Diabetes mellitus und seine Komplikationen:
Einfluss auf das Überleben und die Lebensqualität kritisch kranker Patienten

Dissertation
zur Erlangung des akademischen Grades
doctor medicinae (Dr. med.)

vorgelegt dem Rat der Medizinischen Fakultät der
Friedrich-Schiller-Universität Jena

Von Katharina Bannier
Geboren 06.09.1989 in Spremberg, Deutschland
Gutachter (akademischer Grad, Vor- und Nachname sowie Wirkungsort)

1. Prof. Dr. Christian Jung, Düsseldorf
2. PD Dr. Alexander Pfeil, Jena
3. Prof. Dr. Dr. Markus Ferrari, Wiesbaden

Tag der öffentlichen Verteidigung: 04.04.2017
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>advanced glycation endproduct</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>GLUT-4</td>
<td>Glukosetransporter 4</td>
</tr>
<tr>
<td>HrQoL</td>
<td>Health related Quality of Life</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin 6</td>
</tr>
<tr>
<td>ITS</td>
<td>Intensivstation</td>
</tr>
<tr>
<td>MS</td>
<td>Metabolisches Syndrom</td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor 'kappa-light-chain-enhancer' of activated B-cells</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide (Stickstoffmonooxid)</td>
</tr>
<tr>
<td>PKC</td>
<td>Proteinkinase C</td>
</tr>
<tr>
<td>ROS</td>
<td>Reaktive Sauerstoffspezies</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumornekrosefaktor-α</td>
</tr>
<tr>
<td>VCAM</td>
<td>vascular cell adhesion molecule</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

1. Zusammenfassung ... 1

2. Einleitung... 3

 2.1. Der Diabetes mellitus .. 3
 2.1.1 Geschichte des Diabetes mellitus .. 3
 2.1.2 Epidemiologie für Deutschland ... 4
 2.1.3 Kosten .. 4

 2.2 Die Entstehung des Diabetes mellitus II ... 5
 2.2.1 Das Metabolische Syndrom .. 6
 2.2.2 Weitere Auslöser: Stress, Rauchen, Bewegungsmangel 8
 2.2.3 Pathophysiologie am Insulinrezeptor ... 8
 2.2.4 Genetische Einflüsse .. 9

 2.3 Diabetische Komplikationen ... 10
 2.3.1 Pathomechanismen .. 10
 2.3.2 Makroangiopathie = Atherosklerose ... 14
 2.3.3 Mikroangiopathie .. 17
 2.3.4 Multifaktorielle Folgeerkrankungen ... 19
 2.3.5 Psychische Komorbiditäten ... 19

 2.4 Intensivstation: kritisch kranke Patienten ... 20
 2.4.1 Kosten .. 21
 2.4.2 Komplikationen und Therapiestrategien ... 22
 2.4.3 Behandlungszeitraum und Outcome ... 27
 2.4.4 Lebensqualität nach intensivmedizinischer Therapie 27

 2.5 Besonderheiten des Diabetikers auf der Intensivstation 28
 2.5.1 Blutzuckerkontrolle ... 29
 2.5.2 Ernährung .. 30
 2.5.3 Weitere Besonderheiten ... 31

3. Ziele und Fragestellungen .. 33

4. Publizierte Originalarbeit .. 33

5. Diskussion .. 39

 5.1 Studienpopulation ... 39
5.2 Mortalität .. 43
5.3 Lebensqualität ... 48
5.4 Limitationen .. 50

6. Schlussfolgerung .. 51

7. Literaturverzeichnis ... 53

8. Anhang ... 69
 8.1 Ehrenwörtliche Erklärung ... 69
 8.2 Lebenslauf ... 70
 8.3 Danksagung .. 71
 8.4 Fragebogen EQ-5D-5L ... 72
1. Zusammenfassung

Hintergrund und Ziele der Arbeit

Diese Dissertation beschäftigt sich mit dem Typ II des Diabetes mellitus (DM) und seinen Komplikationen, seiner Relevanz im Rahmen der Hospitalisierung auf einer medizinischen Intensivstation bei akuter Erkrankung sowie mit der Lebenszeit danach. Um dies einschätzen zu können, wurden Lebensqualität und Mortalität analysiert.

Die weltweite Zahl der an DM erkrankten Menschen wird momentan auf 285 Millionen geschätzt, was einem prozentualen Anteil von 6,9% entspricht. In Deutschland sind schätzungsweise 7,2% der Bevölkerung Diabetiker. Für die nächsten Jahre wird jedoch eine deutliche Zunahme prognostiziert. Als teuerste chronische Erkrankung werden für die Behandlung des DM und seiner Komplikationen in Deutschland jährlich circa 60 Mrd. € aufgebracht.

Methoden

Für die Analyse der Mortalität konnten wir die Daten aller 6662 Patienten aus der Datenbank nutzen. Um die Lebensqualität zu untersuchen, wurden von den 6662 Patienten 500 zufällig ausgewählt, die anschließend einen Fragebogen zur Lebensqualität EQ-5D-5L zugesandt bekamen.
Ergebnisse und Diskussion

Bei den meisten der intensivmedizinisch behandelten Patienten waren kardiovaskuläre Hauptdiagnosen, allen voran der Myokardinfarkt, der Grund zur Hospitalisation. Diese Verteilung ergibt sich daraus, dass auf der Intensivstation (ITS) vorrangig ältere Patienten mit einem Altersdurchschnitt von 64,2 Jahren behandelt wurden und die Inzidenz kardiovaskulärer Ereignisse sowie die Prävalenz kardiovaskulärer Risikofaktoren wie DM und arterielle Hypertonie mit zunehmendem Alter ansteigen. Bei den auf der ITS verstorbenen Patienten ist die Sepsis die häufigste Aufnahmediagnose. Etwa 43% dieser Patienten sind noch während desselben Aufenthalts auf der ITS verstorben, wodurch die Sepsis zur Hauptdiagnose mit der höchsten Mortalität wird.

Die Studienpopulation bestand zu 12% aus Diabetikern. Das ist mehr als in der Normalbevölkerung, da der DM ein Risikofaktor für die kardiovaskulären Hauptdiagnosen auf der ITS ist. Die Analyse des Überlebens ergab keine statistisch signifikant erhöhte Mortalität für Diabetiker (p= 0,159 für den Gesamten Zeitraum von über 8 Jahren). Bei der weiteren Unterscheidung der Diabetiker mit und ohne Komplikationen stellte sich heraus, dass Diabetiker mit Komplikationen eine signifikant höhere Langzeitmortalität aufweisen (p= 0,001 für den gesamten Zeitraum von über 8 Jahren). In der Analyse der 1-Jahres-Mortalität haben Diabetiker ohne Komplikationen eine Überlebensrate von 64,9%, Diabetiker mit Komplikationen hingegen von 51,0% (p= 0,004).

Für die Untersuchung der Lebensqualität konnten insgesamt 161 vollständig ausgefüllte Bögen genutzt werden, welche im Zeitraum vom Mai 2013 bis November 2013 returniert worden sind. Hierbei wurden keine statistisch signifikanten Unterschiede zwischen Diabetikern, Nicht-Diabetikern, Diabetikern mit und Diabetikern ohne Komplikationen ermittelt. Es zeigte sich lediglich eine Tendenz zu einer schlechter bewerteten Health related Quality of Life (HrQoL) bei Diabetikern mit Komplikationen.

Schlussfolgerungen

Der DM allein steigert weder die Mortalität auf der ITS noch verschlechtert er die Lebensqualität in der Zeit danach. Dies geschieht erst bei Vorhandensein der diabetischen Komplikationen.
2. Einleitung

2.1. Der Diabetes mellitus

Der Diabetes mellitus (DM) lässt sich in zwei Typen klassifizieren. Der Typ I ist die autoimmunbedingte Variante, die sich meist schon im Kindesalter manifestiert (Kahaly und Hansen 2016). Der Typ II hingegen ist eine erworbene Erkrankung, die unter anderem durch Übergewicht ausgelöst wird. Da der angeborene Typ I mit einer Häufigkeit von 1,1% bei allen Diabetikern weitaus seltener vorkommt (Heidemann et al. 2013), konzentriert sich diese Arbeit auf den bei 98,9% aller Diabetiker bestehenden Typ II.

2.1.1 Geschichte des Diabetes mellitus

2.1.2 Epidemiologie für Deutschland

Weltweit lag die Prävalenz für DM 2010 bei 6,9%, also bei 285 Mio. Menschen. Prozentual gesehen leben die meisten Diabetiker in dem kleinen Inselstaat Nauru im Pazifischen Ozean und machen dort circa 31% der 10.000 Einwohner aus, gefolgt von den Vereinigten Arabischen Emiraten mit 19%. Absolut betrachtet leben die meisten Diabetiker der Welt in Indien (51 Mio.) und China (43 Mio.) (Shaw et al. 2010).

Die im DEGS 1 ermittelte Lebenszeitprävalenz beträgt für den bekannten DM insgesamt 7,2% (Männer 7,0%, Frauen 7,4%), für die Altersgruppe der 70- bis 79-Jährigen sogar 20%. Außerdem fällt auf, dass Menschen mit einem niedrigeren sozialen Status ein höheres Risiko aufweisen. In den neuen Bundesländern ist die Prävalenz größer als im Westen Deutschlands.

Über die Jahre, in denen solche Registerdaten erhoben wurden, konnte eine kontinuierliche Zunahme der Lebenszeitprävalenz des DM festgestellt werden. Die Daten aus dem BGS98 zeigen eine Steigerung von 5,2% auf 7,2%, was eine relative Zunahme von 38% ergibt. Laut den Daten des Diabetesregisters der ehemaligen DDR gab es von 1960 bis 1989 sogar eine Zunahme von 0,6% auf 4,1% (Heidemann et al. 2013).

Auch für die nächsten Jahre wird eine weitere Steigerung prognostiziert. So wird für 2030 eine relative Zunahme des DM um 64% bei den 55- bis 74-Jährigen erwartet (Heidemann et al. 2013). Damit steigen die Anzahl der Diabetiker sowie die Bedeutung der Erkrankung für das Gesundheitssystem weiter an.

2.1.3 Kosten

Der Diabetes mit seinen Komplikationen ist die teuerste chronische Erkrankung in Deutschland. Dies wurde 2006 in Hessen mittels der KODIM-Studie (Kosten des Diabetes mellitus) erfasst. Dabei stellte sich heraus, dass der größte Anteil direkter Kosten durch die Behandlung der Begleiterkrankungen und Komplikationen entsteht. Dabei werden die
Kosten in Deutschland für die Behandlung kardio- und zerebrovaskulärer Komplikationen auf 4,5 Mrd. €, die des diabetischen Fußsyndroms auf 3 Mrd. € und die Behandlung diabetischer Nierenerkrankungen auf 2 Mrd. € jährlich berechnet. Weiterhin fällt auf, dass für insulinpflichtige Diabetiker etwa doppelt so hohe Kosten entstehen wie für Diabetiker ohne Insulintherapie. Insgesamt wurde für die circa 6 Mio. bekannten Diabetiker in Deutschland eine Behandlungssumme von jährlich circa 60 Mrd. € errechnet (Hauner 2006). Die Abbildung 1 stellt die Verteilung der Kosten schematisch dar.

<table>
<thead>
<tr>
<th>Kosten pro Patient pro Jahr</th>
<th>Direkte Kosten</th>
<th>Indirekte Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grunderkrankung</td>
<td>524 €</td>
<td>1954 €</td>
</tr>
<tr>
<td>- stationäre Behandlung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Hilfsmittel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ärztliche Leistungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Insulin, orale Antidiabetika</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komplikationen</td>
<td></td>
<td>1328 €</td>
</tr>
<tr>
<td>- Hilfsmittel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ärztliche Leistungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- sonstige ambulante Leistungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Arzneimittel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pflege</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- stationäre Behandlung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gesamt = 3835 €

Abbildung 1: Kostenverteilung für die Behandlung von Diabetikern. Nach (Hauner 2006).

Da für die nächsten Jahre weiterhin eine Zunahme der Prävalenz des DM Typ II prognostiziert wird, ist auch von einer Steigerung der Kosten auszugehen. Um diese langfristig einzudämmen, ist die Anwendung von Früherkennungsmaßnahmen notwendig. Bislang werden solche Screenings, wie z.B. der Mikroalbuminurie-Test, bei gerade einmal 3 bis 10% der Patienten angewendet (Hauner 2006).

2.2 Die Entstehung des Diabetes mellitus II
2.2.1 Das Metabolische Syndrom

<table>
<thead>
<tr>
<th>Kriterien für MS</th>
<th>nach der WHO</th>
<th>nach IDF (International Diabetes Federation), AHA/NHLBI (American Heart Association/ National Heart, Lung an Blood Institute), International Heart Federation, International Atherosclerosis Society und International Association for the Study of Obesity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM, Glukoseintoleranz, gestörte Glucosetoleranz</td>
<td>mind. eins davon</td>
<td>Populationsspezifische Werte</td>
</tr>
<tr>
<td>Erhöhter Nüchterntblutzucker</td>
<td>> 100 mg/dl</td>
<td>> 150 mg/dl</td>
</tr>
<tr>
<td>Hüftumfang</td>
<td>> 30 kg/m²</td>
<td>> 30 kg/m²</td>
</tr>
<tr>
<td>BMI</td>
<td>≥ 150 mg/dl</td>
<td>≥ 150 mg/dl</td>
</tr>
<tr>
<td>Erhöhte Triglyceride</td>
<td>< 35 mg/dl</td>
<td>< 49 mg/dl</td>
</tr>
<tr>
<td>HDL Männer Frauen</td>
<td>< 39 mg/dl</td>
<td>< 50 mg/dl</td>
</tr>
<tr>
<td>Arterielle Hypertonie</td>
<td>≥ 140/90 mmHg</td>
<td>systolisch ≥ 130 mmHg und/ oder diastolisch ≥ 85 mmHg</td>
</tr>
<tr>
<td>Mikroalbuminurie</td>
<td>Albuminausscheidung ≥ 20 μg/min oder Albumin/ Kreatinin-Quotient ≥ 30 μg/mg</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 1:

Diagnosekriterien des MS nach der WHO (Parikh und Mohan 2012) sowie nach der IDF, AHA/ NHLBI, World Heart Federation, International Atherosclerosis Society und der International Association for the Study of Obesity (Eckel et al. 2010)

Dass es sinnvoll ist, die Entitäten des MS in einem Krankheitsbild zusammen zu fassen, wird durch ihr gehäuft gemeinsames Auftreten deutlich. In Deutschland haben circa 75% aller Typ 2 Diabetiker ein MS jedoch weisen nur 2,4% der Diabetiker einen isolierten DM Typ 2 auf (Hanefeld et al. 2007).

Nach neueren Theorien beginnt die Entwicklung des MS mit abdominaler Adipositas (Eckel et al. 2010). Das subkutane Fettgewebe speichert langfristig Fett, wohingegen dem viszeralen Fett eher eine kurzfristige postprandiale Pufferfunktion zugeschrieben wird. Bei Adipositas übernimmt jedoch das viszerale Fett die langfristige Speicherfunktion, wodurch
sich dessen Pufferfunktion verringert. Frauen können im Allgemeinen wesentlich mehr subkutanen Fettgewebe bilden, und bilden damit weniger viszerales Fett als Männer (Laclaustra et al. 2007). Darin lässt sich auch die Bedeutung des gemessenen Taillenumfangs erklären, der als Risikofaktor für das MS und dessen Folgen betrachtet wird (Eckel et al. 2010).

Gestützt wird die These, dass die abdominale Adipositas der Initiator des MS ist, dadurch, dass eine Verbesserung der Insulinresistenz und Normalisierung der Nüchternblutzuckerwerte durch Gewichtsreduzierung erzielt werden kann (Eckel et al. 2010).

Die Hormone der Adipozyten des viszeralen Fettgewebes tragen entscheidend zur Entwicklung von Insulinresistenz und arterieller Hypertonie bei. Adiponectin beispielsweise steigert normalerweise die Insulinsensitivität und verringert die Expression von Adhäsionsmolekülen am Gefäßendothel, die Inflammation sowie die Proliferation glatter Muskelzellen. Bei viszeraler Adipositas wird Adiponectin jedoch vermindert sezerniert, was den DM und die Atherosklerose begünstigt.

Auch Entzündungsmediatoren wie der Tumornekrosefaktor α (TNF-α) und Interleukin-6 (IL-6) werden vermehrt bei viszeraler Adipositas gebildet. Diese tragen ebenfalls wesentlich zur Entstehung einer Insulinresistenz und Erhöhung des Blutzuckerspiegels bei (Mlinar et al. 2007).

Eine weitere Komponente in der Auslösung der Insulinresistenz ist die bereits weiter oben angesprochene Abnahme der Pufferkapazität des viszeralen Fettgewebes durch seinen überlasteten Speicher. Postprandial kommt es zu einer Abgabe freier Fettsäuren ins Blut, aus denen die Leber Triglyzeride synthetisiert. Die daraus resultierende Hypertriglyzeridämie und die außerdem durch die Überernährung verursachte chronische Hyperglykämie bewirken ein Überangebot für andere Organe (Laclaustra et al. 2007). Der Einfluss dieser beiden Überflusszustände auf die β-Zellen des Pankreas stellt einen wesentlichen Schritt bei der Entstehung der Insulinresistenz dar. Bei zunächst akuter Erhöhung der Blutglukose und auch der Lipide wird die Insulinausschüttung aktiviert. Bei chronischer Erhöhung der Glukose- und Fettwerte steigt somit die basale Insulinsekretion und verursacht eine Hyperinsulinämie, was langfristig jedoch die Biosynthese von Insulin hemmt (Mlinar et al. 2007).
2.2.2 Weitere Auslöser: Stress, Rauchen, Bewegungsmangel

Auch die weiteren hier beispielhaft aufgeführten möglichen Auslöser und verstärkenden Faktoren, wie Stress, Rauchen und Bewegungsmangel wirken meist nicht allein. Sie können gleichzeitig mit bereits bestehenden Risikofaktoren wie der Adipositas auftreten, diese aber auch langfristig in ihrer Entstehung begünstigen und somit die Entwicklung des MS begünstigen.

Sport hingegen ist ein antidiabetischer Einflussfaktor. Er kann einer Gewichtszunahme vorbeugen beziehungsweise bei der Gewichtsabnahme helfen (Strasser 2013) und auch die Menge an zirkulierenden Entzündungsmediatoren wie IL-6 und TNF-α, sowie Glukose- und Insulinwerte senken (Hong et al. 2014).

2.2.3 Pathophysiologie am Insulinrezeptor

Der zu Beginn des DM bestehende relative Insulinmangel entsteht durch eine Störung der Signaltransduktion des Insulinreceptors (siehe Abbildung 2).
Beim MS ist die Kaskade der Phosphoinositid-3-Kinase vermindert aktiv. Da diese nicht nur für die Expression des Glukosetransporters wichtig ist, sondern auch für die Biosynthese von Stickstoffmonoxid (NO), wird bei dessen Störung auch die endotheliale Dysfunktion begünstigt. Die Signalkaskade über die Mitogen-aktivierte Protein-Kinase wird hingegen beim MS überaktiviert, woraus unter anderem Inflammation und die Proliferation glatter Muskelzellen in atherosklerotischen Plaques resultieren (Miranda et al. 2005).

2.2.4 Genetische Einflüsse
Obwohl die abdominale Fettleibigkeit ein bedeutender Risikofaktor ist, erkranken nicht alle adipösen Menschen an einem DM Typ II. Einer der dafür verantwortlichen Gründe ist die genetische Prädisposition. Sie bewirkt unter anderem, dass die Prävalenz des DM zwischen verschiedenen Ethnien eines Landes unterschiedlich hoch ist (Maskarinec et al. 2009).

2.3 Diabetische Komplikationen

Nervenschäden, die diabetischen Neuropathien, treten bei rund 40% aller Diabetiker auf. Auch die Nephropathie ist mit circa 20% bei Diabetikern verbreitet (Tan et al. 2014). Der häufigste Grund für Hospitalisationen ist allerdings die ischämische Herzkrankheit (Brocco et al. 2007).

2.3.1 Pathomechanismen

Die bei der Entstehung diabetischer Komplikationen entscheidenden Pathomechanismen sind advanced glycation endproducts (AGE), der Sorbitolstoffwechselweg, der Hexosamine-Stoffwechselweg, die Proteinkinase C (PKC) sowie Inflammation und oxidativer Stress.

Abbildung 3:
Oben in schwarz ist die Maillard-Reaktion, unten in grau ist die autooxidative Glykierung dargestellt. Abbildung weiterentwickelt nach (Ahmed 2005)

Eine weitere Verwendung intrazellulärer Glukose findet im Hexosamine-Stoffwechselweg statt. Durch den Überschuss intrazellulärer Glukose entsteht bei der Glykolyse vermehrt
Glukosamin-6-Phosphat, welches enzymatisch an andere Proteine gebunden wird und deren Funktion beeinträchtigen kann. Beispielsweise kommt es dadurch zur Fehlregulation von Transkriptionsfaktoren, der PKC oder einer Funktionseinschränkung der endothelialen NO-Synthase (Brownlee 2001).

Einen weiteren Pathomechanismus bei diabetischen Komplikationen bildet die PKC, ein intrazelluläres Signalmolekül, welches bei Diabetikern verstärkt aktiviert ist (Tabit et al. 2013). Die Abbildung 4 stellt sowohl Aktivierung als auch Auswirkungen der PKC dar.

Inflammatorische Zytokine wie TNF-α oder IL-6 und durch ROS ausgelöster oxidativer Stress spielen beim DM und seinen Komplikationen eine große Rolle. Diese sind schematisch in Abbildung 5 dargestellt.
2.3.2 Makroangiopathie = Atherosklerose

Bei der Entstehung der Atherosklerose spielen aber noch viele andere Risikofaktoren eine Rolle. Hierzu gehören die Entitäten des MS (Murthy et al. 2012), das männliche Geschlecht.
aktives sowie passives Tabakrauchen (Howard et al. 1998) und Bewegungsmangel (Laufs et al. 2005).

2.3.2.1 Entstehungsmechanismen
Bei der Entstehung atherosklerotischer Plaques spielt die endotheliale Dysfunktion eine entscheidende Rolle. Eine wichtige Funktion des Endothels ist die Bildung von NO, welches sowohl vasodilatativ (De Caterina et al. 1995) als auch durch Inhibition der Plättchenaggregation antithrombotisch wirkt (Riddell et al. 1997). Weiterhin mindert es die Adhäsion inflammatorischer Zellen wie Leukozyten ans Endothel sowie die Bildung der Entzündungsmediatoren COX-2 und PGE2 (De Caterina et al. 1995).
Freie Sauerstoffradikale stellen eine besondere Gefahr für das NO dar, da sie sowohl die NO-Synthase hemmen, als auch mit NO zu Peroxinitrit reagieren und das NO somit eliminieren (Feletou et al. 2010). ROS führen weiterhin zur Oxigenierung von low density lipoproteine (LDL), welches unter anderem von Makrophagen aufgenommen wird und so das Wachstum atherosklerotischer Plaques fördert (Chen et al. 2002).
Atherosklerotische Plaques steigern die Thrombogenität des Gefäßes, indem sie die Anheftung und Aggregation von Thrombozyten an die Gefäßwand induzieren. Durch Plaquerupturen erhalten die Bestandteile der Gerinnungskaskade im Blut Kontakt zum Gewebefaktor, was die Thrombenbildung an der Gefäßwand begünstigt. Weiterhin wird in den nekrotischen Lipidkernen der Plaques vermehrt Gewebefaktor gebildet, was die gesteigerte Thrombogenität atherosklerotischer Gefäße gegenüber normalen Gefäßen ebenfalls erklärt (Wilcox et al. 1989).

2.3.2.2 Folgen
(Chen et al. 2003), welche mit einer dickeren Gefäßintima assoziiert sind. Die Intimadicke wiederrum korreliert positiv mit dem kardiovaskulären Risiko, woraufhin demzufolge die Inzidenz von Ereignissen wie Myokardinfarkten und Schlaganfällen ansteigt (O'Leary et al. 1999).

Durch den abnehmenden Gefäßdurchmesser bei zunehmender Plaquebildung kann eine eingeschränkte Durchblutungsreserve bis hin zur chronischen Unterversorgung der Organe entstehen. Bei Erstdiagnose DM Typ 2 haben bereits circa 7,5% der Patienten eine mindestens 50%ige Arterienstenose in der unteren Extremität (Li et al. 2014). Die Abbildung 6 zeigt die Angiografie einer Diabetikerin, welche bereits ein ischämiebedingtes Gangrän entwickelt hat.

Abbildung 6:
2.3.3 Mikroangiopathie

2.3.3.1 Augenschäden: Retinopathie und Linsenquellung

Die Bildung von VEGF in glatten Gefäßmuskelzellen wird außerdem durch ROS und einer überaktivierten PKC induziert (Kizub et al. 2014).

2.3.3.2 Neuropathie

Durch den Diabetes verursachte Schäden können sowohl die sensiblen, die motorischen als auch die autonomen Nerven betreffen und dementsprechend unterschiedliche Symptome verursachen. Diabetiker mit Zeichen einer Neuropathie haben eine höhere Mortalität als solche ohne eine relevante Neuropathie (Hsu et al. 2012).

Bei der Pathogenese der Neuropathie spielt unter anderem die Mikroangiopathie eine Rolle, da die Durchblutungsminde rung für die Nervenzellen eine Hypoxie verursacht. Des Weiteren

2.3.3.3 Nephropathie

das Interstitium fibrosiert und letzten Endes verringert sich die Filtrations- und Konzentrationsfähigkeit der Niere (Yamagishi und Matsui 2010).

2.3.4 Multifaktorielle Folgeerkrankungen
Das Diabetische Fußsyndrom resultiert vor allem aus Neuropathie und Vaskulopathie, wodurch einerseits unbemerkte Druckstellen und Ischämie zu Gewebschäden führen, die andererseits langsamer regeneriert werden, da die Wundheilung beim Diabetes verzögert ist (Ackermann und Hart 2013). Bis zu 25% aller Diabetiker entwickeln so Fußulzerationen, die in schweren Fällen zur Amputation der betroffenen Extremität führen. In westlichen Ländern ist der DM die häufigste Ursache bei nicht traumatisch bedingten Extremitätenamputationen (Boulton 2008).

2.3.5 Psychische Komorbiditäten
Diabetiker haben ein erhöhtes Risiko auch psychisch zu erkranken. Vor allem Ängste, Depressionen und Suizid spielen dabei eine Rolle (Mikaliukstiene et al. 2014, Chung et al. 2014). So ist die Häufigkeit von Depressionen bei Diabetikern gegenüber der Normalbevölkerung um 20% erhöht. Bei Patienten mit prädiabetischem Zustand steigt das
Risiko psychischer Komorbiditäten allerdings noch nicht. Das lässt vermuten, dass vor allem die Therapie der Grunderkrankung und die Lebensumstellung eine Belastungssituation darstellen (Knol et al. 2007). Das Vorhandensein diabetischer Komorbiditäten steigert das Risiko für Depressionen weiter (Mikaliukstiene et al. 2014).

2.4 Intensivstation: kritisch kranke Patienten

Die Entstehung der ersten allgemeinen Intensivstation (ITS) geht aus dem Jahr 1952 hervor, als in Kopenhagen eine Epidemie mit dem Polio-Virus grassierte. Dabei erlitten über 300 Menschen eine Lähmung der Atemmuskulatur, welche zur respiratorischen Insuffizienz führte. Den Ärzten standen zur Therapie allerdings lediglich wenige Maschinen zur Atemunterstützung zur Verfügung. Der damalige Chefarzt des Blegdam Hospital Professor Lassen hatte jedoch die Idee, das aus der Anästhesie bekannte Prinzip der Beatmung mit positivem Druck für die Behandlung der an Poliomyelitis erkrankten Patienten zu nutzen. In Zusammenarbeit mit dem Kopenhagener Anästhesisten Dr. Björn Ibsen gelang es, ein 12 jähriges Mädchen über eine Tracheostomie und mittels Beatmungsbeutel zu beatmen. Dieser Erfolg ließ Dr. Ibsen 1953 die erste ITS in Kopenhagen errichten (Kelly et al. 2014).

Mit Hilfe von Prioritätsmodellen und Scoringsystemen wurden Empfehlungen erstellt, die die Entscheidung zur Behandlung einer Erkrankung auf einer ITS erleichtern und objektivieren sollen. Einige solcher Empfehlungen sind in Abbildung 7 zusammen gefasst.
Eine europaweite Zählung ergab, dass Deutschland mit 29 ITS- und IMC-Betten (letzteres: Intermediate Care) pro 100.000 Einwohner die größte Kapazität bei der Versorgung kritisch Kranker hat (Rhodes et al. 2012). Dies bietet einerseits einen Überlebensvorteil für Patienten, denn je mehr Betten zur Behandlung kritischer Erkrankungen bereit stehen, desto niedriger ist die Mortalität (Wunsch et al. 2008). Andererseits verursacht eine ITS durch eben

Aufnahmekriterien / Triage

<table>
<thead>
<tr>
<th>Nach Priorität</th>
<th>1. Priorität</th>
<th>Instabiler Zustand. Monitoring, eventuell maschinelle Beatmung oder andere Therapien erforderlich, welche auf keiner anderen Station gewährleistet werden können.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Priorität</td>
<td>Monitoring und möglicherweise schnelle Intervention erforderlich.</td>
</tr>
</tbody>
</table>

Nach Diagnose (beispielhaft)

- **Kardial**: Akuter Myokardinfarkt, anhaltende instabile Angina pectoris, kardiogener Schock, komplexe Arrhythmien, hämodynamische Instabilität
- **Pulmonal**: Akute respiratorische Insuffizienz mit notwendiger Atemunterstützung, Lungenembolie mit hämodynamischer Instabilität, massive Hämoptysen
- **Neurologisch**: Schlaganfall mit kognitiver Einschränkung, Koma, Intracraniale Blutung, akute Meningitis, Status epilepticus
- **Medikamentös**: Überdosierung mit hämodynamischer Instabilität und/oder eingeschränktem Bewusstsein
- **Gastrointestinal**: Blutung mit hämodynamischer Instabilität, fulminante Leberinsuffizienz, schwere Pankreatitis, Öosphagusperforation
- **Endokrin**: Schwere diabetische Ketoazidose, hyperthyreoides Koma, Elektrolytentgelungen mit hämodynamischer Instabilität oder Muskelschwäche
- **Chirurgisch**: Postoperativ mit erforderlichem hämodynamischen Monitoring

Nach objektiven Parametern z.B. SOFA-Score (Sequential Organ Failure Assessment)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaO2/FiO2 (mmHg)</td>
<td>>400</td>
<td><400</td>
<td><300</td>
<td><200</td>
<td><100</td>
</tr>
<tr>
<td>Thrombozyten x10^3/µl</td>
<td>>150</td>
<td><150</td>
<td><100</td>
<td><100</td>
<td><20</td>
</tr>
<tr>
<td>Bilirubin mg/dl</td>
<td><1,2</td>
<td>1,2 – 1,9</td>
<td>2,0 – 5,9</td>
<td>6,0 – 11,9</td>
<td>>12,0</td>
</tr>
<tr>
<td>Blutdruck normwertig MAP <120mmHg</td>
<td>Dop <5 oder</td>
<td>Dop >5 oder</td>
<td>Dop >15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glasgow Coma Scale</td>
<td>15</td>
<td>13 – 14</td>
<td>10 – 12</td>
<td>6 – 9</td>
<td><6</td>
</tr>
<tr>
<td>Kreatinin mg/dl oder</td>
<td><1,2</td>
<td>1,2 – 1,9</td>
<td>2,0 – 3,4</td>
<td>3,5 – 4,9</td>
<td>>5,0</td>
</tr>
<tr>
<td>Urinausscheidung ml/d</td>
<td><500</td>
<td><200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entlassungskriterien

A) Gebesserte akute Erkrankung ODER keine Besserung zu erwarten
B) Patient könnte von Verlegung z.B. auf Normalstation profitieren

Abbildung 7:
Zusammenfassung einiger Aufnahme-, Entlassungs- und Triagekriterien für die ITS.
Dop = Dopamin, Dob = Dobutamin, A/ NA = Adrenalin/ Noradrenalin, Einheiten der Dosierung jeweils in µg/kg/min.
(1) (Capuzzo et al. 2010)
(2) (Guidelines for intensive care unit admission 1999)
(3) (Ferreira et al. 2001)
für sie gerade typische intensive medizinische Behandlungen hohe Kosten. Mit rund 50% haben die Personalkosten daran zwar den größten Anteil, dieser ist jedoch nicht höher als im gesamten Krankenhausbetrieb. Im Anschluss folgt mit 16% medizinischer Bedarf wie Medikamente, Blutprodukte sowie Hilfsmittel und Medizinprodukte. Besonders kostenintensiv sind beatmete Patienten, die mit 1426€ circa 300€ mehr finanziellen Aufwand pro Tag erfordern, als nicht beatmete Patienten (Martin et al. 2008).

2.4.2 Komplikationen und Therapiestrategien

Neben der Therapie der Hauptdiagnose müssen auf einer ITS auch Komplikationen behandelt werden, die primär nicht aus dem ursprünglichen Grund der Aufnahme resultieren, sondern aus allgemeinen Problemen von Intensivpatienten, wie einer notwendigen maschinellen Beatmung, Immobilisation oder der bakteriellen Belastung. Daraus lassen sich Strategien entwickeln, die sich günstig auf die Prognose der Patienten auswirken können.

2.4.2.1 Mobilisation und kognitive Förderung

Ein weiteres Problem sind mit einer Muskelschwäche verbundene neuromuskuläre Komplikationen wie Critical Illness Myopathie (CIM), Critical Illness Polyneuropathie (CIP) und dem Mischbild Critical Illness Neuromyopathie (CINM). Die Entstehung solcher Muskelschwächen ist noch nicht vollständig geklärt, wird aber vor allem mit Sepsis, SIRS,

Auch nach Entlassung von der ITS und aus dem Krankenhaus ist eine Rehabilitation für die Patienten förderlich. Durch ein kognitives, physisches und funktionelles Training kann eine bessere Leistungssteigerung nach Krankenhausbehandlung erreicht werden, als ohne eine solche Rehabilitation (Jackson et al. 2012).

2.4.2.2 Medikamente und Volumentherapie

Auch bei der Gabe von Medikamenten gibt es Richtlinien, die bei vielen der Patienten unabhängig von der Hauptdiagnose angewendet werden können.

Eine Herausforderung bei der Therapie von ITS-Patienten besteht in der Identifikation von Alkoholikern. Sie weisen ein höheres Risiko für Komplikationen wie Infektionen, Sepsis und septischen Schock auf. Symptome eines Entzugs zeigen sich meist in den ersten 24 bis 48h

2.4.2.3 Ernährung

Bei ITS-Patienten schränken mitunter Sedierung oder maschinelle Beatmung die selbstständige Ernährung des Patienten ein. Bei Mangelernährung steigt allerdings unter anderem das Risiko für Infektionen, eine Schwäche der Atemmuskulatur und die Mortalität. Zur Unterstützung stehen in diesem Falle die enterale Ernährung, entweder oral oder per Magensonde, oder die parenterale Ernährung intravenös zur Verfügung. Die beiden Formen scheinen sich zwar in ihrem Einfluss auf die Mortalität nicht zu unterscheiden, jedoch verursacht die parenterale Ernährung mehr Infektionen und ist deshalb der enteralen Ernährung unterlegen (Gramlich et al. 2004).

Von der europäischen Gesellschaft für parenterale und enterale Ernährung (ESPEN) wurden Leitlinien zur parenteralen (Singer et al. 2009) und enteralen (Kreymann et al. 2006) Ernährung für Patienten auf ITS entwickelt. Diese empfehlen vorzugsweise eine enterale

2.4.2.4 Tag-Nacht-Rhythmus

2.4.2.5 Hygiene und nosokomiale Infektionen

Das in Deutschland geführte KISS-Register (Krankenhaus-Infektions-Surveillance-System) gibt einen Überblick über die aktuelle Lage von nosokomialen Infektionen und die Erreger. Von 2005 bis 2009 wurden mit 586 Stationen speziell Daten für das ITS-KISS gesammelt. Dabei stellte sich heraus, dass etwa 80% der nosokomialen Infektionen auf einer ITS apparateabhängig sind. Am häufigsten treten dabei beatmungsassozierte Infektionen des Respirationstraktes, blasenkatherterbedingte Harnwegsinfektionen und Infektionen der
Blutbahn bei ZVK-Einlage auf. Die dominierenden Erreger sind bei respiratorischen Infekten Staphylococcus aureus (20%), bei urethralen Infekten Escherichia coli (28%) und Enterococcus (27%) und bei Blutinfektionen koagulase-negative Staphylokokken (32%) (Geffers und Gastmeier 2011). Um solche Komplikationen zu verringern, stehen beispielsweise Antiseptika zur Verfügung. Deren lokale Anwendung kann das Risiko von respiratorischen Infekten bei beatmeten Patienten reduzieren (Pileggi et al. 2011).

Ein weiteres Problem stellen multi-resistente Erreger dar, deren Häufigkeit ebenfalls in der KISS-Studie erfasst worden ist. In den dabei erfassten Jahren von 2005 bis 2009 ist der multi-resistente Staphylococcus aureus (MRSA) der am häufigsten bei Intensivpatienten nachgewiesene Keim gewesen, zeigte jedoch über die registrierte Zeitspanne einen Trend zum Rückgang (1,5% in 2005 auf 1,38% in 2009). Der zweithäufigste Keim ESBL (extended spectrum β-lactamase-producing E. coli und Klebsiella pneumoniae) zeigte jedoch eine Zunahme von 0,16% auf 0,56%, ebenso wie der dritthäufigste Keim VRE (Vancomycin-resistenter Enterococcus) von 0,11% auf 0,2% (Geffers und Gastmeier 2011).

2.4.3 Behandlungszeitraum und Outcome

Zusätzlich zu den bereits genannten Maßnahmen, die die Behandlung auf der ITS verkürzen können, beeinflussen noch andere Faktoren die Länge der Behandlung und das Outcome der Patienten.

2.4.4 Lebensqualität nach intensivmedizinischer Therapie

Die Lebensqualität ist ein Maß, welches unter multifaktoriellem Einfluss steht. Zum einen spielen sozioökonomische Komponenten wie materielle (finanzielle Sicherheit) und immaterielle (Familie, soziale Kontakte, Bildung) Größen eine wichtige Rolle. Zum anderen steht die Lebensqualität natürlich auch unter dem Einfluss von Gesundheit und Krankheit.
und wird dann als Health related Quality of Life (HrQoL) bezeichnet. Sie lässt sich anhand verschiedener Fragebögen bewerten, wie beispielsweise dem EQ-5D-5L (Herdman et al. 2011).

2.5 Besonderheiten des Diabetikers auf der Intensivstation

Für Diabetiker, welche intensivmedizinisch behandelt werden müssen, ergeben sich einige Besonderheiten. Trotz dieser chronischen Erkrankung resultiert daraus keine erhöhte Mortalität für Diabetiker, sondern eine Tendenz zum Überlebensvorteil (Graham et al. 2010). Eine Ausnahme davon besteht bei Patienten mit Myokardinfarkt, die im Langzeitverlauf eine signifikant erhöhte Mortalität gegenüber Nicht-Diabetikern aufweisen (Norhammar et al. 2007).

Ein Risikofaktor für Diabetiker kritisch zu erkranken ist die Komorbidität Depression. Dadurch weisen Diabetiker eine schlechtere glykämische Kontrolle auf, einen höheren BMI und häufiger diabetische Komplikationen. Gründe dafür sind unter anderem Nachlässigkeiten in
der Diätführung und der Medikamenteneinnahme sowie aber auch eine vermehrte Sekretion von Stresshormonen und inflammatorischen Molekülen (Davydow et al. 2011).

2.5.1 Blutzuckerkontrolle

Somit stellt die Kontrolle der Blutglukosewerte auf der ITS eine Therapiestrategie dar, die besonders individuell auf jeden einzelnen Patienten angepasst werden muss.

einem signifikant erhöhten Hypoglykämierisiko. In den Leitlinien zur Insulintherapie im Krankenhaus wurde daher von der American Diabetes Association die intravenöse Insulintherapie bei kritisch kranken Patienten mit intermediären Zielwerten empfohlen (Ellahham 2010).

<table>
<thead>
<tr>
<th>Therapieform</th>
<th>Zielbereich der Blutglukosewerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konventionelle Insulintherapie</td>
<td>Insulinbolus bei Glucose >13,9 mmol/l bis 10 - 11,1 mmol/l erreicht</td>
</tr>
<tr>
<td>Intermediäre Insulintherapie</td>
<td>7,8 bis 10 mmol/l bis 7,8 mmol/l</td>
</tr>
<tr>
<td>Intensivierte Insulintherapie</td>
<td><2,2 mmol/l</td>
</tr>
<tr>
<td>(Hypoglykämie)</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2: Zielwerte bei Insulintherapie auf der ITS. Nach (Ellahham 2010).

In einer Studie von Krinsley et al. wurde die Insulintherapie bei Diabetikern im Vergleich zu Nicht-Diabetikern untersucht. Dort wurde der Zielbereich der intensivierten Glukosetherapie noch einmal unterteilt in einen niedrigeren (4,4 bis 6,1 mmol/l) und einen höheren (6,1 bis 7,8 mmol/l) Bereich. Für Nicht-Diabetiker ergab sich dabei kein signifikanter Unterschied zwischen den beiden Bereichen. Jedoch wiesen Diabetiker eine erhöhte Mortalität im niedrigeren Zielbereich auf, weshalb bei diesen Patienten Glukosewerte von 6,1 bis 10 mmol/l angestrebt werden sollten (Krinsley et al. 2013).

2.5.2 Ernährung

2.5.3 Weitere Besonderheiten

Durch diabetische Komplikationen ergeben sich Besonderheiten, die es zu berücksichtigen gilt, auch wenn der Patient noch keine Symptome zeigt. So ist beispielsweise auf eine angemessene Dosierung von Medikamenten zu achten, die vorwiegend über die Niere metabolisiert werden, da durch eine diabetische Nephropathie die Filtrationsfähigkeit der Niere eingeschränkt sein könnte.

Als vorteilhaft für die Therapie auf der ITS stellte sich die medikamentöse Behandlung des DM im Alltag heraus. Durch die Therapie mit Metformin haben intensivmedizinisch behandelte Diabetiker eine niedrigere Langzeitmortalität als jene, die kein Metformin einnehmen (Christiansen et al. 2013). Auch bei medikamentöser Therapie von mit DM assoziierten Diagnosen des MS wie mit β-Blockern (Christensen et al. 2011) und Statinen (Christensen et al. 2010) zeigt sich dieser Effekt.

Das oben besprochene Thema der Muskelschwäche soll hier noch einmal aufgegriffen werden. Wie bei Ponfick et al. beschrieben, scheint der DM dafür ein Risikofaktor zu sein (Ponfick et al. 2014), was möglicherweise mit einer bereits vorhandenen diabetischen...
3. Ziele und Fragestellungen

Eine Fülle von Studien hat sich zwar mit den Mortalitätsraten auf Intensivstationen befasst, jedoch wurden bis jetzt nur wenige Vergleiche zwischen Intensivpatienten mit und solchen ohne Diabetes angestellt. Daraus ergab sich für uns bereits die erste Frage:

- Ist die Mortalität bei kritisch kranken Patienten mit DM höher als bei denen ohne Diabetes mellitus?

Weiterhin ist auch über die Lebensqualität von Diabetikern bereits viel bekannt, jedoch kaum im Zusammenhang mit der intensivmedizinischen Behandlung. Daher war unsere zweite Fragestellung:

- Haben kritisch kranke Diabetiker nach Entlassung von der Intensivstation eine schlechtere Lebensqualität als die Patienten ohne DM?

Zu den diabetischen Komplikationen als negativer Einfluss auf die Lebensqualität gibt es wiederum viele Belege. Diese beziehen allerdings nicht den Einfluss einer notwendigen Intensivbehandlung mit ein. Somit ergab sich unsere dritte Fragestellung:

- Haben Diabetiker mit Komplikationen nach Aufenthalt auf einer Intensivstation eine signifikant schlechtere Lebensqualität als Diabetiker ohne Komplikationen?

Das Ziel unserer Arbeit war es somit, den Einfluss von Diabetes mellitus sowie seiner Komplikationen auf den ohnehin schon kritischen Gesundheitszustand von Intensivpatienten zu eruieren.

4. Publizierte Originalarbeit

Impact of diabetes mellitus and its complications: survival and quality-of-life in critically ill patients

Katharina Bannier a, Michael Lichtenauer b, Marcus Franz a, Michael Fritzenwanger a, Bjoern Kabisch a, Hans-Reiner Figulla a, Ruediger Pfeifer a, Christian Jung a,c

a Friedrich-Schiller-University, Clinic of Internal Medicine I, Jena, Germany
b University of Jena, Department of Internal Medicine II, Jena, Germany
c University of Jena, Institute of Medical Informatics, Jena, Germany

ARTICLE INFO
Article history:
Received 15 January 2015
Received in revised form 12 August 2015
Accepted 13 August 2015
Available online 15 August 2015

Keywords:
Critically ill
Intensive care
Diabetes mellitus
Follow-up
Quality of life

ABSTRACT
Purpose: Diabetes mellitus represents an increasing problem for patients and healthcare systems worldwide. We sought to investigate the effect of diabetes and its associated comorbidities on long-term survival and quality of life following an admission to a medical intensive care unit (ICU).

Methods: A total of 6662 consecutive patients admitted to ICU between 2004 and 2009 were included (patients with diabetes n = 756, non-diabetic patients n = 5906). The primary endpoint of the study was death of any cause. Data on mortality was collected upon review of medical records or phone interviews. Moreover, a questionnaire was sent to 500 randomly selected patients addressing Health related Quality of Life (HRQoL) after ICU treatment.

Results: Overall mortality did not differ significantly between diabetic and non-diabetic patients after ICU treatment (mean follow-up time: 400 days). For a subgroup of patients already exhibiting comorbidities associated with diabetes, the mortality rate was significantly higher (p = 0.022). Regarding quality of life, no differences were found between groups.

Conclusions: Diabetes was not associated with increased mortality or reduced quality of life in a general population of medical ICU patients. However, once comorbidities associated with diabetes occurred, the survival rate of patients with comorbidities associated with hyperglycemia was significantly reduced.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The incidence of Diabetes mellitus (DM) worldwide was about 6.4% (283 million people) in 2010 and it is supposed that it will increase to 7.7% in 2030 (Shaw, Sicree, & Zimmet, 2010). Because of this projected rise, it would be of interest to evaluate the impact of diabetes on survival and Health related Quality of Life (HRQoL). Diabetes is associated with a number of challenges. The disease has great influence on the patient's daily life, their relatives, nurses and physicians. Moreover, the treatment of a diabetic patient is much more expensive than a non-diabetic patient (Kolu, Raitanen, Rissanen, & Luoto, 2012). The costs of treatment of diabetes and its complications continued to rise over the last years (Lesniowska, Schubert, Wojna, Skrzekowska-Baran, & Fdyny, 2014). Furthermore, comorbidities like hypertension, depression, peripheral artery occlusive disease, retinopathy, polyneuropathy and chronic heart and kidney disease occur more frequently in patients with diabetes (Barnett et al., 2012; Druss et al., 2001; Jung et al., 2009; Schneider, O'Donnell, & Dean, 2009). Recent results showed that the prevalence of comorbidities in diabetic patients is remarkably high. Magban et al. reported a comorbidity rate of up to 92% in a collective of 23,940 diabetic patients (Magban et al., 2015). The treatment of these comorbidities is essential for the patients' HRQoL. Studies have shown that HRQoL of patients with diabetes is not automatically worse than that of non-diabetic patients: the control of risk factors, especially vascular diseases, influences the HRQoL score (Fujita et al., 2012; Morgan et al., 2006; Oliva, Fernandez-Bolanos, & Hidalgo, 2012). In addition to the previously named problems, therapy and outcome of diabetic patients treated at an intensive care unit (ICU) is a further major challenge. Ways to measure the outcome are first, mortality and second, HRQoL. Although in a general population overall mortality of diabetic patients at an ICU seems to be similar to patients without diabetes (Vincent, Preiser, Sprung, Moreno, & Sato, 2010), some studies showed it is higher when associated with other diagnoses like myocardial infarction (Norhammar, Lindback, Ryden, Wallentin, & Steneastrand, 2007). Contrary to mortality, the HRQoL of diabetic patients after admission from ICU is not so well documented and discussed in the literature. Most studies evaluating the

Conflict of interest: None.

* Corresponding author at: Clinic of Internal Medicine I, Friedrich-Schiller-University, Erfurter Allee 101, D-07747 Jena, Germany. Tel.: +49 3641 932493; fax: +49 3641 9328102.
E-mail address: christian.jung@meduni-jena.de (C. Jung).

http://dx.doi.org/10.1016/j.jdc.2015.08.010
1056-8727/© 2015 Elsevier Inc. All rights reserved.
survival of general ICU patients have not yet put a special emphasis on diabetes. Even though HRQoL after hospitalization at the ICU seems to re-improve over time, it remains lower in comparison to a control group of subjects who were not treated at an ICU (Oeyen, Vandijck, Benoit, Annemans, & Decuyper, 2010). Even after discharge from ICU, HRQoL remains worse than before hospital admission, however, with time it begins to re-improve again (Fildissis et al., 2007). In contrast to HRQoL, anxiety and depression caused by staying at an ICU does not improve and a majority of patients still experiences a psychological impairment (Eddleston, White, & Guthrie, 2000; Larsson, Wallin, Robertsson, & Kristofferson, 2014).

The aim of the current study was to investigate the influence of diabetes mellitus and associated comorbidities on long-term survival and HRQoL following an admission to a large medical ICU.

2. Methods

2.1. Study subjects

6662 consecutive patients admitted to our tertiary medical university hospital Intensive Care Unit between January 2004 and December 2009 were included in this registry. The study sample was divided into two subgroups: diabetic (n = 796) and non-diabetic (n = 5866) subjects. Patients were assigned to the diabetic group either if they were currently taking anti-diabetic medication (oral anti-diabetic drugs or insulin) or the diagnosis was documented in the patient’s records (i.e. dietary treatment of diabetes). Furthermore, patients were sub-classified according existing comorbidities associated with diabetes mellitus according to our hospital records using the classifications made according to ICD-10 codes. Hypertension (110), diabetic retinopathy (E11.1), neuropathy (E11.4), peripheral artery disease (I73.9), coronary artery disease (I25.1), diabetic nephropathy (E11.2), Stroke (I63) and diabetic foot syndrome (E11.62) were graded as comorbidities associated with associated with diabetes.

Follow-up of patients was performed retrospectively between May 2013 and November 2013. The primary endpoint of the study was all-cause mortality. Mean follow-up was 490 days. Data on mortality was collected upon review of medical records or phone interviews. Letters of contact, which included information about the study, an invitation to participate, informed consent, questions about mortality and HRQoL were sent to 500 randomly selected patients in May 2013 (between 4 and 9 years after patients were discharged from our ICU). The study was approved by the local ethics committee of the Medical Faculty of the Friedrich Schiller University of Jena.

To measure the HRQoL, we used the EQ-5D-5L questionnaire form. It is a viable instrument in many different medical areas because it contains questions about a patients’ perceived physical and mental health, mobility, self-care, usual activities, pain/discomfort, anxiety/depression and a visual analogue scale from 0 to 100 to rate the general health. Every item has five levels from the best (1) to the worst (5) state. An important advantage of EQ-5D-5L is its easy manageability and comprehensibility for patients, especially those who are handicapped. On the other hand, the main drawback is its superficiality by which all etiologies of current health are measured and not only those that we wanted to evaluate. Moreover, due to the concept of our study, EQ-5D-5L cannot be used to differentiate between health outcomes in different groups. Nevertheless, EQ-5D-5L was used because of its effectiveness concerning the rating on HRQoL (Fujita et al., 2012; Janssen et al., 2013).

2.2. Statistical analysis

Continuous variables are expressed as mean ± standard deviation for normally distributed data. Differences between independent groups were calculated using Student’s t-test. Non-normally distributed continuous variables are expressed as medians (interquartile range) and compared with Mann-Whitney U test. Categorical data are expressed as numbers (percentage) and chi-square test was applied to calculate differences between groups. Survival rates were estimated using the Kaplan–Meier method, and log-rank test was applied to test for statistical significance. All statistical analyses were performed using SPSS version 21.0 (IBM, USA).

3. Results

3.1. Study population

Baseline characteristics of the study population are presented in Tables 1 and 2. Table 1 summarizes characteristics of patients with (n = 796) or without diabetes (n = 5866) who were admitted to the ICU of our hospital. Diabetic patients presented with higher age, body weight (p < 0.001) and BMI (p < 0.001). Reasons for ICU admission differed between groups for gastrointestinal bleeding, decompensated heart failure and acute myocardial infarction. Bleeding disorders showed a higher predominance in non-diabetic patients whereas diabetic patients showed higher rates of heart failure and myocardial infarction. Moreover, patients suffering from diabetes showed a lower hemoglobin concentration compared to non-diabetic controls (p < 0.001).

Table 1

<table>
<thead>
<tr>
<th>Patient characteristics of the patient population.</th>
<th>All (n = 6862)</th>
<th>No diabetes (n = 5866)</th>
<th>Diabetes (n = 796)</th>
<th>Comparison diabetes versus no diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>64.2 ± 15.5</td>
<td>63.4 ± 15.9</td>
<td>70.4 ± 10.4</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Sex, male (%)</td>
<td>60.9</td>
<td>61.0</td>
<td>60.5</td>
<td>n.s.</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>79.1 ± 17.8</td>
<td>78.3 ± 17.5</td>
<td>83.8 ± 19.0</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.2 ± 5.3</td>
<td>27.0 ± 5.2</td>
<td>29.0 ± 5.9</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Reason for ICU admission n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal bleeding</td>
<td>279 (4.2)</td>
<td>258 (4.4)</td>
<td>21 (2.6)</td>
<td>P = 0.025</td>
</tr>
<tr>
<td>Heart rhythm disorders</td>
<td>374 (5.6)</td>
<td>326 (5.6)</td>
<td>48 (6.0)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Decompensated heart failure</td>
<td>470 (7.0)</td>
<td>380 (6.7)</td>
<td>80 (10.0)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>130 (2.0)</td>
<td>128 (2.1)</td>
<td>8 (1.0)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Acute myocardial infarction</td>
<td>1886 (28.3)</td>
<td>1651 (27.8)</td>
<td>235 (32.6)</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>207 (3.1)</td>
<td>190 (3.2)</td>
<td>17 (2.1)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Sepsis</td>
<td>461 (6.9)</td>
<td>406 (6.9)</td>
<td>55 (6.9)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Castle俊monorrhea resection</td>
<td>539 (8.1)</td>
<td>297 (5.1)</td>
<td>42 (5.2)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Clinical characteristics at admission</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin (mmol/l)</td>
<td>7.1 ± 1.3</td>
<td>7.1 ± 1.2</td>
<td>6.9 ± 1.2</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>WBC (x10^9 /l)</td>
<td>11.3 ± 9.7</td>
<td>11.3 ± 9.2</td>
<td>11.4 ± 12.1</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Serum lactate</td>
<td>1.9 ± 2.6</td>
<td>1.8 ± 2.2</td>
<td>1.9 ± 4.1</td>
<td>n.s.</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>84 ± 18</td>
<td>84 ± 18</td>
<td>84 ± 20</td>
<td>n.s.</td>
</tr>
</tbody>
</table>
Table 2
Differences in characteristics of diabetic patients with or without associated comorbidities.

<table>
<thead>
<tr>
<th></th>
<th>Diabetes without comorbidities (n = 435)</th>
<th>Diabetes with comorbidities (n = 361)</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>70.4 ± 15.9</td>
<td>70.4 ± 104</td>
<td>n.s.</td>
</tr>
<tr>
<td>Sex, male (%)</td>
<td>59.8</td>
<td>62.5</td>
<td>n.s.</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>82.1 ± 179</td>
<td>85.9 ± 199</td>
<td>P = 0.01</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>28.2 ± 5.8</td>
<td>29.7 ± 5.9</td>
<td>n.s.</td>
</tr>
<tr>
<td>Reason for ICU admission (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal bleeding</td>
<td>14 (3.2)</td>
<td>7 (1.9)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Heart rhythm disorders</td>
<td>30 (6.9)</td>
<td>18 (4.9)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Decompensated heart failure</td>
<td>41 (9.4)</td>
<td>28 (7.7)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>5 (0.6)</td>
<td>5 (1.3)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Acute myocardial infarction</td>
<td>160 (36.8)</td>
<td>95 (26.3)</td>
<td>P = 0.023</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>5 (1.1)</td>
<td>12 (3.3)</td>
<td>P = 0.039</td>
</tr>
<tr>
<td>Sepsis</td>
<td>23 (5.2)</td>
<td>32 (8.8)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Cardiopulmonary resuscitation</td>
<td>23 (5.2)</td>
<td>19 (5.2)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Clinical characteristics at admission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin (mmol/l)</td>
<td>7.1 ± 1.2</td>
<td>8.7 ± 1.1</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>WBC (×10⁹/l)</td>
<td>11.7 ± 15.8</td>
<td>11.4 ± 5.7</td>
<td>n.s.</td>
</tr>
<tr>
<td>Serum lactate</td>
<td>2.0 ± 5.1</td>
<td>1.9 ± 2.6</td>
<td>n.s.</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>93 ± 17</td>
<td>86 ± 17</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

For the subgroup analysis depicted in Table 2, patient characteristics of diabetic patients without or with diabetes-associated comorbidities only showed differences in weight. When analyzing the reasons for ICU admission, fewer patients with diabetic comorbidities were admitted to ICU because of myocardial infarction, though pneumonia was more common in this patient group. Lower hemoglobin concentrations were also found in the subgroup of patients with diabetic comorbidities.

3.2. Survival data

Of a total of 6662 patients, 796 were diabetic. Survival in diabetic patients did not differ significantly when using Kaplan–Meier analysis with log-rank statistics (Fig. 1). For the subgroup of patients already exhibiting comorbidities associated with diabetes, the survival rate was significantly lower during overall follow-up (Fig. 2, P = 0.022). After 12 months of follow-up, the survival rate was 64.9% for diabetic patients without comorbidities (150 out of 231). For diabetic patients already exhibiting comorbidities of the disease, the survival rate was 51.0% (98 out of 192, P = 0.004). After 5 years of follow-up, the survival rate of diabetic patients without comorbidities was 41.1% for (63 out of 154), for diabetic patients already presenting with comorbidities a survival rate of 13.6% (16 out of 118, P < 0.001) was observed.

3.3. Quality of life

Results for quality of life are presented in Table 3. No difference was detectable when comparing patients with and without diabetes. Within the cohort of patients with diabetes, there was no difference between patients with comorbidities compared to those without comorbidities.

Fig. 1. Kaplan–Meier curve showing the survival rate of patients with (gray curve) or without (black curve) diabetes after ICU admission (log-rank test, n = 6662, P = n.s.).
4. Discussion

Diabetes is currently considered to be the seventh leading cause of death worldwide. The total number of patients suffering from diabetes is projected to rise from 171 million in the year 2000 to 366 million in 2030 (Wild, Roglic, Green, Sicree, & King, 2004). Moreover, diabetes is the number one cause for renal failure, retinopathy and non-traumatic lower limb amputation. Previous studies have shown that patients with diabetes have a reduced life expectancy compared to non-diabetic patients. The estimated risk of death was considered to be about twice as high than that of people of a similar age without the disease (Franco, Steyerberg, Hu, Mackenbach, & Nusselder, 2007).

In this study, we sought to evaluate the effect of diabetes on survival and quality of life in patients who were admitted to the ICU of our hospital from 2004 to 2009.

First, we sought to analyze the impact diabetes had on the survival of critically ill patients. Our data are in accordance with the study by Vincent et al. (Vincent et al., 2010) showing that in a collective of 3147 diabetic patients who underwent ICU treatment, the mortality rate was not higher even though these patients were more severely ill and more likely to have renal failure. Our analysis of a total of 6662 patients, of which 796 were suffering from diabetes, also evidenced only a marginally increased mortality rate for patients with diabetes compared to controls without reaching statistical significance. However, when comparing a subgroup of patients already suffering from comorbidities associated with diabetes and thusly resembling a collective of patients who undeniably has to be considered more severely ill, a significantly worsened survival rate was found.

These results indicate that diabetes, as long as patients remain free of complications prior to ICU admission, does not affect the effectiveness of intensive care treatment or lower survival rate. In the later stages of the disease with its negative effects on organ function, the survival rate of patients admitted to ICU was considerably narrowed. Previous studies have shown that the risk of developing complications during an ICU stay is higher in diabetic patients (Laupland et al., 2004; Michalla et al., 2009; Slynkova, Mannino, Martin, Morehead, & Doherty, 2006). It was speculated that this might be due to a reduced immune cell function caused by hyperglycemia (Alexewicz, Kumar, Smogorzewski, Klin, & Massy, 1995; Marhofer, Stein, Maser, & Federlin, 1992). Our data also showed that in patients suffering from diabetes with comorbidities, pneumonia as the main cause for admission occurred more frequently ($p = 0.023$). Sepsis also occurred

<table>
<thead>
<tr>
<th>Valid questionnaires</th>
<th>All</th>
<th>No diabetes</th>
<th>Diabetes</th>
<th>Diabetes without comorbidities</th>
<th>Diabetes with comorbidities</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility</td>
<td>2.17 ± 1.10</td>
<td>2.16 ± 1.13</td>
<td>2.20 ± 1.00</td>
<td>2.13 ± 1.03</td>
<td>2.26 ± 0.99</td>
<td>n.s.</td>
</tr>
<tr>
<td>Self-care</td>
<td>1.58 ± 1.04</td>
<td>1.50 ± 1.08</td>
<td>1.80 ± 1.19</td>
<td>1.89 ± 1.36</td>
<td>1.71 ± 0.99</td>
<td>n.s.</td>
</tr>
<tr>
<td>Usual activities</td>
<td>2.12 ± 1.16</td>
<td>2.29 ± 1.14</td>
<td>2.27 ± 1.23</td>
<td>2.25 ± 1.34</td>
<td>2.29 ± 1.14</td>
<td>n.s.</td>
</tr>
<tr>
<td>Pain and discomfort</td>
<td>2.34 ± 1.02</td>
<td>2.31 ± 1.02</td>
<td>2.43 ± 1.04</td>
<td>2.41 ± 1.01</td>
<td>2.71 ± 1.14</td>
<td>n.s.</td>
</tr>
<tr>
<td>Arousal and depression</td>
<td>1.71 ± 1.00</td>
<td>1.71 ± 0.99</td>
<td>1.73 ± 1.11</td>
<td>1.88 ± 1.20</td>
<td>1.57 ± 1.02</td>
<td>n.s.</td>
</tr>
<tr>
<td>Total points</td>
<td>9.52 ± 4.44</td>
<td>9.81 ± 4.42</td>
<td>10.4 ± 4.58</td>
<td>10.33 ± 5.23</td>
<td>10.5 ± 3.9</td>
<td>n.s.</td>
</tr>
<tr>
<td>General health (%)</td>
<td>62.78 ± 21.47</td>
<td>65.07 ± 22.12</td>
<td>61.5 ± 18.02</td>
<td>62.81 ± 22.13</td>
<td>60.90 ± 14.28</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Abbreviations: kg: kilogram, BMI: body mass index, mmol/l: millimolar concentration per liter, bpm: beats per minute.

5. Diskussion

5.1 Studienpopulation

Auch über chronische Erkrankungen lassen sich einige Informationen aus unserem Register ableiten. Laut einer Studie von Wang et al. sind die häufigsten chronischen Erkrankungen in Deutschland mit 22% der Bluthochdruck, 20% Rückenschmerz, je 8% Diabetes und Herzkrankheiten sowie 6% Depressionen (Wang et al. 2008). Die Abbildung 8 stellt für die arterielle Hypertonie und den Diabetes ein ähnliches Verteilungsmuster wie bei Wang et al. dar, sowie den Anstieg der Prävalenz mit fortschreitendem Alter. Da Rückenschmerzen häufig funktionell sind und dann kein eindeutiges organisches Korrelat haben, und sich daher auch nicht objektiv auf einer Intensivstation diagnostizieren lassen, sind sie in unserer Datenbank nicht verschlüsselt und entfallen somit aus den Berechnungen.
Abbildung 8: Häufigste Aufnahmegründe nach Altersgruppen unterteilt. Daneben je die Prävalenz der chronischen Erkrankungen, Angaben in %.
Die chronisch ischämischen Herzkrankheiten, hier stellvertretend für die von Wang et al. angegebenen Herzerkrankungen, zeigen eine massive Zunahme bis auf 45% bei allen Patienten über 75 Jahren. Das erscheint logisch, wenn man bedenkt, dass der Hauptaufnahmegrund auf die Intensivstation die Myokardinfarkte sind. Als Resultat chronischer Koronarstenosen sowie auch akuter Myokardinfarkte kann sich eine chronische Herzinsuffizienz entwickeln (Heusch et al. 2014), womit also die Prävalenz dieser Erkrankungen unter Intensivpatienten deutlich höher ist als in der Normalbevölkerung.

Im Vergleich der Patientengruppen tritt der Herzinfarkt bei den Diabetikern mit 32,0% zwar signifikant häufiger auf, jedoch ist er auch bei den Nicht-Diabetikern mit 27,8% die häufigste Ursache für eine intensivmedizinische Behandlung (siehe Tabelle 1 Bannier et al. 2015). Die Unterscheidung von Diabetikern mit und ohne Komplikation erbrachte, dass die Hauptdiagnose Myokardinfarkt bei Diabetikern ohne Komplikationen signifikant häufiger
auftritt (siehe Tabelle 2 in Bannier et al. 2015). Dies könnte darin begründet sein, dass durch die diabetische Neuropathie der Ischämieschmerz seltener ist (Vinik et al. 2003). Ebenfalls ist denkbar, dass Myokardinfarkte bei den Diabetikern fortgeschrittenen Stadiums mit bereits vorliegenden Komplikationen häufiger so fulminant verlaufen, dass die Patienten sofort daran versterben, ohne auf der ITS behandelt werden zu können.

Bei der weiteren Betrachtung der Hauptdiagnosen bei Aufnahme auf die ITS fallen Unterschiede bei der Pulmonalerterienembolie auf (siehe Tabellen 1 in Bannier et al. 2015). Diabetiker werden mit 1,0% signifikant seltener wegen einer Pulmonalerterienembolie auf die ITS aufgenommen als Nicht-Diabetiker mit 2,1%, und das trotz des erhöhten Risikos für thromboembolische Ereignisse bei DM (Chung et al. 2015). Grund dafür könnte zum einen sein, dass Diabetiker durch die Neuropathie weniger Thoraxschmerz haben (Vinik et al. 2003) und damit Lungenembolien häufiger unbemerkt bleiben. Weiterhin stellt die diabetogene Veränderung der erhöhten Thrombozytenaktivität eher ein Risikofaktor für arterielle

5.2 Mortalität

Betrachtet man sich die Patienten gesondert, welche während der Behandlung auf der Intensivstation verstorben sind (Abbildung 9), steht der Myokardinfarkt nicht mehr an erster Stelle. Fast doppelt so häufig wie der Herzinfarkt stellt nämlich die Sepsis die Hauptdiagnose unter den Todesfällen dar. Aus unserem Datensatz geht weiterhin hervor, dass circa 43% aller Patienten mit einer Sepsis nach einer Aufenthalts auf einer Intensivstation verstarben. Damit ist die Sepsis die am häufigsten zur Todesursache Diagnose auf einer Intensivstation. Eine besonders hohe Mortalität entsteht, je später die Sepsis diagnostiziert wird und je länger die Patienten auf der Intensivstation behandelt werden müssen (Blanco et al. 2008).

auch die Sterblichkeit während der Behandlung auf der Intensivstation bei älteren Patienten deutlich höher ist, als bei jüngeren. In einer Studie von Tran et al. konnte dies ebenfalls gezeigt werden (Tran et al. 1990). Weiterhin entwickelten in der Studie jüngere Patienten seltener Organversagen, was ein wesentlicher Faktor für ihr besseres Überleben sein könnte.

Als potenzieller Risikofaktor für eine Mortalitätssteigerung noch während der Behandlung auf der ITS kommt der DM als Nebendiagnose in Betracht. In Abbildung 11 sind dazu die Hauptdiagnosen bei der auf ITS Verstorbenen in Diabetiker und Nicht-Diabetiker aufgeschlüsselt.

Abbildung 11: Hauptdiagnosen bei Tod auf der ITS mit prozentualer Häufigkeit von Diabetikern und Nicht-Diabetikern.
Sechterberger et al. (2013). Auch oxidativer Stress könnte bei der Mortalität während der Behandlung auf den ITS eine Rolle spielen. Durch eine kritische Erkrankung ist der Organismus vermehrt oxidativem Stress ausgesetzt (Protti und Singer, 2007), was die Mortalität zu steigern scheint (Motoyama et al., 2003, Masia et al., 2016). Möglicherweise wirkt damit die ständige Inflammation beim DM protektiv auf das Überleben bei akuter kritischer Erkrankung.

Das Langzeitüberleben nach der ITS stellt sich etwas anders dar. Wie die Überlebendauerkurve in Abbildung 12a zeigt, bedeutet die Diagnose des DM zumindest eine Tendenz zum Überlebensnachteil, jedoch ohne statistische Signifikanz. Bei gesonderter Betrachtung von Myokardinfarkten (siehe Abbildung 12b) ergibt sich ebenfalls eine nicht signifikant erhöhte Mortalität für Diabetiker. Dies wurde auch schon bei gastrointestinalen Blutungen (Thomsen et al., 2006) und Pneumonien (Koskela et al., 2014) festgestellt.

Abbildung 12:

a) Überleben allgemein. (log-rank-Test, n= 6315, p= 0,159)
b) Überleben bei Myokardinfarkt. (log-rank-Test, n=1848, p= 0,614)
c) Überleben allgemein. log-rank-Test, n= 6310, p(zwischen Nicht-Diabetikern und Diabetikern ohne Komplikationen)= 0,358, p(zwischen Diabetikern ohne Komplikationen und Diabetikern mit Komplikationen)= 0,001.
d) Überleben bei Myokardinfarkt. log-rank-Test, n=1845, p(zwischen Nicht-Diabetikern und Diabetikern ohne Komplikationen)= 0,338, p (zwischen Diabetikern ohne Komplikationen und Diabetikern mit Komplikationen)= 0,004.

5.3 Lebensqualität

Die Health related Quality of Life (HrQoL) ist nach der Behandlung auf der ITS negativ beeinträchtigt. Der negative Einfluss ist unter anderem umso größer, je länger die Beatmungszeit ist, sowie von der Art der Erkrankung, wobei Patienten nach ARDS, Sepsis und Trauma am schlimmsten betroffen sind (Oeyen et al. 2010). Auch ein größeres Ausmaß an überlebten Organdysfunktionen verschlechtert die HrQoL in der Zeit nach der intensivmedizinischen Behandlung weiter (Klimasauskas et al. 2011).

Eine Möglichkeit den posttraumatischen Stress nach der Intensivstation sowohl für die Patienten selbst als auch für deren Angehörige zu reduzieren, besteht im Führen eines Tagebuches (Garrouste-Orgeas et al. 2012). Das zeigt, dass genauso wie bei Mortalität und Lebensqualität, neben der medizinischen Versorgung auch die Förderung des psychischen Wohlbefindens immer mehrere Säulen in der Genesung der Patienten betrachtet werden sollten.

Dass die Lebensqualität von Diabetikern nicht automatisch schlechter ist als in Kontrollgruppen, zeigten bereits Oliva et al. (Oliva et al. 2012). Das könnte daran liegen, dass die Umstellungen im Alltag durch die Therapie nicht so gravierend sind, dass sie von den Patienten als beeinträchtigend empfunden werden. Viel mehr sind die Komplikationen des Diabetes das Entscheidende, durch welche sich die Therapie intensiviert als auch

Warum die Bewertung ihrer HrQoL durch Patienten ohne Diabetes nicht signifikant schlechter ausfiel als die der Patienten mit diabetischen Komplikationen, ist unklar. Möglicherweise ist der psychische Einfluss des Aufenthaltes auf der Intensivstation auf die Patienten ohne Diabetes stärker, weil Patienten mit diabetischen Komplikationen häufiger im Krankenhaus behandelt werden und sich somit ein Gewöhnungseffekt auf die Belastungssituation eingestellt hat, sodass sich die Beeinträchtigungen nach Entlassung kaum unterscheiden. Denkbar ist außerdem, dass es kaum eine Progression der diabetischen Komplikationen durch kritische Erkrankungen gibt. Somit könnte es sein, dass sich Diabetiker beim Beantworten des Fragebogens, geleitet auch durch das Anschreiben, unbewusst nur diese Symptome bewerten, die aus der kritischen Erkrankung entstanden sind. Dies könnte natürlich auch auf die Patienten ohne Diabetes zutreffen, welche andere chronische und stark beeinträchtigende Erkrankungen vor Aufnahme auf die Intensivstation hatten. Eine weitere Theorie ist, dass Diabetiker durch ihre Komplikationen in einem gewissen Maße leidensfähiger geworden sind. Demnach würden sich die neuen Symptome nicht mit der Beeinträchtigung durch die diabetischen Komplikationen einfach aufsummieren, sondern die gesamte Lebensqualität verschlechterte sich nur so weit, dass sie unterhalb der statistischen Signifikanz bliebe.

5.4 Limitationen

Die Ergebnisse zur Lebensqualität wurden anhand des Fragebogens EQ-5D-5L ermittelt. Durch die Aufspaltung in die Patientengruppen konnten nur insgesamt 14 Patienten mit und

Ein weiterer Aspekt, welcher sich aus dem zurückliegenden Behandlungszeitraum von 2004 bis 2009 ergab, ist die Weiterentwicklung der Behandlungsmethoden, durch welche sich inzwischen vielleicht schon bessere Ergebnisse bei einer entsprechenden Umfrage ergeben hätten.

6. Schlussfolgerung
Mit der höchstwahrscheinlich steigenden Prävalenz des Diabetes mellitus Typ II nimmt auch dessen Bedeutung für alle Domänen zu, auf die er Einfluss hat. Zum einen steigert dies natürlich die Zahl der Betroffenen, für die daraus eine Beeinträchtigung des täglichen Lebens resultiert. Zum anderen steigen damit auch die Kosten für das Gesundheitssystem.

Der DM stellt trotz der mit ihm verbundenen Lebensumstellung keine besondere Veränderung der Lebensqualität und der Mortalität dar. Erst mit dem klinischen Erscheinen von diabetischen Komplikationen verschlechtert sich die Situation der Patienten. Als zusätzlicher Leidensfaktor senken die diabetischen Komplikationen eher die Lebensqualität,
während sie als Zeichen des Fortschritts der Grundkrankung eher die Mortalität beeinflussen.
Einen Rückgang der Prävalenz einzuleiten erscheint aufgrund des demografischen Wandels und der für die meisten Menschen mit großem Aufwand verbundenen Lebensstiländerung (Primärprävention) eher unwahrscheinlich. Die zwei Säulen der Schadensbegrenzung bestehen also im Ausbau des Früherkennungsscreenings als Maßnahme der Sekundärprävention und der Weiterentwicklung der Therapie des DM als Tertiärprävention, um den Beginn der Komplikationen zu verzögern oder gar zu verhindern. Damit könnte man neben der finanziellen Belastung des Gesundheitssystems auch die physische und psychische Beeinträchtigung an DM erkrankter Patienten und deren Angehörigen senken.
7. Literaturverzeichnis

8. Anhang

8.1 Ehrenwörtliche Erklärung

Hiermit erkläre ich, dass mir die Promotionsordnung der Medizinischen Fakultät der Friedrich-Schiller-Universität bekannt ist,

ich die Dissertation selbst angefertigt habe und alle von mir benutzten Hilfsmittel, persönlichen Mitteilungen und Quellen in meiner Arbeit angegeben sind,

mich Prof. Dr. Christian Jung bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts unterstützt hat,

die Hilfe eines Promotionsberaters nicht in Anspruch genommen wurde und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen,

dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder andere wissenschaftliche Prüfung eingereicht habe und

dass ich die gleiche, eine in wesentlichen Teilen ähnliche oder eine andere Abhandlung nicht bei einer anderen Hochschule als Dissertation eingereicht habe.

Ort, Datum

Unterschrift Katharina Bannier
8.2 Lebenslauf

Persönliche Daten:
Hauptwohnsitz: Deubener Straße 19, 01159 Dresden
Geburtsdatum, -ort: 06. September 1989, Spremberg
Staatsangehörigkeit: deutsch

Schulischer Werdegang:
1996 bis 2002: Carl-Blechen-Grundschule, Cottbus
2002 bis 2009: Fürst-Pückler-Gymnasium, Cottbus: Allgemeine Hochschulreife

Studium:
2009 bis 2015: Friedrich-Schiller-Universität Jena: Studium der Humanmedizin

Praktische Tätigkeiten:
Pflegepraktika:
2009: Unfallchirurgie und Neurologie, Carl-Thiem-Klinikum Cottbus
2010: Herzchirurgie/ Kardiologie, Sana-Herzzentrum Cottbus
2011: Neurologie, Carl-Thiem-Klinikum Cottbus

Famulaturen:
2012: Chirurgische Praxis Flöter, Musikowski, Schwanitz, Laube in Cottbus
Herz- und Gefäßchirurgie, Inselspital Bern
2013: Viszeral- und Neurochirurgie, Kenyatta National Hospital, Nairobi
Kardiologie, Universitätsklinikum Jena
2014: Herzchirurgie, Herzzentrum Leipzig

Praktisches Jahr:
1.: Anästhesie/ Intensivmedizin/ Schmerztherapie,
Universitätsklinikum Jena
2. Tertial: Unfall-, Hand-, Wiederherstellungs chirurgie,
Universitätsklinikum Jena
3. Tertial: Kardiologie, Inselspital Bern

Studentische Arbeit:
Juli 2013 bis Dezember 2014: Studentische Hilfskraft in der Herz- und Thorax chirurgie an der Uniklinik Jena

Berufstätigkeit:
Seit März 2016 Ärztin in Weiterbildung für Orthopädie und Unfallchirurgie, Klinik für Orthopädie und orthopädische Chirurgie, Städtisches Klinikum Dresden Friedrichstadt

Katharina Bannier
8.3 Danksagung

Zu guter Letzt bedanke ich mich bei meinem Freund Tom und meiner Mama Gisa, deren positiver Druck und stärkende Worte mir stets den nötigen Mut und die Motivation gegeben haben, weiter zu machen.
8.4 Fragebogen EQ-5D-5L

Gesundheitsfragebogen

Deutsche Version für Deutschland

(German version for Germany)
Bitte kreuzen Sie unter jeder Überschrift DAS Kästchen an, das Ihre Gesundheit HEUTE am besten beschreibt.

BEWEGLICHKEIT / MOBILITÄT
- Ich habe keine Probleme herumzugehen
- Ich habe leichte Probleme herumzugehen
- Ich habe mäßige Probleme herumzugehen
- Ich habe große Probleme herumzugehen
- Ich bin nicht in der Lage herumzugehen

FÜR SICH SELBST SORGEN
- Ich habe keine Probleme, mich selbst zu waschen oder anzuziehen
- Ich habe leichte Probleme, mich selbst zu waschen oder anzuziehen
- Ich habe mäßige Probleme, mich selbst zu waschen oder anzuziehen
- Ich habe große Probleme, mich selbst zu waschen oder anzuziehen
- Ich bin nicht in der Lage, mich selbst zu waschen oder anzuziehen

ALLTÄGLICHE TÄTIGKEITEN (z. B. Arbeit, Studium, Hausarbeit, Familien- oder Freizeitaktivitäten)
- Ich habe keine Probleme, meinen alltäglichen Tätigkeiten nachzugehen
- Ich habe leichte Probleme, meinen alltäglichen Tätigkeiten nachzugehen
- Ich habe mäßige Probleme, meinen alltäglichen Tätigkeiten nachzugehen
- Ich habe große Probleme, meinen alltäglichen Tätigkeiten nachzugehen
- Ich bin nicht in der Lage, meinen alltäglichen Tätigkeiten nachzugehen

SCHMERZEN / KÖRPERLICHE BESCHWERDEN
- Ich habe keine Schmerzen oder Beschwerden
- Ich habe leichte Schmerzen oder Beschwerden
- Ich habe mäßige Schmerzen oder Beschwerden
- Ich habe starke Schmerzen oder Beschwerden
- Ich habe extreme Schmerzen oder Beschwerden

ANGST / NIEDERGESCHLAGENHEIT
- Ich bin nicht ängstlich oder deprimiert
- Ich bin ein wenig ängstlich oder deprimiert
- Ich bin mäßig ängstlich oder deprimiert
- Ich bin sehr ängstlich oder deprimiert
- Ich bin extrem ängstlich oder deprimiert

Germany (German) v.2 © 2010 EuroQol Group. EQ-5D™ is a trade mark of the EuroQol Group
• Wir wollen herausfinden, wie gut oder schlecht Ihre Gesundheit HEUTE ist.
• Diese Skala ist mit Zahlen von 0 bis 100 versehen.
• 100 ist die beste Gesundheit, die Sie sich vorstellen können.
 0 (Null) ist die schlechteste Gesundheit, die Sie sich vorstellen können.
• Bitte kreuzen Sie den Punkt auf der Skala an, der Ihre Gesundheit HEUTE am besten beschreibt.
• Jetzt tragen Sie bitte die Zahl, die Sie auf der Skala angekreuzt haben, in das Kästchen unten ein.

IHRE GESUNDHEIT HEUTE =

Beste Gesundheit, die Sie sich vorstellen können

0 100

Schlechteste Gesundheit, die Sie sich vorstellen können

0 10