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Abstract 

Advances in sequencing technologies enabled data generation from both genomes and 

transcriptomes at an unprecedented depth and accuracy. This progress changed the way 

researchers can approach biological questions, as hypotheses can be generated and verified 

using virtually any species apart from traditional laboratory organisms. However, genome-

wide investigations in such non-model organisms are still hampered by the complexity and 

costs associated with sequencing and reconstruction of large genomes. Second-generation 

transcriptome sequencing (RNA-seq) and computational reconstruction of transcripts provides 

an alternative and cost-effective approach to gain insights into the protein-coding portion of 

genomes. Yet, lack of publicly available software that performs necessary steps to get from 

RNA-seq data obtained from non-model organisms to reasonable mRNA catalogues for 

downstream analyses limited its application to experts. 

My thesis comprises the development of FRAMA, a software pipeline that delivers 

mRNA catalogues in the absence of a genomic reference, based on so-called de novo 

transcriptome assembly. Besides efficiently connecting publicly available software, FRAMA 

incorporates custom-build tools to attenuate frequent de novo assembly issues. FRAMA’s 

competitiveness with genome-based transcript reconstruction approaches was demonstrated by 

application to RNA-seq data obtained from the naked mole-rat (NMR). This non-model 

organism gains increasing popularity in ageing research due to its extreme lifespan of >30 years 

in captivity accompanied by lifelong fertility and an extreme resistance to ageing-related 

deterioration. Its lifelong fertility is exceptional, considering that NMRs are socially organized 

in colonies and one breeding female carries the metabolic load of reproduction and still lives at 

least as long as its non-breeding siblings. As part of my thesis, I investigated this trait by 

analysing gene expression profiles between reproductively active and inactive NMRs based on 

an mRNA catalogue delivered by FRAMA. I further applied FRAMA to non-model organisms at 

the other end of the vertebrate lifespan continuum – annual fishes (Nothobranchius). This fish 

genus, comprising one of the shortest-lived vertebrates, naturally evolved short lifespans 

presumably in adaptation to the transient availablility of water in their habitat. Based on 

positive selection analyses, we investigated when and how evolution shaped protein-coding 

genes that are potentially involved in such short lifespans. 

Both types of analyses, gene expression in NMRs and positive selection in annual fishes, 

revealed interesting candidate genes in respect to ageing. Moreover, it shed light on sexual 

maturation in NMRs and on the evolution of short lifespans in annual fishes. 
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Zusammenfassung 

Technologische Fortschritte haben es ermöglicht, ohne jegliches Vorwissen und in noch 

nie zuvor dagewesener Tiefe und Genauigkeit, Informationen über Genome und 

Transkriptome zu gewinnen. Diese Entwicklung hat die Herangehensweise an biologische 

Fragestellungen verändert, denn nun können Forscher Hypothesen in nahezu jeder Spezies 

entwickeln und überprüfen, ohne sich auf traditionelle Labororganismen beschränken zu 

müssen. Allerdings sind genomweite Untersuchungen in solchen Nicht-Modellorganismen 

immer noch eingeschränkt, denn die Sequenzierung und rechnergestütze Rekonstruktion von 

großen Genomen ist ein aufwendiges und kostspieliges Unterfangen. Die Sequenzierung und 

Rekonstruktion von Transkriptomen bietet hingegen eine kostengünstige Alternative und 

Einblicke in den proteinkodierenden Teil des Genoms. Der Mangel an Programmen, welche 

ausgehend von Sequenzierungsdaten passende Transkriptkataloge für weitere Analysen 

anfertigen, begrenzte allerdings auch diese Anwendung auf Experten. 

In meiner Dissertation habe ich eine Software (FRAMA) entwickelt, die alle notwendigen 

Schritte vollzieht um von Sequenzierungsdaten zu Transkriptkatalogen zu gelangen. Dazu 

werden sowohl öffentlich verfügbare als auch selbst angefertigte Programme effizient 

miteinander verbunden, um die Transkriptomassemblierung und -annotation vorzunehmen, 

sowie Schwachstellen der Assemblierung auszubessern. Die Wettbewerbsfähigkeit von FRAMA 

im Vergleich zu genombasierten Verfahren wurde durch Anwendung auf 

Sequenzierungsdaten des Nacktmulls demonstriert. Der Nacktmull rückt immer stärker in den 

Fokus der Alternsforschung, durch seine außergewöhnlich Lebensspanne von >30 Jahren in 

Gefangenschaft, die von einer extremen Widerstandskraft gegen altersbedingten Zerfall und 

einer lebenslangen Fruchtbarkeit begleitet wird. In Anbetracht seiner eusozialen Lebensweise, 

ist eine lebenslange Fruchtbarkeit bemerkenswert, denn in einer Kolonie trägt ein einzelnes 

Weibchen die metabolische Last der Fortpflanzung und wird dabei mindestens genauso alt wie 

ihre fortpflanzungsinaktiven Geschwister. Als Teil meiner Doktorarbeit habe ich mit Hilfe von 

Genexpressionsanalysen und basierend auf dem zuvor angefertigten Transkriptkatalog, 

fortpflanzungaktive und -inaktive Nacktmulle verglichen.  Weiterhin habe ich FRAMA auf 

Sequenzierungsdaten von Saisonfischen der Gattung Nothobranchius angewandt. Diese Gattung 

zeigt, vermutlich in Anpassung an die kurze Verfügbarkeit von Wasser in ihrem Habitat, eine 

sehr kurze Lebensspanne und umfasst eines der kurzlebigstes bekannten Wirbeltiere. Die 

Transkriptkataloge dienten als Grundlage zur Analyse positiver Selektion um genetische 

Determinanten kurzer Lebensspannen zu identifizieren. 

Beide Analysen haben interessante Genkandidaten in Bezug zur Alterung aufgedeckt 

und sowohl Einblicke in die sexuelle Reifung von Nacktmullen als auch der Evolution kurzer 

Lebenspannen in Saisonfischen gegeben.  
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1 Introduction 

A primary ingredient of life for a wide variety of species is the ageing process [1]. The 

biological phenomenon that we call ageing is defined as the progressive and irreversible 

decline in physiological function over time that inevitably ends in death [2]. This process of 

deterioration usually leads to impairments of health and reproduction, and an increased 

mortality risk, even if external sources of mortality, such as predators, are absent. Life 

expectancy, defined as the mean age a population of a certain age will reach, for humans has 

steadily increased in developed countries [3–5]. This increase is mainly the result of postponed 

mortality driven by advances in standard of living, education and health-care, including 

medicine, public health and nutrient supply [5,6]. However, the pace of deterioration with 

ageing is not slowing down and advanced age is a major risk factor for multiple diseases, 

including heart disease, cancer, diabetes and Alzheimer’s disease. As a consequence of this 

development, more people reach advanced age, but suffer from these age-associated 

diseases [5,7]. Thus, despite investigating the molecular causes and effects of ageing to satisfy 

the human need to understand it [6], ageing research has become crucial to potentially identify 

strategies that minimize the lifetime spend with age-associated diseases [8]. 

Understanding ageing is challenging, because it is a complex trait that arises from 

interactions between multiple biological layers, as well as environmental (e.g. radiation) and 

behavioural factors (e.g. physical activity, diet) [9,10]. Recently, a conserved set of biological 

processes, so-called hallmarks, involved in ageing across different mammalian species have 

been grouped into three categories: (i) primary (genomic instability, telomere attrition, 

epigenetic changes, loss of proteostasis), (ii) antagonistic (mitochondrial dysfunction, cellular 

senescence, deregulated nutrient sensing) and (iii) integrative hallmarks (stem cell exhaustion, 

altered intracellular communication) [9]. Despite their interactions, the primary cause of ageing 

is the accumulation of cellular damages (primary hallmarks). Antagonistic hallmarks protect 

from or compensate these damages initially, but eventually contribute to ageing. Finally, 

integrative hallmarks arise from the previous two categories and cause the actual deterioration 

of physiological function [9]. Although understanding the exact molecular mechanisms behind 

the scenes is an ongoing quest, it is already clear that genes play a major role in these processes. 

This is shown by hundreds of gene manipulations in laboratory organisms capable of altering 

these hallmarks and thereby altering (e.g. accelerating or delaying) the ageing process [9,11]. 

Advances in technologies facilitate studying such complex traits by enabling data 

generation from multiple layers of biological systems, such as genomes, epigenetic patterns, 

transcriptomes and proteomes. These data can be obtained from biological samples, including 

tissue samples, whole-blood samples and even single cells. Over the last decade, in particular 

the development of high-throughput DNA sequencing methods (commonly referred to as 
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next-generation sequencing but more specifically 2nd-generation sequencing (2GS)) enabled in-

depth analyses of biological systems. Among others, 2GS allows inference of sequence 

composition (sequencing) of whole genomes or targeted features of genomes, such as exons, 

DNA damage or DNA methylation [12–14]. Nevertheless, whole genome sequencing of large 

genomes is still costly and their full-length representation require computational 

reconstruction, which in turn requires sufficient computational resources, time and expertise. 

Also, additional efforts are needed to reach chromosome-scale resolution (e.g. optical mapping, 

linkage maps) and to annotate genomic features (e.g. repeats, genes) [15–19]. Targeted 

approaches selectively capture a subset of genomic regions and are usually cheaper, but require 

knowledge of the genomic reference sequence. In contrast, transcriptome sequencing (RNA-seq 

) is a less complex and, in all above mentioned practical aspects, more effective approach. 

RNA-seq operates without prior knowledge and provides expression level as well as sequence 

of transcripts [20]. Quantifying transcript levels helps to investigate which genes are expressed, 

e.g. in a specific organ, tissue or cell of any species under particular conditions and/or at 

defined time points. In respect to ageing, the comparison of expression levels between different 

phenotypes can reveal gene candidates that can serve as predictors for the pace of 

deterioration [21] or as targets to delay ageing [22]. Knowledge of transcript sequence allows to 

perform genome-wide computational analyses, e.g. to reveal sequence adaptations involved in 

biological traits and the evolutionary forces involved in shaping them [23,24]. In contrast to 

genome sequencing, RNA-seq can be applied by a broad range of researchers, as it requires 

lower financial budgets and computational resources, enabling the investigation of a wide 

range of phenotypes. As an additional benefit, even non-specialists in bioinformatics can 

analyse previously uncharacterized transcriptomes if user-friendly assembly pipelines are 

available. 

In this thesis, I focused on the development and application of RNA-seq bioinformatic 

tools to study gene expression and protein-coding sequences (CDSs). Both factors are known to 

influence lifespan and ageing. In the following two sections, I will provide a general 

introduction to the transcriptome, the principles of RNA-seq and bioinformatics steps involved 

in analysing RNA-seq data as well as the organisms that are relevant for ageing research. 

1.1 Transcriptome Bioinformatic Analysis 

The transcriptome represents the complete set and abundance of transcripts (ribonucleic 

acids; RNAs) that are expressed in a biological sample at a certain time [20]. RNAs are 

transcribed from genomic templates and are generally categorized in (i) protein-coding 

messenger RNAs (mRNAs), (ii) non-protein-coding RNAs (ncRNAs) and (iii) spurious 

transcripts [25]. This work focuses on mRNAs, which are an important transmitter of biological 

information between the genome, providing the templates, and proteins, carrying out cellular 

functions. Nevertheless, all RNA categories are vital to understand the connections between 
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genotype and phenotype, and especially ncRNAs are increasingly recognized as key regulators 

of gene expression and are involved in ageing [9,26–28]. 

In the past, different approaches were developed to infer sequence composition (e.g. 

Sanger sequencing) and expression level (e.g. real-time polymerase chain reaction) of mRNAs, 

but only a small number of mRNAs could be studied simultaneously this way. The first 

technology that enabled measuring several thousand mRNAs in parallel were DNA 

microarrays introduced in 1995 [29]. Yet, DNA microarrays are only able to measure the 

relative expression of mRNAs and, based on hybridisation, require prior knowledge of mRNA 

sequences that are supposed to be analysed. Since 2005, the introduction of 2GS technologies 

(454 Life Sciences/Roche) allows to identify both sequence and relative expression at an 

unprecedented depth and accuracy [30,31]. These methods offer the possibility to study near-

complete snapshots of transcriptomes in any species and without prior knowledge. In the 

following sections, I will describe the basic principle of RNA-seq technology and RNA-seq data 

analysis. 

1.1.1 RNA-seq principle  

RNA-seq, or whole-transcriptome shotgun sequencing, is the application of 2GS to 

transcriptomes. 2GS is characterized by massive parallelization of sequencing reactions, 

amplification of DNA fragments on a solid surface and “sequencing by synthesis“ [31]. In 

principle, total RNA is isolated from biological samples, optionally filtered for target RNA 

species, and subsequently converted into libraries of complementary DNA fragments. These 

libraries are then partially sequenced from one end (single-end) or both ends (paired-end). The 

resulting short nucleotide sequences are called “reads” and have, depending on the sequencing 

platform, lengths ranging typically from 30-400 bp [12]. During this process, orientation of the 

original RNAs is lost, but can be preserved by using respective protocols [32]. However, if full-

length mRNA sequences are required, these must be computationally reconstructed from reads. 

Following this procedure (and sequencing errors and biases apart), an RNA-seq data set 

consists of reads obtained by random sampling of small sections from RNA molecules that are 

present in a biological sample. The sampling process is influenced by the abundance and length 

of RNAs – the higher the expression of an RNA and the longer the molecule, the more reads 

will be obtained [33]. This allows the quantification of gene/transcript expression levels relative 

to each other. However, a robust and direct relationship between the number of reads and the 

actual number of RNA molecules in the biological sample is not possible, unless control RNAs 

in known amounts are used to calibrate measurements [34]. The detection of low expressed 

RNAs is limited by the sample size, which is reflected by the number of reads. To investigate 

low expressed RNAs, the sequencing depth (i.e. sample size) needs to be adjusted accordingly 

and in dependency of the size of the transcriptome being assayed as well as the biological 

question (e.g. RNA discovery, RNA quantification) [35–38]. 
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Within the framework of my thesis, I investigated RNA-seq data by two different routes 

of downstream analyses: (i) the quantitative route - studying mRNA expression changes 

between phenotypes - and (ii) the qualitative route - studying positive selection in CDSs. Both 

routes rely on knowledge of mRNA sequences that can be obtained from the RNA-seq data 

itself. 

1.1.2 De novo transcriptome assembly from RNA-seq data 

The ultimate goal of transcriptome assemblies is the full-length reconstruction of all 

transcript species of a transcriptome. Therefore, assembly algorithms were developed that 

computationally reconstruct full-length sequences de novo, i.e. without any reference sequence, 

from the collection of short sequencing reads [37,39–41]. Unfortunately, the number of reads is 

usually not sufficient to reconstruct all transcripts completely. Thus, assemblers are only able to 

reconstruct contiguous sequences (contigs) and many contigs represent only a small continuous 

section of a full-length transcript [37]. Even if a transcript is sufficiently covered by reads, 

complex loci with multiple exons and extensive alternative splicing events can present too 

many possible solutions to assembly algorithms and assemblers at best deliver most likely 

solutions [37]. 

The reduction of raw assemblies to an evolutionary reasonable set of transcript contigs 

relies on the identification of homologous transcript counterparts in another species 

(orthologs). Homology is the relationship between two genes that have descended from a 

common ancestral gene [42]. Homologs in different species with a last common ancestor before 

speciation are referred to as orthologs. Because descendants usually rely on the function of the 

ancestral gene, orthologs are expected to have retained a certain degree of sequence similarity 

and their function. Thereby, orthologs usually allow the transfer of functional information 

between species. Paralogs are another group of homologs with the last common ancestor before 

a gene duplication and are thought to be a major source of functional innovation 

(neofunctionalization, subfunctionalization) [43]. Homology by this definition is an 

evolutionary term, but in practice is inferred using sequence similarity [44]. Proper ortholog 

assignment would require evolutionary analysis, including alignment of transcripts from 

multiple species and phylogenetic tree reconstruction. However, genome-wide application of 

such methods is too computationally intensive given tens of thousands of genes 

(21,243 protein-coding genes in the human genome) [45], represented usually by an order of 

magnitude more transcript contigs. Therefore, heuristic approaches are commonly used to 

identify two genes that are mutually most similar between gene sets from two different species 

(best bidirectional hit) [44]. Besides reducing the assembly to an evolutionary meaningful 

subset of RNAs, orthologs can be used to determine structural information, such as CDS of 

mRNAs, and optimize assemblies. This optimization includes the correction of misassembled 

contigs that arise from falsely connected transcripts originating from adjacent genes, or 

fragmentation of contigs corresponding to single transcripts [37].  



5 

 

 

After such a functional and structural annotation of raw assemblies, the subset of 

evolutionary reasonable contigs, representing ideally full-length RNA sequences, provide the 

basis for further downstream analysis. 

1.1.3 Studying gene expression profiles using RNA-seq data 

Gene expression profiling investigates the expression of thousands of genes 

simultaneously. One of the main goals is to identify statistically significant quantitative changes 

in gene expression profiles between experimental groups (e.g. different conditions, age cohorts). 

This procedure aims to understand the molecular response, e.g. to different stimuli or changes 

during ageing [46].  

To determine expression profiles, reads are usually aligned to a reference genome 

sequence. If the species’ genome sequence is unknown, the genome of a closely-related species 

can be used or RNA sequences need to be computationally reconstructed and used for 

alignment. The number of aligned reads (referred to as read count) to a certain region (e.g. gene, 

exon or splice-junction) normalized by the number of sequenced reads can then be used to 

compare expression levels of genes across samples. To compare expression levels between 

genes within an RNA-seq sample, read counts need to be additionally normalized by the length 

of the region [33,46,47]. Different methods utilize read count information to identify a subset of 

genes showing statistically significant changes across experimental groups (differentially 

expressed genes; DEGs) [48,49]. Once orthologs are determined, DEGs can also be identified 

between different species. In order to avoid artefacts in such an analysis, e.g. arising from 

different ortholog lengths, commonly transcribed regions should be determined first [50].  

Insights into biological processes are often challenging, even at the level of DEGs. 

Several tools have been developed to investigate biological processes more broadly, based on 

predefined gene sets [51–53]. These gene sets categorize genes by common functions or 

otherwise meaningful criteria (e.g. common regulation or location). The Gene Ontology is 

usually the catalogue of choice for such an analysis [54], but other databases also provide useful 

gene sets, including “Kyoto Encyclopedia of Genes and Genomes” (KEGG) [55] and Reactome 

[56] for metabolic pathways, and Digital Ageing Atlas [57] and GenAge [58] for ageing-

associated genes. Different methods enable the identification of significantly enriched (over-

represented) gene sets, e.g. based on DEGs using Fisher’s Exact Test or at the level of gene 

expression (e.g. read count, fold change) using GAGE to identify gene sets showing altered 

expression, e.g. a common up- or down-regulation [51,59,60]. 

1.1.4 Studying genome-wide genetic selection by positive selection 

One approach to investigate lineage-, species-, or population-specific adaptations via 

comparative studies is the sequence-based identification of positively selected genes (PSGs). 

Positive selection describes the selective force that promotes the fixation of advantageous 

genetic mutations by natural selection [61]. While the concept of positive selection is based on 
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the simple principle that mutations increasing the chance of survival and reproduction of an 

organism have a higher chance of being transmitted to the next generation, its detection is 

complex and requires several steps. In a single gene, detection of positive selection includes (i) 

identification of orthologs, (ii) accurate multiple sequence alignment (iii) phylogenetic tree 

reconstruction and (iv) identification of signals of positive selection. A genome-wide 

application additionally requires robust filtering to remove false positives arising from 

incomplete sequences, alignment errors or poor conservation [62].  

One concept to identify signals of positive selection in two orthologous CDSs relies on 

the ratio of non-synonymous (amino acid-changing, dN) and synonymous (silent, dS) 

nucleotide exchanges. Because positive selection promotes changes, non-synonymous 

exchanges are assumed to be fixed at a higher rate than synonymous exchanges. In 

consequence, PSGs should show dN/dS ratios significantly greater than 1  [61]. Several 

statistical methods were developed to test for positive selection in individual phylogenetic 

branches and in a set of branches [61,63]. Although these methods became increasingly 

successful in PSG identification, they can be hampered by other selective forces or sequence 

divergence [63,64]. Nevertheless, comparative studies using this concept proved useful to 

investigate the links between molecular adaptations and ageing [24,65–67]. 

1.2 Animal models in research on ageing 

As introduced in the beginning, almost all multicellular organisms underlie ageing, a 

complex time-dependent process that negatively affects the function of multiple organs and 

increases disease susceptibility. Interestingly, looking at lifespans across different animal 

species, the maximum lifespan correlates with body mass [68]. However, humans deviate from 

this relation and are exceptionally long-lived when normalized by their body mass [69]. 

Nevertheless, the elderly human population becomes increasingly unhealthy with advanced 

age and suffers from age-associated diseases [5,8]. Fortunately, ageing research has led to 

remarkable breakthroughs towards the understanding of molecular mechanisms involved in 

ageing [7,9,70]. Conserved effects of interventions and roles of signalling pathways across 

different organisms revealed that the pace of ageing is rather flexible and shapeable than fixed 

[6,8,9]. Among these conserved mechanisms having lifespan modulating effects are: calorie 

restriction, mitochondrial function, protein turnover, insulin/IGF-signalling, target of 

rapamycin signalling and sirtuin function [9,70].  

Comparative biology has been an essential tool in ageing research for more than a 

century, starting with the comparison of metabolic rates and their relationship to lifespan in 

different species (rate-of-living hypothesis) [65–68,71–73]. Yet, most insights into ageing relied 

on short-lived laboratory organisms to investigate environmental and molecular factors of 

ageing [9,70,74]. Nowadays, supported by advances in sequencing technologies (2GS, mass 

spectrometry [75]) and molecular techniques (RNA interference [76], CRISPR/Cas9 [77], 

induced pluripotent stem cells [78]), research becomes increasingly independent from 
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traditional laboratory organisms. This progress allows to generate and verify hypotheses about 

the mechanisms of ageing in a broad range of species. Further, it enables studying particular 

species having interesting traits for ageing research, such as resistance to age-associated 

diseases or exceptionally long or short lifespans [79].  

The following sections present a selection of organisms that are becoming increasingly 

popular in ageing research and describe particularly those that I investigated in the course of 

my thesis. Maximum lifespans are presented according to the “The Animal Ageing and 

Longevity Database” (AnAge, genomics.senescence.info/species).  

1.2.1 What is a model organism in biology? 

Molecular researchers need experiments to gain insights into complex interactions in 

biological systems, e.g. by investigating the molecular response to external stimuli. However, 

experiments in the species of interest can be unethical or otherwise unfeasible to perform, e.g. 

because of costly housing or long lifespans. Therefore, model systems that ideally replicate the 

biological system of interest are used as proxies. Mathematical modelling of multicellular 

organisms [80] or single organs [81], which would allow computational simulation of 

experiments, is still in its early stages and living organisms are primarily used as models in 

biology. The possibility to exploit one particular species to understand molecular mechanisms 

in another is based on evolutionary ancestries and the conservation of molecular pathways 

across species. Yet, even slight lineage- or species-specific adaptations can cause altered or 

novel functions that are only shared between closely related species or limited to a single 

species [74]. Further, adaptation through the process of natural selection can yield multiple, 

independent solutions to the same problem [82]. Thus, it is important to choose model 

organisms wisely to address the research question of interest and transfer gained knowledge to 

the target species [74,83]. 

Ideal models are closely related to the target species and share similar traits, e.g. in 

reproduction, diseases and ageing. Still, experiments in animals also require practical and 

economic factors, including known genes and regulatory regions (ideally a well annotated 

genome), good health in captivity, inexpensive housing, easy breeding and manipulable 

genetics and environment [74]. In ageing research, longitudinal and lifespan studies also 

require comparably short lifespans. Yet, assuming that resistance to ageing must be maintained 

throughout life, studying young adults of long-lived species should also be rewarding [84]. 

Traditional model organisms in ageing research are yeasts (Saccharomyces cerevisiae, 2 weeks), 

nematodes (Caenorhabditis elegans, 2 months), flies (Drosophila melanogaster, 3.5 months) and 

rodents, in particular mice (Mus musculus, 4 years) and rats (Rattus norvegicus, 4 years) [9,70,74]. 

These models fulfil most practical and economic factors mentioned above and are therefore 

perfectly suitable as experimental systems. Yet, they are only distantly related to humans and 

on the opposite end of the lifespan continuum (short-lived). Even the closest relatives to 

humans among these models (mouse/rat) show substantially distinct biological traits, including 
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differences in reproductive biology (e.g. oestrus vs. menstrual cycle; number of pregnancies and 

offspring) and absence of human age-related diseases (e.g. atherosclerosis, Alzheimer’s) [74]. 

This suggests that evolution shaped ageing significantly different in these species [74] and the 

potential lack of mechanisms to delay ageing might limit research on health- or lifespan 

extension [79].  

1.2.2 Non-model organisms in ageing research 

Nowadays, mentioned technological advances allow to investigate and manipulate 

organisms apart from currently established laboratory models, commonly called “non-model” 

organisms, at the molecular level at similar depth and with a similar efficiency. In respect to 

ageing, this allows to extend the list of traditional models to more appropriate models for 

human ageing. Several non-model organisms have been suggested to understand ageing in 

general, such as biologically immortal hydras and extremely long-lived quahogs (Arctica 

islandica, 507 years), and human ageing in particular, such as nonhuman primates and 

domesticated species (dogs, cats) that mimic human ageing (particularly brain ageing) 

[1,74,79,85,86]. Non-model rodent and fish species are of particular interest in my thesis as 

proxies for human ageing in different aspects. 

Rodents are particularly suitable to understand ageing in mammals using comparative 

biology [85]. Besides well-described laboratory models, this order comprises 2,227 species [87] 

showing substantially different lifespans even among equally sized animals (Heterocephalus 

glaber, 31 years; Mus musculus, 4 years; >7-fold difference). Longevity has presumably evolved 

independently in different families of rodents, such as mole-rats (Bathyergidae; Heterocephalus 

glaber, 31 years), porcupines (Hystricidae; Hystrix brachyura, 27 years), beavers (Castoridae; 

Castor canadensis, 23 years) and squirrels (Sciuridae; Sciurus carolinensis, 23 years) [85]. This 

offers the possibility to discover multiple different mechanisms leading to longevity. In this 

respect, my work focuses on an extremely long-lived member of the mole-rat clade – the naked 

mole-rat (detailed in 1.2.3). 

Between the comparably closely-related vertebrate models (mouse/rat) and distantly-

related invertebrate models (nematode, fly) is another attractive group of animals - fish. Similar 

to rodents, these vertebrates show a wide variety of different species and lifespans [88]. Ageing 

studies in guppies (Poecilia reticulate, 5 years) demonstrated the potential of fishes as model 

systems and the zebrafish (Danio rerio, 5 years) already emerged as a valuable model 

particularly in developmental biology (e.g. transparent embryos, rapid development, low 

maintenance cost) [88]. Yet, although its regenerative capabilities are of particular interest, its 

relatively long lifespan hampers lifelong experimental studies. Due to their short lifespans and 

rapid life cycles, annual fishes of the genus Nothobranchius (detailed in 1.2.4) are particularly 

interesting for ageing research. 
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1.2.3 Rational for the naked mole-rat as a potential model for ageing research 

The naked mole-rat (NMR, Heterocephalus glaber; family: Bathyergidae) is a mouse-sized 

rodent (~35 g) native to hot dry regions of northeast Africa (Somalia, Kenya, Ethiopia) [89]. 

Although not immune to ageing, these rodents have a remarkable lifespan of >30 years in 

captivity and, similar to humans, live five times longer than expected by their body mass [69]. 

Yet, unlike humans (and mice/rats), NMRs are extremely resistant to cancer [90] and show 

negligible signs of ageing, including no age-related decline in fertility and no increase in 

mortality rate until sudden death [89]. Still, few signs of ageing can be observed, such as 

osteoarthritis and skin ageing [69,91]. However, these signs manifest very late in life 

(~24-27 years), which makes it a perfect model in respect to health span extension in 

humans [69,89].  

Despite showing a healthy and long life, the NMR has another exceptional trait – its 

eusociality. NMRs form social colonies of up to 300 non-breeding subordinates and one 

breeding pair of animals [92]. Non-breeders are capable of ascending into breeders even as 

adults and breeders stay fertile throughout their lifespan. Although currently subject to 

controversy [93], this eusocial colony structure was thought to be accompanied by different 

lifespans in NMR breeders and non-breeders, as observed in Fukomys mechowii [94], a close 

relative of the NMR, and in eusocial insects [72]. In F. mechowii female and male breeders live 

2.2 and 1.5-times, respectively, longer than non-breeders of the same sex [94]. This enables 

studying different ageing rates within the same genotype. Even if NMR non-breeders and 

breeders age at equal pace, insights into adaptations that prevent the decline in activity and 

fertility regardless of the high metabolic demands of pregnancies and lactation are valuable as 

this contradicts the “disposable soma theory” of ageing [95]. This theory suggests that, due to 

the organism’s limited energy budget, ageing results from a compromise between investment 

of energy in somatic maintenance and reproduction [95]. 

In the case of the NMR, two independent draft genome assemblies from 2GS of 

genomes are available (hetgla1 [96]; hetgla2 [97]) and a third unpublished meta assembly, 

which combines the previous assemblies, has been performed [67]. However, genome 

assemblies from 2GS data are often fragmented, have a high gap percentage and homologous 

genes might have been collapsed, limiting downstream analyses [15]. In addition, finishing a 

genome, e.g. closing assembly gaps, fixing misassembled regions and annotating genes, is still 

time consuming and expensive [18,19]. As a consequence, the genomic references for the NMR 

are far from contiguous and complete. So far, transcript sequences have mainly been derived by 

genome-based gene predictions in hetgla1 and hetgla2. Consequently, their quality largely 

depends on the quality of the underlying genome assembly. Another important drawback is 

the inference of untranslated regions (UTR), which cannot be predicted from the genome yet 

[98]. However, UTRs provide valuable information regarding mRNA stability and mRNA 

localization [99]. Moreover, UTRs are the landing platform for microRNAs, which gain 



10 

 

 

 

increasing attention in ageing research [26,99]. A steadily increasing number of publications on 

NMR cancer resistance and ageing over the last 8 years [90,100–103] emphasize the efforts that 

have already been made to establish the NMR as a model organism. 

1.2.4 Rational for annual fishes as potential models for ageing research 

In contrast to NMRs, annual fishes (genus Nothobranchius) offer the possibility to 

investigate the other end of the lifespan continuum as they show short lifespans. Most of the 43 

described species in this genus inhabit ephemeral pools across Africa formed by seasonal 

rainfalls [104]. Therefore, their life expectancy is dictated by the cessation of their transient 

habitat and differences in maximum lifespan across different species correlates with the 

availability of water in their habitat [104]. Among annual fishes, N. furzeri shows the most 

extreme short lifespan of 3-7 months [105], accompanied by a rapid life cycle and early sexual 

maturation [104]. Such short lifespans enable longitudinal studies and quick, monitorable 

experiments [21]. The short lifespan of N. furzeri in particular is associated with rapid ageing 

and typical signs of ageing (e.g. cancerous lesions, decline in fertility and cognitive function). 

Figure 1: Overview of manuscripts. FRAMA (M1) was developed to automate the process from 

de novo transcriptome assembly to a non-redundant set of mRNA sequences suitable for 

downstream analyses. mRNA catalogues delivered by FRAMA provided the basis for two different 

routes of downstream analyses in two groups of non-model organisms. In long-lived naked mole-

rats gene expression was studied (M2), while in short-lived annual fishes positively selected genes 

were analysed (M3, M4). 
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Importantly, the involved mechanisms overlap with mammalian hallmarks of ageing [106] and 

their onset can be modulated, e.g. by water temperature, calorie restriction or resveratrol 

treatment [107,108]. These characteristics, including practical features, such as comparably low 

requirements in water quality and eggs storable at room temperature for several months [104], 

make Nothobranchii attractive animal models for ageing research.  

Since suggested in 2003 [105], N. furzeri is rapidly developing as a new model organism 

in ageing research. Similar to the NMR, two genome assemblies have been performed [109,110], 

but with greater efforts to reach chromosome-scale resolution [106]. Although this allows 

thorough investigation of N. furzeri, studies on how such short lifespans evolved across 

different annual fishes are limited. Potential efforts to investigate additional annual fishes could 

involve genome sequencing as the N. furzeri genome should provide a good reference to 

improve 2GS-based genome assemblies. However, this is still costly even for one species and 

RNA-seq provides a cost-effective approach to gain insights into protein-coding genes of 

multiple different species.  

1.3 Connections between Manuscripts 

Molecular studies in any species greatly benefit from the availability of genetic 

information. Researchers prefer well-annotated reference genomes. These references provide a 

plethora of information, from comprehensive templates for mRNAs and ncRNAs, to regulatory 

motifs and repeat families, and can be studied using comparative genomic approaches that 

allow to investigate the history of unique and common biological traits across species. 

Nevertheless, current strategies to assemble reference genomes to chromosome-scale resolution 

are costly and time intensive. An alternative approach that allows investigating the protein-

coding portion of genomes is provided by RNA-seq. Within the scope of my thesis, four 

scientific papers were published in or submitted to peer-reviewed journals, exemplifying how 

qualitative and quantitative investigation of transcriptomes can provide insights into molecular 

mechanisms and adaptation in ageing (Figure 1). Therefore, I developed the software 

framework FRAMA (From RNA-seq to annotated mRNA assemblies) that automates the 

assembly, annotation and optimization of protein-coding transcripts from RNA-seq data (M1). 

FRAMA was applied to transcriptomes of non-model species on both ends of the vertebrate 

lifespan continuum, including the extremely long-lived NMR and a selection of extremely 

short-lived annual fishes. The delivered mRNA catalogues provided insights into (i) NMR 

transcriptome signatures of socially-suppressed sexual maturation and links of reproduction to 

ageing (M2), and (ii) PSGs related to short lifespan in annual fishes (M3, M4).
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2  Overview of Manuscripts 

2.1 Contribution to each work 

  

Table 1: Overview of manuscripts and proportion of my contribution to each work.  

Manuscript Citation Contribution 

M1 

FRAMA: from RNA-seq data to annotated mRNA assemblies. 

Bens M, Sahm A, Groth M, Jahn N, Morhart M, Holtze S, Hildebrandt TB, 

Platzer M, Szafranski K 

BMC Genomics. 2016 Jan 14;17:54 

published 

60% 

M2 

Naked mole-rat transcriptome signatures of socially-suppressed sexual 

maturation and link of reproduction to aging 

Bens M, Szafranski K, Holtze S, Sahm A, Groth M, Hildebrandt TB, 

Platzer M 

submitted 

40% 

M3 

Insights into Sex Chromosome Evolution and Aging from the Genome 

of a Short-Lived Fish. 

Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, 

Baumgart M, Chalopin D, Felder M, Bens M, Sahm A, Szafranski K, 

Taudien S, Groth M, Arisi I, Weise A, Bhatt SS, Sharma V, Kraus JM, 

Schmid F, Priebe S, Liehr T, Görlach M, Than ME, Hiller M, Kestler HA, 

Volff JN, Schartl M, Cellerino A, Englert C, Platzer M 

Cell. 2015 Dec 3;163(6):1527-38. 

published 

5% 

M4 

Parallel evolution of genes controlling mitonuclear balance in short-

lived annual fishes. 

Sahm A, Bens M, Platzer M, Cellerino A. 

Aging Cell. 2017 Jun;16(3):488-496. 

published 

20% 
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2.2 Manuscript 1 (M1) 

Title: FRAMA: from RNA-seq data to annotated mRNA assemblies 

Status: published in BMC Genomics. 2016 Jan 14;17:54  

Authors: Martin Bens (MB), Arne Sahm (AS), Marco Groth (MG), Niels Jahn (NJ), Michaela 

Morhart (MM), Susanne Holtze (SH), Thomas B. Hildebrandt (TBH), Matthias Platzer (MP) and 

Karol Szafranski (KS) 

Summary: I developed the software framework FRAMA, which assembles, annotates and 

optimizes transcripts from RNA-seq data. This work describes and assesses every step in 

FRAMA, with special focus on post-assembly tasks, including reduction of redundant transcript 

contigs, correction of misassembled transcripts, scaffolding of fragmented transcripts and 

coding sequence identification. FRAMA was applied to RNA-seq data obtained from deep 

sequencing the transcriptome of the naked mole-rat, a promising non-model organism in 

ageing research. 

Authors‘ contribution: MP, TBH and KS conceived the project. MM, SH, TBH, MB, MG and KS 

performed the tissue sampling and sequencing experiments. MB, AS, NJ, MP and KS designed 

and implemented the software. MB, AS, MP and KS performed the validation analysis and 

discussed the results. MB, MP and KS wrote the paper. 
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2.3 Manuscript 2 (M2) 

Title: Naked mole-rat transcriptome signatures of socially-suppressed sexual maturation and 

links of reproduction to ageing 

Status: submitted to Genome Research (June 2017) 

Status: Authors: Martin Bens (MB)*, Karol Szafranski (KS)*, Susanne Holtze (SH), Arne Sahm 

(AS), Marco Groth (MG), Thomas B. Hildebrandt (TBH), Matthias Platzer (MP). * shared first 

authorship 

Summary: This work comprises a comparative gene expression study of breeding and non-

breeding eusocial, long-lived naked mole-rats and polygynous, not long-lived guinea pigs. 

Therefore, we accumulated and analysed an extensive set of transcriptome data from ten 

different tissues of both species. We revealed minor differences between sexes of non-breeding 

naked mole-rats in contrast to guinea pigs, providing additional evidence for socially 

suppressed sexual maturation in naked mole-rats. Expression differences between non-

breeding and breeding NMRs suggest links to ageing hallmarks by influencing mitochondrial 

activity and lipid metabolism. 

Authors‘ contribution: TBH, MP and KS conceived the project. SH, TBH, MB, MG and KS 

performed the animal study, sampling and sequencing experiments. Data analysis and 

interpretation were performed by MB, KS, SH, MP and TBH. The manuscript was written by 

MB and KS. TBH and MP are joint senior authors. 
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2.4 Manuscript 3 (M3) 

Title: Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived 

Fish 

Status: published in Cell. 2015 Dec 3;163(6):1527-38.  

Authors: Kathrin Reichwald (KR)*, Andreas Petzold (AP)*, Philipp Koch (PK)*, Bryan R. 

Downie (BRD)*, Nils Hartmann (NH)*, Stefan Pietsch (SPe), Mario Baumgart (MBa), Domitille 

Chalopin (DC, Marius Felder (MF), Martin Bens (MBe), Arne Sahm (AS), Karol Szafranski (KS), 

Stefan Taudien (ST), Marco Groth (MG), Ivan Arisi (IA), Anja Weise (AW), Samarth S. Bhatt 

(SSB), Virag Sharma (VS), Johann M. Kraus (JMK), Florian Schmid (FS), Steffen Priebe (SPr), 

Thomas Liehr (TL), Matthias Görlach (MGo), Manuel E. Than (MET), Michael Hiller (MH), 

Hans A. Kestler (HAK), Jean-Nicolas Volff (JNV), Manfred Schartl (MS), Alessandro Cellerino 

(AC), Christoph Englert (CE), Matthias Platzer (MP). * shared first authorship 

Summary: Providing a chromosome-scale draft genome sequence, including annotation of 

protein-coding genes and several classes of non-coding RNAs, for the N. furzeri, this 

publication presents a milestone in establishing this fish as a model organism in molecular 

research. Despite investigating sex chromosome evolution and reporting gdf6 gene expression 

as a marker for sex determination, the age-related analyses included gene expression 

comparisons between young and old animals in multiple tissues. Positional enrichment 

revealed non-random organization of temporally regulated DEGs in the genome, suggesting 

co-regulation of functionally associated genes. I was primarily involved in analysing positive 

selection in the N. furzeri, which indicated also functional adaptation in temporally regulated 

DEGs. 

Authors‘ contribution: CE, KR, and MP initiated, managed, and drove the genome project. KR, 

NH, MBa, ST, and MGr prepared the samples. KR, ST, and MGr performed the sequencing AP, 

PK, BRD, VS, and MH performed the genome assembly and annotation. PK, BRD, DC, and JNV 

performed the repeat analysis MBa, MGr, AC, and MP performed the mRNA analysis. IA, MBa, 

AP, and AC performed the miRNA analysis. KR, AW, SSB, and TL performed the chromosome 

FISH. KR, AP, PK, MF, KS, NH, MS, CE, and MP performed the sex chromosome evolution 

analysis. MGo and MET performed protein structure modelling. JMK, FS, SPr, PK, HAK, AC, 

and MP performed the positional gene enrichment analysis. AS, MBe, AP, BRD, AC, and MP 

performed the positive selection analysis. NH, SPi, and CE performed the diapause analysis. 

All authors contributed to data interpretation. KR, AP, PK, NH, MS, AC, CE, and MP wrote the 

manuscript. 
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2.5 Manuscript 4 (M4) 

Title: Parallel evolution of genes controlling mitonuclear balance in short-lived annual fishes 

Status: published in Aging Cell. 2017 Jun;16(3):488-496. 

Authors: Arne Sahm (AS), Martin Bens (MB), Matthias Platzer (MP), Alessandro Cellerino (AC) 

Summary: In this work, we present a follow-up study of the positive selection analysis in M3 to 

investigate the evolution of annual life history in more detail. Again, we performed positive 

selection analysis, but using a broader range of non-annual outgroup species and by analysing 

deeper branches of the N. furzeri phylogenetic tree. In annual fishes, we identified positively 

selected genes involved in all steps of mitochondrial biogenesis, a conserved longevity 

mechanism in model organisms, suggesting a causal link between positively selected genes and 

annual life history. Further, we identified signs of parallel evolution in two different lineages of 

annual fishes in a subset of these genes and overlaps with positively selected genes in long-

lived mammals. 

Authors‘ contribution: AS and MB performed the analysis; MP and AC supervised the work; 

and AS, MP, and AC wrote the manuscript. 
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3 Manuscripts 

3.1 Manuscript 1 (M1) 
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Draft document. 
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Abstract 

Naked mole-rats (NMRs) are eusocially organized in colonies with an extreme 

reproductive skew towards one pair of breeding animals. Although breeders carry the 

additional metabolic load of reproduction, laboratory animals remain fertile and 

healthy throughout their extremely long lifespan of >30 years. Here, we present a 

comparative transcriptome analysis of breeders versus non-breeders of the eusocial, 

long-lived NMR versus the polygynous and shorter-lived guinea pig (GP). It gives 

insights into interspecies differences in sexual maturation and a naturally evolved 

case of positive correlation between reproduction and longevity. We found low levels 

of transcriptional differentiation between sexes in adult NMR non-breeders, providing 

molecular evidence that sexual maturation in NMRs is socially suppressed. After 

transition into breeders, both NMR sexes show pronounced feedback signalling via 

gonadal steroids and expression changes similar to socially-regulated reproductive 

phenotypes in fish. Remarkably, genes which are higher or lower expressed in NMR 

compared to GP are also preferentially up- or downregulated in NMR breeders, 

suggesting a gradual expression strategy related to fitness maintenance in 

reproductive NMRs. Moreover, status-related expression differences show significant 

enrichment for ageing-associated genes only in NMRs, indicating differences in the 

genetic impact on lifespan between species. This is further supported by opposing 

expression changes in status-related genes between species, such as fibroblast growth 

factor receptor 2. In addition, tissue-specific changes of mitochondrial activity in 

skin of male NMR breeder indicate delayed organ ageing. 
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Introduction 

The naked mole-rat (NMR, Heterocephalus glaber) has become increasingly popular as an 

animal model in a variety of research fields due to its unique biology. This includes 

an exceptionally long lifespan and resistance to cancer (Kim et al. 2011; Tian et al. 

2013). According to The Animal Ageing and Longevity Database (AnAge, 

genomics.senescence.info/species) the maximum recorded lifespan is 31 years, i.e. 368% 

of the prediction based on body mass. NMRs stay fertile throughout their long and 

healthy life, i.e. show an extraordinary long life- and healthspan (Buffenstein and 

Jarvis 2002). This lifelong fertility becomes even more astonishing, considering the 

extreme reproductive skew in NMR colonies. Like eusocial insects, NMRs are socially 

organized in colonies consisting of a pair of reproducing animals (breeders, queen and 

pasha(s)) and up to 300 subordinates (non-breeders, female and male workers) (Jarvis 

1981). However, although workers are in principle capable of reproduction (Faulkes et 

al. 1990a, 1991), sexual maturation is suppressed through the behavior of the 

dominating queen (Smith et al. 1997). Non-breeding animals of both sexes are the 

backbone of the social organisation of the colony and take care of foraging, brood 

care, colony defence and digging (Burda et al. 2000).  

Naturally, new NMR colonies originate from fissioning of existing colonies or 

formation by dispersers. Dispersers are animals that leave their natal colony and 

migrate into other colonies or form new colonies (Braude 2000; O’Riain et al. 1996). 

When under laboratory conditions non-breeders are removed from the colony and paired 

with the opposite sex, they have the capability to ascend into breeders. This process 

is accompanied with physiological and behavioural changes, and results in the 

formation of a new colony (Jarvis 1981; Faulkes et al. 1990a). Remarkably, despite the 

queen’s enormous metabolic load of producing a large litter every three months and 

being exclusively in charge of lactation (Orr et al. 2016), preliminary data from the 

wild NMR colonies indicate that breeders live longer than their non-breeding 

counterparts (Hochberg et al. 2016). Under laboratory conditions it seems there is no 

evidence of a significant difference in the life expectancy between breeders and 

workers (Buffenstein 2005). In closely related eusocial Fukomys mole-rats the breeding 

animals show extended longevity in captivity (Dammann and Burda 2006; Dammann et al. 

2011). This contrasts the disposable soma theory of ageing, which hypothesizes that 

energy is either allocated to body maintenance or reproduction (Kirkwood 1977). 

In NMR, the reproductive suppression in female non-breeders is mediated through 

inhibition of gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus 

(Faulkes et al. 1990a). This in turn leads to an inhibition of follicle stimulating 

hormone (FSH) and luteinizing hormone (LH) released by the pituitary gland and causes 

a block of ovulation. Also for male non-breeders, reproductive suppression is caused 

by inhibition of GnRH secretion, which results in lower levels of urinary testosterone 

and plasma LH (Faulkes et al. 1991). The impact, however, is less profound compared to 

females as spermatogenesis is attenuated, but not entirely suppressed (van der Horst 

et al. 2011). Nevertheless, weight of testis and number of active spermatozoa is 

higher in breeders (Faulkes et al. 1994, 1991). The role of GnRH in mediating 

environmental cues to allow or block reproduction is well described in a variety of 

species (Abbott et al. 1988; White et al. 2002). 
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The NMR can be regarded as a neotenic species and the prolonged retention of juvenile 

features has been linked to its longevity (Skulachev et al. 2017). In comparison to 

mice, e.g. postnatal NMR brain maturation occurs at slower rate (Orr et al. 2016) and 

puberty is delayed. Female and male NMRs may reach sexual maturity at 7.5 to 12 months 

of age (Sherman et al. 1991b). In the colony, however, the queen suppresses sexual 

maturation in both non-breeding males and females by aggressive social behaviour 

(Smith et al. 1997) and can delay – independently of neoteny - the puberty of female 

workers for life (Dengler-Crish and Catania 2007). Thus, sexual dimorphism is almost 

absent among non-breeding NMRs. Both sexes show almost no difference in morphology, 

including body mass, body size and even external genitalia, as well as no behavioural 

differences, in the sense that non-breeders participate and behave equally in all 

colony labours (Sherman et al. 1991a). Nevertheless, these features are correlated 

with colony rank. Most profound differences can be observed comparing NMR queens vs. 

non-breeders, reflected in morphological differences, such as an elongated spine and 

higher body mass of queens, as well as behavioural differences, such as increased 

aggressiveness, copulation and genital nuzzling (Sherman et al. 1991a).  

In this work, we characterize the molecular signature of reproductive status (breeder 

vs. non-breeder) in tissue samples of ten organs or their substructures (hereinafter 

called for simplicity “tissues”) from both sexes using RNA-seq. We contrast the NMR 

results with the transcript profiles of corresponding samples of guinea pig (GP, Cavia 

porcellus), a closely related, polygynous, not long-lived rodent species (AnAge: 

12 years maximal longevity, 89% of the prediction based on body mass). We specifically 

focused our analyses on transcriptome signatures of the socially-suppressed sexual 

maturation in NMR as well as on differentially expressed genes (DEGs) that may 

contribute to the exceptional long and healthy lifespan of NMR breeders.  

 

Results 

To gain molecular insights into the fascinating combination of NMR phenotypes, in 

particular their eusocial reproduction, lifelong fertility, extraordinary healthspan 

and longevity, we aimed to collect a comprehensive set of tissue samples for male and 

female breeders and non-breeders of NMR and GP - six biological replicates each. 

Towards this, NMR non-breeders were removed from their natal colony, paired with an 

unrelated animal of the opposite sex from a second colony and thereby turned into 

breeders. Respective male and female litter siblings remained in the two colonies as 

non-breeder controls. Time to first litters averaged in 6.5±4.9 (s.d.) months and 

duration of pregnancies was approximately 70 days. GP breeders and non-breeders were 

housed as pairs of opposite or same sex, respectively. For this species, the time to 

first litters was 4.1±0.8 month and the pregnancies lasted about 68 days.  

Female breeders gave birth to two litters each, with two exceptions. One NMR female 

was pregnant at least twice (ultrasonographically verified), but never gave birth to 

live offspring, and another gave birth to three litters, due to a pregnancy fathered 

by one of her sons. At time of sampling, NMRs and GPs reached an age of 3.4±0.5 and 

0.9±0.1 years, respectively (for more details see Supplementary Table S1).  
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Tissue and species are the major determinants of transcriptomes 

To compare gene expression between reproductive statuses (breeder vs. non-breeder) in 

NMR and GP, we performed RNA-seq of ten different tissue samples (heart - Hrt, skin - 

Skn, liver - Lvr, kidney - Kid, cerebellum - Cer, hypothalamus - Hyp, pituitary - Pit, 

thyroid - Thy, adrenal - Adr, and gonads – Gon, represented by either ovary – Ova or 

testis – Tes) from 24 animals for each species (six males, six females per status; 

Supplement Figure S1). Seven of the 480 samples (1.5%) had to be excluded for 

different reasons (Supplement Table S2, S3). On average (±s.d.), we obtained per 

sample 27.6±3.6 million high-quality reads with 84.1±16.1% unique mapping rate 

(Supplement Tables S4). The grand mean of pairwise Pearson correlation within the 40 

replicate groups (2 statuses x 2 sexes x 10 tissues per sex) was 0.981±0.013 and 

0.984±0.01 for NMR and GP, respectively, indicating high consistency between replicate 

samples (Supplement Table S5). 

 

Based on these data, unsupervised hierarchical clustering gave a similar cluster 

hierarchy of tissues for both species (Supplement Figure 2). Brain tissues are grouped 

(Pit as a sister group to Cer and Hyp); Kid and Thy are sister groups to the cluster 

of Adr and Ova. The results are confirmed by principle component analysis, separating 

tissues by the first and species by the second component (Figure 1). At this level of 

 

Figure 1: Principle component (PC) analysis based on logarithm of mean 

expression level between replicates (four datasets per tissue and species: 

2 sexes x 2 statuses, except gonads). Tissues are separated by PC1 and PC3, 

species by PC2. 

 



39 

 

 

analysis, ovary was the only tissue, which showed a separation of samples with respect 

to breeding status. Together, this indicates that: (i) tissue source is dominant over 

other biological variables such as species, sex and status and (ii) the impact of sex 

and status on transcriptome profiles is subtle.  

 

Cross-species DEGs are enriched in ageing-related genes 

To further characterize the species differences between the long-lived NMR and the 

shorter-lived GP, we next determined gene expression differences based on orthologous 

transcribed regions that show high sequence similarity. This filtering method avoided 

potentially misleading signals that may arise from assembly artefacts or the 

comparison of different transcript isoforms and identified 9,593 genes suitable for 

further analyses. 

 

Across all tissues, we identified 16,692 significant expression differences (EDs; 

8,920/7,772 higher/lower expressed in NMR) in 5,601 genes (FDR<0.01, |log2FC|>2; 

Supplement Table S6, Supplement Data 1). To assess the association of cross-species 

DEGs with ageing, we examined their overlap with ageing-related genes of human and 

mouse obtained from the Digital Ageing Atlas (DAA) (Craig et al. 2014). This test 

revealed a significant overlap with DAA containing 999 genes (17.8% of DEGs; p=0.008, 

Fisher's exact test (FET); Supplement Table S7). The enrichment analysis of shared 

ageing-related genes reveals 212 significant GO terms (FDR<0.05, Supplement Table S8). 

Further summarization in 80 non-redundant GO term sets by REVIGO reveals that the top 

15 ranked sets are associated with lipid biosynthetic process (GO:0008610), growth 

(neuron projects development, GO:0031175; chemotaxis, GO:0006935; system development, 

GO:0048731; blood vessel development, GO:0001568, wound healing, GO:0042060; 

hippocampus development, GO:0021766) and response to glucocorticoids (GO:0051384) 

(Supplement Figure S3). 

  

 

 

Figure 2: Euler diagrams of analyzed gene sets. (A) DEGs of females vs. males 

within non-breeders and breeders for each species. (B) DEGs of breeders vs. non-

breeders within the same sex for each species. (C) NMR gonad DEGs of breeders vs. 

non-breeders and ageing-related genes from the Digital Aging Atlas (DAA). 
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Sexual differentiation and maturation in NMR are delayed until transition from worker 

to breeder 

Next, we determined DEGs between sexes within the groups of non-breeders and breeders 

for each tissue and species (Table 1; Supplement Table S9, Supplement Data 2). GP non-

breeder females vs. males (GP-N-FvM) show over all tissues except gonads 1,713 

significant expression differences (EDs) in 1,634 genes (FDR<0.01), primarily in 

Adr (858), Lvr (383), Thy (347) and Kid (109). Between female and male GP breeders 

(GP-B-FvM), we observed 3,654/3,398 EDs/DEGs. These transcriptome data confirm a 

prominent level of sexual differentiation among sexually mature GPs that further 

increases after onset of breeding. Breeders have 790 DEGs in common with non-breeders 

(p<2.2x10-16, FET; Figure 2A). Functional enrichment analysis of these shared genes 

reveals 158 significant GO terms and 67 sets (Supplement Table S10). Among highest 

ranked sets we find immune system (lymphocyte activiation, GO:0046649; leucocyte 

migration GO:0050900; B cell receptor signalling pathway, GO:0050853), steroid 

metabolic process (GO:0008202) and sets related to oxidative stress (respiratory 

electron transport chain, GO:0022904; superoxide anion generation, GO:0042554) 

(Supplement Figure S5). 

Similarly to GP-B-FvM, NMR-B-FvM shows 2,456/2,360 sex-related EDs/DEGs (FDR<0.01), 

mostly in Thy (1,791) and Adr (533). The overlap with GP-B-FvM is with 514 DEGs 

considerable but does not reach significance (p=0.062, FET; Figure 2A). Nevertheless, 

these data indicate basic similarities in sexual differentiation among breeders of 

both species. Functional enrichment analysis of NMR-B-FvM DEGs revealed 74 terms and 

35 sets related to general biological processes (Supplement Table S11 and Supplement 

Figure S6). 

 

Table 1: Numbers of DEGS identified in the different comparisons (FDR<0.01). 

Organ GP NMR GP NMR GP NMR GP NMR

Hrt 4 10 89 13 2 3 0 0

Skn 6 6 3 5 5 1 0 223

Lvr 383 4 235 10 71 0 9 1

Kid 109 6 106 21 1 4 0 0

Cer 1 5 2 25 0 15 0 0

Hyp 2 8 1 11 0 5 2 0

Pit 347 9 307 47 114 114 2 1

Thy 3 0 2,087 1,791 675 285 1 0

Adr 858 4 824 533 0 201 1 4

Gon - - - - 18 502 3 381

ED* 1,713 52 3,654 2,456 886 1,130 18 610

NR** 1,634 22 3,398 2,360 883 1,078 14 598

female vs. male breeder vs. non-breeder

non-breeder breeder females males

 
 
* significant expression differences across tissues 

** non-redundant set of significant expression differences across tissues 
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Surprisingly, only 22 NMR-N-FvM EDs/DEGs were detected across all tissues (Supplement 

Table S12), indicating an only minor sex differentiation between NMR non-breeding 

females and males. Nonetheless, we observed a significant overlap with GP-N-FvM DEGs 

(p=0.017, FET; Figure 2A) as four of the six common DEGs are located on the X 

chromosome where they presumably escape X inactivation in both species (Supplement 

Table S12). 

 

Status change of NMRs is accompanied by major changes in the endocrine system 

Then, we determined DEGs between breeders and non-breeders within the same sex for 

each species (Table 1; Supplement Table S13, Supplement Data 3). Females show a 

similar amount of EDs/DEGs in both species (GP-F-BvN: 886/883, NMR-F-BvN: 1,130/1,078) 

but have only 46 DEGs in common (Figure 2B). This is less than expected by chance, 

although not reaching significance (p=0.075, FET for depletion) and indicates that the 

molecular signature of the transition from female non-breeder to breeder is different 

in both species. E.g. in GP-F-BvN, only 18 DEGs are observed in Ova and none in Adr 

while in NMR-F-BvN, these tissues show most of the differences with 502 and 201 DEGs, 

respectively. Functional enrichment analysis of DEGs in NMR Ova reveals 283 GO terms 

that can be grouped into 104 sets (Supplement Table S14). Highest ranked categories 

are related to reproductive structure development (GO:0048608), steroid metabolism 

(GO:0008202), Ser/Thr kinase signalling (GO:0007178) and lipid homeostasis 

(GO:0055088) (Supplement Figure S7). This indicates substantial physiological and 

endocrine effects in NMR females in adaption to their role as breeders. Functional 

enrichment analysis in Adr revealed an obvious directionality in expression changes.  

DEGs are preferentially upregulated in reproduction (GO:0000003, 24 of 28) and 

endocrine system development (GO:0035270, 17 of 18) among highest ranked GO term sets 

(Supplement Figure S8), altogether 20 sets composed of 39 terms (Supplement 

Table S15), consistent with its role in hormone secretion and changes in Ova. Tallying 

with this, Cer DEGs are enriched and upregulated in steroid metabolic process 

(GO:0008202, 6 of 6 upregulated) and response to hormones (GO:0009725, 7 of 7) 

(Supplement Figure S9, altogether 38 sets composed of 93 terms, Supplement Table S16). 

In male GPs, status-related differences (GP-M-BvN) are almost absent across all 

tissues (only 18 EDs/14 DEGs). In contrast, NMR-M-BvN shows 610/598 EDs/DEGs, 

predominantly in Tes (381) and Skn (223). NMRs share 55 status-related DEGs in both 

sexes (p=0.008, FET; Supplement Table S17), while the few status-related changes in 

male GPs show no overlap with those in females (Figure 2B). Among shared DEGs in NMRs, 

we identified 10 genes involved in endocrine signaling, including SSTR3 (somatostatin 

receptor), TAC4 (tachykinin), PRDX1 (peroxiredoxin 1) and ACPP (acid phosphatase, 

prostate), as well as in general signaling via cAMP signaling (three genes) and 

through G-protein coupled receptors (four genes). 

 

Mitochondrial genes show opposed expression changes in Tes and Skn after status change 

of NMR males 

In NMR-M-BvN Tes, functional enrichment analysis reveals 128 GO terms that group into 

39 sets (Supplement Table S18). Highest ranked GO sets are metabolism- and energy-
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related, and the DEGs enriched therein are mostly upregulated, e.g. lipid biosynthetic 

process (GO:0008610, 75 of 82 genes), coenzyme metabolic process (GO:0006732, 20 of 

21), energy derivation by oxidation of organic compounds (GO:0015980, 25 of 25), 

oxidation-reduction process (GO:0055114, 64 of 64) and glutathione metabolic process 

(GO:0006749, 13 of 14) (Supplement Figure S10). Further, we observe an upregulation of 

response to stimulus (GO:0050896, 79 of 106), in line with an upregulation of steroid 

metabolic process (GO:0008202, 28 of 28) included in lipid biosynthetic process set. 

In accordance with the dominance of energy-related processes, DEGs are enriched and 

preferentially upregulated in the top GO cellular component terms mitochondria 

(GO:0005739, 61 of 62) and peroxisomes (GO:0005777, 13 of 13) (Supplement Table S19). 

Together, this indicates increased demands of energy, e.g. to produce steroid hormones 

in Tes of NMR breeders. 

 

In Skn, NMR-M-BvN DEGs are enriched in 121 GO terms that can be summarized in 29 sets 

(Supplemental Table S20, Supplemental Figure S11). Similar to Tes, Skn shows 

enrichment of energy-related processes. However, GO term sets in Skn are mostly 

downregulated, including energy derivation by organic compounds (GO:0015980, 36 of 38 

genes) and oxidation-reduction process (GO:0055114, 42 of 46). Consistently, this 

includes genes associated with mitochondria (GO:0044429, 56 of 57) and respiratory 

chain (GO:0070469, 11 of 11).  

The overlap between mitochondrial DEGs in Tes and Skn comprises 6 genes (p=7.27x10-8, 

FET; Figure 3). Among common genes PINK1 (PTEN induced putative kinase 1) is 1.5-fold 

upregulated in Tes and 2.5-fold downregulated in Skn, indicating a role in regulation 

of mitophagy (Narendra et al. 2010) in both tissues.  

To follow up the mitochondria-related findings, we determined the ‘mitonuclear 

transcript ratio’ as the read count ratio of mitochondrial-encoded genes versus 

nuclear-encoded genes. It differs largely between tissues and species (Supplement 

Table S21). Hrt shows the highest mitonuclear ratio, with a minor difference between 

species (NMR 30.1%, GP 30.4%). Tes shows the lowest ratio, particularly in GPs (NMR 

Figure 3: Heatmap represents log2 fold-changes in the male breeder vs. non-breeder 

comparison of all 77 nuclear genes encoding for mitochondrial respiratory chain 

complexes. Significant expression changes were observed in NMR Skn (46 genes, mean 

fold-change 0.76) and Tes (46, 1.89) and are indicated by asterisks *: FDR<0.05, 

**: FDR<0.01. 
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5.5%, GP 0.9%), and a 43.1% increase in NMR-M-BvN (p=0.003, t-test; Supplement Figure 

S12). This increase is accompanied with an upregulation of nuclear genes encoding for 

mitochondrial respiratory chain complexes (Figure 3; Supplement Table S22). The 

expected increase in ROS is compensated by an on average 1.59-fold upregulation of 

eight antioxidant DEGs (Supplement Table S23). Consistently with functional enrichment 

analysis mentioned above, we observe an opposing effect in Skn of NMR male breeders, 

which show a decline in mitonuclear ratio together with a downregulation of nuclear 

genes of the respiratory complexes (Figure 3). In line with the downregulation of 

OXPHOS, we observe a downregulation of antioxidant enzymes SOD2 (superoxide dismutase 

2, 2.64-fold) and PRDX3 (peroxiredoxin 3, 2.14-fold).  

 

NMR status-related DEGs are enriched in ageing-related genes  

Driven by the exceptional long and healthy lifespan of NMR breeders, we searched our 

transcriptome data for molecular evidences supporting this phenomenon. First, we 

assessed the connection of cross-species DEGs with expression changes that are 

associated with status change in each species. DEGs shared in both contrasts (NMR vs. 

GP and breeder vs. non-breeder, FDR<0.05) provided the basis for a correlation 

analyses of fold changes in each species (Supplement Figure S4). Hypothesizing, in 

agreement with the disposable soma theory of ageing, a negative impact of reproduction 

on lifespan for GP and, in contradiction to this theory, an inverse effect for NMR, we 

confirmed this by opposing correlations (combined p=3.8x10-9 (Lancaster procedure (Dai 

et al. 2014)), negative correlation for GP (1,380 shared DEGs; Spearman correlation -

0.1; p=1.6x10-4) and positive correlation for NMR (3,695; 0.17, p=1.7x10-24)). This 

means that DEGs with higher expression in NMR than GP are preferentially up-regulated 

in NMR breeders compared to non-breeders, and vice versa. 

Second, we found that only NMR status-related DEGs show significant enrichments of 

ageing-related genes from DAA (Supplement Table S24): males in Skn (55 genes; 

q=0.0012, FET) and Tes (80 genes, q=0.01), and females in Ova (127 genes; q=1.2x10-7), 

Thy (59 genes, q=0.033) and Adr (43 genes, q=0.038). The significant overlap of 22 

DEGs between NMR-F-BvN and NMR-M-BvN in Gon (p=0.0035, FET) contains nine ageing-

related genes (p=0.004, Figure 2C). In GP, only the non-redundant set of DEGs in GP-F-

BvN shows a tendency of enrichment (160 genes, q=0.051), in contrast to NMRs, which 

show enrichment in males (134 genes, q=4.5x10-5) and females (245 genes, q=7x10-9). 

Third, we expect that reproduction impacts the life expectancy of NMR and GP 

differently. Therefore, we searched for status-related DEGs that are shared in both 

species, but show opposing direction of expression. These genes might mark different 

coping mechanisms with the metabolic load of reproduction. As described above, the 

overlap of DEGs between species is very low (Supplemental Table S25). Nevertheless, 

opposing direction of expression change can be observed in Ova (1 of 2 shared DEGs; 

FGFR2: fibroblast growth factor receptor 2) and female thyroid (8/8) and testis (1/1).  

Fourth, and based on a similar assumption, we determined enrichment of ageing-related 

genes in the 20%-quantile of genes, which show the greatest interspecies difference in 

status-related expression changes (FDR<0.05). In males, we found significant 

enrichments of DAA genes in Skn (q=7.04*10-7) and Tes (q=0.0025). In the latter, only 
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genes upregulated in NMR breeders show enrichment regardless of the direction of 

expression change in GPs. In contrast, genes in Skn that have the same direction of 

expression change in both species exhibit significance. Like males, female Skn 

(q=0.0064) is enriched for ageing-related genes if one considers downregulated 

expression in breeders in both species. Further, genes with opposing expression change 

in females show enrichment in Hrt (q=0.0024), Pit (q=0.0053) and Ova (0.0013). Further 

functional enrichment analysis of these ageing-related gene sets reveals differences 

between sexes. In males, the non-redundant set of genes shows enrichment in 268 GO 

terms and 89 sets (Supplement Table S27, Supplement Figure S13). Highest ranked sets 

are associated with lipid metabolism (GO:0006629), energy metabolism (energy 

derivation by oxidation of organic compounds, GO:0015980; mitochondrial ATP synthesis 

coupled proton transport, GO:0042776), glutathione metabolic process (GO:0006749) and 

immune system (innate immune response-activating signal transduction, GO:0002758). 

Females, show enrichment in 528 GO terms summarized in 129 sets (Supplement Table 

S27). Notably, highest ranked sets reveal enrichment in positive regulation of tumour 

necrosis factor production (GO:0032760) and negative regulation of programmed cell 

death (GO:0043069) (Supplement Figure S14). 

 

Discussion 

In our comparative study of breeders vs. non-breeders of the eusocial long-lived NMR 

and the colonial, polygynous and shorter-lived GP, we accumulated a comprehensive set 

of transcriptome data to gain insights into naturally evolved interspecies differences 

in sexual maturation and links between reproduction and ageing. Both species are able 

to breed year-round and produce four to five litters per year (Roellig et al. 2011; 

Peaker and Taylor 1996). Both species have a similar average gestation period of 70 

days, which is long compared to similarly sized species. Notably, NMRs produce on 

average 10.5 offspring per litter, which is twice the number of offspring produced by 

similarly sized rodents and more than three times higher compared to GPs (average 3.2 

offspring) (Roellig et al. 2011; Peaker and Taylor 1996). This further underscores the 

apparent contradiction of the NMR queen’s enormous metabolic load and extraordinary 

long life/healthspan (Buffenstein and Jarvis 2002) to the disposable soma theory of 

ageing (Kirkwood 1977), indicating that natural ways to extended healthspan remain to 

be uncovered in NMRs.  

A first study to identify adaptations to unique NMR traits at the transcriptome level 

compared liver gene expression of young adult non-breeding male NMRs and mice (Yu et 

al. 2011). Higher NMR transcript levels were observed for genes associated with 

oxidoreduction and mitochondria as well as highlighted epithelial cell adhesion 

molecule (Epcam), alpha2-macroglobulin (A2m), and the mitochondrial complex II subunit 

(Sdhc) as candidates for specifying species differences in ageing and cancer. Our 

present study, more comprehensive in several aspects (sex, breeding status, numbers of 

animals and tissue samples), is based on a comparison of NMR vs. GP, which are 

phylogenetically closer than NMR and mouse. It revealed that between NMR and GP most 

analysed genes are differentially expressed and that these DEGs are significantly 

enriched for ageing-related genes in DAA. Among the latter, the main functional 

commonality is their association with lipid metabolism. Among cross-species DEGs that 
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are consistently differentially expressed across all tissues, we identified further 

ageing-related candidates. RRAGB (Ras related GTP binding B), overexpressed in NMRs, 

interacts with mTORC1 complex (Sancak et al. 2008) whose dysregulation has been linked 

to ageing and diseases such as cancer and diabetes (Zoncu et al. 2011). Further, 

TMEM8C (transmembrane protein 8C) shows overexpression in NMRs, is essential for 

muscle regeneration (Millay et al. 2013) and might be linked to the resistance to 

muscle loss in aged NMRs (Stoll et al. 2016; Holtze et al. 2016). 

In respect to molecular signature of reproductive status (breeder vs. non-breeder) in 

NMR and GP, our main finding is the nearly complete absence of significant 

transcriptional differences between sexes in adult non-breeding NMRs. This fits their 

grossly identical morphology and identical behaviour in stable colonies (Sherman et 

al. 1991a). This is in stark contrast to non-breeding adult GPs of an even younger age 

where we observed thousands of DEGs. GP non-breeders and breeders share a large and 

highly significant number of sex-related DEGs. Among others, these DEGs are enriched 

in GO terms related to steroid metabolism and immune system.  The effect of gonadal 

steroids on the immune system is well described in GPs and other mammals (Grossman 

1985). After separation of NMR non-breeders from their colony, sexes became not only 

distinguishable by morphology and behaviour (Dengler-Crish and Catania 2007; Sherman 

et al. 1991a), but also by gene expression. This differentiation on transcriptional 

level provides further molecular support for the previously described suppression of 

sexual maturation in non-breeding adult NMRs by their colony environment (Smith et al. 

1997; Dengler-Crish and Catania 2007). 

This is in line with the observed major changes in the endocrine system after status 

change in NMRs but not in GPs. The upregulation (i) of genes related to steroid 

metabolism in Ova and Tes, (ii) of endocrine system development in female Adr as well 

as (iii) of steroid metabolic process and response to hormones in female Cer, indicate 

increased feedback signalling via gonadal steroids after NMRs transition into 

breeders. Gonadal hormones (estrogens, androgens, progesterogens) are an essential 

part of the hypothalamus-pituitary-gonads axis by mediating growth, secondary sex 

characteristics and reproduction (Clarke et al. 2012). They mediate feedback signals 

to hypothalamus and pituitary, which in turn regulate the secretion of gonadotropic 

hormones and neuropeptides. A selection of respective significantly upregulated genes 

is provided as Supplement Text S1. 

In testis of immature chicken, expression of ADIPOR1/2 (adiponectin receptor 1/2) is 

significantly less compared to mature animals (Ocón-Grove et al. 2008). It has been 

hypothesised that these genes are involved in supporting the higher metabolic activity 

related to spermatogenesis, testicular steroid hormone production, and transport of 

spermatozoa and testicular fluid. In line with these observations, our results show a 

significant upregulation of ADIPOR2 in Tes of NMR breeders (1.7-fold). 

The renin-angiotensin system predominantly involved in cardiovascular control has also 

been associated with reproduction in mice and human (Pan et al. 2013). In particular, 

signalling through receptors coded by AGTR1 (angiotensin II receptor type 1) in males, 

and AGTR1/2 in females has been associated with fertility and stimulation of 
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reproduction. In accordance, we observe significant upregulation of AGTR1 and AGTR2 in 

gonads of NMR male and female breeders, respectively. 

Notably, although well expressed, we found no significant differences for 

gonadotropin-related genes (GNRH1, FSHB, CGA, LHB). This indicates a similar 

intracellular transcript turnover in non-breeders and breeders, and is consistent with 

previous results indicating that LH is stored in non-breeders, ready to be released 

upon GnRH signalling (Faulkes et al. 1990b). Previously, elevated diencephalon mRNA 

levels were observed in NMR for AR (androgen receptor) in male NMR breeders and of 

CYP19A1 (aromatase), ESR1 (estrogen receptor 1) and PGR (progesterone receptor) in 

female breeders (Swift-Gallant et al. 2015). Our corresponding Hyp data do not support 

those increases (log2FC<0.1). Nevertheless, we identified significantly elevated 

transcript levels of these genes both in male (Tes: AR) and female breeders (Pit: PGR; 

Ova: AR, CYP19A1, ESR1, PGR) supporting a complex status-related function of these 

genes. Further, steroid feedback and GnRH secretion are integrated by brain GABA and 

glutamate signalling in mammals and cichlids (Renn et al. 2008). Although, we do not 

observe equivalent significant differences in the NMR brain, the data show an 

upregulation of genes coding for three GABA receptor subunits (GABRB3, GABRG1, GABRP) 

and one glutamate receptor subunit (GRIK2) in Tes, as well as two of three 

differentially expressed GABA (GABRB2, GABRG3) and three glutamate receptor subunits 

(GRIK1, GRIK2, GRIK4) in Ova and female Pit of NMR breeders. Together, this suggests 

increased neuronal plasticity and/or activity predominantly in gonads of NMRs after 

becoming breeders. 

Another important group of regulators of the hypothalamus-pituitary-gonad axis are 

glucocorticoids. They have been linked to stress, reproduction and social behaviour in 

a variety of species, including members of muroidae, primates and cichlids (Gesquiere 

et al. 2011; O’Connor et al. 2013; Crump and Chevins 1989). However, in NMRs, 

correlation between social status and urinary cortisol is not clear and seems to 

depend on colony stability (Clarke and Faulkes 1997, 1998). Here, we observe a 

significant upregulation of the glucocorticoid receptor gene (NR3C1) in Tes of NMR 

male and Thy of female breeders as well as of HSD11B1 (hydroxysteroid 11-beta 

dehydrogenase 1) in Skn of male breeders, indicating increased conversion of inactive 

cortisone to receptor-active cortisol. Interestingly, this is in line with elevated 

expression of glucocorticoid receptor in Tes in African cichlid breeders. Males can 

reversibly change between dominant and subordinate phenotypes (Maruska and Fernald 

2011). Similar to NMRs, only dominant phenotypes are reproductively active.  

In male African cichlids, moreover, SST (somatostatin) coding for an important peptide 

hormone that is involved in the inhibition of growth hormone, and its receptor gene 

(SSTR3) have recently been implicated in regulating aggressive behaviour (Trainor and 

Hofmann 2006). In particular, aggression and androgen level are negatively correlated 

with expression of SSTR3 in fish Tes. Similarly, we observe in NMR breeder Tes a 

significant upregulation of AR (androgen receptor) as well as an upregulation of genes 

involved in the conversion of testosterone (HSD17B1, hydroxysteroid 17-beta 

dehydrogenase 1, q=0.0123) and dihydrotestosterone (SRD5A1, steroid 5 alpha-reductase 

1, q=0.045), together with significant downregulation of SSTR3. This indicates that 

SSTR3 may be associated with social dominance in NMRs as well. 
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As our study was primarily motivated by the exceptional long and healthy lifespan of 

NMR breeders, we performed a correlation analysis between species (NMR vs. GP) and 

status (breeder vs. non-breeder) EDs confirming the basic hypothesis of the present 

work: the status-change into reproductive animals results in a gradual expression 

strategy related to fitness maintenance in reproductive NMRs in contrast to GPs. Genes 

which are higher or lower expressed in NMR compared to GP are also preferentially up- 

or downregulated in NMR breeders (positive correlation) opposite to GPs (negative 

correlaton). In other words, the positive correlation in NMR contradicts the 

disposable soma theory of ageing, as EDs contributing to a long lifespan (higher/lower 

expression in NMR than GP) are tendentially increased in NMR breeders compared to non-

breeders, while diminished in GPs as expected by this theory.  

Furthermore, several significant evidences indicate that NMR status change has an 

impact on genes involved in ageing: enrichment of ageing-related genes in the non-

redundant DEG sets of males and females, as well as enrichment in most tissues with at 

least 50 DEGs (male Skn and Tes; female Ova, Thy and Adr). This contrasts with our 

observations in GPs, which show only a tendency of ageing-relation for the non-

redundant set of status-related DEGs in females. 

Further, we observe significant tissue-specific changes in mitochondrial activity of 

male NMR breeders. While Tes shows an upregulation of nuclear-encoded mitochondrial 

genes and a respective increase in mitonuclear transcript ratio, Skn shows the 

opposite. Moreover, we observe significant enrichments of genes involved in fatty acid 

metabolism among status-related DEGs in both NMR tissues. Consistent with the role of 

mitochondria in lipid homeostasis and the observed directionality of changes in 

mitochondrial activity, fatty acid metabolism DEGs in Tes were preferentially up- and 

in Skn downregulated. While the increased mitochondrial activity in Tes probably 

complies with demands of energy for the production of sex steroids and their anabolic 

effect on physiology, such as growth of testis (Faulkes et al. 1994), the observed 

changes in Skn may indicate a link to the extraordinary healthspan of NMR breeders. 

Previously, it was observed that inhibition of complex I activity during adult life 

prolongs lifespan and rejuvenates the tailfin transcriptome in short-lived fish 

(Baumgart et al. 2016).  

Although only a small subset of status-related DEGs is shared between species, among 

them are ageing-related genes having opposing expression changes. We identified FGFR2, 

which is in Ova downregulated in NMRs, but upregulated in GPs. Members of this 

receptor family bind growth factors and thereby influence mitogenesis, differentiation 

and cancer (Jackson et al. 1997; Jang et al. 2001; Hunter et al. 2007; Cerliani et al. 

2011). FGFR2 is indirectly linked to ageing according to AgeFactDB, and FGFR2 blockers 

have been suggested as a therapeutic target for cancer treatment (Turner and Grose 

2010). The downregulation of FGFR2 in NMR female breeders might suggest intrinsic 

anti-cancer and longevity mechanisms. Among status-related DEGs in NMR, two are 

related to senescence. TOM1 (target of myb1 membrane trafficking protein), which is 

involved in the protein-degradation system (Makioka et al. 2016), is downregulated in 

female Thy. Increased expression of TOM1 has been observed in cellular senescence in 

human fibroblast cell lines (Guo et al. 2004). In Tes, we observe upregulation of PIR 
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(Pirin), which inhibits cellular senescence in melanocytic cells (Licciulli et al. 

2011).  

Taken together, our comparative transcriptome analysis of breeders versus non-breeders 

of the eusocial, long-lived NMR versus the polygynous and shorter-lived GP provides 

novel insights into socially regulated sexual maturation and natural ways to extended 

life/healthspan that encourage further functional and mechanistic investigations of 

these extraordinary NMR phenotypes. 

 

 

Materials & Methods 

 

Animals 

Naked mole-rats. NMR colonies were kept inside a climatized box (2x1x1 m) in 

artificial burrow systems, consisting of eight cylindrical acrylic glass containers 

(diameter: 240 mm height: 285 or 205 mm). The latter functioned as variable nest 

boxes, food chambers or toilet areas, and were interconnected with acrylic tubes 

having an inner diameter of 60 mm. Husbandry conditions were stabile during the entire 

experimental period of 22 months. Temperature and humidity were adjusted to 27.0 2.0°C 

and 85.0+5.0%, respectively. In general, the NMR colonies were kept in darkness except 

for 2 to 4 hours of daily husbandry activities. Fresh vegetable food was provided 

daily and ad libitum. In addition, commercial rat pellets (Vita special, Vitakraft 

GmbH, Bremen, Germany) were fed as an additional source of protein and trace elements. 

To turn them into breeders, randomly selected non-breeding animals derived from two 

long-term (>4 years) established colonies of more than 50 individuals were separated 

and paired with the opposite sex. As non-breeder controls, litter siblings of paired 

animals remained in their colonies as workers. After the lactation period of the 

second set of live offspring the tissue sampling was scheduled. To avoid further 

pregnancies in the females, male partners were removed and euthanized 8-10 days 

postpartum. The tissue collection in the females took place 40-50 days after the end 

of last pregnancy.  

Guinea pigs. GPs (breed: Dunkin Hartley HsdDhl:DH, Harlan Laboratories, AN Venray, 

Netherlands) were housed in standardized GP cages (length: 850 mm, width: 470 mm, 

height: 450 mm) in breeding pairs plus offspring or in same-gender pairs of two. 

Commercial guinea pig pellets and commercial pet food hay (Hellweg Zooland GmbH, 

Berlin, Germany) were provided together with vitamin C enriched water ad libitum. 

Housing temperature and humidity were 18.0+2.0°C and 45.0+5.0%, respectively. A 12h 

light/dark regime was provided.   

After an initial adaption period of 6 to 8 weeks the GPs were randomly divided in 

breeding pairs or in same-gender pairs of two. The offspring were separated from their 

parents after weaning (~3 weeks postpartum). Tissue collection was scheduled after the 

lactation period of the second set of live offspring. To avoid further pregnancies in 

the females, male partners were removed between eleven days before and seven days 

after birth of the second litter. The tissue collection in the females took place 42-

83 days after the end of last pregnancy. 
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For tissue collection, all animals were anaesthetized by 3% isoflurane inhalation 

anaesthesia (Isofluran CP, CP-Pharma, Burgdorf, Germany) and euthanized by surgical 

decapitation. Animal housing and tissue collection at the Leibniz Institute for Zoo 

and Wildlife Research was compliant with national and state legislation (breeding 

allowance #ZH 156; ethics approval G 0221/12 “Exploring long health span”, Landesamt 

für Gesundheit und Soziales, Berlin). 

 

Sample collection, RNA Isolation and Sequencing 

For de novo transcriptome assembly, animals were euthanized and ten tissue samples 

(heart – Hrt (NMR only), skin - Skn, liver - Lvr, kidney - Kid, cerebellum - Cer, 

hypothalamus - Hyp, pituitary - Pit, thyroid - Thy, adrenal - Adr, and gonads - Gon 

(testis – Tes /ovaries - Ova)) were collected from NMR and GP individuals, as 

described previously (Bens et al. 2016). Strand-specific RNA-seq were prepared using 

the TruSeq Stranded RNA LT Kit (Illumina), and 200-nt reads were obtained using a 

HiSeq2500 (Illumina), as described previously (Bens et al. 2016). 

For expression analysis, the same ten tissues were collected from NMR and GP breeders 

and non-breeders. RNA was purified as described above. Library preparation was done 

using Illumina's TruSeq RNA Library Prep Kit v2 kit following the manufacturer's 

description. Quantification and quality check of the libraries was done using 

Agilent's Bioanalyzer 2100 in combination with a DNA 7500 Kit (both Agilent 

Technologies). Sequencing was done on a HiSeq 2500 running the machine in 51 cycle, 

single-end, high-output mode by multiplexing seven samples per lane. Demultiplexing 

and extraction of read information in FastQ format was done using the tool bcl2astq 

v1.8.4 (provided by Illumina). 

 

Data Analysis 

De novo transcriptome assembly and annotation for GP was performed as described in 

(Bens et al. 2016). Briefly, overlapping paired-end reads were joined into single 

fragments and then assembled by Trinity (Grabherr et al. 2011). Gene symbols were 

assigned to the assembled transcripts by similarity to human transcripts using FRAMA 

(Bens et al. 2016).  

As a reference for RNA-seq data mapping the public NMR (Bioproject PRJNA72441) (Keane 

et al. 2014) and GP genomes (UCSC, cavpor3) were used. Reference transcript sets of 

NMR and GP were mapped to the corresponding genome in two steps: BLAT (v36) (Kent 

2002) was used to identify the locus and then SPLIGN (v1.39.8) (Kapustin et al. 2008) 

was applied to splice align the transcript sequence within BLAT locus. RNA-seq data 

were aligned to the corresponding reference genome utilizing STAR (v2.4.1d) (Dobin et 

al. 2013) with a maximum mismatch of 6% and a minimum aligned length of 90%. Reads 

mapped to multiple loci were discarded. Gene expression was quantified using HTSEQ 

(v0.6.1p1) (Anders et al. 2015) based on the aligned reference transcripts. The 

pairwise Pearson correlation between biological replicates was calculated based on 

16,339 and 16,009 genes in NMR and GP, respectively (Supplement Table S5). 

The ‘mitonuclear transcript ratio’ was calculated as the read count ratio of 13 

mitochondrial-encoded genes versus all nuclear-encoded genes. 
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PosiGene was applied to the transcriptome of human (**), NMR and GP with the parameter 

‘-prank=0 -max_anchor_gaps_hard=100 -rs=NMR’ to determine orthologous transcribed 

regions in NMR and GP having a protein identity >70%. RNA-seq data were aligned to the 

corresponding transcriptomes utilizing bowtie2 (2.2.9) (Langmead and Salzberg 2012) 

with the parameter ‘--very-sensitive-local’. 

DESeq2 (v1.6.3) (Love et al. 2014) was used to identify DEGs. A false discovery rate 

<0.01 (FDR; Benjamini Hochberg corrected p values, (Kasen et al. 1990)) was used for 

the identification of significant DEGs. 

Gene Ontology analysis was performed using the web interface of  GoMiner (Database 

build 2011-01) based on the functional annotation of human genes (UniProt) (Zeeberg et 

al. 2003). A FDR<0.05 was used for the identification of significant GO terms that 

were summarized by REVIGO (parameter SimRel=0.5) into non-redundant GO term sets 

(Supek et al. 2011). GO term sets were then ranked by number of summarized GO terms 

and number of changed genes.  

Overlap between gene sets was determined with Fisher’s exact test (FET) using the one-

sided option. Generally, we tested for enrichment if not otherwise stated. 

We obtained 3,009 ageing-related genes in human and mouse from the Digital Ageing 

Atlas (DAA) (Craig et al. 2014). The corresponding counterparts in the NMR (2,588) and 

GP (2,539) were used for enrichment analysis and results were corrected for multiple 

testing (FDR). P-values corrected for multiple testing are indicated by q and nominal 

p-values by p. 

To examine the connection between reproduction and ageing in both species, we 

determined the difference in log2-fold-change (breeders vs. non-breeders) of NMR and 

GP. For fold-changes moving in opposite directions between species, we calculated the 

absolute difference (| log2 𝑁𝑀𝑅𝐵𝑣𝑠𝑁  −  log2 𝐺𝑃𝐵𝑣𝑠𝑁 |), and for fold-changes moving in the same 

direction, higher fold-changes in NMR-BvsN were rewarded (|log2 𝑁𝑀𝑅𝐵𝑣𝑠𝑁 |  − |log2 𝐺𝑃𝐵𝑣𝑠𝑁|). 

The 20%-quantile of genes having the greatest difference was determined separately for 

(i) the complete gene set and for genes showing (ii) opposing and (iii) unidirectional 

fold-changes. All sets were tested for enrichment of ageing-related genes. 

Statistical analyses were performed in R (version v3.1.2). 

 

Data Accession 

RNA-seq data for gene expression profiling were deposited at Gene Expression Omnibus 

(GSE98719). RNA-seq data for de novo assembly were deposited at Sequence Read Archive 

(SRP104222, SRP061363) and the corresponding gene collection is available as a gff3-

file (ftp://genome.leibniz-fli.de/pub/nmr2017/). 
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4 Discussion 

Model organisms are vital experimental systems to understand fundamental biological 

phenomena and particular features of human biology. Current large-scale molecular studies 

favour high-quality genome sequences to perform genome-wide biological and computational 

analyses. Not least because of this reason, the genomes of traditional mammalian laboratory 

animals (mouse (2002) [111], rat (2004) [112]) became sequenced soon after the human 

genome (2001) [113]. However, the introduction of 2GS technologies massively changed the 

way researchers can approach biological questions and enabled the generation of sequence 

resources for virtually any species of choice. This gave rise to extensive genome sequencing 

projects, such as the 10k Genome Project that aims to sequence at least one species of each 

vertebrate genus, unfolding research in non-model organisms covering a wide ecological 

diversity [114]. Yet, even after a decade of progress in 2GS technologies, the assembly of large 

and complex genomes to the level of continuous and low-error chromosome-scale sequences is 

still time consuming and costly [18,19]. Genome assemblies usually remain at a draft stage, 

consisting of thousands of fragments having high gap percentage and limiting downstream 

analyses [15]. Genome annotation is another complex task and depends on the quality 

(i.e. completeness, contiguity) of the underlying genome sequence [17,98]. 

The series of four studies that comprise this thesis follow a different route by 

investigating the protein-coding fraction of genomes in non-model organisms using RNA-seq. 

RNA-seq and subsequent computational reconstruction of mRNAs appeals to researchers as it 

avoids the complex process of genome reconstruction and annotation, and simultaneously 

enables gene expression profiling. Despite the dependency on mRNA sequences and increasing 

availability of RNA-seq data, no standardized workflow has been developed to obtain mRNA 

catalogues that are suitable for downstream analysis. The first publication (M1) aims to fill that 

gap by establishing a software pipeline (FRAMA) that delivers mRNA catalogues based on 

de novo assembly of RNA-seq data and additionally comprises custom-build tools to address 

certain issues in de novo assemblies. mRNA catalogues delivered by FRAMA provide a step 

towards the integration of non-model organisms into “daily routines” of wet laboratory (e.g. 

primer and small interfering RNA design) and in silico (e.g. gene expression analyses, 

comparative studies) research. The proof of use in in silico research was demonstrated by 

qualitative and quantitative investigation of promising non-model organisms in ageing 

research (Figure 1) as presented in M2 and M3 & M4. 

4.1 Coping with de novo transcriptome assembly issues from RNA-seq 

data 

The development of FRAMA in M1 was motivated by the lack of software pipelines that 

perform necessary steps to get from RNA-seq data of non-model organisms to mRNA 
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catalogues appropriate for downstream analysis. Software tools for key steps in such a pipeline 

were already available: (i) Trinity for de novo transcriptome assembly, (ii) CD-HIT-EST and 

TGICL to remove assembly redundancy, (iii) BLAST to detect sequence similarity for ortholog 

inference and (iv) GENSCAN for ab initio CDS prediction or MAFFT for CDS inference by multiple 

sequence alignment (referenced in M1). However, correct application (parameter choice), 

output processing (filtering, format conversion) and efficient connection (parallelisation) of 

these programs requires knowledge in bioinformatics and is a time-consuming process. 

Further, although such key steps deliver an mRNA catalogue eventually, shortcomings of 

de novo transcriptome assembly arising from the complexity of transcriptomes and short 

sequencing reads are not addressed. Besides efficiently implementing these key steps, FRAMA 

integrates custom-build tools to attenuate de novo assembly issues. In the following, I will focus 

on three specific issues addressed by FRAMA – fusion contigs, mRNA end clipping and 

fragmented contigs - and discuss possible alternative approaches. 

The assessment of post-transcriptional mRNA regulation involves analysis of primary 

and secondary structure of UTRs and is an important aspect to assess, e.g. translation efficiency, 

localization and stability of mRNAs [99]. However, de novo assemblers experience difficulties in 

determining precise transcript ends arising from several biological factors, such as (i) imprecise 

molecular mechanism of transcription initiation and 3’ end cleavage, (ii) alternative promotors 

and polyadenylation events and (iii) antisense transcripts [25,28,115,116]. Adjacent gene loci 

can even lead to the reconstruction of artificially fused transcripts [40,117]. FRAMA addresses the 

fusion problem by identifying and splitting contigs showing consecutive ortholog alignments 

with minor overlaps. Despite from assembly (or reverse transcription [118]) artefacts, such 

fusion contigs can potentially arise from genuine chimeric RNAs that are translated into 

proteins [119] and generated, e.g. by read-through transcription of adjacent genes or by trans-

splicing of distant gene loci [25,120]. However, assuming that genuine chimeras are contained 

in sequence databases and are conserved across species, genuinely fused contigs are still 

correctly annotated. Thus, split of contigs showing consecutive ortholog alignments is 

reasonable to increase the detectable number of genes. This approach reduces the need for 

strand-specific sequencing, which, however, would only allow to distinguish transcripts from 

(i) adjacent gene loci on opposite strands of the genome (i.e. head-to-head, tail-to-tail gene 

organization [117]) and (ii) antisense transcripts. However, my approach could be 

supplemented with fusion detection tools to exclude split of genuine chimeras. Performance of 

such tools was recently assessed, but most tools require a genomic reference and paired-end 

RNA-seq data [121]. JAFFA presents a suitable candidate by utilizing a transcript-centric 

approach and also works with single-end RNA-seq data [122]. 

To determine more reliable and evolutionary reasonable 3’ mRNA ends in split and all 

other contigs, FRAMA exploits the coverage drop biases in RNA-seq data near transcript ends, 

incorporates information from poly-(A) containing reads and uses sequence characteristics, 

including poly-(A) signals and conservation of 3’ UTR ends [116,123,124]. Yet, each feature does 
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not provide a precise cut position (e.g. presence of multiple poly-(A) signals, gradual decrease 

in read coverage). Therefore, each 3’ UTR position is assigned a score by fuzzy logic, connecting 

the weighted signals from each feature. The respective weights and a scoring threshold were 

empirically determined based on a set of gold standard mRNA sequences. However, there are 

different library preparation protocols for 2GS that allow to determine precise transcript ends 

experimentally rather than leveraging ortholog information and sequence characteristics. For 

instance, “cap analysis gene expression” is able to capture the cap found at the 5’ end of mature 

mRNAs and enables subsequent sequencing of 5’ ends [125]. Other approaches detect both 

ends simultaneously, such as “transcript isoform sequencing” and “gene identification 

signature” [126,127]. To my knowledge, data from such approaches have not yet been 

integrated directly into de novo assemblers. Although adding complexity to the sequencing 

process, appropriate integration should theoretically reduce assembly complexity by 

(i) delineating transcripts regardless of their origin and (ii) providing linkage information of 

start and ends of transcripts, thereby decreasing the number of possible assembly solutions. 

The third issue are low expressed transcripts and low complexity regions (e.g. tandem 

repeats). Insufficient read coverage of low expressed transcripts leads to fragmented contigs. 

Similarly, low complexity regions present no unique assembly solution and respective low 

complexity reads might even be discarded during assembly [39]. To attenuate the 

fragmentation issue, FRAMA comprises a scaffolding step that combines fragments showing 

high sequence similarity to an ortholog into a contiguous transcript scaffold. Therefore, FRAMA 

approximates the set cover problem by a greedy algorithm and maximizes ortholog coverage 

using as few fragments as possible. An alternative approach could adapt parameters of the 

assembly program or combine outputs of different assemblers. Especially k-mer length has an 

impact on the reconstruction of low expressed genes and incorporating assemblers using 

different k-mer lengths might be beneficial [41]. Also, recent developments to assess the quality 

of de novo transcriptome assemblies solely based on assembled contigs and RNA-seq data, 

provide opportunities to dynamically optimize assembly parameter in FRAMA [128]. On the 

downside, performing multiple assemblies based on different parameters and/or assemblers 

will increase the runtime dramatically. However, parameter estimation based on a subsample 

of the input RNA-seq data might prove sufficient. 

The application of FRAMA was exemplified by assembling the transcriptome of the NMR 

using RNA-seq data obtained from multiple tissues. Human protein-coding transcripts were 

chosen as reference for annotation as these showed higher sequence similarity to the NMR than 

mouse transcripts. This could be caused by the long generation time in NMRs, potentially 

leading to a slower rate of molecular evolution compared to mice. The delivered mRNA 

catalogue comprises transcripts corresponding to 16,887 protein-coding genes and FRAMA was 

able to increase the length in the case of 3,488 genes by scaffolding and corrected transcript 

ends in respect to 4,774 genes. We assessed the quality of the mRNA catalogue based on 

available NMR draft genome sequences and respective publicly available gene annotations. Not 
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only did we demonstrate FRAMA’s competitiveness with publicly available catalogues, we also 

reported striking differences in the quality of these resources, depending on the genome 

sequence used for reconstruction. Further, mRNA sequences delivered by FRAMA are 

potentially able to improve the hetgla2 genome sequence by spanning 1,695 gaps and adding 

potentially 408,293 bp novel sequence. Taken together, M1 (i) comprises the development of a 

software pipeline automating transcriptome assemblies and post-assembly tasks, (ii) reveals 

striking differences in publicly available mRNA catalogues for the NMR and (iii) provides an 

independent resource of NMR mRNA sequences as the basis for further studies. 

4.2 Gene expression profiling in naked mole-rats 

NMRs show a remarkable life history, characterized by an exceptional long lifespan and 

extreme resistance to age-associated deterioration. This enables to identify gene candidates 

involved in a long and healthy lifespan and, due to its close phylogenetic proximity, potential 

transfer of insights to humans. M2 focuses on the lifelong fertility of NMRs, which is a 

remarkable trait when considering that a single female functions as the colony’s “breeding 

unit” throughout her life. In addition, despite the associated huge metabolic burden of 

pregnancy and lactation, breeding animals presumably live at least as long as non-breeders, 

contradicting the “disposable soma theory” of ageing [95]. To investigate this interesting trait, I 

analysed gene expression profiles of two experimental groups: (i) reproductively supressed 

non-breeders kept in their natal colonies and (ii) reproductively active breeders. For the 

breeding group, non-breeding siblings of (i) were removed from their natal colonies and paired 

with the opposite sex, thereby turning them into breeders. After the lactation period of the 

second litter, tissues were collected in both groups. Guinea pigs (GPs) (AnAge: Cavia porcellus, 

12 years) were subjected to a similar experimental design (non-breeder: same sex housing, 

breeders: opposite sex housing) as a baseline for reproductive changes. Although not as well-

established as mouse, GPs are a suitable reference in this study due to their (i) close 

phylogenetic relationship to mole-rats [67], (ii) similar reproductive biology to NMR [129,130] 

and (iii) similar endocrine profiles during pregnancy to humans [131]. Gene expression profiles 

in both species were investigated based on de novo assembled mRNAs by FRAMA (NMR as part 

of M1). To avoid loss of highly tissue-specific genes, RNA-seq data from the same set of tissues 

were used in assembly and gene expression profiling. Transcriptomes of both species were 

annotated using human protein-coding genes, which provides a comprehensive resource for 

functional annotations, essential for subsequent interpretation of identified DEGs.  

To avoid any possibility of confusion during sample collection, exchange and 

sequencing of all 480 biological samples, I ensured the identity of tissue and species shortly 

after sequencing. Therefore, I aligned small subsets of each RNA-seq data set to highly tissue-

specific marker genes, previously collected from VeryGene [132]. This enabled prompt reaction 

to wrong labelling prior to in-depth analyses on completion of sequencing. The detection of 

DEGs in such an experiment is influenced by several factors, including (i) number of biological 
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replicates (i.e. independent biological samples of an experimental group), (ii) biological 

variability between biological replicates, (iii) effect size between experimental groups, 

(iv) sequencing depth and (v) choice of DEG-calling tool [36–38,59]. Without preparatory 

studies, biological variability and effect sizes are usually unknown and to increase the 

likelihood of detecting potentially small effects within variable experimental groups, we chose 

a comparably high number of six biological replicates. Further, we aimed to identify DEGs 

rather than differences in isoform expression and accordingly chose a moderate sequencing 

depth of ~20 million single-end reads per RNA-seq sample [35–37]. A variety of different tools 

for DEG-calling are available and my choice for a specific tool was motivated by theoretical 

reflection and results obtained from permutation tests [48,49,59]. For instance, t-test was 

excluded, because random sampling by RNA-seq is approximable by Poisson rather than 

normal distribution [133], and non-parametric tests were excluded, because these require large 

numbers of biological replicates [48]. Appropriate candidates tools (edgeR, DESeq, DESeq2 

[134–136]), based on generalizations of the Poisson distribution, were subjected to permutation 

tests. These tests assessed sensitivity and specificity of each tool, under the assumption that 

detected DEGs in incorrectly assigned experimental groups are false positives. In contrast to 

edgeR and DEseq, which generally identified low numbers of DEGs, DESeq2 showed the 

highest sensitivity in correctly grouped data sets while producing neglectable numbers of false 

positives in incorrect assignments. Additional gene filtering approaches (e.g. based on 

expression quantiles, low inner-group variance, high signal-to-noise ratio) across different 

thresholds prior to DEG-calling showed minor changes in DESeq2, indicating that its default 

filter mechanisms are robust and further filtering is not necessary [137]. 

I used DEseq2 to determine differential expression (DE) tissue-wise between (i) sexes 

and (ii) reproductive statuses within each species and (iii) general differences across species. 

While DE within each species was assessed using respective mRNA catalogues, we additionally 

determined highly similar regions in NMR and GP orthologs for inter-species comparison. As 

DESeq2 does not account for gene lengths, the latter approach avoids artefacts arising from 

different levels of gene completeness and additionally prevents comparing different transcript 

isoforms. After adjusting p-values for multiple testing (false discovery rate [138]), resulting 

DEGs were tested for enrichment in Gene Ontology [54] and Digital Ageing Atlas [57] using 

GoMiner [53] and Fisher’s exact test, respectively.  

Across all tissues in NMR non-breeders, we found only scattered instances of DEGs 

between sexes, in contrast to GP non-breeders and described DE in adult animals of other 

rodents and humans. Interestingly, pronounced sex-related DE manifested in NMR breeders, 

associated with massive changes to sex steroid metabolism. This supports previous studies 

indicating that sexual maturation in NMR non-breeder is delayed until transition into breeder. 

Further, these minor sex-related differences in non-breeding NMR fit their outwardly identical 

morphology and identical behaviour. Although status-related DE in females of both species is 

substantial, both species showed only minor overlaps in DEGs, indicating that physiological 
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adaptations to breeding proceed differently in both species. Potentially, this is caused by 

unique and targeted adaptations in female NMR breeder to their lifelong role as the colony’s 

„breeding unit“, accompanied, e.g. by severe pregancy-induced spine-elongation [139]. 

Interestingly, only NMRs showed significant enrichment of status-related DEGs in age-

associated genes, indicating also differences in the impact of reproduction on lifespan in both 

species. Taken together, M2 (i) presents the transcriptional characterization of changes induced 

by reproduction in NMRs and GPs and (ii) provides a unique resource of extensive 

transcriptome data obtained from multiple tissues in breeders and non-breeders of NMRs and 

GPs. 

4.3 Investigating positively selected genes in annual fishes 

Initially and as part of the large collaborative study M3, the application of de novo 

assembled transcriptomes to identify PSGs was driven by the interest in phylogenetic 

approaches to detect genetic determinants of the short lifespan in N. furzeri. Besides positive 

selection analyses, M3 presents a milestone in establishing the N. furzeri as a model organism 

by providing a chromosome-scale draft genome sequence, including annotation of protein-

coding genes and several classes of ncRNAs. Further ageing-related investigations included the 

identification of DEGs between young and old animals in multiple tissues. Interestingly, 

revealed DEGs are non-randomly distributed in the N. furzeri genome and DEGs in certain 

hotspots show significant functional association, suggesting co-regulation of functionally-

associated temporally-regulated genes.  

The short lifespan of N. furzeri evolved naturally from a longer-lived ancestor and 

presumably in adaptation to its transient habitat. In such an environment, gene variants 

promoting, e.g. fast growth and early sexual maturation could provide a selective advantage 

and become fixated by the process of positive selection. In consequence, positive selection 

analysis should provide useful pointers to genes and site-specific variants that have modulating 

effects towards a rapid life cycle and a short lifespan. To follow the idea, I used FRAMA to 

assembled and annotated transcriptomes of five annual fishes and the non-annual sister taxon 

(Aphyosemion striatum) based on RNA-seq data from brain tissues. The thorough N. furzeri 

annotation of protein-coding genes was used as reference for transcript annotation in all fishes. 

Unfortunately, mRNA catalogs were initially compromised by several misassembled contigs, 

mainly arising from misassemblies of highly similar paralogous genes. Presumably, this was 

caused by the teleost-specific genome duplication event [140]. Compared to previous tests in 

mammalian species, this additional genome duplication potentially challenged de novo 

assemblies by an increased transcriptome complexity caused by the high similarity of protein-

coding paralogs and processed pseudogenes. However, catalogues were cleaned by demanding 

higher sequence similarity in the N. furzeri alignment step. This enabled PSG identification 

using the branch-site test to investigate terminal phylogenetic branches leading to (i) N. furzeri, 

as the shortest-lived annual fish, and (ii) N. pieenaari, faced with comparably short availability 
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of its habitat and showing a similar short lifespan. Despite the small number of identified PSGs 

(N. furzeri 7, N. pienaari 1), five PSGs in N. furzeri were DE between yong and old animals (two 

down and three up with age), suggesting functional adaptations to temporally-regulated genes. 

Further, both short-lived fish evolved different sequence adaptations to the same gene 

(inhibitor of DNA binding 3, PSG in N. furzeri), which is otherwise conserved in respective but 

longer-lived sister taxons. This indicates that parallel evolution of short lifespan in N. furzeri 

and N. pieenari is accompanied by changes to similar genes. 

Notably, coincidentally with M3, Valenzano et al. [110] also investigated positive 

selection in N. furzeri, but reported substantially different results comprising almost 500 PSGs. 

However, these differences could be attributed to the choice of species in both studies [141]. In 

M3, we used previously uncharacterized annual fishes as close relatives to the N. furzeri, while 

Valenzano et al. used publicly available data and included the platyfish (Xiphophorus maculatus) 

as the closest relative. Thus, while we investigated PSGs mainly within the ~8 million years old 

Nothobranchius clade [142], Valenzano et al. investigated PSGs across species that separated ~70-

50 million years ago [141]. This indicates that the majority of detected PSGs in Valenzano et al. 

likely reflect adaptations that predate the evolution of annualism and can also be found in 

longer-lived fish that separated along the phylogenetic path to annualism. 

To provide a more extensive investigation of the evolution of annual life history and 

follow up the search for parallel evolution, we extended the set of non-annual species to 

increase the depth of the phylogeny and analysed deeper branches in the phylogenetic tree in 

M4. Again, we used the branch-site test that allows testing of ancestral sequences and accounts 

for variable selective pressures among codons and branches, enabling sensitive PSG detection 

[64]. In particular, we tested (i) the last common ancestor of annual fishes and two 

Nothobranchius clades, each leading to either short-lived fish (ii) N. furzeri or (iii) N. pienaari. 

While the first test should reveal adaptations that coincide with the manifestation of annual life 

history, the other two investigate possible parallel evolution in both Nothobranchius lineages. 

Functional enrichment analysis of detected PSGs revealed that each set of PSGs is significantly 

enriched for categories related to mitochondrial biogenesis. Interestingly, mitochondrial 

dysfunction is a hallmark of ageing and further overlaps in PSG by temporally-regulated DEGs 

from M3 as well as by PSGs in long-lived mammals, support our result that adaptations to 

mitochondrial biogenesis plays a major role in the evolution of lifespans and specifically in 

short lifespan of annual fishes. Further, the enrichment of mitochondrial biogenesis in PSGs of 

all three lineages suggests recurring positive selection events in this pathway, starting with the 

manifestation of annual life history in last common ancestor of annual fishes (4 genes) and 

continuing in both Nothobranchius lineages (other 9 genes in both branches). Remarkably, both 

Nothobranchius lineages show adapations in a common subset of PSGs also related to 

mitochondrial biogenesis and even encoding for different subunits of the same protein complex 

(mitochondrial RNA polymerase). This supports previous indications in M3 that parallel 

evolution of short lifespans in annual fishes is accompanied by changes in similar genes. 



88 

 

 

 

Notably, this analysis also revealed that positive selection of short lifespans influenced whole 

pathways and multiple subunits of protein complexes rather than unrelated genes across the 

transcriptome.  

Although M3 and M4 demonstrated the power of positive selection analyses by 

shedding light on the evolution of short lifespans in annual fishes, the functional role of specific 

animo acid changes is usually unknown and could cause either mild or severe effects as well as 

increased or decreased protein functionality. Consequently, no conclusive link can be drawn 

from sequence adaptations to impacts on protein function and lifespan. Nevertheless, both 

studies present starting points for follow-up experiments, either based on extant or 

reconstructable ancestral gene variants. Such follow-up studies could comprise transgenic 

experiments in N. furzeri using CRISPR/Cas9 [143] to (i) functionally characterize PSGs with 

unknown function or (ii) assess the impact of site-specific adaptation on the whole organism 

and in respect to lifespan. For instance, the latter could be investigated by editing a PSG in 

N. furzeri to reflect an ortholog sequence of a longer-lived species. Under the assumption that 

the N. furzeri gene variant contributes to its short lifespan, such an approach potentially 

elongates its lifespan and thereby verifies the impact of site-specific changes on lifespan. 

Another approach could use crystallographic methods to compare the three dimensional shape 

of proteins that are encoded by different gene variants. This potentially elucidates the impact of 

amino acid changes on protein stability or on interactions with ligands and other proteins. 

Both studies demonstrated the successful application of positive selection analyses. 

Nevertheless, there are alternative approaches to investigate protein-coding gene sequences 

apart from the comparably strict positive selection criteria. For instance, the search for 

accelerated protein evolution in long-lived mammalian lineages revealed longevity-associated 

gene candidates [23]. Interestingly, despite utilizing a different approach to identify selective 

pressure on genes, these candidates overlapped with positive selection studies [23]. Another 

study investigated predictions of functionally significant amino acid changes in one particular 

gene (hyaluron synthase 2) based on multiple sequence alignment of orthologs from different 

long- and short-lived mammals [144]. Notably, although pointing to potentially relevant amino 

acid changes in the NMR and other long-lived mole-rats, signals from the multiple species 

alignment indicated that this genes underlies negative rather than positive selection [144]. This 

demonstrates the power of functionally- compared to evolutionary-centred approaches, at least 

at single gene level. Finally, another study focused on the selection of gene expression rather 

than gene sequence in mammals and revealed, among other things, orthologs whose expression 

variation is associated with lifespan differences [145]. Nevertheless, researchers must keep in 

mind that adaptations are not necessarily linked to the trait under investigation and might 

reflect other adaptive processes. Regardless of the approach, RNA-seq of previously 

uncharacterized species and subsequent assembly and annotation by FRAMA offers an 

uncomplicated procedure that provides the basis for comparative studies. 
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4.4 Alternative technologies and future applications for transcriptome 

investigations 

Microarrays (MAs) and 3rd-generation sequencing (3GS) technologies [146] provide 

alternative strategies to quantify and/or sequence transcripts in non-model organisms. 

However, in the following, I will argue that both technologies are not (yet) appropriate to 

investigate whole-transcriptomes, especially in non-model organisms, and discuss possible 

niche application.  

For more than a decade, researchers relied on MAs and developed a wide range of 

matured workflows for data analysis [147]. MAs quantify the abundance of fluorecently labeled 

transcripts by hybridisation to complementary sequences (probes). Because of that, the design 

of MAs requires prior knowledge of transcript sequences and confines its application to model 

organisms with available MAs. Considering constantly improving transcript annotations in 

model organisms (Ensembl is updated every 3-6 months [98]), this approach as such is prone to 

errors caused by outdated information. In principle, the investigation of non-model organisms 

is possible by in-house construction of anonymous MAs [148]. Yet, this involves spotting 

complementary DNA libraries constructed from biological samples on to MAs, subsequent 

identification of candidate probes (e.g. by differential expression analyses) and, finally, their 

sequencing. Such „fishing-expeditions“ are costly in terms of labour and time as well as limited 

to a comparably small number of short probes. Not only does RNA-seq offer near-complete 

snapshots of whole-transcriptomes in a single organism, it even offers to investigate a mixture 

of transcriptomes originating from multiple unknown species simultaneously. Such 

metatranscriptomes, particularly those obtained from gut microbiota, are becoming 

increasingly relevant in ageing research [149] and have recently been studied in N. furzeri [150].  

The construction of MAs based on sequence knowledge obtained from RNA-seq data 

seems like the next obvious choice to investigate gene expression profiles. Yet, also in this 

respect RNA-seq outperforms MAs. For instance, although RNA-seq data might be dominated 

by a few highly expressed genes, consequently limiting the detection of lowly expressed genes, 

relative expression level among detected genes can be accurately quantified [34]. However, 

MAs suffer from technical problems in lowly (cross-hybridisation) as well as highly (signal 

saturation) expressed genes [151]. In addition, comparison of gene expression across a single 

MA is compromised by sequence-dependent binding affinities that influence signals [151]. 

Another important topic, also in respect to ageing and age-associated diseases [152], is the 

investigation of alternative splicing. Although appropiate MA design enables detection of 

alternative splicing, RNA-seq benefits from its single-base resolution and is significantly more 

sensitive [153]. Thus, while both technologies show low technical variability [133,154], RNA-seq 

is more reliable and more sensitive across a wider range of expression levels and transcripts. In 

this thesis, single-based resolution of RNA-seq has been the driving force, and apart from 

presented applications, offers the detection of allele-specific expression, single-nucleotide 
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polymorphisms, chimeras [121] and post-transcriptional regulation [155], which cannot be 

efficiently studied using MAs. 

Nevertheless, RNA-seq suffers from its short read sequences, which hamper correct 

reconstruction of full-length transcripts even in genome-based approaches [156]. Meanwhile, 

3GS technologies are gaining ground and generate full-length sequences of complete RNA 

molecules without the need for reconstruction [146]. Currently, low throughputs and high error 

rates of 3GS technologies hamper comprehensive and accurate transcript identification at low 

cost. Although, hybrid approaches successfully reduce sequencing costs by utilizing accurate 

but short 2GS reads to correct long but error prone 3GS [157–159], this approach depends on 

the availability of both sequencing generations. In principle, 3GS presents a perfectly suitable 

alternative to 2GS, but currently at a higher financial burden and wet laboratory workload. 

However, in the long run, 3GS technologies likely render 2GS technologies and computation 

sequence reconstruction obsolete. 

Beyond research, measuring transcript expression is relevant for clinical application and 

could provide insights into patients‘ individual biology. Pathological patterns of gene 

expression and nucleotide variations have already been characterized for various diseases, 

including age-associated diseases [9,10,160]. Also, chronological age (elapsed time since birth) 

is an important factor to select appropiate therapeutics, but since individuals show large 

variations in the rate of ageing and different organs of a single individual age differently, the 

chronological age provides limited information about the patients‘ general health status [10]. 

Once mechanisms of ageing are well-characterized in humans, knowledge of genome sequence 

together with gene expression, which can both be obtained from easy accessible biological 

samples (e.g. blood, skin, saliva) or via biopsies from different organs, could provide valuable 

information of biological age and general health status. Besides enhancing selection of 

therapeutics, this potentially enables to predict the pace of age-associated deterioration and 

could suggest beneficial lifestyle interventions. Clinical application of all three technologies 

offer advantages. MAs are already used in clinics [161] and might still be appropriate for future 

application as long as required information is confined to a comparably small set of marker 

genes. However, unbiased RNA analysis by 2GS and 3GS in combination with whole-genome 

sequencing offers the possibility, e.g. to identify malignant private mutations, allele-specific 

expression or easily investigate more complex datasets (microbiota compositions) [161]. An 

unprecedented and practical development within the 3GS sector are portable devices. These 

can be read by laptops and offer in-field application, e.g. in developing countries or after 

catastrophes [162]. Eventually, clinical use also depends considerably on (i) associated costs, 

including personnel (e.g. laboratory assistant, bioinformatician, biostatistician) as well as 

acquisition and maintenance of platforms, (ii) fast and automatable workflows and (iii) 

comprehensive in silico analyses to predict phenotypic consequences from molecular variations, 

give reliable prognosis and individualise pharmacological treatments and/or lifestyle.  
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4.5 Conclusion and Outlook 

As part of this thesis, I developed FRAMA, a software framework that automatically 

assembles and annotates transcriptomes from data obtained by RNA-seq. This approach is 

particularly useful and effective in non-model organisms without availability of a sufficiently 

well-assembled and well-annotated genome reference. I incorporated custom-build steps in 

FRAMA to attenuate common issues in de novo transcriptome assembly by leveraging ortholog 

information and sequence characteristics of assembled contigs. Thereby, FRAMA offers 

non-experts easy access into the transcriptional landscape of non-model organisms and enables 

downstream analyses in their field of expertise. Application and quality assessment of FRAMA 

was exemplified using the NMR, a promising non-model organism in ageing research. The 

convenience of delivered mRNA catalogues for downstream analyses was demonstrated by 

two different but commonly used in silico analyses. These analyses were performed in 

promising non-model organisms in ageing research. mRNA catalogues and molecular 

characterizations presented in this thesis provide valuable resources for further research and 

steps toward the integration of these non-model organisms into molecular research, regardless 

whether in silico, in vitro or in vivo. 

Gene expression analyses in NMRs and GPs characterized the molecular patterns 

associated with reproductive status in both species. Although insights into ageing were limited 

by the availability of one age cohort, changes in reproductive status are associated with 

significant enrichment of age-associated genes only in NMRs. This indicates differences in the 

impact of reproduction on ageing in long-lived NMRs and shorter-lived GPs. The extensive 

accumulation and analyses of transcriptomes from a variety of different tissues and two 

eusocial castes, together with the provided mRNA catalogues for both species offer valuable 

resources for future investigations. 

Analyses of positive selection in annual fishes shed light on the evolution of short 

lifespans by revealing that positive selection recurrently shaped genes encoding for 

components of mitochondrial biogenesis. Adaptations in these components were dated back to 

the last common ancestor of annual fishes and continued in parallel in two analysed 

Nothobranchius lineages. These naturally evolved adaptations provide useful pointers for 

further wet laboratory experiments that could investigate potential lifespan modulating effects 

of extant and extinct gene variants. For this purpose, N. furzeri with its extremely short lifespan, 

typical signs of ageing and established genetic manipulation by CRISPR/Cas9 provides a 

reasonable model system. 

Presented in silico analyses using non-model organisms provided new insights into the 

evolution of short lifespans, reproductive biology and ageing. Although final conclusions from 

such in silico studies are limited, the presented results indicate the adequateness of selected 

non-model organisms for ageing research and the revealed candidate genes and pathways 

provide useful pointers for further follow-up studies. For instance, candidate genes could 
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narrow down genome-wide association studies in humans. Such studies investigate the 

molecular basis of ageing by searching for genetic variants that are associated with long 

lifespans and healthy ageing, e.g. by comparing frequencies of genetic variants of a long-lived 

and healthy population (e.g. centenarians) to the general population. However, such large-scale 

studies are statistically challenging (e.g. enormous amount of variants, confounding effects, 

multiple testing problem) and appropiate candidate genes could aid in restricting the search 

space. Gene candidates could also be experimentally examined for potential lifespan 

modulating effects in model organisms, e.g. by manipulating gene sequences using 

CRISPR/Cas9 or by manipulating gene expression using RNA interference. Moreover, the 

annotation of CDSs by FRAMA provides a reference for protein expression measurements by 

mass-spectrometry or for in silico protein structure predictions. Finally, the refinement of 

mRNA ends offers a reliable basis to identify potential micoRNA targets or to investigate DNA 

methylation patterns in these regions. Taken together, regardless of the concrete approach, 

FRAMA delivers valuable sequence resources for previously uncharacterized non-model 

organisms and simplifies the process of transcriptome characterization by uncomplicated and 

cost-effective RNA-seq. This offers especially non-experts easier and faster access to a wide 

range of downstream analyses. 

Although FRAMA provides a simplification of the mRNA reconstruction process, its 

execution via command line and required minor modifications to a configuration file might act 

as a deterrent to users. The usability could be enhanced by integrating FRAMA into scientific 

workflow platforms such as Galaxy [163]. The provided graphical user interface would offer 

biologists without computational background easier access to and configuration of FRAMA. 

Additionally, this would enable straight integration into up- and downstream workflows 

offered by other software packages. 
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6 Abbreviation 

2GS 

2nd-generation sequencing.  

3GS 

3rd-generation sequencing.  

AnAge 

The Animal Ageing and Longevity 

Database.  

CDS 

protein-coding sequence.  

CRISPR/Cas9 

clustered regularly interspaced short 

palindromic repeats/CRISPR 

asscociated protein 9.  

DE 

differential expression.  

DEG 

differentially expressed gene.  

dN 

rate of substitutions at non-silent sites.  

DNA 

deoxyribonucleic acid.  

dS 

rate of substitutions at silent sites.  

 

 

F. mechowii 

Fukomys mechowii.  

FRAMA 

From RNA-seq to annotated mRNA 

assemblies.  

GP 

guinea pig.  

mRNA 

messenger RNA.  

N. furzeri 

Nothobranchius furzeri.  

N. pieenari 

Nothobranchius pieenari.  

ncRNA 

non-coding RNA.  

NMR 

naked mole-rat.  

PSG 

positively selected gene.  

RNA 

ribonucleic acid.  

RNA-seq 

RNA sequencing.  

UTR 

untranslated region.  
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7 Appendix 

The following sections correspond to the manuscripts presented in section 3. Each 

subsection describes material deposited on the enclosed CD-ROM. 

7.1 Manuscript 1 (M1) 

7.1.1 M1_MainDocument.pdf 

Digital version of manuscript M1. 

7.1.2 M1_SupplementTables.xlsx  

Additional File 1 

Table S1.  List of external software. 

Table S2.  NMR transcript data set TCUR, and orthologous transcripts from human, mouse 

and guinea pig. Multi-species mRNA alignments were constructed 

independently from those described in the main text, using the sequence 

database entries as listed. 

Table S3.  Naked mole-rat samples for strand- specific RNA-seq, and produced RNA-seq 

data. 

Table S4.  Pairwise transcript sequence identities between NMR and related mammals. The 

analysis is based on 142 multiple sequence alignments of the CDSs of NMR, 

guinea pig, human and mouse (as listed in Additional file 1: Table S2). Identity 

values were computed based on gap-masked alignments.  

Table S5.  Statistics of the transcriptome data produced by Trinity (column “transcript 

assembly”) and subsequently processed using FRAMA (column “transcript 

catalog”).  

Table S6.  CEGMA results on transcriptome datasets. As defined by CEGMA, ‘complete 

proteins’ are recovered with >70 % in comparison to CEGMA’s core proteins. 

‘Partial proteins’ additionally include proteins, which exceed a certain alignment 

score threshold. CEGMAs software components were used as suggested: geneid 

(v1.4), genewise (wise2.2.3-rc7), hmmer (HMMER 3.0), NCBI BLAST+ (2.2.25).  

Table S7.  Source of transcript sequence sets and underlying input data. Table S8: 

Transcript-genome alignment statistics of curated dataset (TCUR) in hetgla1. The 

alignments comprise 1473 well-aligned blocks and 81 unaligned or mismatching 

blocks. Transcripts show 99.9 % average identity within well-aligned blocks.  
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Table S9.  Transcript-genome alignment of curated dataset (TCUR) in hetgla2. The 

alignments comprise 1525 well-aligned blocks and 16 unaligned or mismatching 

blocks. Transcripts show 99.9 % average identity within well-aligned blocks.  

Table S10.  Correspondence of gene symbols between transcript sets. The evaluation 

considered gene loci overlapping in the hetgla2 genome sequence, where all 

transcript-genome alignments of a gene were considered to define the gene 

locus. Only genes with ascertained function (non-LOC gene symbol) were 

compared.  

Table S11. Accession numbers of sequences that are shown in the genome-based transcript 

map (hetgla2, scaffold JH602043; Fig. 4). Accession numbers for each sequence 

are listed in the same order as shown in Fig. 4 (from top to bottom).  

7.1.3 M1_SupplementNotes.docx  

Additional File 2 

Figure S1.  Multiple sequence alignments of CALM1, CALM2 and CALM3 in human and 

NMR. (A) protein coding sequence (B) protein sequence. All protein coding 

sequences encode for the same protein sequence. The nucleotide identity 

between human and NMR orthologs is higher (97 % CALM1, 98 % CALM2, 95 % 

CALM3) than the intra-species paralog identity (e.g., human CALM1/CALM2 

highest identity with 85 %).  

Figure S2.  Recovery of transcripts is predicted by the expression level in the reference 

organism - (A) human liver, (B) human kidney. Public human Illumina RNA-seq 

data were obtained from the Short Read Archive at the EBI (accessions 

ERR030895 and ERR030893, respectively). Box plots show the human expression 

levels in log-scale FPKM; zero FPKM values were initially transformed to 0.80 

times the lowest finite value. Human genes are displayed in three groups: all 

genes (“all”), genes recovered as orthologous NMR transcripts (“recovered”), 

and genes missing in the NMR transcript catalog (“missing”). Boxes enclose the 

data ranges of the central two-third quantiles, and central bars indicate the data 

medians. Note that the group-wise medians are significantly influenced by the 

fraction of zero-expression genes; these are 12 % in the liver-recovered group, 56 

% in the liver-missing group, 7% in the kidney-recovered group, and 49 % in the 

kidney-missing group. 

Figure S3.  Results of structural agreement between transcript sets. The evaluation 

considered gene loci overlapping in the hetgla2 genome. Each transcript set was 

compared to TCUR. 
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Figure S4.  Classification of exons into four categories (exact, overlapping, missing and 

wrong) based on the reference transcript model. Exact exons share the same 

boundaries. Overlapping exons share base pairs, but not necessarily any 

boundary. Exons only present in the predicted transcript model are classified as 

wrong. Exons only present in the reference transcript model are classified. 

7.2 Manuscript 2 (M2) 

7.2.1 M2_MainDocument.pdf 

Digital version of manuscript M2. 

7.2.2 M2_Supplementary_Tables_S1-28.xlsx 

S1.  Age at death for NMRs and GPs. 

S2.  Number of analyzed biological replicates per group. 

S3.  Reason for exclusion of samples from further analysis. 

S4.  Number of uniquelly aligned RNA-seq reads. 

S5. Mean pairwise Pearson correlation coeffiencents between biological replicates in (A) 

naked mole-rat and (B) guinea pig. 

S6. Number of differentially expressed genes (FDR < 0.01) between NMR and GP (A) 

without logFC threshold and (B) with logFC threshold (|logFC| > 2) 

S7.  DEGs in cross-species comparison that show an overlap with DAA. 

S8.  Gene set enrichment analysis for cross-species DEGs (FDR < 0.01, |logFC| > 2) that are 

age-related (DAA). 

S9.  Number of sex-related (female vs. male) differentially expressed genes  in (A) non-

breeder and (B) breeder  (FDR < 0.01). 

S10. Functional enrichment analysis of 790 DEGs shared between GP-B-FvM and GP-N-FvM. 

S11.  Functional gene set enrichment analysis of DEGs in NMR-B-FvM. 

S12. Gene description of sex-related DEGs in NMR-N-FvsM. 

S13.  Number of status-related (breeder vs.non-breeder) differentially expressed genes  in 

(A) females and (B) males (FDR < 0.01). 

S14.  Functional gene set enrichment analysis of DEGs in Ovr of NMR-F-BvsN. 

S15.  Functional gene set enrichment analysis of DEGs in Adr of NMR-F-BvsN. 

S16.  Functional gene set enrichment analysis of DEGs in Cer of NMR-F-BvsN. 

S17.  DEGs in intersection between NMR-F-BvsN and NMR-M-BvsN. 
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S18.  Functional gene set enrichment analysis of DEGs in Tes of NMR-M-BvsN. 

S19.  Functional enrichment analysis in cellular components of DEGs in Tes NMR-M-BvsN. 

S20.  Functional gene set enrichment analysis of DEGs in Skn of NMR-M-BvsN. 

S21.  Proportion of mitochondrial transcriptonal output. 

S22. Differentially expressed nuclear genes (FDR<0.05) associated with mitochondrial 

respiratory chain complexes in Tes and Skn of NMR-M-BvsN. 

S23.  Antioxidant enzymes differentially expressed in Tes and Skn of NMR-M-BvsN 

(FDR<0.05) 

S24.  Enrichment of age-related genes (Digital Ageing Atlas) in status-related DEGs. Only 

tissues having at least 50 DEGs were tested for enrichment. 

S25.  Shared status-related genes between NMR and GP. 

S26.  Functional enrichment analysis of the non-redundant set of ageing-related 20%-

quantiles that show the greatest interspecies difference in males (Skn, Tes). 

S27.  Functional enrichment analysis of the non-redundant set of ageing-related 20%-

quantiles that show the greatest interspecies difference in females (Hrt, Pit, Ovr). 

7.2.3 M2_Supplementary_Figures_S1-14.pdf 

S1.  Collected tissues exemplifed in schematic fgure of NMR 

S2.  Hierarchical clustering of gene expression profles. The clustering tree 

shows a clear separation of tissues in both species, but less pronounced differences 

between sex and breeding status. 

S3.  Top 15 highest ranked GO sets based on enrichment analysis of cross-species DEGs 

between NMR and GP. GO sets are ranked by number of summarized GO terms (x-

axes) and number of DEGs (alongside bar) 

S4. Correlation analyses. log2(fold change) of shared DEGs (FDR<0.05) in cross-species 

comparison (NMR vs. GP, y-axes) and status change (breeder vs. non-breeder, x-axes) 

are shown for each species across all tissues. DEGs in NMR (left) show a significant 

positive correlation (DEGs:3,695; spearman:0.17, p=1.7 × 10-24), while DEGs in GP show 

a negative correlation (DEGs:1,380; spearman:-0.1; p=1.6 × 10-4) 

S5.  Top 15 highest ranked GO sets based on enrichment analysis of sex-related DEGs that 

are shared between GP breeder and non-breeder. GO sets are ranked by number of 

summarized GO terms (x-axes) and number of DEGs (alongside bar). 

S6.  Top 15 highest ranked GO sets based on enrichment analysis of sex-related DEGs in 

NMR breeder. GO sets are ranked by number of summarized GO terms (x-axes) and 
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number of DEGs (alongside bar, together with number of up- and downregulated 

genes). 

S7.  Top 15 highest ranked GO sets based on enrichment analysis of status-related DEGs in 

ovary of NMR females. GO sets are ranked by number of summarized GO terms (x-

axes) and number of DEGs (alongside bar, together with number of up- and 

downregulated genes). 

S8.  Top 15 highest ranked GO sets based on enrichment analysis of status-related DEGs in 

adrenal gland of NMR females. GO sets are ranked by number of summarized GO 

terms (x-axes) and number of DEGs (alongside bar, together with number of up- and 

downregulated genes). 

S9.  Top 15 highest ranked GO sets based on enrichment analysis of status-related DEGs in 

cerebellum of NMR females. GO sets are ranked by number of summarized GO terms 

(x-axes) and number of DEGs (alongside bar, together with number of up- and 

downregulated genes). 

S10.  Top 15 highest ranked GO sets based on enrichment analysis of status-related DEGs in 

testis of NMR males. GO sets are ranked by number of summarized GO terms (x-axes) 

and number of DEGs (alongside bar, together with number of up- and downregulated 

genes). 

S11.  Top 15 highest ranked GO sets based on enrichment analysis of status-related DEGs in 

skin of NMR males. GO sets are ranked by number of summarized GO terms (x-axes) 

and number of DEGs (alongside bar, together with number of up- and downregulated 

genes). 

S12. Mitonuclear ratios in non-breeders and breeders per sex, tissue and species. Boxplots 

shows median, 2nd/3rd quartiles, whiskers extend to 1.5 the interquartile range and 

dots values outside this range. P-values were calculated using a two-tailed t-test; *: 

p<0.05, **: p<0.01. 

S13. Top 15 highest ranked GO sets based on enrichment analysis of the non-redundant set 

of ageing-related 20%-quantiles that show the greatest interspecies difference in males 

(Tes, Skn). GO sets are ranked by number of summarized GO terms (x-axes) and 

number of DEGs (alongside bar). 

S14.  Top 15 highest ranked GO sets based on enrichment analysis of the non-redundant set 

of ageing-related 20%-quantiles that show the greatest interspecies difference in females 

(Hrt, Pit, Ovr). GO sets are ranked by number of summarized GO terms (x-axes) and 

number of DEGs (alongside bar). 
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7.2.4 M2_Supplementary_Text_S1.pdf 

Selection of significantly up-regulated in naked mole-rat breeders that are involved in steroid 

metabolism and endocrine system. 

7.2.5 M2_Supplementary_Data_S1.zip 

DEseq2 results of interspecies comparison of naked mole-rat vs. guinea pig. 

7.2.6 M2_Supplementary_Data_S3.zip 

DESeq2 results for the comparison of sexes within each species and group. 

7.2.7 M2_Supplementary_Data_S3.zip 

DESeq2 results for the comparison of statuses within each species and sex. 

7.3 Manuscript 3 (M3) 

7.3.1 M3_MainDocument.pdf 

Digital version of manuscript M3. 

7.3.2 M3_Supplement_Document_S1.pdf 

Document S1. Supplemental Experimental Procedures 

7.3.3 M3_Supplement_Data_S2.xlsx 

Data S1. Assembly and Annotation. Sequence data are listed that were used for the genome 

assembly and its quality assessment, for gene and repeat annotation, as well as for assembling 

the sex-determining region of the Y chromosome. 

S1A.  Sequence Data Used for Assembling the Reference Sequence 

S1B.  Sequence Data Obtained by Roche Sequencing 

S1C.  Sequence Data Obtained by Sanger Sequencing 

S1D.  Mapping of BAC and Fosmid End Sequences 

S1E.  Integration of Cytogenetic and Sequencing Data 

S1F.  Repeat Annotation 

S1G.  BACs Sequenced Using Illumina MiSeq Technology and Corresponding Contig 

Assemblies 

S1H.  WGS Sequencing Data Obtained by PacBio Technology 

S1I.  Assemblies of BACs Sequenced Using PacBio Technology 

S1J.  RNA-Seq Data Used for Annotation of Protein-Coding Genes 
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S1K.  In Silico Gene Predictions 

S1L.  De Novo Transcript Assemblies with Trinity 

S1M.  Reference-Based Transcript Assemblies with STAR and Cufflinks 

S1N.  Annotated Protein-Coding Genes 

S1O.  Teleost-Specific Duplicated Genes in the N. furzeri Reference Sequence 

S1P.  Assessment of Completeness of the Reference Sequence 

7.3.4 M3_Supplement_Data_S2.xlsx  

Data S2. XY Sex Chromosome Evolution. 

WGS sequence data used for genome-wide variation analyses, PCR-based analyses of selected 

variations, as well as identification of regions of suppressed recombination. 

S2A.  PCR- and Sanger Sequencing-Based Validation of Sex-Linkage of Selected SNVs 

S2B.  WGS Data Used for Variation Analyses in Four N. furzeri Strains 

S2C.  Regions of Suppressed Recombination on sgr05 

S2D.  Estimation of the Age of the Secondary Recombination Suppression 

7.3.5 M3_Supplement_Data_S3.xlsx  

Data S3. Newly Identified Sex-Determining Gene: gdf6Y 

Local variation and positive selection analyses in the sex-determining region as well as 

expression analyses and transcript assembly of gdf6Y. 

S3A.  Variations at the gdf6/gdf6Y Locus Obtained by GATK and Data in Data S2b 

S3B.  Variations at the gdf6/gdf6Y Locus Analyzed Using PCR 

S3C.  Local Positive Selection within the GRZ Male-Specific Region of the Y Chromosome 

S3D.  RNA-Seq Data Used for Expression Analysis and Assembly of the gdf6Y Transcript 

7.3.6 M3_Supplement_Data_S4.xlsx  

Data S4. Genomic Positional Enrichment, Positive Selection, Diapause, and Aging. 

Aging-related differentially expressed genes and analyses of positional gene enrichment, 

analyses of positive selection, as well as the overlap in expression between diapause and aging. 

S4A.  RNA-Seq Data Used for Identification of Aging-Related Differentially Expressed Genes 

S4B.  Differentially Expressed Genes in MZM-0410 Brain Used for Positional Enrichment 

Analysis 
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S4C.  Differentially Expressed Genes in MZM-0410 Liver Used for Positional Enrichment 

Analysis 

S4D.  Differentially Expressed Genes in MZM-0410 Skin Used for Positional Enrichment 

Analysis 

S4E.  Differentially Expressed Genes in Brain Used for Positional Enrichment Analysis 

S4F.  Differentially Expressed Genes in Liver Used for Positional Enrichment Analysis 

S4G.  Differentially Expressed Genes in Skin Used for Positional Enrichment Analysis 

S4H.  Regions of Positional Gene Enrichment 

S4I.  RNA-Seq Data Used for Phylogenetic and Positive Selection Analyses 

S4J.  Positive Selection Analyses 

S4K.  Differentially Expressed Genes in MZM-0410 Brain Used for Positive Selection Analysis 

S4L.  Differentially Expressed Genes in MZM-0410 Liver Used for Positive Selection Analysis 

S4M.  Differentially Expressed Genes in MZM-0410 Skin Used for Positive Selection Analysis 

S4N.  RNA-Seq Data Used for Diapause-Related Differentially Expressed Genes 

S4O.  Differentially Expressed Genes in Diapause versus Non-Diapause Embryos 

S4P.  Differentially Expressed Genes in Brain Aging of MZM-0410, Showing Monotonic Up- 

or Down-Regulation with Age and Significant Difference Between 5 Weeks and 39 

Weeks 

S4Q.  Differentially Expressed Genes in Liver Aging of MZM-0410, Showing Monotonic Up- 

or Down-Regulation with Age and Significant Difference Between 5 Weeks and 39 

Weeks 

S4R.  Differentially Expressed Genes in Skin Aging of MZM-0410, Showing Monotonic Up- or 

Down-Regulation with Age and Significant Difference Between 5 Weeks and 39 Weeks 

S4S.  Overlap of Differentially Expressed Genes in Diapause Embryos and Brain Aging 

S4T.  Overlap of Differentially Expressed Genes in Diapause Embryos and Liver Aging 

S4U.  Overlap of Differentially Expressed Genes in Diapause Embryos and Skin Aging 

S4V. Overlap of Differentially Expressed Genes in C. elegans Dauer Larvae and N. furzeri 

Diapause Embryos 

7.4 Manuscript 4 (M4) 

7.4.1 M4_MainDocument.pdf 

Digital version of manuscript M4. 
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7.4.2 M4_Supplement.xlsx  

Supplement Information 

Table S1. Results of positive selection analysis in the N-branch, ranked by P-value. 

Table S2. Results of positive selection analysis in the PR-branch, ranked by P-value. 

Table S3. Results of positive selection analysis in the FKK-branch, ranked by P-value.  

Table S4.  Comparison of fold-changes in expression of mitonuclear and mitochondrial 

biogenesis gene sets.  

Table S5.  Overview of the tested genes.  

Table S6. List of genes used to construct the tree in Fig. 1.  

Table S7.  List of background genes used for GO analysis. 

Table S8. List of genes used as background for the simulation experiment (5–95% 

expression quantile of the PSGs). 

Table S9. List of mitochondrial biogenesis genes within the background genes list (Table 

S7). 

Table S10.  Entrez orthologs of PSGs.  

Table S11.  Expression levels of all tested genes.  

Table S12.  Statistics of read data for each library. 

Table S13 Complete list of Nothobranchius PSGs overlapping with PSGs in long-lived 

mammals. 
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