On a class of non-Hermitian matrices with positive definite Schur complements

Thomas Berger, Juan Giribet,
Francisco Martinez Peria and Carsten Trunk

Juli 2018

URN: urn:nbn:de:gbv:ilm1-2018200139
ON A CLASS OF NON-HERMITIAN MATRICES WITH
POSITIVE DEFINITE SCHUR COMPLEMENTS

THOMAS BERGER, JUAN GIRIBET, FRANCISCO MARTÍNEZ PERÍA,
AND CARSTEN TRUNK

Abstract. Given a positive definite matrix $A \in \mathbb{C}^{n \times n}$ and a Hermitian
matrix $D \in \mathbb{C}^{m \times m}$, we characterize under which conditions there exists
a strictly contractive matrix $K \in \mathbb{C}^{n \times m}$ such that the non-Hermitian
block-matrix
\[
\begin{bmatrix}
A & -AK \\
K^*A & D
\end{bmatrix}
\]
has a positive definite Schur complement with respect to its submatrix A. Additionally, we show that K can be chosen such that diagonalizability
of the block-matrix is guaranteed and we compute its spectrum. Moreover, we show a connection to the recently developed frame theory for
Krein spaces.

1. Introduction

Given a matrix $S \in \mathbb{C}^{(n+m)\times(n+m)}$ assume it is partitioned as
\[
S = \begin{bmatrix}
A & B \\
C & D
\end{bmatrix},
\]
where $A \in \mathbb{C}^{n \times n}$, $B \in \mathbb{C}^{n \times m}$, $C \in \mathbb{C}^{m \times n}$ and $D \in \mathbb{C}^{m \times m}$. If A is invertible,
then the Schur complement of A in S is defined by
\[
S_{/A} := D - CA^{-1}B.
\]
This terminology is due to Haynsworth [11, 12], but the use of such a con-
struction goes back to Sylvester [15] and Schur [14]. The Schur complement
arises, for instance, in the following factorization of the block matrix S:
\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix} = \begin{bmatrix}
I_n & 0 \\
CA^{-1} & I_m
\end{bmatrix} \begin{bmatrix}
A & 0 \\
0 & D - CA^{-1}B
\end{bmatrix} \begin{bmatrix}
I_n & A^{-1}B \\
0 & I_m
\end{bmatrix},
\]
which is due to Aitken [1]; note that I_k denotes the identity matrix of size
$k \times k$. It is a common argument in the proof of some well-know results in
matrix analysis such as the Schur determinant formula [3]:
\[
\det(S) = \det(A) \cdot \det(S_{/A}),
\]
the Guttman rank additivity formula [10], and the Haynsworth inertia addi-
tivity formula [13].

2010 Mathematics Subject Classification. Primary 15A83; Secondary 15A23, 15B48.
The Schur complement has been generalized in numerous ways, for example to the case in which A is non-invertible, where generalized inverses can be used to define it. It is a key tool not only in matrix analysis but also in applied fields such as numerical analysis and statistics. For further details see [16].

If S is a Hermitian matrix, then $C = B^*$ and the Schur complement of A in S is $S_{/A} = D - B^* A^{-1} B$. In this particular case (1.1) reads

\[
\begin{bmatrix}
A & B \\
B^* & D
\end{bmatrix} =
\begin{bmatrix}
I_n & A^{-1} B \\
0 & I_m
\end{bmatrix} *
\begin{bmatrix}
A & 0 \\
0 & D - B^* A^{-1} B
\end{bmatrix} *
\begin{bmatrix}
I_n & A^{-1} B \\
0 & I_m
\end{bmatrix},
\]

which implies the following well-known criteria to determine the positive definiteness of S: the block-matrix S is positive definite if and only if A and $S_{/A}$ are both positive definite. This equivalence is not true for positive semidefinite matrices, but Albert [2] showed that S is positive semidefinite if and only if A and $S_{/A}$ are both positive semidefinite and $R(B) \subseteq R(A)$, where $R(X)$ stands for the range of a matrix X. Observe that the range inclusion $R(B) \subseteq R(A)$ is equivalent to the existence of a matrix $X \in \mathbb{C}^{n \times m}$ which factorizes B as $B = AX$.

In the present paper, given a positive definite $A \in \mathbb{C}^{n \times n}$ with eigenvalues $0 < \lambda_n \leq \cdots \leq \lambda_1$ and a Hermitian $D \in \mathbb{C}^{m \times m}$ with eigenvalues $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_r \leq 0 < \mu_{r+1} \leq \cdots \leq \mu_m$, we investigate under which conditions there exists a strictly contractive matrix $K \in \mathbb{C}^{n \times m}$ such that

\[
S = \begin{bmatrix}
A & -AK \\
K^* A & D
\end{bmatrix}
\]

has a positive definite Schur complement $S_{/A}$ with respect to the minor A, that is, under which conditions there exists a strictly contractive matrix $K \in \mathbb{C}^{n \times m}$ such that

\[
S_{/A} = D + K^* AK
\]

is positive definite.

Interest in such non-Hermitian block-matrices arises, for instance, in the recently developed frame theory in Krein spaces, see [6, 8]. There, block-matrices as in (1.3) with a positive definite A, a Hermitian D and a positive definite $S_{/A}$ correspond to so-called J-frame operators, see Section 5 for more details.

In Theorem 3.3 below we show that this special structured matrix completion problem has a solution if and only if

\[
r \leq n \quad \text{and} \quad \lambda_i + \mu_i > 0 \quad \text{for all} \quad i = 1, \ldots, r.
\]

We stress that S is not diagonalizable in general, not even if $S_{/A}$ is positive definite. Under the above conditions, we construct a particular strictly contractive matrix K, which depends on some parameters $\varepsilon_1, \ldots, \varepsilon_r$. In Theorem 4.2 we compute the eigenvalues of the corresponding block matrix S in terms of the eigenvalues of A and D and the parameters $\varepsilon_1, \ldots, \varepsilon_r$. A root locus analysis of the latter reveals that if each ε_i is small enough,
then S is diagonalizable and has only (positive) real eigenvalues, although S is non-Hermitian.

2. Preliminaries

Given Hermitian matrices $A, B \in \mathbb{C}^{n \times n}$, several relations between the eigenvalues of A, B and $A + B$ can be obtained. The following result was first proved by Weyl, see e.g. [4].

Theorem 2.1. Let $A, B \in \mathbb{C}^{n \times n}$ be Hermitian matrices. Then,
\[
\lambda_j^+(A + B) \leq \lambda_j^+(A) + \lambda_j^+(B) \quad \text{for } i \leq j;
\]
\[
\lambda_j^+(A + B) \geq \lambda_j^+(A) + \lambda_j^+(B) \quad \text{for } i \geq j;
\]
where $\lambda_j^+(C)$ denotes the j-th eigenvalue of C (counted with multiplicities) if they are arranged in nonincreasing order.

Among the numerous consequences of Weyl’s inequalities, it is worthwhile to mention that if $A, B \in \mathbb{C}^{n \times n}$ are Hermitian matrices such that $A \preceq B$ according to Löwner’s order, then
\[
\lambda_j^+(A) \leq \lambda_j^+(B) \quad \text{for } j = 1, \ldots, n.
\]

Another well-known result says that if $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times m}$, then the non-zero eigenvalues of AB and BA are the same (and they have the same multiplicities). Indeed, it is easy to see that
\[
\begin{bmatrix}
I_m & -A \\
0 & I_n
\end{bmatrix}
\begin{bmatrix}
AB & 0 \\
B & 0
\end{bmatrix}
\begin{bmatrix}
I_m & A \\
0 & I_n
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 \\
0 & BA
\end{bmatrix},
\]
and hence the matrices $\begin{bmatrix} AB & 0 \\ B & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ B & BA \end{bmatrix}$ are similar. Therefore, they have the same characteristic polynomial
\[
p(\lambda) = \lambda^n \det(\lambda I_m - AB) = \lambda^m \det(\lambda I_n - BA),
\]
and the assertion follows immediately.

We use the above result to prove the following proposition. For $K \in \mathbb{C}^{n \times m}$ we denote by $\|K\|$ the spectral norm of K, i.e., the operator norm induced by the Euclidean vector norm.

Proposition 2.2. Let $A \in \mathbb{C}^{n \times n}$ be positive definite and $K \in \mathbb{C}^{n \times m}$. Then,
\[
\lambda_j^+(K^*AK) \leq \|K\|^2 \lambda_j^+(A) \quad \text{for } j = 1, \ldots, \min\{n, m\}.
\]

Proof. Since A is positive definite it has a well-defined square root $A^{1/2}$. Then, for all $j = 1, \ldots, \min\{n, m\}$,
\[
\lambda_j^+(K^*AK) = \lambda_j^+(K^*A^{1/2}A^{1/2}K) \overset{(2.2)}{=} \lambda_j^+(A^{1/2}KK^*A^{1/2}) \leq \|K\|^2 \lambda_j^+(A),
\]
where the inequality follows from (2.1) because $A^{1/2}KK^*A^{1/2} \preceq \|K\|^2 A$.

\[\square\]
3. Positive definiteness of the Schur complement

In this section we derive a necessary and sufficient condition for the existence of a strictly contractive matrix K such that the block matrix S in (1.3) has a positive definite Schur complement. Throughout this section we consider the following hypotheses.

Assumption 3.1. Assume that $A \in \mathbb{C}^{n \times n}$ is positive definite and $D \in \mathbb{C}^{m \times m}$ is a Hermitian matrix. Let $\mu_1 \leq \mu_2 \leq \ldots \leq \mu_r \leq 0 < \mu_{r+1} \leq \ldots \leq \mu_m$ denote the eigenvalues of D (counted with multiplicities) arranged in nondecreasing order, and let $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n > 0$ denote the eigenvalues of A (counted with multiplicities) arranged in nonincreasing order.

First, we record the following important observation.

Lemma 3.2. Let Assumption 3.1 hold and assume that $r > n$. Then, there is no $K \in \mathbb{C}^{n \times m}$ such that $D + K^*AK$ is positive definite.

Proof. Let $K \in \mathbb{C}^{n \times m}$ and $S_1 := \ker (K)$ be the nullspace of K. Consider the subspace S_2 of \mathbb{C}^m spanned by all eigenvectors of D corresponding to non-positive eigenvalues. By Assumption 3.1 we have that $\dim S_2 = r$ and

$$\dim S_1 + \dim S_2 \geq (m - n) + r = m + (r - n) > m.$$

Thus, $S_1 \cap S_2 \neq \{0\}$ and for any non-trivial vector $v \in S_1 \cap S_2$ we have

$$\langle (D + K^*AK)v, v \rangle = \langle Dv, v \rangle \leq 0.$$

Therefore, $D + K^*AK$ cannot be positive definite. \square

In the following result we focus on a special class of matrices K. Recall that $K \in \mathbb{C}^{n \times m}$ is called *strictly contractive*, if its singular values are all smaller than 1. Equivalently, K is strictly contractive if and only if $\|K\| < 1$.

Theorem 3.3. Let Assumption 3.1 hold. Then, there exists a strictly contractive matrix $K \in \mathbb{C}^{n \times m}$ such that $D + K^*AK$ is positive definite if and only if

(3.1) \hspace{1em} $r \leq n$ \hspace{1em} and \hspace{1em} $\lambda_i + \mu_i > 0$ \hspace{1em} for all $i = 1, \ldots, r$.

Proof. Assume that there exists a strictly contractive matrix $K \in \mathbb{C}^{n \times m}$ such that $D + K^*AK > 0$. By Lemma 3.2, it is necessary that $r \leq n$. On the other hand, by Theorem 2.1,

$$0 < \lambda_{m}^\downarrow (D + K^*AK) \leq \lambda_i^\downarrow (D) + \lambda_{m-i+1}^\downarrow (K^*AK),$$

for $i = 1, \ldots, m$. In particular, for $i = m - r + 1, \ldots, m$ we can combine the above inequalities with Proposition 2.2 and obtain

$$0 < \lambda_i^\downarrow (D) + \|K\|^2 \lambda_{m-i+1}^\downarrow (A) < \mu_{m-i+1} + \lambda_{m-i+1}.$$

Equivalently, we have that $\mu_j + \lambda_j > 0$ for $j = 1, \ldots, r$.

Conversely, assume that \(r \leq n \) and \(\lambda_i + \mu_i > 0 \) for \(i = 1, \ldots, r \). Then, for each \(i = 1, \ldots, r \), let \(0 < \varepsilon_i < 1 \) be such that \(\varepsilon_i \lambda_i + \mu_i > 0 \) and define \(E \in \mathbb{C}^{n \times m} \) by

\[
E = \begin{bmatrix}
\text{diag}(\sqrt{\varepsilon_1}, \ldots, \sqrt{\varepsilon_r}) & 0_{r,m-r} \\
0_{n-r,r} & 0_{n-r,m-r}
\end{bmatrix},
\]

where \(0_{p,q} \) stands for the null matrix in \(\mathbb{C}^{p \times q} \). Further, let \(U \in \mathbb{C}^{n \times n} \) and \(V \in \mathbb{C}^{m \times m} \) be unitary matrices such that \(A = UD\lambda U^* \) and \(D = VD\mu V^* \), where

\[
D\lambda = \text{diag}(\lambda_1, \ldots, \lambda_n) \quad \text{and} \quad D\mu = \text{diag}(\mu_1, \ldots, \mu_m).
\]

Then, for

\[
(3.2) \quad K := UEV^*,
\]

it is straightforward to observe that \(\|K\| < 1 \) and

\[
D + K^*AK = V(D\mu + E^*U^*AU)E)V^* = V(D\mu + E^*D\lambda E)V^*
\]

\[
= V\begin{bmatrix}
\text{diag}(\varepsilon_1 \lambda_1 + \mu_1, \ldots, \varepsilon_r \lambda_r + \mu_r) & 0_{r,m-r} \\
0_{m-r,r} & \text{diag}(\mu_{r+1}, \ldots, \mu_m)
\end{bmatrix}V^*
\]

is a positive definite matrix.

Remark 3.4. Let Assumption 3.1 hold. Observe that if \(\mu_i = 0 \) for some \(i = 1, \ldots, r \), then the condition \(\lambda_i + \mu_i > 0 \) is automatically fulfilled. Hence, if we assume that \(\text{dim ker } D = p \), then \(D \) has only \(r - p \) negative eigenvalues and, in this case, there exists a strictly contractive matrix \(K \in \mathbb{C}^{n \times m} \) such that \(D + K^*AK \) is positive definite if and only if

\[
r \leq n \quad \text{and} \quad \lambda_i + \mu_i > 0 \quad \text{for all } i = 1, \ldots, r - p.
\]

4. **Spectrum of the block matrix**

Throughout this section, we consider the contraction \(K \) constructed in the proof of Theorem 3.3 and investigate the location of the eigenvalues of the block-matrix \(S \) in (1.3) for this particular \(K \). The locations depend on the parameters \(\varepsilon_1, \ldots, \varepsilon_r \) and hence their study resembles a root locus analysis. Before we state the corresponding result we start with a preliminary lemma.

Lemma 4.1. Let Assumption 3.1 and (3.1) hold and set

\[
(4.1) \quad \alpha_i := \frac{(\lambda_i - \mu_i)^2}{4\lambda_i^2}, \quad i = 1, \ldots, r.
\]

Then we have that

\[
0 \leq \frac{-\mu_i}{\lambda_i} < \alpha_i < 1, \quad \text{for all } i = 1, \ldots, r.
\]
Proof. Given \(i = 1, \ldots, r \), by (3.1) we find that \((\lambda_i + \mu_i)^2 > 0\), which implies \((\lambda_i - \mu_i)^2 > -4\mu_i \lambda_i\) and hence
\[
\alpha_i > -\frac{\mu_i}{\lambda_i} > 0.
\]
Furthermore,
\[
\lambda_i - \mu_i = -(\lambda_i + \mu_i) + 2\lambda_i < 2\lambda_i,
\]
which implies that \(\alpha_i < 1 \).

We are now in the position to state the main result of this section.

Theorem 4.2. Let Assumption 3.1 and (3.1) hold. For \(i = 1, \ldots, r \) choose \(0 < \varepsilon_i < 1 \) such that \(\varepsilon_i \lambda_i + \mu_i > 0 \).

If \(K \in \mathbb{C}^{n \times m} \) is the strictly contractive matrix defined in (3.2) then the spectrum of the block matrix \(S \in \mathbb{C}^{(n+m)\times(n+m)} \) given in (1.3) consists of the real numbers \(\lambda_{r+1}, \ldots, \lambda_n, \mu_{r+1}, \ldots, \mu_m \) and
\[
\eta^+_i = \frac{\lambda_i + \mu_i}{2} \pm \lambda_i \sqrt{\alpha_i - \varepsilon_i}, \quad i = 1, \ldots, r,
\]
where \(\alpha_i \) is given by (4.1). Moreover, the following conditions hold:

a) if \(0 < \frac{-\mu_i}{\lambda_i} < \varepsilon_i < \alpha_i \), then \(\eta_i^+ > \eta_i^- > 0 \);

b) if \(\alpha_i < \varepsilon_i < 1 \), then \(\eta_i^+ = \eta_i^- \in \mathbb{C} \setminus \mathbb{R} \);

c) if \(\varepsilon_i = \alpha_i \), then \(\eta_i^+ = \eta_i^- = \frac{1}{2}(\lambda_i + \mu_i) \) and there exists a Jordan chain of length 2 corresponding to this eigenvalue.

Additionally, if \(\varepsilon_i \neq \alpha_i \) for all \(i = 1, \ldots, r \), then \(S \) is diagonalizable.

Proof. First note that by Lemma 4.1 the ranges for \(\varepsilon_i \) in the cases a) and b) are non-empty. Using the notation from the proof of Theorem 3.3 we obtain
\[
S = \begin{bmatrix} A & -AK \\ KA & D \end{bmatrix} = \begin{bmatrix} UD\lambda U^* & -UD\lambda EV^* \\ V E^* D\lambda U^* & V D\mu V^* \end{bmatrix} = \begin{bmatrix} D\lambda & -B \\ B^* & D\mu \end{bmatrix} W^*,
\]
where \(B \in \mathbb{C}^{n \times m} \) is given by
\[
B := D\lambda E = \begin{bmatrix} \text{diag} \left(\lambda_1 \sqrt{\varepsilon_1}, \ldots, \lambda_r \sqrt{\varepsilon_r} \right) & 0_{r,m-r} \\ 0_{n-r,r} & 0_{n-r,m-r} \end{bmatrix},
\]
and \(W := \begin{bmatrix} U & 0 \\ 0 & V \end{bmatrix} \in \mathbb{C}^{(n+m)\times(n+m)} \) is unitary. Then, if \(\{e_1, \ldots, e_{n+m}\} \) denotes the standard basis of \(\mathbb{C}^{n+m} \), it is easy to see that
\[
SW e_i = \lambda_i We_i \quad \text{for } i = r + 1, \ldots, n,
\]
and
\[
SW e_j = \mu_{j-r} We_j \quad \text{for } j = n + r + 1, \ldots, n + m,
\]
which yields that \(\lambda_{r+1}, \ldots, \lambda_n \) and \(\mu_{r+1}, \ldots, \mu_m \) are eigenvalues of \(S \).
Now, define the following $r \times r$ diagonal matrices:

\[F_\lambda := \text{diag} (\lambda_1, \ldots, \lambda_r), \quad F_\mu := \text{diag} (\mu_1, \ldots, \mu_r), \]

\[G := \text{diag} (\lambda_1 \sqrt{\varepsilon_1}, \ldots, \lambda_r \sqrt{\varepsilon_r}), \]

and observe that the remaining $2r$ eigenvalues of S coincide with the spectrum of the submatrix \tilde{S} of W^*SW given by

\[\tilde{S} := \begin{bmatrix} F_\lambda & -G \\ G & F_\mu \end{bmatrix}. \]

In order to calculate the eigenvalues of \tilde{S}, we make use of the Schur determinant formula (1.2), by which the characteristic polynomial of \tilde{S} is given by

\[q(\eta) = \det (\tilde{S} - \eta I_{2r}) = \det (F_\mu - \eta I_r) \det \left((\tilde{S} - \eta I_{2r})/(F_\mu - \eta I_r) \right). \]

Since the matrix $(\tilde{S} - \eta I_{2r})/(F_\mu - \eta I_r) = (F_\lambda - \eta I_r) + G(F_\mu - \eta I_r)^{-1}G$ is diagonal and has the form

\[
\begin{bmatrix}
\lambda_1 - \eta + \varepsilon_1 \frac{\lambda_1^2}{\mu_1 - \eta} & 0 & \cdots & 0 \\
0 & \lambda_2 - \eta + \varepsilon_2 \frac{\lambda_2^2}{\mu_2 - \eta} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_r - \eta + \varepsilon_r \frac{\lambda_r^2}{\mu_r - \eta}
\end{bmatrix},
\]

we have that

\[q(\eta) = \prod_{i=1}^{r} (\mu_i - \eta) \prod_{i=1}^{r} \left(\lambda_i - \eta + \varepsilon_i \frac{\lambda_i^2}{\mu_i - \eta} \right) = \prod_{i=1}^{r} ((\mu_i - \eta)(\lambda_i - \eta) + \varepsilon_i \lambda_i^2). \]

Thus, $\eta \in \mathbb{C}$ is a root of $q(\eta)$ if and only if

\[\eta^2 - (\lambda_i + \mu_i)\eta + \lambda_i(\mu_i + \varepsilon_i \lambda_i) = 0 \]

for some $i \in \{1, \ldots, r\}$. This leads to the following eigenvalues of \tilde{S}:

\[\eta_i^\pm = \frac{\lambda_i + \mu_i}{2} \pm \frac{1}{2} \sqrt{(\lambda_i - \mu_i)^2 - 4\varepsilon_i \lambda_i^2} \]

for $i = 1, \ldots, r$. Hence, (4.2) follows and statement b) holds. For statement a) we additionally observe that if $\varepsilon_i > \frac{\mu_i}{\lambda_i}$ then

\[\eta_i^- > \frac{1}{2} (\lambda_i + \mu_i) - \frac{1}{2} \sqrt{(\lambda_i - \mu_i)^2 + 4\lambda_i \mu_i} = 0. \]
To prove c), assume that \(\varepsilon_i = \alpha_i \) for some \(i \in \{1, \ldots, r\} \). Since \(\eta_i^+ = \eta_i^- = \frac{1}{2}(\lambda_i + \mu_i) \) and \(\sqrt{\varepsilon_i} = \frac{\lambda_i - \mu_i}{2\lambda_i} \), it is straightforward to compute that

\[
\left(\bar{S} - \frac{1}{2}(\lambda_i + \mu_i)I_{2r} \right) \left(1 + \frac{2}{\lambda_i - \mu_i} \right) f_i = \left(f_i \right),
\]

\[
\left(\bar{S} - \frac{1}{2}(\lambda_i + \mu_i)I_{2r} \right) f_i = 0,
\]

using the standard basis \(\{f_1, \ldots, f_r\} \) of \(\mathbb{C}^r \). The vectors above form a Jordan chain of length 2 of \(\bar{S} \) corresponding to the eigenvalue \(\frac{1}{2}(\lambda_i + \mu_i) \). Hence, a Jordan chain of \(S \) can be constructed corresponding to the eigenvalue \(\frac{1}{2}(\lambda_i + \mu_i) \).

Finally, assume that \(\varepsilon_i \neq \alpha_i \) for all \(i = 1, \ldots, r \). In this case, the space \(\mathbb{C}^{n+m} \) has a basis consisting of eigenvectors of \(S \). Indeed, this follows from (4.3) together with

\[
\left(\bar{S} - \eta_i^+ I_{2r} \right) \left(f_i \right) = 0, \quad \left(\bar{S} - \eta_i^- I_{2r} \right) \left(\frac{f_i}{\lambda_i\sqrt{\varepsilon_i}} \right) = 0
\]

for \(i = 1, \ldots, r \).

We emphasize that if for all \(i = 1, \ldots, r \) the parameter \(\varepsilon_i \) in Theorem 4.2 is chosen such that a) holds, then the block matrix \(S \) in (1.3) is diagonalizable and has only positive eigenvalues. This is possible because of Lemma 4.1.

Example 4.3. We illustrate Theorem 4.2 with a simple example. Let \(n = m = 1, D = [0] \) and \(A = [a] \) with \(a > 0 \). Then \(r = 1 \) and choosing \(K \) as in (3.2) with \(0 < \varepsilon < 1 \) gives \(K = [\sqrt{\varepsilon}] \). In this case \(\alpha = \frac{1}{4} \).

By Theorem 4.2, for \(\varepsilon = \frac{1}{4} \) there is a Jordan chain of length 2 corresponding to the only eigenvalue \(\frac{a}{2} \), and indeed we find that

\[
\left(\frac{1}{a} \right), \left(1 \right)
\]

form a Jordan chain of \(S \), hence \(S \) is not diagonalizable.

On the other hand, for \(\varepsilon \neq \frac{1}{4} \) the block matrix \(S \) has eigenvalues \(\eta^+ = \frac{a}{2} + a\sqrt{\frac{1}{4} - \varepsilon} \) and \(\eta^- = \frac{a}{2} - a\sqrt{\frac{1}{4} - \varepsilon} \). They are positive if \(\varepsilon < \frac{1}{4} \), and they are non-real if \(\frac{1}{4} < \varepsilon < 1 \). In these last two cases \(S \) is diagonalizable.

5. Application to J-frame operators

In this section, we exploit Theorems 3.3 and 4.2 to investigate whether a block matrix \(S \) as in (1.3) represents a so-called \(J \)-frame operator and when it is similar to a Hermitian matrix. In the following we briefly recall the concept of \(J \)-frame operators, which arose in [6, 8] in the context of frame theory in Krein spaces.
In a finite-dimensional setting, every indefinite inner product space is a (finite-dimensional) Krein space, see [9]. A map \(\langle \cdot, \cdot \rangle : \mathbb{C}^k \times \mathbb{C}^k \to \mathbb{C} \) is called an indefinite inner product in \(\mathbb{C}^k \), if it is a non-degenerate Hermitian sesquilinear form. The indefinite inner product allows a classification of vectors: \(x \in \mathbb{C}^k \) is called positive if \(\langle x, x \rangle > 0 \), negative if \(\langle x, x \rangle < 0 \) and neutral if \(\langle x, x \rangle = 0 \). Also, a subspace \(\mathcal{L} \) of \(\mathbb{C}^k \) is positive if every \(x \in \mathcal{L} \setminus \{0\} \) is a positive vector. Negative and neutral subspaces are defined analogously. A positive (negative) subspace of maximal dimension will be called maximal positive (maximal negative, respectively).

It is well-known that there exists a Gramian (or Gram matrix) \(G \in \mathbb{C}^{k \times k} \), which is invertible and represents \(\langle \cdot, \cdot \rangle \) in terms of the usual inner product in \(\mathbb{C}^k \), i.e., \(\langle x, y \rangle = \langle Gx, y \rangle \) for all \(x, y \in \mathbb{C}^k \). The positive (resp. negative) index of inertia of \(\langle \cdot, \cdot \rangle \) is the number of positive (resp. negative) eigenvalues of the Gramian \(G \), and it equals the dimension of any maximal positive (resp. negative) subspace of \(\mathbb{C}^k \). It is clear that the sum of the inertia indices equals the dimension of the space.

A finite family of vectors \(\mathcal{F} = \{f_i\}_{i=1}^q \) in \(\mathbb{C}^k \) is a frame for \(\mathbb{C}^k \), if
\[
\text{span} \{\{f_i\}_{i=1}^q\} = \mathbb{C}^k,
\]
see e.g. [5] and the references therein. Roughly speaking, a \(J \)-frame is a frame, which is compatible with the indefinite inner product \(\langle \cdot, \cdot \rangle \).

Definition 5.1. Let \(\langle \mathbb{C}^k, \langle \cdot, \cdot \rangle \rangle \) be an indefinite inner product space. Then, a frame \(\mathcal{F} = \{f_i\}_{i=1}^q \) in \(\mathbb{C}^k \) is called a \(J \)-frame for \(\mathbb{C}^k \), if
\[
\mathcal{M}_+ := \text{span} \{ f \in \mathcal{F} \mid \langle f, f \rangle \geq 0 \}
\]
and
\[
\mathcal{M}_- := \text{span} \{ f \in \mathcal{F} \mid \langle f, f \rangle < 0 \}
\]
are a maximal positive and a maximal negative subspace of \(\mathbb{C}^k \), respectively.

If \(\langle \cdot, \cdot \rangle \) is an indefinite inner product with positive and negative index of inertia \(n \) and \(m \), respectively, then the maximality of \(\mathcal{M}_+ \) and \(\mathcal{M}_- \) is equivalent to
\[
\dim \mathcal{M}_+ = n \quad \text{and} \quad \dim \mathcal{M}_- = m.
\]
Note that if \(\mathcal{F} \) is a \(J \)-frame for \(\mathbb{C}^k \), then there are no (non-trivial) \(f \in \mathcal{F} \) with \(\langle f, f \rangle = 0 \).

Given a \(J \)-frame \(\mathcal{F} = \{f_i\}_{i=1}^q \) for \(\mathbb{C}^k \), its associated \(J \)-frame operator \(S : \mathbb{C}^k \to \mathbb{C}^k \) is defined by
\[
Sf = \sum_{i=1}^q \sigma_i \langle f, f_i \rangle f_i,
\]
where \(\sigma_i = \text{sgn} \langle f, f_i \rangle \) is the signature of the vector \(f_i \). \(S \) is an invertible symmetric operator with respect to \(\langle \cdot, \cdot \rangle \), i.e.,
\[
[Sf, g] = [f, Sg] \quad \text{for all} \quad f, g \in \mathbb{C}^k.
\]
Its relevance follows from the indefinite sampling-reconstruction formula: given an arbitrary $f \in \mathbb{C}^k$,

$$f = \sum_{i=1}^{q} \sigma_i [f, S^{-1}f_i] f_i = \sum_{i=1}^{q} \sigma_i [f, f_i] S^{-1}f_i.$$

In the following, we aim to apply the results from Sections 3 and 4, hence we restrict ourselves to the following inner product on $\mathbb{C}^k = \mathbb{C}^{n+m}$,

$$[(x_1, \ldots, x_{n+m}), (y_1, \ldots, y_{n+m})] = \sum_{i=1}^{n} x_i y_i - \sum_{j=1}^{m} x_{n+j} y_{n+j}.$$

In [6, Theorem 3.1] a criterion was provided to determine if an (invertible) symmetric operator is a J-frame operator. In our setting it says that an invertible operator S in $(\mathbb{C}^k, [\cdot, \cdot])$, which is symmetric with respect to $[\cdot, \cdot]$, is a J-frame operator if and only if there exists a basis of \mathbb{C}^k such that S can be represented as a block-matrix

$$(5.1) \quad S = \begin{bmatrix} A & -AK \\ K^*A & D \end{bmatrix},$$

where $A \in \mathbb{C}^{n \times n}$ is positive definite, $K \in \mathbb{C}^{n \times m}$ is strictly contractive, and $D \in \mathbb{C}^{m \times m}$ is a Hermitian matrix such that $D + K^*AK$ is also positive definite. Any block-matrix $S \in \mathbb{C}^{(n+m) \times (n+m)}$ of the form (5.1), which satisfies these conditions will be called J-frame matrix.

Therefore, Theorem 3.3 can be restated in the following way.

Theorem 5.2. Let $A \in \mathbb{C}^{n \times n}$ and $D \in \mathbb{C}^{m \times m}$ be matrices satisfying Assumption 3.1. Then there exists $K \in \mathbb{C}^{n \times m}$ with $\|K\| < 1$ such that S as in (5.1) is a J-frame matrix if and only if

$$r \leq n \quad \text{and} \quad \lambda_i + \mu_i > 0 \quad \text{for} \quad i = 1, \ldots, r.$$

We mention that the study of the spectral properties of a J-frame operator is quite recent, see [6, 7]. In the case of J-frame matrices, for given A and D, we always find conditions such that a strictly contractive K exists which turns S into a matrix similar to a Hermitian one. The following result is a direct consequence of Theorem 4.2 and Lemma 4.1.

Theorem 5.3. Let Assumption 3.1 and (3.1) hold. Then, there exists a strictly contractive matrix K such that the matrix S given in (5.1) is a J-frame matrix which is similar to a Hermitian matrix. In this case, all eigenvalues of S are positive and there exists a basis of \mathbb{C}^{n+m} consisting of eigenvectors of S.

References

ON A CLASS OF NON-HERMITIAN MATRICES

Fachbereich Mathematik, Universität Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany

E-mail address: thomas.berger@uni-hamburg.de

Departamento de Matemática – FI-UBA and Instituto Argentino de Matemática “Alberto P. Calderón” (CONICET), Saavedra 15 (1083) Buenos Aires, Argentina

E-mail address: jgiribet@fi.uba.ar

Centro de Matemática de La Plata (CeMALP) – FCE-UNLP, La Plata, Argentina, and Instituto Argentino de Matemática “Alberto P. Calderón” (CONICET), Saavedra 15 (1083) Buenos Aires, Argentina

E-mail address: francisco@mate.unlp.edu.ar

Institut für Mathematik, Technische Universität Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany, and Instituto Argentino de Matemática “Alberto P. Calderón” (CONICET), Saavedra 15 (1083) Buenos Aires, Argentina

E-mail address: carsten.trunk@tu-ilmenau.de