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Abstract:

Computationally aided development of novel materials requires an efficient and

reasonably accurate simulation methods capable of describing both molecular as well

as extended systems on an equal footing. Therefore, the methodological part of this

thesis is devoted to an efficient implementation of density functional theory within

the TURBOMOLE program package, which enables simulations of both molecules

and extended systems under periodic boundary conditions on an equal footing.

Specifically, my contribution has been the improvement of efficiency and us-

ability of the program by addressing its bottlenecks, extension to open shell sys-

tems and implementation of analytical energy gradients. In particular, an efficient,

octree-based continuous fast multiple method has been implemented in order to

significantly speed up Coulomb energy and gradient calculation.

With the improved efficiency and usability this implementation has been ap-

plied to atomic level structural characterization of ZnO and CdO nanoclusters. As

the result, not only new structures are discovered, but it is also possible to demon-

strate that their extraordinary long-lived excited states are due to electron–hole pair

localization combined with structural rigidity of the nanoclusters.

Finally, mixed ZnO-TiO2 nanoclusters as well as ZnO clusters adsorbed on the

anatase (101) surface have been investigated. Striking structural similarities between

structures of mixed ZnO-TiO2 and pure TiO2 clusters are found. In case of ZnO

nanoclusters adsorbed on the anatase surface a significant reduction of the band

gap of the system is shown. This suggest the way to tune electronic properties of

TiO2-based materials, in particular for solar cell applications, by deposition of ZnO

nanoclusters on anatase-like nanostructures.

Keywords: density functional theory, periodic systems, resolution of identity,

density fitting, lattice sums





Zusammenfassung:

Die rechnergestützte Entwicklung neuartiger Materialien erfordert effiziente und

genaue Simulationsmethoden, die sowohl molekulare als auch periodische Systeme

gleichermaßen gut beschreiben. Daher ist der methodische Teil dieser Arbeit

einer recheneffizienten Implementierung der Dichtefunktionaltheorie innerhalb des

TURBOMOLE-Programmpakets gewidmet, welche die Simulation von molekularen

und ausgedehnten Systemen unter periodischen Randbedingungen erlaubt.

Hierbei bestand mein Beitrag in der Steigerung der Recheneffizienz und Ver-

wendbarkeit des Programms durch die Bearbeitung der rechenintensivsten Pro-

grammteile, dessen Erweiterung für offenschalige Systeme sowie die Implemen-

tierung analytischer Energiegradienten. Dabei spielt die Implementierung einer

“Octree”-basierten “continuous fast multipole” Methode zur deutlichen Beschleuni-

gung der Berechnung der Coulombenergie und deren Gradient eine besondere Rolle.

Mit der verbesserten Effizienz und Verwendbarkeit des Programms gelang die

strukturelle Charakterisierung von ZnO- und CdO-Nanoclustern auf atomaren

Niveau. Im Ergebnis wurden nicht nur neuartige Strukturen entdeckt, sondern

es war auch möglich zu zeigen, dass die außergewöhnlich langen Lebenszeiten der

angeregten Zustände der Nanocluster in Zusammenhang mit der Lokalisierung von

Elektronen-Loch-Paaren und deren struktureller Steifigkeit stehen.

Schließlich erfolgte ebenso die Untersuchung von ZnO- und gemischten ZnO-

TiO2-Nanoclustern, die auf der (101)-Anatasoberfläche adsorbieren. Im Fall von

ZnO-Nanoclustern führte die Adsorption auf der Anatasoberfläche zu einer deut-

lichen Reduktion der Bandlücke. Dies zeigt einen möglichen Weg auf die elektro-

nischen Eigenschaften von TiO2-basierten Materialien durch die Abscheidung von

ZnO-Nanoclustern auf anatas-ähnlichen Nanostrukturen gezielt zu beeinflussen, ins-

besondere für die Anwendung in Solarzellen.
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Chapter 1

Introduction

1.1 Motivation

Computational studies of complex materials, for instance solid catalysts, photoac-

tive materials or ceramics, often involve simulations of model systems with different

dimensionality - small particles and molecules, models of surfaces, thin films and

bulk materials. Such simulations require an efficient and accurate method capa-

ble of consistent description of both molecular and extended systems. Therefore,

the methodological part of my thesis focuses on further development of a new ex-

tension of the TURBOMOLE program package,1,5 which enables simulations of

both molecules and extended systems under periodic boundary conditions (PBC)

on an equal footing using density functional theory (DFT) methods. Specifically,

the efficiency and usability of the program has been improved by addressing cur-

rent bottlenecks, extending it to open shell systems, implementing shared-memory

parallelization and energy gradients.

With the improved efficiency and usability the program has been applied to

atomic level structural characterization of ZnO and CdO nanoclusters as well as

ZnO nanoclusters adsorbed on the (101) surface of anatase. This work is motivated

by the application of ZnO, CdO and TiO2 based materials, particularly in nanos-

tructured form, as potential bulding blocks for cluster assembled materials (CAM)

and materials for dye-sensitized solar cells. The calculations presented in this thesis

have been performed within a joint project with the experimental group of Prof. Dr.

Gerd Ganteför at the University of Konstanz. They have performed time-resolved

photoelectron spectroscopic studies of ZnO and CdO nanoclusters in gas phase and

discovered an unusual behavior - extraordinary long-lived excited states. However,
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the interpretation of the experiments and full understanding of this behavior has

not been possible without the aid of DFT calculations described in my thesis. As

the result, not only new structures of ZnO and CdO clusters are discovered, but

it is also possible to demonstrate that the extraordinary long-lived excited states

are due to electron–hole pair localization combined with structural rigidity of the

nanoclusters. In addition, an unprecedented ”inverse quantum confinement effect”

in ZnO and CdO clusters - the decrease of the band gap with decreasing cluster size

is discovered.

In the last part of my thesis mixed ZnO-TiO2 nanoclusters as well as ZnO

clusters adsorbed on the anatase (101) surface have been investigated. Striking

structural similarities have been found between structures of mixed ZnO-TiO2 and

pure TiO2 clusters as well as the "inverse quantum confinement effect" in ZnO-

TiO2 clusters is shown. For ZnO nanoclusters adsorbed on the anatase surface a

significant reduction of the band gap in the system has been found. This suggest

the way to tune electronic properties of TiO2-based materials, in particular for solar

cell applications, by deposition of ZnO nanoclusters on anatase-like nanostructures.

1.2 Density Functional Theory for Molecular and Peri-

odic Systems

The relatively low computational cost combined with accuracy makes DFT meth-

ods important tools in contemporary computational chemistry and physics. DFT

calculations are typically performed using a finite set of basis functions in order to

solve algebraic rather than differential equations. The most common basis sets are

plane waves (PW) and Gaussian-type orbitals (GTO).52 PW are inherently peri-

odic in three dimensions (3D) and require large simulation cells for calculations of

lower dimensional systems – molecules (0D), chains and polymers (1D) or surfaces

(2D) – in order to prevent overlapping of periodic images of the charge density. In

contrast, GTO allow for treating systems of any dimensionality on an equal footing

without the need for constructing artificial 3D periodic models.46,85 GTO are also

particularly well suited for DFT calculations on sparsely packed systems, such as
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zeolites and metal-organic frameworks.46,85

When using GTO, the computationally most demanding parts of DFT calcula-

tions are the electronic Coulomb (J) and exchange-correlation (EXC) contributions.

For the EXC part several efficient numerical integration algorithms exist,23,126,132,133

among them the hierarchical scheme implemented in TURBOMOLE, capable of

achieving O(N) scaling for systems of any dimensionality.28 Due to the long range

nature of electrostatic interactions, an efficient evaluation of the Coulomb term

is a much more challenging task, in particular under periodic boundary condi-

tions.29,52,85 For GTO-based molecular and periodic DFT calculations the continu-

ous fast multipole method (CFMM)85,86,125,151 is computationally one of the most

efficient approaches. In CFMM, the Coulomb problem is partitioned into far-field

(FF) and near-field (NF) portions. The FF part which comprises the major part of

interactions including the long-ranged crystal part is evaluated very efficiently using

multipole expansions. The NF interactions are treated by a direct integration and

represent computationally the most demanding part for both molecular and periodic

systems.125

The computational cost of the direct integration can be significantly reduced by

using the density fitting (DF) procedure, also known as resolution of identity (RI)

approximation.13,47,51,137 In this method the electron density is approximated by

a linear combination of atom-centred auxiliary basis functions. The corresponding

expansion coefficients are determined by minimization of the difference between ex-

act and auxiliary electron density in a particular metric. It has been shown that

among different metric choices the Coulomb one leads to a variational problem and

the smallest fitting error.71,137 For molecular systems very efficient methods com-

bining DF with multipole expansions122 or the continuous fast multipole method

(CFMM)123 have been developed. They allow to reduce the asymptotic scaling to

nearly O(N). However, the extension of DF approximation to periodic systems is

not straightforward, due to a slow decay behaviour of the auxiliary density expan-

sion coefficients and divergent terms in the Coulomb metric matrix under periodic

boundary conditions (PBC).71,139 To circumvent these problems several methods

have been developed, including the use of non-Coulomb metrics,71,139 introduc-
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ing basis sets comprising GTO and chargeless Poisson basis functions,94 combining

electron and nuclear charge densities,48,67 and restricting the fitting domain.66 The

Coulomb lattice sums within these methods are usually evaluated using the Ewald

summation technique.53 The basis for my thesis is the recent fast and robust DF

scheme for molecular and periodic systems operating entirely in direct space, that

has been developed by Burow et. al.29 Its core is the decomposition of auxiliary

density into charged and chargeless parts. The use of the Coulomb metric under pe-

riodic boundary conditions constraints the charged part. The determination of the

chargeless component is variational and involves only convergent Coulomb lattice

sums.

In my thesis a full GTO-based DFT implementation has been developed that

treats molecules as well as extended systems with 1D, 2D and 3D periodicity on an

equal footing. The novel aspect and the core of the implementation is a combination

of DF and CFMM. Furthermore, the resulting DF-CFMM scheme for calculation of

the Coulomb interactions and the numerical scheme for exchange-correlation term28

are extended to energy gradients. This is an important component of any electronic

structure theory code that enables evaluation of forces acting on nuclei, location of

stationary points on potential energy surfaces and conducting molecular dynamics

simulations.24,27,77,119

Computational efficiency and asymptotic O(N) scaling behaviour of the im-

plementation is demonstrated for various molecular and periodic model systems

(see sec. B.1). It is shown, that that the DF-CFMM scheme allows calculation of

both energy and its gradient with efficiency competitive to DF algorithms based on

PW.8,31,92,138

1.3 Metal-Oxide Nanoclusters

With the improved efficiency and usability the DFT implementation developed in

my thesis has been applied to atomic level structural characterization of ZnO and

CdO nanoclusters as well as ZnO nanoclusters adsorbed on the (101) surface of

anatase. At the nano- and subnanoscale, some properties of nanostructured metal
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oxides can be very different from those of their atomic and bulk counterparts. The

extreme confinement due to the proximity of the interfaces stabilizes new structures

and phases that otherwise cannot be obtained as bulk materials.81 This opens new

possibilities for the development of highly functional tailor-made structures by a

bottom up approach with clusters serving as building blocks, leading to the so-

called cluster-assembled materials (CAMs).32,37

There are special prerequisites for clusters to serve as such building blocks,

namely, a very rigid structure that also favours three-dimensional assembly and

large HOMO–LUMO gaps to prevent fusion of clusters.32 To this date, fullerites

with carbon fullerenes as building blocks that meet all of these requirements present

the only CAM obtained from gas-phase entities.55,99 However, theoretical predic-

tions indicate that new crystalline phases may be accessible via coalescence of

size-selected clusters with ZnO, CdO, and MgO as prominent examples.6,12,32,37,81

For these clusters, highly symmetric alternant cage structures have been pre-

dicted.40–42,54,60,80,114,136,142,143,145,152 Unlike carbon fullerenes comprising five- and

six-membered rings, these cages are constructed from rings containing four and six

atoms. This tendency arises from the need to avoid homobonding. Similar highly

symmetric alternant cage structures have been predicted for numerous binary semi-

conductors (XY)n including other species from groups II-VI61,93,95,97,102,134,135,144

and III-V38,39,78,98,117,127,128,153,158,160 compounds.

Small clusters have been found to show a strong size dependence ("every atom

counts")68 of their properties such as the gas phase stability,42 and catalytic ac-

tivity.17,87 For example, an unusually long-lived excited state has been observed in

Au−6 ; its lifetime is owed to a planar structure and its excitation into an orbital

outside the cluster plane, thus resulting in low de-excitation probability. Such an

extraordinary long lifetime has not been found in other Au−n clusters.141 Besides

cluster geometries, long excited state lifetimes can be influenced by degree of sol-

vatation25,26 or oxidation.79 However, general indicators that always apply have not

been identified.

The calculations presented in the thesis are motivated by experiments conducted

in the group of Prof. Dr. Gerd Ganteför at the University of Konstanz. They
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performed time-resolved photoelectron spectroscopic studies of ZnO and CdO nan-

oclusters in gas phase and discovered an unusual behavior - extraordinary long-lived

excited states. However, the interpretation of the experiments and full understand-

ing of this behavior is not possible without the aid of DFT calculations described

in my thesis. As the result, not only new structures of ZnO and CdO clusters have

been discovered, but it has been also possible to demonstrate that the extraordi-

nary long-lived excited states are due to electron–hole pair localization combined

with structural rigidity of the nanoclusters. In addition, an unprecedented "inverse

quantum confinement effect" in ZnO and CdO clusters - the decrease of the band

gap with decreasing cluster size has been discovered. For both oxides the highly

symmetric alternant cage structures and large band gaps have been predicted, con-

firming their validity as CAM building blocks. Striking similarity between (ZnO)−n

and (CdO)−n clusters leads to the idea of an alternant cage cluster assembled materi-

als (ACCAMs) construction kit helpful in design of novel materials of unprecedented

properties.

Finally, the DFT implementation developed in my thesis has been used to in-

vestigate mixed ZnO-TiO2 based materials. Such materials, particularly in nanos-

tructured form as nanoparticles, nanotubes and thin films, play an essential role

in many fields of modern material science,10,33,120 in particular as materials for

dye-sensitized solar cells.9,73,129,157 Despite widespread use, ZnO and TiO2 based

systems have some drawbacks. For TiO2 it is a low electron mobility, and fast re-

combination of electrons and holes after excitation. For ZnO, the main drawback

is its vulnerability to photo and chemical corrosion. Moreover for both ZnO and

TiO2 the maximum of light absorption is blue shifted compared to solar spectrum

peak. Therefore, many efforts have been taken to develop new, more efficient ma-

terials by adjusting the structure of ZnO and TiO2 by combining both materials

or by combining them with other compounds. Recently, systems containing both

ZnO and TiO2 have been investigated by several authors. For example, Zhao et

al.162 synthesized Zn-doped TiO2 nanoparticles with high photocatalytic activity.

The ZnO has been found to be presented in the form of small clusters dispersed on

the surface of anatase-like TiO2 nanoparticles. Another studies on combined TiO2–
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ZnO materials have been conducted by Xu et al.,155 who developed high-efficiency

solid-state dye-sensitized solar cells with efficiency comparable to liquid-state solar

cells.

In my thesis mixed ZnO-TiO2 nanoclusters as well as ZnO clusters adsorbed

on the anatase (101) surface have been investigated. Striking structural similarities

between structures of mixed ZnO-TiO2 and pure TiO2 nanoclusters have been found,

along with the "inverse quantum confinement effect". In case of ZnO nanoclusters

adsorbed on the anatase surface a significant reduction of the band gap of the

combined system has been shown. This suggest the way to tune electronic properties

of TiO2-based materials, in particular for solar cell applications, by deposition of

ZnO nanoclusters on anatase-like nanostructures.





Chapter 2

Density Functional Theory

In this chapter an implementation of Kohn–Sham density functional theory with

Gaussian type orbitals as basis functions that treats molecular and periodic sys-

tems of any dimensionality on an equal footing is presented. The key component of

the implementation is a combination of density fitting/resolution of identity (DF)

approximation and continuous fast multipole method (CFMM) applied for the elec-

tronic Coulomb term. This DF-CFMM scheme operates entirely in the direct space

and partitions Coulomb interactions into far-field part evaluated using multipole

expansions and near-field contribution calculated employing density fitting. The

exchange-correlation term is evaluated using the hierarchical numerical integration

scheme of Burow et al.28 Computational efficiency and favourable asymptotic O(N)

scaling behaviour of the DF-CFMM scheme as well as of its extension to energy

gradient is demonstrated for various molecular and periodic systems including three

dimensional models presented in app. B.1. This chapter contains verbatim quotes

from the related articles88,89 published during my PhD, of which I am the first

author.

2.1 General Theory

2.1.1 Basic Equations

The general scheme of presented GTO-based DFT implementation for periodic sys-

tems follows the standard procedures available in similar programs.46,52,85 Here,

only the most important equations are given for the sake of completeness.

The translational symmetry of solids leads to Bloch orbitals ψk
pσ and one-particle

energies εkpσ depending on the band index p, spin σ, and the wave vector k within
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the Brillouin zone (BZ), which is the unit cell of reciprocal space. The orbitals

ψk
pσ(r) =

1√
NUC

∑
L

eikL
∑
µ

Ck
µpσµL(r) (2.1)

are expanded in GTO basis functions µ(r − Rµ − L) ≡ µL(r) centred at atomic

positions Rµ in direct lattice cells L over all NUC unit cells. The matrix of expansion

coefficients Ck
σ is determined by solving Kohn-Sham equations in GTO basis,

Fk
σC

k
σ = SkCk

σε
k
σ, (2.2)

separately for each k in the BZ. The same equations hold for the molecular case,

where only L = k = 0 is a valid choice and NUC is one. Eq. 2.2 contains the

reciprocal space Kohn-Sham (KS) and the overlap matrices Fk
σ and Sk, respectively,

obtained as Fourier transforms of real space matrices

Fk
µνσ =

∑
L

eik
TLFL

µνσ (2.3)

Sk
µν =

∑
L

eik
TLSL

µν . (2.4)

The elements FL
µνσ contain three contributions: elements TL

µν of the kinetic energy

matrix, elements JL
µν of the Coulomb matrix, and elements XL

µνσ of the exchange-

correlation matrix,

FL
µνσ = TL

µν + JL
µν +XL

µνσ. (2.5)

The evaluation of TL
µν is identical to the molecular case and XL

µνσ are calculated

using a hierarchical integration scheme28 presented in sec. 2.2.2. The calculation of

JL
µν and XL

µνσ requires the real space density matrix obtained by integration

DL
µνσ =

1

Vk

∫
BZ
Dk
µνσe

ikTLdk (2.6)

of the reciprocal space density matrix

Dk
µνσ =

∑
p

fkpσ

(
Ck
µpσ

)∗
Ck
νpσ (2.7)

over the BZ with volume Vk. The orbital coefficients Ck
µpσ are taken from an initial

guess or from the previous solution of eq. 2.2. The occupation numbers fkpσ at zero
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temperature are either zero or one for occupied and virtual orbitals, respectively.

The reciprocal space integral in eq. 2.6 is evaluated numerically on a finite grid of

k-points.

Within a self-consistent-field (SCF) cycle, the calculation of all contributions to

the KS and overlap matrices is first completed in direct space and then eq. 2.2 is

solved in reciprocal space. The last step is accomplished within a loop over a grid

of k-points, where the direct space matrices are transformed into the orthonormal

orbital basis on a single k-point. In this way, a regular matrix eigenvalue problem

is obtained in eq. 2.2, which is solved by diagonalization of the KS matrix. The

elements Dk
µνσ in eq. 2.7 are formed from the eigenvectors Ck

µpσ of eq. 2.2 and

are subsequently transformed on the fly to yield the direct space density matrix

according to eq. 2.6. In each SCF cycle, the total energy per unit cell, E, is calculated

as

E =
∑
µνL

∑
σ

DL
µνσT

L
µν + EXC + J , (2.8)

where J and EXC are the Coulomb and exchange-correlation (XC) energy contri-

butions, calculated as described in secs. 2.2.1 and 2.2.2, respectively.

An important feature of the real space KS matrix elements FL
µνσ is their exponen-

tial decay with increasing separation of the basis functions µ and ν. Combined with

the direct space symmetry relation of the matrices M = F , T , J , Xσ, Dσ defined

previously,

M−Lνµ = ML
µν , (2.9)

the exponential decay allows for a very efficient sparse storage of the real space

matrices.28 There is a further a reciprocal space symmetry relation

M−kµν =
(
Mk
µν

)∗
, (2.10)

which shows that all direct space matrix elements must be real, if the BZ contains

for each k the corresponding −k and real GTO basis functions are used.

Once the SCF calculation is converged, energy gradient may be computed. First

energy derivatives EAα with respect to displacement of nuclei A along the Cartesian

component α are obtained by differentiation of eq. 2.8 and are given as85
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EAα =
∑
σ

(
DL
µνσT

LAα
µν −WL

µνσS
LAα
µνσ

)
+ EAαXC + JAα, (2.11)

where TLAα
µν and SLAα

µνσ are first derivatives of the kinetic energy and overlap matrix

elements, respectively. Their calculation is similar to the molecular case.56,112,113

Elements WL
µνσ of the real-space energy weighted density matrix are obtained by

numerical integration over the first Brillouin zone as

WL
µνσ =

∑
k

wke
ikTLWk

µνσ with Wk
µνσ =

∑
p

fkpσε
k
pσ

(
Ck
µpσ

)∗
Ck
νpσ. (2.12)

The Pulay force −
∑

µνL

∑
σWL

µνσS
LAα
µνσ is related to basis set incompleteness.113

Derivatives of Coulomb (JAα) and exchange-correlation (EAαXC) terms are calculated

as described in sec. 2.3. Similarly to the energy case, efficient sparse storage of

matices introduced in eq. 2.11 is achieved using symmetry relations 2.9 and 2.10.

All time-consuming steps of the DF-CFMM scheme have been parallelized for

shared memory machines using the OpenMP application programming interface.2

2.1.2 Density Fitting Scheme

A full description of the method is given in ref. 29 and here only the basic summary

is provided. The total crystal electron density ρc is a (infinite) sum of local densities

ρL centred in cells translated by L,

ρc =
∑
L

ρL, (2.13)

with

ρL =
∑
µνL′

∑
σ

DL′
µνσµLνLL′ , (2.14)

where the shorthand notation νL(r − L′) ≡ νLL′ is used and the subscript 0 is

omitted for L = 0. Atom-centred GTO auxiliary basis functions that are elements

of vector α are denoted as α.

The total crystal electron density ρc is approximated by auxiliary crystal electron

density ρ̃c,

ρc ≈ ρ̃c =
∑
L

ρ̃L, (2.15)
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composed of unit cell auxiliary densities

ρ̃L =
∑
α

cTαL. (2.16)

The vector of expansion coefficients c is independent of the lattice vectors L, since it

is identical in every unit cell. It is determined by minimizing the Coulomb repulsion

D of the residual density δρ = ρc − ρ̃c

D =

∫∫
δρ (r)

1

| r− r′ |
∑
L

δρL
(
r′
)
dr dr′

= (δρ | δρL) = (ρc − ρ̃c | ρL − ρ̃L) . (2.17)

Unless explicitly stated, in eq. 2.17 and throughout this chapter a direct space lattice

sum over lattice vectors L is understood on the right hand side of Coulomb integrals.

In periodic systems D is finite only if δρ is chargeless, i.e.,∫
δρ (r) dr = 0 ⇒

∫
ρ̃ (r) dr = Nel. (2.18)

Thus, the charge of ρ̃ is naturally constrained to the number of electrons, Nel. In

order to explicitly enforce this condition ρ̃ is decomposed into charged and chargeless

components, ρ̃‖ and ρ̃⊥, respectively,

ρ̃ = ρ̃‖ + ρ̃⊥ = cT‖α + cT⊥α (2.19)

with ∫
ρ̃‖ (r) dr = Nel and

∫
ρ̃⊥ (r) dr = 0. (2.20)

The vectors of expansion coefficients c‖ and c⊥ are orthogonal to each other and

can be expressed with help of projection matrices

P‖ = nnT and P⊥ = 1− nnT (2.21)

as

c‖ = P‖c and c⊥ = P⊥c. (2.22)

The vector n in eq. 2.21 is a normalized charge vector of the auxiliary basis with

elements

nα =
1

|q|
qα with q = (q1, q2, . . .) and qα =

∫
α (r) dr. (2.23)
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The same projection matrices are used to define the vectors of charged and chargeless

auxiliary basis functions α‖ and α⊥, respectively, as α‖ = P‖α and α⊥ = P⊥α.

Due to the mentioned charge constraint of ρ̃, the expansion coefficients c‖ of the

charged component ρ̃‖ take the form

c‖ =
Nel

|q|
n. (2.24)

The complementary chargeless part ρ̃⊥ is determined by minimization ofD (eq. 2.17)

with respect to all elements of c⊥. This leads to a system of linear equations(
V⊥ + P‖

)
c⊥ = ξ⊥, (2.25)

where V⊥ is the projected Coulomb metric matrix

V⊥ = P⊥VP⊥ =
(
α⊥ | αT

⊥L
)

(2.26)

and vector ξ⊥ is given by

ξ⊥ =
(
α⊥ | ρL − ρ̃‖L

)
. (2.27)

An important property of this DF scheme is that all lattice sums in eqs. 2.25–2.27

are convergent since they employ exclusively chargeless quantities. Contrary to

other approaches for DF in extended systems,48,67 this formulation does not use the

nuclear charge distribution to obtain such convergent lattice sums.

The final set of expansion coefficients of the auxiliary density is obtained as

c = c‖ + c⊥.

2.2 Energy Calculation

2.2.1 Coulomb Term: DF-Accelerated CFMM

The elements JL′
µν of the real space Coulomb matrix are calculated using the auxiliary

density as

JL′
µν = (µνL′ | ρ̃L − ρnL) , (2.28)

where ρn denotes the unit cell nuclear charge distribution. They are used to calculate

the total Coulomb energy including the nuclear contribution as

J =
∑
µνL′

DL′
µνJ

L′
µν −

1

2
(ρ̃+ ρn | ρ̃L − ρnL) . (2.29)
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The efficiency of the implementation arises from use of continuous fast multi-

pole method (CFMM)83–86,149 for evaluation of Coulomb lattice sums appearing in

eqs. 2.27 – 2.29. This results in DF-accelerated CFMM (DF-CFMM) scheme, with

all calculations performed entirely in the direct space. This section provides basic

definitions and description of the algorithm, in particular of the octree-based scheme

used to store and manipulate multipole expansions.

2.2.1.1 Partitioning of Coulomb Lattice Sums

The definition of well-separated charge distributions plays the central role in the

DF-CFMM. Two charge distributions centred at P and Q with extents (radii) rP

and rQ, respectively, are well-separated if the distance between the centres is larger

than the sum of their extents, i.e.,

|P−Q| ≥ rP + rQ. (2.30)

The extents in eq. 2.30 ensure that for well-separated distributions the error of the

Coulomb interaction introduced by the multipole approximation is smaller than a

given threshold ε. Definitions for the extents of charge distributions are given in

ref. 122.

The Coulomb lattice sums in eqs. 2.27 – 2.29 are partitioned into the crystal

near-field (CNF) and far-field (CFF) contributions as depicted in fig. 2.1. In a

full lattice sum of the form (ρ1 | ρ2L) the distribution ρ1 in the central unit cell

(L = 0) interacts with an infinite number of distributions ρ2L, i.e., ρ2 translated

by all possible L. The distributions ρ1 and ρ2 can contain point charges (nuclei),

as well as continuous charge distributions (shell pairs µνL or/and auxiliary basis

functions α).

The CNF contribution consists of ρ1 interacting with ρ2L for a finite number of

L corresponding to the neighbouring unit cells. The remaining part of the lattice

sum defines the CFF, i.e.,∑
L

(ρ1 | ρ2L) =
∑

L∈CNF
(ρ1 | ρ2L) +

∑
L∈CFF

(ρ1 | ρ2L) . (2.31)

A lattice vector L belongs to the CFF if it fulfils two conditions: (i) all charge
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Figure 2.1: Partitioning of a Coulomb lattice sum into the CNF and CFF contribu-

tions. The central unit cell with L = 0 is marked in grey.

distributions forming ρ1 are well separated from those of ρ2L, and (ii) |L| ≥ ws ×

(rmax1 + rmax2 ), where rmax1 and rmax2 are maximum distances between the unit cell

centre and all charge centres comprising ρ1 and ρ2, respectively, and ws is the well-

separateness criterion. Note, that this definition of ws is different than the one used

by other authors, e.g., in refs. 84 and 151.

The infinite lattice sums of the CFF part for systems of 1D, 2D and 3D peri-

odicity with arbitrary lattice vectors are evaluated using multipole expansions and

recurrence relations derived by Kudin and Scuseria86 for calculation of the lattice

sum S of so called “external to local” translation operators. S is calculated only

once per SCF run and stored, since it depends only on the size and shape of the

unit cell. This contribution to Coulomb interaction is obtained in negligible time.

The evaluation of the CNF part of the Coulomb lattice sum is the bottleneck of

calculations for periodic systems. This contribution is evaluated as described in

sec. 2.2.1.2

2.2.1.2 Crystal Near-Field Contribution

The CNF contribution of the lattice sum (ρ1 | ρ2L) is evaluated employing CFMM

that combines high computational efficiency and favourable scaling approaching

O(N). The key feature of the CFMM is an octree-based hierarchical spatial decom-

position of the charge distributions ρ1 and ρ2. This allows partitioning of Coulomb

interactions between the two distributions into far-field (FF) and near-field (NF)
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contributions. The NF part is evaluated by means of direct integration. The FF

part comprises the majority of interactions and is calculated very efficiently using

a hierarchy of multipole expansions. The CFMM implementation in RIPER closely

follows the algorithm described in refs. 83–85, 149 and 151. The main differences

are: (i) the NF contribution to the Coulomb matrix elements is evaluated employ-

ing density fitting, and (ii) octree construction and the spatial decomposition are

applied directly to ρ1 and ρ2L only for L = 0. The interactions between ρ1 and ρ2L

for the remaining L ∈ CNF are calculated using replicas of the octree.

The construction of the octree is based on the fractional tiers scheme of White

and Head-Gordon.150 It achieves an optimum balance between the NF and FF

work by allowing for an arbitrary number of the lowest level boxes. In contrast,

standard boxing schemes restrict the number of lowest level boxes to be a power of

eight. In short, a cubic parent box enclosing all distribution centres of ρ1 and ρ2 is

constructed that is large enough to yield a predefined number ntarg of distribution

centres per lowest level box. The parent box is successively subdivided in half along

all Cartesian axes yielding the octree. In the next step all charge distributions

comprising ρ1 and ρ2 are sorted into boxes. This is achieved by assigning the centre

of each distribution (nuclear point charge, auxiliary basis function or shell pair) of

ρ1 and ρ2 to the smallest box with the edge length Li ≥ 2ri/(ws− 1), where ri is the

distribution extent. This condition ensures that on each tree level the distributions

from well-separated boxes do not overlap. Nuclear point charges are sorted into the

lowest-level boxes by their coordinates.

The CNF contribution of the lattice sum (ρ1 | ρ2L) is calculated using the follow-

ing scheme, depicted schematically in fig. 2.2. The necessary definitions of multipole

and Taylor expansions as well as translation operators are introduced in app. A and

derived in ref. 149.

Step 1: Formation and Translation of Multipole Expansions

This step does not involve any periodic images of ρ2 and is identical for molecular

and periodic systems. For each occupied octree box at all levels multipole expansions

about the centre of the box are formed for charge distributions comprising ρ1 and ρ2

that belong to the given box. These multipole expansions are calculated using the
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Figure 2.2: 1D scheme representation of DF-CFMM with ws = 3 in the CNF part

of the lattice sum (ρ1 | ρ2L): a) formation of partial multipole expansions of ρ1 (left

lower triangle in each box) and ρ2 (right lower triangle), b) upwards translation and

summation of partial multipole expansions of ρ2, c) formation of Taylor expansions

(upper triangle) from partial multipole expansions in well-separated boxes whose

parents are not well-separated; dashed lines represent contributions from periodic

replicas of the octree, d) downward shift and summation of Taylor expansions, e)

calculation of the NF contribution between non-well-separated boxes at all levels

and between levels.
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method described in ref. 122. The expansions are stored separately for ρ1 and ρ2 (see

fig. 2.2a). Multipole expansions of ρ2 are translated upwards applying the “external

to external” translation operator A and accumulated starting from the lowest level of

the octree (fig. 2.2b). After this step each box contains partial multipole expansion

of charge distributions of ρ2 contained in the box itself and in its child boxes.

Step 2: Formation and Translation of Taylor Expansions

In this step the partial multipole expansion of ρ2 about the centre of a box iL

(i.e., box i shifted by a lattice vector L ∈ CNF) is transformed into the Taylor

expansion about the centre of box j. This transformation uses the “external to

local” operator B and is performed only for pairs of boxes at the same level of the

octree that are well-separated while their parents are not (cf. fig. 2.2c). Two boxes

iL and j with edge lengths Li and Lj , respectively, are called well-separated if the

distance dij between their centres satisfies the condition

dij ≥ ws×
(Li + Lj)

2
. (2.32)

Since the partial multipole expansions along the octree are formed only for ρ2L

with L = 0 (Step 1), this procedure formally involves replica of the octree shifted

by L ∈ CNF. Using the replica allows for a significant speedup of this “external

to local” transformation step by first calculating the sum of operators B for all

L ∈ CNF that fulfill the condition given by eq. 2.32. This sum is then applied to

transform partial multipole expansion of ρ2 about the centre of box i into the Taylor

expansion about the centre of box j for all well-separated iL in only one step. This

is the main difference to the implementation of Kudin et al.83,84,86 who sort charge

distributions for all L ∈ CNF into one bigger octree.

The local Taylor expansions are passed down the tree using the operator C. This

pass starts at the highest level and translates Taylor expansions of each parent box

to the centres of the child boxes. The expansions within child boxes are summed

up and the procedure is repeated until the lowest level of the octree is reached

(fig. 2.2d).

Step 3: Far-field Contribution

After steps 1 and 2 each box within the octree contains partial Taylor expan-
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sions of ρ2L from all well-separated boxes iL for L ∈ CNF. These expansions are

combined with partial multipole expansions of ρ1 yielding the FF portion of the

CNF contribution to lattice sum (ρ1 | ρ2L).

Step 4: Near-field Contribution

In this step the remaining interactions between non-well-separated boxes and

within boxes are evaluated by direct integration at all octree levels. This is the most

time-consuming step of the algorithm. Note, that the NF part includes interactions

between the boxes at different levels, as depicted in fig. 2.2e. The resulting NF

contribution is combined with the FF part obtained in step 3 yielding the CNF part

of the lattice sum (ρ1 | ρ2L).

2.2.2 Exchange-Correlation Term

In this section an evaluation scheme of EXC term in eq. 2.8 is described. During

the course of my work the initial algorithm of Burow et al.28 has been extended to

meta-GGA case. For simplicity, only the closed-shell formalism is presented here.

The total crystal electron density ρc (see eqs. 2.13 and 2.14) is therefore rewritten

as

ρc =
∑
L

ρL, with ρL =
∑
µνL′

DL′−L
µν µLνLL′ . (2.33)

The XC energy is defined as an integral over the unit cell (UC),

EXC =

∫
UC

f (ρc, γ, τ) dr (2.34)

with the exchange-correlation function20,34,57,63,70,90,106,107,109,130,140

f = f (ρc, γ, τ) , (2.35)

the gradient invariant

γ = |∇ρc|2 (2.36)

and kinetic energy density
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τ =
1

2

∑
µLνL′

DL′−L
µν ∇µL∇νLL′ . (2.37)

In practice the integral given by eq. 2.34 is too complex to be evaluated analytically.

Therefore, numerical integration using a finite set of grid points rm with weights

wm is performed, i.e., eq. 2.34 is replaced by

EXC =
∑
m

wmf (ρmc , γ
m, τm) (2.38)

where ρmc , γm and τm are values of ρc, γ and τ at a grid point rm. The presented im-

plementation uses multi-centre grids composed of atom-centred grids and restricted

to atoms of one UC in the case of periodic systems.28 Calculation of the weights

wm uses the Scuseria scheme.126 For molecular systems the Becke renormalization21

scheme has also been implemented. Elements XL
µν of the real space XC matrix are

calculated as

XL
µν =

∑
m

∑
L′

wm

[
∂f

∂ρc

∣∣∣∣
rm

(µmL′ν
m
L′L)

+ 2
∑

α=x,y,z

∂f

∂γ
ραc

∣∣∣∣
rm

(µmL′ν
mα
L′L + µmαL′ ν

m
L′L) (2.39)

+
1

2

∑
α=x,y,z

∂f

∂τ

∣∣∣∣
rm

(µmαL′ ν
mα
L′L)

]

where superscript α denotes derivatives with respect to the corresponding Cartesian

displacement component. Note, that ραc are simply elements of the density gradient

∇ρc.

The XC energy, and elements XL
µν are calculated using the integration scheme

developed by Burow et al.28 The method shows an O(N) scaling behaviour achieved

by a hierarchical spatial grouping of basis functions and grid points employing an

octree. This octree is constructed as described in section 2.2.1.2. Subsequently, all

grid points and basis functions are sorted into the octree. Grid points are assigned

to boxes simply by their coordinates. Assignment of basis functions is based on

their extents.28 Using the notation introduced in ref. 28,
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Fm = wm
∂f

∂ρc

∣∣∣∣
rm

(2.40)

(
Fmx , F

m
y , F

m
z

)
= 2wm

∂f

∂γ
∇ρc

∣∣∣∣
rm

(2.41)

Fmτ =
1

2
wm

∂f

∂τ

∣∣∣∣
rm

(2.42)

and

zmLµ =
1

2
FmµmL +

∑
α

Fmα µ
mα
L and zmατLµ =

1

2
Fmτ µ

mα
L , (2.43)

eq. 2.39 can be rewritten as

XL
µν =

∑
m

∑
L′

(
zmL′µν

m
L′L + µmL′z

m
L′ν +

∑
α

(
zmατL′µν

mα
L′L + µmαL′Lz

mα
τL′ν

))
. (2.44)

This equation is similar to that given by Burow et al.28 with an additional term

related to meta-GGA functional. Calculation of the XC energy using eq. 2.38 and

terms defined in eqs. 2.40 – 2.42 requires values of ρc, γ and τ on grid points.

They are very efficiently calculated using optimized matrix-matrix multiplication

subroutines and intermediate matrices Bp and Bp(1), with dimensions Mp×Kp and

3 ×Mp × Kp, respectively, where Mp is the number of grid points and Kp is the

number of basis functions assigned to box p. The elements of Bp and Bp(1) are

defined as

Bp
µLm

=
∑
νL′

DL′−L
µν νmL′L and Bp(1)

µLmα
=
∑
νL′

DL′−L
µν νmαL′L (2.45)

where µmLL′ and µ
mα
LL′ are values of all contributing basis functions and their deriva-

tives, respectively, on a grid point m. The values of basis functions on the grid

points in box p are stored in aMp×Kp matrix ξ. Similarly, first derivatives of basis

functions on grid points in the box p are stored in ξp. The values of ρc, ραc and τ

on each grid point m are calculated accumulating contributions from boxes as

ρmc =
∑
p

rowm [Bp]× rowm [ξp]T (2.46)

ρmαc =
∑
p

rowm [Bp]× rowm
[
ξp(1)

]T
(2.47)
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τmc =
∑
p

rowm
[
Bp(1)

]
× rowm

[
ξp(1)

]T
(2.48)

with rowm [M] denoting the m-th row of M. In practice, operations in eqs. 2.46 –

2.48 are performed using optimized matrix-matrix multiplication subroutines. Fi-

nally, the total energy is evaluated according to eq. 2.38.

2.3 Energy Gradient

2.3.1 Coulomb Term

First derivatives of the Coulomb part of energy gradient JAα with respect to the

displacement of the nuclei A are obtained by differentiation of eq. 2.29

JAα =
(
ρ1 | ρAα2L

)
+
(
ρAα1 | ρ2L

)
, (2.49)

where

ρ1 = ρ− 1

2
(ρ̃+ ρn) and ρ2L = ρ̃L − ρL. (2.50)

The CFF contribution to the gradient term introduced in eq. 2.49 is evaluated in

negligible time using the operator S (cf. sec. 2.2.1.1 and ref. 86)

The CNF part JAαCNF derived from eqs. 2.49 and 2.50 may be written as89

JAαCNF =

(
ρAα |

∑
L∈CNF

(ρ̃L − ρnL)

)
+(

ρ̃Aα |
∑

L∈CNF
(ρL − ρnL)

)
+

(
ρAαn |

∑
L∈CNF

(ρnL − ρL)

)
(2.51)

The above terms are calculated using the CFMM scheme described in sec. 2.2.1.2

2.3.2 Exchange-Correlation Term

First derivatives of EXC with respect to the displacement of the nuclei A, obtained

by differentiation of eq. 2.38, are given as

∇AEXC =
∑
m

(wm∇Af (ρmc , γ
m, τm) + f (ρmc , γ

m, τm)∇Awm) . (2.52)
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The first term in eq. 2.52 can be transformed applying the chain rule to differentiate

the function f .69,112 For the gradient component EAαXC this yields

EAαXC =− 2
∑
m

∑
µAL

∑
νAL′

 ∂f

∂ρc

∣∣∣∣
rm

µmαL νmLL′ + 2
∑

β=x,y,z

∂f

∂γ
ρβc

∣∣∣
rm

(
µmαβL νmLL′ + µmαL νmβLL′

)

+
1

2

∑
β=x,y,z

∂f

∂τ

∣∣∣∣
rm

µmαβL νmβLL′

 , (2.53)

where µA denotes restricted summation over basis functions µ centred at the atom

A. Using Bp and Bp(1) (see eq. 2.45), as well as the intermediate quantities given

by eqs. 2.40 – 2.42, the exchange-correlation energy gradients are finally evaluated

as

EAαXC =− 2
∑
m

∑
µAL

∑
p

FmBp
µLm

µmαL +
∑

β=x,y,z

Fmβ

(
Bp
µLm

µmαβL +Bp(1)
µLm

µmαL

)

+
1

2

∑
β=x,y,z

Fmτ B
p(1)
µLmβ

µmαβL

 . (2.54)

Again Bp and Bp(1) are used for efficient calculations on grid points using optimized

matrix-matrix multiplication subroutines.3

The second term in eq. 2.52 is usually neglected since its calculation is com-

putationally very demanding and does not lead to a significant accuracy improve-

ment.15,131 Therefore my work has been focused on efficient implementation of the

first contribution to EAαXC only. For the sake of completeness, the second term has

been added later. Moreover, energy derivatives with respect to cell parameters have

been implemented.

2.4 Implementation Details

The methodology described in this chapter has been implemented within the TUR-

BOMOLE1,5 program package. In order to save computational time, several quan-

tities are precalculated and stored before entering the main SCF loop (i.e., iterative

building of the KS matrix and solution of eq. 2.2). The most important is the list

of significant basis function products µνL which along with the symmetry relation
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given by eq. 2.9 allow for efficient sparse storage of all matrices in eq. 2.5. This is

because the elements of these matrices have significant contribution only for non-

vanishing µνL. The list is created based on the overlap criterion neglecting angular

parts of the basis functions. Due to the exponential decay of µνL with increasing

separation between the centres of µ and νL the length of this list shows asymptotic

O(N) scaling. For local exchange-correlation density functional approximations,

the real space density matrix elements, eq. 2.6, may also be stored only for the

significant µνL products.

The lattice sums in eqs. 2.27 – 2.29 involve combinations of different types of

charge distributions. It is efficient and yet simple to use the same common set of

lattice vectors for partitioning all lattice sums into CNF and CFF portions (cf. eq.

2.31). Similarly, the products µνL, auxiliary basis functions α and nuclear point

charges are all sorted into one common octree. The direct space elements SL
µν and

TL
µν of the overlap and kinetic energy matrices, respectively, as well as the combined

Coulomb metric matrix V = V⊥+P‖ along with its Cholesky factorization needed

for the solution of eq. 2.25 are evaluated and stored prior to the main SCF loop.

The procedure used to calculate V is the same as used in ref. 29. Sparse matrix

storage is used for all direct space matrices in eq. 2.5.

The procedures used within the main SCF loop are analogous to other implemen-

tations.46,85 The main difference is the application of DF-CFMM for the evaluation

of the Coulomb matrix elements JL
µν and the Coulomb energy J . The procedure

implemented consists of the following steps

• Calculation of the vector ξ⊥, eq. 2.27. First, the vector ξ =
(
α | ρL − ρ̃‖L

)
is

calculated using CFMM. ξ⊥ is obtained applying charge projection ξ⊥ = P⊥ξ

with the projection matrix P⊥ given in eq. 2.21.

• Solution of eq. 2.25 for the chargeless component c⊥ of the auxiliary density

using precalculated Cholesky factorization of V⊥ + P‖.

• Assembly of the final auxiliary density ρ̃ according to eqs. 2.19 and 2.24.

• Calculation of the Coulomb matrix elements JL
µν according to eq. 2.28 using
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CFMM.

• Calculation of the total Coulomb energy J . The second term in eq. 2.29 is

evaluated using CFMM. The CNF part of this term is simplified as discussed

in ref. 29.

The integral in eq. 2.6 is evaluated approximately on grids of sampling points

kα with weights ωα. Uniform grids centred at the Γ-point with Nα subdivisions

along each reciprocal vector α are used. This is similar to the method proposed by

Monkhorst and Pack.100. To reduce the computational cost, time-reversal symmetry

between k and −k points is used. The weights ωα for each point are set to be equal,

with exception of the Γ-point, for which the halved value is set (due to lack of

symmetric counterpart). Weights of all k-points add up to 1. Therefore eq. 2.6 may

be rewritten as

DL
µνσ ≈ ωα

BZ∑
k

eik
T
αLDkα

µνσ . (2.55)

In the current implementation, open shell defect states with a single one-particle

energy in k-space can also be investigated. The implemented methods have been

augmented with schemes for semi-conductors and metals (see refs. 111 and 82 and

citations therein).

Once the SCF calculations are finished energy gradient is evaluated from eqs. 2.49

and 2.51 using the CFMM scheme for Coulomb contribution and the extended nu-

merical integration scheme for the XC part.

All steps of the DF-CFMM scheme as well as the SCF and gradient calculation

procedure described above are parallelized for shared-memory machines using the

OpenMP application programming interface.2

2.5 Performance

Performance of the implementation for the formation of the KS matrix is evalu-

ated for series of model systems described in app. B, with examples depicted in

fig. B.1. All calculations have been carried out using the Becke-Perdew (BP86)

exchange-correlation functional.20,106 The performance and scaling behaviour inves-
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tigations have employed the split-valence plus polarization (def2-SVP)116,147 and

the pob-TZVP105 basis sets for molecular and periodic systems, respectively with

appropriate auxiliary basis sets.146 The method details are described in sec. B.2.

2.5.1 Energy

CPU times per SCF iteration for the Coulomb term, its NF and FF parts and the

exchange-correlation contribution (matrix and energy) are shown in figs. 2.3 – 2.5.

The scaling exponents are determined using logarithmic fit for the largest models

in each series. The overlap and kinetic energy matrices are precalculated before

entering the SCF loop and stored in a sparse format. Their evaluation time is neg-

ligible. The computational cost of remaining SCF procedures, such as formation

of the density matrix, orbitals orthonormalization and KS matrix diagonalization is

not included since even for the largest test systems the computational cost of the KS

matrix formation is the dominant one as shown in tab. 2.1. For the largest model,

a 4× 4× 4 hematite supercell with 19072 basis functions, it takes about 73% of the

total CPU time per SCF iteration. An exception is the alkane series, for which the

computational cost of KS matrix formation is comparable to its diagonalization (cf.

tab. 2.1). It is noted that for even larger systems the diagonalization of the KS ma-

trix will become the dominant step due to its cubic scaling. However, the availability

of an efficient procedure for the formation of the KS matrix opens a possibility for

future implementation of low-scaling methods that avoid matrix diagonalization.58

As shown in fig. 2.3a the evaluation of the KS matrix for alkane chains achieves

approximately linear scaling. For all molecules in the series the CPU times for calcu-

lation of the Coulomb and exchange-correlation contributions are similar. Alkanes

with over 3000 basis functions exhibit sublinear scaling for the Coulomb term with

dominant contribution from the NF part. CPU times for the evaluation of the FF

part are less than 5 seconds for the largest alkane in the series.

Fig. 2.3b shows CPU times per SCF iteration for the series of H-terminated

graphite sheets. For small models the scaling of the evaluation of the Coulomb term

is approximately quadratic and decreases to 1.5 for larger sheets. The computational

cost of the NF part is dominant whereas the FF contribution takes only a small
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Table 2.1: Performance results for the largest model systems studied: number of

basis (Nbf) and auxiliary (Naux) basis functions, CPU times (min) per SCF iteration

for calculation of the Coulomb (tJ) and exchange-correlation (tXC) terms as well as

the whole SCF iteration (tSCF). Computational methods are described in sec. B.2

system Nbf Naux tJ tXC tSCF

alkane chain C200H402 5010 17024 1.2 1.5 4.7

graphite sheet C210H38 3340 13266 5.1 1.2 6.9

diamond chunk C246H184 4610 17214 78.8 7.5 87.9

1D carbon nanotube (C64)n 960 3904 3.8 0.8 4.7

2D α-quartz surface (Si96O192H64)n 5024 18528 82.1 4.8 89.4

3D magnesium oxide (Mg64O64)n 2496 8320 92.5 4.5 97.5

3D NaCl with F-centre (Na256Cl255)n 10985 33729 360.1 18.4 449.6

3D hematite (Fe256O384)n 19072 53632 1163.3 62.6 1681.8

3D faujasite (Si192O384)n 9408 35520 144.6 4.9 171

portion of the CPU time. The exchange-correlation term shows a perfect linear

scaling with the system size and is evaluated significantly faster than the Coulomb

contribution.

As shown in fig. 2.3c the scaling behaviour of the formation of the KS matrix for

the series of diamond pieces is less favourable than for other molecular systems. CPU

times are dominated by the NF part of the Coulomb term, with scaling exponents

decreasing from 2.7 to 2.5 with increasing system size. The computational cost of

the Coulomb FF contribution and the exchange-correlation part is small with scaling

exponents of 1.4 and 1.2, respectively.

Fig. 2.4a shows CPU times per SCF iteration for the series of 1D periodic carbon

nanotubes. The times for the formation of the KS matrix are dominated by the

Coulomb NF contribution. Calculation of both the NF and FF parts shows nearly

O(N) complexity. Formation of the exchange-correlation term achieves a sublinear

scaling.

The series of 2D periodic hydroxylated α-quartz (0001) surface models shows

similar behaviour with the major part of computational time for the formation of
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the KS matrix due to the Coulomb NF contribution with scaling exponent of 1.3 (cf.

fig. 2.4b). Evaluation of the exchange-correlation and Coulomb FF contributions

takes only a small portion of the CPU time with the later showing a sublinear scaling

behaviour.

The evaluation of the Coulomb NF part is also the dominant step for the series of

3D periodic models of magnesium oxide (cf. fig. 2.5a). Similar to other periodic test

systems the calculation of the FF and exchange-correlation parts takes only little

CPU time. The computational effort for the formation of the KS matrix shows

nearly perfect linear scaling behaviour with the system size.

Similarly, the timings for the evaluation of the KS matrix in case of the series

of F-centre models are dominated by the Coulomb NF contribution with scaling

exponent of 1.4 (fig. 2.5b). The computational cost of the exchange-correlation

term and the Coulomb FF part is negligible. In both systems calculation of the

Coulomb FF contribution achieves a sublinear scaling.

Fig. 2.5c shows CPU times per SCF iteration for the series of hematite supercells.

CPU times are dominated by the NF part of the Coulomb term, with scaling expo-

nent of 1.2. For FF part of the Coulomb contribution and the exchange-correlation

term a sublinear scaling behaviour is achieved with scaling exponents of 0.7 and 0.9,

respectively.

In summary, for all systems the formation of the KS matrix is dominated by

the Coulomb NF contribution. For molecular systems it shows an increase of com-

putational complexity with increasing “dimensionality” – from linear alkane models

to bulky diamond pieces. For systems comprising about 3000 basis functions the

CPU time for the formation of the KS matrix grows from less than one to ap-

proximately 30 minutes for alkane and diamond chunk, respectively. Similarly, the

scaling exponents increase from 1.0 to 2.5. The main reason for this behaviour is

a steep increase of the computational cost of the NF Coulomb contribution due to

an increasing number of overlapping charge distributions (basis functions pairs and

auxiliary basis functions). This effect is more important for compact systems and

diminishes with increasing system size, as demonstrated by the decreasing scaling

exponents for H-terminated graphite sheets and diamond chunks. In case of alkane
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chains the formation of the KS matrix is particularly efficient due to the linear struc-

ture resulting in small number of overlapping charge distributions. The sublinear

scaling behaviour observed for alkane chains comprising over 3000 basis functions is

most probably caused by CPU cache effects.

In periodic systems the computational time for the formation of the KS matrix

grows with increasing periodicity from 1D (carbon nanotubes) to 3D (MgO, F-centre

models and hematite supercells). For about 1000 basis functions it takes about 4

minutes for carbon nanotube, 10 minutes for hydroxylated α-quartz (0001) surface

and over half an hour for 3D systems. Similarly to the molecular case, this effect

arises from larger number of near-field Coulomb interactions in denser systems. The

scaling exponents for all periodic model systems are close to 1.0, with the highest

value of 1.4 for F-centre models. For 2D and 3D systems the Coulomb FF and the

exchange-correlation contributions are evaluated within virtually negligible CPU

time.

The parallel efficiency of the DF-CFMM implementation is examined using the

3D all-silica faujasite model (fig. B.1i) with the unit cell containing 576 atoms and

9408 basis functions. Tab. 2.2 shows wall times for the evaluation of the Coulomb

and exchange-correlation contributions on up to 24 CPU cores. The overall parallel

performance is very good with efficiency of 85% for 24 cores. Parallel calculation of

the KS matrix using 24 cores takes only about 7.5 minutes.
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Figure 2.3: CPU timing per SCF iteration for calculation of the NF and FF

Coulomb (J) contributions, the total Coulomb term (matrix and energy) and the

exchange-correlation (XC) term for a) alkane chains, b) graphite sheets and c) dia-

mond pieces.
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Figure 2.4: CPU timing per SCF iteration for calculation of the NF and FF parts

of the CNF Coulomb (J) contribution, the total Coulomb term (matrix and energy)

and the exchange-correlation (XC) term for a) 1D carbon nanotubes and b) 2D

hydroxylated α-quartz (0001) surfaces.
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Figure 2.5: CPU timing per SCF iteration for calculation of the NF and FF parts

of the CNF Coulomb (J) contribution, the total Coulomb term (matrix and energy)

and the exchange-correlation (XC) term for supercells of 3D systems of a) MgO, b)

NaCl containing the F-centre and c) hematite.
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Table 2.2: 3D periodic faujasite zeolite model (576 atoms and 9408 basis functions):

wall times (min) per SCF iteration for parallel computing of the near-field (tNFJ )

and far-field (tFFJ ) contributions to the Coulomb matrix (J), eq. 2.28, and the ξ⊥

vector (tNFξ⊥
and tFFξ⊥ ), eq. 2.27. For comparison total wall times for calculation of

the Coulomb tJ and exchange-correlation tXC terms along with the overall parallel

efficiency E are given. Computational methods are described in sec. B.2

CPU cores tNFJ tFFJ tNFξ⊥
tFFξ⊥ tJ tXC E

1 66.5 6.5 62.0 6.5 144.6 4.9 –

2 37.6 3.2 31.8 3.2 77.4 2.6 93%

4 18.8 1.6 15.9 1.6 38.7 1.3 93%

6 13.5 1.1 10.7 1.1 26.9 0.9 90%

12 8.6 0.5 5.4 0.5 15.3 0.5 78%

24 3.6 0.3 2.8 0.3 7.1 0.2 85%

2.5.2 Energy Gradients

CPU times for evaluation of the Coulomb and XC energy gradient contributions

are depicted on figs. 2.6 – 2.8. The scaling exponents are obtained by logarithmic

fits for the largest systems in each series. Calculations of the XC energy gradient

are performed without using grid point weights derivatives, e.g. using only the first

term of eq. 2.52

Fig. 2.6a shows CPU gradient evaluation times for the series of alkane chains.

The computational cost is dominated by the Coulomb contribution. Calculations of

both Coulomb and XC parts shows approximately O(N) complexity, with the latter

one showing sublinear scaling for systems containing over 3000 basis functions. For

the largest alkane in the series with 5010 basis and 17024 auxiliary basis functions

the overall CPU time for energy gradient calculation is below 5 minutes.

In case of H-terminated graphite sheets the scaling behaviour of gradient calcu-

lation is less favourable. The CPU times are dominated by the Coulomb part, with

scaling exponents close to 2.0 as shown in fig. 2.6b. In contrast, the XC contribution

achieves sublinear scaling for the largest systems.
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Similar quadratic scaling behaviour for gradient calculation is observed for H-

terminated diamond chunks (fig. 2.6c). The scaling exponent for the computation-

ally dominant Coulomb term decreases with systems size from 2.4 to 2.1 for the

largest systems, whereas the XC contribution with scaling exponent of 1.3 is evalu-

ated within negligible CPU time.

Fig. 2.7a shows CPU gradient evaluation times for the series of 1D periodic

carbon nanotubes. Both the XC and Coulomb contributions show almost linear

scaling behaviour with exponents of 1.1 and 1.3, respectively, where Coulomb part

is the dominant one and the XC term is evaluated within virtually negligible CPU

time. The scaling exponent for the total CPU time is 1.2.

Similarly, for the series of 2D periodic α-quartz (0001) surface models a scaling

exponent of 1.2 is achieved for total CPU time. The Coulomb part is the dominant

one, whereas computational effort for evaluation of the XC term is negligible. For the

later contribution, the sublinear scaling behaviour with exponent of 0.9 is obtained.

The sublinear scaling exponent of 0.9 and the virtually negligible CPU time for

evaluation of the XC contribution is also obtained for the series of 3D periodic mag-

nesium oxide supercells, as shown in fig. 2.8a. The dominant Coulomb contribution

shows almost linear scaling with the system size.

For the series of NaCl models with F-centre nearly linear scaling of the gradient

evaluation is achieved. The computational cost is dominated by the Coulomb term,

while the cost of the XC contribution is again negligible. The scaling exponents for

both terms are 1.1 and 1.0, respectively.

Fig. 2.8c shows the scaling behaviour of energy gradient calculation for the series

of 3D periodic hematite supercells. The overall scaling exponent is 1.3, and similar

to other periodic benchmark systems the XC term is evaluated much more efficiently

than the Coulomb one.

In summary, the Coulomb contribution to the gradient, in particular the NF

part of the CNF contribution, dominates the overall computational cost for both

molecular and periodic systems. Only for very elongated structures such as alkane

chains the evaluation of the XC term contributes significantly to the CPU time. As

shown in tab. 2.3, computational effort of the energy gradient is comparable to that
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of the Kohn-Sham matrix formation. For the largest periodic models evaluation of

energy gradient requires even less CPU time than a single SCF iteration. In case

of molecular systems the CPU times and the corresponding scaling exponents for

energy gradient calculation increase from linear alkane models to bulky diamond

pieces. For models containing about 3000 basis functions CPU times change from 3

(alkane chains) to about 50 (diamond pieces) minutes. Similarly, scaling exponents

increase from 1.0 to 2.0. This behaviour is similar to the energy case and diminishes

with increasing system size as demonstrated by the decreasing scaling exponents

for diamond chunks. Such "surface effect" is absent in case of periodic systems

and the scaling exponents for energy gradient calculation are all close to 1.0. For

periodic models the computational cost of energy gradient calculation increases with

increasing dimensionality of the system. The CPU time for models with about 1000

basis functions changes form 3 minutes for 1D carbon nanotube to 10 minutes for

2D quartz surface and about 20 minutes for 3D systems (magnesium oxide, NaCl

F-centres and hematite).

Tab. 2.4 summarizes wall times and parallel efficiency of the gradient implemen-

tation on up to 24 cores employing the 3D all-silica faujasite model shown in fig.

B.1i. The parallel efficiency of about 90% is very good even for 24 CPU cores.
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Table 2.3: Performance results for the largest models studied (see sec. B.1): Number

of basis (Nbf) and auxiliary basis (Naux) functions as well as CPU times (min) for:

Coulomb near- field (tNF), Coulomb far-field (tFF) and XC (tXC) gradient contribu-

tions, total gradient (tgrad) and Kohn-Sham matrix formation (tKS). Computational

methods are described in sec. B.2
system Nbf Naux tNF tFF tXC tgrad tKS

alkane chain 5010 17024 3.5 0.3 1.2 5.0 3.0

graphite sheet 3340 13266 9.8 0.5 1.0 11.3 7.8

diamond chunk 4610 17214 88.1 2.5 5.8 96.4 80.3

1D carbon nanotube 1216 3904 3.24 0.84 0.45 4.53 3.9

2D α-quartz surface 6240 18528 53.3 12.1 3.8 69.2 71.6

3D magnesium oxide 2496 8320 49.7 8.4 2.6 60.7 63.9

3D NaCl with F-centre 10985 33729 177.1 30.9 11.7 219.7 242.6

3D hematite 19072 53632 681.4 48.5 45.1 775.0 900.2

3D faujasite 11712 35520 73.3 18.5 5.2 97.0 99.6

Table 2.4: 3D periodic faujasite zeolite model (576 atoms and 9408 basis functions):

wall times (min) per SCF iteration for parallel computing of the Coulomb (tCoul)

and the exchange-correlation (tXC) term as well as total gradient (tgrad). In the

last column the overall parallel efficiency E is given. Computational methods are

described in sec. B.2
CPU cores tCoul tXC tgrad E

1 81.0 4.6 86.4 −

2 40.8 2.3 43.6 99%

3 28.2 1.6 30.1 96%

4 22.2 1.2 23.5 92%

6 15.2 0.8 16.2 89%

12 7.4 0.40 8.1 89%

24 73.8 0.20 84.1 88%
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Figure 2.6: CPU times for the Coulomb and XC contributions to energy gradients:

a) alkane chains, b) graphite sheets and c) diamond chunks.
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Figure 2.7: CPU times for the Coulomb and XC contributions to energy gradients:

a) 1D carbon nanotubes and b) 2D hydroxylated α-quartz (0001) surfaces.
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Figure 2.8: CPU times for the Coulomb and XC contributions to energy gradients:

a) MgO, b) NaCl systems containing the F-centre and c) hematite.



Chapter 3

Applications

With the improved efficiency and usability the DFT implementation described in

the previous chapter along with other TURBOMOLE1,5 modules has been applied

to atomic level structural characterization of pure ZnO and CdO as well as mixed

ZnO-TiO2 nanoclusters and ZnO nanoclusters adsorbed on the (101) surface of

anatase.

In case of ZnO and CdO nanoclusters theoretical studies are combined with

conventional and time-resolved photoelectron spectroscopy (TR–PES, performed by

group of Prof. Dr. Gerd Ganteför at the University of Konstanz). It is revealed that

these clusters form highly symmetric, rigid structures with a HOMO–LUMO gaps

significantly below those of their bulk phase counterparts. These properties make

ZnO and CdO clusters promising building blocks for cluster-assembled materials

with unprecedented properties. In addition, electron-hole pair localization in the

excited state of the cluster anions combined with their structural rigidity leads to

extraordinary long-lived states above the band gap virtually independent of the

cluster size, defying the rule ”every atom counts”. The long lifetimes of excited

states observed during the experiment are proposed as a general probe helpful in

identifying suitable structures for CAMs and hence simplifying their design.

Investigation of combined TiO2–ZnO matrials revealed apparent similarity of

structure as well as excitation energy of pure (TiO2)n and mixed (ZnO)(TiO2)n

clusters. Moreover, the binding of the (ZnO)12 cage on the (101) anatase surface

has been investigated. A significant decrease of the band gap in adsorption structure

has been shown.

This results can be applied in research of novel materials (CAMs or mixed

ZnO/TiO2 systems) with tuned electronic properties which may be used in par-
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ticular in development solar cells able to catch sunlight in visible regime.

3.1 ZnO and CdO Nanoclusters

In recent years, an increasing scientific and technological interest has been attracted

to nanostructured metal oxides in form of clusters, nanoparticles, and nanofilms.55

At the nano and subnanoscale, some properties of these systems can be very dif-

ferent from those of their atomic and bulk counterparts. The extreme confinement

due to the proximity of the interfaces stabilizes new structures and phases that oth-

erwise cannot be obtained as bulk materials.81 This opens new possibilities for the

development of highly functional tailor-made structures by a bottom up approach

with clusters serving as building blocks, leading to the so-called cluster-assembled

materials (CAMs).32,37

There are special prerequisites for clusters to serve as such building blocks,

namely, a very rigid structure that also favours three-dimensional assembly and large

HOMO–LUMO gaps to prevent fusion of clusters.32 To this date, fullerites with car-

bon fullerenes as building blocks that meet all of these requirements present the only

CAM obtained from gas-phase entities.55,99 However, theoretical predictions indi-

cate that new crystalline phases may be accessible via coalescence of size-selected

clusters with ZnO, CdO, and MgO as prominent examples.6,12,32,37,81

Small clusters have been found to show a strong size dependence (”every atom

counts")68 of their properties such as the gas phase stability,42 and catalytic ac-

tivity.17,87 For example, an unusually long-lived excited state has been observed in

Au−6 ; its lifetime is owed to a planar structure and its excitation into an orbital

outside the cluster plane, thus resulting in low de-excitation probability. Such an

extraordinary long lifetime has not been found in other Au−n clusters.141 Besides

cluster geometries, long excited state lifetimes can be influenced by degree of sol-

vatation25,26 or oxidation.79 However, general indicators that always apply have not

been identified.

In this chapter size-properties dependency is examined for small ZnO and CdO

clusters. For these clusters, highly symmetric alternant cage structures have been
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predicted.32,37,40–42,54,60,72,80,95,114,124,136,142,143,145,152 Unlike carbon fullerenes com-

prising five- and six-membered rings, these cages are constructed from rings contain-

ing four and six atoms. This tendency arises from the need to avoid homobonding.

This study reports the first combined experimental and theoretical study of gas-

phase (ZnO)−n and (CdO)−n clusters. The lowest energy structures are determined

by global structure optimizations at the DFT level and analysed via time-dependent

DFT (TD–DFT).

3.1.1 Methods

Experiment. Time-resolved photoelectron spectroscopic studies of ZnO and CdO

clusters in gas phase have been performed by the experimental group of Prof. Dr.

Gerd Ganteför. In their experiment, metal is vaporized in a pulsed-arc discharge

source (PACIS), reacted with oxygen, and mass-selected via time-of-flight mass spec-

troscopy. A selected cluster bunch is then irradiated with a laser pulse of energy 4.66

(UV) and 3.1 (blue) eV for ZnO and CdO, respectively, which yields the photoelec-

tron spectrum (PES) of the particular cluster species. Time-dependent behaviour

of these species following excitation (1.55 eV, red) is probed by detachment of the

excited electron via a second laser pulse (3.1 eV, blue; pump–probe spectroscopy).

Calculations. All calculations are performed using the TURBOMOLE1,5 pro-

gram package. The multipole accelerated resolution of identity method for Coulomb

term122 along with appropriate auxiliary basis sets146 is used to speed up the cal-

culations. Structures of the clusters have been obtained from unbiased global struc-

ture optimizations employing genetic algorithm (GA)121 at the DFT level using the

PBE107 exchange-correlation functional and the split-valence def2-SVP116 basis set.

Up to 100 of the most stable structures obtained with GA have been subsequently

refined using the quadruple zeta valence plus a double set of polarization functions

(def2-QZVPP)147 basis set. Remaining calculations employ the PBE107 exchange-

correlation functional along with the def2-QZVPP147 and, in case of (ZnO)5, aug-

mented correlation-consistent polarized valence quintuple-zeta (aug-cc-pV5Z)49 ba-

sis sets. For Cd atoms the appropriate11 effective core potential (ECP) is used.

For all structures reported, the energy minima have been verified by analytical43,44
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and numerical harmonic frequency calculations for the ground and excited states,

respectively. Detailed analysis of used method is presented in app. C.

3.1.2 Results and Discussion

3.1.2.1 Zinc Oxide

Size selected (ZnO)−n (n = 5, 8, 12, 13, 14, 16) clusters have been investigated by

conventional and time-resolved photoelectron spectroscopy accompanied by detailed

analysis via TD–DFT. This combined approach not only provide an evidence for the

alternant cage structures predicted for (ZnO)n nanoclusters but also demonstrate

their so far unprecedented electronic properties. Laser excitation (1.55 eV) invari-

ably results in exceptionally long-lived excited states independent of the number

of ZnO monomers in the investigated size regime. Computational studies find spin

density localization on a subset of Zn atoms upon structural relaxation of excited

states (electron-hole pair localization) accompanied by radiative lifetimes on the

order of 100 ns in all investigated (ZnO)−n (n = 5, 8, 12, 13, 14, 16) cluster ions.

This behaviour is independent of the symmetry, structure, and size of the clusters.

Thus, electron-hole pair localization following the excitation along with structural

rigidity of their cage-like structures can be regarded as a prerequisite for extended

excited state lifetimes in ZnO cluster anions. In addition, the same behaviour could

be observed for n = 18 and 23 also supporting the interpretation, albeit no theoret-

ical assessment has been carried out due to high computational demands of global

structure optimizations at the DFT level.

Rough estimates for the HOMO–LUMO gap values have been obtained using

PE spectra recorded at 4.66 eV. The procedure uses the slopes of the peaks to

determine adiabatic detachment energies (ADEs) of the first and second feature in

the PE spectra, arising from detachment of electrons form orbitals corresponding to

HOMO and LUMO, and then takes their difference as a measure for the gap size.

Spectra of pentamer and dodecamer serving as an example of this method are shown

in fig. 3.1. The corresponding values presented in tab. 3.1 show somewhat larger

errors due to this crude approach. However, they support results of the calculations,
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which yield band gaps of approximately 2 eV, well below bulk ZnO. The congruence

of theory and experiment is further confirmed by a good agreement of the measured

and calculated vertical detachment energies (VDEs), as shown in tab. 3.1.

Calculated structures of (ZnO)−n are shown in fig. 3.2. It is noteworthy that for

each cluster size, the neutral as well as the ground and excited state of the anion

virtually share the same structure.

Electronic properties of (ZnO)−n (n = 5, 8, 12, 13, 14, 16, 18, 23) cluster anions

have been probed by TR–PES. The intensity decay of the excited state obtained

by 1.55 eV excitation is followed by electron detachment with a 3.1 eV probe pulse.

The temporal evolution of the transient pump–probe feature (A) and the waterfall

plot of (ZnO)−5 is shown in fig. 3.3. The complete row of clusters investigated by

red-blue pump–probe spectroscopy shows lifetimes far exceeding the 80 ps limit of

the experiment. Conventional UV PES with a photon energy of 4.66 eV could not

be obtained for n = 18 and 23, most probably because of their low photoionization

cross sections. Nevertheless, time-dependent experimental data for n = 18 and 23

is shown to corroborate the generality of the long-lived excited state.

The labelling of excited states are presented in fig. 3.4 and fig. 3.5 which also

depicts the general excitation–de-excitation scheme. Basically, all studied cluster

anions are excited vertically from the ground state D0 into D∗1 which relaxes, of-

tentimes via Jahn–Teller type distortion, to D1 from which electron detachment

is observed. This causes the time-variant photodetachment feature to be found

at lower energies than 1.55 eV above the ground state. Similar behaviour is ex-

hibited by C−60.
50 D1 is vertically de-excited to D∗0, which finally relaxes back

to the ground state D0. The good agreement between experimental and calcu-

lated VDEs (tab. 3.1) mostly confirms structures reported previously and shown in

fig. 3.2.6,12,41,96,101,114,115,136,142,143,145,161 However, the conducted calculations pre-

dict HOMO–LUMO gaps of the clusters in the range of 1.94 - 2.57 eV, well below the

band gap of bulk zinc oxide (hexagonal and cubic) of 3.3 eV. As already mentioned,

the actual gap of the clusters can roughly be estimated from the experimental PE

spectra and indeed turns out to be approximately 2 eV (cf. tab. 3.1). This means

that the general principle for band gaps to grow with decreasing particle size due to
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the quantum confinement is broken here, that is, (ZnO)n clusters show an ”inverse

quantum confinement effect”. Such behaviour is also known from small TiO2 cluster

anions; however, in this case, the bulk value is reached fast at n = 7.156

Clusters investigated here retain their reduced band gap up to at least 16 ZnO

units. These properties might offer a unique possibility to create oxide semicon-

ductors with lower band gaps, a much sought after material, because sulfides and

selenides admittedly provide smaller gaps but are less stable and oftentimes un-

dergo photocorrosion.72 The allotropes of carbon suggest a route to materials with

lower band gaps, whereas graphite has no gap at all, C−60 fullerite exhibits ∆Eg =

1.7 eV,36 and diamond 5.5 eV. The gap in C−60 from the photoelectron spectrum

is 1.6 eV,76 which is very close to the bulk value. Diamond and zinc oxide share

the same structure in bulk; therefore, the approach to lower the forbidden zone in

ZnO by creating a fullerite-like phase seems viable. Moreover, the conducted in-

vestigations demonstrate that ZnO clusters meet perfectly all prerequisites for good

CAM building blocks, namely very rigid structures, large HOMO–LUMO gaps in

the range of 2 eV, and high symmetry favouring three-dimensional assembly (espe-

cially (ZnO)−12 and (ZnO)−16; see fig. 3.2. Such thermally stable, low-band gap and

low-density CAMs from dodeca- and hexadecamers of zinc oxide have been predicted

by theory.40,42,54,60,80

As a remarkable feature, all (ZnO)−n (n = 5, 8, 12, 13, 14, 16, 18, 23) clusters

exhibit very long excited state lifetimes defying the common rule in cluster science

”every atom counts”. Calculated radiative decay times are approximately 100 ns (see

tab. 3.2) and very well explain the observed ones far in excess of 80 ps for all species

under investigation. Nonradiative decay pathways seem to be absent in most cases

(fig. 3.3). This absence is explained in terms of the rigid structures of these clusters

since calculations find virtually the same structure for neutral, anion, and also the

excited state of the anion (fig. 3.2). The unusually long-lived excited states are

not related to cluster symmetry (fig. 3.2) but rather to the localization of electron

density to a subset of Zn atoms (electron-hole pair localization, fig. 3.4, column

4). These properties make small zinc oxide cluster anions potential candidates for

dye- or quantum-dot-sensitized solar cells, in which chromophores are used to inject
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conduction band electrons into suitable electron transporting media, for example,

TiO2.72

Stabilization of the anionic form could be achieved by counterbalancing addi-

tional charge by a cryptated cation, as it has been shown by A. W. Castleman and

S. N. Khanna et al. for As3−7 .32,37 In addition, the dominant losses responsible

for the Shockley-Queisser limit in solar energy conversion are thermalization of hot

carriers to the band edges. This means that neutral clusters with their long-lived

states above the band gap (see tab. 3.2) possess the first prerequisite for hot carrier

extraction (hot carrier chromophores).103

The time-dependent photoelectron spectroscopic investigation of zinc oxide

nanostructures shows that the excited state with its long lifetime prevails even if

the number of ZnO units is changed. This type of behaviour is rather uncommon in

small clusters but is not undesired because it makes structures and their respective

properties more predictable. This is very advantageous for experiments on surfaces

because a targeted feature can then be conserved even if mass resolution is too low

to distinguish between adjacent homologues. In addition, cluster-assembled materi-

als are more easily realized because small deviations in the building block would not

carry so much weight. Time-dependent functional calculations suggest an electron-

hole pair localization that combined with rigid structures of the clusters leads to

long-lived excited states, independent of the cluster size and geometrical structure.
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Table 3.1: Vertical detachment energies (VDEs) of (ZnO)−n (n = 5, 8, 12, 13, 14, 16)

as well as the HOMO–LUMO gap (ΔEg) of (ZnO)n clusters (eV). For octamer, values

calculated for the two most stable isomers 8A and 8B, respectively are presented.

n (structure)
VDE ΔEg

exp calc exp calc

5 (5A) 1.7 1.82 2.0 ± 0.3 2.57

8 1.9-2.0 1.98, 2.13 not possible 2.29, 2.06

12 2.0 2.22 1.9 ± 0.3 2.43

13 2.1 2.37 1.9 ± 0.3 1.94

14 2.2 2.41 1.8 ± 0.3 1.98

16 2.1 2.44 1.9 ± 0.3 2.14

Table 3.2: Radiative decay time τ (ns) of the lowest dipole allowed excitations in

ZnO−
n and ZnOn clusters.

n (structure) 5 (5A) 8 (8A) 8 (8B) 12 13 14 16

τ(ZnO)−n
81 95 91 70 85 93 98

τ(ZnO)n 6 80 1963 205 1922 518 266

Figure 3.1: Photoelectron spectra obtained with an excitation energy of 4.66 eV

for pentamer (left) and dodecamer (right).
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Figure 3.2: Calculated structures of the ground (D0) and excited (D1 and D2)

states of (ZnO)−n (n = 5, 8, 12, 13, 14, 16), along with related symmetry point

groups. Labelling of excited states is presented in fig. 3.5; for pentamer D2 denotes

state after second lowest excitation. Selected Zn-O bond lengths in angstroms and

those for neutral clusters in parentheses.
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Figure 3.3: Temporal evolution of the transient pump–probe feature (A) following

excitation of (ZnO)−n (n = 5, 8, 12, 13, 14, 16, 18, 23) with a 1.55 eV laser pulse.

In case of (ZnO)−5 , the waterfall plot showing the actual photoelectron spectra at

different time delays is presented in addition. Feature A corresponds to the pho-

todetachment from the D1 state via a 3.1 eV (blue) pulse. Feature B probably stems

from photodetachment out of D1 via a 1.55 eV (red) pulse (two-photon process, red),

and finally X is related to the detachment of an electron from D0. States labelling

is presented in figs. 3.5 and 3.4.
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Figure 3.4: Spin density isosurfaces for (ZnO)−n clusters. The ground state (D0)

and the lowest excited vertical (D∗1, D∗2) and adiabatic (D1, D2) states are shown

in columns 1, 3, and 4, respectively. Columns 2 and 5 show the differential spin

density for vertical excitations leading to D∗1 and D1 states, respectively. Positive

values in red, negative values in blue.
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Figure 3.5: Spin density isosurfaces of the ground and excited states of (ZnO)−12
(general excitation–de-excitation scheme). Chenges of spin density during excitation

and de-excitation shown next to vertical arrows (positive values in red, negative in

blue)
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3.1.2.2 Cadmium Oxide

Calculated global minimum structures of (CdO)−n and (CdO)n are shown in fig. 3.6.

The computed VDEs and ADEs along with corresponding values extracted from

PES are summarized in tab. 3.3. In case of VDEs, the agreement between theory

and experiment is very good, confirming the structure predictions. For ADEs, the

discrepancies are somewhat larger, likely due to peak broadening arising from prob-

ing hot species. With the exception of n = 16, the VDEs of (CdO)−n are roughly

0.5 eV above the VDEs determined previously for (ZnO)−n clusters. In all examined

structures, the unpaired electron occupies the fully symmetric SOMO. Below the

most stable structures of (CdO)n are described. The striking similarity to corre-

sponding ZnO cluster is emphasized.

The global minimum 8 of both anionic and neutral CdO octamer is the D4d

symmetric double four-membered ring shown in fig. 3.6. This result is consistent

with the computational study of Matxain et al.95 and further confirmed by excellent

agreement between calculated and experimental VDEs of 2.43 and 2.4 eV, respec-

tively (tab. 3.3). This structure is similar to one of the two lowest energy structures

found for ZnO octamer. (see fig. 3.2) Both the structure of the most stable clus-

ter and the spin density distribution in the anion (see figs. 3.6 – 3.8) are virtually

identical to (ZnO)−8 .

For the CdO nonamer, the most stable structure is the D3h symmetric tube-like

assembly composed of three hexagonal rings (9A, fig. 3.6). This structure has been

reported as the global minimum by Matxain et al.95 and also proposed as the global

minimum of ZnO nonamer.136 However, in other studies, 9A has been reported

only as a low energy local minimum and the C3h symmetric cage-like 9B (fig. 3.6)

as the global minimum.6,142 During my work both structures have been identified

as low-lying minima for (CdO)9 and (CdO)−9 with 9A only 0.17 and 0.30 eV more

stable than 9B for the anionic and neutral cluster, respectively. To compare these

results with ZnO, additional calculations for the ZnO nonamer have been performed.

Both the tube- and the cage-like structures have been found to be local minima for

(ZnO)9 and (ZnO)−9 . However, the stability order of both structures is reversed with
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respect to CdO. The C3h symmetric cage is 0.27 and 0.15 eV more stable than the

D3h symmetric tube for (ZnO)−9 and (ZnO)9, respectively. Calculated VDE for the

global minimum 9A of (CdO)−9 is 2.59 eV, in good agreement with the experimental

value of 2.4 eV. The calculated HOMO–LUMO gap of (CdO)9 is 1.21 eV (see tab.

3.3).

The most stable structure of (CdO)12 and (CdO)−12 is the Th symmetric cage 12

shown in fig. 3.6. This structure has been reported as the global minimum for both

CdO95 and ZnO dodecamer. Calculated VDE of 2.85 eV is close to the experimental

value of 2.6 eV (tab. 3.3). The calculated HOMO–LUMO gap of (CdO)12 is 1.54 eV

(tab. 3.3). The spin density of the anion (cf. figs. 3.4, 3.7 and 3.8) closely resembles

that of (ZnO)−12.

The Cs symmetric 16A (fig. 3.6) composed of a fused cubic fragment and hexag-

onal tube reminiscent of (CdO)−9 is the global minimum structure of both (CdO)16

and (CdO)−16 . To my best knowledge, this is the first report of the global minimum

for this cluster. 16A differs from the Td symmetric cage 16B found as the global

minimum of ZnO hexadecamer (fig. 3.6). However, 16B is a low energy minimum

that is 0.43 and 0.30 eV less stable than the global minimum 16A for (CdO)16 and

(CdO)−16, respectively. In case of ZnO, 16B is 2.0 and 1.9 eV more stable than 16A

for (ZnO)16 and (ZnO)−16, respectively. It is noteworthy that the global minimum of

CdO hexadecamer partially adopts the cubic rock salt structure of bulk CdO. This

may indicate a faster structural convergence of CdO clusters toward the bulk limit

as compared to ZnO. Calculated VDE for the most stable structure of (CdO)−16 is 3.0

eV, in good agreement with the experimental value of 2.9 eV (tab. 3.3). In contrast

to smaller clusters, the unpaired electron of (CdO)−16 is strongly localized already in

the ground state as shown in figs. 3.7 and 3.8. The calculated HOMO–LUMO gap

of (CdO)16 is 0.79 eV, significantly lower than for smaller cluster sizes (tab. 3.3).

The CdO clusters show structural rigidity similar to that of their ZnO counter-

parts; in all cases the neutral and anionic species share virtually the same structure.

Because all (CdO)n are closed-shell entities with rigid structures, the observed VDE

corresponds to electron detachment from the LUMO of the neutral cluster. Fig. 3.8

demonstrates that shapes of the frontier orbitals (SOMO in anionic and LUMO in
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neutral clusters) in (CdO)−n are virtually identical to those in (ZnO)−n . If present,

the second feature in PES due to electron ejection from the HOMO of the neutral

species can be used to provide a rough estimate of the HOMO–LUMO gap, ∆Eg,

of the neutral cluster. Unfortunately, the photoionization cross section with a UV

photon of 4.66 eV used in the experiments is too low to produce utilizable spec-

tra, and a 3.1 eV photon does not trigger electron detachment from the HOMO of

the neutral clusters. However, in the previous study of (ZnO)−n anions it has been

possible to estimate the experimental ∆Eg from the PES, which are in reasonable

agreement with calculated values. It revealed an ”inverse quantum confinement ef-

fect” with band gaps of (ZnO)n clusters well below that of bulk ZnO. The calculated

HOMO–LUMO gaps for (CdO)n clusters in the range of 0.79-1.65 eV (tab. 3.3) are

also well below the band gap of bulk cadmium oxide (2.2 eV) and indicate a similar

effect.

Time-resolved photoelectron spectroscopy measurements have been carried out

for (CdO)−n clusters with n = 8, 9, 12 and 16. Similarly to the case of ZnO the

observed radiative decay times are far in excess of the 50 ps limit of the experiment.

Corresponded calculated values tare between 186 and 471 ns (tab. 3.3). Nonradia-

tive decay pathways seem to be nearly absent in all cases. This is the same type

of behaviour as found in (ZnO)−n clusters. In all examined structures, the lowest

(SOMO→ LUMO) excitation is accompanied by spin density reorganization leading

to its depletion from the inner to the outer part of the cluster and localization of

the unpaired electron. The subsequent structure relaxation leads to further electron

localization on a subset of Cd atoms. The corresponding spin densities are shown

in fig. 3.7. The general excitation and recombination mechanism for all (CdO)−n

clusters is virtually identical to that of (ZnO)−n (cf. figs. 3.5 and 3.9). In all in-

vestigated cluster anions, the ground state D0 is excited vertically into D∗1, which

relaxes, in case of (CdO)−12 via a cluster analogy of the Jahn-Teller type distortion,

to D1 from which electron detachment is observed. D1 recombines vertically to D∗0,

which relaxes back to the ground state D0. These results are validated by a good

agreement between experimental and calculated VDEs of the D1 state of (CdO)−n

(tab. 3.3). The calculated stability difference between ground states before (D∗0) and
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after relaxation (D0) is small, further confirming the rigidity of the clusters.

For (CdO)−8 , the estimated radiative decay time of state D1 of 379 ns (see

tab. 3.3) confirms experimentally observed long lifetime of the excited state of

(CdO)−8 . The calculated VDE is 1.34 eV, somewhat lower than the experimen-

tal value of 1.8 eV. Vertical excitation results in a spin density reorganization that

is virtually the same (see ref. 62) as in case of (ZnO)−8 . However, in contrast to

(ZnO)−8 (cf. fig. 3.2), relaxation of the lowest excited-state structure does not lead

to symmetry lowering.

In (CdO)−9 the lowest excitation is at 1.08 eV. The estimated decay time for 9A

D1 is 258 ns (tab. 3.3). The calculated VDE is 1.57 eV, in very good agreement

with the experimental value of 1.6 eV.

For (CdO)−12 , the lowest excitation is the 12 D0 → 12 D∗1 (SOMO → LUMO)

transition at 1.33 eV. The triple degeneracy of the 12 D∗1 state leads to an excited-

state Jahn–Teller-type distortion upon structure relaxation resulting in symmetry

reduction from Th to C2h. In the final D1 state, the unpaired electron is located

within the bu symmetric SOMO, localized mainly outside the cluster (fig. 3.7).

The calculated VDE of the excited state of 1.69 eV is in good agreement with the

experimental value of 1.6 eV. The estimated decay time for the 12 D1 → 12 D∗0

transition is 186 ns (tab. 3.3). The spin density changes during vertical excitation

and geometry relaxation are virtually the same as in the case of (ZnO)−12 (cf. 3.9).

The electronic excited states of (CdO)−16 are denser than in the case of smaller

clusters resulting in numerous low energy transitions. The lowest one is the 16A

D0 → 16A D∗1 (SOMO → LUMO) transition at 0.98 eV. The calculated VDE of

the D1 state is 2.13 eV, in good agreement with the experimental value of 1.9 eV

(tab. 3.3). The estimated decay time is 471 ns.

Tab. 3.4 summarizes calculated decay times for the lowest dipole allowed sin-

glet excitations of the neutral (CdO)n clusters. In case of (CdO)8, the two lowest

transitions at 1.87 and 1.92 eV are dipole forbidden. For the dodecamer, there is

a dark excitation at 1.67 eV. It is noteworthy that for all but (CdO)8 clusters the

excitation energies are significantly lower than for the bulk phase (2.2 eV). The

estimated radiative decay times vary between 161 and 19382 ns for octamer and



3.1. ZnO and CdO Nanoclusters 61

hexadecamer, respectively.

Table 3.3: Experimental and calculated vertical detachment energies (VDEs) of

(CdO)−n in the ground and excited states as well as adiabatic detachment energies

(ADEs) in the ground state, vertical excitation energies (∆E) and radiative decay

times τ (ns), calculated HOMO–LUMO gaps (∆ Eg) and binding energies (∆ Eb)

of (CdO)n clusters. Energies in eV.

structure
VDE(D0) VDE(D1) ADE(D0)

∆E τ Eg Eb
exp calc exp calc exp calc

8 2.4 2.43 1.8 1.34 2.2 2.41 1.24 379 1.65 -3.34

9A 2.4 2.59 1.6 1.57 2.2 2.57 1.08 258 1.21 -3.38

12 2.6 2.85 1.6 1.69 2.4 2.83 1.33 186 1.54 -3.56

16A 2.9 3.00 1.9 2.13 – 2.93 0.98 471 0.79 -3.65

Table 3.4: Calculated radiative decay time τ (ns) of the lowest dipole allowed exci-

tations in (CdO)n (singlet excitations).

n 8 9 12 16

τ 161 2945 1625 19 382
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Figure 3.6: Global minimum structures of the ground (D0) and excited (D1) states

of (CdO)−n (n = 8, 9, 12, 16) along with the corresponding symmetry point group of

D0. Selected Cd-O bond lengths in angstroms, values for the ground state of neutral

clusters in parentheses. For comparison, the global minimum structures of (ZnO)−9
and (ZnO)−16 are shown.
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Figure 3.7: Spin density isosurfaces for (CdO)−n clusters. The ground state (D0)

and the lowest excited vertical (D∗1) and adiabatic (D1) states are shown in columns

1, 3 and 4, respectively. Columns 2 and 5 show the differential spin density for

vertical excitations leading to D∗1 and D1 states, respectively. Positive values in red,

negative values in blue.
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Figure 3.8: Comparison of SOMO isosurfaces for (CdO)−n and (ZnO)−n .
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Figure 3.9: General excitation–recombination scheme for (CdO)−n . Changes of the

spin density during excitation and recombination are shown next to the vertical

arrows (positive values in red, negative values in blue).

3.2 Mixed ZnO-TiO2 Materials

ZnO and TiO2 based materials, particularly in nanostructured form as nanoparti-

cles, nanotubes and thin films, play an essential role in many fields of modern mate-

rial science,10,33,120 in particular as materials for dye-sensitized solar cells9,73,129,157.

Despite widespread use, ZnO and TiO2 based systems have some drawbacks. For

TiO2 it is a low electron mobility, and fast recombination of electrons and holes after

excitation. For ZnO, the main drawback is its vulnerability to photo and chemical

corrosion. Moreover for both ZnO and TiO2 the maximum of light absorption is

blue shifted compared to solar spectrum peak. Therefore, many efforts have been

taken to develop new, more efficient materials by adjusting the structure of ZnO and

TiO2 by combining both materials or by combining them with other compounds.

Recently, systems containing both ZnO and TiO2 have been investigated by several

authors. For example, Zhao et al.162 synthesized Zn-doped TiO2 nanoparticles with

high photocatalytic activity. The ZnO has been found to be presented in the form of

small clusters dispersed on the surface of anatase-like TiO2 nanoparticles. Another
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studies on combined TiO2–ZnO materials have been conducted by Xu et al.155, who

developed high-efficiency solid-state dye-sensitized solar cells with efficiency compa-

rable to liquid-state solar cells. In this chapter properties of the nanoparticles as a

function of their size and composition are investigated, along with interactions of

ZnO clusters with the surface of large, anatase-like TiO2 nanoparticles. This will

guide development of mixed materials with unprecedented properties, in particular

solar cells able to catch sunlight in visible regime.

3.2.1 Computational Methods

As in the previous sections, all DFT and TD-DFT calculations have been per-

formed using the TURBOMOLE1,5 program package. The multipole accelerated

resolution of identity method for Coulomb term122 along with appropriate auxiliary

basis sets146 is used to speed up the calculations. Structures of neutral and anionic

(TiO2)n as well as neutral (TiO2)nZnO clusters have been obtained by global opti-

mizations employing genetic algorithm (GA)121 at the DFT level using the PBE107

exchange-correlation functional and the polarized split valence SVP116,147 basis sets.

The most stable structures have been subsequently refined using the quadruple zeta

valence plus a double set of polarization functions (def2-QZVPP)147 basis set along

with PBE04 exchange-correlation functional (see app. C).

For examination of absorption of (ZnO)12 cluster on anatase PBE107 exchange-

correlation functional and pob-TZVP basis sets105 have been used (see app. C).

Calculations of the bulk phase use the triclinic unit cell containing 4 TiO2 units

with lattice vectors a = b = 3.82 Å and c = 9.70 Å. The number of k-points

used in calculations is 7, 7 and 3 for a, b and c, respectively. The (101) surface is

constructed using 2D unit cells with composition (Ti4O8)n, where n is the number

of oxide layers in model system. The lattice vectors are a = 3.82 Å and b = 10.43

Å, and the corresponding number of k-points is 9 and 3, respectively. For supercells

the number of k-points is varied accordingly.
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3.2.2 Results

3.2.2.1 Structure of TiO2 Clusters

The most stable structures of the (TiO2)n clusters with n = 1–9 are shown in

figs. 3.10 and 3.11 All clusters contain at least one dangling oxygen, i.e. oxygen

coordinated to just one Ti atom.

In case of the monomer the most stable structure is C2v symmetric, with bond

angle equals to 112◦ for neutral and 125◦ for anionic species, which is in good

agreement with values of 113◦ and 128◦, respectively, reported by Chertihin and

Andrews.35 The three lowest energy isomers of (TiO2)2 are presented in fig. 3.10.

The 1A and 1B structures are C2h and C2v symmetric, respectively and contain

two dangling oxygens. The more C3v symmetric compact 1C structure contains one

dangling oxygen. All the structures have been reported before.7,30,91,156 For neutral

cluster the 1A structure is predicted to be the global minima, as reported before.22

In case of (TiO2)3 the most stable structure for both neutral and anionic species

is 3A. This Cs symmetric structure has previously been reported as a global mini-

mum,7,22,91,156 and 3B is predicted as another low lying structure7,91 For (TiO2)4

the most low lying structures are 4A and 4B. For anionic species 4A is more stable

than 4B, while for neutral one the energetical order is reverted. This is in agreement

with previously reported results.22,91 In case of (TiO2)5 three low-lying structures

have been identified (cf. fig. 3.10). These are the C1 symmetric 5A and two more

compact Cs symmetric structures 5B and 5C. To my best knowledge, none of them

has been reported before, however structure 5C resembles the global minimum pro-

posed in ref. 22. For anionic and neutral clusters the global minima found by the

calculations are 5A and 5C, respectively.

In case of (TiO2)6 the most stable structures determined by GA are C2 symmet-

ric 6A, Cs symmetric 6B and Cs symmetric 6C. Here 6A is the global minimum for

both anionic end neutral clusters, in agreement with the results presented before.22

For (TiO2)7 the most stable structures are c1 symmetric 7A, 7B and 7C, with 7A

as global minimum for both anionic and neutral species, again in agreement with

previous reports.22 For (TiO2)8 the most stable structure for the anion is 8A. The
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Figure 3.10: Low-energy isomers of (TiO2)n clusters for n= 1–5. Relative stabilities

(eV) for anionic and neutral clusters in parentheses.

8B isomer is only 0.0008 eV less stable. For neutral clusters the energetical order

is inverted, with 8B 0.11 eV more stable than 8A. The 8A have been proposed as

TiO2 octamer minimum by Berardo et al.22 For (TiO2)9 the most stable structures

for the anion are 9A and 9B, with energy difference 0.08 eV. For neutral clusters

energetical order is inverted with the 9B 0.05 eV more stable than 9A.

Vertical and adiabatic detachment energies along with HOMO-LUMO gaps for

the clusters are presented in table (3.5).

3.2.2.2 Structure of (TiO2)nZnO Clusters

For (TiO2)nZnO clusters the most stable structures are presented in figs. 3.12 and

3.13. All reported structures are similar to those of pure (TiO2)n.

For TiO2ZnO the most stable structures are 2a and 2b with Cs and C3v symme-

try, respectively, with the latter one 0.81 eV less stable. Structure 1a is analogous to

2A and 2B with one dangling oxygen removed. Similarly, structure 2b corresponds
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Figure 3.11: Low-energy isomers of (TiO2)n clusters for n= 6–9. Relative stabilities

(eV) for anionic and neutral clusters in parentheses.
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Table 3.5: Comparison of the calculated spectroscopic properties of (n = 1–9) with

experimental data reported by Zhai and Wang.156 Vertical (VDE) and adiabatic

(ADE) detachment energies along with HOMO-LUMO gap ∆E. All values in eV,

numbers in parentheses represent estimated experimental uncertainties in the last

digits.

n
VDE ADE ∆E

PBE PBE0 exp PBE PBE0 exp PBE PBE0 exp

1 1.48 1.54 1.59(3) 1.52 1.59 1.59(3) 2.09 2.78 2.22(10)

2 a 1.66 1.62

2.06(5)

1.92 2.17

2.27(5)

2.75 3.22

2.59(10)2 b 1.92 1.86 2.18 2.18 2.46 3.19

2 c 1.90 2.03 2.08 2.30 2.06 2.59

3 a 2.69 2.92
2.78(10)

2.99 3.38
3.15(5)

1.05 2.30
2.26(10)

3 b 2.05 2.03 2.21 2.79 2.74 3.02

Figure 3.12: Low-energy isomers of (TiO2)nZnO clusters for n = 1–4. Relative

energies stabilities (eV) in parentheses.
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Figure 3.13: Low-energy isomers of (TiO2)nZnO clusters for n = 5–8. Relative

stabilities (eV) are given in parentheses
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to 2C. In case of (TiO2)2ZnO the most stable structure is Cs symmetric 3a, simi-

lar to the 3A isomer of titanium dioxide. The C2 symmetric 3b is 0.64 eV higher

than 3a and has no counterpart among low lying (TiO2)3 structures. Structure 4a

is the global minimum of (TiO2)3ZnO. It can be derived from both 4A and 4B

by replacing one Ti-O group by Zn and slight reorganization of remaining atoms.

For (TiO2)4ZnO the most stable structure is 5a, similar to the global minimum of

neutral TiO2 pentamer 5C. Isomer 5b is 0.24 eV less stable, and corresponds to

5A.

In case of (TiO2)5ZnO two global minima 6a and 6b correspond to pure TiO2

clusters 6A and 6B. Isomer 6a is 0.24 eV more stable than 6b. The global minima

of (TiO2)6ZnO are 7a and 7b, with the first one 0.13 eV more stable than the

latter one. Both structures are very similar and differ only by exchange of Zn

and TiO group. Again, a striking similarity with structures 7A, 7B and 7C is

observed. For (TiO2)7ZnO the global minimum 8a corresponds to the 8B. Isomer

8b is 0.10 eV less stable, with its structure similar to 8A. The most stable isomers

of (TiO2)8ZnO are two energetically close 9a and 9b, with the latter one 0.01 eV

less stable. Despite some similarities, none of them can be derived from lowest lying

structures of (TiO2)9.

3.2.2.3 Excitation Energies of Pure and Zn-Containing Clusters

Values of VDE, ADE and HOMO–LUMO gaps of the most stable (TiO2)−n clus-

ters are presented in tab. 3.6 Results of Zhai et. al.156 are given for comparison.

Fair agreement between calculated and experimental properties confirms validity

of the used method. Similarly to the case of ZnO and CdO an "inverse quantum

confinement effect" is observed, at least for n ≤ 7.

Calculated values of the lowest singlet excitations for (TiO2)n and (TiO2)nZnO

neutral clusters are presented in tab. 3.7. The difference between excitations en-

ergy of corresponding pure TiO2 and Zn-containing clusters of 1.79 for the smallest

structure decreases with increasing system size, and almost vanishes already at n =

7. Thus, it is suggested that tuning electronic properties of TiO2 nanoclusters by

combining them with ZnO is not feasible.



3.2. Mixed ZnO-TiO2 Materials 73

Table 3.6: Comparison of the calculated spectroscopic properties of (TiO2)−n (n =

1–9) with experimental data reported by Zhai and Wang.156 Vertical (VDE) and

adiabatic (ADE) detachment energies along with HOMO–LUMO gap (∆E). All

values in eV, numbers in parentheses represent estimated experimental uncertainties

in the last digits.

n
ADE VDE ∆E

exp calc exp calc exp calc

1 1.59(3) 1.54 1.59(3) 1.59 2.22(10) 2.78

2 2.06(5) 1.62 2.27(5) 2.17 2.59(10) 3.22

3 2.78(10) 2.92 3.15(5) 3.38 2.26(10) 2.30

4 3.00(15) 2.95 3.65(5) 3.83 2.60(15) 2.55

5 3.15(20) 3.08 4.13(10) 3.75 2.85(20) 2.70

6 3.20(20) 3.05 4.00(10) 3.93 3.00(20) 2.73

7 3.30(25) 2.94 4.20(15) 3.86 3.10(25) 3.10

8 3.5(3) 2.85 4.70(15) 3.85 3.1(3) 3.07

9 3.6(3) 3.25 4.75(15) 4.27 3.1(3) 2.75

Table 3.7: Comparison between excitation energies (eV) of corresponding (TiO2)n+1

and (TiO2)nZnO structures.

n 1 2 3 4 5 6 7

structure 2A/2a 3A/3a 4B/4a 5C/5a 6A/6a 7A/7a 8B/8a

∆E (TiO2)n+1 4.11 3.42 4.28 4.25 4.32 4.49 4.53

∆E (TiO2)nZnO 2.32 3.62 4.18 4.43 4.26 4.56 4.54
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3.2.2.4 Adsorption on Anatase (101) Surface

The anatase structure of TiO2 is of great interest, as in many cases it exhibits

a higher activity than other polymorphs.59,74 Moreover, this form is very popular

among TiO2 nanostructures,45 in particular there are experimental evidences159

that in the TiO2–ZnO nanoparticles ZnO is present in form of small clusters on the

anatase TiO2 surface. The (101) surface is the most stable,45,59 and forms over 90%

of the total exposed surface in natural crystals.118 Here adsorbtion of ZnO12 cage

(see sec. 3.1.2.1) on anatase is investigated.

In order to find the minimal slab thickness needed to model the crystal surface,

calculations on systems containing 3, 5 and 7 oxide layers have been conducted.

In each case atom coordinates of the most inner layer are frozen in the bulk-like

configuration. After geometry relaxation, surface energies γ are calculated as

Eslab = nETiO2 + 2Aγ (3.1)

where Eslab is the total energy of the slab, ETiO2 is the energy of the bulk TiO2

unit, n is the number of units in the model and A is the exposed area of one side of

the slab. Tab. 3.8 summarizes the obtained results. It is observed, that relaxation

of at least two oxide layers leads to almost converged values of γ which are in good

agreement with results of Gong et. al.59

Interactions between ZnO dodecamer and anatase (101) surface are investigated

using (2 × 4) slab of three TiO2 layers (a = 31.49Å and b = 28.88Å). Atoms of

the lowest layer are fixed at their bulk positions. As there are two faces of (ZnO)12

(tetra- and hexagonal ring), two initial binding configurations have been used. On

the contrary to previous reports110 adsorption is observed for both configurations.

Binding energy is calculated as

Ebind = Esurf-ZnO − (Esurf + EZnO) (3.2)

with Esurf-ZnO as energy of the system after adsorption, and Esurf and EZnO as

energies of surface and ZnO12 cluster before reaction. Adsorption energies for tetra-

and hexagonal configurations are 3.76 and 4.59 eV, respectively. For the first case the

resulting bonded structure is depicted in fig. 3.14a. The highly symmetric structure
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Table 3.8: Surface energies (eV) for model systems of varied thickness. In each

model geometry optimization for n oxide layers on each side of the slab has been

performed. Resulst of Gong et. al.59 are presented for comparison.

n 1 2 3 Gong et. al.

energy 4.1 · 10−2 3.7 · 10−2 3.6 · 10−2 3.5 · 10−2

of ZnO cluster is prevailing. To check convergence of the model systems additional

calculations are conducted. For (3 × 6) slab of three layers (a = 59.11Å and

b = 43.33Å) adsorption energy of 3.84 eV has been found. In case of (2 × 4) slab

with four oxide layers the resulting energy equals 3.72 eV. It is concluded, that

using more extensive models does not lead to a significant difference in the obtained

results. Adsorption of (ZnO)12 with the hexagonal face is presented in fig. 3.14a. In

this case initial cluster structure is destroyed.

HOMO–LUMO gaps of TiO2–ZnO systems are calculated directly from energies

of SCF orbitals. Values of 2.64 eV and 2.16 eV are obtained for ZnO dodecamer and

anatase surface, respectively. In case of adsorbed clusters gap of 0.76 eV and 1.05

eV for hexa- and tetragonal face configuration, respectively, has been obtained. It

is well known,64,108 that PBE tends to underestimate band gaps. Nevertheless, this

error is systematic and may be corrected by applying an appropriate scaling factor

(see for example refs. 104, 154 and fig. 1 in 64). Thus, the qualitative conclusion of

a significant band gap decrease is justified.
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Figure 3.14: ZnO dodecamer adsorbed on TiO2 anatase (101) surface using the a)

tetragonal and b) hexagonal face.



Chapter 4

Conclusions and Future

Investigation

4.1 Density Functional Theory for Molecular and Peri-

odic Systems

Using the combination of DF approximation and CFMM scheme an efficient DFT

method using Gaussian-type orbitals as basis functions has been implemented. The

implementation treats molecular as well as periodic systems of any dimensionality

on an equal footing and achieves an asymptotic O(N) scaling for calculation of

energy and its gradient. In this DF-CFMM approach the Coulomb interactions are

partitioned into near- and far-field contributions. The far-field part is evaluated very

efficiently using a hierarchy of multipole expansions whereas the calculation of the

near-field contribution employs the DF scheme. For systems with periodic boundary

conditions both contributions are evaluated entirely in direct space. The efficiency

and scaling behavior of the implementation is tested using series of molecular and

periodic model systems of increasing size, with the largest unit cell of hematite

containing 640 atoms and 19072 basis functions.

4.2 ZnO and CdO Nanoclusters

The most obvious conclusion to be drawn from the combined experimental and

theoretical study is a striking similarity between (CdO)n and (ZnO)n fragments at

least up to n = 12. Although in some cases the order of stability of low energy

structures is different, both systems show very similar structures and electronic
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properties in their ground and excited states. For larger clusters, the structural

differences can be attributed to a different convergence rate toward different bulk

limits, wurtzite or zinc blende for ZnO and rock salt structure for CdO. Because

of similar frontier orbitals, the excitation–recombination pathways in (CdO)−n are

virtually identical to their (ZnO)−n counterparts. They involve electron localization

within the relaxed excited state, which together with rigid cluster structures leads

to the observed exceptionally long-lived excited states, approximately 1 eV above

the conduction band edge (LUMO of the neutral). These results render both rows

of cluster homologues suitable building blocks for ACCAMs and, in addition, their

excited-state lifetimes a valuable probe for the aptitude to serve as such.

Despite similar structures, electronic properties of the clusters are slightly differ-

ent for both materials. The VDE basically determines the location of the conduction

band (LUMO) of the neutral cluster, and it can be tuned from 2.0 eV for (ZnO)12

to 2.6 eV for (CdO)12. Also, the band gap is tunable between 2 eV for (ZnO)n

and 1.2 eV for (CdO)n. This has practical implications because the former, as light-

harvesting chromophore, would not capture the complete spectrum of sunlight, while

the latter with its low band gap is absolutely capable of doing just that. These re-

sults demonstrate that gas-phase studies of potential ACCAMs building blocks could

facilitate band engineering and rational materials design. This approach seems es-

pecially viable because the HOMO–LUMO gap of C60 in the gas phase is 1.6 eV,76

very close to bulk fullerite with ∆Eg = 1.5 eV148 Finally, the existence of a more

general rule for EIIO fragments (EII = divalent element) forming (EIIO)n clusters

with similar properties is suggested. In the future, the ACCAM construction kit may

be expanded by investigation of more general rows of cluster homologues, including

groups II-VI61,93,95,97,102,134,135,144 and III-V38,39,78,98,117,127,128,153,158,160 semicon-

ductors of the type (EIICh)n (Ch = chalcogen, e.g., ZnS, ZnSe) and (EIIIPn)n (EIII

= trivalent element, Pn = pnictogen, e.g., AlN, AlP), respectively.
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4.3 Mixed ZnO-TiO2 Materials

For molecular calculations, the striking similarity between structures of (TiO2)n and

(TiO2)nZnO clusters has been observed. Examination of excitation energies revealed

no consistent shift between Zn-containing and pure TiO2 entities. Moreover, the

corresponding excitation energy difference decreases with increasing the cluster size,

and almost vanishes for structures containing at least 8 metal atoms. For pure

clusters up to TiO2 heptamer an "inverse quantum confinement effect" is observed.

Adsorption of ZnO dodecamer on anatase (101) surface has been investigated

using the TURBOMOLE module developed during my PhD. The strong binding

between (ZnO)12 and the surface as well as significant reduction of the band gap

in resulting system has been found for both tetra- and hexagonal configurations.

This results suggest that deposition of (ZnO)n clusters on anatase-like nanostruc-

tures may result in novel materials with tunable properties, in particular solar cells

capable of efficient capturing the sun light. Nevertheless, to achieve this further

investigations are required. In particular, general adsorption behaviour of (ZnO)n

clusters with varying size needs to be examined. Moreover, excited states properties

have to be investigated using for example periodic electrostatic embedded cluster

method.





Appendix A

Multipole Expansion

Calculation of the Coulomb interaction

(
ρ1(r)|ρ2(r′)

)
=

∫ ∫
1

2

ρ1(r)ρ2(r
′)

|r− r′|
drdr′ (A.1)

is done using the factorisation149

1

|r− r′|
=

∞∑
l=0

l∑
m=−l

Olm(r)Mlm(r′) (A.2)

with elements Olm(R) and Mlm(R) defined using scaled associated Legandre poly-

nomials. For R = (R, θ, φ) in spherical coordinates they are:

Olm(R) =
Rl

(l + |m|)!
Plm(cos(θ))e−imφ (A.3)

Mlm(R) =
(l − |m|)!
Rl−1

Plm(cos(θ))eimφ (A.4)

Using the above terms, equation (A.1) is rewritten as

(
ρ1(r)|ρ2(r′)

)
=
∞∑
l=0

l∑
m=−l

∫
ρ1(r)Olm(r)dr

∫
ρ2(r)Mlm(r)dr

=

∞∑
l=0

l∑
m=−l

ωρ1lmµ
ρ2
lm. (A.5)

In practice, the infinite sum in eq. A.2 have to be truncated at Lmax. The introduced

error is bounded by
1

|r− r′|

( r
r′

)Lmax+1
. (A.6)

Thus equation A.2 requires r′ larger than r. Multipole expansions about given

origins can be shifted and transformed one into another using the following opera-

tors:149
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• "extrenal to external" operator A: translates multipole expansion about a to

a + b

ω(a + b) = A(b)⊗ ω(a) (A.7)

• "extrenal to local" operator B: transforms multipole expansion about a to

Taylor expansion at a - b

µ(a− b) = B(b)⊗ ω(a) (A.8)

• "local to local" operator C: translates Taylor expansion at b to r - b

µ(a− b) = C(a)⊗ µ(b) (A.9)



Appendix B

Details of Performance Analysis

B.1 Model Systems

The performance and scaling behaviour of the implementation is evaluated for dif-

ferent sets of molecular and periodic systems with examples shown in Figure B.1.

The molecular models are similar to those used by Sodt et al.123 and con-

sist of (i) alkane chains, (ii) H-terminated graphite sheets, and (iii) H-terminated

diamond chunks. The alkane chains have the composition CnH2n+2, with n =

10, 20, 40, 60, 120, 160, 200 and the longest chain uses 5010 basis and 17024 auxil-

iary basis functions. The graphite sheets, C16H10, C76H22, C102H26, C184H34 and

C210H38 contain up to 3340 basis and 13266 auxiliary basis functions. The diamond

chunks have compositions C11H18, C87H64, C168H130 and C246H184. The largest

chunk uses 4610 basis and 17214 auxiliary basis functions.

For 1D periodic calculations a series of single-walled carbon (4, 4) armchair nan-

otubes (SWNT) is constructed. The unit cell of the smallest SWNT with length

of 2.46 Å in periodic direction consists of 16 C atoms. The series uses doubled,

tripled and quadrupled supercells. The largest supercell contains 960 basis and

3904 auxiliary basis functions.

2D periodic calculations are performed for models of the hydroxylated α-quartz

(0001) surface. The hexagonal surface unit cell (lattice vector a = 5.01 Å) of the

smallest model has the composition Si6O12H4. The series consists of (1×1), (2×2),

(3 × 3) and (4 × 4) surface supercells with the largest model using 5024 basis and

18528 auxiliary basis functions.

The 3D periodic model systems consist of (i) MgO supercells, (ii) supercells of

NaCl with a chlorine vacancy (F-centre), (iii) hematite supercells with ferromagnetic
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spin configuration, and (iv) all-silica faujasite zeolite model. A series of MgO (1 ×

1 × 1), (2 × 2 × 2), (3 × 3 × 3) and (4 × 4 × 4) supercells is constructed starting

from the primitive unit cell containing one MgO unit (a = b = c = 2.98 Å and

α = β = γ = 60◦). The largest supercell uses 2496 basis and 8320 auxiliary

basis functions. The cubic unit cell of the smallest NaCl model (lattice vector

a = 5.62 Å) has the composition Na4Cl4. The series uses (1 × 1 × 1), (2 × 2 × 2),

(3 × 3 × 3) and (4 × 4 × 4) supercells with the largest model containing 11008

basis and 33792 auxiliary basis functions. For each size the corresponding model

of F-centre is constructed by a removal of one Cl atom. In case of the (4 × 4 × 4)

NaCl supercell this results in a system comprising 10985 basis and 33729 auxiliary

basis functions. For hematite a series of (1 × 1 × 1), (2 × 2 × 2), (3 × 3 × 2),

(3× 3× 3) and (4× 4× 4) supercells is constructed starting from the primitive unit

cell (a = b = c = 5.43 Å and α = β = γ = 55.2◦) with the composition Fe4O6.

The largest hematite model uses 19072 basis and 53632 auxiliary basis functions.

For evaluation of the parallel performance of the implementation all-silica faujasite

zeolite model constructed from the experimental crystal structure14 is used. Its

cubic unit cell with a = 25.0 Å shown in Figure B.1 contains 576 atoms, 9408 basis

and 35520 auxiliary basis functions.

B.2 Methods and Basis Sets

All calculations employ the Becke-Perdew (BP86) exchange-correlation func-

tional.20,106 The performance and scaling behaviour is investigated using the split-

valence plus polarization (def2-SVP) basis116,147 and auxiliary basis146 sets. For 3D

periodic dense models (MgO, NaCl with F-centre and hematite) the pob-TZVP105

basis sets along with appropriate auxiliary basis sets146 are employed to avoid SCF

convergence problems caused by small orbital exponents. The calculations are per-

formed on the 2.40 GHz Intel Xeon E5-2695v2 CPU. Parallel efficiency is evaluated

using up to 24 CPU cores. Timings for molecular systems (alkane chains, graphite

sheets and diamond chunks) are obtained using a single CPU core. Calculations

for the remaining systems are performed using 4 CPU cores. Calculations on the



B.2. Methods and Basis Sets 85

Figure B.1: Examples of test molecular and periodic systems: a) C10H22 alkane

chain, b) H-terminated C102H26 graphite sheet, c) H-terminated C87H84 diamond

chunk, d) 1D quadrupled supercell of (4, 4) carbon nanotube (C16)n, e) 2D 2×2 su-

percell of hydroxylated α-quartz (0001) (Si6O12H4)n surface, f) 3D 3×3×3 supercell

of MgO, g) 3D 4×4×4 supercell of NaCl (Na4Cl4)n containing a single Cl vacancy

along with spin density isosurface, h) 3D 2×2×2 supercell of hematite (Fe4O6)n, i)

3D all-silica faujasite (Si192O384)n.
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F-centre and hematite models use spin unrestricted KS formalism. For remaining

systems spin restricted calculations are performed. Unless stated otherwise, numeri-

cal integration of the exchange-correlation term uses grids of size 3.28,133 DF-CFMM

uses well-separateness criterion ws = 3, the order of multipole expansions L = 20,

and the threshold ε = 1 × 10−9.88,122 For all investigated systems these settings

yield energies that differ from reference values (ws = 4, L = 30, ε = 1× 10−11) by

less than 10−6Eh.



Appendix C

Computational Details

C.1 Vertical Detachment Energy

Vertical detachment energies (VDE) of all the clusters have been calculated as differ-

ences between energies of anionic and neutral species at the structure of the anion.

During the PES experiment an electron can be ejected from one of the inner shells

leaving an uncharged cluster in its excited singlet or triplet state. Related ener-

gies have been calculated as the energy differences between the ground state of M−n

and vertical excited states of Mn (M = ZnO, CdO and TiO2) on the corresponding

structure of the anion. The lowest energy combined with corresponding VDE yields

the values of HOMO–LUMO gaps for neutral clusters. The radiative decay times

τ have been calculated from oscillator strength and energy of transition between

ground and excited states (see ref. 65).

C.2 Methods for ZnO

In order to select the most suitable exchange-correlation functional vertical detach-

ment energies (VDE), Zn-O bond lengths and vertical excitations energies of the

three lowest excitations and the corresponding oscillator strengths have been calcu-

lated for the most stable structure of (ZnO)−5 (5A−, fig. C.1) using the BLYP,20,90

BP,20,106 PBE,107 B3LYP,19,90 and BHLYP.18,20,90 functionals along with the aug-

cc-pV5Z49 basis sets. The results are summarized in tabs. C.1 and C.2. For all

the functionals the calculated excitation energies show only moderate variation of

at most 0.28 eV. In contrast, the values of VDE vary by at most 0.6 eV. The best

agreement of VDE with the experimental value of 1.8 eV is obtained for the PBE



88 Appendix C. Computational Details

Figure C.1: Structures of the two most stable isomers of 5A− (ZnO)5 and (ZnO)−5
found by global structure optimization.

Table C.1: Vertical detachment energies (VDE) (eV) of along with Zn-O bond

lengths (Å) in the ground states of 5A− and 5A calculated with various exchange-

correlation functionals.

functional VDE
Zn-O

5A− 5A

BLYP 1.61 1.822 1.799

BP 1.91 1.810 1.783

PBE 1.82 1.812 1.785

B3LYP 1.49 1.805 1.781

BHLYP 1.31 1.791 1.769

functional, which is used through this work.

Tabs. C.3 and C.4 show the relative energies of the most stable structures of neu-

tral (5A and 5B, fig. C.1) and anionic (5A− and 5B−) clusters, VDEs of 5A− and

5B−, vertical excitation energies and oscillator strengths for the three lowest energy

excitations in 5A−, as well as Zn-O bond lengths in 5A and 5A− calculated using

the def2-TZVPP,147 def2-QZVPP,147 aug-cc-pVTZ,16,49,75 aug-cc-pVQZ16,49,75 and

aug-cc-pV5Z16,49,75 basis sets. The Zn-O bond lengths and detachment energies

show only a small variation of about 0.004 Å and 0.04 eV, respectively, between the

different basis sets. With exception of the def2-TZVPP basis sets, the values of rel-

ative energies vary by at most 0.04 eV. Excitations energies and oscillator strengths

of the three lowest excitations show only small variation between Dunning basis

sets, but fully converged results are obtained only for the aug-cc-pV5Z basis sets.
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Table C.2: Excitation energies (∆E, eV) and oscillator strengths (f) for the lowest

energy excitations in (ZnO)−5 calculated with various exchange-correlation function-

als. The transition a′1 → a′1 is dipole forbidden (f = 0).

functional
a′1 → a′1 D0 → D1 D0 → D2

∆E ∆E f ∆E f

BLYP 1.42 1.33 0.391 1.69 0.108

BP 1.43 1.52 0.280 1.64 0.07

PBE 1.35 1.43 0.275 1.57 0.079

B3LYP 1.38 1.36 0.386 1.55 0.116

BHLYP 1.49 1.50 0.366 1.48 0.122

Table C.3: Basis sets dependence of relative stabilities of anionic (∆E(5B−–5A−))

and neutral (∆E(5B-5A)) isomers of ZnO pentamer (fig. C.1) along with corre-

sponding vertical detachment energies (VDE). All values in eV.

functional ∆E(5B−–5A)− ∆E(5B–5A)
VDE

5A− 5B−

def2-TZVPP 1.36 1.76 1.86 2.26

def2-QZVPP 1.52 1.93 1.82 2.23

aug-cc-pVTZ 1.55 1.95 1.84 2.25

aug-cc-pVQZ 1.55 1.97 1.82 2.24

aug-cc-pV5Z 1.55 1.97 1.82 2.24

The values of excitation energies calculated with the def2-TZVPP and def2-QZVPP

basis sets are overestimated by up to 0.35 and 0.18 eV, respectively, compared to the

Dunning basis sets. Similar calculations have been performed for structures of oc-

tamer and dodecamer, using the def2-QZVPP and aug-cc-pV5Z basis sets. Results

summarized in tabs. C.5 and C.6 demonstrate that, in contrast to the calculated

VDE, excitation energies and structural parameters show only a moderate variation

between the two basis sets. Therefore, calculations for clusters larger than pentamer

have been performed using the def2-QZVPP basis sets only.
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Table C.4: Basis set dependence of the excitation energies (∆E, eV) and oscillator

strengths (f) of the three lowest excitations in 5A− along with the Zn-O bond

lengths (Å) in the ground states of 5A−and 5A. The transition is dipole forbidden

(f = 0).

basis
a′1 → a′1 D0 → D1 D0 → D2 Zn-O

∆ E ∆ E f ∆ E f 5A− 5B−

def2-TZVPP 1.54 1.68 0.216 1.92 0.045 1.816 1.787

def2-QZVPP 1.45 1.57 0.258 1.75 0.058 1.813 1.785

aug-cc-pVTZ 1.35 1.45 0.283 1.62 0.078 1.812 1.785

aug-cc-pVQZ 1.35 1.43 0.280 1.59 0.080 1.812 1.785

aug-cc-pV5Z 1.35 1.43 0.275 1.57 0.079 1.812 1.785

Table C.5: Basis set dependence of the vertical detachment energies (VDE), excita-

tion energies (∆E) and oscillator strengths of the two lowest excitations in 8A and

8B. All Zn-O bond lengths (Å) for 8A− and 8A, and the shortest one for 8B− and

8B. Energies in eV.

structure basis VDE
D0 → D1 D0 → D2 Zn-O

∆E f ∆E f anionic neutral

8A def2-QZVPP 1.97 1.48 0.110 1.51 0.357
1.881 1.865

2.193 2.198

aug-cc-pV5Z 1.98 1.45 0.121 1.48 0.378
1.880 1.864

2.195 2.199

8B
def2-QZVPP 2.12 1.24 0.166 1.56 0.092 1.898 1.883

aug-cc-pV5Z 2.13 1.23 0.171 1.54 0.099 1.897 1.883
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Table C.6: Basis set dependence of the vertical detachment energies (VDE), excita-

tion energies (∆E) and oscillator strengths of the two lowest excitations in (ZnO)−12.

The ag → ag excitation is dipole forbidden (f = 0). Zn-O bond lengths in Å,

energies in eV.

basis VDE
D0 → D1 ag → ag Zn-O

∆E f ∆E (ZnO)−12 ZnO12

def2-QZVPP 2.22 1.47 0.455 1.82 1.886, 1.978 1.875, 1.969

aug-cc-pV5Z 2.22 1.46 0.480 1.80 1.885, 1.978 1.875, 1.969

C.3 Methods for CdO

For consistency with the ZnO case, the PBE exchange-correlation functional along

with the def2-QZVPP basis set is used for all calculations. For Cd atoms, the ecp-

28-mwb11 effective core potential (ECP) is used. It has been checked that unlike in

the case of ZnO the effects of increasing the basis set size beyond def2-QZVPP are

negligible already for the smallest examined cluster.

C.4 Methods for Mixed ZnO - TiO2 Materials

In order to select the most suitable exchange-correlation functional vertical (VDE)

and adiabatic (ADE) detachment energies along with HOMO–LUMO gaps have

been calculated for the most stable structures of (n = 1–3, see fig. 3.10) refined

using PBE and PBE0 functionals along with def2-QZVPP basis set. The results

are summarized in tab. C.7, along with experimental values reported by Zhai and

Wang.156 Values calculated using both functionals show a significant variation up to

0.58 eV for detachment energies and 1.25 eV for HOMO-LUMO gaps. The results for

structures 2C and 3A obtained at PBE0/def2-QZVPP are in very good agreement

with the experiment. In case of the monomer the PBE0/def2-QZVPP calculations

well reproduce detachment energies albeit overestimate the HOMO-LUMO gap. For

1A results obtained with PBE functional are in good agreement with the experi-

ment. On the contrary, for dimer and trimer at least one of the calculated values
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Table C.7: Vertical (VDE) and adiabatic (ADE) detachment energies along with

HOMO–LUMO gap (∆E) of the most stables isomers of (n = 1–3). Results obtained

with PBE and PBE0 functionals, along with experimental values reported by Zhai

et. al.156 All values in eV.

structure
VDE ADE ∆E

PBE PBE0 exp PBE PBE0 exp PBE PBE0 exp

1 1.48 1.54 1.59 1.52 1.59 1.59 2.09 2.78 2.22

2A 1.66 1.62

2.06

1.92 2.17

2.27

2.75 3.22

2.592B 1.92 1.86 2.18 2.18 2.46 3.19

2C 1.90 2.03 2.08 2.30 2.06 2.59

3A 2.69 2.92
2.78

2.99 3.38
3.15

1.05 2.30
2.26

3B 2.05 2.03 2.21 2.79 2.74 3.02

is far from the experimental one, regardless of the choice of the isomer. Therefore,

PBE0 functional has been employed through this work. Good agreement between

calculated and experimental energies for structure 2C shows that the selected func-

tional reproduces cluster energies, however may fail to unambiguously point the

energetically lowest structure. Hence calculations for several most stable isomers

are run for every cluster.

For examination of ZnO adsorption on anatase (101) surface the PBE exchange-

correlation functional is used for consistency with the case of ZnO clusters. The

pob-TZVP105 basis sets are employed to avoid SCF convergence problems caused

by small orbital exponents in periodic systems.
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