connected if there exists a path from u
to v for each u, v ∈ V . For digraphs, we distinguish between strong and weak connectivity.
Analogous to undirected graphs, a digraph is (strongly) connected if there exists a (directed)
path between all u, v. We call a digraph weakly connected if its corresponding (undirected)
graph is connected.

Definition 8 (Maximal clique). A clique in G = (V,E) is a subset V ′ ⊆ V where all v ∈ V ′

are pairwise adjacent. A clique is maximal, if no such V ′′ ⊇ V ′ with |V ′′| ≥ |V ′| exists.

Definition 9 (Minimal vertex separator and clique separator). Given a connected graph
G = (V,E) and the vertices u, v ∈ V . We will refer to any V ′ ⊊ V that separates u and v
as a u− v separator. V ′ is a minimal u− v separator, if no V ′′ ⊊ V ′ is a u− v separator.
We call V ′ a minimal vertex separator if it is a minimal u− v separator for some pair of
vertices u, v. Separators that are cliques are called clique separators.

Definition 10 (Cut). Let V ′ ⊊ V and V ′′ = V \V ′ be the partitions of the vertex set V . A
cut of a connected graph G(V,E) is a set of edges C(V ′, V ′′) = {{u, v} ∈ E : u ∈ V ′, v ∈ V ′′}
that disconnects V ′ from V ′′. For a digraph D(V,A) the definition is analogue. A cut
C(V ′, V ′′) is a set of arcs so that V ′ and V ′′ are no longer (strongly) connected. Note that
in general, C(V ′, V ′′) ̸= C(V ′′, V ′). The cost of a cut is the sum over its edge/arc weights.
A minimum cut is a cut with minimal costs.

Definition 11 (Vertex-cut). Analogous to a cut, a vertex-cut G(V,E) is a set of vertices
W ⊊ V whose deletion disconnects G(V,E).

Definition 12 (Bipartite graphs). A graph G(V,E) is called bipartite if and only if its
vertex set V can be separated into two subsets V ′ ⊊ V and V ′′ = V \ V ′ such that each
edge contains one vertex V ′ and one from V ′′.

Definition 13 (Forests, trees and rooted trees). A graph G(V,E) is a forest if it is cycle-
free. A forest that is connected is a tree. A vertex of a tree v ∈ V with d(v) = 1 is called a
leaf ; all other vertices are inner vertices. An edges that is not incident to a leaf is an inner
edges. A digraph D(V,A) is called rooted tree if the corresponding (undirected) graph is a
tree that has a given root(-vertex) r ∈ V . For each v ∈ V \ {r} there has to be a definite
directed path r, . . . , v. All v ∈ V \ {r} with d(v) = 1 are called leaves. A rooted tree is
binary if and only if d+(v) = 2 holds for all inner vertices.
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Definition 14 (Networks and flows). A network H(V,A) is a digraph with vertex set V,
arc set A, and a given source s ∈ V and target t ∈ V . Each arc e ∈ A has a capacity
c : A→ R≥0, which is the maximal amount of flow that e can take. A flow is a function
f : A→ R≥0 with f(u, v) ≤ c(u, v) that maps a non-negative flow value to each arc e ∈ A.
For each v ∈ V \ {s, t}, the amount of flow entering v has to be equal to the amount of
flow exiting it. The value of a flow is the amount of flow entering t; a maximum s-t flow is
a flow from s to t of maximum value.

2.2 Reconstructing Trees from Molecular Sequences

The basis for a phylogenetic tree reconstruction is a set of characters that is able to
discriminate between the taxa of interest. The most basic type of characters are binary
characters, which determine whether a trait is present or not. The Perfect Phylogeny
Problem searches for a tree topology, where the ancestor (inner) nodes can be labeled
with character states (character assignment), so that each character state evolved only
once in the tree [50]. Characters can disagree with each other, so that no such tree exists.
Checking whether a set of binary characters is compatible can be solved in polynomial time;
but for multi-state characters, this problem is NP-hard [17, 167]. The reconstruction of a
phylogenetic tree for a set of taxa from molecular sequences consists of three major steps:

1. Collect comparable data for the taxa of interest. In our case, these data are molecular
sequences.

2. Create an alignment of the collected sequences to make them comparable.

3. Estimate trees based on this alignment.

We will not elaborate the process of data collection, but we give a short introduction to
the sequence alignment problem before introducing phylogenetic trees and techniques to
reconstruct them from sequence alignments. We will assume molecular sequences as our
initial source data for tree reconstruction and therefore describe most methods for sequence
data as input. However, most principles can also be applied to other kind of character
data in particular, binary characters, which we will discuss in the context of supertree
reconstruction later on.

(Multiple) sequence alignment. Since insertion and deletion are typical processes of
sequence evolution, biological sequences may not have the same length. We have to align
these sequences before we are able to compare them against each other. Let S1, . . . Sk :
Si ∈ Σ∗ be a set of sequences over a given alphabet Σ. A multiple sequence alignment
(MSA) of S1, . . . Sk is a matrix A of size k ×N with the following properties:

• Ai,j ∈ Σ ∪ {−}, where ‘−’ is the gap symbol;

• when removing all gap symbols from a row Ai we get the initial sequence Si;

• no column in A contains only gap symbols.

A single character of a MSA is called site. Given a substitution matrix (Σ∪{−}×Σ∪{−}),
the quality of an alignment can either be measured by a distance function D(A) or a similarity
function S(A). The optimal alignment is the alignment where D(A) is minimal or S(A) is
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maximal. Whereas the multiple alignment problem is NP-hard [45], the pairwise alignment
problem (k = 2) can be solved in polynomial time by dynamic programming [114]. In
practice, the multiple sequence alignment problem is usually solved by progressive heuristics
(see e.g. [42, 72, 85, 121, 170, 176]). These methods are complemented by techniques that co-
estimate alignment and phylogenetic tree (see e.g. [71, 96–98, 100, 113, 122, 123, 134, 182].
For an overview of the development of MSA methods and their main applications over the
past decades, see [30, 43, 86, 158, 177].

Models of sequence evolution. Tree estimation from molecular sequences is usually
described as a statistical inference problem where the sequences evolve down a tree via
a stochastic process. Several models of sequence evolution (e.g. JC69 [83], GTR [175] or
GM [165]) have been developed [4, 190] and allow for phylogeny estimation using statistical
methods, such as maximum likelihood or Bayesian phylogenetics. These tree reconstruction
methods take advantage of what is known (or hypothesized) about the stochastic process
that generated the data. Besides statistical methods, tree reconstruction methods usually
do not need a model of sequence evolution but can take advantage of it.

Phylogenetic trees. A phylogenetic tree or phylogeny is a tree, where each leaf corresponds
to a unique taxon. Taxa are the biological entities (e.g. species, genes or RNAs) whose
evolutionary relationship is represented by the tree. In principle, the evolutionary process is
described best as rooted binary phylogenetic tree and most stochastic models of evolution
assume a rooted binary model tree. In contrast, most models of sequence evolution are
time-reversible, which means that the root of the tree is unidentifiable. Therefore, most
tree reconstruction methods return unrooted trees.

For brevity and because we do not deal with ”non phylogenetic trees” at all, we use the
terms ”phylogenetic tree” and ”tree” synonymously later on. Since the novel algorithmic
concepts presented in this thesis are for rooted phylogenetic trees, we make all necessary
formal definitions for rooted trees. Based on this, we will define some required properties
for unrooted trees. Notice that many problems on trees become harder when considering
unrooted trees [14, 167, 168]. For readability, vertices of a phylogenetic tree will be called
nodes whereas we use the term ”vertices” for all other graphs.

Rooted phylogenetic trees. Let V(T ) be the node set of a rooted phylogenetic tree.
Further, let L(T ) ⊊ V(T ) be the set of all leaves (nodes of outdegree zero) in T ,
corresponding to the set of taxa. All nodes c ∈ V(T ) \ L(T ) are inner nodes. Each
inner node v induces a clade C = L(T v) ⊆ L(T ). Two clades C1 and C2 are compatible if
C1∩C2 ∈ {C1, C2, ∅}. A set of trees is compatible if all their clades are pairwise compatible.
A clade C is supported by a tree T if C ′ = C ∩ L(T ) is a clade of T [185]. The resolution
of a rooted tree is defined as |V(T )|−|L(T )|

|L(T )|−1 . Hence, a completely unresolved (star-)tree has
resolution 0, whereas a fully resolved (binary-)tree has resolution 1. For a given collection
of input trees T = {T1, . . . , Tk}, a supertree T of T is a phylogenetic tree with leaf set
L(T ) =

⋃
Ti∈T L(Ti). A supertree T is called a consensus tree if L(Ti) = L(Tj) for all

Ti, Tj ∈ T . A strict consensus of T is a consensus tree that only contains clades present in
every Ti ∈ T . A semi-strict consensus of T is a consensus tree that only contains clades
present in at least one Ti ∈ T and is compatible with every Ti ∈ T . For a set of taxa
X ⊊ L(T ), we define the X-induced subtree of T , T|X as the tree obtained by taking the
(unique) minimal subgraph T (X) of T that connects the elements of X and then suppressing
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all vertices with outdegree one: that is, for each inner vertex v with outdegree one, replace
the adjacent edges (p, v) and (v, c) by a single edge (p, c) and delete v. A tree T refines
T ′ if T ′ can be reached from T by contracting inner edges. We say that a supertree T of
T1, . . . , Tl is a parent tree if T |L(Ti) refines Ti, for all i = 1, . . . , l.

Unrooted phylogenetic trees. Remember that we defined rooted trees as digraphs (see
Definition 13). The unrooted version of a rooted tree is its corresponding undirected
graph (see Definition 2), where the vertex with degree two (if one exists) is removed and its
two adjacent vertices are connected by an edge. Given an unrooted tree T and an inner
edge {v, w}. Let {T v, Tw} be the set of rooted subtrees connected at {v, w}. We call the
induced bipartition of the taxon set L(T v)|L(Tw) a (non-trivial) split. Let S(T ) be the set
of all possible (non-trivial) splits of T . The set of splits of a rooted tree is defined as the
set of splits of its unrooted version.

Rooting an unrooted tree. As already mentioned, tree reconstruction based on sequence
data can usually not identify the root of the tree; but the correct model for species evolution
is a rooted binary tree. In practice, the position of the root can be determined by an
outgroup. An outgroup is a taxon (or a group of taxa) that is clearly less closely related to
the other taxa than all of them between each other. By adding an outgroup to the data, it
is clear that the root has to be on the branch that connects the outgroup with the rest of
the tree. However, rooting using an outgroup is not trivial. On the one hand side, if the
outgroup is too far away from the ingroup taxa, it may fit equally good at each position in
the tree and thus produce wrong rootings (see rogue taxa [146]). On the other hand side, it
is hard to distinguish between taxa that are closely related to the ingroup and taxa that
are indeed part of the same group but branched of very early.

2.2.1 Tree Reconstruction Methods

In this section we will introduce some important concepts of tree reconstruction with the
focus of sequences as input data. As mention above, sites (characters) do usually not agree
with each other, so we have to search for a tree that fits best for the given set of sites
(multiple sequence alignment). This can be done by either an optimality criterion, or by
pairwise distances calculated from the alignment.

Distance-based tree reconstruction. Distance-based methods estimate trees based on
pairwise distances between taxa [22, 27, 36, 39, 52, 61, 144]. These distances are usually
computed from sequence alignments. Distance-based methods are fast [39, 95]) but require
compromises on topological accuracy.

Optimization-based tree reconstruction. Further, there are methods that search for a
tree that explains the given multiple sequence alignment best for some optimality criterion.
Finding the optimal tree under such optimality criterion leads often to NP-hard optimization
problems so that local search heuristics are common in practice.
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Local search heuristics. Heuristics to find trees for NP-hard optimization problems
typically use hill-climbing to find local optima and randomization to get out of these local
optima. All search heuristics begin with a starting tree obtained by a fast, often distance-
based, method. The hill-climbing approach modifies this tree topology using operations,
such as nearest-neighbor interchange (NI), subtree pruning and regrafting (SPR), and tree
bisection and reconnection (TBR) [50]. If a better tree is found, the procedure restarts
with this better tree. If a local optimum is reached, the procedure starts with a new tree
usually obtained by a method that employs randomness. This process is repeated until a
stopping criterion is reached (e.g. time limit or evidence that it is unlikely to find a better
tree). The challenge for these heuristics is that they only ensure to find local optima, which
are not necessarily global optima. However, these heuristics work very well for fairly large
datasets; but due to the super-exponential growth of the tree space, there will be some
point where it becomes very unlikely to find a good local optimum in reasonable time.

Maximum Parsimony. Given a tree T , let each leaf of T be assigned with its corresponding
row from the MSA. Maximum Parsimony (MP) searches for an assignment to the inner
nodes that needs a minimum number of site state changes along T . Such an assignment can
be computed with linear dependence on the input (small parsimony problem) [51, 68, 148].
Finding a tree that allows for the assignment with a minimal number of changes (most
parsimonious) is proven to be NP-hard [38]. Therefore, local search heuristics have to be
applied in practice instead of the exact branch-and-bound approach.

Maximum Likelihood (ML). Given a model of sequence evolutionM (e.g. JC69 or GTR)
and a multiple sequence alignment A, ML estimation searches for a tree T with branch
length ω that maximizes the likelihood L(T ) = P (A|T, ω,M) of generating the observed
sequence data A. Finding an optimal ML tree is NP-hard [32, 136], so local search heuristics
are used in practice. Compared to MP, heuristic searches for ML are more complicated
because scoring a tree (optimizing branch length and model parameters) is computationally
more intensive than for MP.

Bayesian Phylogenetics. As ML, Bayesian methods calculate likelihoods of trees based
on mathematical models of evolution. Instead of seeking the tree with maximum probability
to generate the input alignment, Bayesian methods try sample from the set of possible
trees with frequency proportional to their likelihood under the observed alignment. These
methods are usually implemented using Markov Chain Monte Carlo (MCMC) [62, 69, 191].

FastTree 2. FastTree 2 [128] is a heuristic algorithm based on minimum-evolution (it tries
to find a topology that minimizes the sum of the branch lengths) and ML. FastTree 2 uses
a heuristic variant of neighbor joining to quickly find a starting tree and uses minimum-
evolution (NNIs and SPRs) as well as ML (NNIs) to further refine this topology. Due
to the restriction of moves (NNIs and SPRs) done for the different optimization criteria
(minimum-evolution and ML) FastTree 2 cannot guarantee to reach a local optimum but
can guarantee a theoretical running time of O(n

√
n log (n)m |Σ|), where n are the taxa, m

is the sequence length and Σ is the alphabet.
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Statistical Consistency. A tree reconstruction method is called statistically consistent
under a model if the method converges to the correct answer for an increasing number of
sites. Further, we call a non-consistent method positively misleading if it converges to the
wrong tree for an increasing number of sites. The distance matrix used by distance-based
methods can be computed from a given sequence alignment under a model of sequence
evolution (see, Jukes–Cantor distance correction for JC69 [83] or logdet [165] for GM or
GTR). Pairwise distances calculated by these formulas converge to an additive matrix
defining the model tree for an increasing number of sites. Methods such as Neighbor
Joining [144] or FastMe [39, 95] that guarantee to return the tree defined by an additive
matrix are statistically consistent for such matrices. Unfortunately MP and MC are
proven to be statistically inconsistent and even positively misleading for several model
conditions [48, 88, 194]. If the optimal solution is found, ML is statistically consistent
under the JC69, GTR, and GM models [29].

Support Values. ML as well as MP aim to return a single optimal tree (for MP possibly
a consensus of multiple optimal trees). Such a tree is not generally sufficient, without any
information about its robustness (statistical support). A standard statistical method to
tackle this question is (nonparametric) bootstrapping [49]: We sample replicate alignments
from the input alignment and calculate trees from this replicate alignments. After a
sufficiently large number of bootstrap replicates, we can estimate the support for a split
in the original result by counting its occurrence in the replicate trees. Since the classical
bootstrapping approach does a complete tree estimation for each replicate, the computation
of a sufficient number of bootstrap replicates can be very time intense, heuristics and
approximation strategies have been developed [74, 110, 164]. Contrary Bayesian MCMC
outputs a distribution of trees, so that the frequency of a split among this tree distribution
can be used as support value; but this estimates can be misleading for short branches [192].

2.2.2 Tree Reconstruction in Application

If a statistical model of evolution is available and can be determined for the given data,
the probabilistic methods (ML, Bayesian [77, 139]) are at least as accurate than any other
technique available. Due to their running time Bayesian methods are usually not applied
to large datasets. From the ML methods available, IQ-TREE [119], RAxML [162] and
PhyML [66] are arguably the most efficient. If no statistical model is available or the
model cannot be identified, MP [63, 75, 174] is usually a good choice. When the data
becomes large, methods, such as FastTree 2 [128], IQ-TREE [119] or ExaML [91, 161, 163]
can be applied. ExaML is a massively parallel implementation of RAxML that uses
GTR+CAT approximation instead of GTR+Gamma to speed up computation. ExaML
allows parallelization up to the number of sites in the alignment which allows it to handle
very long sequences and also more taxa than RAxML. However, making such a local
search heuristic scalable for large datasets comes to the cost of accuracy. For example,
the likelihoods of the ExaML/RAxML-light trees are usually worse compared to RAxML
trees. FastTree 2 restricts its tree search heuristics so that it can guarantee a polynomial
worst case running time and does therefore scale better with the number of taxa but is not
designed for long sequences. Although FastTree 2 is not as accurate as methods, such as
RAxML, IQ-TREE or PhyML, it is still the most accurate method for taxa numbers where
the non deterministic search heuristics are not applicable anymore [128].
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Liu et al. [99] indicate that tree quality of ML methods decreases on large alignments due
to alignment quality. Sievers et al. [158] made similar findings about the alignment quality
for increasing number of taxa. One approach to lessen the problem of decreasing alignment
accuracy is the co-estimation of alignments and trees (e.g. SATé [98, 100]). These methods
are usually at least as computational intense as the tree reconstruction methods used for
co-estimation.

A promising approach to boost the accuracy and scalability of ML tree estimation and
multiple alignment estimation on large scale datasets is divide-and-conquer. Some divide-
and-conquer methods do not need to perform either the alignment estimation or the tree
reconstruction on the entire taxon set. We discuss divide-and-conquer methods in more
detail in Section 2.5.

2.3 Reconstructing Supertrees

Supertree methods assemble phylogenetic trees with non-identical but overlapping taxon
sets into one supertree that contains all taxa of the source trees. The initial application of
supertrees was the assembly of a large species tree from multiple overlapping species trees
that have been reconstructed by different authors from various (e.g. molecular, morphological
or even unknown) types of data. In this scenario, the only available information are trees
and supertree methods allow us to combine this data. Constructing a rooted supertree
from non-conflicting source trees is easy [1], whereas resolving such conflicts in a reasonable
way, usually results in NP-hard optimization problems. In this section, we give an overview
about the theoretical basics and methodology of supertree reconstruction.

Many supertree approaches have been proposed over the years; some of them may return
multiple supertrees which then have to be combined [7, 130], or may return supertrees not
containing all taxa [151]. See Bininda-Emonds [11] for early methods, and [6, 9, 21, 31, 33,
35, 76, 107, 109, 120, 133, 142, 151, 155, 159, 166, 173, 178] for recent ones. In the following,
we will introduce some basic concepts needed for understanding and describe a selection of
supertree methods that are either accurate, widely used, important for understanding or
used in later evaluations (see Section 3.4).

Matrix representation of phylogenetic trees. Encoding a set of (input) trees T in a
matrix representation is a fundamental concept in parent- and supertree reconstruction [7,
130, 147, 184]. A Matrix Representation (MR) encodes inner nodes (or branches in the
unrooted case) of all source trees as partial binary characters in a matrix, which can then
be analyzed using an optimization or agreement criterion to yield the supertree. Here, we
give a formal definition for Baum-Ragan [7, 130] encoding of rooted phylogenetic trees:

We transform a set of trees T into an incomplete binary matrix M(T ) with elements in
{0, 1, ?}(see Figure 2.1): Each row of the matrix corresponds to one taxon 1, . . . , n, and
each clade C (except the root) in each tree is encoded in one column of the matrix. A ‘1’
indicates that the corresponding taxon is part of C, whereas all other taxa of the tree are
encoded ‘0’. The state of taxa that are not part of the tree is unknown, and represented by a
question mark (‘?’). A binary matrix (no ‘?’) has a perfect phylogeny if all matrix columns
are pairwise compatible. Two matrix columns are compatible if the corresponding clades are
compatible. For a single tree T , the matrix M(T ) := M({T}) does not contain ‘?’-entries.
According to the classical directed perfect phylogeny model [188], T is a (directed) perfect
phylogeny of M(T ). In the following, “perfect phylogeny” always refers to “directed perfect
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Figure 2.1: Exemplary matrix representation (M [t, c]) of two trees and the corresponding
Pe’er graph G(S,D), where S (green) are the taxon vertices and D (black) are the clade
vertices

phylogeny”. An incomplete binary matrix allows for a perfect phylogeny if we can resolve all
‘?’ to either ‘1’ or ‘0’ so that the resulting binary matrix has a perfect phylogeny. For trees
T, T ′ with identical taxa, T refines T ′ if and only if M(T ′) can be obtained from M(T ) by
column deletion [21]. A collection of trees T has a parent tree if and only if M(T ) can be
transformed into a perfect phylogeny by resolving each ‘?’ entry to either ‘0’ or ‘1’ [21].

Matrix M(T ) has size n × m where m is the total number of non root inner nodes
in T1, . . . , Tl. The matrix can be computed in O(mn) time, using a tree traversal and lists
of taxa.

How to decide whether am MR allows for a perfect phylogeny? Pe’er et al. [125] gave
an O(mn polylog(m,n))-time algorithm to prove whether an instance M(T ) allows for a
perfect phylogeny by resolving all ‘?’-entries to ‘1’ ore ‘0’. This algorithm is based on a
graph representation of input trees T or their MR respectively (see Figure 2.1). This Pe’er
graph is defined as follows: For a subset S ⊆ {1, . . . , n} of taxa and a subset D ⊆ {1, . . . ,m}
of clades, the Pe’er graph G(S,D) is a bipartite graph with disjoint vertex sets S and D.
An edge {t, c} is present if and only if M [t, c] = 1, for t ∈ S and c ∈ D. A clade vertex
c ∈ D is semiuniversal (in S,D) if M [t, c] ∈ {1, ?} holds for all t ∈ S. Semiuniversal clade
vertices do not contain any information about the partition of the taxon set and can be
removed from G. The algorithm proceeds in a recursive top-down fashion. In each recursive
call, a subset of taxa and a subset of characters are provided; the subset of taxa is returned
as a clade of the supertree. If the Pe’er graph is disconnected after deleting all semiuniversal
clade vertices, the algorithm directly recurses on the connected components; otherwise, a
conflict occurred and the matrix does not allow for a directed perfect phylogeny.

Conservative Methods – Compatibility Supertrees. A compatibility supertree contains
only clades (or splits in the unrooted case) that do not conflict with any of the source
trees. We call a supertree method conservative if the resulting supertree is a compatibility
supertree.
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Matrix Representation with Parsimony. Matrix Representation with Parsimony (MRP)
[7, 130] was among the earliest methods proposed but remains the most frequently used.
Despite its computational complexity [59], heuristics have been developed that allow datasets
with several hundred taxa to be analyzed in reasonable time. On the theoretical side, MRP
has certain undesirable properties, such as introducing clades into the supertree that are
contradicted by all source trees [10, 126, 185], and its non-convergence to the true tree for
arbitrarily large sets of input trees [166].

Matrix Representation with Flipping. Matrix Representation with Flipping (MRF) [31]
tries to resolve incompatibilities by flipping ‘0/1’-entries in the matrix. Finding a tree with
a minimum number of flips is again NP-hard but also W[2]-hard, and has no constant factor
approximation unless P = NP [16].

FlipCut. Brinkmeyer et al. [21] introduced FlipCut, a greedy top-down heuristic for
MRF which is based on Pe’er’s algorithm for deciding the incomplete directed perfect
phylogeny problem. It uses minimum cuts to disconnect the Pe’er graph whenever it is
connected due to a conflict in M(T ). Each time a conflict is resolved by cutting the graph,
it is done with a minimum number of flips in M(T ). FlipCut has polynomial running
time, and outperforms other polynomial-time supertree methods [124, 151, 153, 187] with
regards to supertree accuracy and running time [19, 21].

Matrix Representation with Compatibility. Matrix representation with Compatibil-
ity (MRC) [129, 137, 142], also known as Maximum Split Fit (SFIT) [34], searches for
the largest compatible subset of matrix columns in the MR. The MRC problem is again
NP-hard, and it is likely that no PTAS exists [5, 16]. MRC can be reduced to the Maximum
Clique problem on the compatibility graph, or to the Maximum Independent Set problem
on the incompatibility graph of the matrix. MRC (SFIT) generalizes asymmetric median
consensus methods [186].

Bad Clade Deletion. Bad Clade Deletion (BCD) is the new supertree algorithm we
present in Chapter 5. As FlipCut, the algorithm is a polynomial time top-down heuristic
but minimizes the number of column (character) deletions of a MR, so that the resulting
matrix allows for a directed perfect phylogeny [125]. BCD Beam Search is a beam search
extension for BCD to consider suboptimal partial solutions which we present in Chapter 6.

Greedy Strict Consensus Merger. The Strict Consensus Merger (SCM) generalizes the
two tree strict consensus problem to a two tree supertree problem [79, 140]. It restricts
the two input trees to the subtrees of their common taxa, and calculates a strict consensus
tree of these restricted input trees. Afterwards, it re-inserts previously removed taxa into
this strict consensus tree. The Greedy Strict Consensus Merger (GSCM) algorithm is the
generalization of the SCM for more than two input trees. It combines the set of input
trees by greedily applying the SCM algorithm to two of the remaining trees, until only one
(super-)tree is left. The GSCM method is sensitive to the order in which the input and
intermediate trees are merged. Therefore, the scoring for selecting the tree pairs has high
influence on the supertree quality. In Chapter 4, we present new and improved scoring
functions as well as improved merging strategies for the GSCM. The GSCM is a conservative
supertree method.
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SuperFine. Swenson et al. [173] introduced the meta-method SuperFine which uses the
Greedy Strict Consensus Merger (GSCM) [79, 140] as preprocessing to improve an arbitrary
supertree method. SuperFine with MRP was superior to the other evaluated SuperFine
variants, namely SuperFine with Quartets MaxCut (QMC) [159] and SuperFine with Matrix
Representation with Likelihood (MRL) [120]. To this end, “SuperFine” will refer to the
“SuperFine with MRP” method throughout the rest of this paper.

Fast Robinson-Foulds Supertrees. Vachaspati and Warnow [178] introduced Fast
Robinson-Foulds Supertrees (FastRFS), a polynomial time dynamic programming algorithm
that finds the supertree with minimal Robinson-Foulds-distance [135] (see Section 3.1.1) to
the input trees under a predefined set of allowed bipartitions X. FastRFS uses ASTRAL-
II [111] to compute X from the source trees; but in general any bipartiton of the taxon
set can be added to X. Let Z be a set of supertrees we have calculated by arbitrary
methods. When adding all bipartitions from the supertrees in Z to the set X, then the
supertree returned by FastRFS is as least as good as any supertree in Z with respect to
the RF -distance. FastRFS runs in O(|X|2nk) where n is the number of taxa and k is the
number of input trees.

2.4 Supertrees to combine incomplete multi-locus data.

When reconstructing species phylogenies from molecular data, it is common practice to
combine multiple loci; as not every locus is available for every taxon, methods have to
deal with incomplete data. In the past, the reason for incompleteness of the data was
often the unavailability of sequence data. Nowadays, this is not really a problem anymore.
Nevertheless, when reconstructing large scale species trees, a locus that is informative for
some closely related taxa may not be present in the less related taxa.

Combining incomplete data can be done on different levels [92, 149]: Low-level approaches
(total evidence, supermatrix, superalignment, combined analysis) combine multiple loci on
the sequence level by concatenating the alignments of the different loci; a special character
in the resulting data matrix corresponds to missing data. The resulting supermatrix can
be analyzed by conventional tree reconstruction methods, such as MP, ML or Bayesian
MCMC. Medium-level strategies combine the loci on a further processed analysis stage
than concatenating the raw sequence data but do not estimate a complete tree for each
locus. Such stages can e.g. be quartets [150, 169] or distance matrices [35]. High-level
approaches estimate a phylogenetic tree for each locus independently, and combine those
using a supertree method. It turned out that the low-level strategy using a highly accurate
statistical method, such as ML, is the most accurate strategy on combined data, see [92, 171]
and Chapter 5.

A major challenge when estimating a species tree from multi-locus data is that the
evolution of different loci within the genome can be contradictory due to various biological
processes [105, 106, 127]. This problem is known as the ”gene tree species tree reconciliation
problem” [105]. None of the tree reconstruction methods described above are proven to
be statistically consistent under these circumstances and classical supertree methods do
also perform not well for these type of data. Therefore, novel methods that incorporate
coalescent processes have been developed [3, 94, 101–103, 111, 112, 183] to address this
problem. These methods are more accurate than the strategies we described earlier in this
paragraph when coalescent events happened in the data [112].
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2.5 Supertrees in divide-and-conquer approaches

As already mentioned in Section 2.2, statistical tree reconstruction methods (ML, Bayesian
MCMC) generally provide sufficient accuracy and speed for fairly large datasets. However,
due to the necessary use of heuristic search strategies, the accuracy of these methods
decreases with increasing dataset size. Furthermore, alignment accuracy also decreases with
increasing dataset size, resulting in limiting input data quality. Running times also strongly
increase with increasing dataset size.

In this section, we investigate divide-and-conquer techniques, a promising strategy to
evade accuracy decrease and inapplicable running times of computational intensive tree
reconstruction methods on very large datasets. The general idea of divide-and-conquer is
to break a large problem into smaller subsets that are computationally easier to solve. The
sub-problem results have then to be combined into an overall result.

Quartet puzzling. The first approach that used the divide-and-conquer idea for tree
reconstruction was quartet puzzling [169]: First, all possible ML quartet trees are generated
in the initial step. For each quartet all quartet trees with maximal likelihood score are
kept. Second, the heuristic puzzling step combines these quartets into an overall tree. The
puzzling step is repeated several times to explore the landscape of optimal trees. Finally,
all resulting trees are combined into a majority consensus tree, the quartet puzzling tree.

2.5.1 Disk-Covering Methods

Disk-covering methods (DCMs) are a general divide-and-conquer technique for phylogeny
reconstruction that are able to boost tree reconstruction methods when using them as base
methods. Unlike quartet puzzling, the strategy of disk-covering methods is not decomposing
the taxon set into all smallest possible subsets (quartet trees) but rather into handy closely
related subsets. The idea is to choose subsets that are easier and faster to solve for the
base method. Supertree methods are the key concept to merge the subset trees, generated
by the base method, into an overall result.

We mentioned above (see Section 2.4) that classical supertree approaches do not perform
well if conflicts in the input trees are caused by evolutionary processes, such as incomplete
lineage sorting or horizontal gene transfer. Though, the conflicts between subset trees in a
DCM are mainly caused by estimation errors made during the tree estimation with the
base method and not by evolution. Therefore, classical supertree methods which search for
a supertree that has the smallest error or the highest agreement with the input trees are
suitable for this problem.

Different DCMs for a variety of base methods have been developed over time. However,
all DCMs follow this basic format (see Figure 2.2): Given the taxon set S and the
corresponding sequences, construct a chordal graph G with vertex set S. Calculate an
overlapping decomposition of S based on G. Use a supertree method to merge the trees on
the decomposed subsets of S into a tree with L(T ) = S. The challenge in a DCM is to gain
more accuracy by keeping the subsets small enough for a high accurate tree reconstruction
than losing by the supertree reconstruction. Therefore, it is important how to design the
decomposition (with regards to subset size, subset overlap or subset heterogeneity), to get
the best out of the base method and the supertree method. Representing the relations
within S by a chordal graph is important to find the decomposition of S in polynomial time.
Decomposing G leads us to the maximal clique problem. In chordal graphs there exist at
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1. Decompose
taxon set

One tree per subset

3. estimate
supertree

2. estimate sub-
set trees

Decomposition of taxon setInput data for all taxa Supertree containing all taxa

Figure 2.2: Overview about the three basic steps that every DCM follows. First, decompose
the input data into overlapping subsets. Second, estimate a tree for each of the subsets.
Third, reconstruct a supertree that contains all of the input taxa from the subset trees.
Different colors indicate the decomposition. Grey stands for the entire data set.

most |S| − 1 maximal cliques which can be found in polynomial time. Furthermore, each
minimal separator in a chordal graph is a clique and can also be found in polynomial time.

Two different decomposition strategies have been presented, namely maximal clique
decomposition and separator-component decomposition. A maximal clique decomposition [78]
is the set of maximal cliques in G. Let X ⊊ S be one of the clique separators in G. A
separator-component decomposition [79] is the set {X ∪B1, X ∪B2, . . . , X ∪Bk}, where
each Bi is one of k connected components in G \ X. Since there exist multiple clique
separators in G, multiple decompositions are possible with this method. It is possible
to use some optimization criterion to choose a single decomposition or, alternatively, all
decompositions can be used.

Generally an arbitrary supertree method can be used to combine the trees calculated
from the decomposed subsets (subset trees). To guarantee to reconstruct the correct overall
tree when all subset solutions are correct, it is important to use a supertree method,
that guarantees to reconstruct the true tree when all estimated subset trees are induced
subtrees of the true tree. We can distinguish between two groups of DCMs, distance-based
DCMs [78, 79] and tree-based DCMs [141].

Distance-based DCMs. Several versions of distance-based DCMs have been developed.
Here, we explain the general idea. For a given set of taxa S = {s1, s2, . . . , sn}, distance-
based DCMs create the chordal graph using a distance matrix di,j on S and a positive
threshold q. The matrix threshold graph TG(d, q) has vertex set S and an edge (si, sj) for
all i, j with di,j ≤ q. This graph is proven to be chordal when d is an additive matrix [78].
Remember, d converges to an additive matrix defining the model tree when created from
an appropriately corrected model of sequence evolution (see Section 2.2.1). However, in
practice, the sequences length may not be sufficient for d to be an additive matrix. Therefore,
in practice, heuristics have to be applied to turn TG(d, q) into a chordal graph. We create
a matrix threshold graph for each q contained in d. For each of the connected matrix
threshold graphs, we create a decomposition using either maximal clique decomposition or
separator-component decomposition, see [78, 79] for details.

Tree-based DCMs. Tree-based DCMs use a tree T with L(T ) = S to decompose the
taxon set S [141]. The initial tree can be obtained by some fast, not necessarily accurate,
method. Since we can construct an additive matrix d from each T with positive branch
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Figure 2.3: Basic workflow of DACTAL starting with a set of unaligned sequences (upper
left). In parenthesis we show the method that is usually used for the respective step.
Different colors indicate the decomposition. Grey stands for the entire data set.

length, we can also compute a chordal graph (the short subtree graph) from T . The short
subtree graph is defined as follows: For a branch e = {u, v} of a binary tree T , each ti is
one of the four subtrees rooted at ri for which there exists a branch {w, ri} : w ∈ e, with
1 ≤ i ≤ 4. Let Xi ⊆ L(ti) denote those leaves that are closest to e (defined by the path
length of riTw). The short subtree graph SSG(T ) has vertex set S and edges so that all
X(e) =

⋃
iXi form a clique in SSG(T ), for each inner branch e in T . Since SSG(T ) is a

chordal graph we can now decompose S using the maximal clique decomposition or the
separator-component decomposition.

2.5.2 DACTAL

Nelesen et al. [116] presented DACTAL (divide-and-conquer trees almost without
alignments), an iterative recursive padded DCM that allows to reconstruct ML trees
without needing to estimate an alignment for the entire taxon set. An initial, not necessarily
accurate, tree is needed to do the first decomposition. DACTAL introduces BLAST-based
Fast [117], a blast-based method to produce an initial decomposition without computing
a full multiple sequence alignment. However, any method could be used to estimate an
initial tree for the first decomposition, see Figure 2.3 for an overview.
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BLAST-based Fast. In the following, we give a high level description of BLAST-based
Fast and refer to Nelesen [117] for details. The method has two parameters, namely the
overlap o and the maximal subset size s. First, a blastdb of all input sequences is created.
Then an arbitrary sequence is chosen and ”blasted” against the whole blastdb. The best s
hits form a subset. Then the first hit on position at least s which is not already in a set,
is used as seed for the next blast search. This procedure is repeated until all sequences
are part of a set. The resulting decomposition may has insufficient overlap for a supertree
reconstruction and needs to be post processed. Given the set Si, let Sj be the set with
highest overlap among all created sets. For each Si with |Si ∩ Sj | < o, we choose some
sequence s ∈ Si ∩ Sj as seed for another blast search. We now iterate through the hit list
and add a sequence s′ to Si if and only if s′ ∈ Sj until |Si ∩ Sj | = o. The resulting sets are
the initial decomposition for the subset tree reconstruction step.

DACTAL decomposition. DACTAL uses a recursive padded separator-component
decomposition, where the padding factor p and the maximal subset size s can be specified
by the user. The separator-component X(e) is chosen using the centroid edge method
described in [141]. In a given tree T , the centroid edge e is the edge that induces the most
balanced split. When X(e) fails to be a separator in the (padded) short subtree graph of T ,
the maximal clique decomposition is used; though, Roshan et al. [141] never observed this
in practice. However, another strategy would be to simply do a breath first search among
the edges around e until one of these edges induces a valid separator.

Merging the subset trees. DACTAL uses SuperFine, which uses MRP to refine the Strict
Consensus Merger tree, to merge the subset trees. Let L(t1),L(t2), . . . ,L(tk) be the leaf
sets of the subset trees estimated on a DACTAL decomposition of T . Using the SCM (and
therefore also SuperFine) guarantees that the correct tree T is returned if each of the subset
trees ti = T |L(ti) [116].

Performance. DACTAL produces at least as accurate trees than ML analyses and even
more accurate trees when analyzing very large ”difficult-to-align” datasets. DACTAL showed
to be as accurate as SATé [98, 100] but much faster. DACTAL was able to analyze larger
datasets than SATé, including one dataset with about 28.000 rRNA sequences [116].

Limitations and possible improvements. As mentioned above, DACTAL uses SuperFine
to reconstruct the supertree from the subset trees. This is a good choice in the way that it
inherits the guarantee to return the true tree if all subset trees are correct trees from the
SCM. Usually the subset trees lead to reasonable well resolved SCM trees. The resolution of
the SCM may further improve during iteration. For a SCM tree with reasonable maximum
degree, SuperFine can resolve the polytomies in reasonable time using MRP. However, the
initial decomposition estimated by BLAST-based Fast tend to produce SCM trees with
high degrees [117]. For example, the SCM tree calculated from the initial Blast-based Fast
decomposition on the 16S.B.ALL (27643 taxa) dataset contained a polytomy of size 15533,
so that MRP failed to refine this supertree [117]. In this case a starting tree, computed on
a full alignment, had to be used to handle the dataset. This may be a limiting factor for
data with even more taxa and longer sequences. Further, there is no guarantee that the
SCM tree will not have high degrees regardless of which method is used for decomposition.
Another point for scalability is that we need to keep the subset size on a level that the base
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method can handle efficiently. For an increasing number of taxa this results in an increase
of the number of subsets. For more input trees, it becomes more likely that the SCM tree
is unresolved. A polynomial time supertree method that can handle thousands of taxa and
is at least as accurate as MRP would guarantee that DACTAL scales well for even larger
datasets.

The new approaches presented in this thesis focus on developing a polynomial time
solution to combine the subset trees in DACTAL-like divide-and-conquer approaches even
if the SCM tree may be (almost) unresolved.



3 Evaluation of Phylogenetic Tree
Reconstruction Methods

This chapter describes the setup (datasets, methods and metrics) we use for a thorough
evaluation of our new algorithms. We compare them under multiple criteria on different
simulated and biological datasets against commonly used (low-level and high-level) tree
reconstruction approaches. Since most of these methods produce unrooted trees, we ignore
the roots for all quality measurements, comparing the induced splits instead of the induced
clades.

3.1 Evaluation Criteria

3.1.1 Criteria for Simulated Data

For simulated data, we can compare estimated trees to the actual model tree. Unless
indicated otherwise, we assume the model tree to be fully resolved. Let P = L(Tm)− 3 be
the number of (positive/correct) splits induced by the fully resolved model tree Tm. We call
a split false negative (FN ) if it is not in the estimated tree but in the model tree; and false
positive (FP) if it is in the estimated tree but not in the model tree. Splits present in both,
the model tree and the estimated tree are true positives (TP). False negative (FNP ) and
false positive rates (FPP ) are common, tree size-independent metrics to measure the quality
of estimated trees. Comparing both, FN and FP rates, provides information about the
resolution of estimated trees. For a fully resolved tree, FN equals FP . Making an absolute
decision based on multiple quality criteria can be difficult, as there are different possibilities
to combine the split-based difference between two trees into a single metric. Which suit
best, depends on the trees that are compared.

Robinson-Foulds distance. A common way to compare trees by one single criterion is the
Robinson-Foulds distance (RF -distance) [135]. When comparing an estimated tree against
a fully resolved model tree, the RF -distance corresponds to FN + FP . To be comparable
among instances with different numbers of taxa, the Robinson-Foulds distance needs to
be normalized to FN+FP

2P . The RF -distance overestimates the quality of unresolved trees,
e.g. the empty (star) tree has the same normalized RF -distance (0.5) as a fully resolved
tree with 50% correct splits. Thus, the RF -distance is inappropriate when comparing trees
with varying resolutions.

F1-score. Hence, we will prefer the well-known F1 -score (harmonic mean of precision and
recall) as a single criterion to evaluate tree quality,

F1 =
2

1/precision + 1/recall
=

2TP

2TP + FP + FN
.

19
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To visualize results for multiple data replicates, we use boxplots. The data replicates are
independent and may have highly varying complexity; even for highly overlapping boxes, it
is possible that one method constantly outperforms another one for every data replicate.
Therefore, we additionally report the absolute number of how often one method outperforms
another for a given quality criterion (e.g. F1 -score).

3.1.2 Criteria for Biological Data

For biological data, the “true tree” to compare against is unknown; to this end, we resort to
other evaluation criteria: For supermatrix datasets, we evaluate the estimated trees against
the sequence data (supermatrix), using both the parsimony score and the log-likelihood score.
We use RAxML to optimize branch length and calculate the log-likelihood. For non-binary
trees, we resolve all polytomies randomly; this may discriminate against methods that
return highly unresolved trees.

The supertree datasets do not even contain sequence data to compare against. To this
end, we compare the estimated supertrees against the source trees. We measure the sum of
false negatives (SFN ) and sum of false positives (SFP) rate of a supertree T ′ compared to
the set source trees T ,

SFN rate =

∑
T∈T

⏐⏐S(T ) \ S(T ′|L(T ))
⏐⏐∑

T∈T |S(T )|
and SFP rate =

∑
T∈T

⏐⏐S(T ′|L(T )) \ S(T )
⏐⏐∑

T∈T |S(T ′)|
,

where T ′|L(T ) is the subtree of T ′ induced by the taxon set of tree T and S(T ) is the set of
splits induced by tree T . Note that optimal values of SFN rate and SFP rate depend on
the source trees: For conflicting source trees, it is not possible to find a supertree with both
SFN rate = 0 and SFP rate = 0. Hence, SFN rate and SFP rate cannot be compared
among different datasets.

3.2 Simulated Datasets

Simulated datasets allow us to evaluate the quality of the computed supertrees in an
absolute sense, by comparison to the model tree.

3.2.1 SMIDGen

We use the SMIDGen1 dataset as described by Swenson et al. [171]. The underlying
SMIDGen-protocol follows data collection processes used by systematists when gathering
empirical data, e.g. the creation of several densely-sampled clade-based source trees, and a
sparsely-sampled scaffold source tree. The dataset contains 30 model trees with 500 taxa
and 10 model trees with 1000 taxa. For each model tree, 15 clade-based source trees (for
500 taxa) or 25 clade-based source trees (for 1000 taxa) were generated. In addition, four
scaffold source trees containing 20 %, 50 %, 75 %, or 100 % of the taxa in the model tree (the
scaffold density) were generated. All source trees are unrooted. As the bootstrap weighting
schemes for BCD supertrees requires bootstrap values, we performed bootstrap analyses for
the source trees using RAxML. The result trees of the combined analysis (CA) were taken
from Swenson et al. [171].

1https://sites.google.com/eng.ucsd.edu/datasets/dactalsuperfine

https://sites.google.com/eng.ucsd.edu/datasets/dactalsuperfine
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Ten instances from SMIDGen were excluded from the datasets as there is a bipartition
S, S′ of the taxa set such that each source tree of the instance contains taxa from either S
or S′, but no source tree exists that spans both S and S′. For such instances the supertree
problem is underdetermined, as we can arbitrarily combine a supertree for the source trees
on S with a supertree for the source trees on S′.

Rooting unrooted source trees. While MRP uses unrooted trees as input, for BCD the
source trees have to be rooted. Unfortunately, the source trees of the SMIDGen and some
biological datasets (see Table 3.3) are unrooted, and rooting trees is not straightforward. It
is obvious that the position of the roots in the source trees influences the BCD supertree,
and badly rooted source trees decrease the quality of the resulting supertree. A simple
method for this purpose is “midpoint rooting” that searches for the longest distance between
any two taxa in the tree, then roots the tree at the midpoint between these two taxa.
However, this method is generally considered error-prone. The arguably best method to
root phylogenetic trees is to use an outgroup which is considered during computation of the
multiple sequence alignments for each source tree.

Computing the GSCM supertree during preprocessing allows for a more powerful
alternative: Since the source trees are unrooted, the root of the supertree is of no interest,
either. To this end, we do not have to ensure that all source trees are correctly rooted
but rather that the roots we insert into the source trees are consistent and do not conflict
with each other. To this end, we first root the GSCM supertree by, say, midpoint rooting.
Next, we use the rooted GSCM supertree to find compatible rootings for the source trees:
We root each unrooted source tree T such that it has minimum conflict with the GSCM
tree. For that, we consider the induced subtree of the GSCM supertree, restricted to the
leaf set L(T ). We consider the split A|B that corresponds to removing the root node from
the induced tree. Next, we search for an edge in T such that the corresponding split C|D
has minimum conflict min{|A ∩ C| , |B ∩D|} with this root split, and root T at this edge.
After transitionally rooting all input trees, we compute the BCD supertree for this set of
rooted trees. Finally, we remove the root from the BCD supertree and output its unrooted
counterpart. This method is just a heuristic to minimize the error we add to the source
trees by rooting them.

For a fair comparison between rooted an unrooted supertree methods, data with rooted
input trees should be used and the resulting supertrees should be evaluated without
considering the roots as described above.

3.2.2 SMIDGen Outgroup

We simulated the rooted SMIDGen Outgroup (SMIDGenOG) dataset following the
SMIDGen-protocol [171]. Each replicate consists of multiple clade-based source trees
using a densely-sampled subset of taxa from one clade of the model tree, plus a single
scaffold source tree which uses a sparsely-sampled subset of the taxa from the entire model
tree. We generate 30 model trees with 1000 (500/100) taxa. For each model tree, we
generate a set of 30 (15/5) clade-based source trees and four scaffold source trees containing
20 %, 50 %, 75%, or 100 % of the taxa in the model tree (the scaffold density). We set up
four different source tree sets: each of them containing all clade-based trees and one of the
scaffold trees, respectively. Unless indicated otherwise, we strictly follow the protocol of
Swenson et al. [171] (see also Figure 3.1 for details):
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1. Generate model trees. We generate model trees using r8s [145] as described by
Swenson et al. [171]. To each model tree, we add an outgroup. The branch to the
outgroup gets the length of the longest path in the tree, plus a random value between
0 and 1. This outgroup placement guarantees that there exists an outgroup for every
possible subtree of the model tree.

2. Generate sequences. Universal genes appear at the root of the model tree and
do not go extinct. We simulate five universal genes along the model tree. Universal
genes are used to infer scaffold trees. To simulate non-universal genes, we use a gene
“birth-death” process (as described by Swenson et al. [171]) to determine 200 subtrees
(one for each gene) within the model tree for which a gene will be simulated. For
comparison, the SMIDGen dataset evolves 100 non-universal genes. Simulating a
higher number of genes increases the probability to find a valuable outgroup. Genes
(both universal and non-universal) are simulated under a GTR+Gamma+Invariable
Sites process along the respective tree, using Seq-Gen [131].

3. Generate source alignments. To generate a clade-based source alignment, we
select a clade of interest from the model tree using a “birth” node selection process
(as described by Swenson et al. [171]). For each clade of interest, we select the three
non-universal gene sequences with the highest taxa coverage to build the alignment.
For each source alignment, we search in the model tree for an outgroup where all
three non-universal genes are present and add it to the alignment.

To generate a scaffold source alignment, we randomly select a subset of taxa from
the model tree with a fixed probability (scaffold factor) and use the universal gene
sequences.

4. Estimation of source trees. We estimate Maximum Likelihood (ML) source trees
using RAxML with GTR-GAMMA default settings and 100 bootstrap replicates. We
root all source trees using the outgroup, and remove the outgroups afterwards.

The resulting source tree sets contain between 8% and 15% contradicting clades compared
to the model tree. A single source tree contains between 0% and 35% contradicting clades
(see Table 3.1 for details).

3.2.3 SMIDGen Outgroup 5500

To show the practical benefit of a polynomial time method, we needed a dataset of reasonable
size to lead the local search heuristics to a point where they would not converge in reasonable
time. We created the large and also challenging SMIDGen Outgroup 5500 (SMIDGenOG-
5500) dataset containing an average number of 5500 taxa and between 37104 and 62495
characters for each of the 10 replicates. We still follow the idea of several densely-sampled
clade-based source trees, and sparsely-sampled scaffold source trees as described by Swenson
et al. [171]. Since the reconstruction time of the source trees increases exponentially with
the number of taxa, we created 505 (500 clade-based and 5 scaffold) source trees with a
size between 75 and 125 taxa for each replicate. This results in source trees of roughly the
same size, so that the data look more like created during a divide-and-conquer approach.

1. Generate model trees. We generated 10000 taxa model trees as described in
Section 3.2.2 for the SMIDGenOG dataset.
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Table 3.1: Summary statistics over all replicates for all SMIDGenOG datasets. Since all
source trees and model trees are fully resolved, the number of false negative clades is always
equal to the number of false positive clades. We report the amount of contradicting clades
of clade-based and scaffold source trees compared to the model tree. Conflicts within the
source trees is the amount of clades in the source trees that conflict with at least one clade
in the source tree set.

100 Taxa 500 Taxa 1000 Taxa 5500 Taxa

Dataset

#Source trees 6 16 31 505
#Scaffold trees 1 1 1 5

#Taxa

Maximum 101 501 1001 7245
Mean 94.36 457.79 906.96 5376.6
Median 79.5 407 843 5046.5
Minimum 72 326 691 3910

Per
clade-based
source tree

Maximum 80 309 568 124
Mean 35.3 65.12 72.69 94.56
Median 35.5 102.5 46.5 79.5
Minimum 15 17 18 74

Conflicts
to model
tree (%)

Maximum 50 38.1 35 35.05
Mean 8.4 9.06 9.09 5.95
Median 10.44 10.42 8.76 5.91
Minimum 0 0 0 0

Per scaffold
source tree

Maximum 36.36 24.72 22.91 5.43
Mean 9.13 10.92 11.39 3.44
Median 15.89 7.77 12.21 3.58
Minimum 0 4.31 6.32 1.27

Per source
tree set

Conflicts
within
source
trees (%)

Maximum 23.13 21.87 22.17 14.46
Mean 11.9 15.05 16.55 10.78
Median 15.4 12.67 16.84 9.98
Minimum 2.14 7.12 10.52 7.91
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Figure 3.1: Exemplary work flow of data simulation for one replicate of the SMIDGenOG
dataset with 1000 taxa. Grey lines in trees and alignments indicate deleted data.
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2. Generate sequences. Universal genes appear at the root of the model tree and do
not go extinct. We simulated 45 universal genes along the model tree. Universal
genes are used to infer scaffold trees. To simulate non-universal genes, we used the
gene “birth-death” process, as described by Swenson et al. [171], and determined 1000
subtrees (one for each gene) of the model tree. Gene sequences (both universal and
non-universal) are simulated under a GTR+Gamma+Invariable sites process along
the respective tree, using Seq-Gen [131] and contain 5000 nucleotides.

3. Generate source alignments. Each clade-based source alignment was generated
by concatenating three randomly selected non-universal gene sequences and shrinking
them to their common taxon set. We repeated this process until we found 500 different
source alignments with 75 to 125 taxa each. We reapplied the process if the resulting
500 source alignments did not had sufficient taxon overlap.

To generate the scaffold source alignments, we concatenated three randomly selected
universal gene sequences and shrank them to 100 randomly picked taxa.

4. Estimation of source trees. Source trees are estimated as described for the
SMIDGenOG dataset (see Section 3.2.2). For time reasons, we performed only 25
bootstrap replicates.

3.2.4 SuperTriplets Benchmark

The creation protocol of this dataset is very different from the SMIDGen protocol, and
contains neither branch lengths nor bootstrap values.

Ranwez et al. [133] generated an ultrametric model tree with 100 ingroup taxa using
r8s [145]. One outgroup taxon was a posteriori added resulting in a 101-taxon model tree.
They created 50 rooted 101-taxon trees with the same topology as the model tree but with
different branch lengths and thus different global evolutionary rates. For each of these trees,
they generated nucleotide alignments of 101 taxa using Seq-Gen [131] under a Kimura
[89] model with transition to transversion ratio of 2.0. The number of aligned sites was
uniformly drawn from 200 to 1000 bp. For each alignment, ingroup taxa were randomly
deleted with a probability d = 25, 50 and 75% following the procedure firstly introduced by
Eulenstein et al. [47]. For each of these alignments, a Maximum Likelihood tree was created
using PhyML [65] under the Kimura [89] model. Each source tree returned by PhyML was
then rooted using the outgroup. This procedure was repeated 100 times to get 100 data
replicates for every deletion rate (25%, 50% and 75%). After all, they generated subsets of
(10, 20, 30, 40 and 50 trees) from each source tree set that still contain the full taxon set.
For summary statistics of this dataset see Table 3.2
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Table 3.2: Summary statistics of the SuperTriplets Benchmark [133]. All source trees and
model trees are fully resolved, thus the number of false negative clades is always equal to
the number of false positive clades. We report the amount of contradicting clades compared
to the model per source tree. Conflicts within the source trees is the amount of clades in
the source trees that conflict with at least one clade in the source tree set.

101 Taxa

Dataset Deletion Rate (%) 25 50 75 25 50 75
#Source trees 10 10 10 50 50 50

Per source
tree

#Taxa

Max. 101 101 101 101 101 101
Mean 78.22 55.3 35.06 76.55 51.83 29.63
Median 93.5 75 63.5 86 75.5 62.5
Min. 61 38 20 61 34 20

Conflicts
to model
tree (%)

Max. 79.71 80 81.48 79.71 80 84.21
Mean 18.17 19.99 23.46 18.36 20.17 23.76
Median 18.22 6.02 22.16 20.54 22.96 21.43
Min. 0 0 0 0 0 0

Per source
tree set

Conflicts
within
source
trees (%)

Max. 74.77 66.67 44.7 89.43 79.55 69.21
Mean 48.04 40.84 28.99 71.15 61.92 48.61
Median 40.59 48.33 38.63 70.83 65.33 54.74
Min. 22.05 15.9 8.84 49.25 42.74 36.89

3.3 Biological Datasets

Simulated data tend to have the disadvantage that the signal is ”too strong”, and almost
any method returns high quality results. Therefore, we have to ensure that findings made
for simulated data are also supported by evaluations on biological data. We use data from
three large-scale supermatrix studies on bees (1376 taxa, 19 source trees, see Hedtke et al.
[70]), saxifragales (950 taxa, 51 source trees, see Soltis et al. [160]), and legumes (2228
taxa, 38 source trees, see McMahon and Sanderson [108]). To generate source trees for
the supermatrix datasets, we split the combined alignment into its components. For every
resulting alignment with more than three taxa, we calculated an ML source tree with
bootstrap values, using RAxML with GTR-GAMMA default settings and 100 bootstrap
replicates. The combined analysis trees of the bees [70] and saxifragales [160] datasets are
Maximum Likelihood trees (CA-ML). The legumes combined analysis tree is a Maximum
Parsimony tree (CA-MP) [108]. Furthermore, we evaluate methods on seven supertree
datasets, namely placental mammals (116 taxa, 726 source trees, see Beck et al. [8]),
marsupials (267 taxa, 158 source trees, see Cardillo et al. [26]), seabirds (121 taxa, 7 source
trees, see Kennedy and Page [87]), temperate herbaceous tribes (THPL, 586 taxa, 22 source
trees, see Wojciechowski et al. [189]), primates (85 taxa, 46 source trees, see Purvis [129]),
a mammalian phylogenomics case study (OMM, 33 taxa,12,958 source trees, see Ranwez
et al. [133]) and a supertree of the bats (916 taxa, 16 source trees, see Jones et al. [82]).
Most of these datasets were previously used to evaluate supertree methods; see Table 3.3
for additional information about the datasets.
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Table 3.3: Overview of the biological datasets used in our evaluation. Here, ‘#’ is the
number of input trees. We use two different types of studies, namely Supermatrix (SM) and
Supertree (ST) studies. BS (bootstrap values), BL (branch length) and R (roots) indicate
whether the input trees contain the respective feature. ”Conflicts” amount of clades in the
source trees that conflict with at least one clade in the source tree set.

Input Trees
Name Type #Taxa # Min Max Mean Med. Conflicts BL BS R
Bees [70] SM 1376 19 4 1273 264.68 24 77.33% ✓ ✓ ✗

Saxafragales [160] SM 950 51 10 419 53.76 30 70.61% ✓ ✓ ✗

Legumes [108] SM 2228 38 4 1648 102.74 13.5 52.32% ✓ ✓ ✗

Marsupials [26] ST 267 158 3 267 16.39 11.5 62.42% ✗ ✗ ✓

Mammals [8] ST 116 726 3 116 12.8 7 85.58% ✗ ✗ ✓

Seabirds [87] ST 129 7 15 90 32.14 22 23.71% ✗ ✗ ✓

THPL [189] ST 587 20 10 140 45.9 41.5 29.46% ✗ ✗ ✗

Primates [129] ST 85 48 9 67 21.62 19.5 48.82% ✗ ✓ ✓

OMM [133] ST 33 12958 6 33 27.8 29 96.25% ✓ ✗ ✓

Bats [82] ST 936 16 5 209 58.5 52.5 0.00% ✗ ✗ ✓

3.4 Evaluated Methods

We apply the evaluation setup described above to compare the performance of our new
developed methods against a representative set of established tree reconstruction methods,
namely Matrix Representation with Parsimony (MRP), SuperFine(+MRP), FastRFS, and a
combined analysis approach using either ML (CA-ML) or MP (CA-MP), see Table 3.4. For
MRP, we use the majority consensus in those cases where more than one most parsimonious
tree is found, as this variant performed better than the strict consensus in our evaluations.
BCD Beam Search also returns multiple trees; in such cases, we return the tree with the
best BCD score.

Previous evaluations clearly suggest that other supertree methods [6, 13, 21, 31, 34, 35,
47, 124, 133, 151, 153, 159, 173, 187] are inferior to MRP and SuperFine(+MRP) with
respect to supertree accuracy (e.g. FN -,FP rate or RF -distance) and, in some cases, also
running time [20, 21, 92, 171–173]. We do not evaluate weighted MRP [138], as the above-
mentioned evaluation studies indicate that it is not more accurate than SuperFine but often
slower than CA-ML. SuperFine uses the GSCM with Overlap scoring as a preprocessing
method. Since its resolution has a remarkable impact on the performance of SuperFine,
we also report results for the GSCM implementation used by SuperFine (see Section 5.2).
BCD on the other hand, uses our improved implementation of the GSCM with the new
Unique-Clade-Lost scoring which is evaluated in Section 4.7.

3.5 Reliability of accuracy measurements against the source
trees

For biological datasets, we do not know the true supertree, so that we have to compare
the estimated supertrees against the source trees for evaluation. In this section we use the
simulated datasets, for which we know the model tree, to evaluate how the SFN rate and
the SFP rate behave for different methods on the different datasets. This is important to
get an intuition how to interpret the results on biological data. We calculate SFN rates
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Table 3.4: Overview of the methods we compare in our evaluation and their major
differences. For each method, we refer to the implementation(s) we have evaluated.

Method Combination Algorithm Objective Function

GSCM [173]
(see Chapter 4)

Supertree
(High-Level)

Deterministic,
polynomial time

none

BCD
(see Chapter 5)

Minimizes the number of character
deletions in the matrix representa-
tion of the source trees (complemen-
tary to MRC/SFIT).

FastRFS [178]
Minimizes the Robinson-Foulds dis-
tance to the source trees (constrained
search space).

MRP [174]

Local search
heuristic

Minimizes the number of character-
state changes in the matrix represen-
tation of the source trees.

SuperFine [173]

Minimizes the number of character-
state changes in the matrix repre-
sentation of the source trees (after
dividing the problem into sub-
problems).

CA-ML [161]
Supermatrix
(Low-Level)

Maximizes the likelihood for a given
supermatrix.

CA-MP [174]
Minimizes the number of character-
state changes for a given supermatrix.

and SFP rates for all simulated datasets and compare them with the true FN rates and
FP rates. To do so, we have to pre-empt partial results for methods we present and evaluate
later on in this thesis. Here, we focus on the behaviour of evaluation criteria and not on
the performance of tree reconstruction methods.

Swenson et al. [172] showed that SFN rate and SFP rate do not correlate well with
true FN rate and FP rate on SMIDGen and, in some cases, may actually show a slightly
negative correlation. Here, we made similar findings. In general, SFN rate and SFP rate
do not correlate well with true FN rate and FP rate and are also less distinguishing than
FN rate and FP rate (see Figures 3.2 to 3.4 and A.4 to A.10).

The behaviour of SFN rate and SFP rate is dataset dependent. On the SMIDGenOG
dataset, neither the method with the best FN rates and FP rates nor the model tree show
the best SFN rates and SFP rates (see Figure A.1). In contrast, on the SMIDGen 5500
dataset, the model tree has the best SFN rates and SFP rates, but the supertree that is
most similar to the model tree has worse SFN rates and SFP rates than other supertrees
that are less similar to the model tree (see Figure A.2). For the SuperTriplet benchmark,
the results for SFN rate and SFP rate are similar to those of FN rate and FP rate, but
again we found that the model tree has not the best SFN and SFP rate (see Figure A.3).
Furthermore, SFN rate and SFP rate are less distinguishing than FN rate and FP rate.
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Figure 3.2: Comparison of SFN rate against FN rate (left) and SFP rate against FP rate
(right) between BCD (Unit weight and Bootstrap values), MRP, SuperFine and CA-ML
on the 1000 taxa SMIDGenOG dataset. The curves are the linear regression line and the
shadow around a line shows the 95% confidence interval for that regression.

SFN rate and SFP rate show also biases dependent on tree reconstruction methods.
For all simulated datasets we found that MRP and SuperFine, when evaluated with SFN
and SFP rate, are better than they appear in a comparisons against the model tree (see
Figures 3.2 to 3.4). Furthermore, we found slightly negative correlations between SFN rate
and FN rate as well as between SFP rate and FP rate for SuperFine and in some cases
also for MRP. For methods that take support values into account (e.g. bootstrap values
or branch length), we found that they, when evaluated with SFN rate and SFP rate, are
worse than they appear in a comparisons against the model tree (see Figures 3.2 and 3.3).
This is due to the fact that support values are not considered when calculating SFN rates
and SFP rates. CA-ML trees have the worst SFN rates and SFP rates by simultaneously
having the best FN rates and FP rates (see Figures 3.2, A.4 and A.5). This is not surprising,
hence the CA-ML trees are not computed from the source tree. Sampling errors in the
source trees are one explanation for these discrepancies. Nevertheless, the source trees
are the information we have to use when reconstructing a supertree, and SFN rate and
SFP rate allow us to compare how good a supertree reflects the input trees. Note, if most
of the input trees are wrong, no method will estimate the correct tree, but a method may
still reach good SFN and SFP rates.

For this reasons, results of source tree-based evaluation criteria have to be interpreted with
some care and we will report likelihoods or parsimony scores calculated on the underlying
sequence data if available. Finally, the MRP score is the parsimony score against the MR;
we found that results for this score have the same qualitative characteristics as to those for
SFN and SFP rates, and are deferred to the Appendix A.
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Figure 3.3: Comparison of SFN rate against FN rate (left) and SFP rate against FP rate
(right) between BCD (Unit weight, Branch length and Bootstrap values), MRP and
SuperFine on the 5500 taxa SMIDGenOG dataset. The curves are the linear regression line
and the shadow around a line shows the 95% confidence interval for that regression.

Figure 3.4: Comparison of SFN rate against FN rate (left) and SFP rate against FP rate
(right) between BCD Unit weight, FastRFS, MRP and SuperFine on the SuperTriplets
Benchmark with 75% deletion rate. The curves are the linear regression line and the shadow
around a line shows the 95% confidence interval for that regression.



4 Collecting Reliable Clades Using the
Greedy Strict Consensus Merger

In Section 2.3 we classified the GSCM [79, 140] as a conservative supertree method; it
produces reliable clades which are likely to be part of the correct supertree. We can use
these clades to reduce the search space when estimating supertrees using a better resolving
supertree method (e.g. Bad Clade Deletion Supertrees). The number of reliable clades
returned by GSCM is highly dependent on the merging order of the source trees. Although
the GSCM only returns clades that are compatible with all source trees, we find that it
likewise produces clades which are not supported by any of the source trees (bogus clades).
These bogus clades do not necessarily have to be part of the supertree. With the objective
of improving the GSCM approach as a preprocessing method for rooted input trees, we
describe a rooted version of the GSCM, introduce new scoring functions, describe a new
randomized GSCM algorithm, and show how to combine multiple GSCM results.

Algorithm 1 Strict Consensus Merger
1: function scm(tree T1, tree T2)
2: X ← L(T1) ∩ L(T2)
3: if |X| ≥ 3 then ▷ Otherwise, the merged tree will be unresolved.
4: calculate T1|X and T2|X
5: TX ← strictConsensus(T1|X , T2|X)
6: for all removed subtrees of T1 and T2 do
7: if collision then ▷ Subtrees of T1 and T2 attach to the same edge e in TX

(see Figure 4.1)
8: Insert all colliding subtrees at the same point on e by generating a

polytomy.
9: else

10: Reinsert subtree into TX without violating any of the bipartitions in T1

or T2.
11: end if
12: end for
13: return TX

14: end if
15: end function

4.1 Strict Consensus Merger (SCM)

For a given pair of trees T1 and T2 with overlapping taxon sets, the SCM [79, 140] calculates
a supertree as follows (see Algorithm 1). Let X = L(T1)∩L(T2) be the set of common taxa
and T1|X and T2|X the X-induced subtrees. Calculate TX = strictConsensus(T1|X , T2|X).

31
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Insert all subtrees, removed from T1 and T2 to create T1|X and T2|X , into TX without
conflicting with any of the clades in T1 or T2. If removed subtrees of T1 and T2 attach to
the same edge e in TX , a collision occurs. In that case all subtrees attaching to e will be
inserted at the same point by subdividing e and creating a polytomy at the new vertex (see
Figure 4.1). Note that neither the strict consensus nor the collision handling inserts clades
into the supertree TX that conflict with any of the source trees.

B CA DX Y

BA CZ D

BA DC

BA CD

BA DC BA DCZX Y

Source Trees Backbone Trees

Strict Consensus SCM Supertree

Figure 4.1: Example SCM run including collision handling. The backbone trees T1|X and
T2|X are merged using the strict consensus. The remaining subtrees of T1 and T2 are colored
in green and blue, respectively. Both subtrees attach to the same edge in TX (red). The
green and blue subtrees are inserted into TX by generating a polytomy (collision handling).

4.2 Greedy Strict Consensus Merger (GSCM)

The GSCM [79, 140] algorithm generalizes the SCM idea to combine a collection T =
{T1, T2, . . . , Tk} of input trees into a supertree T with L(T ) =

⋃k
i=1 L(Ti) by pairwise

merging trees until only the supertree is left (see Algorithm 2). Let score(Ti, Tj) be a
function returning an arbitrary score of two trees Ti and Tj . At each step, the pair of trees
that maximizes score(Ti, Tj) is selected and merged, resulting in a greedy algorithm. Since
the SCM does not insert clades that contradict any of the source trees, the GSCM returns
a supertree that only contains clades that are compatible with all source trees.

4.3 Tree Merging Order

Although the SCM for two trees is deterministic, the output of the GSCM is influenced by
the order of selecting pairs of trees to be merged, since the resulting number and positions
of collisions may vary.

Let T1, . . . , Tn be a collection of input trees we want to merge into a supertree using the
GSCM. When merging two trees, the strict consensus merger (SCM) accepts only clades
that can be safely inferred from the two source trees. In case of a collision during reinsertion
of unique taxa, the colliding subtrees are inserted as a polytomy on the edge where the
collision occurred.
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Algorithm 2 Greedy Strict Consensus Merger
1: function gscm(trees {T1, T2, . . . , Tk})
2: S ← {T1, T2, . . . , Tk}
3: while |S| ≥ 2 do
4: Ti, Tj ← pickTreePair(S) ▷ return best tree pair regarding score(Ti, Tj)
5: S ← S \ {Ti, Tj}
6: Tscm ← scm(Ti, Tj)
7: S ← S ∪ {Tscm}
8: end while
9: return Tscm

10: end function

If collisions of different merging steps occur on the same edge, the polytomy created by
the first collision may cause the following collisions to not occur. Such obviated collisions
induce bogus clades (see Figure 4.2) which cannot be inferred unambiguously from the
source trees and hence should not be part of the supertree. A clade C of a supertree T =
GSCM(T1, . . . , Tn) is a bogus clade if there is another supertree T ′ = GSCM(T1, . . . , Tn)
(based on a different tree merging order) that contains a clade C ′ conflicting with C (see
Figures 4.2a and 4.2c). Note that bogus clades cannot be recognized by comparison to the
source trees since they do not conflict with any of the source trees T1, . . . , Tn. All clades in
the GSCM supertree that are not bogus, are called reliable clades.

Because of these bogus clades the GSCM supertree with the highest resolution may not
be the most accurate supertree. Since, clades that are used to limit the search space of
better resolving methods will be part of the final supertree (even if they are wrong), it is
important to prevent bogus clades. But to use the GSCM as an efficient preprocessing, we
want to determine a preferably large number of the reliable clades. Hence, we need a scoring
functions that maximizes the number of reliable clades by simultaneously minimizing the
number of bogus clades.

4.4 Scoring Functions

We present three novel tree selection scoring functions that produce high quality GSCM
supertrees with respect to F1 -score and number of unique clades (unique in terms of not
occurring in a supertree resulting from any of the other scorings). In addition, we evaluate
the original Resolution scoring [140], as well as the Unique-Taxa and Overlap scorings [173].
Let uc(T, T ′) = V(T|L(T )\L(T ′) \ L(T )) be the set of unique clades of T compared to T ′.

Unique-Clades-Lost scoring (UCL): Minimize the number of unique clades that get lost:

score(Ti, Tj) = −
((
|uc(Ti, Tj)| − |uc(scm(Ti, Tj), Tj)|

)
+
(
|uc(Tj , Ti)| − |uc(scm(Ti, Tj), Ti)|

))
Unique-Clade-Rate scoring: Maximize the number of preserved unique clades:

score(Ti, Tj) =
|uc(Ti, Tj)|+ |uc(Tj , Ti)|

|uc(scm(Ti, Tj), Ti)|+ |uc(scm(Ti, Tj), Tj)|
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Collision scoring: Minimize the number of collisions:

score(Ti, Tj) = −( number of edges in scm(Ti, Tj) where a collision occurred)

Unique Taxa scoring [173]: Minimize the number of unique taxa:

score(Ti, Tj) = −|L(Ti)∆L(Tj)|

Overlap scoring [173]: Maximize the number of common taxa:

score(Ti, Tj) = |L(T1) ∩ L(T2)|

Resolution scoring [140]: Maximize the resolution of the SCM tree:

score(Ti, Tj) =
|V(scm(Ti, Tj))| − |L(scm(Ti, Tj))|

|L(scm(Ti, Tj))| − 1

4.5 Combining Multiple Scorings

In general, supertrees created with the GSCM using different scoring functions contain
different clades. To collect as many reliable clades as possible, we compute several GSCM
supertrees using different scoring functions and combine them afterwards.

Reliable clades between all possible GSCM supertrees are pairwise compatible for a
given set of source trees. In contrast, bogus clades can be incompatible between different
GSCM supertrees (see Figure 4.2). Thus, every conflicting clade has to be a bogus clade.
By removing incompatible clades we may eliminate bogus clades but none of the reliable
clades when combining the GSCM supertrees. To do so, we simply calculate a semi-strict
consensus [24] tree of all GSCM supertrees. It should be noted that bogus clades are only
eliminated if they induce a conflict between at least two supertrees (see Figure 4.2). Hence,
there is no guarantee to eliminate bogus clades.

Let Combined-3 be the combination of the Collision, Unique-Clade-Rate and Unique-
Clades-Lost scoring functions. Furthermore, Combined-5 combines the Collision, Unique-
Clade-Rate, Unique-Clades-Lost, Overlap and Unique-Taxa scoring functions.

4.6 Randomized Tree Merging Order

Generating many different GSCM supertrees increases the probability of both detecting all
reliable clades and eliminating all bogus clades. To generate a larger number of GSCM
supertrees, randomizing the tree merging order of the GSCM algorithm may be more
suitable than using a variety of different tree selection scorings. To this end, we replace
pickTreePair(S) in Algorithm 2 with randomlyPickTreePair(S) that picks a pair of
trees from S with probability:

P (Ti, Tj) =
score(Ti, Tj)∑

Ta,Tb∈S,a̸=b

score(Ta, Tb)
, i ̸= j

Running the randomized GSCM for different scoring functions multiple (k) times allows us
to generate a large number of supertrees containing different clades. The resulting trees are
combined using a semi-strict consensus as described in the previous section. For combined
scorings (Combined-n) with n different scoring functions we calculate k

n supertrees for each
of the scoring functions and combine all k supertrees using the semi-strict consensus.
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Figure 4.2: Example where the collision handling inserts bogus clades (red) into the
supertree. Bogus clades are induced by obviated collisions, which are are prevented by a
previous collision on the same edge. Supertrees (a) and (c) are estimated on the same set
of source trees but contain conflicting clades ((ABXZ) conflicts with (ABXY)) induced by
different merging orders. The correct supertree is (b).

4.7 Results

We find the influence of scoring functions and randomization to increase with the size of
the input data (as expected for greedy algorithms). Thus, we present only the 1000 taxa
dataset. The overall effects are similar for all datasets (see Appendix A).

The scaffold factor highly influences the quality of the supertrees (see Figures 4.3 and 4.4).
In general, all scoring functions profit from a large scaffold tree. In particular, for a scaffold
factor of 100 % nearly all scorings perform equally well and better than for all other scaffold
factors. In that case, the scaffold tree contains already all taxa of the supertree which
simplifies the GSCM problem since no collision occurs, when the taxon set of one tree is a
subset of the taxon set of the other tree. Thus, starting with the scaffold tree and merging
the remaining source trees in arbitrary order leads to the optimal solution. However, the
Resolution and Unique-Taxa scoring functions do not necessarily pick the scaffold tree in
the first step, and therefore, do not necessarily lead to an optimal solution. In contrast, the
Overlap scoring — which does not perform well for small scaffold tree sizes (20 %, 50 %) —
produces optimal solutions for a scaffold factor of 100 %.

Comparing the different scoring functions, we find that in general, the FN -rate varies
more than the FP -rate (see Figure 4.3). Our presented scoring functions (Collision, Unique-
Clade-Lost, Unique-Clade-Rate) decrease the FN -rate, without increasing the FP -rate (see
Figure 4.3). This leads to the highest F1 -scores for all scaffold factors (see Figure 4.4a).
They clearly outperform the Resolution, Overlap and Unique-Taxa scorings for scaffold
factors 50% and 75%. The differences in the F1 -scores are significant (p-values below
0.000033). For a scaffold factor of 20% the improvements of our scoring functions in
comparison to Unique-Taxa are not significant. For a scaffold factor of 100 % the Overlap
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Figure 4.3: FN -rates (left) and FP -rates (right) of single scorings functions (Overlap,
Unique-Taxa, Collision, Unique-Clades-Lost, Unique-Clade-Rate) and their combinations
(Combined-3,Combined-5) for all scaffold factors (20 %, 50 %, 75 %, 100 %) of the 1000-taxon
dataset. The Combined scorings are the semi-strict consensus of the supertrees calculated
by the respective scoring functions. The error bars show the standard error.

scoring function is on par with our scoring functions (all of them return the trivial optimal
solution). The differences between Collision, Unique-Clade-Lost and Unique-Clade-Rate
are not significant. Nevertheless Unique-Clade-Lost provides the most robust and input
independent results. For scaffold factors of 20% and 50%, Resolution and Overlap show
significantly worse (p-values ≤ 0.000006) F1 -scores than all other scoring functions (see
Figure 4.4a). There is no significant difference (p-values > 0.09) between Resolution and
Overlap scoring. For scaffold factors of 75% and 100%, the Resolution scoring function
performs significantly worse than all others. For a scaffold factor of 75%, there is no
significant difference between Unique-Taxa and Overlap scoring. For a scaffold factor
of 100%, the Overlap scoring function performs better than Unique-Taxa, which is still
significantly better than Resolution.

Even for equally-performing scoring functions, the resulting trees are often different
(except for scaffold factor 100 %). Thus, we combine the GSCM supertrees computed with
different scorings using the semi-strict consensus. Since the Resolution scoring function
performs badly, we only combine the remaining five scoring functions. The combination of
different scoring functions strongly improves the FN -rate. Thus, the combined supertrees
have improved F1 -scores for all scaffold densities (see Figure 4.4b). The combination of
Collision, Unique-Clade-Lost, Unique-Clade-Rate, Overlap and Unique-Taxa (Combined-
5) results in the best F1 -score. However, Combined-5 has a significantly worse FP -rate
than all other scorings. In contrast, the combination of Collision, Unique-Clade-Lost,
Unique-Clade-Rate scoring (Combined-3) shows no significant decline of the FP -rate.

To collect as many TP clades as possible, we use a randomized tree merging order
generating multiple (k) supertrees which are combined using the semi-strict consensus.
Generally we found that randomization further improves the F1 -score in comparison to the
single scoring functions (see Figure 4.4d). Compared to the Combined-5 scoring there is
only an improvement of the F1 -score for scaffold factors of 50% and 75%. Again, these
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improvements come with a significant increase of the FP -rate. Already for 25 random
iterations, all presented scoring functions perform on almost the same level (see Figure 4.4c).
As the number of random iterations increases, the difference between the reported scoring
functions vanishes.

4.8 Discussion

We found that collisions not only destroy source tree clades but also introduce bogus clades
to the supertree. Thus, the scoring functions that minimize the number of collisions perform
best. Combining multiple GSCM supertrees using a semi-strict consensus method helps to
better resolve the supertree.

We presented three novel scoring functions (Collision, Unique-Clades-Lost, Unique-
Clade-Rate) that increase the number of true positive clades and decrease the number of
false positive clades of the resulting supertree. Unique-Clades-Lost score is the overall
best-performing scoring function.

Combining the supertrees calculated by these three scorings using a semi-strict consensus
algorithm further increases the number of true positive clades without a significant increase
of the false positives.

For almost all presented scoring functions, the highest F1 -scores and best resolved trees
are achieved using randomized GSCM. Randomization indeed increases the number of true
positive clades but also significantly increases false positive clades. Thinking of GSCM as a
preprocessing method, those false positive clades will have a strongly negative influence on
the quality of the final supertree.

Depending on the application, “best performance” is characterized differently. The most
conservative approach is our Unique-Clade-Lost scoring function which increases the TP -
rate by 5 % while decreasing the FP -rate by 2 % compared to Overlap. To use GSCM as a
preprocessing method, we recommend a combination of Collision, Unique-Clade-Lost and
Unique-Clade-Rate (Combined-3) scoring. In comparison to the Overlap scoring function,
this increases the number of true positive clades by 9% without a significant increase of
false positive clades. The overall best F1 -score can be achieved with a combination of
randomized Collision, Unique-Clade-Lost, Unique-Clade-Rate, Overlap and Unique-Taxa
(Combined-5) scoring.
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(a) Comparison of scoring functions (Over-
lap, Unique-Taxa, Resolution, Collision,
Unique-Clades-Lost, Unique-Clades-Rate).

(b) Comparison of single scoring functions
(Overlap, Unique-Taxa, Collision, Unique-
Clades-Lost, Unique-Clade-Rate) and their
combinations (Combined-3,Combined-5).

(c) Comparison of scoring functions (Over-
lap, Collision, Unique-Clades-Lost) with
(25, 100 and 400 random iterations) and
without randomization.

(d) Comparison of single (Overlap, Unique-
Taxa, Collision, Unique-Clades-Lost) and
combined (Combined-5) scorings. Both
with 400 random iterations and without
randomization.

Figure 4.4: F1 -scores of different scoring functions (including combined scorings) with and
without randomization for all scaffold factors (20%, 50%, 75%, 100%) of the 1000 taxa
dataset. The Combined scorings are the semi-strict consensus of the supertrees calculated
by the respective scorings. The integer value after the keyword “Rand” represents the
number of randomized iterations. The error bars show the standard error.



5 Bad Clade Deletion Supertrees

We introduce the Bad Clade Deletion (BCD) supertree algorithm, a polynomial time top-
down heuristic that minimizes the number of column deletions of a matrix representation
(Baum-Regan encoding), so that the resulting matrix allows for a directed perfect phylogeny.

BCD applies the FlipCut idea for a new objective function, namely Minimum Column
Deletion. It inherits the polynomial worst-case running time but is even faster in practice.
We integrate meta information (bootstrap values and branch lengths) into BCD. Further,
we present a preprocessing that uses a set of reliable clades to reduce the search space. In
particular, we use the Greedy Strict Consensus Merger (see Section 4.2) to calculate the set
of reliable clades.

5.1 The Bad Clade Deletion Algorithm

Let T be the set of source trees. Assume that the matrix M := M(T ) does not allow for a
perfect phylogeny; how can we “correct” the matrix M accordingly? Brinkmeyer et al. [21]
introduced a top-down heuristic for the MRF problem that uses minimum cuts in a graph
representation of M . This algorithm, in turn, is based on the method of Pe’er et al. [125]
for deciding the incomplete perfect phylogeny problem.

Minimum Column Deletion. Here, we consider a different way of “correcting” the
matrix M : We remove a minimum number of columns (characters) from M , so that
the resulting matrix allows for a perfect phylogeny. This formulation allows for an intuitive
phylogenetic interpretation: Instead of removing columns from the matrix, an equivalent
formulation of the problem is to remove clades from the source trees. Let the incompatibility
graph of M be a graph that contains a vertex for each matrix column and an edge between
all vertices that correspond to incompatible matrix columns. Minimizing the number of
columns to delete corresponds to a minimum vertex cover on the incompatibility graph. This
is complementary to maximizing the number of characters to keep (maximum independent
set on the incompatibility graph), which is the objective function of the well known MRC.
Hence, the optimal solution for one of these problems is also an optimal solution for the
other one; both optimization problems are NP-hard but not identical with respect to
parameterized complexity and approximability.

Algorithm description. The Bad Clade Deletion supertree algorithm can be considered
as the FlipCut algorithm with a particular choice of weights in the underlying graph (see
below). Hence, all algorithmic results from Brinkmeyer et al. [21] directly carry over to the
BCD algorithm (see Figure 5.1).

A high-level description of the algorithm is as follows: The algorithm proceeds in a
recursive top-down fashion. In each recursive call, a subset of taxa and a subset of characters
are provided; the subset of taxa is added as a clade to the supertree. A graph is constructed
from the input matrix M and the two subsets, as proposed in Section 2.3. If this graph

39
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Figure 5.1: The BCD algorithm: For a subset S of taxa (green) and a subset D of
characters (black), G(S,D) is a bipartite graph, where an edge {t, c} is present if and only
if M [t, c] = 1, for t ∈ S and c ∈ D. A character vertex is semiuniversal if M [t, c] ∈ {1, ?} for
all t ∈ S. For minimum cut computation, we transform G(S,D) into H(S,D′). Supertree
clades have the same colors (red or blue) as their corresponding connected components.
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is disconnected, the algorithm directly recurses on the connected components; otherwise,
we search the graph for a minimum cut and remove the cut before recursing. If multiple
optimal cuts exist, we choose one randomly. Recursion stops when the subset of taxa
contains only a single taxon.

We now give the details of the BCD algorithm (an example is given in Figure 5.1). For
a subset S ⊆ {1, . . . , n} of taxa and a subset D ⊆ {1, . . . ,m} of characters, G(S,D) is a
bipartite graph with vertex sets S and D, and edges as follows: First, we build a graph
such that an edge {t, c} is present if and only if M [t, c] = 1, for t ∈ S and c ∈ D. A
character vertex c ∈ D is semiuniversal (in S,D) if M [t, c] ∈ {1, ?} holds for all t ∈ S. We
immediately remove all semiuniversal character vertices from the graph [125].

The BCD algorithm proceeds as follows: We start with S ← {1, . . . , n} and D ←
{1, . . . ,m}. We then construct the graph G(S,D). If this graph is not connected, we
recurse on each connected component S′, D′ of the BCD graph with |S′| > 1. The sets S′

of taxa computed during the course of the algorithm form a hierarchy which is transformed
into the desired supertree.

If G(S,D) is connected at some point, the algorithm disconnects the graph by means of
modifying the input matrix M . In contrast to the FlipCut algorithm, we do not allow
edges to be removed, so all edges in G(S,D) get weight infinity. The only valid operation to
split G(S,D) is deleting a subset of character nodes from D. For the moment, we assume
all characters c ∈ D in G(S,D) to have unit weight w(c) := 1. The weight of a bipartition
of taxon vertices is the minimal cost of a set of character deletions, such that the two
subsets of taxon vertices lie in separate components of the resulting graph. We search for a
bipartition of minimal weight. To efficiently find a minimum bipartition, we fix one taxon
vertex s, and for all other taxon vertices t we search for a minimum s-t-cut, allowing only
character deletions. Among these cuts, the cut with minimal weight is the solution to the
above problem. To find a minimum s-t-cut with character deletions, we transform G(S,D)
into a directed network H(S,D′) with capacities: Each taxon vertex t is also a vertex in
the network, each character vertex c is transformed into two vertices c− and c+ plus an
arc (c−, c+) in the network, and an edge {t, c} in G(S,D) is transformed to two arcs (t, c−)
and (c+, t) in the network. Arcs (c−, c+) have capacity w(c), all other arcs have infinite
capacity. By the generalized min-cut max-flow theorem [46, 57], finding a minimum cut in
G(S,D) is equivalent to computing a maximum flow in the network H(S,D′) [58]. Note
that for all taxa s, t, the maximum s-t-flow in H(S,D′) equals the maximum t-s-flow.

The BCD algorithm proceeds in n− 1 phases ; in each phase, the clade S ⊆ {1, . . . , n} is
added to the output, and a bipartition of S is computed. The algorithm proceeds greedily,
by choosing the best bipartition in every phase.

Lemma 1 (Brinkmeyer et al. [21]). Given an input matrix M over {0, 1, ?} for n taxa and
m clades, the BCD algorithm computes a supertree in O(mn3) time.

From the algorithm we can infer that each clade in the supertree is supported by at least
one of the source trees: We only ever remove columns from the matrix; we never modify or
add to the matrix.

Lemma 2. Given an input matrix M over {0, 1, ?} the BCD algorithm computes a supertree
where each clade is supported by at least one source tree and no clade contradicts all of the
source trees.

On the other hand, the reconstructed supertree does not necessarily minimize the number
of inner nodes among all supertrees that are consistent with the same matrix columns:
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Figure 5.2: Example where Pe’er’s algorithm does not return a minimal tree

BCD supertrees may contain several clades where a single joint clade would be sufficient
[23, 81]. Our method inherited this property from the underlying algorithm of Pe’er et al.
[125], and shares it with supertree methods that build on the algorithm by Aho et al. [1]
(see Figure 5.2). If there are are no contradictions in the input data the BCD algorithm falls
back to the algorithm of Pe’er et al. [125] which guarantees to return a perfect phylogeny if
one exists.

Lemma 3 (Pe’er et al. [125]). Given a compatible input matrix M over {0, 1, ?} the BCD
algorithm returns the corresponding directed perfect phylogeny.

Note that this is not guaranteed by supertree methods that use local search heuristics (e.g.
MRP, MRF, MRL, MRC).

5.1.1 Weighting Strategies

By weighting G(S,D), we can incorporate information about the “reliability of clades”
(characters). Here, we show how BCD uses branch lengths and bootstrap values:

• Unit weights (UW). All characters in the BCD graph have weight one. Using unit
weights, a minimum cut is the removal of the smallest set of character vertices that
disconnects the graph.

• Branch lengths (BL). Brinkmeyer et al. [21] found that a clade that stems from a
long branch is more stable (and, therefore, more likely to be correct) than a clade

with a short branch. The weight of a character c is set to wBL(c) :=
l(e)

lmax
, where l(e)

is the length of the branch e in the source tree that generated clade/character c, and
lmax the longest branch of all source trees.

• Bootstrap values (BS). If available, we can use bootstrap values to weight the
BCD graph. A bootstrap value tells us how sure we are about a clade. The weight of

a character c is set to wBS(c) :=
b(v)

100
, where b(v) is the bootstrap value of the node

v in the source tree corresponding to c.

• Tree weight. In addition to the weightings above, it is possible to modify the weights
for source trees independently. For this, we multiply any of the above scores with a
factor individually given for each source tree. This is not used in our evaluations.

5.1.2 GSCM Preprocessing

Since BCD is a greedy heuristic, restricting the search space in a sensible way will help to
improve its accuracy. One way to do so, is to use a set of reliable clades, for which it is
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Figure 5.3: Data reduction of G(S,D) using GSCM clades. Taxon vertices (S) displayed
in green, character (D) vertices in black. Character vertices induced by the GSCM tree are
blue.

highly likely that they are part of the correct supertree. To use reliable clades for BCD, we
add them to the matrix M , and give each corresponding character vertex infinite weight.
Reliable character vertices cannot be deleted during minimum cut computations; they are
only deleted from G(S,D) when they become semiuniversal, implying that they are already
part of the supertree. All taxon vertices t1 . . . tn in G(S,D) that are connected to the same
reliable character vertex have to end up in the same connected component of G(S,D), and
can be merged into a single taxon vertex. We then delete all trivial character vertices, each
of which is connected to exactly one taxon vertex. This reduces the number of vertices in
G(S,D) without changing its minimum cut (see Figure 5.3).

We estimate reliable clades using the Greedy Strict Consensus Merger (GSCM) supertree
method as it is described in Chapter 4. Per default we apply the Unique-Clades-Lost scoring,
which outperformed other known scorings but scales quadratically instead of linearly with
the number of input trees.

5.1.3 Merging Clade Vertices

The most time-consuming part of the BCD algorithm is searching for minimum cuts of
G(S,D). Using the GSCM tree can strongly reduce running times of this step; here, we
describe another algorithm engineering trick we use to further improve running times. To
reduce the size of matrix M , it is common practice to merge identical matrix columns,
summing up their weights. Identical matrix columns occur only rarely in the input matrix,
as this requires input trees with identical taxon sets. Recall that our method allows the
user to define an individual weight for each input tree. When searching for minimum cuts
in G(S,D), ‘0’ and ‘?’ entries in M are treated identical, which allows us to merge clade
vertices corresponding to trees with different taxon sets. Hence, we merge all clade vertices
in G(S,D) that are adjacent to the same set of taxon vertices, and sum up their weights.
This can vastly reduce the number of vertices in G(S,D) without changing the minimum
cut.

Merge clade vertices
that are connected
to the same taxa 

Source trees

Build G(S,D)

Merge

Build matrix

C1
C2

C3
C4

E

C1 C2 C4C3 C1 C2,C4C3

Figure 5.4: Merging clades connected to the same set of taxa in G(S,D)
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Figure 5.5: F1 -score (left) and running times (right) of the evaluated tree reconstruction
methods on the simulated SMIDGenOG (1000 Taxa) dataset. Running times are on a
logarithmic scale. On the x-axis are the different scaffold factors plotted.

5.2 Results

SMIDGenOG Results

We now describe results for the SMIDGenOG dataset with 30 replicates and 1000 taxa in
the model tree. We found that using the GSCM “guide tree” consistently improves BCD
supertree accuracy (see Figures A.24 to A.26); on large datasets, it also reduces running
times. In the following, we omit results for BCD without GSCM. We repeated our analysis
for smaller datasets with 500 and 100 taxa model trees, as well as the original SMIDGen
dataset, but found no significant differences (see Figures A.20 to A.22, A.24 and A.25).
Finally, we found that the FlipCut supertree method, being the predecessor of BCD,
performs considerably worse than BCD (see Figures A.20 to A.22); to this end, we will not
consider FlipCut in the following.

Accuracy. Using GSCM as an independent supertree method shows the by far worst
overall performance (F1 -score) of all methods (see Figure 5.5) but shows best FP rate
which qualifies it as a preprocessing method (see Figures A.26c and A.26d). BCD (Unit
Weight and Branch Length) already beats MRP for scaffold factors 20% and 50%. For
scaffold factor 75%, the difference to MRP is not significant, and for scaffold factor
100% it performs worse than MRP. The differences between BCD Unit Weight and BCD
Branch Length are not significant. BCD Bootstrap performs significantly better than any
other evaluated supertree method, for all scaffold factors. CA-ML shows the overall best
performance (significant for scaffold factors 20%, 50%, 75%). For scaffold factor 100%, the
difference between BCD Bootstrap and CA-ML is not significant. Whereas SuperFine has
a significantly higher F1 -score than MRP for scaffold factors 20% and 50%, it performs
equally for scaffold factor 75% and 100%. FastRFS results quality depends on the scaffold
factor: While it performs much worse than MRP for small scaffold factors, it is almost on
par with MRP and SuperFine for scaffold factor 100%. Nevertheless, the small difference
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Figure 5.6: Performance of different supertrees as a starting tree for CA-ML with RAxML
regarding F1 -score (left) and running times (right) on the simulated SMIDGenOG (1000
Taxa) dataset. Running times are on a logarithmic scale. On the x-axis are the different
scaffold factors plotted.

to SuperFine and MRP is significant. Comparing CA-ML with different starting trees
demonstrates that supertrees can be used to improve CA-ML trees (see Figure 5.6). Here,
all CA-ML trees show a significantly better F1 -score than the supertree methods. We found
that a better starting tree results in a better CA-ML tree: CA-ML using the BCD Bootstrap
supertree as starting tree has a significantly higher F1 -score than the default CA-ML tree,
for all scaffold factors. The trees with the overall best F1 -score on the SMIDGenOG dataset
were estimated using CA-ML with the BCD Bootstrap starting tree.

Running time. With running times between 4 and 8 seconds (including GSCM
preprocessing), all BCD variants are much faster than all other evaluated methods (see
Figure 5.5). Note that BCD (including GSCM preprocessing) is faster than the GSCM
implementation used by SuperFine. SuperFine needs around 30s on average for one replicate
of this dataset; FastRFS need at most 1 minute. MRP is by far the slowest supertree
method, with running times of 40 minutes for scaffold factor 20%, and 8 minutes for scaffold
factor 100%. Local search heuristics for MRP seem to converge faster for data with large
scaffold trees, whereas the increased number of characters appears to increase the running
time of the other methods. CA-ML with default starting tree requires between 2 and 6
days, whereas BCD requires between 4 and 8 seconds. Running times of CA-ML decrease
with increasing starting tree accuracy, and CA-ML with BCD starting tree is up to two
times faster than CA-ML with default starting tree (see Figure 5.6).

SMIDGenOG-5500 Results

MRP did not finish in reasonable time; hence, we report its results after 1 day, 7 days
and 14 days of running time. In view of the small number of replicates, we refrain from
reporting significance.
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Figure 5.7: F1 -score (left) and running times (right) of MRP, SuperFine, GSCM, FastRFS
and BCD on the simulated SMIDGenOG (5500 Taxa) dataset. MRP did not finish after
14 days of computation; we report MRP results after 1 day, 7 days and 14 days. Running
times are shown on a logarithmic scale.

Accuracy. BCD Branch Length reaches the overall best accuracy, outperforming all other
methods for 10 of 10 replicates. BCD Bootstrap accuracy is considerably worse, which
might be attributed to the small number of bootstrap replicates, see the discussion below;
it outperforms MRP and SuperFine in 8 of 10 cases. GSCM is consistently outperformed
by all other methods. In all cases, FastRFS shows a lower F1 -score than all methods but
BCD Unit Weight with GSCM (for which it is outperformed in 9 of 10 cases) and GSCM
(see Figure 5.7).

Running time. This dataset clearly demonstrates the benefit of polynomial time
algorithms, see Figure 5.7: MRP did not finish after 14 days of computation, whereas BCD
requires about 7h. FastRFS requires about about 12h. SuperFine needs up to 2 days, and
will fall back to MRP computation when the GSCM preprocessing is not effective.

SuperTriplets Benchmark Results

For the SuperTriplets Benchmark, we discuss the results for different deletion rates with
10 and 50 source trees (see Figure 5.8). For additional evaluations on the SuperTriplets
dataset see Figures A.31 to A.33.

Accuracy. For both, 10 and 50 input tree data, BCD performs worse than MRP, SuperFine
and FastRFS; this is particularly the case for 50 input trees and 75% taxa deletion. If
the number of characters is sufficiently large (25% deletion), BCD Unit Cost performs
almost on par with MRP, SuperFine and FastRFS. With increasing data deletion rates
BCD Unit Cost performs worse. For deletion rates of 50% and 75%, BCD Unit Cost shows
a significantly lower F1 -score than MRP, SuperFine and FastRFS. MRP, SuperFine and
FastRFS are on par for deletion rates of 25% and 50%. For a deletion rate of 75%, MRP
outperforms SuperFine and FastRFS performs worse than SuperFine. Hence the accuracy
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Figure 5.8: F1 -score of SuperFine, MRP, FastRFS and BCD on the simulated SuperTriplets
Benchmark. Results for 10 input trees (left) and 50 input trees (right). The x-axis shows
different data deletion rates within each source tree, see Section 3.2.4 for details.

of BCD - Unit Cost is similar to the evaluation on SMIDGenOG, we would also expect an
comparable accuracy increase for BCD Branch Length and BCD Bootstrap.

Results on biological datasets

Accuracy. Next, we describe SFN rate and SFP rate results for all biological datasets,
see Figures 5.9 and 5.10. Recall that low SFN and SFP rates do not necessarily correspond
to a supertree of good quality, see the supplementary material for details. Bootstrap
values and branch lengths are available for all supermatrix datasets (bees, saxifragales
and legumes). Further, bootstrap values are available for the primates dataset, whereas
branch length are available for the OMM dataset. All other supertree datasets contain
neither bootstrap values nor branch length, prohibiting the use of BCD Bootstrap (BCD-
BS) and BCD Branch Length (BCD-BL). By definition, the GSCM tree contains only
splits that do not conflict with any source tree, which results in SFP rate = 0 for all
datasets. For the biological datasets the GSCM tree is less resolved than for the simulated
datasets; in addition, resolution varies strongly between biological datasets, see Figure 5.9.
Consequently, we find that SuperFine trees are largely identical to MRP supertrees, and
both methods show comparable performance. Again, BCD performs best when used in
conjunction with GSCM and bootstrap values. BCD supertrees and CA-ML trees show
higher SFN and SFP rates than SuperFine and MRP trees. The CA-MP tree of the
legumes dataset has lower SFP rate than the SuperFine, MRP and BCD trees, but the
highest SFN rate of all estimated trees. For the OMM dataset, the SuperFine GSCM
calculation did not finish within 1 day, and the GSCM tree used by BCD did not contain
a single clade; hence, no results are reported for these methods. Findings regarding the
MRP-Score are qualitatively similar to those for SFN and SFP rates, see Figure A.23. For
the supermatrix datasets, we evaluated parsimony and log-likelihood scores, see Figure 5.11.
We find that MRP, SuperFine, and at least one variant of BCD have better parsimony
scores than the CA-ML/-MP trees. This is despite the fact that for the legumes dataset, the
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Figure 5.9: Sum of false negative rates (SFN rate) of supertrees against source trees for
the biological supertree datasets. Most of the supertree datasets contain neither bootstrap
values nor branch lengths, prohibiting the use of BCD bootstrap and BCD branch length.
CA-ML/-MP cannot be applied to the supertree instances.
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Figure 5.10: Sum of false positive rates (SFP rate) of supertrees against source trees on
the biological supertree datasets. Most of the supertree datasets contain neither bootstrap
values nor branch lengths, prohibiting the use of BCD bootstrap and BCD branch length.
CA-ML/-MP cannot be applied to the supertree instances.
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Figure 5.11: Comparison of GSCM, MRP, SuperFine, BCD and the Combine Analysis
(CA-ML/MP) with regards to parsimony scores (top) and log-likelihood scores (bottom)
for the biological supermatrix datasets.
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Figure 5.12: Running times (in hh:mm:ss) of GSCM, MRP, SuperFine and BCD for all
evaluated biological datasets. Running times of SuperFine and BCD-GSCM include the
time of the GSCM preprocessing step.
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combined analysis tree has been computed using the parsimony optimization criterion. In
all cases, SuperFine obtains the best parsimony scores. For the saxifragales dataset, BCD
Unit Weight (BCD-UW) and BCD-BS have better parsimony scores than MRP; on the
other datasets, BCD produces slightly worse parsimony scores than MRP. For saxifragales
and bees, CA-ML obtains the best log-likelihood scores, followed by SuperFine, MRP,
and BCD. For legumes, SuperFine obtains the best log-likelihood score, followed by MRP,
BCD-BS, and CA-MP.

Running time. MRP is again the slowest supertree method by far (see Figure 5.12), where
a variant of BCD is always the fastest. For data with many input trees compared to the
number of taxa (primates, mammals, OMM, marsupials), using the GSCM tree does not
speed up BCD and SuperFine.

5.3 Discussion

Our experiments with simulated data show that BCD can be an accurate and very fast
supertree method. In particular, combining Bad Clade Deletion supertree computation with
support values such as bootstrap values leads to excellent results, which are superior to MRP
and SuperFine. Unlike SuperFine and MRP, BCD has guaranteed polynomial worst-case
running time. Among three proposed weightings, we find that BCD supertree accuracy is
usually highest when using bootstrap values, followed by branch lengths and unit weights.
Even with unit weights, BCD can outperform Matrix Representation with Parsimony for
simulated data. Using the Greedy Strict Consensus Merger as a preprocessing step turned
out to be both robust and effective. We also evaluated the undisputed sibling reduction
as a preprocessing method [21] but found that results of this combination were clearly
dominated by BCD with GSCM. We also evaluated whether we can replace neighboring
clades by a single joint clade during post processing [23, 81, 125] but found that the effect
on supertree accuracy are negligible. The 5500 taxon dataset demonstrates the advantage
of a polynomial-time supertree method: MRP did not finish after 14 days on this dataset,
whereas BCD with branch lengths or bootstrap values never required more than a day of
running time. Recall that SuperFine is identical to MRP when the GSCM tree is fully
unresolved.

We also found that using an accurate supertree as starting tree for CA-ML can improve
its accuracy and reduce the running time. Using CA-ML with a BCD starting tree produced
the most accurate trees in our evaluation on simulated data, and also converges faster than
CA-ML with the default starting tree.

For the biological datasets, assessing accuracy is more intricate, as we lack an optimality
criterion that is known to correlate reliably with the structural supertree accuracy. Using
branch lengths and bootstrap values does not improve the accuracy of BCD as much as for
the simulated data. This may be attributed to the fact that the source trees in the biological
datasets have much weaker bootstrap support than those in the simulated datasets: For
example, 40% of the clades in the saxifragales dataset have bootstrap values below 50%.
The BCD supertrees contains only clades that are supported by at least one source tree;
consequently, the BCD algorithm may have to choose from a set of clades which are all
wrong. Ignoring clades with low bootstrap support is easy but will produce less resolved
results. The performance of SuperFine is similar to MRP for these datasets; this comes as
no surprise, since the GSCM tree is often largely unresolved, and SuperFine optimization
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is identical to the classical MRP optimization in these cases. Comparing the supertrees
against the input trees (SFN and SFP rates), MRP and SuperFine show considerably
better scores than BCD, but also than the CA-ML/MP, despite that the CA-ML trees
may be assumed to be the most accurate trees. These results coincide with findings for
simulated data evaluating SFN and SFP rates: There, MRP and SuperFine also showed
superior SFN and SFP rates compared to BCD and CA-ML, even when FN and FP rates
compared to the model tree were significantly worse. Therefore, we cannot safely conclude
which method performs best for biological data.





6 BCD Beam Search - Considering
suboptimal partial solutions in BCD
Supertrees

In Chapter 5 we found that the greedy search strategy performed by BCD struggles to
find a close-to-optimum solution on highly conflicting data when the meta information (e.g.
bootstrap values or branch length) is unreliable or not available (see Section 5.3).

Here, we present a beam search approach for BCD, to consider not only the best but the
k best solutions in every phase of the top-down construction of the supertree. We introduce
and evaluate an exact and a randomized subroutine to calculate suboptimal solutions. All
variants still have guaranteed polynomial running time. In our evaluation, we found that
the beam search approaches consistently outperform the “classical” BCD algorithm.

6.1 Bad Clade Deletion Beam Search

The BCD algorithm tries to minimize a global objective function: Namely, the total weight
of column deletions in the input matrix. Besides the theoretical amenity of this feature,
this allows us to compare solutions based on the objective function. But in fact, we can
extend this evaluation to partial solutions: At any point of the algorithm, we know the
quality of a partial solution, that is, the total weight of clade deletions that were required
up to this point. Clearly, this weight only increases during later steps of the algorithm. As
mentioned in Chapter 5 the BCD algorithm proceeds in n− 1 phases. An alternative view
of the algorithm will be helpful in the following: BCD computes the supertree by iteratively
refining a partial phylogenetic tree, which is a phylogenetic tree where several taxa can be
mapped to the same leaf. Initially, we have a partial phylogenetic tree with a single node
and all taxa attached to it. In each phase, the partial tree is refined by finding a bipartition
of the taxa attached to one of the leaves. For the moment, we ignore the case that taxa are
partitioned into q > 2 sets, corresponding to polytomies in the supertree, see below. Before
phase p, the partial tree has p leaves, partitioning the taxa into p sets.

We will now extend the greedy BCD algorithm by keeping more than one partial solution
“alive” in each phase, resulting in a beam search algorithm. The parameter k ≥ 1 determines
the number of partial solutions that are considered simultaneously; for k = 1 this is
equivalent to the original BCD algorithm. Formally, a partial solution P = (M, T, cost) of
order p consists of

1. a set M =
{
(S1, D1), . . . , (Sp, Dp)

}
such that S1, . . . , Sp is a partition of the taxa

S = {1, . . . , n}, and D1, . . . , Dp is a partition of the clade vertices D = {1, . . . ,m};

2. a partial phylogenetic tree T with p leaves, labeled by S1, . . . , Sp; and

3. a real number cost , the cost for matrix modifications up to this point.

55
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Before phase p of the beam search, we have a set P of |P| = k partial solutions of order p.
We transform this into a set P ′ of |P ′| = k partial solutions of order p+ 1. In the first step
of the algorithm, we start with a single partial solution with cost zero.

Now, we describe how to transform a partial solution P = (M, T, cost) of order p, into k
new partial solution of order p+ 1. For each of the p graphs G(Si, Di) for i = 1, . . . , p, we
compute the k best bipartitions. Out of the resulting pk cuts, we extract the best k cuts in
any of the graphs. We iterate over these cuts: Assume that the cut happens in the graph
G(S,D) for (S,D) ∈ M. By this cut, both the taxon set S and the clade vertex set D
are bipartitioned into sets S′, S′′ := S \ S′, and D′, D′′ := D \D′. We build a new partial
solution P ′ = (M′, T ′, cost ′) as follows:

1. SetM′ :=M\
{
(S,D)

}
∪
{
(S′, D′), (S′′, D′′)

}
;

2. resolve the node in T labeled S by two nodes S′, S′′ in T ′;

3. compute the new costs cost ′ := cost + cut where cut are the costs of the cut in
G(S,D).

We now evaluate the partial solutions that belong to the same phase p, based on the costs
generated so far: In each phase, we do our computations for each of the k partial solutions
P ∈ P . For each partial solution P , we compute k cuts instead of a single one, resulting in
k2 partial solutions. We then keep only the best k partial solutions in phase p+ 1, each of
which is used for computation of cuts in the next phase of the algorithm. See Algorithm 3
for a pseudo code of the algorithm described up to this point.

There is another pitfall we have to consider: In the original algorithm, the order in which
we processed the leaves of a partial solution was of no importance, as we eventually had
to resolve each leaf. For the beam search, this is no longer the case, as we search for the
k best partial solutions. To this end, the algorithm described above computes, for each
partial solution in phase p, k cuts in each of the p graphs G(Si, Di) for i = 1, . . . , p. This
would result in an additional O(n) factor in the total running time. But this is in fact
not a problem: In each phase, we record all k cuts for each of the p graphs G(Si, Di). For
each new partial solution of order p + 1, only one cut in some graph G(S,D) is chosen,
whereas all other graphs will reappear unchanged in the next phase. Hence, in the next
phase, only two graphs have to be searched for k best cuts: namely, the graphs G(S′, D′)
and G(S′′, D′′). For all other graphs, we already know the k best cuts from the previous
phase.

Finally, let us consider the case that a minimum cut results in more than two connected
components. This simply means that the resulting partial solution is of higher order than
p+ 1. When the algorithm is in phase p it will ignore all partial solutions of order above p;
in fact, if there exist k′ partial solution of order above p then we only have to compute
k − k′ instead of k cuts. The same holds true if G(S,D) does not require cutting, because
it already consists of two or more connected components.

It is understood that BCD Beam Search can be applied for any type of vertex weighting
in G(S,D), including Bootstrap weights, Branch Length weights, and Unit weights.
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Algorithm 3 BCD Beam Search
1: function bcdBeamSearch(G(S,D),k)
2: #Taxa← |S|
3: P ← initPartialSolutions(G(S,D))
4: while ∃(M, T, cost) ∈ P : |M| ≤ #Taxa do
5: P ′ ← {}
6: for all (M, T, cost) ∈ P do
7: for all (S,D) ∈M do
8: Cuts← calcuateCuts(G(S,D), k) ▷ Cuts may already have been

calculated in a previous iteration.
9: for all ((S′, D′), cutCost) ∈ Cuts do

10: S′′ ← S \ S′, D′′ ← D \D′

11: M′ ←M\
{
(S,D)

}
∪
{
(S′, D′), (S′′, D′′)

}
12: T ′ ← T where S is resolved by two nodes S′, S′′

13: cost ′ ← cost + cutCost
14: P ′ ← P ′ ∪ {(M′, T ′, cost′)}
15: end for
16: end for
17: end for
18: P ← P ′ reduced to the best k partial solutions
19: end while
20: return T1, . . . , Tk from P
21: end function
1: function initPartialSolutions(G(S,D))
2: M← {(S,D)}
3: T ← tree with a single root S
4: return {({(S,D)}, T, 0)}
5: end function
1: function calcuateCuts(G(S,D),k)
2: if G(S,D) is disconnected then
3: return {((S′, D′), 0)}
4: else
5: return {((S′

1, D
′
1), c1), ((S

′
2, D

′
2), c2), . . . , ((S

′
k, D

′
k), ck)} ▷ If cuts do not exist,

calculate them with cut enumeration (Section 6.2.1) or cut sampling (Section 6.2.2).
6: end if
7: end function
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6.2 Searching Suboptimal Vertex-cuts in the Pe’er Graph

For the beam search algorithm described above, we have to compute k different vertex-cuts
instead of a single minimum vertex-cut in the given graph G(S,D). This is achieved by
computing suboptimal cuts in the network graph H(S,D′). In the following, we present two
strategies for doing so; namely, suboptimal cut enumeration and random cut sampling (CS).

6.2.1 Cut Enumeration

Vazirani and Yannakakis [179] introduced an algorithm to enumerate the cuts of a network
with |V | vertices and |A| arcs in the order of non-decreasing weights, using O(|V |) maximum
flow computations between two successive outputs. Let H(S,D′) be a bipartite network
with n = |S| taxon vertices, m = |D′| clade vertices and n ≤ m. The network contains
|V | = n+m vertices and |A| = O(nm) arcs. A maximum flow of H(S,D′) can be calculated
in O(n2m) time by using the bipush variant of the preflow algorithm with dynamic trees, as
described in Ahuja et al. [2]. Since we are only interested in enumerating cuts that separate
the taxon set S, we do only need n instead of n+m max flow computations [53], which
leads to a running time of O(n3m) per cut. We have to calculate at most k2 cuts in each
of the O(n) partition steps of the BCD algorithm, which leads us to the following lemma:

Lemma 4. Given an input matrix M over {0, 1, ?} for n taxa and m clades and an integer
k ≥ 1, the Bad Clade Deletion beam search algorithm computes a supertree in O(k2n4m)
when using the Vazirani and Yannakakis [179] cut enumeration algorithm.

Hao and Orlin [67] found that the minimum cut of a network can be computed in
O(|V ||A| log(2 + |V |2

|A| )). Yeh et al. [193] presented an improved cut enumeration algorithm
that requires one maximum flow and two invocations of Hao and Orlins minimum cut
algorithm between two successive outputs. Further, Hao and Orlin [67] showed that
their algorithm calculates the minimum cut of a bipartite network with |S| ≤ |D′| in
O(|S||A| log(2 + |S|2

|A| )). For our network H(S,D′) this leads to O(n2m) to calculate a
minimum cut.

Lemma 5. Given an input matrix M over {0, 1, ?} for n taxa and m clades and an integer
k ≥ 1, the Bad Clade Deletion beam search algorithm computes a supertree in O(k2n3m)
when using the Yeh et al. [193] cut enumeration algorithm.

Algorithm engineering. We note that in practice, we usually have to compute much fewer
cuts than the k2 mentioned above: We start by computing k cuts for the best partial
solution; this gives us an upper bound for the k-th best cost in the active phase. Now,
when we consider the second-best partial solution, we can stop as soon as the computed
cost exceeds the upper bound; and we can update the upper bound in case we find partial
solutions that belong to the top k.

6.2.2 Cut Sampling

The cut sampling algorithm is inspired by the randomized algorithm of Karger and Stein
[84] for finding all minimum cuts in an undirected graph U(S,E) with a certain probability.
The algorithm recursively contracts edges of the graph and merges the connected vertices
into sets, until only two vertex sets are left. Edges are randomly drawn with probability
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Figure 6.1: Workflow of the cut sampling algorithm (see Section 6.2.1) including the
transformation from G(S,D) to U(S,E) and the two-step edge selection process we use
in the recursive contraction algorithm. Edges E(c) ⊆ E are those edges with color (clade-
vertex) c.

proportional to their edge weight. This contraction algorithm runs in O(|S|2) time and has
Ω(1/|S|2) probability of outputting a minimum cut. The algorithm requires O(|S|2 log |S|)
iterations to find a minimum cut in one of the trials with high probability (probability
converging to 1). Karger and Stein further presented a recursive contraction algorithm,
where the trials share their work, so that each of the trials can be executed in O(1) time.
The recursive contraction algorithm runs in O(|S|2 log |S|) time, and outputs a minimum cut
with probability Ω(1/log|S|). After O(log2 |S|) iterations, the probability to find a minimum
cut converges to 1, which results in an total running time of O(|S|2 log3 |S|).

Each of the trials returns a (potentially suboptimal) cut, and cuts with lower costs are
sampled with higher probability than cuts with higher costs. To this end, the algorithm can
also be used to generate a large number of suboptimal cuts without additional overhead:
In detail, we can calculate O(|S|2 log2 |S|) cuts in O(|S|2 log3 |S|) time.

To apply the contraction idea here, we transform the bipartite graph G(S,D) into a
simple undirected graph U = (S,E) with vertex set S. We insert edges to E so that for
each c ∈ D, all t ∈ S adjacent to c form a clique in U . Let E(c) ⊆ E be the set of edges
of the clique induced by c. Given the graph U , we choose the edge e ∈ E to contract
in a two-step approach. First, we randomly pick a clade vertex c ∈ D with probability
proportional to its weight. Second, we draw an edge e ∈ E(c) equally distributed, which is
then contracted as described by Karger and Stein [84]. We contract edges until only two
sets of vertices are left. These two vertex sets are a bipartition S′, S′′ of our taxon set S,
and the edges e ∈ E connecting S′ and S′′ correspond to the clade vertices we need to
delete in G(S,D) to induce this bipartition of S. See Figure 6.1 for an exemplary workflow
of the algorithm.

The above algorithm allows us to sample low-weight cuts with higher probability than
high-weight cuts. When selecting the edges as described above, there exists for each cut
in U(S,E) a vertex-cut in G(S,D) with the same partition and identical weight. With



60 6. BCD Beam Search

our modified edge selection process, we ensure that the probability of a clade vertex to be
chosen in each contraction step is proportional to its weight. But clade vertices with higher
degree are more likely to be deleted than clade vertices with lower degree and same weight.
Therefore, the above algorithm has no guarantee to find a minimum cut with a certain
probability, and we cannot guarantee that a minimum cut will be part of the output. But
we can calculate a minimum cut in O(|D| |S|2) time using the maximum flow approach,
and add it to the list of cuts.

The two-step approach needs O(|D| · |S|) time to choose and contract an edge, and O(|S|)
contractions are needed to produce a cut. Using the recursive contraction algorithm, we need
O(|D| |S|2 log3 |S|) time to calculate O(|S|2 log2 |S|) cuts. If we assume k ∈ O(|S|2 log2 |S|),
which is realistic in practice, this leads us to the following lemma:

Lemma 6. Given an input matrix M over {0, 1, ?} for n taxa and m clades and an integer
k ≥ 1 with k ∈ O(n2 log2 n), the Bad Clade Deletion Beam Search algorithm using cuts
sampling computes a supertree in O(kmn3 log3 n) time.

Algorithm engineering. Again, we can do some algorithm engineering to improve running
times in practice: We start by sampling cuts for the best partial solution; this again gives
us an upper bound for the k-th best cost in the active phase. Now, we check if the score
of the second-best partial solution plus the weight of an optimal cut (computed using the
max flow approach) exceeds the upper bound; in this case, no sampling is required for this
partial solution. We note that running time improvements by this trick are presumably
smaller than for cut enumeration, as we have to run the full sampling process if the optimal
cut does not result in a violation of the upper bound.

6.3 Results

We now describe results for different BCD Beam Search variants in comparison to BCD,
MRP and SuperFine on simulated and biological data.

SMIDGenOG Results

The SMIDGenOG dataset contains bootstrap values; to this end, we can evaluate BCD
and BCD Beam Search using the Bootstrap weighting.

Accuracy. On this dataset, BCD with unit weights is already on par with MRP and
SuperFine; BCD with bootstrap weights outperforms MRP and SuperFine. We ran BCD
Beam Search with k = 25 partial solutions. We find that BCD Beam Search with bootstrap
weights consistently outperforms any other evaluated methods with respect to F1 -score (see
Figure 6.2a); this is true for both the 500 and 1000 taxa dataset. On the 500 taxa dataset
with 120 instances, BCD Beam Search with cut enumeration outperforms BCD on 83
instance (19 ties), SuperFine on 111 instances (1 tie) and MRP on 113 instances (1 tie).
When using cut sampling it outperforms BCD on 68 instances (32 ties), SuperFine on 111
instances (1 tie) and MRP on 113 instances. On the 1000 taxa dataset with 120 instances,
BCD Beam Search outperforms BCD on 100 instance (7 ties) when using cut enumeration
and on 94 instances (17 ties) when using cut sampling. Both BCD Beam Search variants
outperform MRP on 119 and SuperFine on all 120 instances.
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(a) F1 -scores

(b) Running times

Figure 6.2: F1 -scores (a) and running times (b) of SuperFine, MRP, BCD and BCD
Beam Search variants on the simulated SMIDGenOG dataset. Results for the 500 taxa
dataset (left) and the 1000 taxa dataset (right). The x-axis shows different scaffold factors
in percent.
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Figure 6.3: Running times of BCD Beam Search with different numbers of suboptimal
solutions (k = 1, k = 25, k = 50, k = 75 and k = 100) on the simulated SMIDGenOG
dataset. Results for the 500 taxa dataset (left) and the 1000 taxa dataset (right). The
x-axis shows different scaffold factors in percent.

Running time. We report running times for the SMIDGenOG dataset in Figure 6.2b. We
see that BCD Beam Search with cut enumeration is about two- (500 taxa) to three-fold
(1000 taxa) slower than SuperFine. Whereas BCD Beam Search with cut sampling is
slightly slower than SuperFine on the 500 taxa dataset, it is already slightly faster on the
1000 taxa dataset. As expected, the beam search is slower than the regular BCD algorithm;
namely up to 20-fold slower for cut enumeration and five-fold slower for cut sampling. But
notably, it is on average 10-/15-fold faster than MRP (500/1000 taxa) for cut enumeration
and 15-/46-fold faster than MRP (500/1000 taxa) for cut sampling. For the 1000 taxa
dataset, the average running time of BCD is less than 6 s. BCD Beam Search with cut
enumeration needs less than 2 min; BCD Beam Search with cut sampling and SuperFine
need less than 1 min; and MRP needs about 27 min.

The number of suboptimal solutions (k) shows a quadratic impact on the running time
for the beam search with cut enumeration, whereas the running time increases only linear
for beam search with cut sampling (see Figure 6.3). Further, we found that even for k = 100
the beam search with cut sampling is still less than 2-fold slower than SuperFine and still
clearly faster than MRP. With k = 100 the beam search with cut enumeration is always
faster than MRP.

SuperTriplets Benchmark Results

This dataset does not contain bootstrap values or branch lengths; to this end, BCD has
to be run with Unit Weights (UW) and, hence, showed suboptimal performance in our
previous evaluations (see Figure 5.8). We ran BCD Beam Search with k = 25 and k = 50
partial solutions (see Figure 6.4).



6.3 Results 63

Figure 6.4: F1 -score of SuperFine, MRP, BCD and BCD Beam Search variants on the
simulated SuperTriplets Benchmark. Results for 10 input trees (left) and 50 input trees
(right). The x-axis shows different data deletion rates within each source tree.

Accuracy. It is still the case that BCD supertrees are generally of lower quality than
MRP and SuperFine supertrees: For 10 input trees, BCD Beam Search performs on par
with MRP for deletion rate 25%; for 50 input trees, it is on par with MRP for deletion
rates 25% and 50%. For the remaining configuration it performs worse than MRP; this
is particularly the case for 50 input trees and 75% taxa deletion. But we observe that
BCD Beam Search reaches a significantly higher F1 -score than BCD, for all numbers of
input trees and taxa deletion rates. In contrast, we do not observe a significant increase of
F1 -score when considering k = 50 instead of k = 25 partial solutions.

BCD Beam Search with cut enumeration and k = 25 partial solutions produced a
supertree with higher F1 -score than BCD without beam search for 1212 of 1500 replicates;
of the remaining, 144 are ties. This is very similar for BCD Beam Search with cut sampling,
with 1191 wins and 146 ties. We stress that many replicates resulted in supertrees with
identical BCD Score, indicating the combinatorial complexity of this dataset.

Results for Biological data.

BCD Beam Search shows better (lower) SFN rates and SFP rates on all biological datasets
than the original BCD, see Table 6.1: We find that best SFN rates and SFP rates are
distributed between MRP, SuperFine, and BCD Beam Search, but no method constantly
outperforms the others over all datasets. This is remarkable, as most of the datasets does
not contain bootstrap values or branch lengths, and BCD Beam Search with Unit Weights
had to be applied. Recall, the bats data allow for a perfect phylogeny. The results for
this data show that BCD finds a perfect phylogeny if one exists whereas MRP may not.
For the supermatrix datasets BCD Beam Search reaches still constantly lower SFN rates
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Table 6.1: Sum of false negative rates and the sum of false positive rates of supertrees
against source trees on biological datasets. Most datasets do not contain bootstrap values,
prohibiting the use of Bootstrap weights. Best rates in each column are marked in bold.

SFN rate / SFP rate
Dataset Bees Saxafragales Legumes Primates
MRP 0.471/0.494 0.393/0.421 0.335/0.346 0.169/0.165
SuperFine 0.471/0.494 0.388/0.417 0.331/0.337 0.165/0.172

BCD UW 0.504/0.526 0.536/0.562 0.394/0.398 0.178/0.185
BCD BS 0.506/0.523 0.523/0.548 0.393/0.398 0.174/0.180

BCD-K25-Enum UW 0.495/0.513 0.523/0.537 0.400/0.393 0.172/0.178
BCD-K25-Enum BS 0.495/0.506 0.512/0.531 0.376/0.371 0.165/0.169
BCD-K25-CS UW 0.498/0.514 0.530/0.548 0.400/0.400 0.176/0.183
BCD-K25-CS BS 0.507/0.52 0.537/0.557 0.376/0.371 0.169/0.176

SFN rate / SFP rate
Dataset Seabirds THPL Mammals OMM Bats
MRP 0.153/0.159 0.190/0.328 0.361/0.532 0.386/0.425 0.063/0.015
SuperFine 0.127/0.206 n/a 0.358/0.534 n/a n/a

BCD UW 0.153/0.206 0.454/0.523 0.679/0.855 0.425/0.457 0/0

BCD-K25-Enum UW 0.122/0.175 0.239/0.320 0.633/0.808 0.386/0.417 0/0
BCD-K25-CS UW 0.122/0.175 0.250/0.334 0.682/0.858 0.388/0.420 0/0

and SFN rates but still improves BCD. As already shown in Section 5.2 the bootstrap
values do not improve results for the datasets (bees and saxafragales) where the bootstrap
support is low in general, whereas they work as expected for the legumes dataset with
better bootstrap support. Due to the stochastic nature of the cut sampling procedure, we
see that BCD Beam Search results differ between cut enumeration and cut sampling; the
cut enumeration approach tends to be more robust, as expected.

We do not have results for SuperFine on OMM because the GSCM did not finish in
reasonable time. Since the GSCM tree of the OMM data does not contain a single clade
(calculated with BCD), SuperFine results are identical to MRP anyways. For Bats and
THPL, SuperFine did not return a result due to too less overlap of the input trees in the
unrooted case.

6.4 Discussion

We presented a beam search algorithm that allows the BCD algorithm to consider the k
best partial solutions instead of only the optimal one, when partitioning the taxon set in a
top-down manner. BCD Beam Search has still guaranteed polynomial running time. We
introduced an algorithm to enumerate suboptimal solutions in non-decreasing order, and
a second algorithm to sample good partial solutions. Our evaluations on simulated and
biological data showed that both beam search approaches consistently improve BCD on
all evaluated datasets for k ≥ 25. Both methods for computing suboptimal cuts perform
roughly on par, but the enumeration algorithm tends to be more robust. However, the
sampling algorithm scales linearly with the number of suboptimal solutions to be considered,
whereas the exact enumeration algorithm scales quadratically in the worst case. We further
found that BCD Beam Search, especially when used together with Bootstrap weights, is on
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par with MRP and SuperFine for most of the biological datasets with regards to supertree
quality.





7 Conclusion

Accurate solutions for almost every task in phylogenetics result in NP-hard optimization
problems, so that non deterministic search heuristics are widely used. These methods
are highly accurate and fast enough as long as the data becomes not too large. Whereas
increasing sequence length can be handled fairly well by parallelization, many taxa are more
challenging, due to the problem that the accuracy of the heuristic approaches decreases for
a large number taxa.

In Chapter 2, we discussed the current state in phylogenetic tree reconstruction. We
discussed how the many different approaches work together and how they can be combined
to overcome limitations in scalability and accuracy. It turned out that supertree methods
are a key technology for divide-and-conquer approaches that can make highly accurate
but computational intense methods applicable for data with thousands of taxa. In divide-
and-conquer strategies, supertrees methods are used to combine subsets of the data where
phylogenetic trees were previously calculated by a more accurate base method. In this
context, the supertree method has to be able to handle the complete dataset in reasonable
running time; otherwise, it would be the limiting factor at some point.

In this thesis, we presented polynomial time approaches for the supertree problem that
can be more accurate than local search heuristics that are usually used. But measuring
accuracy is not trivial and should be done on different independent datasets. In Chapter 3,
we described our evaluation setup. We used multiple simulated datasets created by different
protocols. We developed a rooted version of the SMIDGen dataset and in particular
modified the protocol to be more feasible for a large scale dataset. Simulated data is very
imported, hence it is the only way to compare against a known truth. However, simulated
data reflects always what we think how the biological data were created and, hence, methods
often work as expected on these datasets. For that reason, it is important to check if results
can be validated on biological data. Thus, we also used ten different biological datasets for
evaluation. Three of them are supermatrix studies which we split apart to create source
trees for a supertree analysis. This allowed us to compare our results on biological data
against the sequence data instead of against the source trees. All this data is available1 2

and can be used for future evaluations.
In Chapter 4, we described improved scoring functions and randomized approaches to

collect reliable clades using the Greedy Strict Consensus Merger. With the ”Unique-Clades-
Lost” scoring, we found a scoring function that increases the number of reliable clades by
simultaneously reducing collision induced bogus clades. We further found that combining
multiple (e.g. randomized) GSCM trees improves the ratio of reliable clades per bogus
clade. However, from the point of view to use these clades to restrict the search space for a
subsequent supertree method, the ”unique clades lost” is, due to its low FP rate, the most
feasible option.

1https://bio.informatik.uni-jena.de/data/
2https://figshare.com/articles/BCD_Beam_Search_evaluation_data/6189113
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The main result of this thesis is Bad Clade Deletion, a polynomial time algorithm for
the supertree problem that is as accurate as the most accurate supertree methods when
using support values from the input trees. It is a greedy heuristic to minimize the number
of clades that have to be deleted from the source trees to make them compatible. BCD
can use the GSCM to restrict its search space. With unit weights BCD shows accuracy on
par with MRP for data with a moderate proportion of conflicts in the input. A strength of
this algorithm is that it can easily take advantage of support values (e.g. bootstrap values)
without an increase in complexity. When using bootstrap values, BCD can be even more
accurate than MRP and SuperFine.

We created the SMIDGenOG 5500 dataset with up to 62495 characters per replicate
to show that BCD easily handles very large datasets. BCD finished the computation in
less than 8 hours on average, whereas MRP could not finish after 2 weeks on any replicate.
Furthermore, BCD was significantly more accurate than any other evaluated method on this
large dataset. We also evaluated if a supertree can boost maximum likelihood estimation
when used as a starting tree. Here, we found that BCD with support values was the
only supertree method that significantly improved the accuracy of an ML analysis. The
combination of a BCD starting tree and maximum likelihood analysis produced the most
accurate trees on the SMIDGenOG dataset.

Our evaluations showed that BCD (especially without reliable support values) loses
accuracy when the input data is highly conflicting. For such data, we developed a beam
search approach that allows to take suboptimal partial solution into account to find a better
overall result. We developed two different strategies to compute suboptimal solutions: The
cut enumeration algorithm enumerates suboptimal solution with non-decreasing BCD score
and scales quadratically with the number of suboptimal solutions to be considered. The
cut sampling algorithm randomly samples solutions of good quality and scales linearly with
the number of suboptimal solutions to be considered. Both variants of the Beam Search
improved the accuracy of BCD on every dataset for already 25 partial solutions. The
improved accuracy comes to the cost of an increased running time, but it is still polynomial.

The BCD algorithm has, besides its running time, some promising characteristics for the
use in divide-and-conquer approaches. It guarantees to return the true tree if the input
trees are induced subtrees of the true tree. Minimizing clade deletions does never create
clades that are not supported by at least one source tree. Hence, we will not introduce
errors during the supertree step that were not already in the source trees. BCD can be
efficiently parallelized up to the number of taxa, which makes it even more scalable for
large datasets. Efficient thread-based parallelization is already implemented for the BCD
algorithm and has to be done for the Beam Search. It is worth to be noted that all runtime
measurements have been done in single threaded mode for better comparability, so that
even faster running times can be expected when using BCD in a multi core setup.

With BCD supertrees we presented an ultra-fast, very accurate and highly scalable
supertree approach that can easily take advantage of support values. Our evaluations
showed that BCD can improve phylogenetic tree reconstruction in many different scenarios.

Future Work

As mentioned in Lemma 5, the running time of the cut-enumeration can be improved when
using the Yeh et al. [193] cut enumeration algorithm.



69

We argued that support values can be very useful for supertree estimation. When using
Bayesian MCMC we get a distribution of trees and thus also a distribution of clades that
can be used as support values, but Yang and Zhu [192] showed recently that posterior
probabilities can be spuriously high on short internal ranches. Therefore, scoring function
that takes posterior probabilities and branch length into account has to be developed
for this data. Further, it is conceivable to include suboptimal clades from the source
tree sampling process in the supertree analysis with BCD. The challenge here is to find
a good trade-off between additional information and too much conflicting data for the
BCD supertree reconstruction. Evaluations with whole ”suboptimal” tree topologies from
Bayesian MCMC runs showed that this approach adds too many conflicting information to
the source trees [180].

The basis for BCD is that the rooted incomplete perfect phylogeny problem can be solved
in polynomial time, whereas this task is NP-hard for the uprooted case. Unfortunately,
trees reconstructed from sequence data are usually unrooted. On the other hand, biologists
are usually interested in rooted trees and will therefore add an outgroup to their data.
We already discussed that finding an outgroup is not an easy task. But assuming we
have an appropriate outgroup for our data, then this could be easily added to the subsets
of the decomposition; based on this outgroup all subset trees could be rooted. For
supertree reconstruction this outgroup can be removed. As a second strategy, where
no global outgroup is needed, we could use the tree-based decomposition itself to find
individual outgroup for each subsets. Here, the outgroup of a subset is a taxon that
has high distance in the guide tree and is not part of an overlapping subset. As the
general idea of adding an outgroup is contrary to dividing the data into subsets of
closely related taxa, it may be useful to do an initial alignment without the outgroup
and adding the outgroup afterwards (e.g. using MAFFT). Future evaluations have to
show if such an approach can be as accurate as using an unrooted supertree method,
such as SuperFine. If this is the case, BCD is the missing piece for a very flexible and
scalable divide-and-conquer setup for highly accurate large scale phylogeny reconstruction.
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A Appendix

Source Tree-based Criteria – Supplementary Results

Figure A.1: Comparison of FN rate and FP rate (top) against SFN rate and SFP rate
(bottom) for different tree reconstruction methods on the SMIDGenOG 1000 taxa dataset.
Each dash on the ordinal x-axis shows the results for a different scaffold factor.
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Figure A.2: Comparison of FN rate and FP rate (top) against SFN rate and SFP rate
(bottom) for different tree reconstruction methods on the SMIDGenOG 5500 taxa dataset.
Each dash on the ordinal x-axis shows the results for a different scaffold factor.
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Figure A.3: Comparison of FN rate and FP rate (top) against SFN rate and SFP rate
(bottom) for different tree reconstruction methods on the Supertriplet dataset with 75%
data deletion for different numbers of input trees (x-axis).
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Figure A.4: Comparison of SFN rate against FN rate (left) and SFP rate against FP rate
(right) between BCD (Unit weight and Bootstrap values), MRP, SuperFine and CA-ML
on the 100 taxa SMIDGenOG dataset. The curves are the linear regression line and the
shadow around a line shows the 95% confidence interval for that regression.

Figure A.5: Comparison of SFN rate against FN rate (left) and SFP rate against FP rate
(right) between BCD (Unit weight and Bootstrap values), MRP, SuperFine and CA-ML
on the 500 taxa SMIDGenOG dataset. The curves are the linear regression line and the
shadow around a line shows the 95% confidence interval for that regression.
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Figure A.6: Comparison of SFN rate against FN rate (left) and SFP rate against FP rate
(right) between BCD (Unit weight and Bootstrap values), MRP, SuperFine and CA-ML on
the 100 taxa SMIDGen dataset. The curves are the linear regression line and the shadow
around a line shows the 95% confidence interval for that regression.

Figure A.7: Comparison of SFN rate against FN rate (left) and SFP rate against FP rate
(right) between BCD (Unit weight and Bootstrap values), MRP, SuperFine and CA-ML on
the 500 taxa SMIDGen dataset. The curves are the linear regression line and the shadow
around a line shows the 95% confidence interval for that regression.
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Figure A.8: Comparison of SFN rate against FN rate (left) and SFP rate against FP rate
(right) between BCD (Unit weight and Bootstrap values), MRP, SuperFine and CA-ML on
the 1000 taxa SMIDGen dataset. The curves are the linear regression line and the shadow
around a line shows the 95% confidence interval for that regression.

Figure A.9: Comparison of SFN rate against FN rate (left) and SFP rate against FP rate
(right) between BCD Unit weight, FastRFS, MRP and SuperFine on the SuperTriplets
Benchmark with 25% deletion rate. The curves are the linear regression line and the shadow
around a line shows the 95% confidence interval for that regression.
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Figure A.10: Comparison of SFN rate against FN rate (left) and SFP rate against
FP rate (right) between BCD Unit weight, FastRFS, MRP and SuperFine on the
SuperTriplets Benchmark with 50% deletion rate. The curves are the linear regression line
and the shadow around a line shows the 95% confidence interval for that regression.

MRP-Score

Neither has the model tree usually the best MRP score nor is the order of the different
algorithms the same as for the comparison against the model tree.

For the SMIDGenOG 1000 (Figure A.11a) dataset SuperFine produces the by far best
MRP scores. BCD is better (20%), equal(50%, 75%) or worse(100%) than MRP. RAxML-
CA and the model tree reach always one of the worst MRP-Scores. The GSCM shows
always the by far worst MRP-Scores. For the SMIDGenOG 5500 (Figure A.11b) the model
tree has one of the best MRP-Scores. SuperFine is always best. MRP is worse than the
model tree and on par with BCD with branch length. BCD with unit costs gets the worst
MRP-Score. For the SuperTriplet dataset (Figure A.11c) no significant differences of the
MRP-Scores can be noticed.

For three different datasets the MRP-Score evaluation results differ three times from the
results of the model tree based evaluation.
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(a) SMIDGenOG 1000 (b) SMIDGenOG 5500

(c) SuperTriplets 70% Deletion

MRP - 24h

MRP - 7d

MRP - 14d

Figure A.11: MRP-Scores for different tree reconstruction methods and the model tree
of simulated datasets; namely SMIDGenOG 1000 taxa (a), SMIDGenOG 5500 taxa (b)
and SuperTriplet Benchmark with 75% data deletion (c). For the SMIDGenOG datasets
each dash on the ordinal x-axis shows the results for a different scaffold factor. For the
SuperTriplet Benchmark the x-axis shows results for different numbers of input trees. the
Error bars showing the standard mean error.
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Greedy strict Consensus Merger – Supplementary results

Figure A.12: FN -rates (left) and FP -rates (right) of single scorings functions (Overlap,
Unique-Taxa, Resolution, Collision, Unique-Clades-Lost, Unique-Clade-Rate) and their
combinations (Combined-3,Combined-5) for all scaffold factors (20%, 50%, 75%, 100%)
of the 100-taxon dataset. The Combined scorings are the semi-strict consensus of the
supertrees calculated by the respective scoring functions. The error bars show the standard
error.

Figure A.13: FN -rates (left) and FP -rates (right) of different scoring functions (Overlap,
Collision, Unique-Clades-Lost) with (25, 100 and 400 random iterations) and without
randomization.
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(a) Comparison of scoring functions (Over-
lap, Unique-Taxa, Resolution, Collision,
Unique-Clades-Lost, Unique-Clades-Rate).

(b) Comparison of single scoring functions
(Overlap, Unique-Taxa, Collision, Unique-
Clades-Lost, Unique-Clade-Rate) and their
combinations (Combined-3,Combined-5).

(c) Comparison of scoring functions (Over-
lap, Collision, Unique-Clades-Lost) with (25,
100 and 400 random iterations) and without
randomization.

(d) Comparison of single (Overlap, Unique-
Taxa, Collision, Unique-Clades-Lost) and
combined (Combined-5) scorings. Both
with 400 random iterations and without
randomization.

Figure A.14: F1 -scores of different scoring functions (including combined scorings) with
and without randomization for all scaffold factors (20 %, 50 %, 75 %, 100 %) of the 100 taxa
dataset. The Combined scorings are the semi-strict consensus of the supertrees calculated
by the respective scorings. The integer value after the keyword “Rand” represents the
number of randomized iterations. The error bars show the standard error.
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Figure A.15: FN -rates (left) and FP -rates (right) of single scorings functions (Overlap,
Unique-Taxa, Resolution, Collision, Unique-Clades-Lost, Unique-Clade-Rate) and their
combinations (Combined-3,Combined-5) for all scaffold factors (20%, 50%, 75%, 100%)
of the 500-taxon dataset. The Combined scorings are the semi-strict consensus of the
supertrees calculated by the respective scoring functions. The error bars show the standard
error.

Figure A.16: FN -rates (left) and FP -rates (right) of different scoring functions (Overlap,
Collision, Unique-Clades-Lost) with (25, 100 and 400 random iterations) and without
randomization.
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(a) Comparison of scoring functions (Over-
lap, Unique-Taxa, Resolution, Collision,
Unique-Clades-Lost, Unique-Clades-Rate).

(b) Comparison of single scoring functions
(Overlap, Unique-Taxa, Collision, Unique-
Clades-Lost, Unique-Clade-Rate) and their
combinations (Combined-3, Combined-5).

(c) Comparison of scoring functions (Over-
lap, Collision, Unique-Clades-Lost) with (25,
100 and 400 random iterations) and without
randomization.

(d) Comparison of single (Overlap, Unique-
Taxa, Collision, Unique-Clades-Lost) and
combined (Combined-5) scorings. Both
with 400 random iterations and without
randomization.

Figure A.17: F1 -scores of different scoring functions (including combined scorings) with
and without randomization for all scaffold factors (20 %, 50 %, 75 %, 100 %) of the 500 taxa
dataset. The Combined scorings are the semi-strict consensus of the supertrees calculated
by the respective scorings. The integer value after the keyword “Rand” represents the
number of randomized iterations. The error bars show the standard error.
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Figure A.18: FN -rates (left) and FP -rates (right) of single scorings functions (Overlap,
Unique-Taxa, Resolution, Collision, Unique-Clades-Lost, Unique-Clade-Rate) and their
combinations (Combined-3,Combined-5) for all scaffold factors (20%, 50%, 75%, 100%)
of the 1000-taxon dataset. The Combined scorings are the semi-strict consensus of the
supertrees calculated by the respective scoring functions. The error bars show the standard
error.

Figure A.19: FN -rates (left) and FP -rates (right) of different scoring functions (Overlap,
Collision, Unique-Clades-Lost) with (25, 100 and 400 random iterations) and without
randomization.
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BCD Supertrees – Supplementary results

SMIDGen results.

Source trees in this dataset are unrooted, so roots for BCD calculations are chosen based
on the GSCM tree as described above. Results for 100,500 and 1000 taxa model trees are
shown in Figures A.20, A.21 and A.22.

Accuracy. In agreement with Brinkmeyer et al. [21] we find that the Edge and Level
weighting with undisputed sibling preprocessing performs best among all FlipCut variants;
to this end, we will not consider any other variant here. We observe, BCD compares
favorably to FlipCut and any other supertree method. Different weightings of the BCD
graph influence the quality of BCD supertrees, with unit weights performing worst, and
bootstrap weights performing best. BCD with unit weights nevertheless outperforms
MRP by a large margin for scaffold density 20% and 50%. BCD with branch lengths
outperforms SuperFine. Finally, BCD with bootstrap weights (GSCM-BS) outperforms all
other supertree methods for the simulated datasets; for small scaffold densities, it is even
on par with the Combined Analysis supermatrix approach.

Running time. We report running times on the SMIDGen dataset in Figures A.20, A.21
and A.22; For this dataset, the number of instances may differ for different scaffold factors,
due to certain instances having insufficient taxa overlap. BCD running times depend on the
weighting, which determines the number of cut operations that have to be performed. BCD
is faster than any other evaluated method on this dataset and, to the best of our knowledge,
considerably faster than any other supertree algorithm. On the 100 taxa dataset BCD is
slower than FlipCut. This is due to some static overhead coming with a user friendly
implementation that is not present in the FlipCut implementation.
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(a) (b)

(c) (d)

Figure A.20: F1 -score (a), running times (b), FN rate (c) and FP rate (d) of the evaluated
tree reconstruction methods on the simulated SMIDGen (100 Taxa) dataset. Error bars
showing the standard mean error. Running times are shown in seconds on a logarithmic
scale. Each dash on the ordinal x-axis shows the results for a different scaffold factor.
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(a) (b)

(c) (d)

Figure A.21: F1 -score (a), running times (b), FN rate (c) and FP rate (d) of the evaluated
tree reconstruction methods on the simulated SMIDGen (500 Taxa) dataset. Error bars
showing the standard mean error. Running times are shown in seconds on a logarithmic
scale. Each dash on the ordinal x-axis shows the results for a different scaffold factor.
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(a) (b)

(c) (d)

Figure A.22: F1 -score (a), running times (b), FN rate (c) and FP rate (d) of the evaluated
tree reconstruction methods on the simulated SMIDGen (1000 Taxa) dataset. Error bars
showing the standard mean error. Running times are shown in seconds on a logarithmic
scale. Each dash on the ordinal x-axis shows the results for a different scaffold factor.
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Figure A.23: MRP-Scores of supertrees against source trees on the biological supertree
datasets. Most of the supertree datasets contain neither bootstrap values nor branch
lengths, prohibiting the use of bootstrap values (BS) and branch length (BL) weighting.
Combined Analysis cannot be applied to the supertree instances. Best rates marked in bold
for each column.
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(a) (b)

(c) (d)

Figure A.24: F1 -score (a), running times (b), FN rate (c) and FP rate (d) of the evaluated
tree reconstruction methods on the simulated SMIDGenOG (100 Taxa) dataset. Error bars
showing the standard mean error. Running times are shown in seconds on a logarithmic
scale. Each dash on the ordinal x-axis shows the results for a different scaffold factor.
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(a) (b)

(c) (d)

Figure A.25: F1 -score (a), running times (b), FN rate (c) and FP rate (d) of the evaluated
tree reconstruction methods on the simulated SMIDGenOG (500 Taxa) dataset. Error bars
showing the standard mean error. Running times are shown in seconds on a logarithmic
scale. Each dash on the ordinal x-axis shows the results for a different scaffold factor.
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(a) (b)

(c) (d)

Figure A.26: F1 -score (a), running times (b), FN rate (c) and FP rate (d) of the evaluated
tree reconstruction methods on the simulated SMIDGenOG (1000 Taxa) dataset. Error bars
showing the standard mean error. Running times are shown in seconds on a logarithmic
scale. Each dash on the ordinal x-axis shows the results for a different scaffold factor.



106 A. Appendix

(a) (b)

(c) (d)

Figure A.27: Performance of different supertrees methods as a preprocessing step for a
combined analysis with RAxML regarding F1 -score (a), running times (b), FN rate (c)
and FP rate (d) on the simulated SMIDGenOG (100 Taxa) dataset. Error bars showing
the standard mean error. Running times are shown in seconds on a logarithmic scale. Each
dash on the ordinal x-axis shows the results for a different scaffold factor.
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(a) (b)

(c) (d)

Figure A.28: Performance of different supertrees methods as a preprocessing step for a
combined analysis with RAxML regarding F1 -score (a), running times (b), FN rate (c)
and FP rate (d) on the simulated SMIDGenOG (500 Taxa) dataset. Error bars showing
the standard mean error. Running times are shown in seconds on a logarithmic scale. Each
dash on the ordinal x-axis shows the results for a different scaffold factor.
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(a) (b)

(c) (d)

Figure A.29: Performance of different supertrees methods as a preprocessing step for a
combined analysis with RAxML regarding F1 -score (a), running times (b), FN rate (c)
and FP rate (d) on the simulated SMIDGenOG (1000 Taxa) dataset. Error bars showing
the standard mean error. Running times are shown in seconds on a logarithmic scale. Each
dash on the ordinal x-axis shows the results for a different scaffold factor.
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(a) (b)

(c) (d)

Figure A.30: F1 -score (a), running times (b), FN rate (c) and FP rate (d) of MRP,
Superfine, GSCM, FastRFS and BCD on the simulated SMIDGenOG (5500 Taxa) dataset.
Error bars showing the standard mean error. MRP did not finish on this dataset in
reasonable time. We reported the results MRP reached after 1 day, 7 days and 14 days
Running times are shown on a logarithmic scale.
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Figure A.31: F1 -score (above), FN rate (left) and FP rate (right) of MRP, Superfine,
GSCM, FastRFS and BCD (Unit Weight only) on the simulated Supertriplet Benchmark
(25% data deletion rate in the source trees) dataset. Error bars showing the standard mean
error. Each dash on the ordinal x-axis shows the results for a different number of source
trees.
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Figure A.32: F1 -score (above), FN rate (left) and FP rate (right) of MRP, Superfine,
GSCM, FastRFS and BCD (Unit Weight only) on the simulated Supertriplet Benchmark
(50% data deletion rate in the source trees) dataset. Error bars showing the standard mean
error. Each dash on the ordinal x-axis shows the results for a different number of source
trees.
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Figure A.33: F1 -score (above), FN rate (left) and FP rate (right) of MRP, Superfine,
GSCM, FastRFS and BCD (Unit Weight only) on the simulated Supertriplet Benchmark
(75% data deletion rate in the source trees) dataset. Error bars showing the standard mean
error. Each dash on the ordinal x-axis shows the results for a different number of source
trees.
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Availability

All presented methods regarding the GSCM are implemented in Java as a command line tool
which is available online1. The source code is available on GitHub2. The BCD algorithm
(including the Beam Search and GSCM preprocessing) has been implemented as Java
command line tool which is available online3. The software is open source and the code is
available on GitHub4. All Datasets used for the evaluations are also available online5.

Test environment

To calculate SuperFine and GSCM trees we use the ReUP6 (version 1.0) implementation by
Swenson et al. [173]. FastRFS was taken from Vachaspati and Warnow [178]7. We have
done the MRP and parsimony score calculations using PAUP∗ (version 4.0b10) [174]. ML
trees and log-likelihood scores were calculated using RAxML (version 7.7.5) [161]. All running
times were measured on an Intel XEON E5-2630 CPU at 2.3 GHz with 64 GB of memory.

1https://bio.informatik.uni-jena.de/software/gscm/
2https://github.com/boecker-lab/gscm-supertrees
3https://bio.informatik.uni-jena.de/software/bcd/
4https://github.com/boecker-lab/bcd-supertrees
5https://bio.informatik.uni-jena.de/data/
6https://github.com/dtneves/SuperFine
7https://github.com/pranjalv123/FastRFS

https://bio.informatik.uni-jena.de/software/gscm/
https://github.com/boecker-lab/gscm-supertrees
https://bio.informatik.uni-jena.de/software/bcd/
https://github.com/boecker-lab/bcd-supertrees
https://bio.informatik.uni-jena.de/data/
https://github.com/dtneves/SuperFine
https://github.com/pranjalv123/FastRFS
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