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Chapter 2: Summary 

 
In their natural habitat, microorganisms interact with a variety of micro- as well as macro-
organisms. Such interactions result in either positive or negative effects on the growth and 
survival of involved species. Negative effects on growth, can be mostly attributed to 
competition for limited resources and space, while positive effects on growth are challenging 
to justify. Metabolite cross-feeding is one such interaction that describes the transfer of 
primary or secondary metabolites from one organism to another. Considering that 
metabolites are costly and impose a significant energetic cost to the cell producing them, it is 
intriguing to know how the process of cross-feeding is favourable.    

Bacteria employ different mechanisms to carry out the exchange of metabolic by-products, 
intermediates, and electrons between each other during the process of cross-feeding. 
Contact-dependent mechanisms of exchange (such as direct cell-cell contact, type secretion 
systems, and pili), provide the following advantages: (i) protection of the exchanged product 
from environmental degradation or modification, (ii) provision of the product in a 
concentrated form, and (iii) prevention of uptake of the product by unintended recipients. 
The role of contact-dependent mechanisms in the transfer of genetic material (bacterial 
conjugation) and toxins (contact-dependent inhibition or killing) has been studied for years. 
However, the importance of similar contact-dependent mechanisms during the cross-feeding 
of essential nutrients is not fully understood.  

This thesis aimed at identifying a contact-dependent mechanism for amino acid cross-feeding 
in bacteria. The main questions were, 

(i) Can a transfer of essential nutrients take place between bacteria in an 
environment that is not conducive for diffusion-based exchange?  

(ii) Which characteristic of the interacting partners influences the mechanism of 
transfer? Does the nutritional status of the cell play a role? 

(iii) What are the effects of nutrient exchange on the biosynthesis of these nutrients 
in interacting partners?   

(iv) Are other factors like cell adhesion, motility, and chemotaxis, also relevant for 
contact-dependent cross-feeding of nutrients?  

A synthetically engineered cross-feeding system in bacteria was employed to answer these 
questions. Cross-feeding genotypes of Escherichia coli and Acinetobacter baylyi were co-
cultivated, harbouring mutations that impart the following phenotype: (i) a dependency on an 
external source of amino acid (auxotrophy), and (ii) increased levels of a specific amino acid 
(over-production). A complementary pair of cross-feeding genotypes was able to support the 
growth of either partner in minimal medium without an external supply of amino acids. Both 
species are genetically tractable and easy to culture in the lab, thus reducing the complications 
of studying the dynamics of cross-feeding in a natural consortium. The genetically modified 
bacterial system was ideal to study the genetic, metabolic and transcriptional aspects of a 
nutrient cross-feeding interaction.  
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Nanotube mediated exchange of cytoplasmic contents in bacteria. Cross-feeding 
genotypes of E. coli exhibit membrane-derived tubular structures that connect neighbouring 
cells in a shaken liquid environment. Differential fluorescent labelling of the cytoplasm of 
two complementary cross-feeding genotypes, indicated a transfer of cytoplasmic content 
both within and between species. Cytoplasmic exchange between cells appeared to be 
dependent on the turbulence of the surrounding medium, since double-labelled cells were 
found exclusively in shaken liquid cultures as compared to stagnant liquid cultures. The 
formation of tubular connections, denoted as nanotubes, between cross-feeding genotypes 
was found to be dependent on the nutritional status of the cell as well. Auxotrophic 
genotypes that relied on an external source of amino acid did not form nanotubes in a 
medium supplemented with excess of focal amino acid.  

 

Metabolic complementarity of cross-feeding genotypes. The metabolic network of 
bacteria consists of a series of step-wise reactions, which degrade organic substrates to 
precursor metabolites (catabolism) and convert these precursor metabolites to building 
blocks (anabolism). These biosynthetic pathways are often under end-product mediated 
feedback control which helps to maintain optimal levels of all metabolites in the cell’s 
cytoplasm. Amino acid biosynthesis pathways are also under feedback regulation, imposed 
by the level of free amino acids in the cytoplasm. A cell-internal biosensor was used to track 
the changes in internal amino acid level in the context of cross-feeding. Periodic 
measurements of internal amino acid levels in an auxotrophic recipient provide a direct 
evidence of amino acid exchange during cross-feeding. The presence and uptake of amino 
acid by an auxotroph resulted in fluctuations in the level of amino acid in the cytoplasm of 
the donor cell (E. coli wildtype). Furthermore a reduction in the amino acid level in the donor 
cytoplasm triggered an increased transcription of the promoter for the amino acid 
biosynthetic gene present in the donor cell. These results provide a source-sink-like model 
for explaining how metabolism of two interacting cells can be coupled through delaying of 
the feedback inhibition system 

 

Transcriptional changes due to amino acid cross-feeding. A loss-of-function mutation 
in amino acid biosynthesis (auxotrophy) was known to trigger the formation of nanotubes. 
However, the cellular effects of this nutritionally dependent lifestyle on nanotube structure 
and function were unclear. To get an overview of changes in gene expression during the 
process of cross-feeding, a transcriptomic analysis of a coculture of E. coli cross-feeding 
genotypes was performed. Gene ontology and pathway analysis revealed the putative role of 
genes regulating, (i) cell adhesion (ppdA, ydeQ, yhjH, dgcM), (ii) motility (ycgR), and (iii) vesicle 
production (degP, nlpA, nlpI). Targeted deletions of some of these genes in the auxotrophic 
genotype revealed significant effects on growth of the auxotroph in coculture with a donor 
(over-producer genotype). Furthermore a role of vesicles in amino acid cross-feeding was 
identified in this study through a combination of techniques comprising (i) scanning electron 
microscopy, (ii) use of mutants depicting varying levels of vesicle production, and (iii) 
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addition of vesicle fractions to different cocultures of auxotroph and donor (WT or over-
producer). Vesicles potentially act as cell material for establishing inter-cellular connections 
between auxotrophs and neighbouring cells.   

 

Taken together the results of this thesis provide a connected view of bacterial communities 
as opposed to a population of autonomously replicating bacterial cells. Auxotrophic 
genotypes may employ either (i) a nanotube-mediated mechanism, or (ii) vesicle-chain-like 
structures, to obtain nutrients from neighbouring cells especially during a scarcity of 
nutrients in the environment. This study shows that the establishment of a cytoplasmic 
bridge between cross-feeding cells results in a coupling of the metabolism of interacting 
partners. A division of metabolic labour in this way leads to a growth benefit for the cross-
feeding partners rendering this strategy beneficial in terms of fitness. Hence a bacterial 
community may be considered as a large, inter-connected, metabolic network with 
biosynthetic pathways being divided among individual members.   
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Chapter 3: Zusammenfassung 

 

Mikroorganismen interagieren in ihrem natürlichen Lebenslauf mit einer Vielfalt anderer 
Mikro- als auch Makroorganismen. Diese Interaktionen können entweder positive oder 
negative Effekte auf das Wachstum und schließlich die Überlebensfähigkeit der involvierten 
Spezies haben. Der Ursprung für negative Effekte liegt dabei überwiegend in der 
Konkurrenz um limitierte Ressourcen und begrenzten Raum begründet. Positive Effekte 
sind hingegen oft wesentlich schwerer zu erklären. Der Austausch von Metaboliten (`cross-
feeding`) repräsentiert eine solche positive Interaktion, welche den Transfer von Primär,- oder 
Sekundärmetaboliten von einem Organismus zu einem anderen beschreibt. Da die 
Biosynthese von Metaboliten allerdings meist mit energetischen Kosten für den Produzenten 
verbunden ist, stellt sich die Frage, inwiefern der Austausch von Metaboliten vorteilhaft sein 
kann. 

Bakterien besitzen eine Reihe von Mechanismen um Elektronen, sowie Zwischen,- und 
Endprodukte des Stoffwechsels effizient untereinander auszutauschen. Einige dieser 
Mechanismen basieren auf den physischen Kontakt zwischen Zellen (z.B.  Sekretionssysteme 
und Pili) und bieten den interagierenden Organismen folgende Vorteile: (i) Der transportierte 
Metabolit wird vor dem Abbau oder der Modifizierung durch Umwelteinflüsse geschützt. (ii) 
Die Substanz kann lokal in höherer Konzentration zur Verfügung gestellt werden. (iii) Der 
Konsum der Substanz durch andere Organismen wird verhindert.  
Die Relevanz kontaktabhängiger Mechanismen bei dem Austausch von genetischem Material 
(Konjugation) und Toxinen (kontaktabhängige Inhibierung oder Eliminierung) wird bereits 
seit einem längeren Zeitraum erforscht. Die Bedeutung von Mechanismen, die den 
Zellkonktakt ermöglichen, für den wechselseitigen Transfer von Metaboliten ist hingegen 
nicht vollständig aufgeklärt. 

Das Hauptziel der vorliegenden Dissertation war die Identifikation von  kontaktabhängigen 
Mechanismen, die den Austausch von Stoffwechselprodukten, hier Aminosäuren, zwischen 
Bakterien ermöglichen. Folgende Fragestellungen wurden behandelt: 

(i) Inwiefern können essentielle Nährstoffe zwischen Bakterien unter 
Umweltbedingungen ausgetauscht werden, welche ungeeignet für die Diffusion 
und die anschließende Aufnahme von Metaboliten sind? 

(ii) Welche Eigenschaften der interagierenden Partner bestimmen den 
Austauschmechanismus? Spielt die aktuelle Versorgung der Zelle mit 
Nährstoffen in diesem Kontext eine Rolle? 

(iii) Wie beeinflusst der Austausch von Metaboliten die Biosynthese dieser in den 
jeweiligen Partnern? 

(iv) Sind andere Faktoren, beispielsweise die Adhäsion, die Mobilität, oder die 
Chemotaxis von Zellen, relevant für den kontaktabhängigen Austausch von 
Stoffwechselprodukten? 
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Um diese Fragen zu beantworten wurde zunächst ein Modellsystem mit genetisch 
modifizierten Bakterien auf der Basis von wechselseitigem Aminosäureaustausch etabliert. 
Dafür wurden Mutationen in die Genome von Escherichia coli und Acinetobacter baylyi 

eingeführt, welche zum einen die Abhängigkeit von externer Aminosäurezufuhr 
(Auxotrophie) und zum anderen die Überproduktion anderer Aminosäuren zur Folge hatten. 
In Folge dessen war ein komplementäres Paar von auxotrophen Überproduzenten in 
Minimalmedium, das keine  Aminosäuren enthält, in der Lage essentielle Aminosäuren 
auszutauschen und demzufolge zu wachsen. Ein solches Modellsystem bietet eine Reihe von 
Vorteilen gegenüber einer metabolischen Wechselbeziehung eines natürlichen Konsortiums: 
Die Laborstämme sind unter definierten Wachstumsbedingungen einfacher zu kultivieren, 
leichter zu unterscheiden und ihr Metabolismus und Genom sind weitreichend beschrieben. 
Außerdem stehen etablierte Plattformen zur Genom,- und Transkriptomanalyse zur 
Verfügung, wodurch das bakterielle Modellsystem ideal zur Erforschung einer metabolischen 
Wechselbeziehung geeignet ist.  

Der Austausch cytoplasmatischer Bestandteile durch Nanotubes. In geschüttelten 
Kulturen von E. coli konnten röhrenförmige Strukturen nachgewiesen werden, welche aus 
Membranbestandteilen bestehen und benachbarte Zellen verbinden. Bemerkenswerterweise 
wurden diese „Nanotubes“ ausschließlich von auxotrophen Überproduzenten gebildet. 
Durch die Markierung mit unterschiedlichen Fluoreszenzproteinen wurden Hinweise auf den 
Transport von cytoplasmatischen Komponenten zwischen verschiedenen Genotypen von 
E.coli, aber auch zwischen beiden Modellspezies gefunden. Hierbei war der Austausch von 
Fluoreszenzproteinen und somit die Entstehung doppelt markierter Zellen abhängig von der 
Kultivierung. Nur in geschüttelten Kulturen, jedoch nicht in statischen Kulturen, fand ein 
Austausch statt.  

Metabolische Komplementarität von interagierender Genotypen. Die Stoffwechselwege 
von Bakterien beruhen auf einer Reihe von nacheinander ablaufenden Reaktionen, entweder 
zum Abbau organischer Substanzen (Katabolismus), oder um aus Vorprodukten schließlich 
alle zellulären Komponenten zu synthetisieren (Anabolismus). Endprodukte dieser 
Biosynthesewege aktivieren häufig eine Feedback-Regulierung, welche zur optimalen 
Versorgung der Zelle mit dem betreffenden Metaboliten beitragen. Dies trifft auch auf die 
Aminosäurebiosynthese zu. Da die internen Konzentrationen von Aminosäuren während 
des beiderseitigen Austausches von Zytoplasma besonders relevant für das Verständnis von 
cross-feeding sind, wurden interne Biosensoren zur Überwachung dieser eingesetzt. Die 
Bestimmung der Konzentrationen in regelmäßigen Abständen erlaubt einen direkten Beweis 
von Aminosäuretransfer von Produzenten zu Rezipienten. Selbst im Wildtyp von E.coli, in 
diesem Fall der Produzent, schwankten die internen Aminosäurekonzentrationen bei 
Anwesenheit eines auxotrophen Genotypen. Hierbei korrelierte die Reduzierung der internen 
Konzentrationen an Aminosäure mit einer Erhöhung der Transkription der zugehörigen 
Biosynthesegene. Diese Beobachtungen deuten auf ein dynamisches Verhalten hin, welches 
durch Inaktivieren der Feedback-Inhibierung und der Kopplung des Metabolismus zweier 
Genotypen entsteht.  
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Aminosäureaustausch verändert das Transkriptom. Wie zuvor beschrieben kann ein 
durch Mutation hervorgerufener Funkltionsverlust zur Biosynthese einer Aminosäure die 
Bildung von Nanotubes auslösen. Jedoch sind die involvierten Gene nach wie vor 
unbekannt. Rückschlüsse darauf lieferte die Transkriptionsanalyse in einer Kultur von 
auxotrophen Überproduzenten von E.coli, wodurch Veränderungen der Genexpression 
durch den Transfer von Aminosäuren identifiziert werden konnten. Die potentiellen Gene 
sind  in die Regulation folgender Prozesse involviert: (i) Zelladhäsion (ppdA, ydeQ, yhjH, 
dgcM), (ii) Mobilität (ycgR) und (iii) Vesikelproduktion (degP, nlpA, nlpI). Durch Knockouts 
dieser Gene in auxotrophen Genotypen konnten anschließend signifikante Effekte auf das 
Wachstum in Anwesenheit eines Überproduzenten festgestellt werden. Außerdem konnte 
der Einfluss extrazellulärer Vesikel durch die Kombination verschiedener Techniken 
festgestellt werden. Diese Techniken umfassten Rasterelektronenmikroskopie, den Einsatz 
von Mutanten mit verschiedenen Ausmaßen an Vesikelproduktion, und die 
Supplementierung von Vesikeln zu Kulturen verschiedener auxotropher Genotypen und 
Produzenten von Aminosäure. Dadurch konnten die Vesikel als potentielle Bausteine zur 
Herstellung einer Verbindung zwischen auxotrophen und benachbarten Zellen identifiziert 
werden. 

Zusammengefasst ermöglichen die Ergebnisse dieser Arbeit einen Einblick in mögliche 
Interaktionen innerhalb einer bakteriellen Gemeinschaft im Kontrast zu einer Population 
von autonom replizierenden Einzelzellen. Die Beobachtungen deuten darauf hin, dass 
auxotrophe Genotypen in der Lage sind entweder röhrenförmige Strukturen (Nanotubes), 
oder kettenähnliche Strukturen aus Vesikeln auszubilden, mit dem Zweck fehlende 
Ressourcen aus der näheren Umgebung zu akquirieren. Des Weiteren wurde gezeigt, dass 
interagierende Bakterien aufgrund des Austausches von Aminosäuren durch eine 
zytoplasmatische Brücke einen gekoppelten Metabolismus aufweisen können. Eine solche 
Arbeitsteilung hinsichtlich der Biosynthese von Aminosäuren resultiert schließlich in ein 
Erhöhung der Fitness. Daher könnte eine bakterielle Gemeinschaft als ein großes kohärentes 
metabolisches Netzwerk betrachtet werden, in welchem essentielle Biosynthesewege auf 
einzelne Mitglieder aufgeteilt wird und deren Produkte zwischen Zellen ausgetauscht werden. 
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Chapter 4: Overview of manuscripts 

 

4.1 Manuscript I 

Title: Metabolic cross-feeding via intercellular nanotubes among bacteria. 

Authors: Shraddha Shitut (SS), Samay Pande (SP), Lisa Freund (LF), Martin Westermann 
(MW), Felix Bertels (FB), Claudia Colesie (CC), Ilka B. Bischofs (IB) and Christian Kost 
(CK). 

Status: Published (Nature Communications, doi: 10.1038/ncomms7238, February 2015). 
 
Summary: This study describes a mechanism of contact-dependent nutrient exchange 
between two bacterial species, Escherichia coli and Acinetobacter baylyi. These strains were 
genetically modified to cross-feed amino acids upon coculture in a shaken liquid medium not 
supplemented with external amino acids. A single loss-of-function mutation rendering the E. 

coli strain auxotrophic for a specific amino acid was sufficient to induce the formation of 
nanotubes. A combination of fitness experiments, fluorescent labeling, lipid staining and 
microscopy was used to identify the structures connecting cross-feeding genotypes. 
Transport of metabolites (amino acid) through nanotubes potentially avoids the loss of this 
metabolite to the environment and protects the metabolite from degradation or chemical 
modification. 

 

Description Author contribution 

Conceived the project SP (50%), CK (50%) 

Designed the experiments SS (30%), SP (35%), CK (35%) 

Performed the experiments SS (35%), SP (35%), LF (30%) 

Fluorescence microscopy SS (30%), SP (30%), IB (40%) 

Electron microscopy (TEM, cryo-TEM, SEM) SP (20%), CC (20%), MW (60%) 

Construction of plasmids FB (100%) 

Data analysis SS (20%), SP (40%), CK (40%) 

Manuscript preparation SS (20%), SP (20%), CK (60%) 
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4.2 Manuscript II 

Title: Metabolic coupling in bacteria. 

Authors: Shraddha Shitut (SS), Samay Pande (SP), Tobias Ahsendorf (TA), Matthew Egbert 
and Christian Kost (CK). 

Status: Under revision (The ISME Journal, May 2017), preprint on biorxiv 
(doi:10.1101/114462, 2017). 

Summary: Here the question of how cellular metabolism deals with the process of metabolite 
exchange between cross-feeding cells is answered. Single gene deletion mutants of E. coli 
were used that render them auxotrophic for amino acid (recipient) or producers of amino 
acid (donor). A coculture of the recipient and donor illustrated a contact-dependent 
exchange of amino acid between the two partners. Using a combination of, (i) cell internal 
amino acid sensors and (ii) transcriptional activity sensors, changes in the cytoplasm of both 
partners were quantified over time. The results from this study provide a biochemical 
explanation for the initiation and establishment of metabolite exchange between organisms 
in nature.  

 

Description Author contribution 

Conceived the project SS (20%), SP (20%), CK (60%) 

Designed the experiments SS (60%), CK (40%) 

Performed the experiments SS (100%) 

Construction of plasmids TA (30%) 

Data analysis SS (60%), CK (40%) 

Manuscript preparation SS (40%), SP (10%), CK (50%) 
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4.3 Manuscript III 

Title: Transcriptional insights from metabolite cross-feeding bacteria 

Authors: Shraddha Shitut (SS), Ramya Ganesan (RG), Muhammad Atiqur Rehman (MR), 
Martin Westermann (MW), Heiko Vogel (HV) and Christian Kost (CK). 

Status: Under preparation (June 2017)  

Summary: The transfer of nutrients between cells through nanotubes requires more than just 
an auxotrophy mutation. Several gene products and the coordination of different pathways 
potentially results in cross-feeding. This study shines light on the transcriptional changes 
arising in E. coli cross-feeding genotypes resulting from, (i) amino acid starvation and (ii) the 
exchange of cytoplasmic contents through nanotubes. A combination of gene expression 
analysis and targeted gene deletions in different genotypic backgrounds followed by growth 
quantification was used. The results of this study indicate the involvement of c-di-GMP 
signaling in the process of cross-feeding in E. coli. Furthermore the role of outer membrane 
vesicles as building blocks for nanotubes has been investigated.  

 

Description Author contribution 

Conceived the project SS (40%), CK (60%) 

Designed the experiments SS (80%), CK (20%) 

Performed the experiments SS (60%), RG (40%) 

Bioinformatics analysis SS (40%), MR (60%) 

Electron microscopy SS (20%), MW (80%) 

Data analysis SS (50%), CK (50%) 

Manuscript preparation SS (50%), CK (50%) 
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Chapter 5: General Introduction 
 
 
 
 

Henry Osborn, the American paleontologist writes (in “The origin and evolution of life upon 
the earth”) that “a bacteria-less ocean and a bacteria-less earth would be uninhabitable for 
either plants or animals” (Osborn 1916). He tries to emphasize here how bacterial growth, 
metabolism and activity prepared the water and earth for higher, dependent forms of life. 
Since the appearance of bacteria about 3.5 billion years ago, they have colonized a range of 
ecological niches on earth. Most notable is the presence of microbial life in extreme 
environments like hydrothermal vents, sulfur springs and the Antarctic glaciers. Bacteria are 
hence ubiquitous in the true sense (Karl 1995). Different environments on earth were 
characterized by differences in their biotic components (competing species, predators) and 
abiotic components (nutrients, temperature, viscosity, pH). Out of these abiotic and biotic 
components, the type of nutrients present (i.e. sources of carbon, nitrogen and energy) 
greatly influence the diversity of bacteria (Perry and Staley 1997, Rinke et al., 2013, Vos et al., 
2013). As each bacterial species inhabits the environment, the cell generates chemical 
changes in its immediate surrounding (microenvironment) that get amplified in the larger 
connected ecosystem. Chemical changes are mainly introduced by nutrient cycling i.e. the 
uptake of complex organic matter for degradation, the breakdown and subsequent secretion 
of by-products of metabolism into the environment. It is these biochemical modifications 
resulting from bacterial activity that also made the oceans and land habitable for higher 
organisms. For example, cyanobacteria are thought to have played a role in the Great 
Oxidation Event (GOE) that resulted in increased oxygen levels in the atmosphere on 
account of oxygenic photosynthesis (Schirrmeister et al., 2013). Higher organisms that grew 
in this pre-conditioned atmosphere were constantly faced with microorganisms and thus 
developed interactions with bacteria (Faust and Raes 2012, Little et al., 2008, Srivastava and 
Srivastava 2003, Wintermute and Silver 2010). Interactions within microorganisms as well as 
between micro and macro-organisms have a significant impact on our ecosystem (section 
5.1). Interactions within bacteria can be further characterized according to the effect of an 
interaction on the growth of the interacting partners (section 5.2), as well as by the process in 
which these interactions are carried out (section 5.3). As mentioned above major changes in 
the earth’s atmosphere resulted from bacterial metabolic activity. In order to envisage the 
far-reaching effects of nutrient uptake and subsequent bacterial growth on the environment 
and the organisms in it, we need to understand the general metabolic network of bacteria 
(section 5.4).  
 
5.1 Significance of microbial interactions 
 
The biological activity of microbes often involves the production of building block 
molecules after degradation of organic matter. During metabolic processes, there is a release 
of chemical compounds like sugars, amino acids or gases into the surrounding space. Owing 
to the high abundance of bacteria in nature, the released compounds when considered 
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collectively, results in a change in the environment as well as the organisms inhabiting the 
environment (Fig. 1).  
 

 

 

 
 
 
5.1.1 Microbes influence the biogeochemical cycles 
 

Microorganisms are often considered as the biogeochemical engineers of life on earth 
(Falkowski et al., 2008). The growth of bacteria requires breakdown of complex organic 
matter to intermediate compounds that serve as building blocks like amino acid, nucleotides, 
lipids and fatty acids for increasing cell biomass. During the degradation of complex 
compounds and subsequent growth, various by-products are released into the surrounding. 
By-products like methane, nitric oxide, carbon dioxide and hydrogen sulfide, then re-enter 
the respective elemental cycle (carbon, nitrogen or sulfur cycle). The gaseous forms of the 
basic elements are then fixed by microorganisms and made available to plants and animals 

Figure 1: Overview of interactions involving microbes in an ecosystem. Microorganisms ensure 
cycling of intermediate compounds and gases of the biogeochemical cycles through metabolic activity 
(blue). Microorganisms in associations with plants, insects and animals mainly provide essential 
nutrients that are unattainable or not produced by higher organisms (green). Microorganisms within 
microbial communities depict interactions that promote or inhibit the growth of other members of the 
microbial community (red). 
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ultimately increasing organic matter. Microbes are hence important catalysts in the 
functioning of the carbon, nitrogen and sulfur cycles (Fig. 1).  
 
Interestingly, all biochemical transformations are carried out by a coordinated metabolism of 
multiple bacteria. Thus, the energy and nutrient-cycling in the environment are basically 
being driven by communities or consortia of microorganisms (Morris et al., 2013, Paerl and 
Pinckney 1996). For instance in organic matter decay, fermentation and methanogenesis are 
two processes working in tandem. Primary fermenters break down carbohydrates into simple 
sugars, acetate, hydrogen and CO2. These fermentation products are further converted to 
methane and CO2 by methanogens, which are anaerobic archaebacteria (McInerney et al., 
2008). The entire process is possible due to an exchange of carbon compounds between two 
different groups of microorganisms with different growth requirements. Such an association 
is often called a syntrophy and similar interactions can be observed in the nitrogen cycle 
(Galloway 1998), the oxygen cycle (Dismukes et al., 2001), and the sulfur cycles (Fenchel and 
Blackburn 1979) as well. The absence of such syntrophic consortia in the environment would 
lead to accumulation of intermediates (methane, CO2, ammonia and hydrogen sulfide), 
generated as a result of primary fermentation. The atmosphere would consequently become 
toxic and unfavorable for the survival of higher organisms without a coordinated microbial 
activity. 
 
 

5.1.2 Microbes support growth of higher organisms in the ecosystem 
 

Microbes have preceded animals and plants in the time line of earth’s evolutionary history 
(Battistuzzi et al., 2004, Margulis 1981). All higher organisms have evolved in the presence of 
microbes and have encountered them in every ecosystem. The plant rhizosphere that 
consists of plant roots, associated mycorrhizal fungi and bacteria, is estimated to harbor 
about 109 microbial cells per gram of root (Egamberdieva et al., 2008). Bacteria in a 
rhizosphere referred to as plant growth promoting rhizobacteria (PGPR), are either 
associated directly with the plant root or with mycorrhizal fungi. These microbes provide, (i) 
nutrients (like fixed nitrogen and phosphorous) or (ii) phytohormones to the plant (Bais et al., 
2006, Van Der Heijden et al., 2008, Xie et al., 1996), (iii) they prevent the colonization of 
plant root by pathogenic bacteria (Doornbos et al., 2012) and (iv) modulate plant immunity 
(Van der Ent et al., 2009). Pseudomonas putida for instance is known to produce the enzyme 1-
aminocyclopropane-1-carboxylate (ACC) deaminase. The ACC deaminase converts ACC to 
ammonia and alpha-ketobutyrate thus preventing the plant cells from converting ACC to 
ethylene. An absence of ethylene in the plant root leads to increased root growth and 
nodulation (Glick et al., 1998). Higher nodulation allows for increased colonization of the 
mycorrhizal fungi which results in improved plant growth.     
 
Microbes are also closely associated with insects and animals, both outside and inside the 
body. The fungus farming Attine ants are known for cultivating specific strains of fungi that 
are used as a food source for growing larvae (Cherrett et al., 1989, Mueller et al., 1998). The 
queen also transports a pellet of the fungus as a seed for farming at the new location thus 
helping to maintain a constant food supply. On the other hand, the plant-based diet of many 
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insects which is composed of complex polymers (cellulose, hemicellulose, lignin, pectin) 
cannot be digested by the insect due to absence of enzymes for degradation. This polymer-
based diet is also nutritionally imbalanced due to the absence of essential amino acids, 
vitamins and co-factors. Symbiotic microbes present within the host assist in digesting the 
polymers as well as supplementing nutrients like vitamins and amino acids (Douglas 2009, 
Engel and Moran 2013, Flint et al., 2012, Van Soest 1994). Symbionts are also known to 
detoxify compounds produced by a plant upon a herbivore attack resulting in protection of 
the insect-host (Clay 2014, Hammer and Bowers 2015). Unique characteristics of assisted 
growth and survival imparted by symbionts have led to them being considered as drivers for 
the insect host to adapt to new ecological niches (Farrell and Mitter 1994, Moran 2007, 
Sudakaran et al., 2017).  
 
 

5.1.3 Microbes support growth of other microbes in the community 

 

It is well known that only 1-2% of bacteria on earth can be cultured as isolates in vitro 
(Curtis and Sloan 2004, Hugenholtz et al., 1998, Nichols 2007). There is a significant 
difference in microscopic cell counts versus colony counts on artificial media. This 
phenomenon of lower cell counts on the plate is called the great plate count anomaly (Staley 
and Konopka 1985). The reasons hypothesized for this anomaly are largely influenced by 
abiotic and biotic factors (Vartoukian et al., 2010). Abiotic factors include insufficient growth 
conditions in the lab especially while growing fastidious microbes that require specific pH, 
temperature, oxygen levels, long incubation times and specific nutrient concentrations (Pham 
and Kim 2012, Stewart 2012). The biotic components, on the other hand, include support of 
microbial growth through interactions with other microorganisms.  
 
Microbial interactions within a community, in the context of unculturable natural isolates, 
can be of two types based on the role of the neighbor: (i) removal of harmful by-products or 
(ii) removal of electrons from the system. Removal of harmful by-products by another cell in 
the surrounding results in maintaining sub-inhibitory concentration of the compound for the 
producer cell. For instance, the co-enrichment of Hyphomicrobium sp. with methanotrophs is 
based on the removal of methanol by Hyphomicrobium sp. (Moore 1981) Methanotrophic 
bacteria oxidize methane to methanol which when present at high concentrations inhibits the 
growth of methanotrophs in monoculture. However, when grown in coculture with 
Hyphomicrobium sp. the growth constraint on the methanotroph is relieved. Alternatively, 
neighboring cells could remove certain electrons from the system like in the classic case of 
ethanol metabolism by a mixed culture of “the S organism” and Methanobacterium bryantii 
(Bryant et al., 1967). Ethanol is fermented to acetate and hydrogen in the primary step, 
released hydrogen is utilized by M. bryantii to convert CO2 to methane. The removal of 
hydrogen by M. bryantii maintains it in low concentrations which otherwise would lead to 
end-product inhibition of ethanol degradation by the primary fermenter. Testing growth of 
different species in co-cultures or mixed cultures as in the above examples have revealed a lot 
about the chemical exchanges and communication taking place between microorganisms in 
nature (Garcia et al., 2015, Kato et al., 2008, Morris et al., 2013, Vartoukian et al., 2010).  
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Figure 2: Characterization of bacterial 

interactions based on effect on the fitness of 

involved individuals. Consider two types of cells, 
one that carries out a function (actor) and the other 
that is affected by this function (recipient). (+/+) 
the actor and recipient both provide beneficial 
functions to each other which have a positive effect 
on fitness, referred to as mutual benefit or 
cooperation. (-/+) the actor provides a beneficial 
function to the recipient which is costly for the 
actor, referred to as indirect benefits, cooperation 
or altruism. (+/-) the actor provides a function that 
is harmful to the recipient but beneficial to the 
actor, known as selfishness. (-/-) both actor and 
recipient carry out functions that negatively affect 

the other, referred to as spite.  

Metabolic activity of microbes has an impact on different levels of the ecosystem i.e. within 
microbial communities, with higher organisms and with the environment. Microbial 
interactions are essential to our ecosystem and so is the need to study them.      
 
 
5.2 Types of microbial interactions 
 
In their natural habitat, microorganisms are 
present as members of a community. Within 
these communities, a number of interactions 
are taking place predominantly through an 
exchange of molecules or chemical signals. 
Microorganisms show associations, both 
transient and permanent, with other members 
based on the exchanged chemical signal. 
Microbial associations are often compared to 
human interactions that are observed in the 
social context of a complex society. Moreover, 
as microorganisms have been increasingly 
studied under the lens of sociobiology and 
evolutionary biology (Crespi 2001, Tarnita 2017, 
West et al., 2007), their interactions have been 
explained using anthropomorphic terms like 
partner choice, policing, altruism and so on 
(Davies 2010). However, there are disagreements 
among biologists regarding the use of these terms 
in categorizing the types of microbial interactions.  
 
A simplified method for defining microbial 
interactions was developed based on the effect of 
an interaction on the growth of interacting 
partners (Hamilton 1964). According to 
Hamilton, all interactions can be classified 
through this method to give two main categories of interactions: positive and negative (Fig. 
2). 
 
 

5.2.1 Negative interactions  
 

When the growth of either one or both partners is negatively affected by the interaction it is 
termed a negative or competitive interaction (Fig. 2, -/+ and -/-). Competition between 
different species is usually for resources and space. In cases where different species present 
in the community utilize different substrates as their food source then both species grow 
equally well. However, microorganisms universally depend on an external supply of inorganic 
nutrients like nitrogen (N) and phosphorous (P) (Smith 2002). Evidence shows a reduced 
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growth and activity of microorganisms in marine and terrestrial ecosystems due to limited N 
and P levels (Hobbie and Vitousek 2000, Rivkin and Anderson 1997). Microorganisms also 
compete for space in a given environment. This phenomenon is most often observed in the 
context of bacterial biofilms wherein the initial attachment of a species can influence 
successive adhesion events. For instance, in the gut of humans and animals, a few 
Lactobacillus species have been found to produce a protein after attaching to the intestinal wall 
(Bernet et al., 1994, Todoriki et al., 2001). This protein further prevents pathogenic strains 
from attaching to the gut surface (Bernet et al., 1994, Todoriki et al., 2001).  
 
In order to succeed in such competitive environments microorganisms often produce 
antimicrobial compounds or toxins. These compounds deter the growth of neighboring 
strains resulting in more resources and space for the focal species. Some soil-dwelling 
Burkholderia sp. are known to enhance antibiotic production in the presence of quorum 
sensing systems, thus resisting invasion by other species (Duerkop et al., 2009). Competing 
strains may alternatively employ a contact-dependent killing protein (type I-VI secretion 
systems (TSS)) and toxin-antitoxin system (mazE/mazF genes, pem/parD loci) for eliminating 
other genotypes not producing the same killing protein or the anti-toxin (Basler et al., 2013, 
Russell et al., 2014). Such strategies of reducing the fitness5 of specific individuals are also 
known to help maintain diversity in certain environments (Foster and Bell 2012, Hibbing et 
al., 2010, Kerr et al., 2002, Leinweber et al., 2017). Negative interactions are also drivers of 
species diversity microbial communities.  
 
 

5.2.2 Positive interactions 
 

When either one or both of the interacting partners invest their own resources to benefit the 
other, it is termed as a positive or cooperative type of interaction. The positive in this case 
refers to the effect on the fitness of the recipient and the actor (Fig. 2, +/- and +/+). 
Positive interactions can be further divided as illustrated (Fig. 2). Examples of the +/- 
consequence are termed as altruistic, cooperative or indirect benefits type of interaction. 
Examples include the production of costly metabolites or enzymes as public goods like 
siderophores or extracellular enzymes. Siderophores are produced by a number of bacteria, 
E. coli (enterobactin), Vibrio cholerae (vibiorbactin), Pseudomonas aeruginosa (pyoverdin and 
pyochelin), Acinetobacter calcoaceticus (acinetobactin) (Buckling et al., 2007, Crosa and Walsh 
2002, Diggle et al., 2007, Griffin et al., 2004, Krewulak and Vogel 2008, Visca et al., 2007, 
West and Buckling 2003). These small, iron-chelating compounds are released into the 
environment in response to iron-limiting conditions (Ratledge and Dover 2000). The iron-
bound siderophores are available to all cells for uptake in the neighborhood. Similarly, an 
extracellular enzyme like invertase produced by Saccharomyces cerevisiae for the breakdown of 
sucrose to glucose and fructose is considered an altruistic act and has been used as a model 
system to study the evolution of cooperation (Gore et al., 2009, Greig and Travisano 2004).    
 
The second category of positive interactions is the two-way or mutually beneficial interaction 
(Fig. 2, +/+). Here both actor and recipient benefit positively from the interaction referred 
to as cooperation or mutualism. A classic example is that of the wrinkly spreader phenotype 
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Figure 3: Types of cross-feeding interactions. 
Characterized first, on the basis of the direction 
of exchange (A,C vs B,D) and then by the cost of 
exchange (A,B vs C,D). (A) Unidirectional by-
product cross-feeding - one partner benefits by 
taking up a molecule/metabolite the other does 
not need. (B) Bi-directional by-product cross-
feeding - both partners exchange molecules that 
are not required by the individual partner. (C) 
Unidirectional cooperative cross-feeding - one 
partner bears a cost for producing a 
molecule/metabolite for the other. (D) Bi-
directional cooperative cross-feeding - both 
partners produce and exchange costly 
molecules/metabolites required for growth.    

observed in Pseudomonas fluorescens during 
experimental evolution. When an ancestral genotype 
of P. fluorescens is propagated in a spatially structured 
environment (stable liquid media), there is rapid 
diversification in which the wrinkly spreader is a 
dominant phenotype (Rainey and Rainey 2003). This 
wrinkly spreader mutant produces a higher amount 
of cellulosic polymer which is expressed at the cell 
poles (Spiers et al., 2002). When neighboring cells 
both produce this extracellular polymer it promotes 
cell adhesion and consequently the formation of a 
mat of cells at the liquid-air interface. By growing in 
the form of a mat/biofilm the population as a whole 
benefits from increased access to oxygen, despite the 
cost to individual cells in producing increased 
amounts of the polymer.  

 

 

5.2.2.1 Metabolic cross-feeding  

 

Cross-feeding is an interaction where the product 
of one cell benefits another and is considered a type 
of positive interaction (Belenguer et al., 2006, 
Estrela et al., 2012, Harcombe 2010, Reinheimer 
1921, Seth and Taga 2014). The exchanged 
products usually found in cross-feeding 
communities are metabolites, co-factors, ions, 
reduced and oxidized compounds (Mee et al., 2014, 

Morris et al., 2013, Phelan et al., 2012, Schink 2002, Seth and Taga 2014). Cross-feeding 
interactions can be categorized into by-product and cooperative (based on the cost to the 
interacting partners) or uni- and bidirectional (based on the transfer of metabolites) (Fig. 3). 
By-product cross-feeding (Fig. 3A-B), is the release of intermediates from a cell due to 
overflow metabolism or membrane permeability. The cell secreting the by-product does not 
invest additional resources to produce increasing amounts of this by-product for another 
individual. This type of cross-feeding was observed during the evolution of polymorphic 
phenotypes in batch cultures of E.coli utilizing glucose as a carbon source (Pfeiffer et al., 
2004, Treves et al., 1998). The initial flux of glucose into the tricarboxylic acid cycle resulted 
in increased production and release of acetate into the medium. Acetate, the by-product, was 
then utilized as a substrate by another cell giving rise to polymorphism as a result of cross-
feeding. 
 
Alternatively, in the case of cooperative cross-feeding (Fig. 3B-D), a cell either produces a 
metabolite only in presence of the partner or increases production of a metabolite in 
presence of the partner. In either condition the producing cell faces a cost for the production 
of this metabolite and this cost may affect its growth. Cooperatively cross-feeding strains 
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were experimentally evolved in a consortium of Salmonella enterica ser. Typhimurium and E. 

coli (Harcombe 2010). S. enterica provided methionine for E. coli during co-culture prior to the 
evolution experiment due to a mutational change in S. enterica. Interestingly within a few 
generations of co-evolving S. enterica and E. coli, the methionine production by S. enterica 
significantly increased and was observed only in the presence of the E. coli partner strain. The 
above examples of by-product and cooperative cross-feeding underline the fact that cross-
feeding interactions can easily evolve in laboratory conditions. The study of cross-feeding 
interactions is hence of significance in the context of the evolution of microbial 
communities. 
 
In conclusion, we see that all types of interactions are observed in microbial populations. 
Positive interactions that promote the growth of either one or both interacting partners also 
include cross-feeding of metabolites between bacteria. It is intriguing what mechanisms are 
developed and used by bacteria for the exchange of such essential and costly metabolites.     
 
 

5.3 Mechanisms of metabolic cross-feeding 
  

Cross-feeding interactions entail a transfer of a molecule or compound between interacting 
individuals. The nature of this transfer between individuals can be influenced by various 
factors like the physical and chemical characteristics of the molecule (size, stability, 
sensitivity) along with the environment in which the interaction takes place. The mechanisms 
for exchange of metabolites between bacteria can be broadly divided into two classes: (i) 
contact-independent and (ii) contact- dependent mechanisms. 
 

 
 

5.3.1 Contact-independent mechanisms 
 

Mechanisms of molecule transfer that are devoid of any physical connections between cells 
are denoted as contact-independent mechanisms. This is especially true for cases in which 
the molecule is small and freely diffusible through the cell membrane like formate or 
hydrogen ions, when an environmentally-mediated exchange between cells is possible (Fig. 
4a). Mixed cultures of Syntrophomonas wolfei and Methanobacterium formicium depict exchange of 
hydrogen and formate ions through diffusion in anaerobic digestors (Boone et al., 1989). 
Hydrogen is said to be at the “heart of syntrophy” and hence passive diffusion of this 
molecule during cross-feeding is a common phenomenon in nature. Apart from the size, the 
chemical property of the molecules also affects its mode of transfer, for example, its 
hydrophobic or hydrophilic nature. The bacterial cytoplasmic membrane is a phospholipid 
bilayer that consists of hydrophilic head groups on the outside and hydrophilic tail regions 
on the inside. The arrangement of the amphpathic phospholipids makes it permeable only to 
hydrophobic molecules. The well-studied quorum sensing molecule, acyl homoserine 
lactones (AHL) in most forms is amphipathic and hence can easily diffuse through 
membranes of gram-negative cells (Fuqua et al., 2001). Molecules may also be actively 
transported from the cell cytoplasm to the external environment via membrane spanning 
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Figure 4: Mechanisms for cross-feeding. Contact independent (a to d) and contact dependent (e to h) processes 
of cross-feeding in bacteria. (a) Diffusion of molecules across the membrane. (b) Active transport of molecules via 
transporters embedded in the membrane. (c) Outer-inner membrane (O-IMV) vesicle mediated transport. (d) Outer 
membrane vesicles (OMV) mediated transport. (e) Outer membrane vesicle chain formed by linking of multiple 
vesicles. (f) Nanotube-mediated exchange. (g) Type secretion systems or flagella-like-filaments. (h) Direct 
membrane contact between cells. 

 

transporters. Corrinoids, which are pyrrole ring based cyclic compounds, are often 
exchanged via active transport (Fig. 4b) due to their large size (Degnan et al., 2014, Seth and 
Taga 2014). Vitamin B12 is such a corrinoid that requires active transport during cross-
feeding within the gut microbial community.  
 

 
 

 
Contact-independent methods also include the exchange of metabolites via membrane 
vesicles (Fig. 4c-d). In this case, the cell membrane extends to form a bleb, into which 
cytoplasmic molecules may be transported followed by a detachment from the cell. The 
packaged material within this membrane vesicle remains unexposed to the environment and 
in a concentrated form. This method is employed by many marine microorganisms like 
Prochlorococcus, which produce vesicles that support the growth of other marine isolates like 
Altermonas and Halomonas (Biller et al., 2014, Johnson et al., 2006). Depending on the cell 
structure and requirement, the vesicle may be formed from the outer membrane alone (outer 
membrane vesicles, Fig. 4c) or from both the outer and inner membranes (outer-inner 
membrane vesicles, Fig. 4d). Recently outer-inner membrane vesicles (O-IMVs) were 
identified in multiple species- Shewanella vesiculosa, Pseudomonas aeruginosa, Neisseria gonorrheae 
and Acinetobacter baumanii (Pérez-Cruz et al., 2015). The O-IMVs are hypothesized to play a 
role in the transport of DNA and toxins however the exact mechanism is unclear.  
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5.3.1.1 Disadvantages of contact-independent mechanisms of exchange 

 

An exchange of molecules mediated externally as described above can have some 
disadvantages. In the case of passive diffusion and active transport, the metabolite is 
transmitted from the internal to the external environment of the cell. Once present in the 
extracellular space, the metabolite can undergo chemical modification or degradation which 
may render it ineffective for uptake by another cell (Boyer and Wisniewski-Dyé 2009). N-
acyl-homoserine lactone (AHL), the auto-inducer molecule produced by bacteria during 
quorum sensing, is vulnerable to bond cleavage which causes the lactone ring to open at high 
temperature and alkaline pH (Decho et al., 2009, Yates et al., 2002). Alternatively, the 
metabolite may be carried away by movement of the surrounding liquid through a process 
called advection (Purevdorj et al., 2002). P. aeruginosa biofilms show a rapid loss of AHL 
signal at the biofilm surface as compared to the internal region.  
 
 

5.3.2 Contact-dependent mechanisms 
 

An exchanged molecule may also be transported between interacting cells only after a 
physical connection is established between the cells. Such mechanisms are classified as 
contact-dependent mechanisms and can include either a direct cell-cell connection or linking 
of cells through membrane-derived structures. The former i.e. direct cell-cell contact (Fig. 
4h) is seen in the syntrophic consortium, Chrolochromatium aggregatum, which consists of 
several motile, green sulfur bacteria surrounding a central, non-motile, chemotrophic 
bacterium. The two partners are always found associated within a cluster in which the 
chemotroph transfers sulfide to the peripheral sulfur bacteria (Wanner et al., 2008). The 
transfer of sulfide and 2-oxoglutarate is hypothesized to take place through transporters in 
the membranes of either species. Myxococcus xanthus on the other hand produces a distinct 
extracellular structure called a membrane vesicle chain (Fig. 4e). These vesicle chains that 
connect neighboring cells contain sugars, lipids and proteins that promote cell-cell 
communication (Remis et al., 2014). Owing to advancement in electron microscopy 
techniques (cryo-TEM, HR-SEM), there have been reports of novel structures found 
connecting bacterial cells. Nanotubes were found to transport plasmid DNA from a cell 
harboring the plasmid to a cell devoid of this plasmid in B. subtilis (Fig. 4f) (Dubey and Ben-
Yehuda). Shewanella oneidensis was reported to produce nanowires in order to increase the 
surface area available for electron uptake in a limiting environment (Gorby et al., 2006). The 
possible role of these novel structures (nanotubes, nanowires, vesicle chains) in the 
establishing contact between cross-feeding cells unclear. Moreover, the dynamics of 
metabolite exchange assisted by extracellular structures is also unknown. 
 
Contact-dependent delivery systems are widely observed in the case of antagonistic 
interactions, which entail killing of specific bacterial cells (Fig. 4g). A well-studied category of 
contact-dependent killing in bacteria is the type secretion system (TSS), which has subgroups 
of seven different toxin delivery mechanisms (Hayes et al., 2010). All seven types of toxin 
delivery systems are present on the cell surface. The cell-associated structures in TSS have 
been found to resemble different bacterial appendages; the type III secretion system 
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resembles flagella, the type IV secretion system resembles surface adhesins or pili, the type V 
secretion system is a membrane receptor complex, the type VI secretion system is similar to 
a phage infection system. All of these systems have three modules: (i) a base connector on 
the actor cell, (ii) a secretion channel, and (iii) a receptor on the target/recipient cell. The 
effector molecule is produced in the actor and passed through the channel to be transported 
into the target cell for subsequent activity. The possible role of the type secretion system in 
the exchange of other molecules (apart from toxins) is however unexplored.    
 
In conclusion, bacteria have devised a myriad of ways to exchange molecules during 
interactions between each other. The method of exchange depends on the characteristic of 
the molecule as well as the interacting species. Due to the predominantly greater interest in 
studying competitive interactions/negative interactions within bacterial communities, the 
knowledge about contact-dependent exchange in the context of nutrient cross-feeding is 
unclear. In this thesis, I present a study of nanotube-mediated cross-feeding of amino acids 
in bacteria to provide insights on the genetic and metabolic requisites in a cell for carrying 
out contact-dependent cross-feeding.  
 
 

5.4 Bacterial metabolic network 
  

A bacterial cell growth involves using substrates from the environment to synthesize building 
block molecules (Fig. 5). The reactions taking place in a bacterial cell for the above purpose 
can be broadly classified into catabolic and anabolic pathways. Catabolic reactions refer to 
the degradation of complex organic matter into metabolically useful precursor metabolites 
like glucose 6-phosphate, phosphoenolpyruvate, acetyl CoA, pyruvate, succinyl-CoA and 
oxaloacetate (Fig. 5a - b). These precursor metabolites serve as the raw material for synthesis 
of all building blocks (amino acids, nucleotides, lipids, lipopolysaccharides, peptidoglycans, 
glycogen and polyamines) through anabolic reactions (Fig. 5c – d). Amino acids serve as the 
most abundant of these building blocks due their involvement in the formation of proteins 
and enzymes.  

 
5.4.1 Amino acid biosynthesis and regulation 
 

Biosynthesis of amino acids takes place through a series of reactions either connected in a 
sequential cascade or interconnected branched pathways. The precursor metabolites for all 
the 20 amino acids produced by bacteria are obtained through the tricarboxylic acid cycle 
(TCA) cycle (Fig. 5b) (Boyle 2005). These metabolites are then chemically transformed 
during amino acid biosynthesis resulting in free amino acid which is further processed for 
mRNA translation. Amino acids being one of the most abundant and highly produced of the 
building block molecules (Milo and Phillips 2015); amino acids have been optimized for 
efficient production by bacteria. Amino acid biosynthesis is hence subject to regulation 
through feedback inhibition pathways (Fig. 5d). Feedback for the production of a given 
amino acid or a group of amino acids is often mediated by the end product of the pathway 
which in this case is the amino acid itself (Umbarger 1978). For instance, consider the last 
step for synthesis of serine which is catalyzed by the 3-phosphoglycerate dehydrogenase 
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Figure 5: The bacterial metabolic network. (a) Organic matter may be degraded externally or after uptake in the 
cytoplasm. (b) Precursor metabolites are formed as a result of glycolysis and enter the tricarboxylic acid cycle.  (c) A 
biosynthetic pathway for individual building blocks (amino acids, nucleotides, lipids, lipopolysaccharides) is a cascade 
of reactions. The result of a biosynthetic pathway is the end-product which is a metabolite that can be incorporated 
into cell material for growth. (d) End products can regulate the pathway by feedback inhibition. There are different 
types of feedback inhibition (isofunctional enzymes, cumulative feedback inhibition, sequential feedback inhibition, 
inhibition plus activation) depending on the branching and interconnectedness of individual pathways. (e) Cytoplasmic 
cell material may also be exported into the environment due to leaky membranes or through dedicated membrane 
transporters. 

enzyme. High levels of serine in the cell cytoplasm lead to the binding of four serine residues 
to 3-phosphoglycerate dehydrogenase, thus inactivating the enzyme (Gottschalk 2012).  
 
 

 

 
Regulatory mechanisms get complicated with the branching of biosynthetic pathways which 
result in groups of amino acids as end products (Fig. 5d). Consider the production of leucine, 
isoleucine and valine from hydroxyethyl thiamine pyrophosphate (hydroxyethyl-TPP) 
(Gottschalk 2012, Umbarger 1978). When hydroxyethyl-TPP reacts with α-ketobutyrate, the 
reaction consequently leads to the formation of isoleucine and hence is also inhibited by 
isoleucine. Alternatively, when hydroxyethyl-TPP reacts with pyruvate, the subsequent steps 
result in the formation of valine and leucine. The two reactions (hydroxyethyl-TPP + α-
ketobutyrate versus hydroxyethyl-TPP + pyruvate) are competing branches in a common 
pathway. Interestingly valine can allosterically activate the enzyme that catalyzes the 
conversion of hydroxyethyl-TPP and α-ketobutyrate to isoleucine. In this way, a balance is 
maintained between the amounts of amino acids being synthesized from common precursor 
metabolites. Branched amino acid pathways also show a cumulative inhibitory effect by the 
end product amino acids. For instance, glutamine metabolism feeds in precursors to a 
number of amino acid biosynthesis pathways like tryptophan, histidine, alanine and glycine. 
The enzyme glutamine synthetase that catalyzes the conversion of glutamate, ammonium and 
ATP to glutamine, depicts reduced activity upon concerted binding of each of these amino 
acids (histidine, tryptophan, alanine and glycine).  
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5.4.2 Effect of the external environment on bacterial metabolism 
 

Precursor metabolites as described in the previous section play a pivotal role in the 
biosynthesis of amino acids. In nature, these precursor metabolites are often the first 
products of organic matter decomposition that enter the TCA cycle. The levels of 
metabolites like pyruvate, glucose 6-phosphate, oxaloacetate, acetyl-CoA, control the flux of 
high energy molecules (ATP) and reducing agents (NADH or NADPH) through individual 
amino acid biosynthetic pathways. By calculating the number of ATP molecules and NADH, 
NADPH molecules involved in a given pathway, one can estimate biosynthetic costs of 
amino acids (Chubukov et al., 2014, Varma and Palsson 1994). Furthermore, an estimate of 
amino acid biosynthetic cost obtained through flux-balance models predicts that when costly 
amino acids are available in the environment, bacteria prefer to take up the amino acid and 
shut down internal biosynthesis (Coffin 1989, Morris). This can be observed by providing 
14C-labeled carbon source (glycerol, fructose, glucose) along with an unlabeled amino acid to 
a cell (Neidhardt et al., 1990). The uptake and processing of the labeled carbon should result 
in the 14C-label being passed on to the amino acids synthesized through anabolic pathways. It 
was observed that all amino acids except histidine carried the 14C-label since histidine was 
available in the non-labeled form in the medium and was taken up by the wildtype cell. This 
finding also indicates that when the amino acid was externally available, the cell shuts down 
the flux of labeled precursor metabolite through that specific amino acid biosynthesis 
pathway. Bacterial cells thus preferentially take up amino acids available in the environment 
to save production cost. Indeed natural samples depict the presence of auxotrophic bacteria 
which require an external supply of amino acids or vitamins or co-factors for growth.  
 
 

 

5.4.3 Bacterial metabolism in the context of a microbial community 
 

In their natural habitat, bacteria are faced with varying concentrations of organic matter or 
precursor metabolites. Different bacterial genotypes will degrade a preferred substrate. 
Depending on which substrate and precursor metabolites enter the TCA cycle the flux 
through amino acid biosynthesis pathways will be determined. Hence bacterial cells 
demonstrate distinct amino acid profiles in a given environment. Consider three aspects; (i) 
bacterial membranes are leaky i.e. they are permeable to certain molecules (Kallus et al., 2016, 
Nikaido 2003), (ii) bacteria produce extracellular enzymes that degrade complex organic 
matter in the environment (Arnosti 2011) and (iii) all cells upon death result in lysis and a 
release of internal components (Bayles 2007, Lewis 2000). Taken together these three events 
would lead to the presence of building blocks (amino acids, vitamins, nucleotides, lipids) in a 
given environment. The availability of metabolites in the surrounding results in the saving of 
biosynthetic cost (section 1.5.2). This hypothesis of cells taking advantage of “free functions” 
which are the externally available nutrients and increasing fitness is referred to as the Black 
Queen hypothesis (Morris et al., 2012) (Box 1).  
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It has been postulated that over evolutionary time, as a bacterium in a microbial community 
is provided with an external supply of nutrients, there is a selection for auxotrophic 
genotypes (Giovannoni et al., 2014, McCutcheon and Moran 2012, Morris et al., 2012). By 
losing the genes for biosynthesis of the metabolites freely available, the cell saves not only 
metabolic cost but also gene replication cost. The uptake of amino acids from the 
environment alone gives a fitness benefit of around 20% to E. coli auxotrophs in competition 
with the wildtype (D'Souza et al., 2014). Hence the uptake of nutrients is a highly beneficial 
characteristic for individual cells in a community. Can bacterial cells employ different 
mechanisms to carry out nutrient uptake assuming the fitness benefit of such an interaction? 
Can the nutrient uptake by such auxotrophs affect the neighboring cells in the community? 
In this thesis, I present a mechanism of nutrient uptake by auxotrophs from neighboring 
cells in the environment. Furthermore, I provide a metabolic basis for the functioning of 
such one-way cross-feeding interactions. 
  

Box 1: Black queen hypothesis  

Microscopic parasites and endosymbionts are always present in the context of a host from which 
nutrients are derived. Interestingly these parasites and endosymbionts also depict highly reduced 
genomes in comparison to their free-living species (D'Souza et al., 2014, McCutcheon and Moran 
2012). The Black Queen hypothesis (BQH) provides a mechanistic explanation for this gene loss 
(Morris et al., 2012, Morris). This hypothesis is based on the game of Hearts in which the aim is 
to score as few points as possible. The queen of spades (the black queen), is worth the highest 
points and hence is preferred to be lost by individual players. The hypothesis in context of 
microbial communities, predicts that when a costly function (e.g. amino acid production) is freely 
available in the environment (e.g. inside the host gut) then the loss of biosynthetic gene for the 
free function will be favored at the cell level. This gene loss is selected for only when fitness 
advantage upon gene loss outweighs the cost. This means that by deleting a gene, all the related 
metabolic and replication cost is saved which results in the fitness advantage should be higher 
than the biosynthetic cost of that free function. Apart from endosymbionts and parasites, one can 
also apply this hypothesis to microbial communities wherein the leakiness of cell membranes 
along with cell death results in the availability of free functions in the environment. Here 
biosynthetic gene loss would be favored when the lost function is provided either by the 
environment or other members of the community. Over time as selection acts on a given 
community, we see a presence of dependent members (beneficiaries) and autonomous “leaky” 
members (helpers). This type of adaptive gene loss has been observed in evolution experiments 
with E. coli indicating the ease with which it can happen in natural environments. The BQH has 
been discussed in the context of marine microbial communities that contain Prochlorococcus 

(Kettler et al., 2007) which are sensitive to hydrogen peroxide (H2O2). Photo-oxidation of organic 
carbon in ocean water results in the formation of H2O2 which upon accumulation can lead to the 
death of Procholorcoccus due to its inability to synthesize catalase-peroxidase. Due to presence of 
other members in the community that act as a sink for H2O2 by the action of intracellular 
catalase-peroxidase, the level of H2O2 is maintained at sub-inhibitory level for Prochlorococcus.  
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Figure 6: Overview of the main objectives of this study. Identifying the mechanism of amino 
acid cross-feeding between bacteria, is it (a) diffusion based i.e. through the external environment 
or is it (b) contact-dependent exchange? (c) What are the nutritional and environmental pre-
requisites for amino acid cross-feeding? (d) Elucidating the effect of cross-feeding on the 
metabolism of the over-producer (donor) in the presence of an auxotroph (recipient). (e) 
Identifying transcriptional changes in the cross-feeder genotype resulting from amino acid 
starvation and subsequent cross-feeding. (f) Which genes are differentially expressed during the 
process of amino acid cross-feeding in E. coli? 
 

Chapter 6: Aim of the thesis 

 

Microbial interactions have a significant impact on the ecosystem functioning as well as the 
members of the ecosystem. These interactions between microbes can have both positive and 
negative effects on the growth of the interacting cells. Metabolite cross-feeding is one such 
essential interaction that entails the transfer of nutrients from one cell to another. Studying 
the exchange of metabolites in natural populations is challenging due to fastidious growth 
requirements of organisms, limited genetic manipulation of genotypes and limited knowledge 
and control over the genetic background of organisms. Known bacterial model systems on 
the other hand can be genetically modified to exchange desired metabolites. The nutrient 
biosynthesis pathways are universal in most bacterial cells hence allowing a close replication 
of the metabolic exchanges in natural isolates. Taking this into consideration I employed a 
system comprising of Escherichia coli and Acinetobacter baylyi cross-feeders to study the transfer 
of amino acids between cells. A cross-feeder genotype consists of two mutations: (i) loss of 
amino acid biosynthesis (auxotrophy) and (ii) increased levels of amino acids compared to 
the wildtype (over-production). The following aspects of this interaction were studied- 
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Mechanism of amino acid exchange  

Manuscript I: Contact-dependent exchange of nutrients in bacteria (chapter 7) 

Microbes are known to use extracellular appendages for the transfer of genetic material (pili-
based conjugation system), virulence-inducing factors (type secretion systems) and toxins for 
killing (contact-dependent inhibition). There is less known about the use of contact-
dependence in nutrient exchange. By genetically modifying the strains to cross-feed, I ask the 
questions (Fig. 6a-c):  

• How the exchange of amino acids takes place between cross-feeding cells? 

• If the exchange is contact-dependent then what kind of structures are connecting the 
cross-feeding partners?  

• Is there any effect of the growth conditions on exchange via such structures?  

Metabolic basis of amino acid exchange 

Manuscript II: Metabolic coupling in bacteria (chapter 8) 

Bacterial metabolism is highly regulated and coordinated in the cell. Biochemical reactions 
that make up the metabolic network are under control of the cytoplasmic level of end 
products. During cross-feeding interactions there is a transfer of these end-products between 
two individual cells. Here I was interested to know (Fig. 6d): 

• Is the metabolism of a prototrophic cell is affected when in presence of a metabolic 
sink (auxotroph) in the same environment? 

• How does the prototroph adapt to these changes implemented by the one-way 
interaction? 

 Genetic basis of amino acid exchange   

Manuscript III: Transcriptional insights into bacterial cross-feeding (chapter 9) 

The model system depicted amino acid cross-feeding upon a loss-of-function mutation for 
amino acid biosynthesis in E. coli. This mutation renders the strain dependent on an external 
source of amino acid. However, amino acid starvation is known to induce a variety of stress 
response elements in bacteria, so I tried to identify the chain of causality from the 
auxotrophy mutation to nanotube formation by asking (Fig. 6e-f): 

• Which genes are differentially regulated in E. coli cross-feeding genotypes upon the 
exchange of amino acids? 

• How does the background mutation (auxotrophy or over-production) influence the 
ability to form nanotubes? 

• Are there any supportive structures involved in the process of cross-feeding apart 
from nanotubes? 

• Can a working model be developed to illustrate the process of contact-dependent 
amino acid cross-feeding? 
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Chapter 7: Manuscript I 
 
 

 

Metabolic cross-feeding via intercellular nanotubes among bacteria 

Shraddha Shitut, Samay Pande, Lisa Freund, Martin Westermann, Felix Bertels, Claudia 
Colesie, Ilka B. Bischofs and Christian Kost 

 

Nature Communications 
 doi: 10.1038/ncomms7238, February 2015 

 
 

Summary: This study describes a mechanism of contact-dependent nutrient exchange 
between two bacterial species, Escherichia coli and Acinetobacter baylyi. These strains were 
genetically modified to cross-feed amino acids upon coculture in a shaken liquid medium not 
supplemented with external amino acids. A single loss-of-function mutation rendering the E. 

coli strain auxotrophic for a specific amino acid was sufficient to induce the formation of 
nanotubes. A combination of fitness experiments, fluorescent labeling, lipid staining and 
microscopy was used to identify the structures connecting cross-feeding. Transport of 
metabolites (amino acid) through nanotubes potentially avoids the loss of this metabolite to 
the environment and protects the metabolite from degradation or chemical modification. 
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icroorganisms are ubiquitous on our planet and their 
metabolic activities significantly contribute to vital 

ecosystem processes1. In most cases, microbes exist in 
taxonomically diverse communities, whose structure is 
determined  by  a  complex  interplay  between  environmental 
factors and  ecological interactions among its community 

members2,3. Strong  selection pressures  for  limiting  resources 
have resulted in the evolution of diverse strategies to survive and 
reproduce under these conditions and gave rise to the stunning 
richness of ecological interactions that  can be observed within 

microbial communities4. 
Biotic interactions between two microorganisms can either 

positively or negatively affect the fitness of the interacting 
individuals. Negative fitness consequences can result from 
predation, parasitism or chemical warfare between micro- 
organisms, while cooperative or  mutualistic  relationships  can 
significantly benefit the strains involved2. Many of these 
interactions  rely  on  either  the  active  or  passive  release  of 
chemical molecules into  the  environment5,6  or,  alternatively, 
a  direct  contact  between  bacterial  cells7. In  both  cases, the 
spatial organization of a  given microbial community  dictates 

the   outcome   of   these   interactions8.   For   example,   short 
distances    between    surface-attached    cells    facilitate    the 

exchange of diffusible nutrients9  and communication signals10. 
However, such a diffusion-based transfer of molecules between 
two  cells bears  a  number  of  risks: unintended  third  parties 
may eavesdrop on the signal or consume the nutrient. Moreover, 
the exchanged molecule may degrade or be lost by a too fast 

diffusion11. 
To circumvent these problems, bacteria have evolved a 

multitude   of   different   ways  to   directly  deliver  molecules 
to intended recipients. Such mechanisms include, for example, 
the production of outer membrane vesicles, as they are used by 
many bacterial species to deliver cargo to other cells12–16. 
Alternatively,  bacterial   cells  may   connect   via   channels17, 
nanotubes18, pili19 or transiently fuse their outer membrane20

 

to  transfer  cytoplasmic components  or  outer  membrane 
materials. 

These  direct   cell–cell  connections   serve  primarily   three 
functions: first, genetic material such as plasmids is horizontally 

transferred  between cells12,21, supplying the  recipient with 

potentially beneficial genetic functions22,23. Second, chemical 
signals that help to coordinate social activities within microbial 
communities are trafficked between cells16. Third, proteins can be 
transferred  between  cells18,20, which  are  involved  in  social 
movement14  or serve predatory bacteria as interspecific killing 
factors15.    Another    possibility,   which    remains    virtually 
unexplored, is the utilization of intercellular connections to 
transfer  nutrients  between  bacterial  cells. While  recent  data 
suggest that significant proportions of the cytosol can be 

exchanged between connected cells18, clear experimental 
evidence for a  possible nutritional  function  of the  exchanged 
cytoplasmic constituents is lacking. 

Here we address this question by interrogating synthetically 
engineered cross-feeding interactions within and between the two 
bacterial  species  Acinetobacter  baylyi  and   Escherichia  coli. 
We establish that in a well-mixed environment E. coli, but likely 
not A. baylyi, can connect to other bacterial cells via membrane- 
derived, tubular structures (hereafter referred to as ‘nanotubes’ ) 
and use these to exchange cytoplasmic constituents. Furthermore, 
we show that cell attachment is demand-driven and contingent 
on   the   nutritional   status   of   auxotrophic   cells.  Together, 
our  results suggest that  nanotubes  can  mediate the  exchange 
of cytoplasmic nutrients  among  connected bacterial cells and 
thus  help  to  distribute  metabolic  functions  within  microbial 
communities. 

 

Results 
Construction of synthetic cross-feeding interactions.  We engi- 
neered obligate cross-feeding interactions  within  and  between 
A. baylyi and  E. coli to  achieve two main  goals. First, geno- 
types should be unable to produce a certain amino acid and rely 
on  an  external supply of this  metabolite for growth. Second, 
amino acid production levels should be sufficiently high to allow 
growth of a complementary cross-feeding genotype. To achieve 
this, two pairs of genes were deleted from the wild type (WT) 
background of both species: deleting the terminal genes of the 
histidine (His) and tryptophan (Trp) biosynthesis pathways hisD 
and trpB resulted in two ‘auxotrophs’  of both species unable to 
grow in the absence of an external supply of either His or Trp 
(Supplementary Fig. 1). In addition, the regulatory regions of the 
His  and  Trp  biosynthesis operons  hisL (encodes the  operon 
leader  peptide)  and  trpR  (encodes  the  tryptophan  repressor 
protein) were deleted to eliminate negative transcriptional 
regulation  of  these  two  pathways,  yielding  two  amino  acid 
‘overproducers’  (that  is,  genotypes impaired  in  the  feedback 
control of amino acid production levels). Combining two deletion 
mutations (that is, DtrpB and DhisL; DhisD and DtrpR) in the 
same genetic background resulted in two ‘cross-feeders’  (that is, 
genotypes auxotrophic for one amino acid, which constitutively 
produce increased amounts of the other amino acid) with com- 
plementary metabolic requirements and amino acid production 
characteristics that  allowed assembling four  intra-  and  inter- 
specific pairs of cross-feeders (Fig. 1a). Finally, each cross-feeding 
mutants was labelled with one of two plasmids that constitutively 
expressed either egfp or mCherry for subsequent differentiation. 

The  His and  Trp  production  levels of the  enhanced  green 
fluorescent protein  (EGFP)-labelled variants of all newly 
constructed mutants and the WTs of both A. baylyi and E. coli 
were determined by coculturing each genotype together with one 
of two E. coli mutants auxotrophic for either His (DhisD) or Trp 
(DtrpB). Since the latter mutants require an external source of the 
focal amino acid to grow (Supplementary Fig. 1), their growth in 
coculture is indicative of the amino acid production levels of the 

respective other strain24. Quantifying the amino acid production 
levels of all tested donors  by determining the growth of 
cocultured auxotrophs (that is, number of colony-forming units 
(CFUs) formed  during  24 h)  revealed that  overproducers and 
cross-feeders of both species produced His and Trp levels that 
significantly exceeded the production levels of both WTs and the 
corresponding other auxotrophs (Fig. 1b). Moreover, the 
corresponding overproducers and cross-feeders of both species 
supported the growth of cocultured auxotrophs to a similar extent 
(Fig. 1b),  indicating  that  their  amino  acid  production  levels 
did not differ. Thus, the amino acid overproduction mutations 
(that  is, DhisL, DtrpR) significantly increased the His and Trp 
production levels of the corresponding mutants. 
 

 

Physical separation of strains prevents cross-feeding. The newly 
designed cross-feeding genotypes were scrutinized for their ability 
to support the growth of a complementary partner of the same or 
the other species. Indeed, all cross-feeding mutants of E. coli grew 
in coculture with complementary E. coli cells, as well as cross- 
feeding A. baylyi genotypes (Fig. 2a). Surprisingly, the same cross- 
feeding mutants  of A. baylyi that  showed marked  growth in 
coculture with E. coli exhibited virtually no growth when paired 
up with complementary genotypes of the same species (Fig. 2a). 
Next, we asked whether the transfer of amino acids between 
cross-feeders was based on  the  diffusion via the  surrounding 
medium or whether a physical contact was required for cells to 
interact. To test this, the same coculture experiment was per- 
formed again, but this time bacterial populations were separated 
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plasmid relative to its EGFP-expressing counterpart 
(Supplementary Fig. 6). Cultivating monocultures of A. baylyi 
and E. coli cross-feeders that contained either the mCherry- or 
the EGFP-expressing plasmid for 48 h and determining emission 
levels of both red and green fluorescence after 0, 24 and 48 h by 
flow cytometry corroborated  that  all cultures analysed emitted 
light  exclusively at  the  expected  wavelength over  the  entire 
experimental period (Supplementary Fig. 7). Thus, this 
experiment ruled out that the previously observed emergence of 
double-labelled cells was due to the emission of both colours from 
single-labelled cells. 

However, a cell that is scored as emitting both green and red 
fluorescence in  the  flow cytometer  may  also result  from  the 
physical attachment of two differentially labelled cells, rather than 
an exchange of cytoplasmic protein. However, three lines of 
evidence  support  the  interpretation   that  indeed  single  cells 
contained both  fluorescent proteins: first, dissociating possible 
cell clumps by vortexing did not significantly reduce the number 
of double-labelled cells (Supplementary Fig. 8a). Even treatment 
with a commercially available cell dissociation solution reduced 
the number of double-labelled cells by 19 and 11% only in the 
within-E. coli cocultures, while it did not affect the number of 
double-labelled  cells  in   any  of  the   interspecific  cocultures 
(Supplementary  Fig.  8a).  Second,  the   size  distribution   of 
double-labelled cells determined as the forward scatter (FSC) in 

the flow cytometer25 was congruent with the size distribution of 
EGFP-labelled WT cells of E. coli. Third, analysing cocultures of 
pairwise  cross-feeding  consortia  within  E.  coli  or   between 
A.  baylyi  and   E.  coli  under   the   fluorescence  microscope 
revealed individual cells that fluoresced in both red and green 
colour (Fig. 4c). 

Taken together, these results show that cross-feeding cells can 
bidirectionally exchange cytoplasmic constituents such as protein, 
yet they provided no evidence for a transfer of plasmid DNA (that 
is, pJBA24) between cells. 

 

 

Cytoplasmic exchange depends on nutritional status of cells. 
Since both cross-feeding genotypes vitally required one amino 
acid to grow, we hypothesized that externally adding the focal 
amino acid to the growth environment should abolish the 
experimentally imposed obligate requirement for cross-feeding. 
As a consequence, these conditions should also eliminate the 
exchange of cytoplasmic markers such as EGFP and  mCherry 
among cross-feeders. An experiment to test this hypothesis 
clearly validated that the transfer of cytoplasmic constituents was 
governed by the  physiological demand  for amino  acid cross- 
feeding: after  24 h,  cocultures of  cross-feeding consortia  that 
consisted of either two E. coli mutants or A. baylyi and E. coli 
exhibited a population-level ratio of double-labelled cells of 
around 40% when grown in unsupplemented minimal medium. 
In contrast, when the growth medium was supplemented with 
His and Trp, the proportion of double-labelled cells reached less 
than 1.4% of the total population (Fig. 4a), thus indicating that 
the exchange of cytoplasmic constituents was driven by the 
nutritional status of an E. coli cell. Similarly, no double-labelled 
cells could be detected by fluorescence microscopy when cocul- 
tures of cross-feeding genotypes were supplemented with His and 
Trp (Fig. 4c). 

Finally, coculture experiments between all possible combina- 
tions of differentially labelled WTs, auxotrophs, overproducers, 
and cross-feeders of both species revealed two conditions for a 
cytoplasmic  exchange  to   be  detectable  by  flow  cytometry 
(Fig. 4b).  First,  one  of  the  two  partners  needed  to  carry  a 
mutation causing amino acid overproduction. Second, the 
respective other  cells needed to be an E. coli cell auxotrophic 

for the corresponding amino acid. Altogether, this set of 
experiments  revealed that  the  species-specific exchange of 
cytoplasmic constituents between two bacterial cells was driven 
by the physiological demand for a given amino acid, as well as the 
presence of other cells satisfying this need. 
 

 

Cytoplasmic exchange requires the mixing of cocultures. All 
experiments so far have been conducted under shaken environ- 
mental conditions. A static incubation of cocultures, however, 
could enhance the exchange of cytoplasmic constituents due to 
facilitated cell–cell interactions under non-disturbed  conditions. 
This hypothesis was tested by incubating cross-feeding consortia 
consisting of one (that is, E. coli) or both species under static or 
continuously shaken environmental conditions, and quantifying 
the proportion  of double-labelled cells after 0 and 24 h by flow 
cytometry. In contrast to expectations, this experiment clarified 
that the shaking of cultures was essential for a cytoplasmic 
exchange to take place (Supplementary Fig. 9). Under shaking 
conditions,  around   50%  of  cells  were  double-labelled  after 
24 h of growth, while almost no double-labelled cells emerged 
when cocultures were incubated under static conditions 
(Supplementary Fig. 9a,c,e). The lacking cytoplasmic exchange 
under static incubation conditions strikingly coincided with a 
severely  reduced   growth  of  these  cultures  (Supplementary 
Fig. 9b,d,f) relative to cocultures that were incubated under 
shaken conditions, thus corroborating that an exchange of 
cytoplasmic material was essential for growth of these obligate 
cross-feeders. In  contrast  to our  expectations, this experiment 
indicated that the shaking of cultures promoted the exchange of 
cytoplasmic constituents. 
 

 

Cells connect via membrane-derived  nanotubes.  What is the 
structural basis for the observed transfer of cytoplasmic elements 
among  cross-feeding cells? To answer this  question, scanning 
electron micrographs of cross-feeding consortia consisting of 
either E. coli or A. baylyi and E. coli were recorded. In the pre- 
sence  of  amino  acids  (that  is,  His  and  Trp,  100 mM  each), 
cocultures of cross-feeding genotypes grew as individual cells with 
no discernible sign of a physical attachment of two or more cells 
(Fig. 4c). However, without an external supply of His and Trp, 
cells of both types of cocultures consistently formed tubular 
structures that connected cells (Figs 4c and 5). The average 

diameter of these nanotubes was 80±10 nm, and the distance 
covered between two cells ranged between 0.05 and 14 mm. 

To identify whether these intercellular connections consist of 
membrane-derived lipids, 9-h-old interspecific cocultures of the 
cross-feeding mutants  A. baylyi DhisDDtrpR and  E. coli 
DtrpBDhisL were  labelled with  the  lipophilic  dye  DiO  that 

intercalates in lipid membranes20. Subsequent in vivo fluorescent 
imaging of the otherwise mCherry-labelled cells should pinpoint 
the potential lipid-based nature  of extracellular appendages by 
their  green  fluorescence. In  line  with  these  expectations, the 
lipophilic dye stained threads that connected multiple cells, 
indicating they consist of membrane-derived lipids (Fig. 6). 

Finally,  imaging   consortia   of   cross-feeding  mutants   of 
A. baylyi (DhisDDtrpR containing pJBA24-mCherry) and E. coli 
(DtrpBDhisL labelled with pJBA24-egfp) by fluorescence micro- 
scopy clearly showed that nanotubes fluoresced in green colour 
(Fig. 7a,b), implying they are hollow and contained EGFP. Next, 
time-lapse fluorescence microscopy experiments were set up to 
visualize transfer of cytoplasmic material using the same 
interspecific pair of cross-feeding mutants. However, nanotubes 
did not establish when cross-feeding genotypes were cocultured 
on  agarose  pads.  Instead,  when  cells were  allowed to  form 
nanotubes   in   a   shaken,   liquid   culture   and   subsequently 
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images of five randomly chosen mCherry-  and  EGFP-labelled 
cells that only showed fluorescence in their respective channel 
and which were not visibly connected to any other cell (Fig. 7d,e) 
ruled out that the previously observed increase in green 
fluorescence was due to stochastic fluctuations. These findings 
strongly suggest the involvement of nanotubes in mediating the 
observed intercellular transfer of cytoplasmic constituents. 

Altogether, these analyses established that cross-feeding cells 
exchanged cytoplasmic constituents via an intercellular network 
of nanotubular  structures that  consisted of membrane-derived 
lipids. 

 

Discussion 
Cooperative metabolic interactions are very common among both 
Archaea and Bacteria6,26 and these ‘syntrophic’  interactions are in 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 | Nanotubular structures connect cross-feeding cells. 
Intercellular connections form between two cross-feeding genotypes of 
E. coli, as well as between A. baylyi and E. coli. Shown  are scanning  electron 
micrographic images of (a) an E. coli DtrpBDhisL  and  E. coli DhisDDtrpR 
coculture after 24 h, as well as (b,c) an A. baylyi DhisDDtrpR and 
E. coli DtrpBDhisL coculture  after (b) 48 h and (c) 24 h of growth in 
unsupplemented minimal medium. Scale bars, 0.2 mm (a,b), 2 mm (c). 

many cases vitally important  for the fitness of the microbes 
involved. However, since the exchanged commodities are often 
costly to produce, a diffusion-based transfer between cells via the 
extracellular environment entails risks: the metabolite may be lost 
or be consumed by an unintended third party. This problem even 
aggravates in  agitated, aqueous ecosystems, where released 
compounds diffuse at high rates, thus hampering the build-up 
of sufficiently high local concentrations. 

Our results demonstrate that E. coli can solve this problem by 
employing cell–cell connections for a targeted transfer of 
cytoplasmic constituents. Utilizing engineered obligate cross- 
feeding interactions,  we show that  (i)  E. coli, but  likely not 
A. baylyi, can  exchange nutrients  and  proteins  in  a  contact- 
dependent manner with cells of the same or a different species 
(A. baylyi), (ii)  the  observed exchange was bidirectional and 
required a mixing of cocultures, (iii) lipid-based nanotubes were 
the structural basis for the observed cytoplasmic exchange, and 
(iv) the establishment of intercellular bridges and the exchange of 
cytoplasmic materials was strongly dependent on the nutritional 
status of a given cell. As such, our study provides first 
experimental evidence for an intercellular transfer of nutrients 
via nanotubes. 

The observation that E. coli established  tubular connections with 
other bacterial cells is strikingly reminiscent of Myxococcus 

xanthus15,27  cells, which have been  shown  to  form  a  discrete, 
three-dimensional network of membrane tubes that interconnects 
cells. Cells of this social bacterium use membrane extensions to 
mediate the intercellular transfer of outer membrane proteins and 

lipids14, yet not cytoplasmic contents27. Given the recent evidence 
that Bacillus subtilis cells can exchange cytoplasmic elements such as 

protein and plasmid DNA via tubular connections18, it is tempting 
to speculate that this type of contact-dependent metabolite exchange 
may be more common in bacteria than previously thought. 

Many bacteria28,29, including E. coli12, are known to produce 
membrane vesicles that are involved in an intercellular transport 
of chemical signals16, lipids30, protein31, and DNA12, as well as in 
promoting adherence to other bacterial or eukaryotic host 

cells32,33.  In   most   of  these  cases,  membrane   vesicles  are 
believed  to  pinch  off  the  producing  cell  and  traverse  the 
external environment as cell-independent units that eventually 

fuse with potential recipients16. Also in our experiments we 
observed vesicular structures that appeared attached to bacterial 
cells or seemingly free-floating in the cell external environment 
(Fig. 7a,b). While the results of the population separation 
experiment (Fig. 2a) and the fluorescence microscopic analyses 
are inconsistent with the idea that  cytoplasmic elements were 
trafficked with free membrane vesicles, their functional role in 
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Figure 6 | Nanotubes consist of membrane-derived lipids. Cocultures of cross-feeding genotypes of A. baylyi DhisDDtrpR  and E. coli DtrpBDhisL 
(both mCherry labelled) after 9 h of growth were stained with a lipophilic dye (DiO) that intercalates in membranes. Lipid membranes fluoresce in 
green colour. Pointers indicate nanotubes that connect cells. Scale bars, 2 mm. 
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cell attachment in E. coli to remedy shortcomings for the required 
metabolites. 

In our study, cross-feeding  E. coli cells could both serve as donor 
and recipient of amino acids (Fig. 2a) and protein (Figs 3 and 4), 
suggesting   the   exchange   of   cytoplasmic   constituents   was 
bidirectional on a population level. A bidirectional exchange of 
cytoplasmic elements has been previously documented in B. subtilis 
cells that exchanged plasmids and cytoplasmic protein via 

nanotubes18,  as  well as  in  archaea36,37  that  use  cytoplasmic 
bridges to reciprocally exchange non-conjugative plasmids between 
cells. Strikingly, the labelling plasmid used in this study (pJBA24) 
was not transferred between cells, which could imply the plasmid 

was bound to the host’ s chromosome and/or its inner membrane38. 
Future work should investigate whether other plasmids that differ 
in, for example, their copy number or mode of replication/ 
segregation can be exchanged in this way. Finally, the degree of 
specificity with  which cytoplasmic elements can  be exchanged 
between cells remains unknown. In  particular, an  uncontrolled 
passage of regulatory or catalytic elements through nanotubes may 
jeopardize homeostasis and development of connected cells. Thus, 
it will be interesting to explore whether nanotube-forming bacteria 
utilize diffusion barriers39  or  specialized secretion systems40 to 
selectively control nanotube traffic. 

In this study, a passive movement was required for cell–cell 
connections to successfully establish (Supplementary Fig. 9). A 
possibility to  account  for  this  observation is  that  outgrowing 
nanotubes might have impaired the active swimming motility of 
cells. Given the length nanotubular structures can reach (that is, up 
to 14 mm, Figs 5c and 7b), it seems likely that these appendages 
impede swimming. As a consequence, physical mixing of cells was 
required to increase the chance of a given recipient to encounter 
and attach to suitable donor cells. This is in contrast to previous 

reports on B. subtilis18 or M. xanthus27,41 in which cell–cell 
interactions   required   a   solid   surface.  In   our   experiments, 
nanotubes  did  not  establish on  (agarose) surfaces. Even when 
cells were allowed to pre-form nanotubes in liquid cultures and 
then were transferred to an agarose pad, nanotubes were only 
transiently visible and then appeared to destabilize over time. 

To successfully attach to other bacterial cells in an agitated, 
liquid  environment,  E.  coli needed  not  only  to  be  able  to 
recognize suitable cells, but also required an efficient mechanism 
to capture detected cells. In our experiments, amino acids released 
from cross-feeding genotypes could have served as a chemical cue 

to recognize suitable host cells42–44. However, it remains unclear 
whether E. coli utilizes chemosensory mechanisms to specifically 
identify target cells or whether the binding of nanotubes is rather 
promiscuous. Our finding that E. coli readily accepted A. baylyi as 
a  suitable host  suggests metabolic suitability rather  than  kin 
discrimination mechanisms45 governed the choice of E. coli. 
Identifying   the   molecular   mechanisms   that    regulate   the 
attachment of two bacterial cells as well as degree of specificity 
that underlies this process are exciting areas of research that 
should be addressed in the future. 

Starving cells that  were  part  of  the  intercellular  network 
‘imported’  certain metabolites, while other cells functioned as a 
source for the required compounds. Depending on the net benefit 
incurred to the cells involved, the spectrum of possible ecological 
interactions that could result from this attachment process ranges 
from truly parasitic, where mainly the receiver benefits, to 

mutualistic interactions, in which both parties benefit46. Although 
in  this  study  the  ecological interactions  were  synthetically 
contrived, the  observation that  E. coli but  not  A. baylyi was 
capable of satisfying its metabolic requirements by connecting 
itself to other  bacterial cells was not  experimentally arranged. 
The discovery that the loss of conditionally essential biosynthetic 
genes induced the formation of nanotubes (Fig. 4) represents a 

previously unknown strategy of E. coli that may help starving cells 
to survive in their natural environment. 

Given the widespread occurrence of pili, nanotubes, or other 
mechanisms bacteria utilize to exchange molecules, the inten- 
tional or enforced establishment of intercellular connections to 
engage in cooperative and parasitic nutritional interactions may 
represent a common ecological strategy pursued by bacteria. One 
of the best-studied examples of a metabolic parasitism involves 
two species of archaea: Nanoarchaeum equitans grow attached to 

the surface of Ignicococcus hospitalis47. Probably as a consequence 
of this metabolic parasitism, N. equitans has a drastically reduced 
genome size of only 0.5 megabases and  thus depends entirely 
on   its  host  for  provisioning  essential  metabolites  such  as 

lipids, nucleotides, amino  acids, and  cofactors48. Interestingly, 
membranous   structures   connect   host   and   symbiont   and 

N. equitans obtains its amino acids from I. hospitalis49, which 
strikingly parallels the observations of our study. Also the recent 
observation that a shortage of nutrients seems to trigger an 
exchange of cytoplasmic constituents between cocultured cells of 

Desulfovibrio   vulgaris    and     Clostridium    acetobutylicum50
 

corroborates the interpretation that bacteria may commonly 
establish direct cell-cell connections to counter nutritional stress. 
Several other examples have been documented, in which bacteria 
and/or  archaea engage in obligate, metabolic interactions51,52— 
virtually all of which rely on close, physical associations between 
interacting partners. 

A direct intercellular transfer via nanotubes likely minimizes the 
loss of  a  given compound  by diffusion, thereby  reducing  the 
physiological costs of producing the metabolite. Thus, nanotube- 
mediated cross-feeding is likely most relevant in nutrient-limiting 
or aqueous environments, whereas a diffusion of metabolites via 
the cell external environment should be more prevalent in nutrient- 

rich habitats, such as milk53, or when the exchanged metabolite is 
released in  sufficiently high  concentrations  (for  example, as  a 

metabolic by-product54). Furthermore, also for cells that are located 
within a close physical proximity such as a bacterial biofilm, it may 

be more  efficient to  transfer  metabolites by diffusion9  than  to 
activate a contact-dependent transfer mechanism. However, it 
remains to be determined how intercellular networks affect the 
growth and metabolism of the cells involved, as well as which 
ecological factors favour their establishment. 

Theory predicts for a population of cells that perform two vital 
functions that, phenotypic specialists should emerge when their 
cumulative costs are less than the cost for one cell to perform both 

tasks55. Indeed, analysing cocultures of two E. coli genotypes that 
both  required  a  different  amino  acid  to  grow, yet  produced 
increased amounts of others, revealed a significant fitness 
advantage of cooperative cross-feeding relative to  prototrophic 

WT   cells56.  Especially,  the   tremendous   fitness   advantage 
auxotrophic   bacteria  gain  when  the   required   metabolite  is 

supplied externally56–58 should exert a strong selection pressure 
that favours cross-feeding of essential metabolites among bacterial 
cells. The enormous variation in gene content that is commonly 

found among different genomes of E. coli59,60, together with the 
observation that often seemingly essential biosynthetic functions 
are  lost56  may  reflect the  ability of E. coli to  compensate its 
metabolic deficiencies by connecting to other cells. 

Our  discovery that  bacteria utilize intercellular connections 
to   exchange  nutrients   and   thus   complement   each  other’ s 
metabolic  requirements  has  significant  implications  for 
microbial  ecology  and   physiology.  The   possibility  that   by 
connecting via nanotubes two or more bacterial cells can 
significantly extend their biochemical repertoire without the need 
for genetic change, suggests bacteria may function as multi- 
cellular,  interconnected   entities   rather   than   as   individual, 
physiologically autonomous units. 
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Methods 
Strains and plasmids. Genetic targets, which would lead to metabolic auxo- 
trophies for His and Trp (that is, hisD and trpB) or an overproduction of His and 
Trp (that is, hisL and trpR) upon deletion from the genomes of Acinetobacter baylyi 
ADP1 and Escherichia coli BW25113 were identified using the KEGG pathway 

database61. 
Acinetobacter baylyi ADP1 deletion mutants were constructed as described62. In 

brief, linear constructs of the kanamycin cassette with 50 -overhangs homologous to 
the insertion site were produced by PCR. For this, DNA of the plasmid pKD4 
(ref. 63) was used as a template to amplify the kanamycin resistance cassette 
(Supplementary Table 1). Upstream and downstream regions homologous to hisD, 
trpB, hisL, and trpR were amplified using primers with a 50 -extension that was 
complementary to the primers used to amplify the kanamycin cassette 
(Supplementary Table 1). The three resulting products were combined by PCR to 
obtain the kanamycin cassette fused to the upstream and downstream homologous 

overhangs. Natural competence of A. baylyi was utilized to transform the linear 
fragments into the WT. Transformation was done by diluting 20 ml of a 16-h-old 
culture grown in LB medium. This diluted culture was incubated at 30 °C with 
shaking. Fifty ml PCR mix containing the deletion cassette was added to this culture 
and incubated at 30 °C with shaking for 2 h. Finally, the culture volume was 
concentrated to 100 ml, plated on LB agar plates containing kanamycin, and 
incubated at 30 °C for colonies to appear. To construct double-deletion mutants, 
the kanamycin resistance cassette was removed from the receiver’ s genome. For 
this, upstream and downstream regions homologous to hisD, trpB, hisL, and trpR 
were amplified using primers with a 50 -extension that were complementary to each 
other (Supplementary Table 1). 

E. coli BW25113 (ref. 64) was used as WT, into which deletion alleles from 

existing single-gene deletion mutants64 were introduced by P1 transduction65. 
Double-deletion mutants were constructed using auxotrophic mutants as receiver 
and amino acid overproducing mutants as donor strains. For this, the kanamycin 
resistance cassette was removed from the receiver’ s genome as described63. 

The cytoplasm of all mutant and WT strains were individually labelled with 

either pJBA24-egfp24 or pJBA24-mCherry—two plasmids that constitutively 
express the ampicillin resistance gene bla, as well as a green (EGFP) or red 
(mCherry) fluorescent protein, respectively. pJBA24-mCherry was constructed by 

PCR amplifying mCherry using pFPV-mCherry66 as a template and oligonucleotide 
primers mCherry-SphI (50 -ATATAGCATGCTGAGCAAGGGCGAG-30 ) and 
mCherry-HindIII (50 -CTCTCAAGCTTACTTGTACAGCTCGTCCATG-30 ) 
(restriction sites are underlined). The resulting amplicon was digested with SphI 
and HindIII, and the mCherry-containing fragment ligated between an artificial 
ribosomal-binding site II (RBSII) and transcriptional terminators T0  and T1  of 

pJBA24 (ref. 67). Finally, all strains were transformed using either plasmid. All 
strains and plasmids used are listed in Supplementary Table 2. 

 

Culture conditions and general procedures. In all experiments, cells were grown 

in minimal medium for Azospirillium brasilense (MMAB)68 without biotin, using 
fructose instead of malate as a carbon source. The required amino acids (that is, 
His and Trp) were supplemented singly or together if necessary (100 mM each). 
Replicate precultures were started with individual colonies picked from freshly 
streaked LB agar plates that have been incubated for 24 h. The next morning, 
precultures were diluted to an optical density (OD)600 nm  of 0.1 and subsequently 
10 ml (B105 CFUs) were used to inoculate 1 ml MMAB medium. Amino acids in 
the abovementioned concentration were added to the MMAB medium as specified. 
All cultures were incubated at 30 °C for 24 h under shaking conditions (230 r.p.m,) 
in 96-deep-well plates (max. volume: 2 ml, Thermo Scientific Nunc) or (100 r.p.m.) 
in ‘Nurmikko cells’  (see ‘Population separation experiment’  below). Both the 
EGFP- and the mCherry-labelled variants of the focal genotypes were used in all 
experiments, unless specified otherwise. Antibiotics were used at the following 
concentrations: kanamycin 50 mg ml - 1 and ampicillin 100  mg ml - 1. 

 

Supplementation experiment. To identify whether auxotrophs and cross-feeders 

of both species required amino acids to grow, the corresponding strains were 
cultivated in 1 ml of unsupplemented or amino acid-containing MMAB medium 
(one amino acid). Cultures were plated on LB agar plates at 0 h and after 24 h, and 
the number of CFUs quantified. This experiment was replicated eight times. 

 

Amino acid quantification using biosensors. The two amino acid auxotrophic E. 

coli strains DhisD and DtrpB were used as biosensors24 to determine the production 
levels of His and Trp in growing cultures of WT, auxotrophs, overproducers, and 
cross-feeders. For this, precultures of all donor genotypes were inoculated (1:1 

ratio) together with one of the two auxotrophs in 1 ml of MMAB medium. After 
24 h, the population size of auxotrophs was determined by plating cocultures on LB 
agar plates that did or did not contain kanamycin. This experiment was replicated 
eight times per biosensor–donor combination. 

 

Amino acid quantification by liquid chromatography. The amount of His and 

Trp the two cross-feeding genotypes of both A. baylyi and E. coli released during 
24 h of growth in the external environment was quantified by liquid chromato- 
graphy (LC). For this, eight replicate populations of all EGFP-labelled strains were 

grown separately in 1 ml MMAB medium containing either His or Trp (100 mM). 
After incubation, cultures were centrifuged (3,800g for 20 min) and the supernatant 
immediately used for amino acid measurements. 

Histidine analysis was performed by reversed-phase high-performance LC 
on an Agilent 1100 HPLC system (Agilent Technologies, Böblingen, Germany) 
on a XDB-C18 (50 x 4.6 mm, 1.8 mm, Agilent Technologies) column with 
o-phtaldialdehyde-mercaptoethanol (OPA) pre-column derivatization. Each 
sample was pre-mixed with sodium borate buffer (0.5 M, pH 11) to a final volume 
of 100 ml. Derivatization was performed automatically by an Agilent 1100 
autosampler (Agilent Technologies) that added 30 ml of a mixture of OPA (85 mM) 
and b-mercaptoethanol (130 mM) to the sample, incubated it for 2 min at room 
temperature and loaded 30 ml onto the column. The mobile phase consisted of a 
mixture of solvent A (10 mM ammonium acetate) and solvent B (acetonitrile). In 

the beginning, 10% of solution B was used, which rose to 20% in the course of 

10 min. The flow rate was set to 0.8 ml min - 1. After 10 min, the mobile phase was 
switched to 100% solvent B for 4 min. After that the column was reconstituted for 
3 min with 10% of solvent B before the next analysis cycle started. The amino acid- 
OPA derivatives were quantified using a fluorescence detector (Ex: 340 nm, Em: 
445 nm). The calibration was done in the same way using a histidine standard in 
concentrations ranging from 0.005 to 0.05 mM. 

For tryptophan analysis, supernatant samples were diluted in a ratio of 

1:10 (v:v) in water containing the 13C, 15N-labelled amino acid mix (Isotec, 
Miamisburg, OH, USA) and directly analysed by LC/MS/MS. The analysis method 
was modified from a protocol described by Jander et al.69. Chromatography was 
performed on an Agilent 1200 HPLC system (Agilent Technologies). Separation 
was achieved on a Zorbax Eclipse XDB-C18 column (50 x 4.6 mm, 1.8 mm, Agilent 
Technologies). Formic acid (0.05%) in water and acetonitrile were employed as 
mobile phases A and B, respectively. The elution profile was: 0–1 min, 3% B in A; 
1–2.7 min, 3–100% B in A; 2.7–3 min, 100% B and 3.1–6 min, 3% B in A. 

The mobile phase flow rate was 1.1 ml min - 1. The column temperature was 
maintained at 25 °C. The LC was coupled to an API 3200 tandem mass 
spectrometer (Applied Biosystems, Darmstadt, Germany) equipped with a 
Turbospray ion source operated in positive ionization mode. The ionspray voltage 
was maintained at 5,500 eV. The turbo gas temperature was set at 700 °C. 
Nebulizing gas was set at 70 psi, curtain gas at 35 psi, heating gas at 70 psi, and 
collision gas at 2 psi. Multiple reaction monitoring was used to monitor analyte 
parent ion-product ion. Both Q1 and Q3 quadrupoles were maintained at unit 
resolution. Analyst 1.5 software (Applied Biosystems) was used for data acquisition 

and processing. All samples were spiked with 13C, 15N-labelled amino acids 

(algal amino acids 13C, 15N, Isotec) at a concentration of 10 mg of the mix per ml. 
Trp was quantified using 13C, 15N-Phe as internal standard applying a response 
factor of 0.42. 

 

Population separation experiment. To determine whether physically separating 

cross-feeding genotypes prevents the reciprocal exchange of amino acids, a device 
was designed and constructed (Supplementary Fig. 2) that allowed to separate two 
populations of bacterial cells with a membrane filter (0.2 mm, polyethersulfone, Pall 
GmbH, Germany). We named the device ‘Nurmikko cell’  after Veikko Nurmikko, 
a Finnish biochemist who developed a similar apparatus in 1957 (ref. 70). Pairs of 
cross-feeders were inoculated (1:1 ratio) in separate growth chambers of a 
Nurmikko cell (total volume: 8 ml), which were or were not separated by a filter 
membrane. Each combination (that is, pair of cross-feeder with or without filter) 
was replicated four times. The entire assembly was incubated at 30 °C for 24 h 
under shaking conditions (100 r.p.m.). The density of each cross-feeding partner 
was determined at the onset of the experiment and after 24 h by plating on MMAB 
plates containing selective amino acids (His or Trp). 

To test whether the membrane filter can hinder the diffusion of amino acids 
between two growth chambers of a Nurmikko cell (Supplementary Fig. 2), each 
labelled variant of the individual cross-feeding strains was inoculated in one side of 
a Nurmikko cell. Afterwards, 80 ml of a 10-mM amino acid solution the genotype 
required for growth (that is, His or Trp) was supplemented either into the same 
growth chamber or, alternatively, across the filter membrane (final amino acid 
concentration: 100 mM). Cultures were incubated as before and plated on LB agar 
plates to estimate CFU counts at 0 h and after 24 h. This experiment was replicated 
four times. 

A control experiment was performed to test whether the growth of unseparated 
cross-feeders could be explained by a release of amino acids into the external 
growth environment. For this, the amount of His and Trp released by the 
GFP-labelled variants of the cross-feeding mutants of both species during 24 h of 
growth was determined by LC. Then, cross-feeding genotypes were cultivated for 
24 h in saturating concentrations of either His or Trp (that is, 100 mM), a 
concentration that significantly exceeded the amounts cross-feeding genotypes 
would have produced during 24 h of growth (that is, 0.5 mM), or unsupplemented 
MMAB medium. After 0 and 24 h, cultures were plated on unsupplemented and 
kanamycin-containing LB agar plates and the number of CFUs was determined. 
This experiment was replicated eight times. 

 

Plasmid transfer experiment. To determine whether plasmids are transferred 

between cells, pairs of cross-feeding genotypes within E. coli and two combinations 
of A. baylyi and E. coli were co-inoculated (1:1 ratio) in MMAB medium. However, 

42



 

 

only one of the two cross-feeding genotypes was labelled with the pJBA24-egfp 
plasmid, which also expressed ampicillin resistance (that is, bla gene). The 
population density of each cross-feeder was determined after 0 and 24 h by plating 
dilution series of vortexed cocultures on MMAB agar plates that contained either 
His or Trp, and the frequency of plasmid carriage was quantified by supplementing 
the amino acid-containing agar plates with ampicillin or no antibiotic as control. 
The proportion of EGFP-labelled cells at 0 h and after 24 h in each of the cocultures 
was determined by flow cytometry. This experiment was replicated three times. 

 

 

Flow cytometry. The proportion of mCherry-, EGFP- and double-labelled cells 

(that is, cells containing both EGFP and mCherry) within a given coculture was 
determined by flow cytometry. To this end, cells were excited at 488 nm by a blue 
solid-state laser at 20 mW and at 561 nm by a yellow solid-state laser at 100 mW 
using a Partec CyFlow Space flow cytometer (Partec GmbH, Germany). Green and 
red fluorescence was detected at 536 nm (FL1) and 610 nm (FL3), respectively. 
Non-fluorescent E. coli WT culture was used as control to set the gates for 

EGFP- and mCherry-positive cells. Data acquisition and analysis was done using 
the FlowMax software (Partec GmbH). 

 

 

Flow cytometric analysis of cytoplasmic protein transfer. Pairs of cross-feeding 

genotypes, whose cytoplasms were differentially labelled with a plasmid containing 
either egfp or mCherry were co-inoculated (1:1 ratio) in 1 ml MMAB medium. 
After 24 h, cocultures were diluted to OD600 nm  0.01 and 20 ml of this culture 

transferred to 1 ml of fresh MMAB medium. Cocultures were sampled after 0, 12, 
24 and 48 h and the number of single- and double-labelled  cells was determined by 
flow cytometry. This experiment was replicated eight times. The same experiment 
was repeated with all three combinations of cross-feeders within E. coli and 
between A. baylyi and E. coli, yet this time cocultures were sampled at a much finer 
temporal resolution, namely after 0, 3, 6, 9, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24 and 

48 h, and the number of single- and double-labelled cells was determined as before. 
This experiment was replicated eight times. 

Two control experiments were performed to verify whether in the flow 
cytometrical measurements, double-labelled cells result from the sticking together 
of two individually labelled cells. First, the proportion of double-labelled cells was 
determined at 0 and at 24 h after applying no treatment, vortexing for 1 min or 
treating cells with a commercially available cell dissociation solution (FACSmax, 
Genlantis, USA). This experiment was replicated eight times. Second, the FSC of 
all double cells within a given coculture, as well as of E. coli WT labelled 
with pJBA24-egfp was determined after 24 h. In addition, the FSC of 1- and 
2-mm-diameter microspheres (Molecular probes Inc., USA) was quantified. 
These measurements were replicated six times. 

The effect of amino acid availability on the exchange of cytoplasmic 
constituents between cross-feeding genotypes was determined for all pairs of 
double-deletion mutants, except the intraspecific comparison within A. baylyi. All 

cross-feeders were individually precultured and after 24 h diluted to an OD600 nm  of 
0.01. Ten ml of these dilutions were used to co-inoculate two cross-feeding 
genotypes (1:1 ratio) in 1 ml of MMAB medium. After 24 h, the proportion of 
double-labelled cells in all cocultures was analysed by flow cytometry. This 
experiment was repeated four times. 

The role of the amino acid auxotrophy- or overproduction-causing mutations 
for inducing the nanotube-mediated exchange of cytoplasmic constituents was 
investigated by coculturing all possible pairs of EGFP- and mCherry-labelled 
variants of WTs, auxotrophs, overproducers and cross-feeders of both species, as 
described before. After 24 h, the percentage of double-labelled cells was quantified 
by flow cytometry. This experiment was replicated four times. 

 

 

Autofluorescence of EGFP- and mCherry-expressing cells. To confirm that 

EGFP- and mCherry-labelled cells fluoresce only at the expected wavelength, all 
cross-feeding genotypes expressing EGFP and mCherry were inoculated in MMAB 
medium supplemented with ampicillin, as well as the required amino acid (His and 
Trp). After 0, 24 and 48 h of incubation, the emission levels of red and green 
fluorescence was determined by flow cytometry in all eight replicate cultures. 

 

 

Fitness of EGFP- and mCherry-expressing cells. Competitive fitness experi- 

ments between the two variants of the same cross-feeding genotype labelled with 
either the pJBA24-egfp or pJBA24-mCherry plasmid were co-inoculated in equal 

densities (B105 CFUs ml - 1 each) in MMAB medium containing the required 
amino acid (that is, His or Trp), which was supplemented with ampicillin. After 0 
and 24 h, CFU numbers were determined by plating on LB plates with ampicillin. 
EGFP- and mCherry-expressing cells were distinguished based on the colour 
colonies developed on LB agar plates (mCherry: pink; EGFP: green). Competitive 
fitness of the differentially labelled cross-feeding genotypes was determined by 
calculating the Malthusian parameter (M) of both genotypes: M ¼ (ln (Nf/Ni)/24), 

where Ni is initial number of CFUs at 0 h and Nf is the final CFU count after 24 h71. 
Relative fitness was calculated as the ratio of Malthusian parameters. This 
experiment was replicated four times. 

Cytoplasmic exchange in shaken and static conditions. To test whether static 

culture conditions enhance the cytoplasmic constituents, pairs of cross-feeding 
strains, whose cytoplasms were differentially labelled with EGFP and mCherry, 
were co-inoculated (1:1 ratio) in 1 ml MMAB medium. These cocultures were 
either incubated at 30 °C under shaken conditions (230 r.p.m.) or in unshaken, 
static conditions. Cocultures were sampled after 0 and 24 h and the numbers of 
single- and double-labelled cells were determined by flow cytometry, and the 
number of CFUs quantified by plating on LB agar plates. This experiment was 
replicated three times. 

 

Fluorescence microscopy. The emission of red and green fluorescence from 

individual cells was confirmed by fluorescence microscopy. For this, all possible 
pairs of EGFP- or mCherry-labelled cross-feeders were co-inoculated (1:1 ratio) in 
1 ml of unsupplemented or amino acid-supplemented MMAB medium (that is, 
both His and Trp). After 24 h, samples were drawn and a drop was fixed on a 
microscopy slide. An Axio Imager Z1 Zeiss microscope (Carl Zeiss AG, Jena, 
Germany) was used to observe bacterial cells. Images were analysed using the 
software AxioVision LE Rel. 4.4 (Carl Zeiss AG). 

 

Fluorescence time-lapse microscopy. Cells were grown in liquid medium as 

above and thereby allowed to induce nanotube formation. Subsequently, cells were 
spread on a gel pad 1.5% Ultra Pure Agarose (Invitrogen, Darmstadt, Germany). 
Images were taken on an inverted epi-fluorescence microscope (Delta Vision 
Elite Imaging System, GE Healthcare) using a x 100, 1.4 numerical apperture 
UPlanSApo objective (Olympus) and a PCS Edge sCMOS camera. Focus was 
maintained using the Ultimate Focus system. Samples were imaged every 2 min 
using brightfield and fluorescence illumination, respectively, by applying the 
following filter and exposure conditions: GFP (475/28 nm, 525/50 nm) for 25 ms 
at 5% intensity, mCherry (575/25 nm 632/60 nm) for 15 ms at 10% and POL 

(5 ms, 32%). Under these exposure conditions, single-labelled cells did not show 
fluorescence in the respective other channel. For display, image stacks were split 
into three channels (red, green, and grey), converted into single images and merged 
for a specific time point using the Fiji software72. To visualize nanotubes, 
brightness and contrast settings were adjusted and a local contrast enhancement 
(CLAHE) followed by smoothening was applied in Fiji72 to obtain the final output 
(Fig. 6a). Fluorescence intensities of a given cell were determined by first splitting 
the image into the different channels (green and red). Next, fluorescent images 
were individually merged with a brightfield microscopic image to determine the 
cell outline. A line was then mapped across the cell and a plot profile of 30 grey 
values was generated. Subsequently, the line was shifted to a region with no cells in 
a radius of 20 mm from the focal cell to determine the background fluorescence. For 
calculation of final values, the average background fluorescence was subtracted 
from the fluorescence intensities (grey values) of the cells. Fluorescence  intensities 
were determined for each of the 17 frames (interval: 2 min). 

 

Lipid dye experiment. To determine whether nanotubes were lipid-based, 5 ml of 

Vybrant DiO Cell-Labelling Solution (Invitrogen) were added to 1 ml of a 9-h-old 
coculture of the interspecific cross-feeding consortium, of which both strains were 
labelled with the mCherry-expressing plasmid. After that, cells were incubated for 
30 min in the dark at 30 °C and subsequently imaged on agar pads using inverted 
epi-fluorescence microscopy as described above. Visualization of membrane 
structures was improved by applying a nonlinear histogram adjustment to 
fluorescence images using Fiji software72. 

 

Scanning electron microscopy. Cross-feeding strains were co-inoculated (1:1 

ratio) in 1 ml of unsupplemented or amino acid-supplemented MMAB medium 
(that is, both His and Trp), and after 24 h of growth, sedimented on poly-L-lysine- 
coated (Sigma-Aldrich) glass coverslips. Samples were fixed for 1 h with 2.5% 
glutaraldehyde in sodium cacodylate buffer (0.1 M, pH 7.0) and dehydrated with 
ethanol in serially increased concentration, followed by critical point drying in a 
Leica EM CPD300 Automated Critical Point Dryer (Leica, Germany). Then, 
samples were sputter-coated with gold (layer 25 nm) in a BAL-TEC SCD005 

Sputter Coater (BAL-TEC, Liechtenstein) and analysed at different magnifications 
with a LEO 1530 Gemini field emission scanning electron microscope (Carl Zeiss) 
at 5 kV acceleration voltage and a working distance of 5 mm using an in-lense 
secondary electron detector. 

 

Statistical analysis. Growth of a given (co-) culture during 24 h was expressed as 

‘cell count’ , which refers to the number of CFUs reached after 24 h minus the CFU 
number at 0 h. ‘Net cell count’  is the cell count a given strain reached in coculture 
minus its cell count in monoculture. Statistical differences between two experi- 
mental groups were identified using paired t-tests. Wilcoxon signed rank tests were 
performed when variances were inhomogeneous. Univariate analyses of variance 
followed by a LSD post hoc test were used to compare more than two experimental 
groups. Statistical differences in the proportion of EGFP-labelled cells at 0 and 24 h 
were identified using a replicated G-test of goodness-of-fit. One-sample t-tests were 
performed to test whether the competitive fitness of differentially labelled cross- 
feeding genotypes deviated significantly from 1 (that is, no fitness difference). 
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Summary: Here the question of how cellular metabolism deals with the process of metabolite 
exchange between cross-feeding cells is answered. Single gene deletion mutants of E. coli 
were used that render them auxotrophic for amino acid (recipient) or producers of amino 
acid (donor). A co-culture of the recipient and donor illustrated a contact-dependent 
exchange of amino acid between the two partners. Using a combination of, (i) co-culture 
experiments, (ii) cell internal amino acid sensors and (iii) transcriptional activity sensors, 
changes in the cytoplasm of both partners were quantified over the time. The results from 
this study provide a biochemical explanation for the establishment of cross-feeding consortia 
in nature. 
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ABSTRACT 

Symbiotic associations have radically shaped the diversity and complexity of life on earth. Many 

known symbioses represent physiological fusions of previously independent organisms, in which 

metabolites are traded between interacting partners in intricate ways. The first steps leading to 

this tight entanglement, however, remain unknown. Here we demonstrate that unidirectional 

cross-feeding of essential amino acids between two bacterial cells can already couple their 

metabolisms in a source-sink-like relationship. Auxotrophic recipients used intercellular nanotubes 

to derive amino acids from other bacterial cells. Removal of cytoplasmic amino acids in this way 

increased the amino acid production of donor cells by delaying feedback inhibition of the 

corresponding amino acid biosynthetic pathway. Strikingly, even though donor cells produced all 

the focal amino acids recipients required to grow, this additional metabolic burden did not incur 

detectable fitness costs. Our results demonstrate that one loss-of-function mutation is sufficient to 

couple the metabolic networks of two organisms, thus resulting in a functional fusion of two 

previously independent individuals. 

 

INTRODUCTION 

Life on Earth has produced a bewildering diversity of forms and physiologies. Understanding the 

evolution of this complexity in organismal design is a fundamental problem in biology. Major leaps 

in biological complexity have resulted from evolutionary transitions, during which previously 

independent organisms were functionally integrated to form a new, higher-level entity [1-3]. 

Eminent examples of such symbiotic associations involve transformative events such as the origin 

of the eukaryotic cell [1, 4, 5] or the emergence of plastids from a cyanobacterial progenitor [6].  

Selective advantages resulting from a cooperative division of labour among the constituent 

lower-level units likely fuelled the emergence of these associations [7, 8]. By interacting with 

individuals that feature novel traits, microorganisms could significantly extend their metabolic 

repertoire [9-11]. In this way, ecological strategies and evolutionary trajectories became available 

to the newly emerged consortium that otherwise would be inaccessible to individual organisms.  

To function as a cohesive whole, the interacting partners need to coordinate their cellular 

activities. In derived symbiotic systems, this usually involves a sophisticated chemical 

communication between cells via an exchange of e.g. hormones [12], ions [13], or sugars [14]. 

However, it remains unclear how primitive symbiotic associations that lack a coevolved regulatory 

machinery can maintain their functional integrity. At early phases of a symbiotic transition, the 

ability to coordinate functions among cells likely represents a major hurdle that determines the 

evolutionary fate of the incipient symbiotic association.  

Here we used the experimental tractability of bacteria to study the simplest kind of a metabolic 

interaction: the unidirectional transfer of metabolites from a producer to a recipient cell. Our main 

goal was to identify whether two bacteria that engage in such a one-way cross-feeding 

interaction, already display some primitive form of regulation to coordinate their combined 

metabolism.  
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For this, we took advantage of a set of bacterial mutants that have been previously used to 

study fitness consequences of obligate amino acid cross-feeding [15]. Deletion of one 

biosynthetic gene rendered the growth of the resulting mutant (hereafter: auxotroph) dependent 

on an external supply of amino acids, while deletion of another gene caused an overproduction of 

one or more amino acids (hereafter: overproducer). By combining both deletion alleles in one 

genetic background, ‘cross-feeder’ genotypes were created, which reciprocally exchanged 

essential amino acids in coculture. Surprisingly, coculturing two of these double-deletion mutants 

with complementary amino acid requirements provided the cross-feeding consortium with a 

significant growth advantage relative to the metabolically autonomous (i.e. prototrophic) wild type 

cells – even when both types directly competed against each other [15]. This observation 

suggested that cross-feeding genotypes benefitted from dividing their metabolic labour. Moreover, 

loss of genes that are essentially involved in amino acid biosynthesis triggered the formation of 

intercellular nanotubes, which auxotrophic bacteria used to obtain cytoplasmic amino acids from 

other bacterial cells [16]. However, it remains unclear how cross-feeding bacteria coordinate 

metabolite production and consumption despite the lack of derived regulatory mechanisms.  

We addressed this question using a unidirectional exchange of essential amino acids between 

two genotypes of Escherichia coli. These one-way cross-feeding interactions were established by 

matching amino acid donors with auxotrophic recipients that obligately required the corresponding 

amino acid for growth. Utilizing genetically engineered single gene deletion mutants for this 

purpose ruled out pre-existing traits that arose as a consequence of a coevolutionary history 

among both interaction partners. Moreover, a focus on unidirectional cross-feeding excluded 

confounding effects that may occur in reciprocal interactions such as e.g. self-enhancing 

feedback loops [17]. Taking advantage of intracellular reporter constructs allowed analysing both 

internal amino acid pools as well as their production levels in real-time under in-vivo conditions.  

Our results show that the two bacterial genotypes exchange amino acids via intercellular 

nanotubes. By lowering cytoplasmic amino acid-concentrations in donor cells, auxotrophic 

recipients delayed the feed-back inhibition of the donor’s biosynthetic pathway, thus increasing 

overall production levels of the focal amino acid. In other words, a nanotube-mediated exchange 

of cytoplasmic amino acids coupled the metabolism of two interacting partners in a source-sink-

like relationship. Our results show the ease with which mechanisms emerge that regulates the 

metabolic exchange between two symbiotic associates. By reducing conflicts of interests in this 

way, this mechanism likely helps to stabilise incipient symbiotic associations, thus contributing to 

the widespread distribution of metabolic cross-feeding interactions in nature.   

 

 

MATERIALS AND METHODS 

Strains and plasmids used in the study 

Escherichia coli BW25113 was used as wild type, from which mutants that overproduce amino 

acids (Δmdh, ΔnuoN, ΔhisL, and ΔtrpR) and mutants that are auxotrophic for histidine (ΔhisD), 

lysine (ΔlysR), or tryptophan (ΔtrpB) were obtained by a one-step gene inactivation method [15, 
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16] (supplementary table 1). Deletion alleles were transferred from existing single gene deletion 

mutants (i.e. the Keio collection [18]) into E. coli BW25113 using the phage P1. The cytoplasm of 

all donor and recipient strains was labelled by introducing one of the two plasmids pJBA24-egfp 

or pJBA24-mCherry. The plasmids constitutively express the ampicillin resistance gene (bla) as 

well as either the fluorescent protein EGFP (egfp) or mCherry (mCherry). Two reporter constructs 

were used: (i) lys-riboswitch (pZE21-GFPaav-Lys) for measuring internal amino acid levels 

(lysine) and (ii) promoter fusion plasmids (pUAA6-His and pUA66-Trp) for measuring the 

transcriptional activity of the promoters hisL and trpR respectively (see supplemental 

experimental procedures for plasmid construction and characterization of reporter constructs). 

 

Culturing methods and general procedures  

Minimal media for Azospirillum brasiliense (MMAB) [19] without biotin and with fructose (5 gl-1) 

instead of malate as a carbon source served as the growth media in all experiments. The required 

amino acids (histidine, lysine, and tryptophan) were supplemented individually at a concentration 

of 100 µM. Cultures were incubated at a temperature of 30 °C and shaken at 220 rpm for all 

experiments. All strains were precultured in replicates by picking single colonies from lysogeny 

broth (LB) [20] agar plates and incubated for 18 hours. The next morning, precultures were diluted 

to an optical density (OD) of 0.1 at 600 nm as determined by a Tecan Infinite F200 Pro 

platereader (Tecan Group Ltd, Switzerland). 10 µl of these precultures were inoculated into 1 ml 

of MMAB. In case of cocultures, donor and recipient were mixed in a 1:1 ratio by co-inoculating 5 

µl of each diluted preculture. To cultivate strains containing the lys-riboswitch, ampicillin was 

added at a concentration of 100 µg ml-1 and kanamycin was added at 50 µg ml-1 in case of strains 

containing the promoter-GFP-fusion constructs. Anhydrotetracycline (aTc) (Biomol GmbH, 

Hamburg, Germany) was added at a concentration of 42 ng ml-1 to induce expression of the lys-

riboswitch. 

Contact-dependent exchange of amino acids 

To determine if physical contact between cells is required for an exchange of amino acids 

between donor and recipient cells, a previously described method was used [16]. In brief, each 

donor (i.e. WT, Δmdh, ΔnuoN, ΔhisL, and ΔtrpR) was individually paired with each recipient (i.e. 

ΔhisD, ΔlysR, and ΔtrpB) and every combination was inoculated together into a Nurmikko cell that 

allows cultivation of both populations either together in the same compartment or separated by a 

membrane filter (0.22 µm, Pall Corporation, Michigan, USA). The filter allows passage of free 

amino acids in the medium, but prevents direct interaction between cells. After inoculating 4 ml of 

MMAB, the apparatus was incubated for 24 h. Bacterial growth after 24 h was determined as 

colony forming units (CFU) per ml culture volume by plating the serially-diluted culture on MMAB 

agar plates that did or did not contain ampicillin or kanamycin for selection. The increase in cell 

number was calculated as the logarithm of the difference between the CFU counts determined at 

the onset (0 h) of the experiment and after 24 h. Each donor-recipient combination was replicated 

4-times for both experimental conditions (i.e. with and without filter). 

 

52



Flow cytometric analysis of cytoplasmic protein transfer 

A previously established protocol was applied to identify a transfer of cytoplasmic material from 

donor to recipient genotypes [16]. For this, pairs of donor and recipient cells with differentially 

labeled cytoplasms (i.e. containing EGFP or mCherry) were co-inoculated into 1 ml MMAB. At the 

beginning of the experiment (0 h) and after 24 h of growth, the sample was analyzed in a Partec 

CyFlow Space flow cytometer (Partec, Germany). In the flow cytometer, cells were excited at 488 

nm with a blue solid-state laser (20 mV) and at 561 nm with a yellow solid-state laser (100 mV). 

Green (egfp) and red (mCherry) fluorescence emission was detected at 536 nm and 610 nm, 

respectively. E. coli WT devoid of any plasmid was used as a non-fluorescent control. The 

number of single- and double-labeled cells in a population was quantified at both time points. 

Data analysis and acquisition was done using the FlowMax software (Partec GmbH, Germany). 

The experiment was conducted by coculturing eGFP-labelled donor with mCherry-labelled 

recipient gentoypes and vice versa in all possible combinations (i.e. each donor paired with each 

recipient, except in case of ΔhisL and ΔtrpR, which were only paired with ΔhisD and ΔtrpB, 

respectively) for 24 h. Each combination was replicated 4-times. 

 

Fluorescence measurement  

The fluorescence levels of cells containing the lys-riboswitch or the promoter-GFP-fusion 

constructs were measured by transferring 200 µl of the culture into a black 96-microwell plate 

(Nunc, Denmark) and inserting the plate into a Tecan Infinite F200 Pro platereader (Tecan Group 

Ltd, Switzerland). The plate was shaken for 5 seconds prior to excitation at 488 nm followed by 

emission detection at 536 nm. Fluorescence values were always recorded together with a 

cognate control measurement. In case of the lys-riboswitch, the uninduced plasmid-containing 

culture served this purpose, while in case of the promoter fusion constructs, the promoter-less 

plasmid (pUA66) was used as control. 

 

Statistical analysis 

Normal distribution of data was assessed using the Kolmogorov-Smirnov test and data was 

considered to be normally distributed when P > 0.05. Homogeneity of variances was determined 

using the Levene’s test and variances were considered homogenous if P > 0.05. One-way 

ANOVA followed by a Dunnett’s T3 post hoc test was used to compare growth differences in the 

contact-dependent growth analysis. Differences in the fluorescence emission levels of donor cells 

in the presence and absence of a recipient were assessed with paired sample t-tests. The same 

test was used to compare the number of recipient (ΔlysR) CFUs at the start and at the end of the 

coculture experiments to detect donor-enabled growth. The False Discovery Rate (FDR) 

procedure of Benjamini et al. (2006) was applied to correct P values after multiple testing. 

Pearson product moment correlation provided identification of the statistical relationship between 

cytoplasmic amino acid levels and fluorescence emission as well as between cytoplasmic lysine 

level and growth of the ΔlysR recipient. 
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RESULTS 

Construction and characterisation of uni-directional cross-feeding interactions 

To establish unidirectional cross-feeding interactions within Escherichia coli, five different 

genotypes served as amino acid donors: Two single gene deletion mutants (Δmdh and ΔnuoN) 

that produce increased amounts of several different amino acids [15], two deletion mutants that 

produce increased amounts of either histidine or tryptophan (ΔhisL and ΔtrpR) [21], as well as 

non-manipulated E. coli WT cells. Three genotypes served as recipients, which were auxotrophic 

for the amino acids histidine (ΔhisD), lysine (ΔlysR), and tryptophan (ΔtrpB) (Figure 1, 

Supplementary table 1) and thus essentially required an external source of these metabolites to 

grow [22].  

As a first step, we quantified the amounts of amino acids the five donor strains produced in 

monoculture during 24 hours of growth. Analysing culture supernatant and cytoplasm of the focal 

donor populations using tools of analytical chemistry revealed ΔnuoN produced significantly 

increased amounts of histidine, lysine, and tryptophan in both fractions relative to the WT (Mann 

Whitney U-test: P<0.05, n=4, Supplementary figure 1), while the production levels of the Δmdh 

mutant did not differ significantly from WT-levels (Mann Whitney U-test: P>0.05, n=4, 

Supplementary figure 1). Similarly, both the intra- and extracellular concentrations of tryptophan in 

the ΔtrpR mutant were significantly elevated over WT-levels (Mann Whitney U-test: P<0.05, n=4, 

Supplementary figure 1). In contrast, ΔhisL released twice as much of histidine into the growth 

medium as was released by the WT (two sample Mann Whitney test: P<0.05, n=4, 

Supplementary figure 1), while it contained much lower levels of histidine in its cytoplasm than the 

WT.  

 

Intercellular transfer of amino acids is contact-dependent 

Capitalizing on the set of well-characterised genotypes, we addressed the question whether 

donor and recipient cells exchange amino acids in coculture and if so, whether this interaction is 

contact-dependent. To this end, populations of donor and recipient cells were cocultured in a 

device (i.e. Nurmikko cell), in which both partners can either be grown together in the same 

compartment or separated by a filter membrane that allows passage of small molecules, yet 

prevents direct interactions among bacterial cells [16]. Inoculating donor and recipient strains in 

different combinations revealed in all tested cases growth of auxotrophic recipients when they 

were not physically separated from donors (Figure 2A-C). Auxotrophic recipients grew 

significantly better when cocultured with amino acid overproducers (Δmdh, ΔnuoN, ΔhisL, and 

ΔtrpR) than with the WT (Dunnett’s T3 post hoc test: P<0.05, n=4). However, physically 

separating donor and recipient cells by introducing a filter membrane, effectively eliminated 

growth of recipients in all cases. Surprisingly, this treatment did not affect growth of donor 

populations (Figure 2A-C). Three main insights result from this experiment: First, producing the 

amino acids required by the auxotrophs for growth did not incur detectable fitness costs to the 

donor strain (Dunnett’s T3 post hoc test: P>0.05, n=4). Second, the total productivity of the 

coculture involving amino acid overproducers as donors (Δmdh, ΔnuoN, ΔhisL, and ΔtrpR) was 
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significantly increased when cells were cocultured in the same environment as compared to the 

situation when they were physically separated by a filter membrane (Mann Whitney U-test: 

P<0.05, n=4, Figure 2A-C). Third, physical contact between donor and recipient cells was 

required for a transfer of amino acids between cells.  

 

Cytoplasmic constituents are transferred from donor to recipient cells 

The observation that metabolite cross-feeding among cells was contact-dependent suggested 

that separating cells with a physical barrier prevented the establishment of structures required for 

amino acid exchange. A possible explanation for this could be intercellular nanotubes, which 

would allow direct transfer of cytoplasmic amino acids from donor to recipient cells [16]. This 

hypothesis was verified by differentially labelling the cytoplasm of donor and recipient cells with 

plasmids that express either red or green fluorescent proteins. Quantifying the proportion of 

recipient cells that contained both cytoplasmic markers after 24 hours of growth in coculture using 

flow cytometry allowed us to determine the exchange of cytoplasmic materials between cells 

under our experimental conditions. Finding that all cocultures analysed comprised a significant 

proportion of auxotrophic cells containing both fluorescent proteins simultaneously confirmed that 

cytoplasmic materials such as protein and free amino acids have been transferred from donor to 

recipient cells (Figure 2D). However, it has been previously shown that the presence of the amino 

acid, auxotrophic genotypes require for growth, prevents the formation of nanotubes [16]. 

Uncoupling the obligate dependency by supplementing the growth medium with saturating 

concentrations of the focal amino acid provided no evidence for a significant increase in double-

labelled auxotrophs (Figure 2D), thus linking the establishment of these structures to the 

physiological requirement for amino acid cross-feeding. 

 

Auxotrophic recipients derive amino acid from cocultured donor cells  

One hypothesis that could explain why recipients were able to grow in donor-recipient cocultures 

(Figure 2A-C) is that the physical contact between cells increased amino acid production rates of 

donors. Amino acid production is energetically and metabolically very costly to the bacterial cell 

[23-25]. To minimize production costs, bacteria tightly regulate their amino acid biosynthesis, for 

example by end product-mediated feedback mechanisms that reduce production rates when 

cytoplasmic amino acid concentrations exceed critical thresholds [26, 27]. In our case, recipient 

cells removed amino acids from the cytoplasm of donors using nanotubes. This decrease in the 

cell-internal amino acid pools could delay feedback inhibition in the donor cell, thus increasing its 

overall amino acid production (Figure 3). Quantifying the amount of free amino acids in the 

cytoplasm of donor cells in both the absence and presence of an auxotrophic recipient would 

allow testing the delayed-feedback inhibition hypothesis.  

 To determine cytoplasmic concentrations of free amino acids in real-time, we used the lysine 

riboswitch as a cell-internal biosensor. When free lysine binds to the riboswitch, it undergoes a 

conformational change, thus down-regulating expression of a downstream reporter gene, in our 

case gfp [28]. Introducing the plasmid-borne reporter construct (hereafter: Lys-riboswitch, 
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Supplementary figure 2) into the lysine auxotroph ΔlysR and exposing the resulting cells to 

different concentrations of lysine validated the utility of this biosensor: A strong negative 

correlation between the cells’ cytoplasmic amino acid concentrations as quantified via LC/MS/MS 

analysis of lysed cells and their fluorescence emission (r=-0.68, P=0.003,  Supplementary figure 

3) corroborated that this construct allowed indeed determining levels of free lysine in the 

cytoplasm of living E. coli cells by simply quantifying their GFP emission. 

 Accordingly, introducing the lys-riboswitch into the lysine auxotrophic recipient (ΔlysR) and 

growing the resulting strain in lysine-supplemented media revealed consistently elevated levels of 

cytoplasmic lysine throughout the experiment (Figure 4B). In contrast, when the same recipient 

cells were grown in the absence of lysine, cell-internal lysine levels were significantly reduced 

(FDR-corrected paired sample t-tests: P<0.005, n=4, Figure 4B), indicating amino acid starvation 

of auxotrophic cells. Interestingly, when recipient cells were grown in the presence of one of the 

three donor genotypes, their lysine levels resembled that of lysine-starved auxotrophs until 18 

hours of cocultivation, after which lysine levels increased back to the level of lysine-supplemented 

cells (FDR-corrected paired sample t-tests: P<0.04, n=4, Figure 4B). Prior to these coculture 

experiments, auxotrophs had to be pre-cultured in lysine-containing medium. Thus, the lysine 

levels measured in auxotrophs under coculture conditions likely reflected the fact that these cells 

first used up internal residual lysine pools before switching to other sources, in this case the 

cytoplasmic lysine of donor cells. Consistent with this interpretation is the observation that the 

presence of donor cells that provided this amino acid allowed lysine auxotrophs to grow (Figure 

4A). A strongly positive correlation between the growth of lysine auxotrophs and their cell-internal 

lysine levels corroborates that the lysine auxotrophic recipients obtained from cocultured donor 

cells limited their growth (r=0.625, P=0.003,  Supplementary figure 4). 

 

The presence of auxotrophic recipients increases cytoplasmic amino acid concentrations 

in donor cells  

To test the delayed-feedback inhibition hypothesis, the lys-riboswitch was introduced into the 

three donors WT, Δmdh, and ΔnuoN. Each of these donor genotypes were then grown in 

monoculture as well as in coculture with the lysine-auxotrophic strain ΔlysR. In these donor-

recipient pairs only the donor contained the reporter plasmid.  

The amino acid biosynthesis of WT cells is most stringently controlled, thus preventing 

accumulation of free lysine in its cytoplasm. In contrast, the cytoplasm of the ΔnuoN strain was 

characterized by generally increased amino acid levels (Supplementary figure 1). Similarly, 

deletion of the malate dehydrogenase gene caused an accumulation of citric acid cycle 

intermediates and thus a dysregulated amino acid biosynthesis in the Δmdh mutant [15]. Hence, 

removing lysine from the cytoplasm of WT cells is expected to trigger the strongest increase of 

cytoplasmic lysine levels. In contrast, higher concentrations of lysine or its biochemical precursors 

in the cytoplasm of the Δmdh and the ΔnuoN strain likely prevent a lowering of the lysine 

concentration below the critical threshold that triggers a further production.  
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We tested these predictions by monitoring changes in intracellular lysine levels of donor cells 

using the lys-riboswitch. In monocultures, lysine levels unveiled a steady increase over time 

(Figure 4C). This pattern, however, changed in the presence of the auxotrophic recipient. When 

E. coli WT cells were used as donor, their cytoplasmic lysine levels first increased significantly 

over the levels WT cells reached in monoculture (FDR-corrected paired sample t-tests: P<0.03, 

n=4, Figure 4C). After that lysine levels dropped significantly before increasing back to 

monoculture levels (Figure 4C). The observed fluctuations in the lysine levels of the donor’s 

cytoplasm are consistent with a nanotube-mediated cell attachment that is contingent on the 

nutritional status of the receiving cell. In contrast, when Δmdh and ΔnuoN were cocultured as 

donor strains together with the auxotrophic recipient, their cytoplasmic lysine levels did not differ 

significantly from the levels reached under monoculture conditions (Figure 4C). Thus, these 

observations are in line with the above expectations and confirm indeed that an auxotroph-

mediated removal of amino acids from the donor’s cytoplasm was sufficient to prompt an 

increased amino acid biosynthesis levels in donor cells. Conversely, lysine-auxotrophic recipients 

displayed significantly increased lysine levels when cocultured with one of the donor genotypes 

relative to lysine-starved monocultures. Both observations together suggest a unidirectional 

transfer of amino acids from donor to recipient cells that in turn results in an intercellular 

regulation of amino acid biosynthesis. Hence, these findings concur with the delayed-feedback 

inhibition hypothesis (Figure 3).  

 

The presence of auxotrophic recipients increases transcription of biosynthesis genes in 

donor cells 

Bacterial cells use feedback inhibition to maintain homeostasis of certain metabolites in their 

cytoplasm. Once metabolite levels drop below a certain threshold, production levels are increased 

to allow optimal growth [29, 30]. In the case of amino acid biosynthesis, the promoter elements 

that control transcription of biosynthetic pathways are frequently highly sensitive to intracellular 

levels of the synthesized amino acid [27], thus enhancing  transcription of the operon when the 

amino acid is scarce. As soon as amino acid concentrations reach optimal levels, further 

transcription is blocked enzymatically [31] or by direct binding of the amino acid to the operon 

[32].  

Taking advantage of this principle, we employed plasmid-borne promoter-GFP-fusion 

constructs (Supplementary figure 2) to identify transcriptional changes in amino acid biosynthesis 

genes. These reporter constructs have been previously shown to accurately measure promoter 

activity with a high temporal resolution [33]. For analysing the focal cross-feeding interactions, the 

fusion constructs for hisL and trpL were selected, which sense the cytoplasmic concentration of 

histidine [34] and tryptophan [32, 35], respectively. Correlating GFP emission levels with the 

cytoplasmic concentration of the corresponding amino acid as quantified chemically via 

LC/MS/MS revealed a significantly negative relationship for both histidine (r=-0.407, P<0.001, 

Supplementary figure 3) and tryptophan (r=-0.237, P=0.038, Supplementary figure 3), confirming 
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the link between transcription of metabolic genes and the cytoplasmic concentration of the 

corresponding amino acids.  

These promoter-GFP-fusion constructs were introduced into donor cells (i.e. WT, Δmdh, 

ΔhisL, and ΔtrpR), which were then cultivated for 24 hours in the absence or presence of the 

ΔhisD or ΔtrpB auxotrophic recipient cells. In line with expectations, donor strains WT, ΔhisL, and 

ΔtrpR displayed a starkly increased transcription of the respective biosynthetic operon in the 

presence of auxotrophic recipients as compared to donors growing in monoculture (FDR-

corrected paired t-tests: P<0.05, n=4, Figure 5). Together, these results demonstrate that the 

presence of auxotrophic recipients significantly increased the amino acid production of donor 

cells. By withdrawing amino acids from the cytoplasm of donor cells, auxotrophic recipients 

prompted donor cells to readjust their amino acid levels by up-regulating the transcription of the 

corresponding amino acid biosynthesis genes.  

 

DISCUSSION 

Our study demonstrates for the first time that the deletion of a single metabolic gene from a 

bacterial genome can be sufficient to couple the metabolism of two previously independent 

bacterial cells. Auxotrophic cells that had lost the ability to autonomously produce a certain amino 

acid established intercellular nanotubes to derive the amino acid they required for growth from 

other cells in the environment. Quantifying cell-internal amino acid levels revealed a primitive form 

of intercellular regulation of amino acid biosynthesis between donor and recipient cells in a 

source-sink-like manner. This relationship emerged as a consequence of feedback-based control 

mechanisms in the biosynthetic pathways of individual cells. The metabolic network of a cell 

provides and maintains specific levels of the building block metabolites that are required for 

growth [36]. An excess or deficit of metabolites within cells can disturb the cell-internal equilibrium 

and thus cause stress [37]. Our results show how the removal of metabolites from the donor’s 

cytoplasm translates into increased production levels of the metabolite. Strikingly, this source-

sink-like relationship between donor and recipient did not impose detectable fitness costs on the 

donor, but instead increased growth of the whole bacterial consortium.  

 Obligate metabolic interactions are common in natural microbial communities [38, 39]. When 

certain metabolites are sufficiently available in the environment, bacteria that lose the ability to 

produce these metabolites autonomously (e.g. by a mutational deactivation of the corresponding 

biosynthetic gene) gain a significant growth advantage of up to 30% relative to cells that produce 

these metabolites [40, 41]. As a consequence, auxotrophic genotypes rapidly increase in 

frequency by deriving the focal metabolites from both environmental sources and other cells in the 

vicinity. The results of our study help to explain this tremendous fitness advantage: by selectively 

upregulating only those biosynthetic pathways that enhance growth of the symbiotic consortium, 

cells only invest resources into those metabolites that help the respective interaction partner to 

grow. If the exchange is reciprocal, groups of cross-feeding cells gain a significant fitness 

advantage relative to metabolically autonomous types, even when both parties are directly 

competing against each other in the same environment [15]. Thus, the type of intercellular 
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regulation discovered in this study minimizes the amount of resources each interaction partner 

needs to invest into the corresponding others. From this emerges a metabolic division-of-labour, 

in which the benefit that participating cells gain is more, than the costs incurred by the interaction. 

This effect reduces conflicts of interests within consortia of cross-feeding cells, thus providing a 

mechanistic explanation for the widespread distribution of this type of interaction in nature.  

Nutritional stress or starvation in a cell is known to induce an aggregative lifestyle in bacteria 

[16, 42, 43]. In many cases, this physical contact is followed by an exchange of cytoplasmic 

contents between interacting cells [16, 42, 44]. Structurally similar connections between cells are 

known to be involved in short- and long-distance communication in many multicellular organisms 

[45, 46]. In both cases, networks of interacting cells are challenged with the question of how to 

optimally organize transport within the network such that all cells involved derive sufficient 

amounts of the traded signal or molecule. While the intercellular communication within tissues of 

eukaryotic organisms is notoriously difficult to study, our focal system provides a paradigmatic 

case to experimentally study the constraints and rules that determine the assembly and structure 

of intercellular communication networks. In this context, the results of our study suggest that the 

distribution of metabolites within networks of interacting bacterial cells mainly results from local 

interactions among neighbouring cells. 

 A metabolic relationship that is remarkably similar to the one studied here has been described 

for the obligate association between aphids, Acyrthosiphon pisum, and their endosymbiotic 

bacteria Buchnera aphidicola. In this system, the aphid host regulates the amino acid production 

levels of its symbionts by changing its intracellular precursor concentrations [47]. This functional 

link is afforded by a mutational elimination of feedback control in the corresponding biosynthetic 

pathway of the bacterial symbionts. Thus, similar to the results of our study, manipulation of the 

biosynthetic pathway in the host led to an efficient coupling of the metabolism of host and 

symbiont. An intimate coordination such as this enabled the symbionts to function as an extension 

of the host’s metabolic network.  

Our work highlights the ease, with which two previously independent organisms can form a 

physiologically integrated whole: the mutational deactivation of a biosynthetic gene is sufficient to 

trigger the establishment of this kind of metabolic interaction. Given that a loss of seemingly 

essential biosynthetic genes is very common in bacteria [40] and that a nanotube-mediated 

exchange of cytoplasmic materials is known to also occur between different bacterial species [16], 

it is well conceivable how a reductive genome evolution of coevolving bacteria can result in the 

formation of a multicellular metabolic network. Once a biosynthetic gene is lost, the resulting 

auxotrophic genotype is more likely to lose additional genes than to regain the lost function via 

horizontal gene transfer [48]. Given that dividing metabolic labour in this way can be highly 

advantageous for the interacting bacteria [15] relative to metabolic autonomy, bacteria in their 

natural environment may exist within networks of multiple bacterial cells that reciprocally 

exchange essential metabolites rather than as functionally autonomous units. 
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proteins EGFP and mCherry, respectively. Quantifying the proportion of double-labelled 

auxotrophs containing both cytoplasmic markers after 0 h and 24 h of coculture allowed 

assessing an exchange of cytoplasm between bacterial cells. The experiment was conducted in 

the absence (grey triangles) and presence (black triangles) of the focal amino acid (100 µM). 

Asterisks indicate significant differences (paired t-test: ** P< 0.001, * P<0.05, n=4). In all cases, 

mean (±95% confidence interval) are shown.  
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Summary: The transfer of nutrients between cells through nanotubes requires the activity of 
several gene products and the coordination of different pathways. This study shines light on 
the transcriptional changes arising in E. coli cross-feeding genotypes resulting from, (i) amino 
acid starvation and (ii) the exchange of cytoplasmic contents through nanotubes. A 
combination of gene expression analysis and targeted gene deletions in different genotypic 
backgrounds followed by growth quantification was used. The results of this study indicate 
the involvement of c-di-GMP signaling and membrane vesicles in the process of cross-
feeding in E. coli.  
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ABSTRACT 

Inter-cellular connections are widespread in nature. Through structures such as gap junctions, 

type secretion systems, membrane vesicles and pili, cells in a given environment exchange 

information in the form of chemical compounds. Contact-dependent interactions in microbial 

communities have been predominantly studied for the exchange of toxins, virulence factors or 

genetic elements. Recently, a phenomenon of contact-dependent exchange of essential nutrients 

between bacteria was observed. A synthetically engineered cross-feeding system of Escherichia 

coli and Acinetobacter baylyi, depicted the use of nanotubes to transfer cytoplasmic contents 

between complementary cross-feeding genotypes. Gene expression data revealed differential 

regulation of genes involved in cellular adhesion, chemotaxis, motility and membrane vesicle 

formation. The effect of individual gene targets was studied in a simplified system comprising of 

an auxotrophic recipient and over-producing donor genotype. In this unidirectional cross-feeding 

pair a potential role of c-di-GMP signaling in the aggregation of cells for enhancing the process of 

cross-feeding was identified. Furthermore, increased vesicle production by the auxotrophic 

recipient resulted in significantly higher amino acid uptake by the recipient. Interestingly, the 

increased uptake of amino acid by the auxotroph through vesicles was found to be independent of 

the donor genotype. This study implies the far-reaching effects of a single loss-of-function 

mutation in bacteria that live in communities with potential donor cells which exists often in 

naturally occurring populations.           

 

INTRODUCTION 

Cross-feeding in microbial communities, is the phenomenon in which one cell supports the growth 

of another cell. Growth support is provided to the recipient cell through by-products or end-

products of a metabolic pathway, co-factors, low molecular weight compounds or ions [1, 2]. 

Species that depict cross-feeding have been shown to grow better when in co-culture with the 

interacting partner than in monoculture by division of metabolic labor [3, 4]. The interacting 

partner (recipient) behaves as a metabolic sink that takes up by-products resulting from the 

metabolic activity of the focal cell for growth. By constantly removing these by-products or ions, 

the concentration of the by-product is maintained at sub-inhibitory levels [5]. The focal cell is 

hence uninhibited by an accumulation of the by-product or end-product can grow better. Being 

part of a cross-feeding consortium also appears to be a beneficial and preferred lifestyle for many 

microorganisms in their natural habitat [2, 6-9].  

Exchange of metabolites within cross-feeding consortia can take place in a variety of ways. The 

metabolites that are actively transported or undergo passive diffusion across the cell membrane 

are subsequently available for uptake in the environment [10]. This type of cross-feeding is 

considered to be diffusion-based cross-feeding between two partners in the same environment. 

Alternatively direct cell contact established between interacting partners also serves as a 
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transport channel. Organisms are often seen in close associations when grown in coculture 

indicating a role of cell adhesion in the process of metabolite exchange [11]. Experimental 

evolution of auxotrophic Escherichia coli genotypes depicted the formation of clusters during 

growth in liquid media [12]. Establishing connections between interacting partners is a way of 

positive assortment of reciprocally beneficial phenotypes, through the establishment of a feed-

forward loop [13-15]. A contact-dependent mechanism for cross-feeding of nutrients could thus 

help in long term maintenance of the interaction as compared to a diffusion-based exchange.   

Contact-dependent mechanisms for exchange of molecules have been employed by eukaryotic 

systems as well [16-18]. Eukaryotic multicellular organisms use inter-cellular channels like gap 

junctions for exchanging low-molecular weight compounds between adjacent cells [19, 20] 

whereas exosomes, plasmodesmata or tunneling nanotubes transfer larger components like 

organelles over long distances [21, 22]. Contact-dependent exchange can also be observed in 

symbiotic associations involving eukaryotic hosts and microorganisms. The plant rhizosphere, 

consisting of plant growth promoting rhizobacteria (PGPR), depicts colonization of the plant root 

by the PGPRs [23]. Upon colonization of the plant cell by the rhizobacterium, there is a transport 

of sucrose from plant phloem to the rhizobacterium. A close association between the plant cell 

and symbiont allows efficient transport of fixed nitrogen (in the form of ammonium) back to the 

plant cell. Contact-dependent exchange is hence common in the ecosystem.  

Recently a contact-dependent exchange of amino acids was observed in cross-feeding genotypes 

of Escherichia coli and Acinetobacter baylyi [24]. Wildtype cells of each species had been 

genetically modified by introducing mutations that imparted: (i) dependence on external supply of 

one amino acid (auxotrophy) and (ii) increased production of a second amino acid (over-

production). A combination of these two mutations in one background resulted in a cross-feeding 

genotype (Fig. 1). By pairing a given cross-feeder with another cross-feeder, harboring mutations 

in complementary amino acid biosynthetic pathways, the cross-feeders were capable of 

synergistic growth. The cross-feeders employed nanotubes for the exchange of cytoplasmic 

content when grown in shaken liquid medium devoid of an external supply of amino acids. The 

loss-of-function mutation resulting in auxotrophy in E .coli was found to be a prerequisite for 

nanotube formation. However changes in the transcriptome resulting from the auxotrophy were 

unclear making it challenging to provide a model for the process of amino acid cross-feeding via 

nanotubes. Furthermore, little was revealed about the structure and composition of the nanotubes 

through staining and microscopy. Membrane lipids were detected in the nanotubes upon staining 

with the Vybrant DiO solution. The biosynthetic processes leading to the inclusion of these 

membrane lipids in the nanotubes was unknown.        

This study provides a holistic view of the changes in gene expression and consequently a 

determination of the pathways involved in the process of nanotube-mediated cross-feeding in 

E.coli. Gene expression analysis of cross-feeding genotypes in different conditions was carried 

out as a first step to identify changes in transcription during amino acid cross-feeding. Differential 

expression was observed for genes involved in: (i) lipid biosynthesis, (ii) biofilm formation, (iii) 
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toxin production, (iv) vesicle formation and (v) amino acid biosynthesis. Characterization of 

candidate genes was performed through deleting the gene in an auxotrophic genotype of E. coli 

resulting in a double deletion mutant. Several double deletion mutants depicted reduced growth in 

coculture with an over-producer genotype. Surprisingly, two of the candidate genes, namely yhjH 

and degP, upon deletion in the auxotrophic background resulted in increased growth of the 

auxotroph. Increased growth in co-culture of the yhjH double deletion mutant, combined with gene 

expression data indicates a role of c-di-GMP signaling in the process of cross-feeding. 

Furthermore by introducing the degP deletion in different genetic backgrounds (auxotroph and 

over-producer) of E. coli, the involvement of membrane vesicles in cross-feeding was identified. 

Taken together, our results show a coordination of different cellular processes during amino acid 

cross-feeding in E. coli. The fact that these processes are triggered upon nutrient starvation 

highlights the possibility of such interactions taking place between bacteria in nutrient-poor 

environments.      

 

MATERIALS & METHODS 

Strain construction 

Cross-feeding genotypes of Escherichia coli were used for transcriptomic analysis from previous 

studies [24]. In short, E. coli BW25113 was used as the wildtype (WT), into which deletion alleles 

of amino acid biosynthesis genes were sequentially introduced via P1 phage transduction [25]. 

The auxotrophic mutation (ΔhisD or ΔtrpB) was first introduced into the WT resulting in the 

auxotrophic genotypes. These auxotrophic genotypes then served as the background strain for 

introducing the overproduction mutation (ΔtrpR or ΔhisL). Before introduction of the second 

mutation (overproduction) the kanamycin resistance cassette was removed from the auxotrophic 

receiver strain using the pCP20 plasmid with the method described elsewhere (Datsenko and 

Wanner, 2000). All generated strains have been represented in figure 1. 

Candidate genes obtained from the analysis of the gene expression data were tested for 

involvement in growth through cross-feeding by deleting the genes in different backgrounds. 

These double deletion mutants for the selected genes were also constructed using P1 phage 

transduction. The auxotrophic E. coli (ΔhisD or ΔtrpB) were used as recipients and the Keio 

collection strains were the donors. The confirmation of double mutants was done through growth 

measurements in presence and absence of amino acid (for the auxotrophy) and PCR (for the 

second mutation). Two sets of primers were used for PCR confirmation as described in Baba et 

al., 2006 forward and reverse primers of the target gene as well as K1 and K2 primers for the 

kanamycin resistance cassette. The K1 and K2 primers bind to the center of the sequence in the 

kanamycin resistance cassette. In order to confirm the deletion the forward primer was paired the 

K1 primer whereas the reverse primer was paired with the K2 primer to obtain two separate PCR 

fragments. Primer sequence are provided in supplementary table 1. 
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Growth media and culture conditions 

All cultures were grown in minimal media (MMAB) without biotin, with fructose (5 g L-1) as a 

carbon source. Media supplemented with amino acid (histidine or tryptophan) at a final 

concentration of 100 µm was used for the growth of auxotrophic genotypes in monoculture. All 

genotypes were first precultured by inoculating a single colony in 1 ml MMAB for 18 h, followed by 

adjusting the optical density (OD600) to 0.1. The final cultures were prepared by inoculating 10 µL 

of the above adjusted preculture into 1 mL of MMAB liquid, in case of cocultures 5 µL of each 

partner was inoculated into 1 mL MMAB liquid. This dilution of the cultures results in a starting 

population size of 1*105 cells ml-1. All cultures were incubated at 30°C in shaking conditions (220 

rpm). A total cell count was obtained through spread-plate technique on solid media (MMAB 

agar). The solid medium was modified by addition of either kanamycin (50 µg ml-1) or amino acid 

(100 µM) as required for double deletion genotypes and auxotrophic genotypes. The cultures 

were appropriately diluted prior to spreading at 0 h and 24 h. A difference between the cell count 

at 0 h and 24 h was used to quantify the growth of a given genotype.  

Experimental set-up for the microarray analysis 

Gene expression profiling was done for six different conditions (Fig. 2) using the Agilent one color 

E. coli Gene Expression Microarray, 8x15K, which contains probes for the following strains: K12-

MG1655, O157:H7 EDL933, O157:H7 VT2-Sakai, CFT073. Monocultures of cross-feeders (ΔhisD 

ΔtrpR and ΔtrpBΔhisL), were first grown in MMAB media supplemented with the respective amino 

acid (100 µM) for 18 hours in order to obtain a cell density of 0.2 OD600. These monocultures were 

then centrifuged and washed twice with non-supplemented liquid MMAB. After washing the 

cultures were split into two conditions: (i) liquid MMAB supplemented with amino acid (histidine 

sample label H and tryptophan sample label T) and (ii) non-supplemented MMAB (samples 

labeled as Hs and Ts). These cultures were further incubated for 20 hours before harvesting for 

RNA extraction. In case of the coculture of cross-feeders, the individual strains were pre-cultured 

as described earlier. The cultures were then inoculated in a 1:1 ratio in two conditions: (i) MMAB 

media supplemented with amino acid (histidine and tryptophan, both at 100 µM, sample label CC) 

and (ii) non-supplemented MMAB (sample label CCs). The cocultures CC and CCs were 

harvested after 20 hours for RNA extraction. The total culture volume for each replicate of the 

described samples (H, T, Hs, Ts, CC, and CCs) was 80 mL and grown under 220 rpm shaking 

conditions at 30°C. All samples were in replicates of four. 

 

RNA extraction, labeling, and hybridization 

Each of the above six cultures (H, T, Hs, Ts, CC, and CCs) was centrifuged to obtain cell biomass 

for RNA extraction using the innuPREP RNA mini kit (Analytik Jena, Germany). The cells were 

lysed using lysozyme followed by centrifugation and filtration steps as mentioned in the protocol 

provided by the supplier to separate the total RNA. The purified RNA was quantified and tested 
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for purity using the 2100 Bioanalyzer (Agilent Technologies, CA, USA). The 2100 Bioanalyzer 

provides a RNA integrity number (RIN) to depict the quality of RNA using an algorithm that 

integrates the RNA electropherogram characteristics with the ribosomal subunits. Only the 

samples showing a RIN > 8.0 were selected for labeling. This purified RNA was labeled and 

analyzed with the One-color microarray-based gene expression analysis kit (Agilent 

Technologies, CA, USA). This method employs the low input quick amp labeling protocol. All 

required reagents were ordered and used as per kit provider protocols. Briefly, the RNA in the 

samples was converted to cDNA followed by conversion to cRNA and subsequent labeling with 

the Cy3 dye. This labeled cRNA was purified using the RNeasy minikit by Qiagen (Qiagen GmbH, 

Hilden, Germany) before application onto the microarray chip for hybridization. The labeled 

samples were tested for quality by calculating the amount of Cy3 label present per ng of RNA, 

following which only those labeled samples with a value greater than 5.0 pmol ng-1 were selected 

for application on the microarray chip. After 17 hours of hybridization at 65 degrees celcius, the 

chip was washed and scanned using an Agilent SureScan microarray scanner (Agilent 

Technologies, CA, USA).  

Bioinformatics analysis  

Scanning of the microarray chip resulted in a list of fluorescence values for each probe (15,208 

probes in total) with the fluorescence intensity indicating the quantity of mRNA that bound to a 

given probe. A list was obtained for each of the 24 samples (6 conditions and 4 replicates). These 

lists of the fluorescence intensity values were initially tested for quality control and further 

analyzed using the GeneSpring software (provided by Agilent Genomics). The median normalized 

samples were first categorized by the following baseline selection: (i) media conditions (with or 

without amino acid), (ii) culture conditions (monoculture or coculture), (iii) type of amino acid 

auxotrophy (histidine or tryptophan), (iv) replicate number (1, 2, 3, or 4). Pairwise comparisons 

between the 6 different samples (H, T, Hs, Ts, CC and CCs) were carried out to identify 

differentially expressed (DE) genes detected in at least 3 of the 4 replicate samples. This set of 

DE genes was filtered by expression using a cut-off of 100 for the upper values and 20 for the 

lower values to remove background noise. This filtered set of DE genes was then checked with 

other pairs for significant overlap. The comparisons are illustrated in figure 3.  

The above processing and filtration steps resulted in a set of 325 DE genes which were subjected 

to further analysis to identify gene ontology (using the PANTHER v.8.0 software) [26]. To identify 

the metabolic pathways affected, the KEGG Mapper (v.2.8) [27] was used whereas for the 

obtaining protein association networks the STRING software (v.10.0) [28] was used 

(supplementary figure 1). Finally to determine the gene regulatory networks affected by the 

differential expression of the 325 genes enlisted, the Regulondb (v.9.0) [29] was used.  
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Fitness experiments 

The involvement of a gene in metabolite cross-feeding was tested by deleting the gene of interest 

in an auxotrophic recipient and measuring the effect of deletion on growth of the auxotroph. The 

deletion was introduced into the auxotrophic recipient (ΔhisD or ΔtrpB) or the donor (WT, ΔtrpR or 

ΔhisL) using P1 transduction as mentioned before. The double mutants were then paired with the 

respective recipient or donor as required and cocultured in a 1:1 ratio in liquid MMAB. The initial 

cell count at 0 hour was calculated by spread plate technique on selective plates (described in 

‘growth and culture conditions’). After 24 hours of incubation the final count was determined again 

by serial dilution and plating. The initial cell count (CFU mL-1) was subtracted from the final cell 

count (CFU mL-1) to obtain the growth.  

Vesicle fraction extraction 

The double-deletion genotype ΔhisDΔdegP were used for obtaining a cell-free vesicle rich 

fraction. The strains were grown as monocultures in presence of histidine for 18 to 20 hours till an 

OD600 of 0.2 was obtained. These cultures were then washed twice with liquid MMAB and finally 

suspended in fresh MMAB medium without histidine. The cultures were further incubated in these 

amino acid starved conditions for 12 hours to induce vesicle production. Amino acid starvation in 

E. coli WT cells is known to induce hypervesiculation [30, 31]. Cells were centrifuged at 10,000 

r.p.m. for 10 minutes to obtain a firm pellet. The supernatant was filtered (0.45 µM, 

polyethersulfone, Pall GmbH, Germany) to remove unsettled cells and large cell debris. This 

filtrate was used as the growth medium for cocultures of recipients (ΔhisD, and ΔhisDΔnlpA) with 

donor cells (WT and ΔhisL).  

Scanning electron microscopy 

Cross-feeding genotypes were co-cultured in 1 ml of liquid MMAB without amino acid 

supplementation for 24 h. 1 ml of culture was then fixed using a 2.5% glutaraldehyde solution 

prepared in a sodium cacodylate buffer (0.1 M, pH 7.0) for 1 h at room temperature. The same 

procedure for fixation was carried out for cocultures of auxotroph and over-producer genotypes. 

All fixed samples were allowed to sediment onto poly-L-lysine coated glass coverslips (Sigma-

Aldrich) for an additional 1 h time period. The glass coverslips were sputter coated with gold layer 

(25 nm) in a BAL-TEC SCD005 Sputter Coater (BAL-TEC, Lichtenstein). The gold coated 

samples were visualized using a LEO 1530 Gemini field emission scanning electron microscope 

(Carl Zeiss, Jena) at 5 kV acceleration voltage and a working distance of 5 mm using an in-lens 

secondary electron detector.  

Statistical analysis 

All datasets containing growth of the different genotypes were tested for normal distribution using 

the Kolmogorov-Smirnov test (normal distribution considered if P>0.05). Homogeneity of 

variances was determined using Levene’s test (variances considered homogenous if P>0.05). 
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The growth of double deletion mutants was compared to the single deletion strain (auxotroph or 

over-producer genotype) for significant difference using an independent sample t-test.  

 

RESULTS & DISCUSSION 

Microarray set-up for transcriptional analysis of E. coli cross-feeders 

The aim of this study was to identify specific genes involved in the formation of nanotubes as well 

as in the process of metabolite cross-feeding. To this end, a transcriptional profiling of E. coli 

cross-feeding strains was done since this species depicted intra- and inter-species cross-feeding 

of amino acids. The cross-feeding genotypes (Fig. 1) were grown in conditions that induce uptake 

of nutrients from the partner (cross-feeding) in comparison to those in which the nutrients are 

taken up from the environment (Fig. 2). An external supply of amino acids was previously shown 

to decouple the otherwise obligate cross-feeding interaction. Hence, s complementary set of E. 

coli cross-feeding genotypes, ΔhisDΔtrpR with ΔtrpBΔhisL, was cocultured in media with amino 

acid (CC) and without amino acid (CCs) supplementation. Apart from the two conditions (CC and 

CCs) additional treatments were carried out to remove background noise and to check for 

inherent changes in gene expression when an auxotrophic E. coli is exposed to starvation. To 

achieve this, monocultures of the cross-feeders in conditions with histidine (H) or tryptophan (T) 

and without histidine (Hs) or tryptophan (Ts) were used as control (Fig. 2).  

A large number (approximately 2000) of differentially expressed genes (DEGs) was obtained 

when the coculture conditions (CC vs CCs) were subjected to a pairwise analysis. This dataset of 

DEGs was processed through stepwise comparisons to acquire an enriched dataset of genes 

solely involved in amino acid cross-feeding (Fig. 3). Firstly, to filter out the effects of amino acid 

starvation the DEGs in the monoculture pairs, (H vs Hs and T vs Ts), were identified (Fig. 3A). 

These genes were tested for overlap with the DEGs in the coculture conditions (CC vs CCs). The 

genes that were common between the above monoculture (H vs Hs and T vs Ts) and coculture 

(CC vs CCs) comparisons would be those involved in amino acid stress irrespective of the 

presence of another genotype. Subsequently these genes were omitted from the set of DEGs in 

the coculture pair (CC vs CCs), resulting in a set of 350 genes (Fig. 3A). Apart from the effect of 

the amino acid scarcity, the effects due to the presence of another genotype were also filtered out 

(Fig. 3B). In order to do this the combined set of genes expressed in the coculture conditions (CC 

+ CCs) was compared individually to those in monoculture with amino acid (H and T). The genes 

differently regulated in monocultures in presence of amino acids are in nutrient rich conditions 

where cytoplasmic exchange was not observed. Thus this set of genes was subtracted from the 

combined set ((CC + CCs) – H and (CC + CCs) – T). Furthermore, this refined set (CC + CCs) 

was compared individually to the genes expressed in monocultures without amino acid, Hs and 

Ts. This comparison yielded those genes that are differently regulated for cross-feeding of 

individual amino acids (histidine or tryptophan) as well as for cross-feeding in general. This 

80



second approach of filtration for the presence of another genotype resulted in a list of 50 genes 

(Fig. 3B). 

Upregulation of cell adhesion and c-di-GMP production  

Previous studies on cross-feeding in E. coli provided three main structural insights [24], first that 

nanotubes connect cells. Secondly, nanotubes are composed of membrane lipids and lastly 

nanotubes were of varying lengths. Furthermore, E. coli depicted the formation of nanotubes in 

coculture with E. coli cross-feeding genotypes as well as A. baylyi cross-feeding genotypes. A. 

baylyi on the other hand was not able to exchange cytoplasmic content when paired with the 

other A. baylyi cross-feeding. These characteristics of E. coli and the nanotubes, hinted towards 

the involvement of specific functions in E. coli. As a result, the above enriched dataset was 

analyzed for genes involved in the following four categories: (i) cellular adhesion, (ii) chemotaxis, 

(iii) motility, (iv) vesicle formation and (v) synthesis of the membrane lipids and fatty acids (Fig. 4, 

supplementary figure 1). Candidate genes in these categories were deleted in the auxotrophic 

recipients, ΔhisD and ΔtrpB. These double deletion mutants were then tested for the ability to 

cross-feed amino acids by pairing with the complementary over-producer, ΔhisL or ΔtrpR (Fig. 4).  

Five gene deletions led to a reduction in fitness in both the auxotrophic backgrounds when in co-

culture with the over-producer genotype. Noteworthy among these were genes involved in cellular 

adhesion like csgE, ppdA and ydeQ. csgE is a regulator for the formation of curli fibers on the cell 

membrane [32], ppdA is a peptidase that is hypothesized to play a role in biofilm formation [33] 

and ydeQ is a fimbrial-like adhesion protein present on the cell surface [34]. Individual gene 

deletions of csgE and ydeQ are known to cause a decrease in curli formation and hence 

stickiness in E. coli WT. Cellular adhesion is highly beneficial in syntrophic consortia to form 

clusters of interacting cells [11, 14, 35]. By forming clusters the interacting partners are stable in a 

spatially unstructured environment and in close proximity which enhances molecule exchange. 

Moreover, fimbriae in E. coli are known for connecting cells at short distances like those seen in a 

biofilm based lifestyle. Similarly when an auxotrophic recipient is present with potential donor cells 

in a shaken liquid environment, cell adhesion could be beneficial, first for establishing a 

connection with a neighboring cell and second to maintain this connection.    

Genes involved in chemotaxis and motility like flgM, tap and ycgR, upon deletion in the auxotroph 

resulted in a decreased fitness. Interestingly, the deletion of motor protein genes, motA and motB, 

did not have significant effects on the fitness, however the deletion of a molecular brake, ycgR, 

decreased fitness of the double deletion auxotroph compared to a single deletion auxotroph (Fig. 

4). ycgR is known to play a role in reducing flagellar motor speeds upon c-di-GMP binding in the 

stationary phase [36]. An absence of ycgR has a two-fold effect: (i) higher motility in stationary 

phase and (ii) free c-di-GMP in the cytoplasm. Motility is beneficial for recipient cells to access the 

available space in search of a donor cell. Secondly c-di-GMP, a second messenger that binds to 

a various effector molecules, is known to promote sessile behavior and biofilm formation [37]. 
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Recently c-di-GMP was also shown to play a role in intercellular communication in Myxococcus 

xanthus and Burkholderia cepacia for coordinated multicellular behavior [38].  

C-di-GMP signaling enhances growth in co-culture 

Transcriptomic analysis of E.coli cross-feeding genotypes indicated three DEGs that regulate the 

levels of c-di-GMP in the cell. First, the gene yhjH, responsible for cleavage and subsequent 

deactivation of c-di-GMP was downregulated in the cross-feeding coculture. Second, a 

diguanylate cyclase (ydaM/dgcM) which is responsible for the production of c-di-GMP was 

upregulated in the cross-feeding coculture. Third, the molecular brake, ycgR, which binds to c-di-

GMP to reduce motility, was found to be downregulated in the cross-feeding coculture. The 

cumulative effect of changes in the gene expression of these three candidate genes would result 

in increased intracellular levels of c-di-GMP. An increase in c-di-GMP in E. coli is known to induce 

production of amyloid curli fibres by activating the transcription factor, csgD. Furthermore c-di-

GMP also mediates the synthesis of the exopolysaccharide poly-β-1,6-N-acetyl-glucosamine 

(PGA) which trigger biofilm formation [37].  

We hypothesized that increased intracellular levels of c-di-GMP would lead to increased cell 

adhesion between auxotrophic recipient and over-producing donor genotypes when in co-culture. 

Hence the introduction of a mutation that results in increased c-di-GMP production in either 

background (recipient or donor), should lead to increased cross-feeding and subsequently 

increased growth. To this end, the yhjH gene was deleted in both genotypes and tested for the 

effect of this deletion on growth. ΔyhjH when introduced into the recipient background, ΔhisD, and 

paired with a donor, ΔhisL, depicted a significant increase in growth (independent t-test, *** 

P<0.001, n=4). The recipient double-deletion mutant, ΔhisDΔyhjH, was able to cross-feed better 

in comparison to the single-deletion mutant recipient, ΔhisD (Fig. 5A). This increased growth of 

ΔhisDΔyhjH did not affect the growth of the donor negatively. Upon introduction of the ΔyhjH 

deletion in the donor genotype, ΔhisLΔyhjH, there was no change in the growth of the recipient, 

ΔhisD (Fig. 5A). Hence the presence of the ΔyhjH mutation only in the auxotrophic background 

has a benefit indicating potential epistasis between the auxotrophic mutation and ΔyhjH. Neither 

double-deletion mutants (ΔhisDΔyhjH or ΔhisLΔyhjH) depicted a reduced growth in coculture with 

amino acid indicating no basal effect on growth due to the mutation. Additionally the donor double 

mutant in comparison to the donor showed similar growth thus ruling out the possibility of epistatic 

effects of the over-production mutation and the ΔyhjH mutation. 

A recent study of nanotubes produced by B. subtilis revealed the involvement of ymdB, a c-di-

GMP phosphodiesterase and also a homologue of yhjH [39]. Interestingly here a B. subtilis donor 

produces ymdB to assist the exchange of the plasmid to a recipient cell. In contrast to this we see 

that the absence of yhjH leads to higher growth in E. coli auxotrophs. It is hence the cellular 

response mediated by effectors of c-di-GMP that play a role rather than the yhjH protein itself. A 

deletion of yhjH results in higher c-di-GMP levels, which induces the formation of curli fibres as 
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well as PGA molecules, both of which lead to an aggregative lifestyle. SEM imaging of the 

ΔhisDΔyhjH double mutant confirmed the presence of increased curli expression (Fig. 5B).      

Presence of vesicles enhances cross-feeding 

Scanning electron microscopy (SEM) of cross-feeding genotypes revealed the presence of 

membrane-bound spherical vesicles in the surrounding (Fig. 6A). In some cases these vesicles 

seemed tethered to the nanotubes bridging multiple cells together. Additionally SEM imaging of 

an auxotrophic recipient co-cultured with over-producer donor genotypes also depicted vesicles 

(Fig. 6B). Vesicle chain-like structures were also observed associated to cells in the auxotroph-

over-producer coculture (Fig. 6C). In line with expectations, the vesicles were not observed when 

the donor-recipient pair was co-cultured in the presence of amino acid (Fig. 6D) indicating the role 

of vesicles in cross-feeding of amino acids.  

Transcriptional analysis hinted towards the differential expression of genes regulating vesicle 

formation. An upregulation of the gene nlpA, an inner membrane lipoprotein anchoring point for 

new vesicles, was observed in cross-feeding cocultures. Moreover the downregulation of degP, a 

serine protease present in the periplasmic space was also observed in the same cocultures. A 

deletion of degP in E. coli K12 leads to accumulation of misfolded or aggregated proteins in the 

periplasm to which the cell counteracts by hyper-vesiculating (increased vesicle production than 

WT) [40]. Thus the combined effect of an upregulation of nlpA and downregulation of degP would 

lead to higher vesicle production in the cell. First, the effect of deleting these genes (degP and 

nlpA) in an auxotrophic background was determined. The deletion of nlpA in the ΔhisD auxotroph 

resulted in a decreased growth compared to the single-deletion auxotroph, when cocultured with 

the ΔhisL over-producer (Fig. 4). Subsequently, the deletion of degP in the auxotroph, ΔhisD, led 

to an increase in growth (Fig. 4).  

There are two possible origins for the production of vesicles, (i) vesicles are produced by the 

donor genotype or (ii) vesicles are produced by the auxotrophic recipient. Proteomic analysis of 

outer-membrane vesicles (OMVs) produced by E. coli depicts the presence of proteins for amino 

acid transport [41]. Hence the OMVs produced by an over-producing donor cell would contain the 

focal amino acid. Alternatively, the OMVs produced by an auxotrophic recipient cell would not 

transport the focal amino acid into the vesicle. An increased production of OMVs in the donor 

background should hence result in increased growth of the auxotroph. This hypothesis was tested 

by introducing the deletion resulting in hypervesiculation, degP, in the auxotrophic recipient as 

well as the over-producing donor. The recipient double mutant (ΔhisDΔdegP) showed higher 

growth when compared to a single mutant recipient (ΔhisD) (independent samples t-test, * 

P<0.05, n=4, Fig. 7A). In this coculture of the double-deletion auxotroph (ΔhisDΔdegP) and the 

over-producing donor (ΔhisL), the donor also depicted slightly higher growth. No difference was 

observed in recipient (ΔhisD) growth when the ΔdegP deletion was introduced the donor 

genotype (ΔhisLΔdegP) (Fig. 7A); contrary to the expectation that hypervesiculation in the donor 

genotype should result in increased growth of the auxotroph.  
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Nutrient starvation in bacteria is known to induce the formation of OMVs [42, 43]. Auxotrophic 

recipient cells when cocultured with donor cells, in the initial growth phase, experience nutrient 

stress in the form of amino acid starvation. When a degP deletion is now introduced in an amino 

acid starved auxotroph, this double-deletion mutant (ΔhisDΔdegP) will produce a large quantity of 

OMVs. The over-producer genotype on the other hand does not face nutrient stress nor any other 

environmental stress (pH, temperature, antibiotics) which is also known to induce vesicle 

formation [44, 45]. Since all experiments were performed at 30°C, it is possible that the double-

deletion in the donor background, ΔhisLΔdegP, did not result in an increased level of OMVs.    

Vesicles increase growth of auxotrophic recipient in coculture independent of donor 

genotype 

An increase in growth of the auxotroph due to an over-production of OMVs indicates the use of 

vesicles as something other than just transport of cytoplasmic content. A vesicle produce by the 

auxotroph that is devoid of the focal amino acid could act as building blocks for inter-cellular 

connections. Vesicles have been shown to fuse and form chain-like structures in Myxococcus 

xanthus for coordinating growth and exchanging signals between cells [46]. Similarly vesicles 

produced by an auxotroph could fuse together to initiate inter-cellular connections. To answer this 

question the vesicle fraction was separated from the auxotrophic double-deletion genotype 

(ΔhisDΔdegP). Monoculture of the recipient double-deletion mutant, ΔhisDΔdegP, was grown and 

starved to induce higher vesicle production. An increased vesicle density was necessary to 

facilitate vesicle separation during ultra-centrifugation. The vesicle fraction from these cultures 

(ΔhisDΔdegP) was added to auxotrophic recipient (ΔhisD) as well as another recipient double-

deletion mutant (ΔhisDΔnlpA) and cocultured with the over-producer genotype (ΔhisL) (Fig. 7B). 

The nlpA deletion in E. coli as discussed before induces a hypo-vesiculating phenotype and a 

double mutant of nlpA in the auxotrophic background depicted reduced fitness (Fig. 4). Here we 

wanted to test if the addition of the vesicle fraction from the ΔhisDΔdegP monoculture can 

facilitate cross-feeding in both, the single-deletion auxotroph, ΔhisD, and the double-deletion 

auxotroph, ΔhisDΔnlpA. Interestingly the ΔhisDΔnlpA recipient performed better when 

supplemented with the vesicle fraction as compared to growth in the absence of the vesicle 

fraction (independent samples t-test, * P<0.05, n=4, Fig. 7B). The growth of the recipient double 

mutant was not significantly different from that of the recipient single-deletion mutant. This vesicle 

fraction also resulted in increased growth of the recipient (ΔhisD) when it was cocultured together 

with E. coli WT as a donor ((independent samples t-test, ** P<0.01, n=4, Fig. 7B). The WT strain 

does not produced increased quantities of amino acids as compared to an over-producer 

genotype owing to the presence of feedback regulation for amino acid biosynthesis [47]. In 

cocultures, this WT as a donor hence does not support auxotroph growth as much as an over-

producer genotype. The growth advantage imparted to the auxotroph by the vesicle fraction 

seems to be independent of the donor genotype present in the environment.  

Although the exact chemical composition of the vesicle fraction is yet unclear, the following 

characteristics hold true, (i) the vesicle fraction does not contain the focal amino acid (histidine) 
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required for growth and (ii) the fraction may contain additional growth inducing factors. 

Monocultures of the double-deletion auxotroph, ΔhisDΔdegP, were grown in liquid MMAB devoid 

of histidine, for 12 hours prior to harvesting for vesicle fraction collection. This starvation was 

performed to increase production of OMVs. Any histidine, potentially carried over from the 

previous medium, would be utilized during the starvation phase. There is however a possibility of 

other molecules being present in the vesicle fraction that were released as a response to amino 

acid starvation by the double-deletion auxotroph. Transcriptomic data obtained from cross-feeding 

cocultures indicated the upregulation of hokC and hokD genes which are toxins involved in cell 

death [48, 49]. Amino acid starvation of the double-deletion auxotroph, ΔhisDΔdegP, might have 

resulted in the production of these toxins which get released into the medium upon cell lysis. 

Toxins present in the medium would pass through the membrane during filtration and lead to cell 

death in the coculture of recipient and donor genotypes. Since donor genotypes are present in a 

higher number owing to an autonomous metabolic state, the toxin-mediated killing would result in 

higher donor cell death. Although growth measurements of the donor genotype in coculture does 

not show a significant decrease in comparison to the donor in monoculture, the possibility of toxin-

mediated cell death needs to be addressed in the future.  

 

CONCLUSION 

The results of this study provide multiple insights into the process of amino acid cross-feeding in 

bacteria. Transcriptomics revealed the cellular responses of one cell to amino acid induced 

starvation and subsequent acquisition of amino acids from another cell in the environment. A 

concerted effect of differential regulation of genes induced pathways that specifically resulted in 

increased cell adhesion and vesicle formation. Hence a single loss-of-function mutation 

(auxotrophy), triggered significant changes in the transcription of genes that further led to 

enhanced growth in coculture. Similarly auxotrophic genotypes found in natural habitats or in 

association with a host could also employ these transcriptional changes to obtain nutrients for 

growth. 
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FIGURES 

 

 

Figure 1: Overview of genotypes used in this study. E. coli BW25113 was the wildtype strain 

from which all other genotypes were derived using P1 transduction for targeted gene deletion. 

Mutant genotypes were selected by the presence of the kanamycin resistance cassette. Strain 

designation, the gene deleted (mutation) and nutrient requirement (phenotype with respect to 

amino acid requirement) have been mentioned for each genotype. Grey arrows with 

representative genes inside indicate the number of deletions required for the derived genotype. 

Single-deletion mutants are obtained through a one-step gene inactivation whereas double-

deletion mutants required an additional mutation. Before the introduction of the second mutation 

in double-deletion mutants, the kanamycin cassette was removed using the pCP20 plasmid 

based method.   
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Figure 2: Strains and culture conditions for transcriptional analysis of cross-feeding 

genotypes. In order to determine the set of gene differentially regulated during the process of 

amino acid cross-feeding in E. coli, the following experimental set up was used. Cross-feeding 

genotypes (i.e. ΔhisDΔtrpR (blue) and ΔtrpBΔhisL (orange)), were subjected to six different 

conditions as follows, individual cross-feeders were grown as monocultures in presence of amino 

acid, (i) histidine (H) and (ii) tryptophan (T), as well as exposed to, (iii) histidine starvation (Hs) 

and (iv) tryptophan starvation (Ts). The same cross-feeding genotypes were subjected to 

coculture conditions (green), (v) in the presence of both amino acids (CC) and, (vi) in the absence 

of amino acids (CCs). The monocultures and cocultures were incubated for 20 hours at 30 °C 

followed by RNA extraction, purification and Cy3 labeling (see materials & methods) 
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Figure 7: Classification of microbial interactions based on metabolic 

complementation. (a) Organisms may specialize on different substrate, both 
available in the environment. (b) Organisms may compete for the same 
substrate for growth resulting in depletion if the resource is limited. (c) 
Organisms may utilize products of another cell’s metabolic activity, these can 
be by-products (no additional cost to producer) or cooperative (organism 
invests additional cost to provide the metabolite for another cell.  

Chapter 10: General discussion 

 

Microbial communities are highly diverse and display a range of interactions. These 
interactions are often broadly classified as, (i) parasitic, where one organism attains growth 
benefit at the cost of another organism, or (ii) commensal, wherein one organism attains 
growth benefit without positively or negatively affecting the other organism or, (iii) 
mutualistic, where both organisms benefit from the interaction. Each interaction hence leads 
to a different output with respect to the growth of individuals involved. Despite these 
differences in the outcomes, microbial interactions do show similarity in one aspect, the 
medium of communication. Majority of these interactions take place through metabolic 
exchange between individuals (Kouzuma et al., 2015, Kuramitsu et al., 2007, Morris et al., 
2013, Phelan et al., 2012), thus highlighting the importance of bacterial metabolism in the 
functioning of microbial interactions and consequently the community (Johnson et al., 2012, 
Mori et al., 2016). A study analyzing 1,297 natural communities obtained from varied habitats 
(soil, water and human gut) for co-occurrence of species depicted a large number of 
metabolic dependencies. Applying genome-scale metabolic modeling further revealed 
metabolic cross-feeding of amino acids and sugars as the mechanistic basis for the observed 
dependencies (Chaffron et al., 2010, Zelezniak et al., 2015). A classification of microbial 
interactions in the context of metabolism and nutrition results in the following groups 
depicting, (i) no interaction (Fig. 7a), wherein both organisms utilize different resources from 
the environment, or (ii) competition (Fig. 7b), where both organisms metabolize a common 
substrate, or (iii) cross-feeding (Fig. 7c), where the metabolite produced by one organism 
serves as a substrate for the other organism, this metabolite may be a by-product of 
biosynthesis or exclusively produced for the other organism.  
 

The cross-feeding of amino 
acids between bacteria was 
studied to understand the 
mechanistic and metabolic, 
basis for amino acid cross-
feeding. Studying a cross-
feeding consortium from 
natural habitats, although 
ecologically relevant, poses 
various problems during 
experimentation. Problems 
like fastidious growth 
requirements, insufficient 
characterization of organisms, 
unknown genotypes and 

exchange of multiple products, make natural consortia unappealing for answering 
mechanistic questions. Synthetic ecology provides tools to engineer an interaction in model 
systems that are genetically tractable making them a popular model for microbial community 
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studies (Dolinšek et al., 2016, Harcombe 2010, Mee and Wang 2012, Mee et al., 2014, Shou et 
al., 2007, Wintermute and Silver 2010). 
   
A synthetically engineered cross-feeding system in Escherichia coli and Acinetobacter baylyi was 
used to study the mechanism of amino acid exchange (chapter 7). E. coli was found to 
produce membrane-derived nanotubes upon introduction of a mutation that renders it 
auxotrophic for an amino acid. Cross-feeding genotypes were able to exchange cytoplasmic 
content only when either partner was E. coli and no amino acid was supplied externally. The 
absence of amino acid seems to trigger several cellular responses in the cross-feeding 
genotype as revealed by transcriptomics (chapter 9). By simplifying the cross-feeding system 
to a unidirectional transfer of amino acids, I identified individual genes that assist amino acid 
cross-feeding mediated growth. Specifically, cell adhesion and membrane vesicles were found 
to increase the growth of an auxotrophic genotype when cocultured with an over-producer.  
Amino acids form a significant part of bacterial metabolism and are tightly regulated. This 
regulation of amino acid biosynthesis was studied in the context of cross-feeding by 
observing changes in the levels of internal amino acid as well as the transcriptional activity of 
their biosynthetic genes (chapter 8). Here I saw the emergence of metabolic coupling 
between cells in a source-sink-like manner. The transport of amino acids from the donor 
(WT or overproducer) to the recipient (auxotroph) led to a delay in feedback inhibition of 
amino acid biosynthesis in the donor.  
 
 

10.1 Components of a microbial network 

 
Cross-feeding interactions between individual microorganisms can have profound effects on 
the community and the inhabited ecosystem (Falkowski et al., 2008, Gil-Turnes et al., 1989, 
Guarner and Malagelada 2003, Phelan et al., 2012, Schultz and Brady 2008). With the help of 
a synthetically engineered system in E. coli, key aspects of a cross-feeding interaction that can 
affect microbial community dynamics have been identified.  
 

 

10.1.1 The interacting partners: donors and recipients  

 
The model system consists of cross-feeding genotypes that contain an auxotrophy-causing 
mutation and an overproduction mutation that results in amino acid exchange. Auxotrophic 
genotypes are dependent on an external source of nutrients due to loss of the biosynthetic 
gene. A prototrophic cell, on the other hand devotes a significant portion of cellular 
precursors, energy (ATP) and reducing agents (NAD, NADP) for amino acid biosynthesis. If 
these amino acids are now available either through the environment or from a neighboring 
cell then the cell saves this cost of biosynthesis (D'Souza et al., 2014). Auxotrophic cells 
would hence have a growth advantage over prototrophic cells in an environment with amino 
acid supply. An environmentally-induced auxotrophic lifestyle is seen often in host-microbe 
symbiosis wherein endosymbionts are nutritionally dependent on the host (Douglas 2016, 
McCutcheon and von Dohlen 2011, Mori et al., 2016, Van Leuven et al., 2014). For instance 
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the pea aphid, Acyrthosiphon pisum, harbours an endosymbiont, Buchner asp. APS, within 
specialized cells called bacteriocytes (Shigenobu et al., 2000). A mutual dependence and 
complementation of metabolic pathways for amino acid biosynthesis has been observed in 
this host-symbiont pair. Many endosymbionts are known to undergo genome streamlining (a 
loss of genes that are functionally redundant) during their association with the host 
(McCutcheon and Moran 2012). Free-living bacteria like Lactobacillus bulgaricus, also exhibit 
genome reduction and auxotrophy due to constant exposure to nutrient-rich environment 
(yoghurt) (van de Guchte et al., 2006). Apart from environmental sources, nutrients may also 
be made available by neighboring cells as a consequence of cell membrane permeability and 
extracellular substrate degradation (Garcia et al., 2015, Morris et al., 2012, Stams et al., 2006, 
Vollbrecht et al., 1979).             
 
The other partner in the cross-feeding interaction is a donor strain which provides 
metabolites to the auxotrophic recipient. A donor cell could produce extracellular enzymes 
that degrade complex polymers like cellulose, the degradation products (monosaccharaides, 
oligosaccharides) of which are then available for neighboring cells (Koschwanez et al., 2011). 
Additionally, primary and secondary metabolites are often released into the environment 
during bacterial growth owing to the high permeability of the cell membrane (Konings et al., 
1992, Nikaido 2003). Cells are known to have differential permeability for molecules such as 
hydrogen peroxide, iron sequestering compounds, gaseous intermediates and organic wastes 
(Belenguer et al., 2006, Boone et al., 1989, Costa et al., 2006). The transport of such molecules 
in the surrounding of an autonomous cell can benefit the growth of any auxotrophs in the 
surrounding. Similar to the results presented in this thesis (chapter 8), a wildtype 
autonomously replicating cell may also act as a donor for metabolites in nature.     
 

 

10.1.2 External conditions inducing contact-dependent cross-feeding 

 
Soil, oceans, glaciers, lakes and animals gut, are some of the major natural habitats of bacteria 
(Curtis and Sloan 2004). The growth of bacteria in most of these habitats is found to be 
surface-attached in the form of biofilms (Dunne 2002, Mazumdar et al., 2013, Rao et al., 
2005, Ren et al., 2015). Biofilms in these natural habitats are characterized by fluid flow on 
the external surface as well as through micro-channels within the biofilm (Azam and Malfatti 
2007, Hall-Stoodley et al., 2004). This flow leads to the gradual removal of products released 
by resident cells, necessitating mechanisms of exchange that circumvent the problem of 
dilution (Drescher et al., 2014). Soil structure has been shown to have an effect on the type 
bacteria found in the rhizosphere (Berg and Smalla 2009, Lauber et al., 2008). Structure, in 
this case, is attributed by components like quartz, clay, sand and/or organic matter. 
Depending on the coarseness of the soil, water channels are formed within these aggregates. 
Microorganisms often colonize at the interface of water and organic matter or clay. The flow 
of water through the soil aggregate results in dilution or significant loss of a released 
metabolite. By testing the process of amino acid cross-feeding in a shaken liquid 
environment, a solution emerges. These results (chapter 7) provide a mechanistic explanation 
to how these effects resulting in loss of the metabolite can be avoided. Using nanotubes, a 
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nutritionally-starved cell (auxotroph) is able to connect to a neighboring cell and obtain 
nutrients without exposing the nutrients to the environment. 
 

 

10.1.3 Cellular conditions inducing contact-dependent cross-feeding 

 
Loss-of-biosynthetic genes in a prototrophic cell results in metabolic dependency as 
discussed before (Section 4.1.1). In the absence of externally supplied metabolites, a 
starvation response is triggered in the cell (Betts et al., 2002, Givskov et al., 1994, Kjelleberg 
2013). Amino acid starvation in E. coli specifically induces guanosine 5′,3′ bispyrophosphate 
(ppGpp) mediated cessation of mRNA transcription (Srivatsan and Wang 2008, Traxler et al., 
2008). A reduced transcription is important for conserving available amino acid till nutrient 
supply is no longer limiting. Apart from the production of ppGpp during stress response, the 
cell also increases production of bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-
GMP). C-di-GMP is known to induce genes involved in biofilm formation in E.coli (Hengge 
2009, Landini 2009). Genes like csgD, csgB, csgA and csgC, increase cellular adhesion through 
the expression of curli fibers on the cell membrane (Chapman et al., 2002). Transcriptomics 
analysis of cross-feeding genotypes reveals similar changes, (i) upregulation of a diguanylate 
cyclase (dgcM) and (ii) downregulation of cyclic-di-GMP phosphodiesterase (yhjH) (chapter 
9). Both these changes in gene expression lead to higher intra-cellular c-di-GMP levels which 
can explain the physical connectivity required during cross-feeding.  
 
A starvation of nutrients is also known to induce the formation of outer membrane vesicles 
in some bacterial species. In Myxococcus xanthus for example, starvation induces the formation 
of fruiting bodies for which some inter-cellular coordination is of essence. In order to 
coordinate between neighboring cells, membrane vesicles produced by the cells form chain-
like structures (Remis et al., 2014). These vesicle chains, composed of lipids and carbohydrate 
moieties, exchange signaling proteins, CglB and Tgl, required for motility. A similar 
production of vesicles by auxotrophic genotypes of E. coli was observed (chapter 9). The 
vesicles in case of E. coli were not shown to form fused vesicle chains, however they do 
enhance growth and hence play a role in amino acid exchange.  
 

10.1.4 Recalibration of the metabolism of cross-feeding cells 

 
Metabolic coupling of an auxotrophic recipient and a donor cell when they exchange 
cytoplasmic amino acids is shown (chapter 8). Coupling of amino acid biosynthesis is shown 
to be a result of an intrinsic regulatory function of amino acid biosynthesis, end-product 
mediated feedback inhibition. A delay in feedback inhibition of amino acid biosynthetic gene, 
caused by the recipient leads to increased amino acid production by the donor. Similar 
coupling-based interactions have been observed in other biological systems that consist of 
physically connected organisms. For instance an extreme case of metabolic coupling is seen 
between a eukaryotic cell and its organelles, mitochondria or chloroplast. Hypothesized to 
have evolved from a symbiotic association (Kiers and West 2015, Kooijman and Hengeveld 

2005, López-Garcı́a and Moreira 1999), a long co-evolutionary history has resulted in 
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complete inter-dependence of interacting units. However, the initial phase of this symbiosis 
is yet unclear. End-product mediated feedback regulation is a universal control system for 
biosynthetic pathways (Umbarger 1978). Hence the ancestors or precursor cells of 
mitochondria and chloroplasts also harbored similar regulatory mechanisms. A delayed 
feedback inhibition can help explain the initial steps of a symbiotic relationship. 
Alternatively, it can explain the start of parasitic interaction like that seen between the 
archaeal symbiont, Nanoarchaeum equitans, and its host, Ignicoccus sp. (Waters et al., 2003). N. 

equitans is found to derive lipids, amino acids and nucleotides from Ignicoccus sp. through 
direct cell-cell connections which potentially link the cytoplasm of either species.   
 
The results from this thesis indicate an increased transcriptional activity of the amino acid 
biosynthetic genes as a functional basis for higher amino acid production in the donor. This 
response in transcriptional activity was a consequence of the auxotroph behaving like a 
metabolic sink. Metabolic pathways like amino acid biosynthesis can be regulated in two 
ways to result in increased production, (i) higher activity of the enzyme catalyzing the 
reaction or (ii) increasing level of the enzyme (Neidhardt et al., 1990). Modification of the 
activity of allosteric enzymes (which catalyze all biosynthesis pathways) (Monod et al., 1963), 
requires binding of an allosteric effector like cytidine triphosphate (CTP) for an enzyme like 
aspartate transcarbamylase (Bethell et al., 1968). Each enzyme in a given pathway is regulated 
by such effectors which may be similar or different (Cunin et al., 1986, Sahm et al., 1995, 
Sanwal 1970), all of which may not be available in the cell during the interaction. Increasing 
the level of enzymes on the other hand takes place through increased transcription. Bacterial 
cells have an operon- based biosynthesis gene cluster which is regulated mainly through the 
activity at the promoter region (Neidhardt et al., 1990). An increased rate of transcription at 
the promoter thus results in sufficient enzymes to drive biosynthesis.     
 
 

10.2 A model for contact-dependent cross-feeding      

 
The results from this thesis, collectively considered, provide a framework of how contact-
dependent cross-feeding of amino acids takes place in bacteria. There are three possibilities 
for establishing tubular connections between an auxotrophic recipient and a donor cell which 
are presented.  
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Figure 8: Overview of models for contact-dependent amino acid transfer from donor to auxotroph.  The 
numbers within each horizontal panel indicates the hypothetical sequence of events. (a) Nanotubes connect cell, 
vesicles transport cytoplasmic content. (b) Vesicles bud out of the cell during formation and remain linked or form 
chain-like structures that connect auxotroph to donor. (c) Autolysis of other auxotrophic cells results in 
fragmentation of cell material which may reassemble to form vesicles. These vesicles and membrane fragments are 
used to build nanotubes between cells. Transport of amino acids in all cases is represented through transporters in 
the periplasm.     
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10.2.1 Nanotubes connect cells, vesicles transport cytoplasmic content 
 
Amino acid starvation due to loss of the biosynthetic gene in an auxotroph triggers cellular 
processes that lead to the accumulation of second messenger (c-di-GMP). Three genes found 
to be differentially regulated (yhjH, ycgR and dgcM), cumulatively lead to c-di-GMP production 
as per the transcriptomic analysis (chapter 9). C-di-GMP in turn induces two pathways for 
biofilm matrix production namely, (i) curli fibres (through the csgD global transcription 
factor) and (ii) poly-β-1,6-N-acetyl-glucosamine (PGA) exopolysaccharide (through the PgaC 
and PgaD inner membrane proteins). Curli fibres are filamentous appendages known to 
assist the attachment of E. coli to inert surfaces (Chapman et al., 2002, Van Houdt and 
Michiels 2005). PGA, an exopolysaccharide, on the other hand is known to promote 
intercellular adhesion (Van Houdt and Michiels 2005, Wang et al., 2004). Hence a 
combination of both structures could be used to build nanotubes over a long distance (Fig. 
8a).  
 
After establishing a connection there are two ways in which cytoplasmic exchange can take 
place, (i) through the periplasmic space or (ii) through outer membrane vesicles. The 
periplasmic space is an aqueous but densely packed region present between the outer and 
inner membrane of gram negative bacteria and consists of proteins involved in cell nutrition 
(Neidhardt et al., 1990). The inner membrane consists of transporters for efflux of sugars and 
amino acids into this periplasmic space before further release out of the cell (Ehrmann 2007, 
Silhavy et al., 2010). Amino acids that are pumped into this periplasm would get exchanged 
between connected partners (here from donor to recipient) through the periplasm. The 
requirement and continued uptake of the amino acid by the recipient would result in 
increased export of amino acid through the periplasm as a result of metabolic coupling 
(chapter 8). Alternatively the transport of cytoplasmic content could take place through 
membrane vesicles which have been observed in cross-feeding consortia (chapter 9). The 
biogenesis of membrane vesicles starts with bulging of the outer membrane followed by 
fission of the grown vesicle bud (Fig. 8a) or continued attachment of vesicle bud to the cell 
(Fig. 8b) (Gorby et al., 2008, Kulp and Kuehn 2010, McBroom et al., 2006). Cytoplasmic 
contents like genetic material and amino acids present in such vesicles get transported 
directly into the recipient cell through vesicle attachment and fusion. Real-time microscopy 
of fluorescently labeled cross-feeding genotypes indicates such an attachment and fusion 
event leading to the transport of cytoplasmic GFP (chapter 7). There might be a change in 
the mechanism used depending on the size of the molecule exchanged considering that free 
amino acids are much smaller than GFP molecules and also have dedicated transporters in 
the cell membrane.  
 
Another possibility is that once the nanotube is formed, vesicles are transported within this 
tube from one cell to another. This however would require that the vesicles are made from 
the inner membrane of E. coli which is a highly complex structure. It is also composed of a 
phospholipid bilayer and associated proteins like the outer membrane. However the inner 
membrane being the final layer encompassing cytoplasmic material, maintains cell shape and 
homeostasis. The formation of inner membrane vesicle requires an invagination of the 
membrane to form intracellular vesicles (Eriksson et al., 2009). If they are then secreted into 
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the environment then an additional layer of the outer membrane will result in an outer-inner 
membrane vesicle as observed in some pathogenic Gram negative bacteria like Pseudomonas 

aeruginosa (Pérez-Cruz et al., 2015). The molecular details of how outer-inner membrane 
vesicles are formed is however unknown. 
 
 

10.2.2 Vesicles link to form nanotubes 

 
Candidate genes regulating vesicle biogenesis in E. coli were found to be differentially 
expressed during amino acid cross-feeding namely, degP, nlpA and nlpI (chapter 9). 
Furthermore the vesicle fraction of a hypervesiculating auxotrophic genotype enhanced 
growth of other auxotrophs when cocultured with a donor genotype. A disentanglement of 
the phenotype (increased vesicles) from the genotype (ΔhisDΔdegP) opens a new possibility 
for metabolite exchange in the cross-feeding system (Fig. 8b). Outer membrane vesicles 
produced as a response to auxotrophy are essentially a lipid bilayer encasing cytoplasmic 
material. A linking of newly formed vesicles or alternatively post-budding adhesion of 
vesicles (to each other) would lead to potential inter-cellular connections. Such a chain-like 
form of vesicles has been observed for intercellular communication in Myxococcus xanthus 
(Remis et al., 2014) as well as in the form of membrane protrusions for electron exchange 
(Pirbadian et al., 2014). The structural details of how vesicle connections are maintained for 
M. xanthus are unknown however, during nanowire formation S. oniedensis forms outer 
membrane protrusions. These protrusions swell up to increase surface area for the adherence 
of electron pumps followed by a collapse of the membrane at specific regions said to be 
influenced by electron density.   
 
 

10.2.3 Cell lysis of auxotroph results in vesicle formation 

 
Autolysis is the process in which, digestion of the peptidoglycan layer is catalyzed by murein 
hydrolases produced by the cell itself (Höltje 1995). Various factors like antibiotics, 
sporulation, DNA transformation or fruiting body formation, are known to trigger autolysis 
in bacteria (Lewis 2000). Auxotrophic cells that do not acquire the focal amino acid from 
another source (environment or donor) may undergo autolysis if nutrient-limited conditions 
prevail (Fig. 8c). Following autolysis the scattered cell material can aggregate to form 
membrane vesicles. These vesicles could then assist in metabolite exchange. Recent studies 
show that stress (phototoxic, antibiotic and genotoxic) in Pseudomonas aeruginosa leads to 
autolysis. Interestingly, after disintegration of the cell during the “explosive cell lysis”, 
membrane fragments can reassemble to form vesicles (Turnbull et al., 2016).  
 
Alternatively errors in DNA replication due to starvation can lead to the formation of mini-
cells. They are essentially smaller, spherical versions of a bacterial cell but devoid of genomic 
DNA and hence incapable of replication (Adler et al., 1967, Ward and Lutkenhaus 1985). 
Plasmids however can be maintained in mini-cells and are used for protein expression 
(Meagher et al., 1977) and can be found in mini-cells due to irregular cell division. However 
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cross-feeding genotypes did not test positive for an exchange of the plasmid used for 
cytoplasmic labelling (chapter 7). A mini-cell devoid of genetic material would still contain 
cytoplasmic contents, however if the mini-cell originates from the auxotroph then the focal 
amino acid would still be missing. One can consider use of mini-cells by cross-feeding 
genotypes which do contain the amino acid for exchange in the cytoplasm. The formation of 
mini-cells by cross-feeding genotypes points to altruistic behavior since the mini-cell is a 
dead end in terms of reproduction. However transport of amino acid via a mini-cell ensures 
growth of the partner. The possibility of this phenomenon needs to be further tested.         
    
      

10.2.4 Disentangling the three models 

 
Each of the above hypotheses requires the transcription of a group of genes to be initiated at 
different timepoints. Hence by RNA sequencing of the cross-feeding coculture at early and 
late timepoints of nanotube formation, we can identify the patterns in formation of different 
structures (vesicles, membrane lipids). Considering that the onset of cytoplasmic exchange is 
around 9 hours (chapter 7), the period before 9 hours would display a response to amino 
acid starvation wherein the expression of curli and PGA increases. Moreover chemotaxis, if 
involved, probably plays a significant role during this phase of finding a donor cell. The 
period, during and after cytoplasmic exchange, should have decreased levels of expression 
for cell adhesion and membrane vesicle formation genes.   
 
Gene expression data alone is not sufficient to decode this complex phenomenon of 
nanotube-mediated cross-feeding. Structural details of the nanotubes need to be inferred 
through advanced microscopy. Cryo-electron tomography (cryo-TEM) is an ideal method to 

understand structures at the required level of structural detail (Al‐Amoudi et al., 2004). 
Tomography allows for determining even membrane proteins at the point of contact 
between nanotube and the cell membrane (Hoffmann et al., 2008, Matias et al., 2003, Matias 
and Beveridge 2005, Remis et al., 2014). Furthermore a tilting of the axis of imaging provides 
a 3D view of the connection itself. On the other hand fluorescence microscopy paired with 
microfluidics will answer the question of how a nanotube grows out of a cell or are vesicles 
the precursors of nanotubes. Microfluidic chambers provide control over liquid flow as well 
as containing the interacting partners in a monitored space. It is possible to replicate the 
conditions of a constant flow of liquid (shaken liquid medium) to ensure nanotube 
formation. This can be controlled using plastic tubing connected to the flow chamber in the 
microfluidic device. A carefully designed chamber for growing the two partners will result in 
detecting the exchange process between cross-feeders in real-time. 
 
 

10.3 Implications of contact-dependent cross-feeding 

 
Metabolic dependency, availability of free functions, intercellular connections and metabolic 
coupling, can collectively result in, an inter-connected, biochemical network within a 
microbial community.  
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Consider an individual bacterial cell that is exposed to an external supply of a metabolite. By 
losing the gene required to synthesize this metabolite, the cell saves production cost which in 
turn allows it to grow fast. As this event of gene loss and metabolic dependency occurs in 
multiple cells in a given community, there is diversity in terms of nutritional requirements 
(Johnson et al., 2012). Multiple auxotrophies in the same cell might also arise in such a 
community. When these auxotrophs acquire nutrients from neighboring cells, a transient 
network is built within the community (Zelezniak et al., 2015).    
 
Owing to the characteristic construction of metabolic pathways in bacterial cells, decrease in 
carbon flux through a given pathway, redirects intermediates and cofactors involved in this 
pathway to another pathway (Chubukov et al., 2014, Waschina et al., 2016). This property of 
biosynthetic pathways in bacteria is of significance when using bacteria for large scale 
production of amino acids or vitamins. By providing an excess amount of substrate or by 
deleting genes in biosynthetic pathways, one can obtain increased flux through the desired 
pathway (Bohl et al., 2010). These metabolites produced in excess as compared to a wildtype 
cell, called by-products, can be secreted out of the cell for extraction purposes in industrial 
applications (Bylund et al., 1998, Stelling et al., 2002, Xu et al., 1999). A similar redirection of 
flux through a pathway can also take place in auxotrophs and has been shown to support 
auxotrophic communities through experimental evolution studies (Wintermute and Silver 
2010). Different auxotrophs can divide the cost of producing costly metabolites among cells 
in a community. When considered together, individual auxotrophic cells form a bigger 
biochemical network, with different pathways distributed in different cells. By dividing the 
cost of producing costly metabolites, cross-feeding cells have a fitness advantage over 
autonomous wildtype cells (Pande et al., 2014). 
 
 

10.4 Conclusion 

 
Through this study I show how a single loss-of-function mutation can alter the metabolic 
state of the cell such that a novel mechanism of exchange emerges. It highlights the 
robustness and innovation of a bacterial cell to overcome perturbations in metabolism. In 
their natural habitats, bacteria face a greater number of perturbations such as other 
organisms, temperature, pH and pressure, which also positively or negatively affect 
metabolism. The fact that these bacteria survived all perturbations hints to the possibility of 
many, yet unknown, mechanisms of exchange employed by bacteria in nature. Contact-
dependence is used to enhance interactions everywhere, (i) by eukaryotic cells to transmit 
signals, (ii) by pathogenic bacteria to improve colonization of host cell, (iii) by syntrophic 
aggregates to improve product exchange, (iv) by bacteria to exchange genetic material, (v) by 
bacteriophages to infect a host. The presence of contact-dependence as well as similarities in 
the structures used for maintaining contact implies that it is an evolutionarily conserved trait 
making it all the more important to study.    
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Chapter 11: Future directions 
 
 
This thesis highlighted many key aspects of the process by which auxotrophic E. coli obtains 
nutrients from neighboring cells. The main questions of the thesis were answered using a 
tractable model system, microscopy, real-time sensing techniques and transcriptomics. 
However the analysis of observed results invoked additional questions about nutrient cross-
feeding.  
 
 

11.1 How carbon fluxes influence metabolic coupling 

 
Bacteria take up and break down available carbon sources through catabolic pathways to 
produce building blocks (amino acids, nucleotides, and lipids), cofactors (vitamins) and 
energy (ATP). Catabolic pathways consist of multiple reactions to carry out a step-wise 
biochemical transformation of a substrate to the end product. The step at which a carbon 
source enters the pathway influences the flux through subsequent reactions (Stelling et al., 
2002). For example glycolytic substrates (maltose, fructose and xylose) increase the flux 
through initial steps of the tricarboxylic acid cycle (Krebs and Lowenstein 1960, Waschina et 
al., 2016). An increased flux through these first steps results in higher production of specific 
amino acids connected to these reactions like histidine, tryptophan and glycine. The 
production profile of amino acids is dependent on the step at which a carbon source enters 
as well as the architecture of the biosynthetic pathway. In our experiments the carbon source 
used was fructose, which is a glycolytic substrate and results in increased flux to produce 
histidine and tryptophan.  
 
It would be interesting to see how the carbon source would influence an interaction between 
cross-feeding genotypes. Gluconeogenic substrates like lactate, pyruvate and malate enter at 
later steps of the tricarboxylic acid cycle. An increased flux is seen through the biosynthesis 
of amino acids like lysine, threonine, glutamate and proline (Waschina et al., 2016). Internal 
amino acid sensors demonstrated the changes in internal levels of lysine when a recipient cell 
interacts with a donor cell (chapter 8). In the presence of fructose, significant changes were 
observed in the donor internal lysine levels upon interaction with the recipient. If a 
gluconeogenic carbon source was used instead, for example malate, then lysine would be 
produced at increased quantities owing to the architecture of the pathway. Furthermore the 
entry point of malate being close to the pathway branching out for lysine production 
indicates a quicker turnover for lysine with malate as the carbon source. Would we see the 
same changes in the internal levels of lysine when the donor and recipient are grown in 
malate? Do the “stolen” amino acids from the donor cell get resupplied faster depending on 
the carbon source? What happens when multiple carbons sources are available to the donor 
cell?  
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11.2 Recognition of donor cell 

 
Formation and stability of chemical gradients is challenging in a vigorously shaken 
environment. This raises questions about how the auxotrophic genotype is able to detect a 
donor genotype. There are two possibilities, (i) the auxotrophic genotype extends the outer 
membrane to form nanotubes which attach to any neighboring cell or (ii) the auxotroph 
detects donor cells via chemotaxis. A non-specific attachment of nanotubes would be 
plausible at the early stage of coculture when the donor cells number is high. However, in 
terms of multispecies communities a random attachment strategy might result in negative 
consequences (Jones et al., 2017). Since attachment in case of cross-feeding is a cytoplasmic 
connection, antagonistic effectors could be exchanged leading to death. Chemotaxis may also 
be playing a role since the possibility of micro-gradients of amino acids around the cells 
might be possible (Azam and Malfatti 2007, Stocker 2012). Additionally the liquid media in 
which co-cultures were grown were shaken however at constant speed and the same 
direction (clockwise). A constant speed and direction can lead to the relative distance 
between particles to remain unchanged over time. Would micro-gradients be strong enough 
for chemotaxis to play a role in donor recognition? Where would these receptors for amino 
acid be present, at the tip of the nanotube or at intermediate points? By modifying the 
permeability of the cell membrane in the donor cell or by silencing the chemotaxis pathway 
in the recipient, this can easily be answered. Alternatively by introducing a recipient in a 
multi-membered community consisting of donors with varying amino acid production 
capacities, one could identify the preference for specific recipient-donor pairs. 
 
 

11.3 Altering the cell membrane 

 
Experiments in this thesis have been performed within species (E. coli) and between species 
(E. coli and A. baylyi). These are both gram negative bacteria and hence have similar cell 
membrane structure and composition. By pairing auxotrophic E. coli with donors of different 
species like Pseudomonas aeruginosa, Shewanella oniedensis, Bacillus subtilis, in depth information 
regarding donor recognition can be obtained. B. subtilis is a gram positive organism and is 
devoid of the outer membrane but contains a thicker murein layer compared to E.c oli. 
Moreover, B. subtilis has shown to produce nanotubes on solid media for the exchange of 
plasmid DNA between and within species (Dubey and Ben-Yehuda). Will the two species 
cross-feed? What cell material will be employed to form connections between cells? Will an 
auxotroph detect differences in amino acid profiles of donors from different species in a 
tripartite community? Or will the auxotroph detect the differences in cell membranes? 
 
 

11.4 Auxotroph-donor coculture to study parasitism 

 

Auxotrophs develop a unidirectional exchange of required metabolite when cocultured with 
a donor genotype. This set-up is a type of commensal wherein the donor genotype does not 
have reduced growth. By controlling the number of auxotrophy mutations as well as the level 
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of amino acid production by the donor, the switch from commensalism to parasitism can be 
tested. The introduction of multiple auxotrophy mutations in the recipient resembles the 
endosymbiotic bacteria with reduced genomes also resulting in multiple auxotrophies 
(McCutcheon and Moran 2012). Moreover, genomic sequencing also reveals that the average 
number of auxotrophies in free-living eubacteria is >1% (D'Souza et al., 2014). A coevolution 
of auxotrophic recipient and donor may reveal changes in donor cell membrane to prevent 
contact-dependent growth of auxotrophs. 
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Supplementary Figure 8 | Double-labelled cells are likely not due to the 

physical attachment of two differentially labelled cells. (a) Proportion of 

double-labelled cells after 24 h of growth as quantified by flow cytometry in 

untreated samples (U, white boxes), after vortexing for 1 min (V, striped boxes), 

or treatment with a commercially available cell dissociation solution (F, grey 

boxes). FDR-corrected paired t-test: ** = P < 0.01, ns = P > 0.05, n=8. (b) Size of 

wild type (WT) or double-labelled cells after 24 h of growth determined as forward 

scatter in the flow cytometer. The top row shows measurements of microspheres 

with a diameter of 0.1 μm and 0.2 μm. All other panels show the forward scatter 
of wild type (WT) or double-labelled cells that emerged in cocultures after 24 h of 

growth. Black lines of the curves represent the 95% confidence intervals (CI) of 

six replicate measurements. Grey lines mark the 95% CI of the microsphere 

measurements (n=6). Genotype pictograms like in Fig. 1a. Green cells represent 

those that contain the EGFP-expressing plasmid and red cells the mCherry-

expressing plasmid. 
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Supplementary Tables 

 

Supplementary Table 1 | Primers used for the construction of Acinetobacter 

baylyi auxotrophs.  

 

UF = upstream forward, UR = Upstream reverse, DF = downstream forward, DR = 
downstream reverse, kans = primers to generate kanamycin-sensitive genotypes. 1 
gene identity number:  49529273 (3095051-3095650); 2 gene identity number:  
49529273 (56394-56552) 

 

 

 

 

 

Gene Primer Sequence (5’-3’) 

Kanamycin 
resistance cassette 

 UF TGTAGGCTGGAGCTGCTTC 

  UR CATATGAATATCCTCCTTA 

hisD  UF TATGCAAGCCTTGGTGAGCA 

  UR GAAGCAGCTCCAGCCTACACAGCCTCTTCCACTTGA 

trpB UF AACCACACACGCTTTTGCAG 

 UR GAAGCAGCTCCAGCCTACAGCTGATCCACATTGGACT 

hisD   DF TAAGGAGGATATTCATATGGTAACTGCTCTACGGGG 

   DR ATGCGTCTGCCTGATCTACC 

trpB   DF TAAGGAGGATATTCATATGACGTGATGTGGAAATGG 

   DR AGTTGGGGCTGGATGTCTTG 

hisD   UF  kan
s TATGCAAGCCTTGGTGAGCA 

   UR  kan
s CCCCGTAGAGCAGTTACCAGCCTCTTCCACTTGA 

trpB    UF  kan
s AACCACACACGCTTTTGCAG 

   UR  kan
s CCATTTCCACATCACGTGCTGATCCACATTGGACT 

hisD    DF  kan
s GTAACTGCTCTACGGGG 

    DR  kan
s ATGCGTCTGCCTGATCTACC 

trpB    DF  kan
s ACGTGATGTGGAAATGG 

    DR  kan
s AGTTGGGGCTGGATGTCTTG 

trpR
1
    UF GAGGTCTGGGTTGAGGTTGG 

    UR GAAGCAGCTCCAGCCTACATAACGCTGCATTTGCAC 

hisL
2
    UF TATGCAAGCCTTGGTGAGCA 

    UR GAAGCAGCTCCAGCCTACACAGCCTCTTCCACTTGA 

trpR    DF CCGTTTACAGGGCTCAGTGT 

    DR GAAGCAGCTCCAGCCTACATCACCCAATCCTGTCAC 

hisL    DF AACCACACACGCTTTTGCAG 

    DR GAAGCAGCTCCAGCCTACACAGCCTCTTCCACTTGA 
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Supplementary Table 2 | Strains and plasmids used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strains and plasmids ID Genotype Phenotype Reference 

Strains     

A. baylyi WT  ADP1 P 2 

A. baylyi ΔhisD  A. baylyi ADP1 ΔhisD AHis This study 

A. baylyi ΔtrpB  A. baylyi ADP1 ΔtrpB ATrp This study 

A. baylyi ΔhisL  A. baylyi ADP1 ΔhisL OHis This study 

A. baylyi ΔtrpR  A. baylyi ADP1 ΔtrpR OTrp This study 

A. baylyi ΔhisD ΔtrpR 2 A. baylyi ADP1 ΔhisD, ΔtrpR CF (AHis, OTrp) This study 

A. baylyi ΔtrpB ΔhisL 1 A. baylyi ADP1 ΔtrpB, ΔhisL CF (ATrp, OHis) This study 

E. coli WT 
 
 

 
BW25113 Δ(araD-araB)56, 
ΔlacZ4787(::rrnB-3), λ-, rph-1, Δ(rhaD-
rhaB)568, hsdR514 

P 
 
 

3 
 
 

E. coli ΔhisD  BW25113 ΔhisD AHis This study 

E. coli ΔhisD 
(Biosensor) 

 BW25113 ΔhisD::kanr AHis This study 

E. coli ΔtrpB  BW25113 ΔtrpB ATrp This study 

E. coli ΔtrpB (Biosensor)  BW25113 ΔtrpB::kanr  This study 

E. coli ΔhisL  BW25113 ΔhisL OHis This study 

E. coli ΔtrpR  BW25113 ΔtrpR OTrp This study 

E. coli ΔhisD ΔtrpR 4 BW25113 ΔhisD, ΔtrpR CF (AHis, OTrp) This study 

E. coli ΔtrpB  ΔhisL 3 BW25113 ΔtrpB, ΔhisL CF (ATrp, OHis) This study 

Plasmids     

pJBA24  Ampr; pUC18NotI-PA1/04/03-RBSII-T0-T1  4 

pJBA24-egfp  pJBA24; EGFP  5 

pJBA24-mCherry  pJBA24; mCherry  This study 
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Supplementary Table 2 (continued) 

ID refers to the numbering of genotypes as introduced in Fig. 1a. AHis = histidine 

auxotroph, ATrp = tryptophan auxotroph, OHis = histidine overproducer, OTrp = tryptophan 

overproducer, CF = cross-feeder, P = prototroph, WT = wild type. 

 

 

 

 

 

 

 

Strain-plasmid combinations Strain Plasmid  

  A. baylyi WT pJBA24-egfp  

  A. baylyi WT pJBA24- mCherry  

  A. baylyi ΔhisD pJBA24-egfp  

  A. baylyi ΔhisD pJBA24- mCherry  

  A. baylyi ΔtrpB pJBA24-egfp  

  A. baylyi ΔtrpB pJBA24- mCherry  

  A. baylyi ΔhisL pJBA24-egfp  

  A. baylyi ΔhisL pJBA24- mCherry  

  A. baylyi ΔtrpR pJBA24-egfp  

  A. baylyi ΔtrpR pJBA24- mCherry  

  A. baylyi ΔhisD ΔtrpR pJBA24-egfp  

  A. baylyi ΔhisD ΔtrpR pJBA24- mCherry  

  A. baylyi ΔtrpB  ΔhisL pJBA24-egfp  

  A. baylyi ΔtrpB  ΔhisL pJBA24- mCherry  

   E. coli WT pJBA24-egfp  

  E. coli WT pJBA24- mCherry  

  E. coli ΔhisD pJBA24-egfp  

  E. coli ΔhisD pJBA24- mCherry  

  E. coli ΔtrpB pJBA24-egfp  

  E. coli ΔtrpB pJBA24- mCherry  

  E. coli ΔhisL pJBA24-egfp  

  E. coli ΔhisL pJBA24- mCherry  

  E. coli ΔtrpR pJBA24-egfp  

  E. coli ΔtrpR pJBA24- mCherry  

  E. coli ΔhisD ΔtrpR pJBA24-egfp  

  E. coli ΔhisD ΔtrpR pJBA24- mCherry  

  E. coli ΔtrpB  ΔhisL pJBA24-egfp  

  E. coli ΔtrpB  ΔhisL pJBA24- mCherry  
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Supplementary figure 4: Growth of lysine auxotrophs strongly depends on the amount of lysine 

they obtain from cocultured donor cells. Shown is the statistical relationship between cytoplasmic 

lysine levels (in �M� of ΔlysR cells harboring the lysine riboswitch plasmid (pZE21-GFPaav-Lys) in 

coculture with different donor cells (i.e. WT, Δmdh, and ΔnuoN� and the Jrowth of ΔlysR cells. Growth of 

the recipient is displayed as a logarithm of the difference in number of CFUs reached at 0 h and 24 h. The 

grey line is a fitted linear regression and the r- and P-value of the corresponding Pearson’s correlation 

coefficient are shown. 
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Supplementary tables. 

Table 1. Strains and plasmids used in this study. AA = amino acid.  

 

Strain/Plasmid Genotype Phenotype Reference 

Escherichia coli 
BW25113  

F-, Δ(araD-araB)567, 
ΔlacZ4787(::rrnB-3), λ-, rph-1, 
Δ(rhaD-rhaB)568, hsdR514 

WT (Baba et al 
2006) 

Δmdh  WT, ∆mdh::kanR AA overproducer (Pande et al 
2014) 

ΔnuoN WT, ∆nuoN::kanR AA overproducer (Pande et al 
2014) 

ΔhisL WT, ∆hisL::kanR AA overproducer (Pande et al 
2015) 

ΔtrpR WT, ∆trpR::kanR AA overproducer (Pande et al 
2015) 

ΔhisD WT, ∆hisD::kanR AA auxotroph (Pande et al 
2014) 

ΔlysR WT, ∆lysR::kanR AA auxotroph (Pande et al 
2014) 

ΔtrpB WT, ∆trpB::kanR AA auxotroph (Pande et al 
2014) 

Lysine riboswitch 
plasmid (pZE21-
GFPaav-Lys) 

ColE1ori, bla, cat, lysine 
riboswitch, gfpmut3 

Ampicillin resistance, 
chloramphenicol resistance 

This study 

Promoter-GFP fusion 
plasmid  (pUA66-His) 

SC101ori, kan, hisL, gfpmut2 Kanamycin resistance (Zaslaver et al 
2006) 

Promoter-GFP fusion 
plasmid  (pUA66-Trp) 

SC101ori, kan, trpL, gfpmut2 Kanamycin resistance (Zaslaver et al 
2006) 

Promoter-less plasmid 
(pUA66) 

SC101ori, kan, gfpmut2 Kanamycin resistance (Zaslaver et al 
2006) 
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Table 2: Primers used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Target gene Amplicon 
size (bp) 

Direction Sequence (5’-3’) Melting temperature 
(°C) 

Lysine riboswitch 306 Forward TTTTGGTACCGTACTACCT
GCGCTAGCG 

73.7 

  Reverse TTTTGGTACCAACTACCTC
GTGTCAGGGG 

74.6 

Beta lactamase 
(bla) 

1,000 Forward TTTTCTCGAGCTTTTCGGG
GAAATGTGCGCGGAACCC
CTATTTG 

87 

  Reverse TTTTACTGTTGATCTTTTC
TACGGGGTCTGACGCTC 

76.4 

Chloramphenicol 
acetyltransferase 
(cat) 

1,000 Forward TTTTAAGCTTAAAGAGGAG
AAATACTAGATGGAGAAA
AAAATCACTGGATATAC 

74.2 

  Reverse TTTTCCCGGGTTACGCCC
CGCCCTGCCACTCATC 

88.3 

151



Supplementary methods 

 

Plasmid construction 

The plasmid containing the lysine riboswitch (pZE21-GFPaav-Lys) was constructed using the pZE21 

plasmid (supplementary figure 2) (Lutz and Bujard 1997). This plasmid contains a gene encoding a 

variant of the fluorescent reporter (gfp), which emits fluorescence within 5 minutes of transcription, has a 

low toxicity, and negligible degradation(Cormack et al 1996). The plasmid also contains two genes 

encoding ampicillin- (bla) and chloramphenicol resistance (cat). The lysine riboswitch was amplified from 

the upstream region of lysC in E. coli MG1655 using the primers mentioned in table S2 and inserted into 

pZE21 at the KpnI restriction site (New England Biolabs GmbH (NEB), Frankfurt am Main, Germany) 

downstream of an anhydrotetracycline-inducible promoter. The kanamycin resistance gene was replaced 

with an ampicillin resistance gene, which has been amplified from the plasmid pSB1A2 using the primers 

mentioned in supplementary table 2. The restriction enzymes used for removing the kanamycin cassette 

were XhoI and SpeI (NEB, Frankfurt am Main, Germany). The final plasmid additionally contained a 

chloramphenicol resistance gene (cat), which was amplified from pSB1C3 (iGEM registry) using primers 

mentioned in supplementary table 2 and restriction enzymes HindIII and XmaI (NEB, Frankfurt am Main, 

Germany). The promoter activity of hisL and trpR was measured with the help of plasmids pUA66-His and 

pUA66-Trp, respectively (Zaslaver et al 2006) (supplementary figure 2). These promoter-GFP-fusion 

plasmids contain the promoter region of the corresponding gene cloned upstream of the gfpmut2 gene, 

which codes for a variant of GFP that emits fluorescence within 5 minutes of transcription initiation, is 

highly stable, and non-toxic to E. coli (Cormack et al 1996). The same plasmid without a promoter region 

(plasmid pUA66) was used as a control to measure the basal gfpmut2 expression level (supplementary 

figure 2). All plasmids were transformed into E. coli cells using the calcium chloride method followed by a 

heat shock treatment (Wood 1983). 

 

Amino acid analysis 

Amino acid levels in donor strains (WT, Δmdh, ΔnuoN, ΔhisL, and ΔtrpR) as well as the cytoplasmic 

lysine levels of ΔlysR carrying the lysine riboswitch plasmid (pZE21-GFPaav-Lys) were determined using 
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the following protocols. The extracellular fraction (containing amino acids secreted into the supernatant) 

and intracellular fraction (containing cytoplasmic amino acids) of cultures grown for 24 h was collected 

and subsequently subjected to a liquid chromatography-mass spectrometry (LC/MS/MS) analysis.  

Extraction of extracellular amino acids. The amounts of amino acids that were present in the 

extracellular environment (i.e. culture supernatant) were quantified from cultures that have been grown for 

24 h in 1 ml MMAB in deep-well plates (Eppendorf, Germany). The next day, cultures were centrifuged 

(Sigma 3-18K, Germany) at 3,800 rpm for 15 minutes. After centrifugation, 400 µl of the supernatant were 

filter-sterilized (0.2 µm) and analyzed by LC/MS/MS. 

Extraction of cytoplasmic amino acids. To quantify intracellular concentrations of amino acids, cells 

were extracted following a previously published protocol (Borner et al 2007). In a nutshell, monocultures 

of donor or recipient cells were grown in 1 ml MMAB in deep-well plates (Eppendorf, Germany) for 24 h 

and subsequently centrifuged (Sigma 3-18K, Germany) at 3,800 rpm for 15 minutes followed by washing 

with 0.8% sodium chloride solution. Cell pellets were resuspended in an ethanol-ribitol solution (400 µl 

ethanol + 16 µl of 0.2 mg ml-1 ribitol) and sonicated (Sonorex RK102H, Germany) at 70 °C for 15 minutes 

to lyse cells. Next, the polar phase (containing cell debris and proteins) was extracted by adding 400 µl 

water and 250 µl of chloroform followed by mixing and centrifugation at 3,800 rpm for 15 minutes. 

Afterwards, 400 µl of the hydrophilic phase (containing water-soluble amino acids) was transferred to a 

fresh deep-well plate and dried in a glass desiccator under vacuum for 18 h. The dried extract was 

resuspended in 400 µl MMAB and subjected to further analysis. 

Amino acid quantification by LC/MS/MS. The analysis of amino acids in the cells’ cytoplasm and 

culture supernatant was focused on the three amino acids histidine, lysine, and tryptophan. For the 

tryptophan analysis, samples were diluted 1:1 in borate buffer (pH 8), while for histidine and lysine 

quantification samples were diluted 1:1 in borate buffer containing a 13C, 15N-labelled amino acid mix 

(Isotec, Miamisburg, USA). Labeled amino acids were added as an internal standard at a concentration of 

10 µg of the mix ml-1. All samples were directly analyzed via LC/MS/MS using a modification of a method 

described previously16. Chromatography was performed on an Agilent 1200 HPLC system (Agilent 

Technologies, Böblingen, Germany). Separation was achieved on a Zorbax Eclipse XDB-C18 column (50 

x 4.6 mm, 1.8 µm, Agilent Technologies, Germany). Formic acid (0.05%) in water and acetonitrile were 
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employed as mobile phases A and B, respectively. The elution profile was: 0-1 min, 3% B in A; 1-2.7 min, 

3-100% B in A; 2.7-3 min 100% B, and 3.1-6 min 3% B in A. The mobile phase flow rate was 1.1 ml min-1. 

Column temperature was maintained at 25 °C. The liquid chromatography was coupled to an API 3200 

tandem mass spectrometer (Applied Biosystems, Darmstadt, Germany) equipped with a turbospray ion 

source operated in positive ionization mode. The ion spray voltage was maintained at 5.5 keV. The turbo 

gas temperature was set at 700 °C. Nebulizing gas was set at 70 psi, curtain gas at 35 psi, heating gas at 

70 psi and collision gas at 2 psi. Multiple reaction monitoring (MRM) was used to monitor analyte parent 

ion → product ion. Both Q1 and Q3 quadrupoles were maintained at unit resolution. Analyst 1.5 software 

(Applied Biosystems, Darmstadt, Germany) was used for data acquisition and processing. 

 

Characterization of reporter constructs 

Two reporter constructs were used. The lysine riboswitch plasmid (pZE21-GFPaav-Lys), which 

indicated changes in cytoplasmic lysine levels, and two promoter-GFP-fusion plasmids (pUA66-His and 

pUA66-Trp), which quantified changes in the transcriptional activity of the two genes hisL and trpL. To 

characterize the lysine riboswitch plasmid, the construct was introduced into the auxotrophic recipient 

ΔlysR. The resulting strain was then cultured for 24 h in MMAB, which has been supplemented with 

different concentrations of lysine (i.e. 0 µM, 50 µM, 100 µM, and 200 µM) and which did or did not contain 

aTc for induction of the riboswitch gene. An aliquot of the resulting culture was used for measuring 

fluorescence intensity (see below) and the rest was subjected to chemical analysis of cytoplasmic amino 

acid concentrations as well as cell number determination. The fluorescence intensity obtained for cultures 

grown without aTc induction was used as control to determine basal fluorescence emission levels of 

these cultures. In case of the promoter-GFP-fusion plasmid, the plasmid (pUA66-His and pUA66-Trp) and 

the control plasmid (pUA66) was individually introduced into donors (WT, Δmdh, ΔhisL/ ΔtrpR), which 

were cultured for 24 h in MMAB containing increasing concentrations of the amino acids histidine or 

tryptophan (0 µM, 50 µM, 100 µM, and 200 µM). An aliquot of the culture was used for measuring the 

intensity of GFP fluorescence and the rest was subjected to chemical analysis of cytoplasmic amino acid 

concentrations and cell number determination. 
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Promoter activity measurements  

To determine biosynthesis levels of histidine and tryptophan in vivo, the promoter activity of the 

corresponding biosynthetic genes (i.e. hisL and trpL) was quantified using the promoter-GFP-fusion 

plasmids (pUA66-His/Trp). To this end, the plasmids were first introduced into the donor genotypes (i.e. 

WT, Δmdh, and ΔhisL/ΔtrpR). Plasmid-containing donors were then either paired with recipients (i.e. 

ΔhisD or ΔtrpB) or cultured alone for 24 h. At five selected time points (i.e. 9 h, 12 h, 15 h, 18h, and 24 h), 

a sample was taken to measure GFP fluorescence intensity and the number of CFUs. Fluorescence 

values were normalized by dividing with the CFU number of plasmid-containing cells. Normalized 

fluorescence values of controls (i.e. cells carrying the promoter-less plasmid pUA66) were averaged and 

subtracted from the values of cells carrying the promoter-GFP-fusion plasmid (pUA66-His/Trp). 

Transcriptional activity at a given time point was calculated by computing the time derivative of the above 

control-subtracted fluorescence values (i.e. [d((pUA66-His/Trp) – pUA66)/dT]) (Zaslaver et al 2006). 
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