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Abstract

In this dissertation, systems of partial differential equations describing neutron stars in
numerical relativity are investigated concerning their hyperbolicity properties. First,
fundamental definitions are given and well-posedness of the initial value problem is ex-
plained. The main tool for the hyperbolicity analysis of fluid systems in this thesis is
the so-called dual frame formalism in which two different frames can be related to each
other. With the help of the formalism, it is shown that strong hyperbolicity is indepen-
dent of the chosen frame if the appearing speeds are subluminal. Second, with regard
to the numerical modeling of neutron stars, the partial differential equation systems of
ideal hydrodynamics, ideal magnetohydrodynamics, and resistive magnetohydrodynam-
ics are investigated in general relativity. The system of ideal hydrodynamics serves as
a test system for the application of the dual frame formalism. The main focus of this
work lies on the investigation of ideal magnetohydrodynamics used in numerical relativ-
ity. Two formulations of the system of equations are distinguished, determined by the
presence of parametrized combinations of the magnetic field constraint in the evolution
equations. The first formulation is strongly hyperbolic. In contrast, the second so-called
flux-balance law formulation, which is used in numerical relativity, turns out to be only
weakly hyperbolic and hence, no well-posed initial value problem can be found. Finally,
the two numerically used systems of equations for resistive magnetohydrodynamics are
investigated, and again both systems turn out to be only weakly hyperbolic. The flux-
balance law formulation of classical magnetohydrodynamics, as well as the systems of
dust and charged dust also turn out to be weakly hyperbolic, for the latter at least in the
minimally coupled case. Thus, the results have great impact on the current numerical
modeling of neutron stars.
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Zusammenfassung

In der vorliegenden Dissertation werden Systeme von partiellen Differentialgleichungen
auf ihre Hyperbolizitätseigenschaften untersucht, welche im Zusammenhang mit der
Simulation von Neutronensternen in der numerischen Relativitätstheorie Anwendung
finden. Dabei werden zunächst grundlegende Definitionen gegeben und Wohldefiniertheit
des Anfangswertproblems geschildert. Als Hauptwerkzeug zur Hyperbolizitätsanalyse der
Flüssigkeitssysteme wird der sogenannte Dual Frame Formalismus benutzt, mit dessen
Hilfe zwei verschiedene Frames in Verbindung gebracht werden können. Unter
Verwendung des Dual Frame Formalismus wird gezeigt, dass starke Hyperbolizität
unabhängig vom gewählten Frame ist, solange keine überlichtschnellen Geschwindigkeiten
auftauchen. Im Hinblick auf die numerische Modellierung von Neutronensternen werden
anschließend Differentialgleichungssysteme von idealer Hydrodynamik, idealer Magneto-
hydrodynamik und resistiver Magnetohydrodynamik in der Allgemeinen Relativitäts-
theorie untersucht. Dabei dient die ideale Hydrodynamik als Testsystem für die
Anwendung des Dual Frame Formalismus. Das Hauptaugenmerk dieser Arbeit liegt auf
der Untersuchung der idealen Magnetohydrodynamik. Dabei wird zwischen zwei
Formulierungen der Gleichungssysteme unterschieden, indem verschiedene parametrisierte
Kombinationen der Zwangsbedingungen an das magnetische Feld zu den Evolutions-
gleichungen addiert werden. Die erste Formulierung ist stark hyperbolisch. Die zweite
sogenannte flusserhaltende Formulierung, welche in der numerischen Relativitätstheorie
Verwendung findet, stellt sich hingegen als lediglich schwach hyperbolisch heraus, wes-
halb kein wohldefiniertes Anfangswertproblem gestellt werden kann. Zuletzt werden die
beiden numerisch verwendeten Gleichungssysteme für resistive Magnetohydrodynamik
untersucht, wobei sich ebenfalls beide Systeme als lediglich schwach hyperbolisch heraus-
stellen. Die flusserhaltende Formulierung von klassischer Magnetohydrodynamik, sowie
die Systeme von Staub und geladenem Staub stellen sich ebenfalls als schwach hyper-
bolisch heraus, für letzteres zumindest im minimal gekoppelten Fall. Die gefundenen
Resultate haben daher großen Einfluss auf die aktuelle numerische Modellierung von
Neutronensternen.
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Notation and Abbreviations

Within this thesis, geometric units with G = c = 1 are used throughout, where G is
the gravitational constant and c is the speed of light in vacuum. Additionally, Lorentz-
Heaviside units for electromagnetic quantities with ε0 = µ0 = 1, where ε0 is the vacuum
permittivity (also called electric constant) and µ0 is the vacuum permeability (also called
magnetic constant) are always employed.

The Einstein summation convention is applied throughout this work. Most of the time
the abstract index notation is employed. Small Latin letters a, b, c, d, e and p are taken
as abstract indices. They are used to indicate the rank of a tensor rather than writing the
tensor in a particular basis. Greek indices run from 0 to 3 and denote spacetime compo-
nents of tensors in the coordinate basis associated with the coordinates xµ = (t, xi). The
small Latin letters i, j, and k run from 1 to 3 and stand for the spatial components of
the same basis. Further detailed definitions concerning the index notation can be found
in the very beginning of chapter 3. The notation in chapter 2 deviates from the rest of
the work and is given when needed at the respective place.

Most of the results are obtained with the help of Mathematica using xTensor [Martín-
García, 2017]. The notebooks can be downloaded from http://www.tpi.uni-jena.de/

~hild/Hydro_DF.tgz. In appendix A the assignment between the chapters and note-
books is given. In the text it is referred to the respective notebook with a link to
appendix A.
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The following abbreviations are used across the thesis and most of them will also be
introduced when they appear the first time:

BSSNOK Baumgarte-Shapiro-Shibata-Nakamura-Oohara-Kojima
DF Dual frame
GR General Relativity
GRHD General relativistic hydrodynamics
GRMHD (Ideal) General relativistic magnetohydrodynamics
HD Hydrodynamics
HRSC High resolution shock capturing
IVP Initial value problem
MHD (Ideal Newtonian) Magnetohydrodynamics
NR Numerical relativity
PDE Partial differential equation
RGRMHD Resistive general relativistic magnetohydrodynamics
RMHD (Ideal special) Relativistic magnetohydrodynamics
RRMHD Resistive (special) relativistic magnetohydrodynamics
SR Special Relativity

For the sake of clarity, the abbreviations above as well as definitions, quantities, and
techniques are sometimes explained or given more than once.
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Chapter 1

Introduction

The second century in the lifetime of present best known theory of gravity – General
Relativity (GR) [Einstein, 1915a; Einstein, 1915b] – has started with a short and soft
chirp on 14th September 2015. With the first measurement of the gravitational wave
signal GW150914 [Abbott et al., 2016b], predicted by Einstein himself in 1916 [Einstein,
1916; Einstein, 1918] a new era has begun: the era of gravitational wave astronomy. The
chirp signal of the gravitational wave – a small distortion of the spacetime, traveling
with the speed of light – was ‘heard’ by the Laser Interferometer Gravitational-Wave
Observatory [LIGO] and was emitted by merging black holes. Since GW150914, further
gravitational wave signals from binary black hole mergers were measured [Abbott et al.,
2016a; Abbott et al., 2017a; Abbott et al., 2017b; Abbott et al., 2017c], which all confirm
GR in its current form. Almost two years after GW150914 and four decades after the
discovery of the first neutron star binary by [Hulse and Taylor, 1975], on 17th August
2017 at 12:41:04 UTC the [LIGO] and [VIRGO] gravitational wave detectors measured the
most interesting gravitational wave signal so far, namely the signal GW170817 [Abbott
et al., 2017d] emitted by a binary neutron star merger. The signal had a total length
of ∼ 100s and the component masses were identified within the range of 0.86 and 2.26M⊙,
which is in accordance with theoretical expectations [Chamel et al., 2013]. Less than 2s
after the merger, the gravitational wave signal was followed by a series of electromagnetic
counterparts, such as the (short) gamma-ray burst GRB 170817A [Goldstein et al., 2017].
These multi-messenger observations have confirmed the association of short gamma-ray
bursts with merging neutron star binaries. This has been expected for many years [Eichler
et al., 1989; Narayan et al., 1992].

The measurement of gravitational waves is not only the remarkable result of decades
of planning and building large earth based laser interferometers, but also of huge the-
oretical efforts and research. This includes for instance the analytical solutions to the
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vacuum Einstein equations describing a black hole by [Schwarzschild, 1916; Reissner,
1916; Nordström, 1918; Kerr, 1963; Newman et al., 1965], the modeling of relativistic
stars [Tolman, 1939; Oppenheimer and Volkoff, 1939], the 3+1 decomposition of the field
equations [Bruhat, 1952; Arnowitt et al., 1962; York, 1979], the understanding of quasi-
normal modes [Vishveshwara, 1970; Press, 1971; Chandrasekhar and Detweiler, 1975],
the studies of relativistic two-body dynamics [Buonanno and Damour, 1999; Blanchet,
2014] by high order post Newtonian calculations [Blanchet et al., 1990], and the numeri-
cal relativity (NR) breakthroughs [Shibata and Uryū, 2000; Pretorius, 2005; Campanelli
et al., 2006; Baker et al., 2006] to simulate compact binaries and extract their gravita-
tional wave signals. Especially in the last phase of inspiraling, strong gravitational fields
are present and thus, a full consideration of GR is required. Due to the non-linearity of
the field equations, NR is the common key tool to treat those situations properly.

The role of NR will become crucial for several reasons. First, a global network of earth
based ([LIGO; VIRGO; GEO; KAG; IND; ETU]) and space based ([LISA]) GW detec-
tors will be available in the near future enabling the observation of gravitational waves
with unprecedented precision. Second, it is statistically expected that in the future the
rate of observed signals will increase due to the technical improvements. For instance,
the number of detected binary neutron star events (measured by [LIGO; VIRGO; IND])
is estimated to lie between one in a few years up to hundreds per year [Abbott et al.,
2013]. Finally, especially the wave form right after merger contains information about the
internal structure determined by the equation of state (EOS) [Read et al., 2009; Radice
et al., 2017], which is expected to be influenced by quantum effects [Baiotti and Rezzolla,
2017]. Thus, the accurate measurement could provide new insight into the strong field
regime, where quantum effects and gravitation mix. Taken together, one of the main
tasks of NR in coming years will be the long-time simulation of neutron stars as well as
the accurate construction and modeling of gravitational waveforms, which has already
started [Lackey et al., 2017]. As a consequence, sophisticated numerical codes are essen-
tial for understanding the physics of the strong field regime.

However, the numerical treatment of neutron stars is not as easy as for binary black
hole systems. By the presence of matter, the accuracy suffers in comparison to the
vacuum case for several reasons. For example, shocks can form even from smooth initial
data (ID). To deal with them, sophisticated methods, such as high resolution shock
capturing (HRSC) schemes [Hawke et al., 2005], can be employed, where the set of
evolution equations is written in a flux-balance law form [Godunov, 1959; Font, 2008].
Another example is the singular behavior of the fluid equations at the stellar surface and
their numerical techniques for treatment [Rezzolla and Zanotti, 2013], which both are a
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Chapter 1. Introduction

constant source of error [Schoepe et al., 2018]. Ultimately, to guarantee long-lived stable
numerical simulations and to have convergence in the first place, it is of great importance
to have a well suited mathematical formulation of the initial value problem (IVP). In fact,
no numerical approximation can converge if the underlying continuous PDE problem is
ill-posed. In fairly general cases, the dynamics of neutron stars in GR are determined
by a system of (second order) partial differential equations (PDEs) for the metric tensor
coupled to evolution and constraint equations for matter variables. Additionally, the
set of equations is augmented depending on the physical situation [Font, 2008]. By
reformulation of the equations as a system of first order PDEs, the necessary requirement
for well-posedness of the IVP is that the PDE system is strongly hyperbolic [Kreiss and
Lorenz, 1989].

The main objective of this thesis is to provide a new tool to treat first order PDE
systems and investigate their hyperbolicity structure in the context of neutron stars.
The modeling of (binary) neutron stars in NR is currently done with a variety of nu-
merical codes. Different types of matter determined by the proposed energy-momentum
tensor are considered. The most common models in use are general relativistic hydro-
dynamics (GRHD) [Font et al., 2000], (ideal) general relativistic magnetohydrodynamics
(GRMHD) [Antón et al., 2006] and resistive general relativistic magnetohydrodynamics
(RGRMHD) [Dionysopoulou et al., 2015].

The literature already provides several studies of the hyperbolicity structure for
GRHD [Anile, 1990] for GRMHD [Anile and Pennisi, 1987; Anile, 1990; Komissarov,
1999; Antón et al., 2010] and for RGRMHD [Cordero-Carrión et al., 2012], mostly based
on the definition of hyperbolicity of [Friedrichs, 1974]. However, these investigations do
not always apply directly to the numerically used systems of PDEs, since several subtleties
were not taken with due care. For example, the presence of constraints in the evolution
equations and the gauge freedom affects the hyperbolicity structure. This can be seen in
the different 3+1 formulations of the Einstein equations, for instance by [Arnowitt et al.,
1962] and [York, 1979], where for some gauges only the latter one can have a well-posed
IVP [Alcubierre, 2008; Sarbach and Tiglio, 2012].

In this thesis, the reexamination of the hyperbolicity structure of the aforementioned
popular fluid models in full GR is done. Special focus lies on the system of GRMHD,
where magnetic fields are taken into account. In the merger and post-merger phase it is
expected that magnetic fields have a significant effect on the behavior of the system. For
example, they influence the formation of ultra relativistic jets of ionized matter [Massi
and Bernado, 2008; Baiotti and Rezzolla, 2017].

This PhD thesis is structured as follows: Chapter 2 starts with one possible classifica-
tion of PDEs, followed by the relevant definitions and discussions concerning first order
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quasi-linear PDE systems. Also, the concept of well-posedness of an IVP in relation to
the hyperbolicity properties of the underlying PDE system is explained.

In chapter 3, the dual frame (DF) formalism as the main tool used in this work to
analyze the evolution equations of popular fluid models is given. It is proven, that under
certain restrictions strong hyperbolicity is independent of the frame.

In chapter 4, the PDE system of GRHD is analyzed in regard to its hyperbolicity
structure in two frames. All characteristic quantities, such as eigenvectors, eigenvalues,
and characteristic variables, are derived in both frames.

In chapter 5, the model of main interest in this work, namely GRMHD, is investigated.
Two different formulations are considered and analyzed regarding their hyperbolicity
properties. For the first formulation, a complete characteristic analysis is given and
a detailed discussion of the degeneracies is provided. For the second formulation, the
breakdown of strong hyperbolicity is explained and suggestions for a numerical test are
provided.

In chapter 6, the system of RGRMHD is investigated. Two numerically used forms
differing in the evolution of the charge density are analyzed.

In chapter 7, a conclusion and future prospects are given.

The PhD thesis is based on the article [Schoepe et al., 2018].
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Chapter 2

Basics of PDE Analysis

The ultimate goal of this thesis is to examine whether or not PDE systems of the fluid
models GRHD, GRMHD, and RGRMHD are strongly hyperbolic. To investigate the
structure of PDE systems, the necessary definitions, notation and tools to do so are pro-
vided in this chapter. This will be done in a reporting fashion, mainly based on [Kreiss and
Lorenz, 1989; Gustafsson et al., 1995], and furthermore [Reula, 1998; Reula, 2004; Baum-
garte and Shapiro, 2010; Hilditch, 2013] were used. The statements given in the literature
are slightly adjusted in regard to the application to the fluid models in GR considered in
this thesis. Only important results, needed for the analysis of hyperbolic first order PDE
systems in the context of GR, will be sketched and explained in a condensed form in the
next sections, starting with a classification of second order PDEs.

2.1 Classification of PDEs

At first, a rough overview of how PDEs can be characterized is given and the various
attributes used in their names are explained. This section is mainly based on [Kreiss and
Lorenz, 1989; Gustafsson et al., 1995; Baumgarte and Shapiro, 2010].

Most of the PDEs in the context of GR are first or second order partial differential
equations. The attribute order refers to the highest derivative that appears in the PDE.
They can be roughly classified into three classes: elliptic, parabolic, or hyperbolic. These
classes are inspired by conic sections as follows: Let x1 and x2 be two independent
variables and denote the partial derivative as ∂i ≡ ∂/∂xi, i = 1, 2 and let the coefficient
functions A(xi), B(xi), C(xi) be sufficiently often differentiable. The second order PDE
for a function U(xi) can be written as

A(xi)∂21U(x
i) + 2B(xi)∂1∂2U(x

i) + C(xi)∂22U(x
i) = S(U, ∂U, xi) , (2.1)
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2.1. Classification of PDEs

where the source S(U, ∂U, xi) does neither have to be linear in U nor in the first derivatives
of it, symbolized by ∂U . In the following, the dependence on xi will be suppressed. The
PDE (2.1) at a point xi0 is called:

elliptic, if: AC −B2 > 0 ;

parabolic, if: AC −B2 = 0 ;

hyperbolic, if: AC −B2 < 0 . (2.2)

If the function U as well as all of its derivatives appear at most to linear order, the PDE is
called linear. If the coefficients depend on the independent variables xi, the PDE is called
a variable coefficient PDE. If all coefficients are constant, the PDE is called a constant
coefficient PDE.

Elliptic PDEs often arise in the context of time-independent or stationary problems,
such as steady-state solutions, or end-state solutions of dynamical systems. To solve
them, one needs appropriate boundary conditions. An example of an elliptic equation is
the Poisson equation,

∂21U + ∂22U = S . (2.3)

Parabolic PDEs describe diffusive processes. In contrast to elliptic PDEs, they contain
a notion of time, expressed by the time coordinate t. They are typically formulated as
initial (boundary) value problems. An example is the diffusion equation,

∂2tU − ∂1(k∂1U) = S , (2.4)

where k is here the diffusion coefficient. The PDE of main interest in this work is the
one of hyperbolic type. Those PDEs have an intrinsic notion of time and signals travel
with finite speed. Interestingly but also crucially, discontinuities in initial data (ID) will
often be propagated, but can also rise from initially smooth data. The prototype of a
hyperbolic equation is the wave equation,

∂2tU − λ20∂
2
1U = 0 , (2.5)

with constant wave speed λ0 (which obeys 0 < λ0 ≤ 1). PDEs of mixed type do also
exist.

Taking the second order wave equation (2.5) with U ≡ ϕ and introducing the reduction
variables ψ = ∂tϕ and φ = ∂1ϕ, one can rewrite the wave equation by the following set

8



Chapter 2. Basics of PDE Analysis

of first order PDEs,

∂tϕ = ψ , ∂tψ = λ20∂1φ , ∂tφ = ∂1ψ, (2.6)

or in vector form,

∂tU = A∂1U+ S , U =

⎛⎜⎝ϕψ
φ

⎞⎟⎠ , A =

⎛⎜⎝0 0 0

0 0 λ20

0 1 0

⎞⎟⎠ , S =

⎛⎜⎝ψ0
0

⎞⎟⎠ . (2.7)

Thereby, the second order hyperbolic wave equation is expressed as a coupled system of
first order PDEs. The system is symmetric hyperbolic, see below. In the next section
hyperbolic PDE systems of first order and their IVP will be discussed.

2.2 First Order Hyperbolic PDE Systems

Consider a vector function U (later called the state vector) of arbitrary finite dimension,
depending on 3+1 spacetime variables {t, xi} with x0 ≡ t and i = 1, 2, 3. The letters j, k
are taken as spatial component indices such as i. The partial derivative with respect to the
spacetime variable xµ is denoted by ∂µ ≡ ∂/∂xµ where µ can take the values {0, 1, 2, 3}.
All following statements are in the context of first order PDE systems.

Quasi-linear PDE system. In this thesis, quasi-linear hyperbolic first order systems
of evolution PDEs of the form

∂tU = Ap(xµ,U)∂pU+ S(xµ,U) , (2.8)

are considered. In this section, p stands for a spatial component index such as i and is
always placed on the spatial derivative. The system is called quasi-linear, because the
coefficient matrices, also called the principal part of the system, depend not only on the
coordinates xµ but also on the state vector U = U(t, xi). The source vector is written
as S(xµ,U) and contains all non-principal terms. However, the source terms will not
contribute to the PDE analysis. When sources are presented, then only for the sake of
completeness. Hereafter the dependence of the principal part on both the solution and
the coordinates is suppressed in the notation. The same is performed for the source
vector.
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2.2. First Order Hyperbolic PDE Systems

The initial value problem. The initial value problem (IVP) (sometimes called Cauchy
problem) is as follows: Specify initial data (ID) for the state vector U(t0, x

i) = U0 at a
given time t = t0. The IVP of (2.8) is to find a solution U to the PDE system (2.8) for
initial data U0.

Well-posedness. The IVP for (2.8) is called well-posed if it admits a unique solution
that depends continuously, in a suitable norm, on the ID. For a well-posed IVP one can
find constants k, α, which are independent of the ID, such that the state vector U satisfies
the inequality

||U(t, xi)|| ≤ keαt||U0|| . (2.9)

For linear constant coefficient systems, the L2 -norm can be used. For variable coefficient
problems a Sobolev norm is appropriate [Reula, 1998], but the particular norm is not of
importance in the present work.

Strong hyperbolicity. Let si be a spatial 1-form normalized so that (m−1)ijsisj = 1,
with (m−1)ij an arbitrary symmetric uniformly positive definite matrix which is permitted
to depend on the solution. Contracting the principal part Ap with sp, the resulting matrix

Ps ≡ As = Apsp (2.10)

is called the principal symbol (in the si-direction) of the PDE system (2.8). At each point
in spacetime the system (2.8) is called:

• weakly hyperbolic, if for each si the eigenvalues of Ps are real;

• strongly hyperbolic, if the system is weakly hyperbolic and for each si the principal
symbol has a complete set of eigenvectors written as columns in a matrix Ts and
there exists a constant K > 0, independent of si, such that

|Ts|+ |T−1
s | ≤ K; (2.11)

• strictly hyperbolic, if the system is weakly hyperbolic and for each si the eigenvalues
are distinct;

• symmetric hyperbolic, if there exists a symmetric positive definite symmetrizer H,
independent of si, such that HAp is symmetric for each p.
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Chapter 2. Basics of PDE Analysis

Note that the condition (2.11) with the matrix norm | · | is automatically satisfied if
the eigenvectors depend continuously on si. In that case, proving strong hyperbolicity
at a point is reduced to showing that the principal symbol Ps is diagonalizable, i.e.,
that it has real eigenvalues and a complete set of linearly independent eigenvectors. If a
system is strictly and/or symmetric hyperbolic, it is also strongly hyperbolic [Kreiss and
Lorenz, 1989]. Strong hyperbolicity can also be defined in a similar way to symmetric
hyperbolicity, but with the weaker requirement that the symmetrizer H(sk, t, x

i) depends
continuously on sp [Kreiss and Lorenz, 1989]. In the general case and especially for the
systems considered in this thesis, the principal symbol is solution dependent. Thus, the
hyperbolicity of the system depends on the solution, too. The first order reduction of the
wave equation (2.7) forms a symmetric hyperbolic PDE system with symmetrizer H =

diag(1, λ−1
0 , λ0).

Characteristic variables. Given a strongly hyperbolic system in the form of (2.8)
with principal symbol Ps and matrix of right eigenvectors Ts, the diagonalized form
of Ps with its eigenvalues on the diagonal is given by

Λs = T−1
s PsTs . (2.12)

The orthogonal projector to si is introduced, that is m⊥j
i = δj i − (m−1)jksksi and, in

this section, capital letters A,B,C are used to denote projected component indices. The
components of the transformed state vector dµÛ = T−1

s ∂µU are called the characteristic
variables in direction si. The ‘d’ symbol is used here to illustrate the fact that the ma-
trix T−1

s , which is generally both position and solution dependent, is not to be commuted
with the partial derivative. Therefore, when presenting quantities like the characteristic
variables in terms of state vector components, or the state vector in a particular (space-
time dependent) basis, a δ notation is used. Thus, δφ is written to denote some derivative
of a component φ of the state vector U.

The characteristic variables have the property that they satisfy particularly simple
equations of motion if the derivatives transverse to ŝi = (m−1)ijsj and the lower order
source terms are ignored,

dtÛ = ΛsdŝÛ+ (T−1
s AATs)dAÛ+T−1

s S . (2.13)

In the linear constant coefficient approximation, where the coefficients are supposed to be
frozen, the matrices are constant and can be commuted with the partial derivative. Drop-
ping the aforementioned terms and taking the approximation, one arrives at decoupled
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2.2. First Order Hyperbolic PDE Systems

advection equations with speeds given by the eigenvalues of Ps.

Strong hyperbolicity is a necessary requirement for well-posedness of the IVP.
A first order PDE system must be strongly hyperbolic to be able to obtain a well-posed
IVP [Kreiss and Lorenz, 1989]. To study this statement phenomenologically, the following
proof is sketched. For the sake of simplicity, the source vector is set to zero and a linear
constant coefficient PDE system in one space dimension ( x1 ≡ x) is considered:

∂tU = A∂xU . (2.14)

For the particular choice of an initial condition U(0, x) = eiωxf̂(ω), ω ∈ R, one can make
the separation ansatz U(t, x) = eiωxÛ(t, ω). The solution to the IVP (2.14) is then

U(t, x) = eiωAtU(0, x) , U(0, x) = eiωxf̂(ω) . (2.15)

Taking now an appropriate norm such as the L2-norm and writing U(0, x) ≡ U0, one
can estimate

||U(t)|| = ||eiωAtU0|| ≤ |eiωAt| ||U0|| . (2.16)

Suppose that the principal symbol A is diagonalizable. Then, by using the matrix of
right eigenvectors T, estimating gives

|eiωAt| = |TeiωΛtT−1| ≤ |T||T−1| , (2.17)

where |eiωΛt| = 1 since Λ is diagonal with real entries. Hence, the estimate (2.9) holds
with α = 1 and k = |T||T−1| and the IVP is well-posed. Suppose instead that A has
at least one complex eigenvalue λ = ζ + iξ with real ζ, ξ and ξ ̸= 0. Then |eiωAt| ≥
|eiωλt| = e−ωξt. Thus, one can never find a bound independent of ω and therefore α
and/or k in (2.9) become dependent on the ID. This IVP is ill-posed. Suppose now that
the system is weakly hyperbolic, and the Jordan form J[A] of A contains at least one
nontrivial Jordan block. For simplicity take A to be

A =

(
λ 1

0 λ

)
, eiωAt = eiωλt

(
1 iωt

0 1

)
, (2.18)

where the norm goes like |eiωAt| ∼ (1+|λω|t). Again one arrives at an ill-posed IVP. In the
linear constant coefficient case considered here, strong hyperbolicity and well-posedness
of the IVP are equivalent. In the more general case of a quasi-linear system (2.8), strong
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Chapter 2. Basics of PDE Analysis

hyperbolicity at each point is a necessary condition for well-posedness. Additionally,
smoothness conditions are needed to guarantee well-posedness, namely that the sym-
metrizer H(sk, t, x

i) as well as the state vector U(t, xi) must depend smoothly on their
arguments. For further explanations and proofs concerning the general case, the inter-
ested reader is referred to [Kreiss and Lorenz, 1989; Gustafsson et al., 1995].

PDE systems with constraints. A system of evolution equations supplemented by
constraints is called a constrained PDE system. Constraints reduce freedom in the choice
of physical initial conditions. One can show that if the constraints are initially satisfied,
they remain satisfied at later times. However, in NR one is faced with rounding errors such
that this statement is only true for the continuum PDE system, but there exist techniques
to keep them nearly fulfilled (see also chapter 6). Adding multiples of constraints to the
evolution equations can of course change the principal symbol and thus the level of
hyperbolicity. The models of GRMHD and RGRMHD form constrained PDE systems
by the presence of electromagnetic fields and the residual gauge freedom of Maxwell
equations. Taking the evolution equations and adding a parametrized combination of the
constraints to each evolution equation leads to different formulations for different choices
of the constraint addition parameters. In chapter 5 this is considered in more detail.

Summary. To formulate a well-posed IVP it is indispensable to have a strongly hyper-
bolic PDE system. If the continuum PDE system is not strongly hyperbolic and therefore
the IVP ill-posed, no estimates for the time evolution of the variables can be given. Also,
for ill-posed IVPs one has to worry about existence and/or uniqueness of the solution in
the first place. In the context of NR no numerical code can converge if the IVP of the
underlying continuous PDE system is ill-posed. Numerical hacks cannot prevent this,
since it is a property of the PDE system itself. A first step to obtain stable numerical
codes is thus to consider a strongly hyperbolic PDE system. This crucial property be-
came already visible in the beginning of NR, where the vacuum Einstein equations were
considered numerically as ill-posed IVPs [Alcubierre, 2008].

2.3 The Einstein Equations with Matter

In this thesis, different types of matter in full GR are studied and the governing PDE
systems are examined for strong hyperbolicity. More precisely, the Einstein equations,

Gµν = 8πTµν , (2.19)
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are considered, which contain derivatives up to second order in space and time for the
metric components gµν on the left-hand side, with the energy-momentum tensor Tµν as
a source term on the right-hand side. These equations are supplemented with additional
evolution equations for the matter variables. The latter may be fluid and/or electromag-
netic variables, depending on the physical system which is considered. To treat the metric
variables one may make a first order reduction by introducing reduction variables (as for
the wave equation (2.7)) and construct a suitable first order hyperbolic reformulation of
the Einstein equations. In this way one can write the principal symbol schematically as

Ps =

(
Ps

g Ps
g×m

Ps
m×g Ps

m

)
, (2.20)

with the principal symbols for the metric Ps
g and matter variables Ps

m. If the evolution
equations for the matter variables contain neither second nor higher order derivatives of
the metric, the matrix Ps

m×g can be set to zero by replacing first derivatives with reduction
variables. Furthermore, if the energy-momentum tensor contains no derivatives of the
fluid variables whose equations of motion are assumed to be first order, then one can
take Ps

g×m = 0. Under these circumstances, Tµν is not only a physical source term but
also in the sense of PDEs, as defined above. For Ps

m×g = Ps
g×m = 0, the system is said

to be minimally coupled. In such a case the characteristic analysis can be performed
separately for Ps

g and Ps
m. Thus, taking a strongly hyperbolic first order formulation

for the metric variables (e.g., BSSNOK [Nakamura et al., 1987; Shibata and Nakamura,
1995; Baumgarte and Shapiro, 1998] using reduction variables [Alcubierre, 2008]) one
needs to study only the properties of Ps

m. Minimal coupling is assumed throughout
the work. In the following the subscript ‘m’ will be dropped. Note that the choice of
a strongly hyperbolic first order formulation for the metric variables also serves as a
restriction for the eligible coordinates.

In the following chapters, the evolution PDEs are written in various forms similar
to (2.8). For convenience, instead of the partial derivative ∂, the spacetime covariant
derivative ∇ and various other operators are used, which are introduced in the next
chapter. The assumption of minimal coupling allows to ignore first derivatives of the
metric that appear in these expressions by assuming implicitly that they are replaced by
the metric reduction variables. This approach is appropriate for any minimally coupled
metric-based theory of gravity. Please note that care is sometimes needed to avoid a
violation of the condition. However, in the Cowling approximation [Cowling, 1941] where
the background is a priori given, only the matter variables need to be evolved and the
coupling does not affect the analysis.
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Chapter 3

The Dual Frame Formalism

In this chapter the dual frame formalism (DF formalism) is introduced. The DF approach
is based on the dual foliation formalism presented in [Hilditch, 2015; Hilditch et al., 2018].
This formalism relates two different frames to each other, allowing to make statements
about unknown quantities in one frame through knowledge of certain quantities in the
other one. It will become the key tool to obtain characteristic quantities in the Eulerian
frame, especially for GRMHD.

In the first section, a short introduction to the DF approach is given. Some of the
relations are explicitly calculated. For deeper insights and to obtain a full understanding
of the construction it is required to read [Hilditch, 2015]. In this thesis it is only worked
in frames, in contrast to [Hilditch, 2015; Hilditch et al., 2018], where coordinates are
introduced. In the present work, only one of the frames necessarily defines a coordinate
tensor basis. The advantage of a frame formalism is the possibility to translate quantities
easily between two frames just by 3+1 decomposing the tensors. Note that the choice of
coordinates does only affect the form of the principal symbol Ps

g of the metric variables,
since this fixing of gauge freedom leads to a particular occurrence of constraints in the
evolution equations. The analyses of the matter principal symbols below is in this sense
independent of the choice of variables.

In the second part of this chapter, the frame independence of strong hyperbolicity is
shown in section 3.2 and an algorithm to recover characteristic quantities in the unknown
frame from the known one is given in section 3.3. Before starting with the basics, the
index notation valid for the rest of the thesis is given now.

Index notation. The index notation is now introduced which is in use in the rest of
this work. Small Latin letters a, b, c, d, e are used as abstract indices. The index p is
also used as an abstract index, and is always placed on the spatial derivative appearing
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on the right-hand side of the first order PDE systems. The metric tensor gab is the only
object permitted to raise and lower indices. Greek indices run from 0 to 3 and denote the
components of tensors in the coordinate basis associated with the coordinates xµ = (t, xi).
The metric tensor has the signature (−1, 1, 1, 1). Latin indices i, j, k run from 1 to 3 and
stand for the spatial components in the same basis. The symbol ∂a stands for the flat
covariant derivative naturally defined by xµ [Wald, 1984]. The covariant derivative to gab
is denoted by ∇a and the connected Christoffel symbols are denoted in the coordinate
basis by Γµ

νσ.

Various tensors will be introduced in this chapter. To provide a point of reference
some of them are mentioned now without giving them a meaning. Indices n, N , u, V ,
S, Q1, Q2, s, q1, q2, s, q1, q2, ŝ, q̂1, q̂2, and z label contraction in that slot with na

or na and so on, respectively. Capital Latin letters A, B, C are abstract indices denoting
application of the projection operators Q⊥ or q⊥. Similarly indices A, B, C and Â, B̂, Ĉ
are used to denote the application of the projection operator q⊥ over a vector or dual-
vector, respectively. The summation convention applies also for abstract capital letters
of different type but same letter. For products of different projectors it is written for
instance q⊥a

B̂
Q⊥B

c ≡ q⊥a
b
Q⊥b

c . For the index notation convention in the provided
notebooks, see appendix A.

3.1 Basic Idea and Objects

The basic idea of the DF approach is to describe a region of spacetime in two different
frames. These two frames are called the lower case frame and the upper case frame. In
this work, the lower case frame is a coordinate frame associated with coordinates xµ.
The zeroth component is the usual time coordinate t, which foliates the spacetime. The
frame consists of the four vectors ∂aµ and the associated co-frame is ∇ax

µ (see also [Wald,
1984]).

For the lower case frame the standard choice of NR is adopted, the Eulerian frame,
and standard textbook notation as by [Alcubierre, 2008] is used for the related lower case
quantities. The future pointing timelike unit normal vector to slices of constant t is, as
usual, denoted by na. Tensors orthogonal to na are called lower case spatial or sometimes
just lower case. For convenience an additional frame is introduced. It consists of the
future pointing timelike unit normal vector na plus three linearly independent lower case
vectors which are introduced as they are required. For almost all calculations, this frame
will be used. Since it has the same timelike unit normal na as the lower case coordinate
frame, it is also referred to as the lower case frame.
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Chapter 3. The Dual Frame Formalism

The upper case frame consists of a future pointing timelike unit normal vector Na,
plus any three linearly independent vector fields orthogonal to Na, which will be chosen
for convenience. Tensors orthogonal to Na are called upper case spatial or sometimes
just upper case. The results in this chapter hold for a general future pointing timelike
unit normal vector Na, but it is mentioned that Na is identified later with the fluid
four-velocity ua.

The upper case future pointing timelike unit normal vector Na may be 3+1 decom-
posed as

Na = W (na + va) , (3.1)

with the boost vector va, nav
a = 0, and the Lorentz factor W = −naN

a. Using the
normalization of the normal vectors,

NaN
a = −1 , nan

a = −1 , (3.2)

one obtains

1 = −NaN
a = −W 2(na + va)(n

a + va) = W 2(1− vava) = W 2 − v̂av̂a (3.3)

and thereby

W =
1√

1− vava
=
√

1 + v̂av̂a . (3.4)

This justifies the name Lorentz factor for W . In equation (3.3) the weighted boost
vector v̂a = Wva is introduced.

In an analogous way the lower case normal vector is 3+1 decomposed in terms of the
upper case normal Na and the upper case boost vector V a, NaV

a = 0, that is

na = W (Na + V a), (3.5)

where the Lorentz factor can be written as W = (1− V aVa)
−1/2. Comparing this result

with the above relation (3.4), the norms of the lower and upper boost vectors must be
identical, V aVa = vava.

Furthermore, the projection operators related to the normal vectors na and Na are
defined by

γba = gba + nbna ,
(N)γba = gba +N bNa , (3.6)
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respectively. These are by construction orthogonal to their associated normal vectors, γbanb =

0, (N)γbaNb = 0. The projection operator γab becomes the natural induced metric γij on
slices of constant t in the coordinate frame when both indices are lowered. Hence, γab
and (N)γab are called the lower and upper case spatial metrics, respectively. Projecting the
upper case spatial metric with γba on both indices yields

gab := γcaγ
d
b
(N)γcd = γab + v̂av̂b . (3.7)

This can be easily verified by inserting the definition of the upper case projector given
in equation (3.6), expressing the upper normal vector in terms of lower case quantities
by equation (3.1), and using orthogonality relations. The tensor gab is called the boost
metric. Its inverse can be calculated by the Sherman-Morrison formula or by direct
computation, and is given by

(g−1)ab = γab − vavb , (3.8)

which is called the inverse boost metric. Please note that in contrast to the four-metric
tensor, in general (g−1)ab ̸= gab.

In the same way but by projecting the lower case projector γba with (N)γba on both
indices the upper case boost metric and its inverse are defined as

(N)gab :=
(N)γca

(N)γdbγcd =
(N)γab +W 2VaVb ,

(N)(g−1)ab = (N)γab − V aV b. (3.9)

These various definitions are collected in table 3.1.

The vector na is by construction hypersurface orthogonal. The lapse function α, shift
vector βa and time vector ta ≡ ∂at are defined and related via [Alcubierre, 2008]:

α = (−∇at∇at)−
1
2 , na = −α∇at ,

βa = γabt
b = ta − αna , ta∇at = 1 . (3.10)

Upper case frame Lower case frame
Unit normal vector Na = W (na + va) na = W (Na + V a)
Boost vector V a va = v̂a/W
Lorentz factor W = (1− V aVa)

−1/2 W = (1− vava)
−1/2

Projector (N)γab = gab +NaNb γab = gab + nanb

Boost metric (N)gab :=
(N)γab +W 2VaVb gab := γab + v̂av̂b

Inverse boost metric (N)(g−1)ab = (N)γab − V aV b (g−1)ab = γab − vavb

Table 3.1: Overview of the relationship between the upper and lower case quantities.
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The spacetime metric can be expanded in the lower case frame as

gµν =

(
−α2 + βkβ

k βj

βi γij

)
, (3.11)

with inverse,

gµν =

(
−α−2 α−2βj

α−2βi γij − α−2βiβj

)
, (3.12)

and the line element takes the form

ds2 = (−α2 + βiβ
i)dt2 + 2βidtdx

i + γijdx
idxj . (3.13)

The determinants of four-metric gµν and three-metric γij are denoted and related by
√
−g = α

√
γ. The intrinsic covariant derivative operator is denoted by Da and has

connection (n)Γµ
νσ in the coordinate basis. The Lie derivative (for the definition, see e.g.

[Carroll, 2003]) along a vector field za is written as Lz. Finally, the extrinsic curvatureKab

is defined using the standard NR sign convention [Alcubierre, 2008],

Kab = −γca∇cnb . (3.14)

In the current work there is no need to define any such connection variables associated
with the upper case frame, since it will be used exclusively in an algebraic manner to
simplify the various matrices that appear in the analysis. The key idea is that by using
the DF formalism one may express the equations of motion in a Lagrangian frame that
is, for fluid matter, in some sense preferred. This allows to exploit structure in the field
equations that is otherwise not obvious. Consequently, the computation necessary to
analyze hyperbolicity becomes relatively straightforward.

The various 3+1 quantities have now been defined. In application, lapse, shift,
Christoffels, and extrinsic curvature will play only a minor role and are hidden in the
derivative operators and/or appear in the source terms. With the 2+1 decomposition
introduced next, it is even possible to write down the principal symbol only in terms of
matter variables and the 2+1 quantities. By simply adjusting the normalization of the
2+1 quantities, i.e., taking the flat metric insead of gab, the analyses become applicable
to both SR and GR.
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2+1 Decomposition

As shown in section 2.2, for the PDE analysis a 2+1 decomposition of the two spatial
projectors γab and (N)γab against various arbitrary unit spatial vectors has to be performed.
The spatial vectors and associated orthogonal projectors are collected in table 3.2.

Upper case Lower case Lower case
Unit normal vector Na na na

Spatial 1-form Sa sa sa
Spatial vector Sa = (N)γabSb ŝa = (g−1)absb sa = γabsb
Norm SaS

a = 1 sa(g
−1)absb = 1 sas

a = 1
Orthogonal projector Q⊥b

a =
(N)γba − SbSa

q⊥b
a = γba − ŝbsa

q⊥b
a = γba − sbsa

Index notation Q⊥B
A

q⊥B
Â

q⊥B
A

Orthogonality Q⊥b
aSb = 0 q⊥b

asb = 0 q⊥b
asb = 0

Q⊥b
aS

a = 0 q⊥b
aŝ

a = 0 q⊥b
as

a = 0

Table 3.2: Summary of the various unit spatial vectors and 1-forms appearing in the 2+1
decomposed equations, plus their associated projection operators.

Please note that gcbq⊥b
a is not symmetric. To take account of this fact, it is dis-

tinguished between the abstract indices A, B, C and Â, B̂, Ĉ of q⊥B
Â when applied

to a tensor. Relations between the upper and lower case 2+1 objects will be given
later. To write mixed upper and lower case terms in a short way, the summation con-
vention applies also for abstract capital letters of different type but same letter. For
example, for upper and lower case vector fields Za and za, respectively, it is writ-
ten zB̂Z

B ≡ za
q⊥a

B̂
Q⊥B

cZ
c ≡ za

q⊥a
b
Q⊥b

cZ
c.

The first two columns of table 3.2 can be set into relation. The relations are summa-
rized in table 3.3. Please note that there is freedom in the relation between the upper and
lower spatial 1-forms Sa and sa. The freedom is fixed by the choice of both normalizations
of the spatial vectors or by choosing one normalization and postulate a projection rule,
in the present case sa(g−1)absb = 1 and sa = γbaSb.

Upper case Lower case
Unit normal vector Na na

Boost vector V a va

Spatial vector Sa = (N)γabSb ŝa = (g−1)absb
Spatial 1-form Sa = sa + vsna sa = Sa +W 2V S(Na + Va)

= (N)γab(g
−1)bcsc = (N)gabS

b +W 2V SNa

= (N)γabŝ
b = γbaSb

Normalization Sa
(N)γabSb = 1 sa(g

−1)absb = 1

Table 3.3: The relation between upper and lower case unit spatial vectors and 1-forms.
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PDE Notation and Characteristic Analysis

It is started with a four-dimensional formulation of a quasi-linear first order system of
the form

Aa∂aU+ S = 0 , (3.15)

which may be 3+1 decomposed against Na or na by using the identity δba = (N)γba −
N bNa = γba − nbna. Placing these identities between Aa and the derivative operator ∂a,
one arrives at the two evolution systems for U in terms of the timelike normals na and Na:

An∂nU =Aaγba∂bU+ S ,

AN∂NU =Aa(N)γba∂bU+ S . (3.16)

To denote clearly the properties of the coefficient matrices, the following definitions are
made:

An ≡ An, Aaγba ≡ Ab, Abnb = 0 ,

AN ≡ BN, Aa(N)γba ≡ Bb, BbNb = 0 . (3.17)

Note that by definition An ̸= An = Abnb = 0 holds1 and in an analogous way for
the upper case matrices BN and BN . Let sa be an arbitrary lower case spatial 1-form
against na, normalized with respect to the inverse boost metric,

san
a = 0 , sa(g

−1)absb = 1, (3.18)

and let Sa be an arbitrary unit upper case spatial vector against Na,

SaSa = 1 , SaNa = 0. (3.19)

The eigenvalue problems of these systems in direction sa and Sa read

lnλ((A
n)−1As − 1λ) = 0 ,

lNλN
((BN)−1BS − 1λN) = 0 , (3.20)

with principal symbols (An)−1As and (BN)−1BS, left eigenvectors lnλ and lNλN
, and eigen-

values λ and λN for lower and upper case, respectively. Note that no sub-/superscript n is

1Note the difference between roman superscript and the italic index.
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placed on the lower case eigenvalues. In general, the eigenvalues will depend on the spa-
tial vector chosen for the 2+1 decomposition to obtain the principal symbols. Sometimes
the dependence on spatial vectors will be explicitly indicated by use of square brackets.
However, square brackets also serve as an alternative to round brackets. With the help
of the four-vectors ϕa, ϕ̄a the eigenvalue problems in (3.20) may be written as

lnλAaϕa = 0, ϕa = −λna + sa ,

lNλN
Aaϕ̄a = 0, ϕ̄a = −λNNa + Sa. (3.21)

This covariant notation is commonly used in the literature. In equation (3.48) the connec-
tion between upper and lower case characteristic analysis is given, where ϕa is expressed
in terms of upper case quantities.

This completes the introduction of the main concept and definitions of the DF formal-
ism. The important property of frame independence of strong hyperbolicity is treated in
the next section.

3.2 Frame Independence of Strong Hyperbolicity

After defining the lower and upper case frames in the last section, the relation between
both frames in the context of PDE systems is studied in the following. In [Hilditch, 2015]
it is shown that strong hyperbolicity is unaffected by a switch of coordinates provided
that the boost vector is sufficiently small. Following this result it is proven below that
strong hyperbolicity is independent of the choice of frame provided that the boost vector
satisfies a specific estimate that depends on the maximum absolute eigenvalue of the
system.

First, the system of equations for the state vector U in the upper case frame is
considered,

∂NU = Bp∂pU+ S , (3.22)

and is assumed to be strongly hyperbolic, so that there is a complete set of upper case
(left) eigenvectors in all upper case spatial directions. The upper case PDE system (3.22)
will now be expressed in terms of lower case quantities. On the left-hand side of equa-
tion (3.22), the upper case unit normal is expressed as Na = Wna+v̂a. On the right-hand
side, the intrinsically upper case spatial matrix Bp is split as

Bp = Bagpa = Baγpa −Bnnp = Baγpa −WBV np, (3.23)
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where in the third step the lower case normal was written in terms of Na and V a, and
indices n, V were used for contractions with the respective 1-form. Sorting the terms in
a lower case sense and adding 0 = BaVav̂

p −BV v̂p on the right-hand side, one arrives at
the lower case PDE system

W
(
1+BV

)
∂nU =

[
Ba (γpa + v̂pVa)−

(
1+BV

)
v̂p
]
∂pU+ S . (3.24)

First, the question of invertibility of An = W
(
1+BV

)
needs to be addressed. Let the

upper case boost vector be written as V a = |V |Sa
V with norm |V | = (V aVa)

1/2 and upper
case unit spatial vector Sa

V in the direction of V a. Since BSV is diagonalizable with
diagonal form ΛSV, it has a complete set of right eigenvectors written as columns in the
matrix TSV

, and TSV
is invertible. Performing a similarity transformation one obtains

(TSV
)−1
(
1+BV

)
TSV

= 1+ |V |ΛSV (3.25)

and invertibility of (1+BV ) is guaranteed if for each eigenvalue λN[S
a
V ] the inequality

1 + |V |λN[S
a
V ] > 0 (3.26)

for arbitrary upper case unit spatial Sa
V holds. This condition will be guaranteed by

a more restrictive assumption in the proof that follows. Consequently, the PDE sys-
tem (3.24) is written as

∂nU =
1

W

(
1+BV

)−1 [
Ba (γpa + v̂pVa)−

(
1+BV

)
v̂p
]
∂pU+

1

W

(
1+BV

)−1S .

(3.27)

Let Sa be an arbitrary unit upper case spatial vector. The eigenvalue problem in
direction Sa corresponding to the PDE system (3.22) in the upper frame reads

lNλN

[
BS − 1λN[S

a]
]
= 0 , (3.28)

where lNλN
is the upper case left eigenvector for the principal symbol BS with eigen-

value λN[S
a]. The eigenvalue problem for direction sa in the lower frame for the PDE

system (3.27) is

lnλ
1

W

(
1+BV

)−1 [
Ba (γpa + v̂pVa)−

(
1+BV

)
v̂p
]
sp = λ[sa]l

n
λ (3.29)
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3.2. Frame Independence of Strong Hyperbolicity

and, using (N)γba (γ
p
b + v̂pVb) sp = Sa, may be written as

lnλ(1+BV )−1
[
BS − (1+BV )(v̂s +Wλ)

]
= 0 , (3.30)

for lower case left eigenvector lnλ with eigenvalue λ = λ[sa]. The associated principal
symbol is

Ps =
1

W

[
(1+BV )−1BS − 1v̂s

]
(3.31)

and the lower case spatial 1-form sa is related to the upper case one by sa = γbaSb =

Sa +W 2V S(Na + Va), see also table 3.3.

Introducing the modified lower case left eigenvector Ln
λ = lnλ(1+BV )−1 and collecting

terms including B, equation (3.30) is cast into the form

Ln
λ

[
BS−V (v̂s+Wλ) − 1(v̂s +Wλ)

]
= 0 , BS−V (v̂s+Wλ) ≡ Ba(Sa − Va(v̂

s +Wλ)) .

(3.32)

By defining the new upper case unit spatial vector

Sa
λ[S

b, λ] :=
1

N
(Sa − V a(v̂s +Wλ)) , (3.33)

with normalization

N = [(Sa − V a(v̂s +Wλ)) (Sa − Va(v̂
s +Wλ))]1/2

=
√
W 2(λ+ vs)2 + 1 + (vs)2 − λ2

=
√
W 2(λ−WV S)2 + 1 + (V S)2W 2 − λ2 , (3.34)

the eigenvalue problem in the lower case finally reads

Ln
λ

[
BSλ − 1

1

N
(v̂s +Wλ)

]
= 0 , (3.35)

for the redefined lower case left eigenvector Ln
λ, principal symbol BSλ ≡ BaSλ

a , and
eigenvalue (v̂s +Wλ)/N in direction of Sa

λ. The equality WV S = −vs follows by using
relations given in tables 3.1 and 3.3. The lower case eigenvalue problem (3.35) for fixed λ
is the same eigenvalue problem as for the upper case for eigenvalue (v̂s+Wλ)/N in (3.28)
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Chapter 3. The Dual Frame Formalism

where the spatial direction Sa is replaced by Sa
λ. Therefore,

1

N
(v̂s +Wλ) = λN[S

a
λ] (3.36)

must hold for fixed eigenvalue λ = λ[sa].
Equation (3.36) is a strong result, since it enables to calculate the lower case frame

eigenvalues from knowledge of the upper case results. Nevertheless, solving for λ may be
difficult, since both N and λN contain polynomials in λ. The lower case left eigenvector
to eigenvalue λ is then simply given by

lnλ[sb] =lNλN
[Sa

λ]
(
1+BV

)
, (3.37)

and the right eigenvectors by

rn
λ[sb] = rN

λN
[Sa

λ] . (3.38)

Proof of Frame Independence of Strong Hyperbolicity

The proof is as follows: It is known that for arbitrary unit upper case spatial Sa, unit
with respect to gab, the upper case principal symbol PS has:

(1) real eigenvalues λN[S
a] ,

(2) a complete set of left and right eigenvectors obeying |TS| + |T−1
S | ≤ K, where TS

is the matrix of right (or left) eigenvectors written as columns (or rows), and K is
independent of Sa.

Furthermore it is assumed that:

(3) all upper case eigenvalues satisfy the inequality 1− |λN||V | > 0, for all upper case
unit spatial Sa. This assumption automatically guarantees the condition (3.26) for
the invertibility of (1+BV ).

The lower case eigenvalues are real. First, it is shown that the lower case system
is at least weakly hyperbolic. Using equation (3.36) with normalization factor (3.34), one
obtains

λ =
W 3V S(1− λ2N) + λNW

√
1 + λ2N(1/W

2 − 1 + (V S)2)

W 2(1− λ2N(1− 1/W 2))
(3.39)
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3.2. Frame Independence of Strong Hyperbolicity

for given λN. One has to beware that the terms inside the square root are negative, but
can estimate them from below,

1 + λ2N
(
1/W 2 − 1 + (V S)2

)
≥ 1 + λ2N

(
1/W 2 − 1

)
= 1− λ2N|V |2 > 0 , (3.40)

where assumptions (1) and (3) were used. Therefore, all lower case eigenvalues are real.
Additionally, it is thereby shown that the denominator of (3.39) can never become zero.

The lower case eigenvectors are linearly independent. Take a lower case eigen-
value λ with algebraic multiplicity k. Then, by equation (3.36), the corresponding upper
case eigenvalue λN[S

a
λ] has also algebraic multiplicity k. Thus, by assumptions (2), which

ensures that one can find k linearly independent eigenvectors to the associated eigen-
value problem (3.35), and (3), which guarantees the invertibility of (1+BV ), and the use
of equation (3.37), it is known that one can find k linearly independent lower case left
eigenvectors in the eigenspace of λ. This statement holds also for the right eigenvectors.
Therefore, the lower case principal symbol is diagonalizable.

Show necessary regularity conditions. The left and right eigenvectors and eigen-
values are now labeled, making duplicates to account for their multiplicity if necessary,
with an index2, writing lλ(i)

, rλ(i)
and λ(i), respectively. The matrix of lower case right

eigenvectors is denoted by Ts, where the i-th column of Ts is rλ(i)
. It is ordered in a

way such that the i-th row of T−1
s is lλ(i)

. Thus, lλ(i)
rλ(j)

= δ(ij) does hold.3 By equa-
tions (3.37) and (3.38), one can express for each i the lower case eigenvectors lλ(i)

, rλ(i)

by lN
λN
(i)

[Sa
λ(i)

]
(
1+BV

)
and rN

λN
(i)

[Sa
λ(i)

], respectively. The upper case principal symbol is

diagonalizable by assumption (2), so for each i the corresponding left or right eigenvector
can be extended by the remaining linearly independent eigenvectors of the upper case
principal symbol for spatial vector Sa

λ(i)
. The matrices of those completed sets of eigen-

vectors expanding the chosen rN
λN
(i)

[Sa
λ(i)

] (and lN
λN
(i)

[Sa
λ(i)

]) written as columns (rows), are

denoted by TSλ(i)
. The chosen i-th right (left) eigenvector is placed in the i-th column

(row). By assumption (2) it follows then

|T−1
Sλ(i)

|+ |TSλ(i)
| ≤ K(i) (3.41)

for each i.
2Only in the current proof, indices i, j are not taken to be spatial spacetime indices. This is indicated

by placing round brackets around them.
3Each left and right eigenvector is defined up to a scalar factor. It is implicitly assumed that these

factors are chosen such that the expression is valid.
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Chapter 3. The Dual Frame Formalism

Next, define the square diagonal quadratic matrices D(i), which have in the i−th entry
of their diagonal a 1 and otherwise zeros,

D(i) := diag(0, . . . , 0  
i−1 times

, 1, 0, . . . , 0) ,
∑
i

D(i) = 1.

Their norm is |D(i)| = max
|y|=1

|y(i)| = 1 with the i-th component y(i) of y. Then, with the

above definitions,

Ts =
∑
i

TSλ(i)
D(i) ,

T−1
s =

∑
i

D(i)T
−1
Sλ(i)

(
1+BV

)
, (3.42)

and one can give the estimate:

|T−1
s |+ |Ts| ≤

∑
i

(
|T−1

Sλ(i)
||1+BV |+ |TSλ(i)

|
)

≤
∑
i

(
|T−1

Sλ(i)
|+ |TSλ(i)

|
)
max{1, |1+BV |}

≤
∑
i

K(i)max{1, |1+BV |} ≡ K. (3.43)

In the first step, the expressions for the matrices (3.42) were inserted and the sub-
multiplicity of the norm was used. In the second step, the prefactors were estimated and
finally, in the last step, the assumption (2) given by (3.41) was used for each i. Hence,
the inequality (2.11) is obtained, which together with the properties above gives strong
hyperbolicity in the lower case frame and completes the proof.

Multiplicity and Degeneracies

The definition of strong hyperbolicity does not require a constant multiplicity of the
eigenvalues as the spatial direction is varied. In the literature on relativistic fluids, special
cases in which the algebraic multiplicity of a particular eigenvalue increases when looking
in particular special directions are called degeneracies or degenerate states of the system.
All such possible degeneracies must be taken into account in the demonstration of strong
hyperbolicity, since diagonalizability of the principal symbol is required in all directions.
The relation between the occurrence of degeneracies in the upper case and lower case
systems is, however, not trivial. The key point is that when transforming from the
lower case system to the associated upper case eigenvalue problem (3.35), the latter one
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3.3. Recovering the Eigenvalues and Eigenvectors of the Lower Case Frame

is considered only for a fixed eigenvalue. Different eigenvalues are naturally assigned to
different upper case eigenvalue problems. Therefore, it may be the case that, for example,
upper case degeneracies always occur in pairs, whilst the same is not true in the lower
case frame. Indeed, this is the case for a particular formulation of GRMHD. The relation
between the degeneracies plays no role in the foregoing proof of the equivalence of strong
hyperbolicity across the two frames.

Validity of Frame Independence in the Context of Relativistic Fluid Models

By construction, all studied relativistic systems possess boost velocities va smaller than
the speed of light. Similarly, the EOS is confined in a way, at least in the present
work, such that the eigenvalues of the principal symbol4, called the wave speeds, are
always smaller than or equal to the speed of light, and thus the waves are supposed
to be subluminal. The confinement of the EOS is reasonable in this work, since only
relativistic fluid models are considered. However, theories with gauge freedom such as
GR and electromagnetism, do admit hyperbolic formulations with superluminal speeds.
For those PDE systems with constraints, addition of multiples of constraints can influence
the characteristic structure of the principal symbol, such that the constraint eigenvalues
become superluminal. In that case when the boost vector becomes too large, upper case
strong hyperbolicity will not be sufficient to guarantee strong hyperbolicity in the lower
case frame, since the crucial inequality |λN||V | < 1 can be violated. In fact, the systems
of GRMHD and RGRMHD are constrained systems and underlie this subtlety. For the
considered (constrained) evolution systems in this work, however, the waves speeds are
always subluminal.

3.3 Recovering the Eigenvalues and Eigenvectors of the

Lower Case Frame

In the current section it is explained how the above results are used in the application.
As mentioned before, the upper frame will be chosen as the frame of a comoving observer
with the fluid, so from now on,

Na ≡ ua, (u)γab = gab + uaub , (3.44)

4For a unit spatial vector. Unit means here that the spatial vector in the 2+1 decomposition is
normalized with respect to the four-metric of the spacetime or, using orthogonality relations, against the
induced metric. The vectors sa and Sa are examples, whereas the vector ŝ

a is a counter example, see
table 3.2 for their normalization.
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Chapter 3. The Dual Frame Formalism

is adopted, with the four-velocity of the fluid ua. Despite the fact that ua defines the fluid
frame or so-called Lagrangian frame, the boost vectors are never set to zero. As will be
seen, the characteristic analysis for GRHD and GRMHD is much easier if performed in
the fluid frame, which justifies the approach to take the upper case frame as the ‘known’
frame.

Since most of the results are obtained using computer algebra, it is appropriate to
introduce a basis to obtain scalar quantities as entries in the matrices. The various basis
vectors are collected in table 3.4.

Upper case Lower case
Unit normal vector Na Na na na

Spatial 1-form Sλ
a Sa sa sa

Spatial vector Sa
λ Sa ŝa sa

Orthogonal 1-forms Q1
λ
a, Q2

λ
a Q1a, Q2a q1a,q2a q1a, q2a

Orthogonal vectors Q1
a
λ, Q2

a
λ Q1

a, Q2
a q̂a

1, q̂
a
2 q1

a, q2
a

Basis abbreviation Sλ = {Sa
λ, Q1

a
λ, Q2

a
λ} S = {Sa, Q1

a, Q2
a}

Table 3.4: Overview of the upper and lower case basis vectors.

The spatial vectors sa, q1a, q2a form a right-handed orthogonal system. Addition-
ally, the spatial vectors q1a, q2a are normalized in the same way as their associated sa

vector. The other bases are supposed to behave in the same way. The orthogonal
projectors of the 2+1 decomposition can thus be 1+1 decomposed, and the orthog-
onal projectors may be expressed via the orthogonal system of vectors and 1-forms,
e.g., q⊥a

b = q̂a
1q1b + q̂a

2q2b. The relation between the orthogonal lower and upper
case spatial 1-forms (and vectors) are the same as for their associated spatial 1-forms
(and vectors), namely sa = γbaSb, and vice versa, see table 3.3. Then it is possible
to write (g−1)ac Q⊥cd γ

d
b = (g−1)ac (Q1cQ1d +Q2cQ2d) γ

d
b = q̂a

1q1b + q̂a
2q2b =

q⊥a
b. For

upper and lower vector fields Za, za, one also finds:

Q⊥A
bZA = ZQ1Q1b + ZQ2Q2b ,

Q⊥b
AZ

A = ZQ1Q1
b + ZQ2Q2

b ,

q⊥A
bzÂ = zq̂1q1b + zq̂2q2b ,

q⊥b
Âz

A = zq1q̂b
1 + zq2q̂b

2 ,

ZAz
A = ZQ1z

q1 + ZQ2z
q2 , ZAzÂ = ZQ1zq̂1 + ZQ2zq̂2 . (3.45)

Consider a strongly hyperbolic system of PDEs as in (3.22) with Na ≡ ua, which
is 2+1 decomposed by an arbitrary unit upper case spatial vector Sa with known eigen-
values λu[S

a] and a full set of left eigenvectors luλu
[Sa] obtained by (3.28) and right eigen-

vectors ru
λu
[Sa]. Then the lower case eigenvalues are given by equation (3.36) and the

lower case left eigenvectors lnλ for eigenvalue λ are given by equation (3.37). For a par-
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ticular choice of a basis they can be obtained according to

lnλ|s = luλu
[Sa

λ]
⏐⏐
S

(
1+ BV

⏐⏐
S

)
= luλu

[Sa
λ]
⏐⏐
Sλ

Tλ

(
1+ BV

⏐⏐
S

)
= luλu

[Sa
λ]
⏐⏐
Sλ

(
1+ BV

⏐⏐
Sλ

)
Tλ . (3.46)

The lower case right eigenvectors rn
λ can be calculated via

rn
λ|s = ru

λu
[Sa

λ]
⏐⏐
S

=(Tλ)
−1 ru

λu
[Sa

λ]
⏐⏐
Sλ
, (3.47)

for a given upper case right eigenvector ru
λu
[Sa

λ]. The transformation matrix is denoted
by Tλ and transforms between bases associated to Sa and Sa

λ on the level of eigenvectors
and matrices.

There exist two ways to obtain the lower eigenvectors: Either the upper case prin-
cipal symbol BSλ

⏐⏐
S

in a basis associated to Sa is taken and for given λu[S
a
λ] the new

upper case eigenvectors are calculated or, the upper case eigenvectors to BS
⏐⏐
S

in a basis
associated to Sa are considered and the replacement S → Sλ = {Sa

λ, Q1
a
λ, Q2

a
λ} is made

which naturally defines a SO(3)-transformation R. Using the first way, the left and right
eigenvectors are given by the formulas in the first line of equations (3.46) and (3.47).
However, the principal symbol might lose its easy form which could be especially crucial
for a high number of evolved variables. Therefore, the second procedure is chosen in the
accompanying notebooks, where the second lines of equations (3.46) and (3.47) are used
to obtain the lower eigenvectors.

The recovery is explained in more detail for the system of GRMHD in chapter 5
and is performed in the provided notebook. For the analysis of GRHD the procedure is
only given in the corresponding notebook, but not in this thesis. For the notebooks see
appendix A.

For the sake of clarity, all the explanations are related to the covariant form of charac-
teristic analysis, using the four-vector ϕa and the eigenvalue problem as in (3.21). Taking
the four-vector of the form ϕa = −λna + sa with λ = λ[sb] and writing the lower case
vectors in terms of ua, V a, and sa = Sa +W 2V S(ua + Va), one obtains

ϕa = −λna + sa

= −λ(Wua +WVa) + Sa +W 2V S(ua + Va)

= (W 2V S −Wλ)ua + Sa + (W 2V S −Wλ)V a

= N
(
−λu[S

b
λ]ua + Sλ

a

)
∝ −λu[S

b
λ]ua + Sλ

a . (3.48)
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The last step is valid since ϕa is defined up to an arbitrary scalar factor and here always
upper case unit spatial vectors, normalized with respect to the spacetime metric, are
considered for the characteristic analysis.

3.4 Variable Independence of Strong Hyperbolicity

Finally, the hyperbolicity properties under a change of variables are investigated. Let U
be a state vector for which the principal symbol Ps

U is diagonalizable for each unit spatial
1-form sa. Let V be another state vector of the same dimension whose components depend
smoothly on the components of U. Derivatives of the two state vectors are then related
by the invertible Jacobian J,

∂aV = J∂aU . (3.49)

The principal symbol for V is then

Ps
V = JPs

UJ
−1 . (3.50)

Since this transformation is nothing but a similarity transformation, the eigenvalues
remain the same and the (left) right eigenvectors for V are just modified by a matrix
multiplication with the (inverse) Jacobian: lV = lUJ

−1; rV = JrU.
Thus, as is well-known, strong hyperbolicity is independent of the choice of evolved

variables as long as the aforementioned assumptions are satisfied. For the hyperbolicity
analysis of a set of evolution equations, a suitable choice of variables can simplify prac-
tical computations considerably.

All basics and tools necessary to treat PDE systems used to describe neutron stars
in NR are now provided. As a first example, the well studied system of GRHD using the
DF formalism is considered in the next chapter.
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Chapter 4

Hyperbolicity Analysis of Ideal
Hydrodynamics

In the following chapters, the hyperbolicity analysis is applied to numerically relevant
PDE systems of fluid models with the help of the results of the previous chapters, starting
with the investigation of the system of an ideal fluid (also called perfect fluid). The
ideal fluid model is well studied in the literature. A full characteristic analysis of the
numerically used set of equations has been given in [Font et al., 1994] (see also [Anile,
1990] for an augmented system) and several authors have (re-) done the characteristic
analysis for (the same or) a different set of evolution variables (e.g., [Donat et al., 1998])
and numerical applications were given. Other properties of the numerically used set of
evolution equations were also studied in the past, e.g., a convexity analysis is given by
[Ibáñez et al., 2013]. For a detailed review of the system of GRHD in NR see for example
the Living Reviews of [Martí and Müller, 2003] as well as [Font, 2003; Font, 2008].

Due to the variety of analyses in the literature, the following calculations serve first
as a sanity check of the DF formalism and second as a proof of principle that the DF
approach to the analysis results in an economic treatment. First, the relevant quantities
and equations are shown.

4.1 The PDE System of GRHD

The energy-momentum tensor for the model of GRHD has the form

T ab = ρ0hu
aub + pgab , (4.1)
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with the four-velocity of the fluid elements ua, the rest mass density ρ0, the specific
enthalpy h, and the pressure p. The specific enthalpy h can be expressed in terms of ρ0, p
and the specific internal energy ε as

h = 1 + ε+
p

ρ0
. (4.2)

The evolution equations of the system are the conservation of energy-momentum,

∇a(T
ab) = 0 , (4.3)

and the conservation of the number of particles,

∇a(ρ0u
a) = 0 . (4.4)

The latter one can also be named as the conservation of rest mass or baryonic mass,
that is, the constant rest mass per particle times the number of particles. Projecting
equation (4.3) along and perpendicular to the fluid four-velocity ua, the scalar equation

ρ0h∇au
a + ua∇a(ρ0 + ερ0) = 0 (4.5)

and the vector equation

ρ0h
(u)γcbu

a∇au
b + (u)γca∇ap = 0 (4.6)

are obtained, respectively. Additionally, an arbitrary equation of state (EOS) of the form

p = p(ρ0, ε) (4.7)

is chosen and the case of an identically vanishing pressure, p ≡ 0, is explicitly excluded
(see section 4.5 for this particular case). In numerical simulations in the context of as-
trophysics, the ideal fluid EOS p = (Γ− 1) ρε with adiabatic index Γ, and the polytropic
EOS p = KρΓ with polytropic constant K are commonly used due to their simplic-
ity [Font, 2008]. However, more sophisticated EOSs have been employed, for example
microphysical EOSs, to describe the interiors of compact stars such as neutron stars [Font,
2008]. Nevertheless, the true EOS(s) that describe the (different) interior region(s) of neu-
tron stars is (are) still an ongoing part of the current research. For further information in
this direction see [Font, 2008; Martí and Müller, 2015] as well as [Faber and Rasio, 2012],
and the references mentioned therein. In this work, it is never made a specific choice of
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the EOS, but the general form of the EOS (4.7) is confined in the aforementioned way.
EOSs that lead to superluminal speeds are explicitly excluded.

Equations (4.4) - (4.7) provide six equations for the six unknown quantities (ρ0, ε, p, v̂a).
By using equation (4.7), it is sufficient to only evolve the state vector U = (p, v̂a, ε)

T . The
components of U, expanded in the lower case (Eulerian) tensor basis, may be viewed as
a slightly modified version of the primitive variables ρ0, ε, vi commonly used in the liter-
ature (see also section 4.4 where va is evolved instead of v̂a). The characteristic analysis
in this chapter is performed on the system of evolution equations (4.4) - (4.6) for the
components of the state vector U. In particular, the resulting evolution equations are in
a non-flux-balance law form1. Since there is no gauge freedom in the system, the analysis
given below applies unambiguously even after a change of variables, for example to the
flux-conservative variables D,Si, τ defined in terms of the primitive ones as2,

D = ρ0W , Si = ρ0hW
2vi , τ = ρ0hW

2 − p−D , (4.8)

satisfying the set of evolution equations [Font et al., 2000]:

∂t(
√
γD) = −∂k

[√
γD(αvk − βk)

]
,

∂t(
√
γSi) = −∂k

[√
γ
{
Si(αv

k − βk) + αpδki
}]

+ α
√
γΓµ

νiT
ν
µ ,

∂t(
√
γτ) = −∂k

[√
γ
{
τ(αvk − βk) + αpvk

}]
+ α2√γ

(
T 0µ∂µ lnα− Γ0

µνT
µν
)
. (4.9)

This is guaranteed by the proof in section 3.4.

4.2 Lower Case Formulation

The equations (4.4) - (4.6) are now split against the lower case unit normal vector na

and associated orthogonal projector γab to get a system of first order PDEs for the
variables (p, v̂a, ε). After some algebraic manipulations and linear combination of the

1In the literature, the “flux-balance law form” is sometimes called the “flux-conservative form”.
2The flux-conservative set of variables as components of the state vector, was firstly proposed in a

different notation by [Martí et al., 1991] working in special relativity (SR).
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equations, the system of equations can be rewritten as (see appendix A for the notebook)

Lnp =(c2s − 1)W 2
csv

aDap− c2sρ0h
W 2

cs

W
(g−1)abDav̂b + c2sρ0hW

2
cs(g

−1)abKab , (4.10)

γbaLnv̂b =− 1

Wρ0h

(
γca + c2sW

2
csv

cva
)
Dcp− vcDcv̂a + c2sW

2
csva(g

−1)bcDbv̂c

− c2sW
2
cs(g

−1)bcKbcv̂a −WDa lnα , (4.11)

Lnε =
p

ρ20h

W 2
cs

W 2
vaDap−

p

ρ0

W 2
cs

W
(g−1)abDav̂b − vaDaε+

p

ρ0
W 2

cs(g
−1)abKab . (4.12)

Here, the local speed of sound cs is introduced which is defined as

c2s =
1

h

(
χ+

p

ρ20
κ

)
, χ =

(
∂p

∂ρ0

)
ε

, κ =

(
∂p

∂ε

)
ρ0

, (4.13)

and the abbreviation Wcs = 1/
√

1− c2sv
2 is used. Unless otherwise stated, only matter

or EOSs with speed of sound 0 < cs ≤ 1 are considered. As one can see, the Lie deriva-
tive Ln along the timelike unit normal vector na is used instead of ∂t and the covariant
derivative Dp associated with the three-metric γab is written instead of ∂p. As discussed
in the very end of chapter 2, the analysis is unaffected by this since only the source terms
differ. The relations to the derivative operator ∂a in a coordinate basis can be found
in [Alcubierre, 2008]. Writing the PDE system (4.10) - (4.12) as a vectorial equation of
the form

AnLnU = ApDpU+ S , (4.14)

the coefficient matrices in front of the derivative operators can be identified as

An =

⎛⎜⎝1 0 0

0 γba 0

0 0 1

⎞⎟⎠ , Ap =

⎛⎜⎜⎝
(c2s − 1)W 2

csv
p −c2sρ0h

W 2
cs

W
(g−1)pc 0

− 1
Wρ0h

fp
a c2sW

2
cs(g

−1)pcva − vpγca 0
p

ρ20h

W 2
cs

W 2 v
p − p

ρ0

W 2
cs

W
(g−1)pc −vp

⎞⎟⎟⎠ ,

(4.15)

with shorthand notation fp
a = γpa+c

2
sW

2
csv

pva and the source vector can be written here
as

S =

⎛⎜⎝ c2sρ0hW
2
cs(g

−1)abKab

−c2sW 2
cs(g

−1)bcKbcv̂a −WDa lnα
p
ρ0
W 2

cs(g
−1)abKab

⎞⎟⎠ . (4.16)
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Chapter 4. Hyperbolicity Analysis of Ideal Hydrodynamics

As mentioned in section 3.1 on page 19, the principal parts of special and general rela-
tivistic hydrodynamics take an almost identical form. All curvature properties that arise
when going from SR to GR are included in the derivative operators, the source term and
the projector γab.

Let sa be an arbitrary lower case spatial 1-form, normalized with respect to the
inverse boost metric, (g−1)absasb = 1, and let q⊥b

a := γba−(g−1)bcscsa be the orthogonal
projector (see also table 3.2). Recalling the definition of ŝa = (g−1)absb, the lower case
metric is written as γab = ŝasb+

q⊥a
b. The left-hand side of equation (4.14) then becomes

AnLnU =

⎛⎜⎝1 0 0

0 γba 0

0 0 1

⎞⎟⎠
⎛⎜⎝Lnp

Lnv̂b

Lnε

⎞⎟⎠ =

⎛⎜⎝ Lnp

γbaLnv̂b

Lnε

⎞⎟⎠ =

⎛⎜⎝ Lnp

ŝbsaLnv̂b +
q⊥b

aLnv̂b

Lnε

⎞⎟⎠

=

⎛⎜⎝ Lnp

sa(Lnv̂)ŝ +
q⊥A

a(Lnv̂)Â
Lnε

⎞⎟⎠ ≡

⎛⎜⎜⎜⎜⎝
Lnp

(Lnv̂)ŝ

(Lnv̂)Â
Lnε

⎞⎟⎟⎟⎟⎠ ≡ (LnU)ŝ, Â . (4.17)

As explained earlier in chapter 3, the indices A and Â are introduced here which are
abstract but indicate application of the orthogonal projector q⊥b

a, meaning zÂ = q⊥a
Âza

and zA = q⊥A
bz

b for any object z and (δU)ŝ, Â = (δp, (δv̂)ŝ, (δv̂)Â, δε)
T for the state

vector (see also table 3.4 and the explanations below it). Furthermore, for any derivative
operator δ and vector za, the notation (δv̂)z ≡ zaδv̂a is used since no commutation with
the derivative operator occurs. Treating the right-hand side of equation (4.14) in the
same way as shown in equation (4.17), the expanded equation (4.14) can be cast into the
form

(LnU)ŝ, Â ≃ Ps (DŝU)ŝ, B̂ , (4.18)

with the principal symbol

Ps = As =

⎛⎜⎜⎜⎜⎜⎝
W 2

cs(c
2
s − 1)vs −W 2

cs

W
c2sρ0h 0B 0

−W 2+c2s(v
s)2W 2

cs

W 3ρ0h
−W 2−c2sW

2
cs

W 2 vs 0B 0

− c2sW
2
cs

Wρ0h
vÂv

s c2sW
2
csvÂ −vs q⊥B

Â 0Â
pW 2

cs

W 2ρ20h
vs −pW 2

cs

Wρ0
0B −vs

⎞⎟⎟⎟⎟⎟⎠ . (4.19)

The symbol “ ≃ ” denotes equality up to transverse principal and source terms.

Before the characteristic analysis is performed, a comment should be made: By the
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4.2. Lower Case Formulation

use of v̂a in the state vector, the inverse boost metric arose in the principal part (4.15)
(compare with section 4.4). By taking sa to be normalized by (g−1)ab, it is possible to get
rid of this complication in the principal symbol, which becomes ‘easy’ in the sense that
it is highly structured.3 The principal symbol as well as the eigenvalues and eigenvectors
for a state vector (p, va, ε) can be found in the end of this chapter in section 4.4. Since the
spatial 1-form sa is normalized with respect to the inverse boost metric, the eigenvalues
and eigenvectors take a form that is slightly modified in comparison with the literature,
but these differences are purely artificial.

Solving the characteristic polynomial Pλ = det(Ps − λ1) one gets the five real eigen-
values

λ(0,1,2) = −vs , λ(±) = − 1

1− c2sv
2

(
(1− c2s)v

s ± cs
W

√
1− c2sv

2
⊥

)
, (4.20)

with the shorthand notation v2⊥ := vÂv
A ≡ va

q⊥a
bv

b.
Please note that all eigenvalues in this thesis have the opposite sign in comparison to

the literature due to the definition of the principal symbol. In the one-dimensional limit,
i.e., v2⊥ = 0, the eigenvalues λ(±) reduce to

λ(±) = −v
s ±Wcs
1± csvs

W

,

which, as noted by [Alcubierre, 2008], is just the special relativistic addition of two
velocities, here modified by factors of W . Due to the choice of a three-basis normalized
with respect to the inverse boost metric, the eigenvalues are slightly different compared
to the results in section 4.4. The left eigenvectors of the principal symbol Ps with evolved
variables (δp, (δv̂)ŝ, (δv̂)Â, δε) in the order of the respective eigenvalues {λ(0,1,2),λ(±)} are(

− p
c2sρ

2
0h

0 0A 1
)
,

(
1

ρ0h
v̂Ĉ 0 q⊥A

Ĉ 0
)
,

(
±
√

1−c2sv
2
⊥

csρ0h
1 0A 0

)
, (4.21)

respectively. The associated right eigenvectors are⎛⎜⎜⎜⎜⎝
0

0

0B̂
1

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0

0
q⊥C

B̂

0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
c2sρ

2
0h

p

± csρ0
p

√
1− c2sv

2
⊥

− c2sρ0
p
v̂B̂

1

⎞⎟⎟⎟⎟⎠ , (4.22)

respectively. Since there is a complete set of eigenvectors for each sa which depend

3The attribute ‘easy’ is used because by this choice the principal symbol has a block triangular form
and the 3× 3 -block is diagonal.
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Chapter 4. Hyperbolicity Analysis of Ideal Hydrodynamics

furthermore continuously on sa, the system is strongly hyperbolic. The characteristic
variables corresponding to the speeds {λ(0,1,2), λ(±)} are given by

Û0 = δε− p

c2sρ
2
0h
δp , ÛÂ = (δv̂)Â +

1

ρ0h
v̂Âδp , Û± = (δv̂)ŝ ±

√
1− c2sv

2
⊥

csρ0h
δp . (4.23)

In the next section, the characteristic analysis in the upper case frame is performed.

4.3 Upper Case Formulation

Once again, the starting point are the equations (4.4), (4.5) and (4.6). They are split
against the upper case normal vector ua and orthogonal projector (u)γba. To compare the
results between the lower and the upper case frame, the same state vector as before, U =

(p, v̂a, ε)
T , is chosen. Using the definition of the local speed of sound (4.13) and after

some algebra the following PDEs for the components of the state vector are obtained:

∇up = −c2sρ0h(u)γbd(g
−1)dc∇bv̂c − c2sWρ0h

(u)γbd(g
−1)dc∇bnc , (4.24)

(u)γab(g
−1)bc∇uv̂c = − 1

ρ0h
(u)γba∇bp−W (u)γab(g

−1)bc∇unc , (4.25)

∇uε = − p

ρ0
(u)γbd(g

−1)dc∇bv̂c −
Wp

ρ0
(u)γbd(g

−1)dc∇bnc . (4.26)

The detailed derivation of this system is given in the accompanying notebook, see ap-
pendix A. As an interesting relation, one can find that (u)γab(g

−1)bc = (u)(g−1)abγ
bc holds.

Writing the system (4.24) - (4.26) as a vectorial equation for the state vector U in the
form

Bu∇uU = Bp∇pU+ S, (4.27)

the coefficient matrices

Bu =

⎛⎜⎝1 0 0

0 (u)γab(g
−1)bc 0

0 0 1

⎞⎟⎠ , Bp =

⎛⎜⎝ 0 −c2sρ0h(u)γpd(g
−1)dc 0

− 1
ρ0h

(u)γpa 0 0

0 − p
ρ0

(u)γpd(g
−1)dc 0

⎞⎟⎠ (4.28)

can be identified and the source vector is written as

S =

⎛⎜⎝−c2sWρ0h
(u)γbd(g

−1)dc∇bnc

−W (u)γab(g
−1)bc∇unc

−Wp
ρ0

(u)γbd(g
−1)dc∇bnc

⎞⎟⎠ . (4.29)
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4.3. Upper Case Formulation

Let Sa be an arbitrary upper case spatial 1-form, SaS
a = 1, and let Q⊥b

a =
(u)γba−SbSa

be the orthogonal projector. Decomposing (u)γab against Sa and Q⊥b
a, and apply relations

in table 3.3 to sa and ŝa, e.g., ŝa = (g−1)abSb , the left-hand side of equation (4.27) may
be rewritten as

Bu∇uU =

⎛⎜⎝ ∇up

Sa(∇uv̂)ŝ +
Q⊥A

a(∇uv̂)Â
∇uε

⎞⎟⎠ ≡

⎛⎜⎜⎜⎜⎝
∇up

(∇uv̂)ŝ

(∇uv̂)Â
∇uε

⎞⎟⎟⎟⎟⎠ ≡ (∇uU)ŝ, Â . (4.30)

Since the upper case projector is pushed through the lower case inverse boost metric,
one finds SaSb(g

−1)bc (δv̂)c = Saŝ
c (δv̂)c = Sa (δv̂)ŝ. Analogously, the orthogonal part

is Q⊥A
b
(u)γAc(g

−1)cd (δv̂)d = Q⊥A
b (δv̂)Â. With the help of the findings in sections 3.1

and 3.3, the convention Q⊥A
a ≡ q⊥A

c(g
−1)cbQ⊥ba is used. See also appendix B for the

detailed calculation and simplification of the upper case coefficient matrices in equa-
tion (4.27).

Treating the right-hand side of equation (4.27) in the same way as in equation (4.30),
the expanded equation (4.27) reads

(∇uU)ŝ, Â ≃ PS (∇SU)ŝ, B̂ , (4.31)

with principal symbol

PS = BS =

⎛⎜⎜⎜⎜⎝
0 −c2sρ0h 0B 0

− 1
ρ0h

0 0B 0

0A 0A 0BA 0A

0 − p
ρ0

0B 0

⎞⎟⎟⎟⎟⎠ . (4.32)

By employing the upper case frame with the fluid four-velocity as the normal vector, the
principal symbol has become much simpler than in the lower case, see (4.19), exhibiting
now essentially the same shape as that of a simple wave equation (2.7). For the system
of GRHD the extra structure is not required to complete the analysis, because in prac-
tice computer algebra tools can already manage the more complicated form. In more
sophisticated models, however, additional structure may become essential to successfully
proceed with a characteristic analysis. The reason why the form of the principal symbol
is much easier than in the lower case is somehow obvious: the energy-momentum ten-
sor (4.1) and hence, the four-dimensional form of the fluid equations of motion contain
the fluid four-velocity and its orthogonal projector. Thereby, any frame adapted to that
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Chapter 4. Hyperbolicity Analysis of Ideal Hydrodynamics

fact naturally annihilates many terms in the principal symbol and thus uncovers the very
simple structure of (4.32).

The five eigenvalues of PS are

λ(0,1,2) = 0 , λ(±) = ±cs , (4.33)

with the corresponding left eigenvectors(
− p

c2sρ
2
0h

0 0A 1
)
,
(
0 0 Q⊥A

C 0
)
,
(
∓ 1

csρ0h
1 0A 0

)
, (4.34)

right eigenvectors ⎛⎜⎜⎜⎜⎝
0

0
Q⊥C

B

0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0

0

0B

1

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
c2sρ

2
0h

p

∓ csρ0
p

0B

1

⎞⎟⎟⎟⎟⎠ , (4.35)

and characteristic variables

Û0 = δε− p

c2sρ
2
0h
δp , ÛA = (δv̂)Â , Û± = (δv̂)ŝ ∓

δp

csρ0h
. (4.36)

In regard to the application of the DF approach, it is straightforward to see that (1+BV )

is invertible for all vava = VaV
a < 1. The various speeds in the upper case system are

subluminal, that is |λ| ≤ 1, and there is no gauge freedom in the system. Therefore, by
following the argument of section 3.2 the analysis of strong hyperbolicity is equivalent in
the upper and lower case frame. Using the recovery procedure described in section 3.3
gives the same results for eigenvalues and eigenvectors as well as characteristic variables as
in the lower case analysis in 4.2. Details about the application of the recovery procedure
to GRHD can be found in the accompanying notebook, see appendix A.

4.4 GRHD using the Boost Vector

In the following, the lower case PDE system of GRHD is revisited, where the three-
velocity va is taken to be an evolution variable instead of the earlier used v̂a.

The Lie derivative of v̂a under a change to va behaves according to

γbaLnv̂b = Wgb
aLnvb + v̂aKcdv̂

cv̂d , (4.37)
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4.4. GRHD using the Boost Vector

and expressing v̂a = Wva in the covariant derivative one finds

γbaDcv̂b = Wgb
aDcvb . (4.38)

Let sa be an unit spatial 1-form with sas
a = 1, san

a = 0 and denote the orthogonal
projector by q⊥b

a:= γba − sbsa. Using the state vector U = (p, va, ε) and rewriting the
system of equations (4.10) - (4.12) while respecting the aforementioned transformation
to va, the resulting system of PDEs can be written as a vectorial equation of the form

(LnU)s,A ≃ Ps(DsU)s,B , (4.39)

with the principal symbol given by

Ps =

⎛⎜⎜⎜⎜⎝
W 2

cs(c
2
s − 1)vs −W 2

csc
2
sρ0h 0B 0

−1+(c2s−1)(vs)2W 2
cs

W 2ρ0h
W 2

cs(c
2
s − 1)vs 0B 0

(1−c2s)W
2
cs

W 2ρ0h
vsvA

c2sW
2
cs

W 2 vA −vs q⊥B
A 0A

pW 2
cs

W 2ρ20h
vs −pW 2

cs

ρ0
0B −vs

⎞⎟⎟⎟⎟⎠ . (4.40)

The principal symbol (4.40) for state vector U = (p, va, ε) has by use of an appropriate
2+1 decomposition the same structure as the lower case principal symbol (4.19) for state
vector U = (p, v̂a, ε). The analysis is given here in regard to the analysis of RGRMHD
in chapter 6.

The eigenvalues of the principal symbol (4.40) for material and acoustic waves are

λ(0,1,2) = −vs , λ(±) = − 1

1− c2sv
2

(
(1− c2s)v

s ± cs
W

√
(1− c2sv

2)− (1− c2s)(v
s)2
)
, (4.41)

respectively. They coincide with the literature [Ibáñez et al., 2013]. The corresponding
left eigenvectors are given by(

− p
c2sρ

2
0h

0 0A 1
)
,
(

1
W 2ρ0h

vC vsvC (1− (vs)2) q⊥A
C 0

)
,(

±
√

(1−c2sv
2)−(1−c2s)(v

s)2

csρ0hW
1 0A 0

)
. (4.42)
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For the same variables and the same order the right eigenvectors are⎛⎜⎜⎜⎜⎝
0

0

0B

1

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0

0
q⊥C

B

0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
c2sρ

2
0h

p
(1− (vs)2)

± csρ0
pW

√
(1− c2sv

2)− (1− c2s)(v
s)2(1− (vs)2)

− csρ0
pW

(
cs
W

± vs
√
(1− c2sv

2)− (1− c2s)(v
s)2
)
vB

1− (vs)2

⎞⎟⎟⎟⎟⎠ . (4.43)

The eigenvectors are in agreement with the ones given in [Ibáñez et al., 2013] up to the
chosen set of variables, the normalization of the spatial vector sa and lower case curvature
terms. The characteristic variables corresponding to the speeds {λ(0,1,2),λ(±)} are given
by

Û0 = δε− p

c2sρ
2
0h
δp,

ÛA = (δv)A + vs(vA(δv)s − vs(δv)A) +
1

ρ0hW 2
v̂Aδp,

Û± = (δv)s ±
√

(1− c2sv
2)− (1− c2s)(v

s)2

csρ0hW
δp . (4.44)

4.5 Dust

A special case for the EOS (4.7) is the one of dust, in which the pressure is identically
zero everywhere, p ≡ 0, and the energy density coincides with the rest mass density. As a
consequence, the specific internal energy density is zero, ε = 0, and the specific enthalpy
becomes unity. Hence, the energy-momentum tensor (4.1) simplifies to

T ab = ρ0u
aub. (4.45)

Taking the divergence and projecting along the streamlines ua and orthogonal to them,
one obtains the equation of conservation of particles and the geodesic equation,

ρ0∇au
a + ua∇aρ0 = 0 ,

ρ0
(u)γcbu

a∇au
b = 0 , (4.46)

respectively. Thereby, the particles follow timelike geodesics and the conservation of rest
mass does not have to be postulated in contrast to the system with non-vanishing EOS.

Using equations (4.46) for the state vector U = (ρ0,v̂a) and 3+1 decomposing the
equations for example against na and γab, the PDE system can be written in the lower
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case as

Lnρ0 =− vaDaρ0 −
ρ0
W

(g−1)abDav̂b + ρ0(g
−1)abKab ,

γbaLnv̂b =− vbDbv̂a −WDa lnα . (4.47)

Using again an arbitrary spatial 1-form sa as in section 4.2, one immediately arrives at
the principal symbol Ps for (δU)ŝ, Â,

Ps =

⎛⎜⎝−vs − ρ0
W

0B

0 −vs 0B

0Â 0Â −vs q⊥B
Â

⎞⎟⎠ , (4.48)

which contains a Jordan block. The principal symbol is thus missing an eigenvector. The
system is only weakly hyperbolic and the IVP ill-posed.
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Chapter 5

Hyperbolicity Analysis of Ideal
Magnetohydrodynamics

After presenting the DF formalism and its usability for GRHD, the main part of this
thesis is arrived where the investigation of the hyperbolicity structure of PDE systems to
GRMHD is performed. The evolution equations are derived for a set of eight variables in
regard to the numerically evolved set. The first characteristic analysis for RMHD was per-
formed by [Anile and Pennisi, 1987]. They work covariantly and consider an augmented
system of ten evolved variables, assuming implicitly a ‘free-evolution’ style [Hilditch,
2013] to treat the two additional algebraic constraints, uaua = −1, uaba = 0, as well as
the Maxwell constraint for the magnetic field. The analysis was reviewed and expanded
in [Anile, 1990]. Another augmented system for RMHD using ten variables was later
derived in [van Putten, 1991]. On the basis of [Anile and Pennisi, 1987; Anile, 1990], sev-
eral authors, e.g., [Komissarov, 1999; Antón et al., 2010], reinvestigated the hyperbolicity
structure especially in relation to occurring degeneracies and how they can be classified.
In particular, a very detailed discussion is given in [Antón et al., 2010]. It is found that
this augmented formulation of RMHD is strongly hyperbolic.

By the occurrence of shocks, a flux-balance law form [Godunov, 1959] of the set of
evolution equations is taken in the numerical implementation. This form is needed to
treat them with sophisticated methods such as HRSC schemes [Hawke et al., 2005]. The
PDE system of GRMHD using HRSC schemes in slightly different forms is for exam-
ple considered by [Komissarov, 1999; Balsara, 2001; Gammie et al., 2003; Antón et al.,
2006; Giacomazzo and Rezzolla, 2007; Antón et al., 2010], where a total of eight vari-
ables including the magnetic field is evolved, which is here referred to as the flux-balance
law form. Sometimes the system is augmented by an auxiliary scalar field to drive the
magnetic field constraint [Zanotti et al., 2015]. This technique is called “divergence clean-
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ing” [Liebling et al., 2010]. Over the past years, also schemes have been developed and
modified where the magnetic four-potential is evolved instead of the magnetic field [Gi-
acomazzo et al., 2011; Etienne et al., 2015]. The related PDE system is not considered
here. In the following, only the system of equations for eight variables, i.e., five hydro-
dynamical and three magnetic field evolution PDEs, is investigated.

It is important to stress that the analysis of [Anile, 1990] does not necessarily apply
to the system used in applications. Changing the number of variables can influence the
hyperbolicity properties of the system under consideration. In general, it is not enough
to know that there is some convenient form of the system being treated but it is rather
required that the particular formulation being employed should itself be at least strongly
hyperbolic.

The careful reconsideration of the hyperbolicity analysis of GRMHD is motivated by
two interesting observations. First, when numerical schemes are constructed to treat
GRMHD in flux-balance law form one sometimes sees that the longitudinal component
of the magnetic field is ignored in evaluating the fluxes by striking the corresponding
row and column in the principal symbol. From the numerical point of view, this is a
legitimate approach because the approximation works by repeated application of a one-
dimensional scheme. However, from the mathematical point of view, namely investigating
the hyperbolicity of the PDE system, it is not permitted to discard any of the variables,
for example in a particular direction. To show strong hyperbolicity, a complete set of
eigenvectors of the principal symbol must be found, including those associated with the
Gauss constraint for the magnetic field. It must therefore be distinguished between
‘computational tricks’ and an actual change of the system of equations itself. Second,
the system of GRMHD is constrained (see the end of section 2.2) and due care is needed
when considering the evolution equations. The way how the constraint is present in the
evolution equations influences the mathematical structure of the system and leads to
different formulations.

Neither of these subtleties have been completely taken care of in the earlier analyses.
Indeed, a first indication can be found that the flux-balance law system of GRMHD used
in numerics, e.g., by [Antón et al., 2006], differs from that used in the analysis of [Anile
and Pennisi, 1987]. The eigenvalues associated with the Gauss constraint differ between
the two systems. In [Anile and Pennisi, 1987] the ‘entropy eigenvalue’ is found with mul-
tiplicity two, where one of these corresponds to the Maxwell constraint. In [Ibáñez et al.,
2015], for the system of eight variables, the ‘entropy eigenvalue’ has only multiplicity one,
and the ‘constraint eigenvalue’ is zero.

In the following sections, a reconsideration of the PDE system of GRMHD using eight
evolution variables is performed. The ultimate aim is to analyze the original numerically
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used flux-balance law formulation of GRMHD as in [Antón et al., 2006] where the mag-
netic field is evolved. The investigation benefits significantly from the DF formalism by
performing the characteristic analysis at first in the upper case. An earlier approach of a
direct characteristic analysis in the lower case failed by the fact that the principal sym-
bol became a complicated matrix whose structure is difficult to spot.1 To support this
statement, by the naive lower case approach, for example, the magnetosonic eigenvalues
arrived with more then 104 terms.

The further course of this chapter is as follows: In section 5.1, the basic definitions and
equations for GRMHD following [Anile, 1990; Antón et al., 2010] are recapitulated. After-
wards an upper case 3+1 decomposition of the PDEs is performed. After the derivation
of the evolution equations, in each of them multiples of the Gauss constraint are man-
ually added to take different formulations into account (see section 5.2). Subsequently,
in section 5.3, the particular choice where all constraint addition coefficients are set to
zero is adopted, which leads to the first formulation under consideration. By this, one
obtains a PDE system that is in some sense analogous to the set of equations in [Anile
and Pennisi, 1987], but with their algebraic constraints explicitly imposed. The char-
acteristic analysis of the corresponding principal symbol is performed in the upper case
including a full degeneracy analysis (section 5.4) which shows that the system is strongly
hyperbolic. The lower case characteristic quantities derived by the recovery procedure in
section 3.3 are given in section 5.5 including the treatment of the degeneracies. Finally,
in section 5.6, a different choice of constraint addition coefficients is adopted to obtain a
set of equations equal to the flux-balance law system, comparing explicitly with [Ibáñez
et al., 2015], and it is shown that this particular formulation of GRMHD used in NR is
only weakly hyperbolic.

5.1 Basics of GRMHD

In this section, the basic definitions and equations of GRMHD are repeated, following
the works of [Anile, 1990; Antón et al., 2010]. However, since the aim is an investiga-
tion of hyperbolicity structure of the system of equations, the presentation is primar-
ily done in a mathematical fashion, where some important physical insights and state-
ments are suppressed. Throughout Lorentz-Heaviside units for electro-magnetic quanti-
ties with ε0 = µ0 = 1 are used, where ε0 is the vacuum permittivity (or electric constant)

1In the author’s opinion, the fact that the aforementioned points have not been carefully unrevealed
is due to the highly complicated structure of the lower case GRMHD principal symbol. Especially the
lower case right constraint eigenvector is quite lengthy. Nevertheless, [Ibáñez et al., 2015] were able to
derive the other seven right eigenvectors of the system for the usage in a convexity analysis.
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and µ0 is the vacuum permeability (or magnetic constant).

The Maxwell Equations and Ohm’s Law

It is initially started with the introduction of the Faraday electromagnetic tensor field or
field strength tensor F ab. For a generic observer with four-velocity Na the field strength
tensor can be expressed via the electric and magnetic fields, Ea, Ba, as

F ab = NaEb − NbEa + ϵabcdNcBd , (5.1)

with the Levi-Cività tensor,

ϵabcd = − 1√
−g

[abcd] , (5.2)

where g is the determinant of the spacetime metric gab and [abcd] is the completely
antisymmetric Levi-Cività symbol with [0123] = 1. Both the electric and magnetic field
are spatial against Na and thus satisfy the orthogonality relations EaNa = BaNa = 0. The
dual of the field strength tensor is defined as

∗F ab = −1

2
ϵabcdFcd , (5.3)

or expressed in terms of the electric and magnetic fields,

∗F ab = NaBb − NbBa − ϵabcdNcEd . (5.4)

Within the scope of this thesis, the sign convention of [Alcubierre et al., 2009] is applied.
Taking a comoving observer with Na = ua, the Faraday tensor (5.1) and its dual (5.4)

in terms of electric and magnetic fields ea and ba, respectively, are

F ab = uaeb − ubea + ϵabcducbd , (5.5)
∗F ab = uabb − ubba − ϵabcduced . (5.6)

By definition, the (dual) field strength tensor is antisymmetric if both indices are
lowered or raised. Using the field strength tensor (5.1) and its dual (5.4), Maxwell’s
equations read

∇∗
bF

ab = 0 , ∇bF
ab = J a , (5.7)

called the homogeneous and inhomogeneous Maxwell equations, respectively. The source
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term J a of the latter one is the so-called electric four-current. An explicit expression is
provided by generalized Ohm’s law, which determines the physical model one would like
to study. A simple version of the four-current is given by

J a = ρelu
a + Ia . (5.8)

The first part of J a is an advection term with the proper charge density ρel measured by
the comoving observer with ua, where the second is the conductive (upper case three-)
current Ia. Under several physical assumptions and conditions (see [Dionysopoulou et al.,
2015] and references therein) a good approximation of the conductive current in terms of
the scalar electric conductivity σ and the electric field in the fluid frame ea is

Ia = σea = σF abub. (5.9)

The four-current is then given by

J a = ρelu
a + σF abub , (5.10)

which is commonly used in NR (see also chapter 6).

Ideal MHD Condition

In the limit of infinite conductivity σ but finite current J a, the electric field measured
by the comoving observer has to vanish,

ea = F abub ≡ 0 . (5.11)

The first equality holds by using the definition of the field strength tensor (5.5). By
equation (5.11), the Eulerian electric field vector Ea, Eana = 0 can be calculated to

0 = F abub =
(
naEb − nbEa + ϵabcdncBd

)
ub ⇐⇒ Ea = −ϵabcdvbncBd , (5.12)

where Ba is the Eulerian magnetic field vector. Therefore, only the Maxwell evolution
equation for the magnetic field as well as the Gauss constraint have to be taken into
account.
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Energy-Momentum Tensor of GRMHD

The total energy-momentum tensor of GRMHD is expressed as the sum of the ideal fluid
part as in chapter 4,

T ab
fluid = ρ0hu

aub + gabp , (5.13)

plus the standard electromagnetic energy-momentum tensor,

T ab
em = F acF b

c −
1

4
gabFcdF

cd . (5.14)

Using the ideal MHD condition (5.11) and expressing the field strength tensor via (5.5),
the electromagnetic energy-momentum tensor in terms of the magnetic field is

T ab
em =

(
uaub +

1

2
gab
)
b2 − babb , (5.15)

and the total energy-momentum tensor is thus given by

T ab = ρ0h
∗uaub + p∗gab − babb , (5.16)

with h∗ = h + b2/ρ0 and p∗ = p + b2/2. In equation (5.15), the abbreviation b2 = baba

is introduced. Also, an EOS of the form p = p(ρ0, ε) with the same properties and
restrictions as in chapter 4 is employed.

Covariant PDE System of GRMHD

The covariant set of equations of GRMHD are the conservation of the number of particles,

∇a(ρ0u
a) = 0 , (5.17)

the conservation of energy-momentum,

∇bT
ab = 0 , (5.18)

and the relevant Maxwell equations,

∇b
∗F ab = 0 . (5.19)
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5.2 3+1 Decomposition of the PDE System

Due to the form of the energy-momentum tensor (5.16), a 3+1 decomposition against
the fluid four-vector ua and its orthogonal projector (u)γba , i.e., working in the upper
case frame, should lead to a simpler principal symbol than its lower case version, as is
the case for GRHD. The PDE system of GRMHD considered in this work is a set of
eight evolution equations together with the Maxwell constraint for the magnetic field.
The latter is sometimes just called Maxwell constraint or Gauss constraint for short. In
contrast to the system of GRHD in chapter 4, more care is needed when splitting the
equations. As mentioned in section 2.2, those constrained systems have the property that
adding multiples of a constraint to an equation does not change the physics, but leads to
different mathematical systems on the level of evolution equations.

The covariant PDE system of GRMHD is first split in the upper case. Then, to take
the presence of the Maxwell constraint into account, some parametrized combination of
the Maxwell constraint is added to each evolution equation. A concrete choice of the
constraint addition parameters results in a set of evolution equations which is called a
formulation of GRMHD.

Primarily, the focus is here on two specific formulations. The first one of these is
called prototype algebraic constraint free formulation. This formulation is essentially that
of [Anile and Pennisi, 1987], but without the artificial expansion of variables through
the definition of the algebraic constraints uaua = −1 and uaba = 0. The algebraic
constraints are instead satisfied a priori by reducing the number of evolution equations
and variables. The second formulation, called flux-balance law formulation, corresponds
to the flux-balance law system used in numerics for example by [Antón et al., 2006; Antón
et al., 2010; Ibáñez et al., 2015]. The desired upper case form of evolution equations to
the flux-balance law formulation is obtained by matching the values of the formulation
parameters with the literature. This was performed using Mathematica (see appendix A
for the accompanying notebook).

Splitting the covariant PDE system of GRMHD according to the upper case, the eight
equations determining the time evolution of the GRMHD system are

∇a(ρ0u
a) = 0 , (u)γab∇cT

bc = 0 ,

ub∇cT
bc = 0 , (u)γab∇c

∗F bc = 0 , (5.20)

together with an EOS p = p(ρ0, ε) and the Gauss constraint

0 = uc∇b
∗F bc = (u)γbc∇bbc . (5.21)
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The upper case magnetic field vector ba can be split in the lower case as

ba = (b̂cvc)n
a + b̂a , nab

a = −(vab̂
a) , γab b

b = b̂a , (5.22)

with nab̂
a = 0. Furthermore, the Eulerian magnetic field vector Ba is connected to the

upper case magnetic field via

b̂a =
1

W
gabB

b =
1

W
Ba + (Bbv̂b)va , Ba = W (g−1)abb̂b = Wb̂a − (b̂cv̂c)v

a , (5.23)

where the lower case Gauss constraint reads

γab∇aBb = 0 . (5.24)

Taking equations (5.20), a straightforward calculation similar to that for GRHD in
section 4.3 provides evolution equations for the pressure,

∇up =− c2sρ0h
(u)γdc(g

−1)ce∇dv̂e + S(p) + ω(p)
(

(u)γdc(g
−1)ce∇d⊥be + S(c)) , (5.25)

the weighted boost vector,

(u)γab(g
−1)bc∇uv̂c =−

(
bdba
ρ20hh

∗ +
(u)γda
ρ0h∗

)
∇dp+

2

ρ0h∗
(u)γ[bab

d](u)γbc(g
−1)ce∇d⊥be

+ S(v̂)
a + ω(v̂)

a

(
(u)γdc(g

−1)ce∇d⊥be + S(c)) , (5.26)

the (auxiliary) magnetic field,

(u)γab(g
−1)bc∇u⊥bc = 2(u)γab

(u)γ[bcb
d](g−1)ce∇dv̂e + S(⊥b)

a

+ ω(⊥b)
a

(
(u)γdc(g

−1)ce∇d⊥be + S(c)) , (5.27)

and finally, the specific internal energy,

∇uε =− p

ρ0
(u)γdc(g

−1)ce∇dv̂e + S(ε) + ω(ε)
(

(u)γdc(g
−1)ce∇d⊥be + S(c)) . (5.28)

By equation (5.21), the Gauss constraint becomes

(u)γac∇abc =
(u)γdc(g

−1)ce∇d⊥be + S(c). (5.29)
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The sources are given by

S(p) = −c2sWρ0h
(u)γdc(g

−1)ce∇dne ,

S(v̂)
a = −W (u)γab(g

−1)be∇une +
2W

ρ0h∗
(u)γ[bab

e]Vbb
d∇dne ,

S(⊥b)
a = 2W (u)γab

(u)γ[bcb
d](g−1)ce∇dne + 2W (u)γe[aVb]b

b∇une ,

S(ε) = −Wp

ρ0
(u)γdc(g

−1)ce∇dne ,

S(c) =
(
WV dbe −W (bcVc)

(u)γde
)
∇dne . (5.30)

For convenience and to further simplify the resulting principal symbol, the auxiliary
magnetic field ⊥bc is introduced. It is defined by the relation

(u)γac(g
−1)cd∇b⊥bd := (u)γac(g

−1)cd∇bb̂d + Vabd(g
−1)de∇bv̂e (5.31)

and only exists as an abbreviation in the sense of this relation, despite ‘⊥ba’ is writ-
ten as a component in the state vector. As usual, square brackets around indices denote
anti-symmetrization, so that 2v̂[abb] = v̂abb− v̂bba holds. In the system (5.25) - (5.28) mul-
tiples of the Maxwell constraint (5.29) connected to constraint coefficients ω(p), ω

(v̂)
a , ω

(⊥b)
a ,

and ω(ε) were already added. Using an upper case unit spatial 1-form Sa and the related
lower case unit spatial 1-form sa = γbaSb, the auxiliary magnetic field may be written as

Sc(g
−1)cd∇b⊥bd = (∇b⊥b)ŝ ≃ (∇bB)s + (Bav̂a)(∇bv)s −Bsv̂c(∇bvc) , (5.32)

where source terms are neglected, which is indicated by ‘≃’.

5.3 Prototype Algebraic Constraint Free Formulation

In the next two sections, the characteristic analysis for the prototype algebraic constraint
free formulation of GRMHD is performed. First, in section 5.4 the equations (5.25)
- (5.28) with constraint parameters ω(p) = 0, ω(v̂)

a = 0, ω(⊥b)
a = 0, and ω(ε) = 0 are used

and analyzed in the upper case. The resulting system is connected to the augmented
system of equations of [Anile and Pennisi, 1987] as follows: Take the equations of [Anile
and Pennisi, 1987], project the momentum equation and the evolution equation for the
magnetic field with (u)γab orthogonal to the four-velocity of the fluid, change the evolved
variables to (p, v̂a,⊥ba, ε), and replace the derivative of the pressure p in the evolution
equation for the magnetic field using the evolution equation for p. After doing so and
taking an upper case unit spatial vector Sa one would arrive with the principal symbol
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given below. As remarked in section 3.1 on page 19, the fact that [Anile and Pennisi,
1987] work exclusively in RMHD is of no consequence, since the principal symbols of
RMHD and GRMHD are essentially the same.

With the results in the upper case, the procedure given in section 3.3 is used to obtain
all lower case characteristic quantities, such as eigenvalues, eigenvectors and characteristic
variables. This is done in section 5.5. As previously mentioned, a direct computation of
the lower case characteristic quantities is quite lengthy and was not successful. For both
frames, a detailed discussion of degenerate states is provided in the respective section.

The analysis of the flux-balance law formulation of GRMHD is given afterwards in
section 5.6.

5.4 Upper Case Formulation

Writing the equations (5.25) - (5.28) with ω(p) = 0, ω(v̂)
a = 0, ω(⊥b)

a = 0, and ω(ε) = 0 in
a vectorial form with state vector U = (p, v̂a,⊥ba, ε)T ,

Bu∇uU = Bp∇pU+ S , (5.33)

one can identify the coefficient matrix of the timelike derivative as

Bu =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 (u)γab(g
−1)bc 0 0

0 0 (u)γab(g
−1)bc 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ , (5.34)

and the upper case spatial coefficient matrix reads

Bp =

⎛⎜⎜⎜⎜⎝
0 −c2sρ0h(u)γpc(g

−1)ce 0 0

fp
a 0 lpea 0

0 2(u)γab
(u)γ[bcb

p](g−1)ce 0 0

0 − p
ρ0

(u)γpc(g
−1)ce 0 0

⎞⎟⎟⎟⎟⎠ , (5.35)

with abbreviations

lpea =
2

ρ0h∗
(u)γ[bab

p](u)γbc(g
−1)ce , fp

a = −
(
bpba
ρ20hh

∗ +
(u)γpa
ρ0h∗

)
, (5.36)

and source vector S = (S(p), S
(v̂)
a , S

(⊥b)
a , S(ε))T . A straightforward calculation shows

that (1+BV ) is invertible for all vava = V aVa < 1.
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Only in this section, the sub-/superscript ‘u’ to indicate the upper case eigenvalues is
omitted for simplicity.

5.4.1 2+1 Decomposition

The 2+1 decomposition and notation is similar to the one of GRHD performed in chap-
ter 4. Therefore, some steps are skipped. Let Sa be an arbitrary unit spatial 1-form
and let Q⊥b

a be the associated orthogonal projector. Let sa and q⊥b
a be their lower case

projected versions (see tables 3.2 and 3.3 for definitions and relations). Decomposing
(u)γba and γba against Sa and sa, respectively, equation (5.33) can be written in the form

(∇uU)ŝ, Â ≃ PS (∇SU)ŝ, B̂ , (5.37)

with (δU)ŝ,Â = (δp, (δv̂)ŝ, (δv̂)Â, (δ⊥b)ŝ, (δ⊥b)Â, δε)
T and principal symbol

PS = BS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −c2sρ0h 0B 0 0B 0

−(bS)
2
+ρ0h

ρ20hh
∗ 0 0B 0 − bB

ρ0h∗ 0

− bSbA
ρ20hh

∗ 0A 0BA 0A
bS

ρ0h∗
Q⊥B

A 0A

0 0 0B 0 0B 0

0A −bA bSQ⊥B
A 0A 0BA 0A

0 − p
ρ0

0B 0 0B 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.38)

The characteristic polynomial Pλ for the principal symbol (5.38) can be written as

Pλ =
λ2

(ρ0h∗)2
PAlfvénPmgs , (5.39)

with the quadratic polynomial for Alfvén waves

PAlfvén = −
(
bS
)2

+ λ2ρ0h
∗, (5.40)

and the quartic polynomial for magnetosonic waves

Pmgs =
(
λ2 − 1

) (
λ2b2 −

(
bS
)2
c2s

)
+ λ2

(
λ2 − c2s

)
ρ0h . (5.41)

By solving (5.39) different kinds of speeds of waves propagating along the Sa-direction
are provided. All speeds are real and the system is strongly hyperbolic, as will be seen
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later. The entropy waves have speed

λ(e) = 0 . (5.42)

The constraint waves have the same speed, given by

λ(c) = 0 . (5.43)

The Alfvén waves are given by solving PAlfvén = 0, which results in the two different
speeds

λ(a±) = ± bS√
ρ0h∗

, (5.44)

where subscripts ‘±’ refer to the ‘±’ on the right-hand side of equation (5.44). Solving the
quartic equation Pmgs = 0, four different speeds of the magnetosonic waves are obtained.
The two slow magnetosonic waves are

λ(s±) = ±
√
ζS −

√
ζ2S − ξS , (5.45)

and the two fast magnetosonic waves read

λ(f±) = ±
√
ζS +

√
ζ2S − ξS , (5.46)

where the abbreviations

ζS =

(
b2 + c2s

[(
bS
)2

+ ρ0h
])

2ρ0h∗
, ξS =

(
bS
)2
c2s

ρ0h∗
, (5.47)

are used. Please note that the subscript ‘S’ in ζS and ξS is not a contraction with a vector,
but rather a reminder2 that the vector Sa is used for the 2+1 decomposition. Again,
subscripts ‘±’ refer to the ‘±’ on the right-hand side of the equations (5.45) and (5.46).
Since (bS)2 ≤ b2 and c2s ≤ 1, all eigenvalues have an absolute value smaller than or
equal to one. Thereby, the relation |λu||V | < 1 holds for all upper case eigenvalues λu

and for all boost velocities with an absolute value smaller than one, which is required
for straightforward application of the formalism of section 3.3. Thus, the recovering
procedure can be applied.

The eight upper case left eigenvectors corresponding to λ(e), λ(c), λ(a±) and λ(m±)

2This will become relevant when recovering the lower case quantities.
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with m = s, f are:

Entropy:
(
− p

c2sρ
2
0h

0 0A 0 0A 1
)
, (5.48)

Constraint:
(
0 0 0A 1 0A 0

)
, (5.49)

Alfvén:
(
0 0 ∓(S)ϵACbC

√
ρ0h∗ 0 −(S)ϵACbC 0

)
, (5.50)

Magnetosonic:
(

ρ0h∗(λ(m±))
2
−b2

c2sρ0h

(bS)
2
−ρ0h∗(λ(m±))

2

λ(m±)

bSbA

λ(m±)
0 bA 0

)
, (5.51)

respectively. Here, the antisymmetric upper case Levi-Cività two- and three-tensors
are defined as (S)ϵAB := Sd

(u)ϵdAB := Sduc
Q⊥A

a
Q⊥B

bϵ
cdab. The right eigenvectors can be

obtained by inverting the matrix of left eigenvectors or by solving the eigenvalue prob-
lem directly. Explicitly, in the order to their corresponding eigenvalues λ(e), λ(c), λ(a±)

and λ(m±) they can be expressed as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0B

0

0B

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0B

1

0B

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

∓ (S)ϵBC√
ρ0h∗ b

C

0

−(S)ϵBCb
C

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c2sρ
2
0h

p

−ρ0λ(m±)

p
ρ0λ(m±)

pbSb2⊥

[(
bS
)2

+ ρ0h
∗ ((λ(m±))

2 − 2ζS
)]
bB

0
ρ0
b2⊥p

[
b2 + ρ0h

∗ ((λ(m±))
2 − 2ζS

)]
bB

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.52)

with m = s, f as before.

In the magnetosonic eigenvectors the perpendicular magnetic field vector ba⊥ ≡ Q⊥a
b b

b

with b2⊥ = ba⊥b
⊥
a = bAbA is introduced. By definition, it is orthogonal to the upper case

spatial vector Sa. To avoid confusion: this vector field should not be mixed up with the
auxiliary magnetic field defined by equation (5.31). The redundancy of writing bA⊥ in this
section is in anticipation of the lower case.

At this stage of the characteristic analysis, a complete set of eigenvectors for real
eigenvalues exists. However, it must be checked, whether any of the eigenvalues may
change their multiplicity (for particular directions), and if so, whether or not a complete
set of eigenvectors is still available. The situation where a priori distinct eigenvalues
coincide and their multiplicity changes, is called degenerate state or for short degeneracy.
To show strong hyperbolicity of the system, it has to be shown that for each possible
degenerate state a complete set of eigenvectors still exists. For the augmented system of
RMHD, this was already described in [Anile and Pennisi, 1987; Anile, 1990; Komissarov,
1999; Balsara, 2001]. A full account was furthermore given by [Antón et al., 2010].

57



5.4. Upper Case Formulation

It should be also mentioned, that in the appendix of [Komissarov, 1999], the eigen-
values and right eigenvectors in the fluid rest frame are given for seven variables in a
one-dimensional analysis of RMHD. They are obtained by explicitly setting (locally) the
spatial entries of the four-velocity to zero. This approach is ultimately quite similar to
the DF approach used in this work.

5.4.2 Degeneracy Analysis of the Upper Case

The prototype algebraic constraint free formulation of GRMHD has the same degeneracies
as they exist in the augmented system of [Anile and Pennisi, 1987]. Two different types
of degeneracies can occur. For type I degeneracy, the magnetic field along the spatial
vector, bS, is equal to zero. For degeneracy of type II, the magnetic field is parallel to Sa,
so that ba⊥ = Q⊥a

b b
b = 0 holds. To describe the different situations properly, the upper

case magnetic field vector is cast into the form

ba = bSSa + ba⊥ , b2 = (bS)2 + b2⊥ . (5.53)

In this section, bSSa and bS are called the parallel magnetic field, and ba⊥ and |b⊥| are
referred to as the perpendicular magnetic field with respect to Sa.

First, the characteristic polynomial is considered. The Alfvén polynomial (5.40) and
the magnetosonic polynomial (5.41) have solutions

bS

λ

⏐⏐⏐⏐
(a±)

=±
√
ρ0h∗, (5.54)

bS

λ

⏐⏐⏐⏐
(m±)

=±

√(ρ0h+
b2

c2s

)
+ ρ0h

(
1− 1

c2s

)
λ2(m±)

1− λ2(m±)

=±

√
(bS)2 +

(
ρ0h+

b2

c2s

)
− ρ0h∗

λ2(m±)

c2s
, (5.55)

respectively. These expressions are well defined even for degenerate states.

To describe the degenerate states properly, the pairs of Alfvén λ±(a) as well as slow λ±(s)
and fast λ±(f) magnetosonic eigenvalues are divided into two classes denoted by a super-
script ‘+’ or ‘−’. The superscripts ‘+’ and ‘−’ refer to the higher or lower value of
each pair, respectively. In the upper case, the pairs of eigenvalues are symmetrically
distributed with the entropy eigenvalue λ(e) = 0 in the center. By doing estimates, one
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can show that the upper case eigenvalues can be ordered as

λ−(f) ≤ λ−(a) ≤ λ−(s) ≤ λ(e) ≤ λ+(s) ≤ λ+(a) ≤ λ+(f) . (5.56)

The order is the same as for lower case GRMHD and the Newtonian case [Antón et al.,
2010]. In the prototype algebraic constraint free formulation of GRMHD the constraint
and entropy eigenvalues coincide. Due to the simple expressions of the upper case eigen-
values, it is easily found that λ±(s) = λ(s±) and λ±(f) = λ(f±), where the subscripts ‘+’
or ‘−’ indicate the respective sign of the right-hand side of the slow (5.45) and fast (5.46)
magnetosonic eigenvalues. For Alfvén eigenvalues (5.44), where again the subscripts ‘+’
or ‘−’ indicate the respective sign of the right-hand side, the classification depends on
the sign of the magnetic field ba in the direction of Sa:

bS ≥ 0 : λ±(a) = λ(a±) ;

bS < 0 : λ±(a) = λ(a∓) . (5.57)

Type I degeneracy. For type I degeneracy in the upper case where bS = 0 and b2 =

b2⊥, the waves of entropy and constraint as well as both Alfvén waves and both slow
magnetosonic waves propagate at the same speed:

λ(e) = λ(c) = λ±(a) = λ±(s) = 0, λ±(f) = ±
√
b2 + c2sρ0h√
ρ0h∗

. (5.58)

The multiplicity of the entropy eigenvalue increases under such a degeneracy from two
to six. The well defined solutions of the magnetosonic polynomial then become

bS

λ

⏐⏐⏐⏐
(s±)

= ±

√
ρ0h+

b2

c2s
,

bS

λ

⏐⏐⏐⏐
(f±)

= 0 . (5.59)

Type II degeneracy. For type II degeneracy, namely when ba⊥ = 0 and b2 = (bS)2,
the pair of slow or of fast magnetosonic waves propagate with the same speed as their
respective Alfvén wave, depending on the numerical value of the speed of sound:

λ±(s) = λ±(a) = ± |bS|√
ρ0h∗

, λ±(f) = ±cs, if c2s >
(bS)2

ρ0h∗
;

λ±(f) = λ±(a) = ± |bS|√
ρ0h∗

, λ±(s) = ±cs, if c2s <
(bS)2

ρ0h∗
. (5.60)
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Then the multiplicities of eigenvalues corresponding to both Alfvén waves change from
one to two. The well defined solutions of the magnetosonic polynomial are now

bS

λ

⏐⏐⏐⏐
(m±≠a±)

= ±b
S

cs
,

bS

λ

⏐⏐⏐⏐
(m±=a±)

= ±
√
ρ0h∗ .

Type II′ degeneracy. The type II′ degeneracy is essentially a type II degeneracy, but
leads to a further increase of the multiplicity of the Alfvén waves. Both Alfvén waves
have multiplicity three. This occurs if the numerical value of the speed of sound reaches
a special value determined by the relation (bS)2 = c2sρ0h

∗. In such a case, the fast and
slow magnetosonic as well as the Alfvén waves of the same class travel at the same speed:

λ±(f) = λ±(s) = λ±(a) = ± |bS|√
ρ0h∗

. (5.61)

The case of a vanishing magnetic field. The case of a vanishing magnetic field
vector, ba = 0, can be regarded as the occurrence of a type I and type II degeneracy at
the same time. The eigenvalues of the entropy, the constraint, both Alfvén, and both
slow magnetosonic waves become zero. The fast magnetosonic waves become the acoustic
waves of the GRHD case, namely equal to the speed of sound with the respective sign.
Since the local speed of sound is assumed to have always a positive nonzero value, it is
not possible for type I and type II′ degeneracies to occur simultaneously.

As one can easily show, the left and right eigenvectors given in the last subsection will
not form a set of eight linearly independent eigenvectors if degeneracies occur. However,
it is possible to give a complete set of rescaled eigenvectors based on the ones above,
which forms in all degenerate states a linearly independent set of eigenvectors. In the
following two subsections sets of renormalized upper case left and right eigenvectors are
obtained.

5.4.3 Renormalized Upper Case Left Eigenvectors

Entropy and constraint eigenvectors. The upper case eigenvectors are rescaled in
an analogous way as to [Antón et al., 2010]. The procedure can also be found in the
accompanying notebook, see appendix A. The entropy (5.48) and constraint (5.49) left
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eigenvectors remain the same and are displayed here again for the sake of consistency:

Entropy:
(
− p

c2sρ
2
0h

0 0A 0 0A 1
)
, (5.62)

Constraint:
(
0 0 0A 1 0A 0

)
. (5.63)

Alfvén eigenvectors. The upper case Alfvén eigenvectors (5.50) are well defined under
a type I degeneracy. For type II degeneracy, they become zero since the perpendicular
magnetic field ba⊥ vanishes. Hence, the terms bC = bC⊥ have to be divided by the norm
of the perpendicular magnetic field, |b⊥|. The rescaled Alfvén eigenvectors to eigenval-
ues λ(a±) are then:

Alfvén:
(
0 0 ±(S)ϵAC

√
ρ0h∗

b⊥C
|b⊥| 0 (S)ϵAC b⊥C

|b⊥| 0
)
. (5.64)

The rescaled perpendicular magnetic field is just a unit vector in the respective direction.

Magnetosonic eigenvectors. The rescaling of the four magnetosonic left eigenvectors
(5.51), (

ρ0h∗(λ(m±))
2
−b2

c2sρ0h

(bS)
2
−ρ0h∗(λ(m±))

2

λ(m±)

bSbA

λ(m±)
0 bA 0

)
, (5.65)

is far more involved. First, it is noted that they are already well defined under type I
degeneracies. They become neither zero nor have singular entries. The terms bS/λ(s±)

have an appropriate limiting value given above. For fast magnetosonic waves, bS/λ(f±) is
just zero.

In regard to the renormalization, the four eigenvectors need to be separated into
two groups, depending on which eigenvalues under a type II degeneracy coincide with
the Alfvén eigenvalues. First, the eigenvectors with eigenvalues closer to the Alfvén
waves are rescaled as follows. Considering the characteristic polynomial for magnetosonic
waves (5.41), and using the expression b2 = (bS)2 + b2⊥, one obtains

Pmgs =
(
λ2 − 1

) (
λ2
(
(bS)2 + b2⊥

)
−
(
bS
)2
c2s

)
+ λ2

(
λ2 − c2s

)
ρ0h , (5.66)

and, for the magnetosonic eigenvalues where Pmgs = 0, the squared parallel magnetic
field can be expressed as

(bS)2 =
λ2(m±)

(
b2⊥(λ

2
(m±) − 1) + (λ2(m±) − c2s)ρ0h

)
(
c2s − λ2(m±)

)(
λ2(m±) − 1

) . (5.67)
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Using expression (5.67) to replace all (bS)2 terms in the first two entries of the magne-
tosonic eigenvectors (also the hidden ones in h∗), they become(

b2⊥(λ2
(m±)

−1)(
c2s−λ2

(m±)

)
ρ0h

(c2s−1)b2⊥λ(m±)

λ2
(m±)

−c2s

bSbA

λ(m±)
0 bA 0

)
. (5.68)

Expressing the magnetosonic eigenvectors in this form, it is obvious that they will become
zero under type II degeneracy. Hence, they are divided by |b⊥| to rescale them. By use
of the abbreviation H = |b⊥|/(c2s − λ2(m±)), finally, the rescaled upper case magnetosonic
left eigenvectors which have eigenvalues closer to the Alfvén eigenvalues are written as:

Magnetosonic closer to Alfvén:
(

H(λ2−1)
ρ0h

(1− c2s)Hλ
(

bS

λ

)
bA⊥
|b⊥| 0

bA⊥
|b⊥| 0

)
(m1±)

.

(5.69)

These eigenvectors are well defined under type I and type II degeneracies. However, in
a type II′ degenerate state the numerator as well as the denominator of H vanish. In
such a case H = 0 is taken, although the limit value of H may not be zero. Under all
circumstances, H will not diverge when approaching a type II′ degeneracy, as can be
explicitly shown.

To obtain a complete set of eight linear independent eigenvectors, the remaining two
upper case magnetosonic eigenvectors need a different rescaling, which is done as follows.
Considering once more the characteristic polynomial for magnetosonic waves (5.41) and
solving it for (bS)2 directly, one finds

(bS)2 =
λ2(m±)

(
b2(λ2(m±) − 1) + (λ2(m±) − c2s)ρ0h

)
c2s

(
λ2(m±) − 1

) . (5.70)

Replacing (bS)2 in the second entry of the magnetosonic eigenvectors, dividing the eigen-
vectors by ρ0hλ2(m±)−b2, respectively, and taking the abbreviation FA = bA⊥/(ρ0h

∗λ2(m±)−
b2), the other two rescaled magnetosonic left eigenvectors are finally given by:

Remaining magnetosonic:
(

1
c2sρ0h

(1−c2s)λ
c2s(λ

2−1)

(
bS

λ

)
FA 0 FA 0

)
(m2±)

. (5.71)

These eigenvectors are also well defined for type I and type II degeneracies. Similar to H,
the numerator as well as the denominator of FA become zero under type II′ degeneracies.
Nevertheless, FA = 0 is taken. By taking the appropriate type II′ limit of FA one can
show that FA will not diverge in any case.

The eight rescaled upper case left eigenvectors (5.62), (5.63), (5.64), (5.69), and (5.71)
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with abbreviations,

H =
|b⊥|

c2s − λ2(m±)

, FA =
bA⊥

(ρ0h∗λ2(m±) − b2)
, (5.72)

form a linearly independent set for all possible states. For type II degeneracy, the abbre-
viations H and FA vanish automatically and it is arranged to take

b⊥C
|b⊥|

=
1√
2
(Q1C +Q2C) . (5.73)

For type II′ degeneracy, in agreement with the type II degenerate case, it is arranged to
take

b⊥C
|b⊥|

=
1√
2
(Q1C +Q2C) , H = 0 , FA = 0A . (5.74)

The equations (5.73) - (5.74) are just a canonical choice to represent the complete
set of upper case eigenvectors under a type II or type II′ degenerate limit. For type
II′ degeneracies, depending on how the limit is taken, their values may not vanish but
the form (5.69) and (5.71) for the upper case magnetosonic left eigenvectors with H =

0, FA = 0 can nevertheless be obtained by taking appropriate linear combinations of the
resulting eigenvectors of the respective subspace.

5.4.4 Renormalized Upper Case Right Eigenvectors

The rescaled upper case right eigenvectors are obtained from the old ones (5.52) in a
similar way and with the same abbreviations. The rescaled entropy and constraint upper
case right eigenvectors remain the same, and the rescaled Alfvén eigenvectors are just the
old ones divided by the norm of the perpendicular magnetic field. The rescaled upper
case right eigenvectors are:

Entropy:
(
0 0 0B 0 0B 1

)T
, (5.75)

Constraint:
(
0 0 0B 1 0B 0

)T
, (5.76)

Alfvén:
(
0 0 ±(S)ϵBC

bC

|b⊥| 0 (S)ϵBC

√
ρ0h∗

bC

|b⊥| 0
)T

. (5.77)

The rescaled upper case magnetosonic right eigenvectors with eigenvalues closer to
the Alfvén waves are the previous ones (5.52), multiplied by Hp/ρ0, where the third and
fifth component are simplified with the help of identities following from Pmgs(λ(m±)) = 0.
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They can be explicitly written as:

Closer to Alfvén:
(
c2sρ0hH −Hλ −

(
bS

λ

)
b⊥B
|b⊥| 0 ρ0h

(λ2−1)

b⊥B
|b⊥|

p
ρ0
H
)T
(m1±)

. (5.78)

The remaining pair of upper case magnetosonic eigenvectors does not need a rescaling.
They are just multiplied for convenience by the factor p/ρ0, and the third and fifth
entry are reexpressed in a suitable form to treat the occurring degeneracies with the help
of Pmgs. The rescaled pair of remaining upper case magnetosonic eigenvectors is then
given by:

Remaining:
(
c2sρ0h −λ c2s(1− λ2)

(
bS

λ

)
FB 0 c2sρ0hFB

p
ρ0

)T
(m2±)

. (5.79)

These eight vectors form a linear independent set of upper case right eigenvectors of the
principal symbol in all possible states.

5.4.5 Upper Case Characteristic Variables

The eight upper case characteristic variables, as defined in section 2.2, valid for all de-
generacies are

Ûe =δε−
p

c2sρ
2
0h
δp , Ûc = (δ⊥b)ŝ ,

Ûa± =± (S)ϵAC
√
ρ0h∗

b⊥C
|b⊥|

(δv̂)Â + (S)ϵAC b⊥C
|b⊥|

(δ⊥b)Â ,

Ûm1± =
H(λ2 − 1)

ρ0h
δp+ (1− c2s)Hλ(δv̂)ŝ +

(
bS

λ

)
bA⊥
|b⊥|

(δv̂)Â +
bA⊥
|b⊥|

(δ⊥b)Â ,

Ûm2± =
1

c2sρ0h
δp+

(1− c2s)λ

c2s(λ
2 − 1)

(δv̂)ŝ +

(
bS

λ

)
FA(δv̂)Â + FA(δ⊥b)Â , (5.80)

with {m1,m2} for magnetosonic waves closer to the Alfvén waves (m1) and the remaining
magnetosonic waves (m2), equal to {s, f} or {f, s}, depending on the numerical value of the
speed of sound cs. On the right-hand side of Ûm1± and Ûm2± the respective eigenvalue is
taken. Since the resulting similarity transformation matrix TS and its inverse T−1

S always
exist and have bounded components, the regularity condition (2.11) is satisfied. This
shows that the prototype algebraic constraint free system is in the upper case strongly
hyperbolic. Since all the eigenvalues have absolute values smaller than or equal to one,
the system must also be strongly hyperbolic in the lower case frame. Also, the procedure
to recover the lower case characteristic quantities can be applied.
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5.5 Lower Case Formulation

By the results of the last section it is clear that the prototype algebraic constraint free
formulation is strongly hyperbolic, independent of the frame. Nevertheless, the lower case
eigenvalues and eigenvectors would be important to employ the system numerically and
therefore, their derivation is performed in the next subsections. Since the transformations
from upper to lower case depend on several quantities, the unscaled upper case eigen-
vectors are used for the recovery. Afterwards, degeneracies in the lower case are studied
and the rescaled eigenvectors are derived. From now on all upper case characteristic
quantities are explicitly indicated by a script ‘u’.

5.5.1 Recovering the Lower Case Quantities

To obtain the lower case eigenvalues and eigenvectors as well as the characteristic variables
the procedure described in section 3.3 is used. The recovery is performed in several steps,
which are explained in the following paragraphs.

Step one. First of all, the calculated upper case eigenvalues (5.42) - (5.46) are taken
and the upper case unit spatial vector Sa is replaced by Sa

λ = (Sa −W (λ −WV S))/N

(with sa = γbaSb), whereby the new upper case eigenvalues

λu
(e) = 0 , (5.81)

λu
(c) = 0 , (5.82)

λu
(a±) = ± bSλ

√
ρ0h∗

, (5.83)

λu
(s±) = ±

√
ζSλ

−
√
ζ2Sλ

− ξSλ
, (5.84)

λu
(f±) = ±

√
ζSλ

+
√
ζ2Sλ

− ξSλ
, (5.85)

are obtained. Please note that the right-hand sides of the eigenvalues contain the respec-
tive lower case eigenvalues in all Sλ-terms. The abbreviations ζSλ

and ξSλ
are explicitly

written as

ζSλ
=

(
b2 + c2s

[(
bSλ
)2

+ ρ0h
])

2ρ0h∗
, ξSλ

=

(
bSλ
)2
c2s

ρ0h∗
, (5.86)
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and depend now on the considered lower case eigenvalue itself. The magnetic field vector
in the new lower case eigenvalue dependent direction Sa

λ becomes

bSλ =baSλ
a =

1

N

(
bS −W (baVa)(λ−WV S)

)
, (5.87)

N =
√

(Wλ−W 2V S)2 + 1 + (V S)2W 2 − λ2 . (5.88)

Step two. With the results of step one, the lower case eigenvalues are now calculated
by using equation (3.36), that is

1

N
W (λ−WV S) = λu[S

a
λ] . (5.89)

For example, taking the upper case entropy eigenvalue λu[S
a
λ] = λu

(e) = 0, one arrives at
the lower case entropy wave speed λ(e) = WV S. In this case, the normalization factor N
becomes unity, and Sa and Sa

λ are identical.

Step three. By the last step, the lower case eigenvalues are already known. Hence,
the eigenvectors can be treated, beginning with the left ones. The transformation of the
upper case left eigenvectors for Sa

λ into the lower case left eigenvectors is performed for
the state vector

(δU)ŝ, Â = (δp, (δv̂)ŝ, (δv̂)Â, (δ⊥b)ŝ, (δ⊥b)Â, δε)
T ,

which is the same as used in the upper case analysis. The transformation is λ-dependent
and therefore has to be performed in each eigenspace independently. The lower case left
eigenvectors are obtained by equation (3.46), that is

lnλ|s = luλu
[Sa

λ]
⏐⏐
Sλ

(
1+ BV

⏐⏐
Sλ

)
Tλ , (5.90)

where the eigenvectors luλu
[Sa]

⏐⏐
S

explicitly written in (5.48) - (5.51) are used. The sec-
ond strategy (see the explanation in section 3.3) is followed and all basis vectors are
replaced by the ones associated with Sa

λ. The replacement causes automatically a ro-
tation of the basis in which the eigenvector is expanded. Therefore, on the right-hand
side of equation (5.90) the transformation matrix Tλ is in use. The matrices

(
1+ BV

⏐⏐
S

)
and

(
1+ BV

⏐⏐
Sλ

)
for bases S = {Sa, Q1

a, Q2
a} and Sλ = {Sa

λ, Q1
a
λ, Q2

a
λ} can be found in

the accompanying notebook, see appendix A.

To obtain the basis transformation Tλ more details are needed. Writing Sa
λ in the
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basis S, one gets

S a
λ = cSS

a + c1Q1
a + c2Q2

a , cS =
1 + (W 2V S −Wλ)V S

N
,

c1 =
(W 2V S −Wλ)V Q1

N
, c2 =

(W 2V S −Wλ)V Q2

N
. (5.91)

This relation defines a rotation of the basis, depending on the coefficients cS, c1 and c2

and thus on the respective lower case eigenvalue. Thus, a transformation matrix which
is an element of SO(3) can be build. By denoting Q1

a
λ and Q2

a
λ as rotated basis vec-

tors Q1
a and Q2

a (see also table 3.4 and the associated explanations in the text below
it), respectively, the rotation matrix is given by

R =

⎛⎜⎜⎝
cS c1 c2

−c1 cSc
2
1+c22

c21+c22

(cS−1)c1c2
c21+c22

−c2 (cS−1)c1c2
c21+c22

c21+cSc
2
2

c21+c22

⎞⎟⎟⎠ (5.92)

such that ⎛⎜⎝ Sa
λ

Q1
a
λ

Q2
a
λ

⎞⎟⎠ = R

⎛⎜⎝ Sa

Q1
a

Q2
a

⎞⎟⎠ . (5.93)

Since R ∈ SO(3), its transpose is equal to its inverse, RT = R−1. The associated
lower case bases obey the same transformation rule, as can be easily seen by multiplying
equation (5.93) with γba. The transformation matrix is taken to be Tλ = diag(1,R,R, 1),
adjusted to the order of vector and scalar variables in the state vector. The derivative of
the state vector transforms according to

(δU)S = TT
λ (δU)Sλ

. (5.94)

By definition, Tλ shares the properties of R, for example, its transpose is equal to the
inverse, TT

λ = T−1
λ . For an upper case eigenvalue equal to zero, the transformation matrix

becomes just the identity matrix and the bases S and Sλ coincide.

Step four. As a last step, the right eigenvectors have to be calculated by equation (3.47),
that is

rn
λ|s = TT

λ ru
λu
[Sa

λ]
⏐⏐
Sλ
. (5.95)
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For this the right eigenvectors ru
λu
[Sa]

⏐⏐
S

given in (5.52) are taken with replaced basis
vectors.

5.5.2 Definitions and Formulas

In order to write the lower case eigenvectors in a short form, but also in a suitable way
to both compare them to the literature [Antón et al., 2010] and take into account the
long expressions of the lower case magnetosonic eigenvalues, some new abbreviations are
defined in this subsection. Another purpose is the easy ‘translation’ of degeneracies,
which are explained in the next subsection.

First, the quantity a is introduced, which is just the upper case eigenvalue (depending
on Sλ) times N , where N is the normalization factor (3.34) to guarantee Sa

λS
λ
a = 1. The

newly introduced quantity a can be expressed as

a :=Nλu = Wλ−W 2V S = Wλ+ v̂s , (5.96)

where the relation between the eigenvalues (5.89) and the equality WV S = −vs is used.
As the second quantity the variable B is introduced. It is just the upper case magnetic

field in direction Sa
λ times N and can be seen as a weighted version of the magnetic field

in direction of Sa
λ. Explicitly, it is given by

B :=NbSλ = NbaSλ
a = bS − (baVa)a = bS + (baVa)W (V SW − λ) , (5.97)

or in terms of lower case spatial quantities

B = b̂s + (b̂ava)λ =
1

W
(Bs + (Bav̂a)v̂

s) + (Bav̂a)λ . (5.98)

Last, the quantity G is introduced as

G := 1 + (V S)2W 2 − λ2 (5.99)

such that

N2 = a2 + G (5.100)

holds.
The introduced quantities a, B and G are motivated by the ones made in [Anile and

Pennisi, 1987; Antón et al., 2010] in regard to the covariant approach of the characteristic
analysis shown by equation (3.48). They slightly differ from their respective definition
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in the literature. This is due to the fact that the unit spatial lower case 1-form sa

is normalized with respect to the inverse boost metric (instead of the inverse three-
metric γab).

In analogy to the upper case degeneracy analysis, the upper case magnetic field vector
is cast into the form

ba = bSλSa
λ + ba⊥ , b2 = (bSλ)2 + b2⊥ , (5.101)

with

|b⊥|2 = b2 − (bSλ)2 = ba⊥b
⊥
a , (5.102)

where again the adjectives parallel and perpendicular are used to denote the parts of the
magnetic field in direction of Sa

λ and orthogonal to it, respectively. Please note that
nevertheless capital letters are still taken for contraction with Q⊥, e.g., bA⊥ = Q⊥A

ab
a
⊥. In

general, bS⊥ ̸= 0 is not vanishing and therefore bA⊥ ̸= bA, in contrast to the definition of the
perpendicular magnetic field in the last section. Although the parallel and perpendicular
parts of the magnetic field are introduced in a similar way to the upper case analysis, one
has to keep in mind that these names now highly depend on the wave under consideration.
Hence, this notation is always meant with respect to the wavefront determined by the
eigenvalue, despite being not explicitly mentioned anymore. Definition (5.101) and the
explained notation of its parts is taken for all lower case characteristic quantities. Since ba⊥
is orthogonal to Sa

λ, the relation bS⊥ = a(ba⊥Va) is used several times according to which
respective expression is suitable.

5.5.3 Degeneracy Analysis of the Lower Case

Before the lower case eigenvalues and eigenvectors are recovered, the lower case degenera-
cies are explained. The degeneracy analysis for RMHD is already given in the literature,
see [Komissarov, 1999; Antón et al., 2010]. The lower case frame degeneracy analysis
is essentially the same as in the upper case setting and becomes much easier by having
knowledge about the upper case system (i.e., the discussion in the rest frame of the fluid).
One only has to replace the vector Sa by Sa

λ defined in equation (3.33),

Sa −→ Sa
λ =

1

N
(Sa − V a(v̂s +Wλ)) , Sa

λS
λ
a = 1 , SaSa = 1 , sa = γbaSb , (5.103)
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and the corresponding orthogonal basis vectors as well. The lower case eigenvalues are
again ordered as

λ−(f) ≤ λ−(a) ≤ λ−(s) ≤ λ(e) ≤ λ+(s) ≤ λ+(a) ≤ λ+(f) , (5.104)

where the lower case entropy eigenvalue λ(e) = −vs separates each pair of eigenvalues into
two classes, denoted by a superscript ‘+’ or ‘−’, referring to the higher or lower value of
each pair, respectively. Subscripts will always refer to the respective plus or minus sign
on the right-hand side of their definition, where the eigenvalues are casually referred to
as the ‘positive’ and ‘negative’ eigenvalue.

Type I degeneracy. For type I degeneracy in the upper case, the parallel magnetic
field (for both Alfvén waves) vanishes, leading to a total multiplicity of six for the entropy
subspace. However, in the lower case, the unit spatial vector is now λ-dependent and
a priori has different directions for the two Alfvén eigenvalues, Sa

λ(a+)
̸= Sa

λ(a−)
. Hence,

consider first baSλ
a = 0 for λ(a+) (and thereby also a(a+) = 0 and B(a+) = 0 by equa-

tions (5.96) and (5.97)). Then, by definition, consulting equation (5.83), the Alfvén
eigenvalue λu

(a+)[S
a
λ] is equal to zero and the lower case Alfvén eigenvalue coincides with

the entropy eigenvalue, λ(a+) = λ(e) = WV S. Consequently, considering again equa-
tion (5.97) (or (5.87)), one finds that the magnetic field in direction of Sa vanishes,

Lower case type I degeneracy: bS = 0 . (5.105)

By taking the lower case eigenvalue λ = WV S one also finds Sa
λ = Sa for the positive

Alfvén wave. The result (5.105) serves as a λ-independent classification of the lower
case type I degeneracy leading to exactly the same multiplicities as in the upper case
system. The entropy wave, the constraint wave, the two Alfvén waves, and the two slow
magnetosonic waves propagate at the same speed:

λ(e) = λ(c) = λ±(a) = λ±(s) = −vs. (5.106)

Taking these eigenvalues, their respective Sa
λ coincide in the type I degeneracy with Sa, Sa

λ =

Sa. One also finds a = 0 and N = G = 1.
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Type II and II′ degeneracy. For type II degeneracy the perpendicular magnetic field
vector, ba⊥ = Qλ⊥a

b b
b, Qλ⊥a

b=
(u)γab − Sa

λS
λ
b , vanishes for one of the Alfvén waves:

Lower case type II degeneracy: ba⊥ = 0 , for λ = λ(a+) or λ = λ(a−) . (5.107)

In this case, one of the Alfvén waves and one of the magnetosonic waves of the same class
have the same speed:

λ+(a) = λ+(s) or λ−(a) = λ−(s) or λ+(a) = λ+(f) or λ−(a) = λ−(f) . (5.108)

In the type II′ degeneracy one of the Alfvén waves and the slow and fast magnetosonic
wave of the same class travel at the same speed:

λ+(s) = λ+(a) = λ+(f) or λ−(s) = λ−(a) = λ−(f) . (5.109)

In the upper case for type II and type II′ degeneracy both Alfvén speeds are degenerate at
the same time. Replacing Sa by Sa

λ leads to different SO(3) transformations for different
values of λ. The resulting two spatial vectors are in general not parallel:

Sa
λ|λ(a+)

∦ Sa
λ|λ(a−)

(5.110)

Therefore, in the lower case this cannot be satisfied in general. However, if the upper
case velocity V a is parallel to Sa, one finds

V a ∥ Sa : Sa
λ =

1

N

(
1− V S(v̂s +Wλ)

)
Sa =

(
1− V S(v̂s +Wλ)

)√
(1− V S(v̂s +Wλ))2

Sa = ±Sa,

(5.111)

and both Alfvén waves can become degenerate at the same time. Hence, the fact that
for V a ∦ Sa only one Alfvén wave exhibits a type II or type II′ degeneracy at the same
time, is a consequence of aberration.3

As a last comment, one should note that

V a ∥ Sa ⇐⇒ V a ∥ Sa
λ (5.112)

holds independently of λ, as can be obtained by considering the definition of Sa
λ. In

both cases one finds Sa = ±Sa
λ and vice versa, independently of λ. For a vanishing fluid

3This was already mentioned in [Antón et al., 2010].

71



5.5. Lower Case Formulation

velocity with V a = 0, one finds Sa = ±Sa
λ independently of λ.

5.5.4 Lower Case Eigenvalues and Eigenvectors

The lower case eigenvalues and eigenvectors are given below. For simplicity, the already
rescaled lower case left and right eigenvectors are partially given directly. They are
obtained by first transforming a given unscaled upper case eigenvector to the respective
lower case one, and then performing a rescaling procedure in the same way as in the
upper case analysis in section 5.4. The rescaling can be found in the provided notebook,
see appendix A.

Entropy wave. Taking λu = 0 as in (5.81), the corresponding lower case entropy
eigenvalue is calculated to

λ(e) = WV S = −vs , (5.113)

in agreement with the results of [Antón et al., 2010]. Inserting this eigenvalue in the
defining equation (3.34) for N , one finds N = 1 and Sa

λ = Sa. Thus, the transforma-
tion matrix Tλ becomes the identity matrix and the upper (5.48) and lower case left
eigenvector for entropy waves coincide, given by(

− p
c2sρ

2
0h

0 0A 0 0A 1
)
. (5.114)

The same holds for the upper (5.52) and corresponding lower case right eigenvector for
entropy waves, given by (

0 0 0B 0 0B 1
)T

. (5.115)

Both lower case entropy eigenvectors are well defined under degeneracies and are valid
for all states.

Constraint wave. Taking again λu = 0 as in (5.82), the lower case constraint eigen-
value is given by

λ(c) = WV S = −vs . (5.116)

The lower case constraint eigenvalue agrees with the one given in [Antón et al., 2010].
Similar to the entropy eigenvalue one finds N = 1 and Sa

λ = Sa and the lower case left
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and right eigenvectors for constraint waves are equal to their corresponding upper case
versions in (5.49) and (5.52), given by(

0 (bCVC) −bSV A 1 0A 0
)

and
(
0 0 0B 1 0B 0

)T
, (5.117)

respectively. Both eigenvectors are well defined under degeneracies and are valid for all
states.

Alfvén waves. The Alfvén waves are obtained by taking the upper case Alfvén eigen-
values (5.83) and solving for λ. Thus, the lower case Alfvén eigenvalues become

λ(a±) =
bS + V SW 2

[
(baVa)±

√
ρ0h∗

]
W
[
(baVa)±

√
ρ0h∗

] . (5.118)

In terms of lower case quantities they can be expressed as

λ(a±) =− b̂s ∓ v̂s
√
ρ0h∗

(b̂ava)∓W
√
ρ0h∗

= −(Bs + (Bav̂a)v̂
s)∓ v̂sW

√
ρ0h∗

W
(
(Bav̂a)∓W

√
ρ0h∗

) . (5.119)

They coincide up to a minus sign and factor W (due to the choice of the spatial vector)
with the derived ones in [Antón et al., 2010]. Taking the unscaled upper case left (5.50)
and right (5.52) eigenvectors, transforming them in the respective way and dividing both
by |b⊥| , the rescaled lower case left and right Alfvén eigenvectors to λ(a±) read

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

± (S)ϵBC√
ρ0h∗

V BbC⊥
|b⊥|

bS (S)ϵBC
bB⊥V C

|b⊥|(
(baVa)±

√
ρ0h∗

)
(u)ϵAbc

NSb
λ(a±)

bc⊥

|b⊥|

0

−(S)ϵAB

(
bB⊥
|b⊥| ±

|b⊥|V B
√
ρ0h∗

)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
bS√
ρ0h∗

(S)ϵAC
bA⊥V C

|b⊥|
(bbVb)±

√
ρ0h∗

√
ρ0h∗

(u)ϵBac

NSa
λ(a±)

bc⊥

|b⊥|

±bS (S)ϵAC
bA⊥V C

|b⊥|(√
ρ0h∗ ± (bbVb)

)
(u)ϵBac

NSa
λ(a±)

bc⊥

|b⊥|

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.120)

respectively. The transformation procedure as well as the rescaling can be found in the
accompanying notebook, see appendix A. The transformation matrices are too lengthy
and therefore not given here.

Magnetosonic waves. The upper case slow and fast magnetosonic eigenvalues are
defined in (5.84) and (5.85), respectively. Inserting one of these eigenvalues into equa-
tion (5.89), one can show after some manipulations (given in the notebook) that the lower
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case magnetosonic eigenvalues are solutions of the quartic equation

N4 = ρ0h

(
1

c2s
− 1

)
a4 −

(
ρ0h+

b2

c2s

)
a2G + B2G = 0 , (5.121)

where N4 is the same polynomial as obtained by [Anile and Pennisi, 1987], but with
slightly differently defined abbreviations a, B and G in subsection 5.5.2. It is always
possible to find analytic expressions for the zeros of a polynomial with order less than or
equal to four. Therefore, in the case under consideration, the magnetosonic eigenvalues
can be given explicitly. However, the expressions for them are quite long and are (par-
tially) only analytically amenable under special circumstances. Therefore, in regard to
the numerical usage, the numerical computation relying on the characteristic information
by using some root-finder should be more convenient.

By the recovery procedure, it is nevertheless easily possible to obtain the magnetosonic
eigenvectors. The long expressions for the magnetosonic eigenvalues are hidden in var-
ious quantities. A brute force computation with Mathematica performed in advance,
considering the eigenvalue problem for the lower case principal symbol, was unsuccessful.

The rescaled lower case magnetosonic eigenvectors are obtained as follows. First,
the upper case magnetosonic left (5.51) and right (5.52) eigenvectors are considered, the
basis vectors replaced by their λ-depend versions, and multiplied with the transformation
matrices in the respective way. As a result, one arrives at a first set of lower case left
and right eigenvectors, valid in non-degenerate states. After a simplification, they can be
rewritten in a short form using the abbreviations a, B and G defined in subsection 5.5.2.
The unscaled lower case magnetosonic left and right eigenvectors are⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− aV S − BbS
a2

G
ρ0h

B2

a
+ (a2 + G) (b

S)2

a
+ B

a
(aV S − 1)bS − aρ0h

∗

bS

a

(
(a2 + G)bA + aBV A

)
0

abSV A + bA(1− aV S)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c2sρ0h
(
ρ0h

[
a2 + G − B2

a2
G
])

B
a
GbS + ρ0ha(aV

S − 1)
B
a
GbB + ρ0ha

2VB

ρ0h
(
[a2 + G] bS + B(aV S − 1)

)
ρ0h ([a

2 + G] bB + aBVB)
p
ρ0

(
ρ0h

[
a2 + G − B2

a2
G
])

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(5.122)

respectively. With this result, the study of the different degeneracies and the rescaling
can be performed. To clarify the behavior of the eigenvectors, the upper case magnetic
field vector is split into the parallel and perpendicular part as in equation (5.101). The
eigenvectors are already well defined under a type I degeneracy, where a = B = 0. By
various relations linked to the magnetosonic polynomial (5.121), one can show that all
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entries of all left and right eigenvectors (5.122) are proportional to |b⊥|. Hence, they
become zero under type II degeneracies and both need to be divided by |b⊥|. As in the
upper case, to guarantee a complete set of linearly independent eigenvectors, only the
eigenvectors with eigenvalues closer to the Alfvén waves are rescaled in this way. The
remaining two left and two right eigenvectors are divided by (a2ρ0h

∗−Gb2) and simplified
by use of the magnetosonic polynomial (5.121).

The rescaled lower case left and right magnetosonic eigenvectors with eigenvalues
closer to the Alfvén speeds can be expressed as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− G
ρ0h

(ba⊥Va)

|b⊥|

(B
a

)
− (1−aV S)G

ρ0h
F

a(a2 + G)
(
(1− c2s)F +

[(B
a

)
+ (baVa)

] (ba⊥Va)

|b⊥|

)
(a2 + G)

[(B
a

)
+ (baVa)

] bA⊥
|b⊥|

0

a
bS⊥V A

|b⊥| + (1− aV S)
bA⊥
|b⊥|

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

(m1±)

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−c2sρ0hG(a2 + G)F
G
(B
a

) bS⊥
|b⊥| + a(1− aV S)GF

G
(B
a

) b⊥B
|b⊥| − a2GFVB

(a2 + G) ρ0h|b⊥|b
S
⊥

(a2 + G) ρ0h|b⊥|b
⊥
B

− p
ρ0
(a2 + G)GF

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(m1±)

,

(5.123)

respectively. The remaining two lower case left and right magnetosonic eigenvectors are
given by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− G
ρ0h

(B
a

)
(CaVa) +

(1−aV S)
c2sρ0h(a

2+G)(
1− 1

c2s

)
a
G + a(a2 + G)

[(B
a

)
+ (baVa)

]
(CbVb)

(a2 + G)
[(B

a

)
+ (baVa)

]
CA

0

aCSV A + (1− aV S)CA

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

(m2±)

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ0h(B
a

)
GCS − a(1−aV S)

c2s(a
2+G)(B

a

)
GCB + a2

c2s(a
2+G)VB

(a2 + G)ρ0hCS

(a2 + G)ρ0hCB
p

c2sρ0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(m2±)

,

(5.124)

respectively. Here the definitions

Ca =
ba⊥

a2ρ0h− Gb2
, F =

|b⊥|
c2s(a

2 + G)− a2
(5.125)

are introduced. Under a type II degeneracy, F and Ca vanish, and accordingly under a
type II′ degeneracy they are also taken to be

Ca = 0 , F = 0 , (5.126)
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and the rescaled perpendicular magnetic field is taken to be under type II and type II′

degeneracies:

b⊥C
|b⊥|

=
1√
2
(Q1

λ
C +Q2

λ
C) . (5.127)

Taking these values is again just a canonical choice for a representation of linearly inde-
pendent eigenvectors of an eigenspace under type II and type II′ degeneracies, similar to
the upper case analysis.

5.5.5 Lower Case Characteristic Variables

The lower case characteristic variables valid for all degeneracies are

Û0 =δε−
p

c2sρ
2
0h
δp , Ûc = (δ⊥b)ŝ + (bAVA)(δv̂)ŝ − bSV A(δv̂)Â ,

Ûa± =±
(S)ϵBC√
ρ0h∗

V BbC⊥
|b⊥|

δp+ bS (S)ϵBC
bB⊥V

C

|b⊥|
(δv̂)ŝ +

(
(baVa)±

√
ρ0h∗

) NSb
λ(a±)

bc⊥

|b⊥|
(u)ϵAbc(δv̂)Â

−
(
bB⊥
|b⊥|

± |b⊥|V B

√
ρ0h∗

)
(S)ϵAB(δ⊥b)Â , (5.128)

for entropy, constraint and Alfvén waves, and

Ûm1± =−
(

G
ρ0h

(ba⊥Va)

|b⊥|

(
B
a

)
+

(1− aV S)G
ρ0h

F
)
δp

+ a(a2 + G)(1− c2s)F(δv̂)ŝ +N2

[(
B
a

)
+ (baVa)

](
bS⊥
|b⊥|

(δv̂)ŝ +
bA⊥
|b⊥|

(δv̂)Â

)
+

(
a
bS⊥V

A

|b⊥|
+ (1− aV S)

bA⊥
|b⊥|

)
(δ⊥b)Â ,

Ûm2± =

(
(1− aV S)

c2sρ0h(a
2 + G)

− G
ρ0h

(
B
a

)
(CaVa)

)
δp

+

(
1− 1

c2s

)
a

G
(δv̂)ŝ +N2

[(
B
a

)
+ (baVa)

] (
CS(δv̂)ŝ + CA(δv̂)Â

)
+
(
aCSV A + (1− aV S)CA

)
(δ⊥b)Â , (5.129)

for magnetosonic waves closer to the Alfvén waves (m1) and the remaining magnetosonic
waves (m2), with {m1,m2} equal to {s, f} or {f, s}. The functions on the right-hand side
of Ûm± are evaluated at the corresponding eigenvalue.
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5.6 Flux-Balance Law Formulation

In the last three sections, the prototype algebraic constraint free formulation of GRMHD
was studied. It turned out that this formulation is indeed strongly hyperbolic and thus
complete sets of linearly independent rescaled eigenvectors can be found in the upper and
lower case. This particular formulation where all constraint parameters are set to zero
has the property that a priori the constraint and entropy eigenvalue coincide. Therefore,
the degeneracies are the same as for the augmented system derived by [Anile and Pennisi,
1987].

5.6.1 Analysis of the Flux-Balance Law Formulation of GRMHD

In this subsection, a different set of values for the constraint parameters ω(p), ω(v̂)
a , ω(⊥b)

a ,
and ω(ε) is considered in regard to analyze whether or not the numerically used flux-
balance law formulation of GRMHD is strongly hyperbolic. The analysis is performed in
the upper case frame. The values of the constraint parameters are found by taking linear
combinations of the equations (5.25) - (5.28) and comparing them with the system in
the flux-balance law form given in [Antón et al., 2006; Cerda-Duran et al., 2008; Antón
et al., 2010; Ibáñez et al., 2015], called the “Valencian” form of (G)RMHD equations,
using the same set of evolved variables. The Valencian flux-balance law form of GRMHD
as considered in [Antón et al., 2006] is

∂0(
√
γF0) + ∂i(

√
−gFi) =

√
−gS , (5.130)

with state vector F0, fluxes Fi and source term S given by

F0 =

⎛⎜⎜⎜⎜⎝
D

Sj

τ

Bk

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
ρ0W

ρ0h
∗W 2vj − αb0bj

ρ0h
∗W 2 − p∗ − α2(b0)2 −D

Bk

⎞⎟⎟⎟⎟⎠ ,

Fi =

⎛⎜⎜⎜⎜⎝
Dṽi

Sj ṽ
i + p∗δij − bjB

i/W

τṽi + p∗vi − αb0Bi/W

ṽiBk − ṽkBi

⎞⎟⎟⎟⎟⎠ , S =

⎛⎜⎜⎜⎜⎝
0

T µν
(
∂µgνj − Γδ

νµgδj
)

α
(
T µ0∂µ lnα− T µνΓ0

νµ

)
0k

⎞⎟⎟⎟⎟⎠ , (5.131)

with ṽi = vi − βi/α and the determinants γ and g of the three- and four-metric, respec-
tively.

It is stressed again, that the discussion that follows only applies to those flux-balance
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law forms with eight evolved variables including the magnetic field. In fact, several of
these flux-balance law forms of (G)RMHD exist. Remarkably, for the variables taken in
the prototype algebraic constraint free formulation, they differ only by a linear combina-
tion of the conservation of number of particles equation. As far as the author knows, all
flux-balance law forms of (G)RMHD in the literature use an Eulerian coordinate frame
associated with coordinates xµ. Also, all of the flux-balance law forms in the literature
have the common feature that they initially start with the covariant PDE system of
(G)RMHD as in section 5.1 using an energy-momentum tensor and dual field strength
tensor as given in section 5.1 (sometimes in terms of other variables), and split them
in a lower case sense. This is done either by projecting the covariant PDE system of
GRMHD with na and its orthogonal projector, as e.g., by [Antón et al., 2006], or by
taking directly the components (e.g., [Komissarov, 1999; Gammie et al., 2003]) such that
the eight evolution equations become

∇µ(ρ0u
µ) = 0 , ∇µ(

∗F iµ) = 0 ,

∇µ(T
0µ) = 0 , ∇µ(T

iµ) = 0 , (5.132)

and the constraint is ∇µ(
∗F 0µ) = 0. These two ways are essentially the same and differ

only by geometric terms in the state and source vectors.
The most important common feature of the various flux-balance law forms is, that

the Maxwell constraint for the magnetic field is neither added to the evolution equa-
tions (5.132) (or to the respective projected versions of these) nor ‘used’ by setting the
divergence of the magnetic field to zero in the evolution equations (5.132). By this fact,
a classification is made as follows: All flux-balance law forms who inherit the Gauss con-
straint for the magnetic field in the evolution equations in the same way as in [Antón
et al., 2006] and only

▶ differ by linear combinations of the evolution equations,

▶ use a different state vector in the sense of section 3.4,

▶ use a given background (i.e., work in the Cowling approximation),

▶ use Minkowski spacetime (i.e., work in RMHD),

▶ differ in the source terms,

with respect to the flux-balance law form in [Antón et al., 2006], share the same hyperbol-
icity properties. They can be seen as representatives of the flux-balance law formulation
of GRMHD investigated here.
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These are for example [Komissarov, 1999; Balsara, 2001; Gammie et al., 2003; Komis-
sarov, 2004; Anninos et al., 2005; Duez et al., 2005; Shibata and Sekiguchi, 2005; Giaco-
mazzo and Rezzolla, 2007; Del Zanna et al., 2007].

In the work of [Zanotti et al., 2015], the eight flux-balance RMHD equations are
extended by the evolution of a scalar field ϕ to control the Maxwell constraint for Bi,
see also chapter 6. This may affect the hyperbolicity property of the system and such an
augmented system is not considered here. In the so-called “internal energy formulation”
in [Anninos et al., 2005], which uses GRMHD equations similar to [Villiers and Hawley,
2003], the splitting of the covariant equations is done in an upper case sense, and thus the
hyperbolicty analysis here does not apply to the arising system of evolution equations.
However, the system is not written in a flux-balance law form in the first place, and
is therefore not considered here. As mentioned in the beginning of this chapter, PDE
systems of GRMHD where the magnetic four-potential is evolved, e.g., [Etienne et al.,
2015], are also not considered here. For an overview and explanations concerning the
differences of the existing flux-balance law forms of (G)RMHD, see the Living review
of [Font, 2008]. It should be noted that numerical codes are constantly being adjusted
and improved and the references above may be outdated. For example, the analysis
applies to [Giacomazzo and Rezzolla, 2007], but later the evolution of the magnetic four-
potential is taken [Giacomazzo et al., 2011] instead of the magnetic field.

To reproduce the flux-balance law formulation given in [Ibáñez et al., 2015], computer
algebra (see appendix A) is used and the linear combination of the upper case system of
equations (5.25) - (5.28) that reproduces the flux-balance law set of equations is found.

This was done ignoring all derivatives of the normal vector na. In the analyses
throughout the thesis, all derivatives of the normal vector may be ignored anyway since
they only contribute to the source vector and do not affect the analysis, as mentioned be-
fore. The constraint coefficients determining the flux-balance law formulation are found
to be

ω(p) =
κ

ρ0
(bcVc) , ω(v̂)

a =
1

ρ0h
ba ,

ω(⊥b)
a = −Va , ω(ε) =

1

ρ0
(bcVc) . (5.133)

Proceeding in the same way as for the previous formulation, the upper case principal
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symbol becomes

PS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −c2sρ0h 0B κ
ρ0
(bcVc) 0B 0

−(bS)
2
+ρ0h

ρ20hh
∗ 0 0B bS

ρ0h
− bB

ρ0h∗ 0

− bSbA
ρ20hh

∗ 0A 0BA
bA
ρ0h

bS

ρ0h∗
Q⊥B

A 0A

0 0 0B −V S 0B 0

0A −bA bSQ⊥B
A −VA 0BA 0A

0 − p
ρ0

0B 1
ρ0
(bcVc) 0B 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.134)

and the characteristic polynomial is of the form

Pλ =
1

(ρ0h∗)2
λ(λ+ V S)PAlfvénPmgs , (5.135)

where PAlfvén and Pmgs coincide with the polynomials given earlier in equations (5.40)
and (5.41). As expected, the upper case eigenvalue associated with the constraint has
changed from zero, in the previous formulation, to −V S. Therefore, additional degenera-
cies have to be considered. One of those new degeneracies occurs when the constraint and
entropy speeds become identical, namely if V S = 0. In this particular degeneracy one
finds that the principal symbol is not diagonalizable. Hence, the system is only weakly
hyperbolic and has an ill-posed IVP. To get an intuitive idea of what precisely goes
wrong, one may consider the upper case left eigenvectors associated with the entropy and
constraint waves in generic directions, and then takes a limiting direction with V S → 0.
These are,

Entropy:
(
− pρ0

c2sρ
2
0h−κp

V S

(bcVc)
0 0A 1 0A

c2sρ
3
0h

c2sρ
2
0h−κp

V S

(bcVc)

)
, (5.136)

and

Constraint:
(
0 0 0A 1 0A 0

)
, (5.137)

with upper case eigenvalues λ(e) = 0 and λ(c) = −V S, respectively. Both upper case
right eigenvectors can be found in the accompanying notebook, see appendix A, but
are suppressed here because the upper case constraint right eigenvector is quite lengthy.
Taking the limit V S → 0 one immediately arrives at the conclusion that the geometric
multiplicity is only one as the two vectors become identical. The eigenvector cannot
be rescaled as for the earlier degeneracies since only some entries in the left entropy
eigenvector become zero; the limit of the principal symbol is truly problematic. This
degeneracy was unfortunately overlooked in [Ibáñez et al., 2015], although there the
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Chapter 5. Hyperbolicity Analysis of Ideal Magnetohydrodynamics

focus is rather on convexity of the system than on hyperbolicity.
To support the upper case result of weak hyperbolicity, it is explicitly checked in

the accompanying notebook, see appendix A, that upon taking the lower case matrices
from [Ibáñez et al., 2015] and deriving the lower case left eigenvectors of the entropy
and constraint waves, the very same problem is present. However, deriving the right
constraint eigenvector in the lower case frame is much more involved than in the upper
case. This is the reason why only the left ones are evaluated. It is stressed that using
the matrices of [Ibáñez et al., 2015] is a completely independent calculation and stresses
the weak hyperbolicity of the system.

5.6.2 Analysis of the Flux-Balance Law Formulation of MHD

With the result of the last subsection, one might wonder about the hyperbolicity of
classical magnetohydrodynamics (MHD) when formulated in a flux-balance law form as
for example in [Brio and Wu, 1988]. The set of evolution equations as given in [Jeffrey
and Taniuti, 1964, p. 170–171], can be written in index notation as

∂tρ0+∂iρ0v
i = 0 ,

∂t(ρ0v
j)+∂i

[
ρ0v

jvi +

(
p+

B2

2

)
δji −BjBi

]
= 0 ,

∂t

(
ρ0v

2 +B2

2
+ ρ0ϵ

)
+∂i

[
ρ0v

i

(
v2

2
+ ϵ+

p

ρ0

)
+ viB2 −Bi(Bjvj)

]
= 0 ,

∂tB
j+∂i

(
Bjvi −Bivj

)
= 0, (5.138)

where for simplicity 4πµ = 1 is adopted. The Maxwell constraint reads ∂iBi = 0. The
designation of the classical variables takes place in regard to their respective relativistic
versions. This set of evolution equations is just the Newtonian limit of the flux-balance
law formulation (5.130) in, for example, [Antón et al., 2006], suffering from the same
degeneracy and also being only weakly hyperbolic. Hence, the IVP is ill-posed. See also
the accompanying notebook, appendix A.

5.6.3 Comments on the Numerical Consequence of Weak Hyper-

bolicity

To show the weak hyperbolicity of the flux-balance law formulation of GRMHD, one could
consider a convergence test as done in [Cao and Hilditch, 2012], see figure 13. The used
GRMHD code should of course take the flux-balance law formulation as above to evolve
the hydrodynamical variables as well as the magnetic field. Based on the upper case
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principal symbol (5.134) of the flux-balance law formulation of GRMHD, the following
requirements are recommended for a numerical convergence test:

i) The boost vector, the magnetic field, and their scalar product should not vanish:

va ̸= 0 , Ba ̸= 0 , Bava = −baVa ̸= 0. (5.139)

ii) A 2+1 dimensional spacetime is minimally needed. One-dimensional schemes are
strongly hyperbolic (see [Komissarov, 1999] for a one-dimensional explanation).

iii) An EOS of the form p(ρ0, ϵ) ̸= 0, with 0 < cs ≤ 1 can be chosen.

iv) Tests including shocks should be avoided, since the convergence would suffer.

As far as the author knows, almost all of the standard test cases used for GRMHD
in NR (see [Komissarov, 1999] for various tests) do not satisfy all the aforementioned
requirements simultaneously. This partially explains why no one became aware of the
weak hyperbolicity of the formulation (and the ill-posedness of the IVP), yet.
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Chapter 6

Hyperbolicity Analysis of Resistive
Magnetohydrodynamics

In this chapter, the evolution equations used in the literature for the numerical implemen-
tation of resistive magnetohydrodynamics are investigated. The analysis holds for the sys-
tem of RRMHD used in [Komissarov, 2007; Dumbser and Zanotti, 2009; Palenzuela et al.,
2009; Mizuno, 2013] and also for the general relativistic settings describing RGRMHD
in [Palenzuela, 2013; Bucciantini and Del Zanna, 2013; Qian et al., 2017; Dionysopoulou
et al., 2013; Dionysopoulou et al., 2015]. The reason is the same as for the systems of
GRHD and GRMHD: all curvature quantities are absorbed in the derivative operators
and the normalization of the spatial vectors for 2+1 decomposition or contribute only to
the source term which does not affect the analysis. In the aforementioned literature, two
different approaches to deal with the charge density exist. In both cases, the evolution
equations form a weakly hyperbolic system as is shown separately in the sections 6.2
and 6.3. Again, the analysis below is only valid for the considered formulations and sets
of variables in the sense of section 3.4.

In this chapter, the lower case frame is used exclusively. There are two reasons why
the lower case is sufficient and adequate. First, the characteristic quantities needed to
show weak hyperbolicity of the system of PDEs can be handled with the lower case.
Second, the use of the appropriate frame depends on the form of the energy-momentum
tensor. By using the Eulerian electric and magnetic fields in the field strength tensor, the
energy-momentum tensor contains terms parallel and orthogonal to the Eulerian normal
vector and therefore splitting against the fluid velocity is probably not the best choice
anymore. As in chapter 5, Lorentz-Heaviside units are used throughout, where vacuum
permittivity and vacuum permeability are equal to one. To start the analysis, first of all,
the equations of motion for the state vector U are derived.
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6.1. Equations of RGRMHD

6.1 Equations of RGRMHD

Since the primary focus of this thesis is the derivation of the evolution equations and
their mathematical structure some interesting physical facts, particularly those related
to Ohm’s law, are mostly not further considered.

6.1.1 Augmented Maxwell Equations

As in the beginning of the last chapter about GRMHD, the following definition of the
field strength tensor is taken for a generic Eulerian observer with four-velocity na,

F ab = naEb − nbEa + ϵabcdncBd , (6.1)
∗F ab = naBb − nbBa − ϵabcdncEd , (6.2)

with the Levi-Cività tensor,

ϵabcd = − 1√
−g

[abcd] , (6.3)

the Levi-Cività symbol [abcd], [0123] = 1 and

ϵabcdna = ϵbcd =
1
√
γ
[bcd] , (6.4)

where the definition and convention by [Alcubierre et al., 2009] is followed. Using this
convention, the dual of the field strength tensor can be expressed as

∗F ab = −1

2
ϵabcdFcd . (6.5)

In numerical applications to RGRMHD divergence cleaning is used. Thus, the aug-
mented scalar fields ψ and ϕ are introduced, e.g., see [Komissarov, 2007; Palenzuela et al.,
2009; Dionysopoulou et al., 2015]. Hence, the Maxwell equations become

∇b

(
F ab − gabψ

)
= J a − 1

τ
naψ , (6.6)

∇b

(∗F ab − gabϕ
)
= −1

τ
naϕ . (6.7)

Note that in the literature the notation κ = τ−1 is usually employed. The electric four-
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current J a is split against na and γba, yielding the decomposition

J a = qna + Ja , naJ
a = 0 . (6.8)

Proceeding with a 3+1 decomposition of the Maxwell equations (6.6) and (6.7) and
making use of (6.8) the electromagnetic evolution equations may be written as

γabLnE
b = ϵabcDbBc − γabDbψ + Sa

(E) , (6.9)

γabLnB
b = −ϵabcDbEc − γabDbϕ+ Sa

(B) , (6.10)

Lnψ = −DaE
a − 1

τ
ψ + q , (6.11)

Lnϕ = −DaB
a − 1

τ
ϕ , (6.12)

with sources,

Sa
(E) =

1

α
Bcϵ

abcDbα +KEa − Ja ,

Sa
(B) = − 1

α
Ecϵ

abcDbα +KBa .

The constant τ is the time scale for the exponential driving of equations (6.11) and (6.12)
towards the constraints

DaE
a = q , (6.13)

DaB
a = 0 , (6.14)

respectively. The three-current Ja is given by generalized Ohm’s law, see subsection 6.1.3.
It is important to stress that although Ja appears in the source term, it could contain
derivatives of the evolved variables. Such terms would then of course contribute to the
principal part and must be taken into account.

As a consequence of the antisymmetry of the field strength tensor, additionally a
conservation law ∇aJ a = 0 for the electric charge can be considered, which reads in
the 3+1 language

Lnq = −γabDaJb −
1

α
J bDbα +K q . (6.15)
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6.1.2 The Energy-Momentum Tensor

The energy-momentum tensor T ab of RGRMHD contains an ideal fluid part,

T ab
mat = ρ0hu

aub + pgab , (6.16)

plus the standard electromagnetic energy-momentum tensor,

T ab
em = F acF b

c −
1

4
gabFcdF

cd , (6.17)

with a field strength tensor defined in (6.1). Writing F ab in terms of Ea and Ba, the
electromagnetic part becomes

T ab
em =

1

2
(BcB

c + EcE
c)
(
γab + nanb

)
−BaBb − EaEb +

(
naϵbcd + nbϵacd

)
EcBd . (6.18)

As mentioned in the very beginning of this chapter, the energy-momentum tensor is
partially split against the lower case normal vector and orthogonal terms. Thus, the
upper case is not a good choice. However, when writing the field strength tensor in terms
of ua and the corresponding electric and magnetic fields, the upper case frame becomes
again the preferred choice.

6.1.3 Generalized Ohm’s Law

Generalized Ohm’s law provides an expression for the spatial current Ja. Explanations
about the physical validity and form of Ja can be found in the literature, see for exam-
ple [Meier, 2004; Dionysopoulou et al., 2015]. In this thesis, the form of Ja is restricted
to an equation of the form

Ja = qva + J̃a , J̃a = J̃a(p, vb, ε, Ec, Bd) , (6.19)

where J̃a contains neither derivatives of the matter and electromagnetic variables nor
second order or higher derivatives of the metric tensor.1 This is a fairly general choice
and includes the particular form used in the literature mentioned above, that is

Ja = qva +Wσ
(
Ea + ϵabcvbBc − (vbE

b)va
)
, (6.20)

where σ is the conductivity of the fluid and is permitted to be an arbitrary function
of the evolved variables except the charge density q, while respecting the limitation

1In general, the electric current itself obeys a differential equation, see [Meier, 2004].
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of J̃a. However, the choice of Ja does not contain the so-called force free limit, since the
associated current contains derivatives of the electric and magnetic fields which contribute
to the principal symbol. For an hyperbolicity analysis of the force free limit see [Pfeiffer
and MacFadyen, 2013].

As a last point of this subsection, the connection to the upper case frame is given.
Splitting the four-current (6.8) against the fluid four-velocity, it can be expressed as

J a = ρelu
a + Ia , uaI

a = 0 . (6.21)

Here, ρel is the rest charge density measured by a comoving observer with the fluid. Taking
the upper case three-current to be proportional to the upper case electric field, Ia = σea

with ea = F abub, then the lower case charge density q and current Ja can be related to
the upper case ones according to

q = Wρel + σW (Eavb) , (6.22)

Ja = Wρelv
a + σW

(
Ea + ϵabcvbBc

)
. (6.23)

The results are obtained by expressing the field strength tensor as in equation (6.1)
and writing the four-velocity in terms of na and va. Using equation (6.22) to replace
the rest charge density ρel in the three-current (6.23), the three-current used in the
literature (6.20) is recovered.

6.1.4 Hydrodynamical Equations

The evolution equations for p, va and ε are obtained by considering the conservation of
the number of particles and the conservation of energy-momentum

∇a(ρ0u
a) = 0 , (6.24)

∇a(T
ab) = 0 , (6.25)

and then proceed with the 3+1 split. After combining the equations, using Maxwell
evolution equations and introducing the speed of sound, one arrives at the evolution
equations for the pressure,

Lnp =(c2s − 1)vpW 2
csDpp− c2sρ0hW

2
csγ

pcDpvc − c2(E
bvb)γ

pcDpEc − c2(B
bvb)γ

pcDpBc

+
(
c1E

p − c2ϵ
bdpBbvd

)
Dpψ +

(
c1B

p + c2ϵ
bdpEbvd

)
Dpϕ+ S(p) , (6.26)
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for the fluid velocity,

γbaLnvb =− 1

W 2ρ0h

(
γpa + (c2s − 1)W 2

csv
pva
)
Dpp+

(
c2sW

2
cs

W 2
vaγ

pc − vpγca

)
Dpvc

+
1

W 2ρ0h

(
Ea + c2(E

bvb)va
)
γpcDpEc +

1

W 2ρ0h

(
Ba + c2(B

bvb)va
)
γpcDpBc

+
1

W 2ρ0h
(γad + c2vavd) ϵ

bdpBbDpψ − c5vaE
pDpψ

− 1

W 2ρ0h
(γad + c2vavd) ϵ

bdpEbDpϕ− c5vaB
pDpϕ+ S(v)

a , (6.27)

and for the internal specific energy,

Lnε =
pW 2

cs

W 2ρ20h
vpDpp−

pW 2
cs

ρ0
γpcDpvc − vpDpε− c4(E

bvb)γ
pcDpEc − c4(B

bvb)γ
pcDpBc

+
(
c3E

p − c4ϵ
bdpBbvd

)
Dpψ +

(
c3B

p + c4ϵ
bdpEbvd

)
Dpϕ+ S(ε) . (6.28)

The source terms are given by

S(p) =c1(E
bJb) + c2ϵ

bcdBbJcvd +W 2
csc

2
sρ0h(g

−1)bcKbc ,

S(v)
a =

1

W 2ρ0h
(γad + c2vavd) ϵ

bdeBbJe − c5(E
dJd)va −

1

α
(g−1)caDcα

− c2s
W 2

cs

W 2
(g−1)bcKbcva −Kbcv

bvcva ,

S(ε) =c3(E
bJb) + c4ϵ

bcdBbJcvd +
W 2

csp

ρ0
(g−1)bcKbc , (6.29)

and the used abbreviations are defined as

c1 =
W 2

cs

W 2ρ0

(
κW 2 + c2s(W

2 − 1)ρ0
)
, c2 =W

2
cs

(
κ

ρ0
+ c2s

)
,

c3 =
W 2

cs

W 2ρ20h

(
p(W 2 − 1) + (χ− χW 2 + hW 2)ρ0

)
,

c4 =
W 2

cs

W 2ρ20h

(
pW 2 + (χ− χW 2 + hW 2)ρ0

)
, c5 =

W 2
cs

W 2ρ20h
(κ+ ρ0) . (6.30)

The full set of evolution equations determining the time evolution of the components of
the state vector U = (p, va, ε, q, Ea, Ba, ψ, ϕ)

T are the hydrodynamical equations (6.26)
- (6.28), together with the equations coming from the electromagnetic sector, namely
the equation for the evolution of the charge density (6.15) and the augmented Maxwell
equations (6.9) - (6.12). The obtained system of equations is identical to the system of
evolution equations given in [Dionysopoulou et al., 2015] up to irrelevant source terms.
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This was explicitly checked using a Mathematica notebook, where source terms have been
ignored according to the earlier discussion. An EOS p = p(ρ0, ε) with restrictions as in
chapter 4 is assumed.

6.2 Analysis with Evolution of the Charge Density

In this section, the first common set of evolution equations determining the time evo-
lution of the state vector U = (p, va, ε, q, Ea, Ba, ψ, ϕ)

T is considered. In this set, the
charge density is evolved by equation (6.15). The analysis of the characteristic struc-
ture fits the set of numerically used equations considered in [Komissarov, 2007; Dumb-
ser and Zanotti, 2009; Palenzuela et al., 2009; Palenzuela, 2013; Mizuno, 2013]. As
always, first the 2+1 decomposition of the equations is performed, this time using an ar-
bitrary unit spatial 1-form sa, sas

a = 1, san
a = 0, and denoting the orthogonal projector

by q⊥b
a = γba − sbsa. The state vector U = (p, va, ε, q, Ea, Ba, ψ, ϕ)

T and the associated
evolution equations (6.26), (6.27), (6.28), (6.15), (6.9), (6.10), (6.11), and (6.12) to the 14
components of U can be written in matrix form,

AnLnU = ApDpU+ S . (6.31)

The form of the matrices is easily obtained from the system of equations and is not
explicitly given here. A simple 2+1 decomposition of this equation yields

(LnU)s,A ≃ Ps(DsU)s,B, (6.32)

with (δU)s,A = (δp, (δv)s, (δv)A, δε, δq, (δE)s, (δE)A, (δB)s, (δB)A, δψ, δϕ)
T . The princi-

pal symbol is of the form

Ps = As =

(
A6×6 B6×8

08×6 C8×8

)
, (6.33)

where B6×8 contains the coefficients of spatial derivatives with respect to the vari-
ables (Ea,Ba,ψ,ϕ) in the time evolution of (p,va,ε,q). The matrix C8×8 is the sub-matrix
of the electromagnetic variables (Ea, Ba, ψ, ϕ). The matrix A6×6 can be written as,

A6×6 =

(
A5×5 05×1

A1×5 −vs

)
, (6.34)
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with A5×5 = Ps
HD being the principal symbol of the pure hydrodynamical sector (see

section 4.4), explicitly given by equation (4.40), and

A1×5 =
(
−∂Js

∂p
−sc ∂J

s

∂vc
−q⊥B

A
∂Js

∂vA
−∂Js

∂ε

)
. (6.35)

This vector contains the coefficients of spatial derivatives of the hydrodynamical variables
in the time evolution of q. Since the principal symbol (6.33) is block triangular, the 14

eigenvalues are given by those of A6×6 and C8×8, which read:

A6×6 : λ = −vs , (multiplicity 4) ,

λ = λ(±) , (see (4.41)) ; (6.36)

C8×8 : λ = ±1 , (multiplicity 4) . (6.37)

Due to the evolution equation of q, the matter eigenvalue λ = −vs has multiplicity four
in contrast to multiplicity three for the pure system of GRHD. Therefore, due care is
needed since the eigenspace changed comparing to GRHD.

Continuing the characteristic analysis, it can be shown that in general only 13 eigen-
vectors exist. The eigenspace of the eigenvalue λ = −vs, with algebraic multiplicity
four, has only geometric multiplicity three. For example, the linearly independent right
eigenvectors can be chosen as:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0B

1

0

08×1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0B

0

1

08×1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
(s)ϵBC

q⊥C
A

∂Js

∂vA

0

0

08×1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.38)

Here, the antisymmetric lower case Levi-Cività two-tensor for sa is introduced according
to

(s)ϵAB := sdnc
q⊥A

a
q⊥B

b ϵ
cdab. (6.39)

This result is contrary to an earlier analysis presented in [Cordero-Carrión et al., 2012].
The earlier analysis is erroneous since the three vectors called rλH0

corresponding to λ =

−vs are not eigenvectors.2 To substantiate the result of a missing eigenvector, a Jordan

2The explicit error is that the 9th component of these vectors may not be zero, since they produce
cross terms with the AqH part (corresponding to the A1×5 part of the principal symbol derived above).
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decomposition of the principal symbol (6.33) is performed. The Jordan normal form J[Ps]

of the principal symbol (6.33) can be written as a block diagonal matrix,

J[Ps] = diag(λ(+), λ(−),Jvs ,−12v
s,−14,14) , (6.40)

containing the Jordan block

Jvs =

(
−vs 1

0 −vs

)
. (6.41)

The presence of the Jordon block confirms that Ps is in general not diagonalizable.
Therefore, the system of equations is weakly hyperbolic and has an ill-posed IVP. In
particular the numerically used current (6.20) leads to an ill-posed IVP.

To clarify under which circumstances the system is weakly hyperbolic, the terms in
the principal symbol that lead to the weak hyperbolicity are considered. These terms
can be identified as the coefficients in the spatial derivative of the boost velocity in the
time derivative of the charge density,

−q⊥B
A
∂Js

∂vA
= −q⊥B

a
∂J̃s

∂va
. (6.42)

If ∂J̃s

∂vA
vanishes identically for arbitrary unit spatial sa (see equation (6.19) for the

introduction of J̃a), the system is strongly hyperbolic. This result serves as a restriction
for currents usable in numerical codes that work with the system of evolution equations
considered in this section.

6.3 Analysis without Evolution of the Charge Density

Now the second common set of evolution equations is considered. In this system, the
evolution equation for the charge density q is suppressed. Additionally, the scalar field ψ
is not evolved and set to zero everywhere. Thus, the augmented Maxwell equation (6.11)
becomes the standard Maxwell constraint DaE

a = q for the electric field Ea. This
equation is not a constraint in the PDE sense, it is now rather the definition used to
obtain q.

The analysis in this section applies to the system of equations used in [Bucciantini
and Del Zanna, 2013; Qian et al., 2017; Dionysopoulou et al., 2013; Dionysopoulou et al.,
2015]. The set of equations is reduced to 12 evolution equations (6.26), (6.27), (6.28), (6.9),
(6.10), and (6.12) for the components of the state vector U = (p, va, ε, Ea, Ba, ϕ)

T . Since
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now q is not evolved by the conservation of charge equation (6.15), all q’s must be replaced
by DaE

a. Therefore, in equations (6.26), (6.27), (6.28), and (6.9) the three-current Ja is
replaced by use of equation (6.19) with

Ja = vaγpcDpEc + J̃a , (6.43)

where the first term will contribute to the principal symbol. Writing the system of
equations in matrix form,

AnLnU = ApDpU+ S , (6.44)

and decomposing against sa, sasa = 1 and q⊥b
a,

(LnU)s,A ≃ Ps(DsU)s,B , (6.45)

the principal symbol can be identified as

Ps = As =

(
A5×5 B5×7

07×5 C7×7

)
. (6.46)

Again, B5×7 contains the coefficients of spatial derivatives with respect to the vari-
ables (Ea, Ba, ϕ) in the time evolution of (p, va, ε) and A5×5 = Ps

HD is the principal
symbol of the pure hydrodynamical sector, explicitly given in (4.40). The matrix C7×7

is the submatrix of the electromagnetic variables (Ea,Ba,ϕ) and reads

C7×7 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−vs 0 0 0 0 0 0

−vq1 0 0 0 0 −1 0

−vq2 0 0 0 1 0 0

0 0 0 0 0 0 −1

0 0 1 0 0 0 0

0 −1 0 0 0 0 0

0 0 0 −1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.47)

The twelve eigenvalues of the principal symbol (6.46) are given by the ones of A5×5
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and C7×7, these are:

A5×5 : λ = −vs , (multiplicity 3) ,

λ = λ(±) , (see (4.41)) , (6.48)

C7×7 : λ = ±1 , (multiplicity 3) ,

λ = −vs , (multiplicity 1) . (6.49)

As in the previous case where the charge density is evolved, the eigenspace of the mat-
ter eigenvalue λ = −vs has algebraic multiplicity four. As can be shown, the geometric
multiplicity is only three. A set of right eigenvectors is for example given by:⎛⎜⎝02×1

1

09×1

⎞⎟⎠ ,

⎛⎜⎝03×1

1

08×1

⎞⎟⎠ ,

⎛⎜⎝04×1

1

07×1

⎞⎟⎠ . (6.50)

Calculating the Jordan normal form J[Ps] of the principal symbol (6.46), one finds
the block diagonal matrix,

J[Ps] = diag(λ(+), λ(−),−12v
s,Jvs ,−13,13) , (6.51)

with the Jordan block

Jvs =

(
−vs 1

0 −vs

)
. (6.52)

Therefore, the system of equations is also only weakly hyperbolic when the charge density
variable q is not evolved. The result also holds if the scalar field ϕ is set to zero as
well. In this case equation (6.12) reduces to the usual constraint DaB

a = 0, and just
the eleven variables (p, va, ε, Ea, Ba) are evolved3. Analyzing the eigenvalue structure
of the resulting principal symbol, one finds that a pair of eigenvalues λ = ±1 changes
to the single eigenvalue λ = 0. It should be mentioned that adding multiples of the
magnetic field constraint to the remaining eleven evolution equations might change the
characteristic structure of the principal symbol. However, this will lead in general to a
set of evolution equations which cannot be formulated in a flux-balance law form since
the constraint coefficients in the above evolution equations are solution dependent.

For the special subcase J̃a ≡ 0 the system is strongly hyperbolic. This can be seen as

3The new evolution equations are obtained from the previous ones by setting ϕ = 0. No constraint is
manually added.
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6.3. Analysis without Evolution of the Charge Density

follows: Starting again with the four-current J a and 3+1 decomposing it in lower (6.8)
and upper (6.21) case frames,

J a = qna + Ja , naJ
a = 0 ; (6.53)

J a = ρelu
a + Ia , uaI

a = 0 , (6.54)

one finds by projecting as usual

q = −naJ a = Wρel − naI
a , (6.55)

Ja = γabJ a = Wρelv
a + γabI

b

= qva + (nbI
b)va + γabI

b. (6.56)

Comparing the last line with the general choice Ja = qva + J̃a in (6.19), one finds

0 = J̃a = (nbIb)v
a + γabIb = (g−1)abIb , (6.57)

where the last equality holds by expressing na as na = ua/W−va, using the orthogonality
between the upper case three-current, and the four-velocity of the fluid and applying the
definition of the inverse boost metric. Since the inverse boost metric is invertible, one
has γabIb = 0 and with the orthogonality condition ubI

b = 0 one finally obtains Ib = 0.
Thus, the conditions J̃a ≡ 0 and Ia ≡ 0 are equivalent. In such a case, by use of
equation (6.55), the charge densities of the lower case frame and the fluids rest frame are
related according to

q = Wρel (6.58)

and the conservation of the electric charge, ∇aJ a, has the simple form

∇a(ρelu
a) . (6.59)

This is nothing else then the equation of conservation of number of particles multiplied
with the constant specific charge of the particles. Instead of using the Gauss constraint
for Ea one can now compute the charge density by the rest mass density and the Lorentz
factor. Hence, q can be seen as a source term. Then the algebraic multiplicity of the
matter eigenvalue λ = −vs changes to three, and a complete set of eigenvectors can be
found.

The last two sections 6.2 and 6.3 show that the numerically used RGRMHD-systems
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Chapter 6. Hyperbolicity Analysis of Resistive Magnetohydrodynamics

of equations (coming from a flux-balance law form) have ill-posed IVPs for a fairly general
choice of the three-current. Other formulations4 of RGRMHD are not considered here.
It is possible that these systems can be cured by a carefully chosen constraint addition.
These possible formulations need a fresh characteristic analysis.

6.4 Charged Dust

As a last section in this chapter, the charged dust system of equations is analyzed. That
is, the system of dust in section 4.5 coupled with the electric and magnetic fields. In
this system, the conductivity is set to zero, σ = 0, as well as the pressure, p = 0, and
the internal specific energy, ε = 0. Due to the vanishing conductivity, the rest mass den-
sity and the rest charge density are proportional to each other, with the specific charge
as the constant of proportionality. The system of equations for the charged dust vari-
ables (ρ0, vi, Ei, Bi) decouples5 into two parts. First, the evolution equations for (ρ0, vi),
which were already found to be weakly hyperbolic in section 4.5, and second, the electro-
magnetic equations which can be given in a symmetric hyperbolic form, see [Alcubierre
et al., 2009]. Hence, the whole system is only weakly hyperbolic and thus has an ill-posed
IVP.

Interestingly, in [Perlick and Carr, 2010] it is shown that a different set of PDEs of
charged dust using (vi, Ei, Bi) as variables is strongly hyperbolic, at least in the Cowling
approximation. In their system, ρ0 is obtained by the Gauss constraint equation. Thus,
the charge density and the rest mass density are related to the divergence of the electric
field. In this case, the evolution of ρ0 may be suppressed, but then the densities have to be
expressed in terms of the divergence of the electric field. Under this treatment, however,
the minimal coupling condition with the gravitational field equations, see equation (2.20),
breaks. Hence, in full GR, the whole coupled system including the Einstein field equations
must be considered, which is not done here.

4They can be obtained, for example, by adding multiples of constraints to the equations.
5Decoupling means here that the principal symbol has a triangular block structure with the dust and

the electro-magnetic principal symbols as blocks on the diagonal, where the two blocks on the diagonal
do not share the same eigenvalues. This includes the special case of a vanishing minor diagonal block
(the block depends only on the addition of constraints to the evolution equation of dust, which has no
influence on the hyperbolicity properties here).
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Chapter 7

Conclusion

Summary

In the present work, the hyperbolicity of systems of first order partial differential equa-
tions (PDEs) of relativistic fluids in full general relativity (GR) was investigated. First of
all, in chapter 2 the basic concepts were explained and especially for the case of a linear
first order constant coefficient PDE system it was shown that strong hyperbolicity is an
indispensable property to guarantee well-posed initial value problems. More precisely, in
the constant coefficient case, strong hyperbolicity is also the sufficient property. In the
case of a quasi-linear first order system such as the fluid systems, well-posedness of the
initial value problem (IVP) is obtained if the PDE system is pointwise strongly hyper-
bolic and additional smoothness conditions hold, i.e., the symmetrizer H and the state
vector U must be smooth in all arguments. With regard to the numerical treatment
of the equations, this means that only variables of a well-posed IVP should be evolved,
since otherwise no statements about the convergence or uniqueness of the solution can be
made. The immediate consequence is that only strongly hyperbolic PDE systems may be
used. Exactly this aspect was examined in the present work, where the physical systems
of ideal hydrodynamics (GRHD), ideal magnetohydrodynamics (GRMHD) and resistive
magnetohydrodynamics (RGRMHD) in their numerically considered formulation were
analyzed. Showing strong hyperbolicity of a system of PDEs implies that the principal
symbol Ps of the system is diagonalizable. Moreover, the matrix of eigenvectors is in-
vertible and the sum of the matrix of eigenvectors and its inverse is bounded from above
by a constant independent of the unit spatial 1-form sa in the principal symbol.

To study the hyperbolicity structure of the fluid equations in an efficient manner,
the dual frame (DF) formalism based on [Hilditch, 2015; Hilditch et al., 2018] was intro-
duced in chapter 3. The key point of the DF formalism is that two different frames can
be brought into relation. The frames are referred to as upper case and lower case frame
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and were identified in the later application with the rest frame of the fluid (also called
Lagrangian frame) and an Eulerian (coordinate) frame, respectively. The main result
of the DF formalism exploited here is the fact that strong hyperbolicity is independent
of the frame, provided that the absolute value of the boost velocity times the highest
absolute eigenvalue of the principal symbol is smaller than one. The identification of the
upper case frame with the rest frame of the fluid is naturally preferred by the form of the
energy-momentum tensors of relativistic fluids. In the Lagrangian frame the principal
symbol is expected to become highly structured and thus, the calculation of the upper
case characteristic quantities such as eigenvalues and eigenvectors is somehow straight
forward. By knowledge of the upper case characteristic quantities and by using the DF
formalism, the lower case eigenvalues and eigenvectors can be recovered, which are for
example used in high resolution shock capturing (HRSC) schemes. By taking certain
derivative operators, a particular set of variables, and a 2+1 decomposition as above, it
was possible to study systems in special relativity (SR) and GR at the same time, since
source terms do not affect the hyperbolicity properties of the system.

As a first application, the system of GRHD in chapter 4 was examined with the find-
ings of the previous chapters. The advantage of the PDE system of GRHD is that it has
been extensively studied in the literature and that the characteristic analysis in upper
and lower case can be performed independently. It turned out that the upper case prin-
cipal symbol actually takes a very simple form and the recovery procedure gave the same
results as the direct lower case computation. The numerically used system of equations
turned out to be strongly hyperbolic, at least for the form of the equation of state (EOS)
considered in this work. In the dust case where the pressure of the fluid vanishes, the set of
four evolution equations forms a weakly hyperbolic system and thus has an ill-posed IVP.

Second, the PDE system of GRMHD was examined with respect to strong hyperbol-
icity in chapter 5. The first characteristic analysis of RMHD was done by [Anile and
Pennisi, 1987]. They work covariantly and considered an augmented system of ten evo-
lution variables. However, their analysis does not apply to the numerically used set of
evolution equations as in [Antón et al., 2006], where only eight evolution equations in
flux-balance law form supplemented by the magnetic field constraint are considered. In
this thesis, the aim was to analyze the latter set of equations. This was performed by
taking the eight evolution equations related to the numerically used ones, i.e., five for
hydrodynamical variables and three for the magnetic field, and adding some parametrized
combinations of the Maxwell constraint for the magnetic field to each equation. A par-
ticular choice of the constraint addition parameters is called a formulation of GRMHD.
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Chapter 7. Conclusion

Two formulations of GRMHD were finally considered in this work.
The first one, called prototype algebraic constraint free formulation, is closely related

to the augmented system of [Anile and Pennisi, 1987] and turned out to be strongly hy-
perbolic. All characteristic quantities such as eigenvalues and rescaled eigenvectors, valid
for all degeneracies, were obtained in the upper case and by use of the aforementioned
recovery procedure also in the lower case. It turned out, that with the help of the DF
approach the degeneracy analysis of the upper case can be easily translated into the lower
case and the quantities as well as particular limits can be well understood.

Second, the so-called flux-balance law formulation of GRMHD was investigated, were
in total eight variables including the magnetic field are evolved. By fitting the constraint
coefficients to the literature, however, it was shown that due to a new degeneracy the
principal symbol lacks an eigenvector. Thus, the numerically used flux-balance law formu-
lation of GRMHD is only weakly hyperbolic and has an ill-posed IVP. This fundamental
problem cannot be cured by any numerical method and therefore the numerically used
set of equations has to be altered. In fact, all flux-balance law forms which are in some
sense analogous to [Antón et al., 2006] suffer from the same pathological behavior if the
degeneracy occurs. The weak hyperbolicity was furthermore checked for matrices given
in the literature, which confirms the obtained results completely independently. As a
side result one also finds that the flux-balance law form of classical MHD is only weakly
hyperbolic. Suggestions for a test setup to show the ill-posedness of the flux-balance law
formulation of GRMHD were given in the very end of chapter 5.

Finally, in chapter 6 the system of RGRMHD was considered. In both cases, with and
without the evolution of the (Eulerian) charge density, the systems of equations used in
NR were only weakly hyperbolic. Weak hyperbolicity is found for a very general choice of
the three-current, but the analysis still has to be reperformed if different three-currents
than the one taken in this work are considered. In the very end of chapter 6, the system
of charged dust was discussed. In the minimally coupled form, the system of equations
was found to be only weakly hyperbolic. However, at least in the Cowling approxima-
tion, [Perlick and Carr, 2010] found that a strongly hyperbolic form of the PDE system
can be obtained. The form of equations used by [Perlick and Carr, 2010] breaks the
minimal coupling, however, and in full GR the whole coupled system of equations for
matter and metric variables must be considered.

All obtained results are only valid for the particular analyzed set of evolution PDEs in
the aforementioned way. Deviations from these might change the hyperbolicity properties
of the system under consideration and the analysis must be done from scratch.
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Future prospects

As seen for the systems of GRHD and especially GRMHD, the DF formalism [Hilditch,
2015; Hilditch et al., 2018] is a powerful tool to reveal structure in the principal symbol.
It is expected that far more sophisticated fluid models, such as multi fluid models, will
highly simplify in the upper case whereby the DF formalism provides an easy and clearly
structured process to obtain the characteristic quantities in the lower case frame. Taken
together, the hyperbolicity analysis of (fluid) systems is just one application of DF –
whenever frames or foliations have to be related, or computations are much easier in one
frame than another, which is quite often the case in the context of GR and NR, the DF
formalism provides the translation between them and brings light into darkness.

For the system of GRMHD, a numerical verification of the ill-posedness of the inves-
tigated flux-balance law formulation should be the next goal. Due to the advanced time,
it was unfortunately not possible to create a test case as part of this work. The prototype
algebraic constraint free formulation is a first example for a strongly hyperbolic system of
evolution PDEs to GRMHD. However, it does not obey a flux-balance law form. By use
of the DF approach, it is maybe possible to find an appropriate frame where a strongly
hyperbolic formulation in flux-balance law form can be obtained, but this thought has
not been pursued, yet. Moreover, the PDE systems of GRMHD with divergence cleaning
for the magnetic field constraint as well as the ones with evolution of the magnetic four-
potential should be analyzed concerning their hyperbolicity properties, since the analysis
above does not apply to them.

For the numerically used formulation of the system of RGRMHD the adjustment of
the three-currents could immediately heal the system and strong hyperbolicity be ob-
tained. The question is then whether this adjustment is a good choice to describe the
physical system one likes to study. Perhaps some other formulations of RGRMHD also
form a strongly hyperbolic PDE system.

In this work, for the first time, a complete characteristic analysis of an evolution
system of GRMHD using eight evolution variables including the magnetic field is given.
Also, it is shown for the first time that the flux-balance law formulation of GRMHD as
well as two numerically used formulations of RGRMHD are only weakly hyperbolic. Thus,
this work has great impact on codes in NR that use these PDE systems. Additionally, by
the DF formalism, a powerful new tool is provided to perform the hyperbolicity analysis
of more sophisticated numerically relevant PDE systems to fluid models. Altogether, this
thesis can be seen as another small step towards more robust codes in NR.
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Appendix A

Notes on the Accompanying Notebooks

Most of the results presented in this work were obtained by using xTensor for Math-
ematica [Martín-García, 2017]. All notebooks can be downloaded from http://www.

tpi.uni-jena.de/~hild/Hydro_DF.tgz. The index notation convention in the provided
notebooks differs from that used in the thesis. Explanations can be found below.

General Notes

∗ all notebooks use xTensor and have been tested in different subversions of Mathe-
matica 10

∗ at the beginning it is recommended to take DFstyle_HD_xTensor_V2_Pub.nb -
it contains more explanations than the other notebooks

∗ sometimes the notation of variables and constants slightly differs from the thesis
notation, but identification is possible by consideration of their definition or relation
to other quantities

∗ all indices are abstract and a 1+1+1+1 decomposition is used

∗ the notebooks are divided in chapters

∗ in general, the chapters contain additional definitions and rules adjusted to their
needs

∗ all notebooks are ready to run with the “Evaluate Notebook” button

∗ however, the evaluation of for example Simplify and FullSimplify sometimes differs
between versions of Mathematica, this can cause errors

∗ the Definition-files slightly differ and should be left in their respective folder

I

http://www.tpi.uni-jena.de/~hild/Hydro_DF.tgz
http://www.tpi.uni-jena.de/~hild/Hydro_DF.tgz


The chapters in this thesis are assigned to the folders as follows:

Chapter 4 - Folder GRHD

• contains the two notebooks
(1) DFstyle_HD_xTensor_V2_Pub.nb (sections 4.2, 4.3), and
(2) DFstyle_HD_xTensor_V2_for_v_Pub.nb (section 4.4)

• both use Tensor_Definitions_DF_Pub.m to get some of the definitions and rules
they need

(1) DFstyle_HD_xTensor_V2_Pub.nb:
First the characteristic analysis in the upper case is performed, then in the lower
case, and in the end the recovery using the results of section 3.3 is done

(2) DFstyle_HD_xTensor_V2_for_v_Pub.nb:
It contains just the calculations to obtain the lower case characteristic quantities
using the boost vector va.

Chapter 5 - Folder GRMHD

• contains the two notebooks
(3) DFstyle_MHD_xTensor_V2_Pub.nb (sections 5.3 - 5.5), and
(4) FluxGRMHD_xTensor_WeakHyp_Pub.nb (section 5.6)

• both use MHD_Definitions_DF_Pub.m and Tensor_Definitions_DF_Pub.m to
get some of the definitions and rules they need

(3) DFstyle_MHD_xTensor_V2_Pub.nb

– first the characteristic analysis in the upper case is performed, then the lower
case is obtained using the results of section 3.3

– afterwards the degeneracy analysis is performed for upper and lower case

– in the very end the transformations to primitive set of variables is given ex-
plicitly and the magnetosonic eigenvectors are calculated for these variables

– note: the lower Alfvén eigenvectors calculation could last several hours, there-
fore it is excluded and the old results are directly in use (the formulas to
calculate them are commented out)
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Chapter A. Notes on the Accompanying Notebooks

(4) FluxGRMHD_xTensor_WeakHyp_Pub.nb

– contains two separate parts:

– first part: obtain upper case equations with particular choice of constraint-
coefficients; then show whether upper case has missing eigenvectors; afterwards
show the equivalence to flux-balance equations

– second part: the last chapter is independent and uses the matrices given in
the literature

Chapter 5 - Folder Classic MHD

• stand-alone version, the flux-balance formulas of Newtonian MHD are examined

• have to introduce a Manifold and use the covariant derivative (which can be iden-
tified as the usual partial derivative operator)

• contractions with normal vector are time derivatives, contractions with induced
metric tensor γab are spatial derivatives

Chapter 6 - Folder RGRMHD

• contains the two notebooks
(5) RGRMHD_xTensor_V2_Augmented_System_Pub.nb (section 6.2), and
(6) RGRMHD_xTensor_V2_without_E-Constraint_Pub.nb (section 6.3)

• both use RGRMHD_Definitions_Pub.m and Tensor_Definitions_Pub.m to get
some of the definitions and rules they need
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Appendix B

Detailed Calculation of the Coefficient
Matrices of Upper Case GRHD

The detailed calculation of equation (4.30) is given by

Bu∇uU =

⎛⎜⎝1 0 0

0 (u)γab(g
−1)bc 0

0 0 1

⎞⎟⎠
⎛⎜⎝∇up

∇uv̂c

∇uε

⎞⎟⎠ =

⎛⎜⎝ ∇up
(u)γab(g

−1)bc∇uv̂c

∇uε

⎞⎟⎠

=

⎛⎜⎝ ∇up

SaSb(g
−1)bc∇uv̂c +

Q⊥ab (g
−1)bc∇uv̂c

∇uε

⎞⎟⎠ =

⎛⎜⎝ ∇up

Sa(∇uv̂)ŝ +
Q⊥ab (g

−1)bc∇uv̂c

∇uε

⎞⎟⎠

≡

⎛⎜⎝ ∇up

Sa(∇uv̂)ŝ +
Q⊥A

a(∇uv̂)Â
∇uε

⎞⎟⎠ ≡

⎛⎜⎜⎜⎜⎝
∇up

(∇uv̂)ŝ

(∇uv̂)Â
∇uε

⎞⎟⎟⎟⎟⎠ ≡ (∇uU)ŝ, Â . (B.1)

Here the convention Q⊥A
a ≡ q⊥A

c(g
−1)cbQ⊥ba is used by taking the relation

Q⊥ab (g
−1)bc = Q⊥ab (g

−1)bdγcd =
Q⊥ab (g

−1)bd q⊥c
d =

Q⊥ab (g
−1)bB q⊥c

B̂ . (B.2)
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The right-hand side of equation (4.27) is rewritten as follows:

Bp∇pU =

⎛⎜⎝ 0 −c2sρ0h(u)γpd(g
−1)dc 0

− 1
ρ0h

(u)γpa 0 0

0 − p
ρ0

(u)γpd(g
−1)dc 0

⎞⎟⎠
⎛⎜⎝∇pp

∇pv̂c

∇pε

⎞⎟⎠

=

⎛⎜⎝ 0 −c2sρ0h(SpSd +
Q⊥p

d)(g
−1)dc 0

− 1
ρ0h

(SpSa +
Q⊥p

a) 0 0

0 − p
ρ0
(SpSd +

Q⊥p
d)(g

−1)dc 0

⎞⎟⎠
⎛⎜⎝∇pp

∇pv̂c

∇pε

⎞⎟⎠

=

⎛⎜⎝ 0 −c2sρ0hSd(g
−1)dc 0

− 1
ρ0h
Sa 0 0

0 − p
ρ0
Sd(g

−1)dc 0

⎞⎟⎠
⎛⎜⎝∇Sp

∇S v̂c

∇Sε

⎞⎟⎠

+

⎛⎜⎝ 0 −c2sρ0hQ⊥A
d(g

−1)dc 0

− 1
ρ0h

Q⊥A
a 0 0

0 − p
ρ0

Q⊥A
d(g

−1)dc 0

⎞⎟⎠
⎛⎜⎝∇Ap

∇Av̂c

∇Aε

⎞⎟⎠

≃

⎛⎜⎝ 0 −c2sρ0hSd(g
−1)dc 0

− 1
ρ0h
Sa 0 0

0 − p
ρ0
Sd(g

−1)dc 0

⎞⎟⎠
⎛⎜⎝∇Sp

∇S v̂c

∇Sε

⎞⎟⎠

=

⎛⎜⎝ 0 −c2sρ0h(SdS
dSe(g

−1)ec + SdQ⊥ed (g
−1)ec) 0

− 1
ρ0h
Sa 0 0

0 − p
ρ0
(SdS

dSe(g
−1)ec + SdQ⊥ed (g

−1)ec) 0

⎞⎟⎠
⎛⎜⎝∇Sp

∇S v̂c

∇Sε

⎞⎟⎠

=

⎛⎜⎝ 0 −c2sρ0hSd 0

− 1
ρ0h
Sa 0 0

0 − p
ρ0
Sd 0

⎞⎟⎠
⎛⎜⎝ ∇Sp

(SdSe(g
−1)ec + Q⊥ed (g

−1)ec)(∇S v̂c)

∇Sε

⎞⎟⎠

=

⎛⎜⎝ 0 −c2sρ0h
(
(SdSd)S

b + (SdQ⊥A
d)

Q⊥b
A

)
0

− 1
ρ0h
Sa 0 0

0 − p
ρ0

(
(SdSd)S

b + (SdQ⊥A
d)

Q⊥b
A

)
0

⎞⎟⎠
⎛⎜⎝ ∇Sp

(Sbŝ
c + Q⊥eb (g

−1)ec)(∇S v̂c)

∇Sε

⎞⎟⎠

=

⎛⎜⎝ 0 −c2sρ0h
(
(SdSd)S

b + (SdQ⊥A
d)

Q⊥b
A

)
0

− 1
ρ0h
Sa 0 0

0 − p
ρ0

(
(SdSd)S

b + (SdQ⊥A
d)

Q⊥b
A

)
0

⎞⎟⎠
⎛⎜⎝ ∇Sp

Sb(∇S v̂)ŝ +
Q⊥A

b(∇S v̂)Â
∇Sε

⎞⎟⎠

≡

⎛⎜⎜⎜⎜⎝
0 −c2sρ0h(SdSd) −c2sρ0h(SdQ⊥A

d) 0

− 1
ρ0h
Sa 0 0 0

0 0 0 0

0 − p
ρ0
(SdSd) − p

ρ0
(SdQ⊥A

d) 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∇Sp

(∇S v̂)ŝ

(∇S v̂)Â
∇Sε

⎞⎟⎟⎟⎟⎠ . (B.3)

If the orthogonality of Sa and Q⊥A
d is used, then equation (4.31) is obtained.
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