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ABSTRACT 

The classical lamination theory is widely used for the calculation of the mechanical properties 
of reinforced plastics and stress distribution inside laminates. The resulting Young’s moduli 
along the fiber direction are close to the achievable properties of unidirectional reinforced 
laminates [1]. However in most applications woven fabrics are used that lower the stiffness of 
the composites [2]. The influence of undulation and waviness of the fibers on the mechanical 
properties is yet to be explicitly specified. This article deals with the description of fiber 
undulation as well as the coherence between the geometry of fabrics and the achievable 
laminate properties. In order to get improved estimations for the Young’s modulus, a new, 
easily applicable method is introduced to consider the undulation of fibers in the calculation 
process of the classical lamination theory (CLT). The results show that the given method leads 
to diminishing the error of the ordinary process. 

1. INTRODUCTION

Existing models that describe fiber undulation are the mosaic model, as well as the crimp model, 
both of which were developed and analyzed by Ishikawa et al. [4]. 
The mosaic model simplifies the crossing weave and weft structure of the fabric to double 
stacked cells that each contain fibers solely in 0° or 90° angle to the laminate coordinates (Fig. 
1.1). 

Fig. 1.1. Idealization of the mosaic model. (a) Cross-sectional view of a fabric before impregnation; (b) woven 

fabric composite; (c) idealization of the mosaic model (After Ishikawa and Chou) [4] 

The connection between normalized forces 𝑛̂, normalized torques 𝑚̂, strains 𝜀, 𝛾 and curvatures 
𝜅 in a laminate is described by the so called ABD-matrix. With [A] being the in-plane stretching 
stiffness matrix, bending stiffness matrix [D] and bending-stretching coupling stiffness matrix 
[B]. Referred to the mid-plane, the equation (1) is as follows: 
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(1) 

By alternating the stiffness constants matrices [A], [B] and [D], the mosaic model can be 
integrated into the classical lamination theory when the dimensions of the fabric and composite 
are known.  
There are two possible approaches to applying this theory. Either the idealized fiber regions are 
regarded as parallel or serial working springs (Fig. 1.2).  
 

 
Fig. 1.2. The mosaic model. Repeating region in an eight-harness satin composite; (b) a basic cross-ply 

laminate; (c) parallel model; (d) series model (After Ishikawa and Chou) [4] 

 
Chou [3] shows the comprehensible solution. Resolving the equations for both possible ways 
leads to two different results. The use of the parallel model leads to an upper bound for the 
calculation of the stiffness matrices [A], [B], [D] and a lower bound for the inverted compliance 
matrices [A’], [B’], [D’]. Whereas using the series model leads to a lower bound of [A], [B], 
[D] and an upper bound of [A’], [B’], [D’]. It is not defined which approach should be used, 
and the obtained results are two extreme values. Furthermore fiber continuity is ignored in this 
model [5]. In order to consider fiber continuity, another model for fiber undulation, the crimp 
model, was developed by Ishikawa and Chou [4]. 
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Fig. 1.3. Crimp model (After Ishikawa and Chou) [4] 

 

 
Fig. 1.4. Crimp model detailed cross-section of the fabric (After Ishikawa and Chou) [4] 

 
The crimp model delivers a detailed description of the fiber geometry. It is based on the 
assumption, that depending on the position inside the composite, different fiber volume 
fractions are locally present. For each segment ai the ratio of weave, weft yarn and resin is 
determined. The properties of every infinitesimal position are integrated to make up the stiffness 
constants matrix of the ply. Again Chou [4] presents a comprehensible solution for the [A], [B] 
and [D] matrices. However due to the complexity of the integrands, numeric methods were used 
in the calculation process [4]. 
Finally, a bridging model was developed, that is a mixture of the mosaic- and the crimp-model, 
specifically designed for satin weave [4, 2]. Since it is not applicable for every type of weave, 
it is of no further interest in the search of a universally usable solution. 
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Fig. 1.5. Relationships between non-dimensionalized in-plane stiffness and 1/ng (type of weave) including 

experimental results [6] with upper- and lower bound of the mosaic model (UB,LB), crimp model (CM) and 

bridging model (BM) 

 
Mechanical experiments show that the bridging model gives reasonable predictions for the 
Young’s modulus of an eight harness satin weave (Fig. 1.5). The mosaic model as well as the 
crimp model are able to enclose the mechanical results between their upper and lower bounds. 
However the possibilities of narrowing down the experimental results into two boundaries are 
limited. [7] 
In this paper another approach to adjust the calculation in order to include fiber undulation is 
chosen. The developed model is based on the anisotropy of laminates. Due to fiber undulation, 
the yarns are not aligned ideally in one horizontal direction, but in a vertical angle. 
The anisotropy of planar laminates is already included in the classical lamination theory, by the 
transformation of the local fiber coordinate system to global x-y coordinates. By depicting a 
single fiber in a dice of a matrix, it becomes obvious, that an angle in vertical direction affects 
the material properties the same way a horizontal angle does. 
 

 
Fig. 1.6. Rotation of a single fiber in a matrix dice 

 
To determine the undulation angle β, there are two possible ways. Producing a laminate and 
measuring the angle directly under a microscope, or calculating it by using the data of the 
desired fabric before lamination. 
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Fig. 1.7. Geometry of a cross section of plain weave fabric 

 
To calculate the angle, the gap g between the yarns, the width w and height h of the yarn, as 
well as the thickness t of a single layer need to be known. 
The thickness can be calculated when the desired or process determined fiber volume fraction 
φ is known, as well as the grammage of the fabric mg and the density of the fiber material ρf. 
 

𝑡 = 𝑚𝑔 ∙
1

𝜌𝑓 ∙ 𝜑
 (2) 

 
Each single ply contains two stacked fiber strains, therefore the height of the yarn is: 
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𝑡

2
 

 
(3) 

Gap and width cannot be calculated and have to be measured on the dry fabric. With all 
parameters given, the average undulation angle follows as: 
 

𝛽 = arctan⁡(
2

𝑛𝐹 + 1
∙

ℎ

𝑔 + 𝑤
) (4) 

 
Where nF is the number of weft yarns the warp yarn crosses, before the yarn changes its position 
inside the fabric from the upper to the lower layer. 
In order to apply the undulation angle β, the proceedings of the classical lamination theory has 
to be extended by one step after the stiffness matrix [Q] of the unidirectional material mix is 
arranged. The partial transformation regarding the undulation angle takes place as a second 
step. It is assumed, that the Q11 stiffness constant is exclusively affected by undulation. 
 

[𝑄𝑓𝑎𝑏𝑟𝑖𝑐] = [
𝑄11 ∙ 𝑐𝑜𝑠

4(𝛽) + 2(𝑄12 + 2𝑄66) ∙ 𝑠𝑖𝑛
2(𝛽) + 𝑄22 ∙ 𝑠𝑖𝑛

4(𝛽) 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

]  

 

(5) 

 
The stiffness matrix [Qfabric] is now the basis for the ordinary steps of the classical lamination 
theory. 
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2. EXPERIMENTAL 
 
The test specimen consist of the fabric types according to Table 2.1: 
 
Table 2.1 Fabric types used for specimen preparation 

 Unit Plain weave Twill weave Unidirectional 

Manufacturer [ ] PD-Interglas PD-Interglas HP-Textiles 

Fabric 
designation [ ] 92130 92140 UD-fabric 

Grammage [g/m²] 390 390 400 

 
EPIKOTE RIMR 135 was used as epoxy resin matrix together with EPIKURE RIMH 134 
curing agent. Laminates with a stack up of ten layers were produced. The manufacturing 
temperature was 23°C, curing took place at 23°C for 24 hours followed by 60°C for another 15 
hours.  
Due to unidirectional fabric only having 10% weft yarns for handling reasons, weave induced 
fiber undulation can be neglected. 
 
Specimen according to DIN EN ISO 527-4 Type 3 were cut. The fiber undulation at the cross 
section was examined under a Zeiss Stemi 200-C stereo microscope and interpreted with the 
aid of the Zeiss AxioVision software. Furthermore dry samples of the used fabric were gauged 
alike in order to obtain the values needed for calculating the undulation angle. 
Additional specimen were produced in an 90° angle with radii R of 5 mm and 10 mm (Fig. 2.1), 
which are used to analyze possible changes of the undulation angle in curved laminates. 
 

 
Fig. 2.1. Curved specimen 

 
Tests of the Young’s modulus were performed in accordance to the DIN-EN-ISO 527-4 on a 
universal testing machine with clamp-on extensometer. 
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3. RESULTS AND DISCUSSION 
 
The theoretical undulation angles for plain weave and twill weave were calculated with the aid 
of measurements of the dry cloth under microscope (Fig. 3.1) and typical fiber volume contents 
from test laminates: 
 
 

 
Fig. 3.1 Parameters for fabric measurement 
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Table 3.1. Fabric measurements and calculated undulation angle 

 
Unit Value 

Width warp yarn wwarp [µm] 1243.49 ± 32.82 

Width weft yarn wweft [µm] 1195.90 ± 76.71 

Gap warp yarn gwarp [µm] 198.25 ± 62.48 

Gap weft yarn gweft [µm] 385.70 ± 87.17 

Grammage  [g/m²] 390 

Fiber density 𝜌𝑓𝑖𝑏𝑒𝑟 [g/cm³] 2.60 

Fiber volume content 
φplain 

[%] 50.99 

Fiber volume content 
φtwill 

[%] 52.53 

nF plain weave [ ] 1 

nf twill weave [ ] 2 

Undulation angle plain 
weave 𝛽𝑝 [°] 5.42 ± 1.1∙10-4 

Undulation angle twill 
weave 𝛽𝑡 

[°] 3.94 ± 1.1∙10-4 

 
In order to review the possible changes of the angle by manufacturing parameters, a prototype 
laminate was produced. The test laminate was made in a vacuum infusion process. By cutting 
the laminate and examining the cross section, the undulation angle can be measured directly. A 
measurement of 30 samples resulted in an angle βp of 5.67 ± 0.35°, which shows that using the 
parameters of dry cloth and estimating the fiber volume content delivers reliable results for the 
prediction of the undulation angle.  
Curved specimen were additionally manufactured in a vacuum infusion process with the same 
process parameters as the flat laminates. There are two effects influencing the deformation of 
the yarn in curved laminates. By putting the fabric preforms onto a curved tool, its weight causes 
the yarn which is orthogonal to the curvature to spread along the edge, increasing the yarn width 
and decreasing the according yarn height. Contrary to this effect, due to compressive forces of 
the atmospheric pressure during the manufacturing process the yarn gets additionally deformed 
(Fig. 3.2).  
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Fig. 3.2. Atmospheric pressure during vacuum infusion 

 
The measurement of the undulation angle showed, that small radii can influence the width of 
the weft yarn (Fig. 3.3). 
 

 
Fig. 3.3 Coherence between radius of curvature and width of the weft yarn 

 
Since the width of the deformed yarn converges towards the flat measurement at larger radii, it 
becomes obvious that the compressive forces are predominating. 
According to Fig. 3.3 at the smallest radius an average deviation in width of 0.19 mm for 
unidirectional and 0.12 mm for plain weave fabric was measured. This equals a deviation of the 
undulation angle of 0.39°. 
The Young’s modulus Ex was calculated using the theoretical undulation angles and the 
following material properties: 
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Table 3.2. Material properties 

 
Unit Fiber Resin 

Young’s modulus E [GPa] 73.00 3.20 

Shear modulus G12 [GPa] 30.40 1.23 

 
Flat laminates with unidirectional (0°/90°), plain weave and twill weave fabric were 
manufactured using vacuum infusion with constant parameters. After the curing process, 
specimen according to DIN EN ISO 527-4 were cut and the Young’s modulus was measured. 
In order to eliminate a systematical error in the universal testing machine, the recorded curves 
were corrected to fit the values of unidirectional fibers, since the effect of undulation is 
insignificant in this type of fabric. 
 
Table 3.3. Summary of measured laminate properties 

 
Unit Unidirectional 

(0°/90°) Plain weave Twill weave 

Fiber volume content φ [%] 50.50 ± 0.66 58.91 ± 0.95 59.29 ± 0.59 

Theoretical Young’s 
modulus Ex (CLT) [GPa] 22.45 25.96 26.09 

Theoretical Young’s 
modulus Ex 
(undulation) 

[GPa] 22.45 23.64 24.79 

Experimental Young’s 
modulus Ex 

[GPa] 22.45 ± 0.49 21.98 ± 0.72 24.19 ± 0.26 
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Fig. 3.4. Comparison between theoretical Young's modulus and experimental results 

 
4. CONCLUSIONS 

 
Fiber undulation reduces the stiffness of fiber reinforced composites. Plain weave fabric shows 
the sharpest decrease in the Young’s modulus due to the highest possible amount of fiber 
crossings, followed by twill weave with crossings at every second yarn. This aspect is taken 
into account by the use of the undulation angle. While the Young’s modulus of the plain weave 
laminate shows an error of 18.1% and twill weave of 7.8% when calculated by CLT, it is 
reduced to 7.5% and respectively 2.5% when the undulation angle is considered. 
The calculated moduli are always higher than the measured ones. The difference of the 
measured undulation angle in the laminate compared to the result of the calculation with the aid 
of the measured geometry of the dry fabric is negligible. Since the yarn width, height and the 
gap between yarns is constant for every type of fabric, the undulation angle needs to be 
determined only once and could be given in the according data sheet. Curved specimen with 
small radii show a deviation of the yarn width due to compressive forces, which result in an 
error of the calculation of the undulation angle. The effect of yarn compression in curved areas 
should be further examined for the resin transfer molding process, since different pressure 
conditions are present. However the impact of the thereby induced differing undulation angle 
on the mechanical properties should be little in comparison to other effects, like the uneven 
distribution of fibers and matrix in curved areas that lower the interlaminar shear strength [1]. 
Applying the undulation angle considers the decrease of stiffness in consequence of the fibers 
not being aligned parallel to the direction of the load. However further influences of fiber 
undulation, like the distribution of porosity and matrix cannot be taken into account. Those 
parameters possibly are the cause of the experimental Young’s moduli being lower than the 
calculated ones. Nevertheless this approach enhances the results of the CLT by adding a single 
matrix transformation and can be used to exploit lightweight potential at a higher rate. 
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