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Glossary of terms 
The terms that are listed here occur multiple times throughout the thesis. The definitions denote the 

context of their usage in the text.  

Biosynthetic or metabolic cost is the amount of a certain resource (e.g. carbon source, 

ATP or protein machinery) that is required to produce a certain metabolite. 

Clusters of orthologous genes (COGs) are groups of three or more orthologous genes 

which are evolutionarily related and are thus considered to be descendants of the same 

ancestral domain.   

Community structure is a broad term encompassing the composition of a community 

in terms of the diversity of different species present and their abundances.  

Community function is the ecological function performed by the community. 

Conditionally essential genes are genes which are required for the growth of an 

organism in a given environment but not required in another environment. 

Environmental plasticity is the differential response of a genotype to distinct sets of 

environments.  

Gene family is a set of several genes which have similar biological functions.  

Metabolic network is the entire set of reactions that comprise all the metabolic 

pathways in a cell.  

Metabolic flux encompasses the rate at which enzymes convert the substrate into the 

product to feed downstream reactions in a pathway. 

Life history trait is any trait which influences the survival and reproduction of an 

organism in a given environment. 

Muller’s Ratchet describes a scenario where many deleterious mutations can 

accumulate irreversibly in a population of individuals. 
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Mutualism is an interaction between two species in which each species derives a 

benefit. 

Niche encompasses the entire set of abiotic and biotic conditions in which a species, 

genotype or individual can persist.    

Nutritional or metabolic environment describes the entire set of catabolites and 

anabolites that are available to a growing population of cells in their immediate 

environment. 

Population bottlenecks are the drastic reductions in population sizes of a resident 

population. 
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Summary 

Bacteria that have adapted to nutrient rich or stable environments often have reduced 

genome sizes. A consequence of this reductive evolution in such specialized bacteria is 

that a loss of genes is accompanied with the loss of biosynthetic functions, which deems 

these bacteria auxotrophic and thus unable to grow in the absence of an environmental 

supplementation of the nutrient that they require. Examples of such bacteria with 

reduced biosynthetic capabilities include Lactic acid bacteria, endosymbiotic bacteria and 

even seemingly free-living bacterial species, and thus span across a range of diverse 

environments and lifestyles. What drives the loss of genes and concomitantly the loss of 

biosynthetic functions in these micro-organisms? Two potential mechanisms have been 

generally attributed to account for these losses: genetic drift and natural selection. 

However, experimental studies to uncover the role of either mechanism in driving 

biosynthetic disarmament in bacteria have rarely been undertaken, and thus the 

occurrence of auxotrophies begs an explanation. This thesis aims to address this 

intriguing loss of biosynthetic abilities in bacteria and unravel the evolutionary 

mechanisms causing these losses. 

 

Biosynthetic gene loss is widespread and selection can explain these losses. As a 

first step, a quantitative measure of auxotrophies in the microbial world was gained 

based on the presence or absence of biosynthetic genes from the set of all completely 

sequenced and well-annotated genomes. An analysis of genomes and the corresponding 

metabolic networks of 949 (subsequently updated to 1432) bacterial species, revealed 

that 76% of the surveyed Eubacterial species with both symbiotic and free-living 

lifestyles lack the genes required to biosynthesize one or multiple amino acids, 

nucleobases and vitamins or co-factors. Such a loss of biosynthetic functions and the 

accompanying dependency on the environment for nutrient uptake is intriguing since 

these functions are essential for an autonomous cellular functioning. To determine if 

selection can explain these losses, the fitness consequences of losing biosynthetic genes 

relative to a prototrophic ancestor were measured in synthetically constructed 

auxotrophic mutants of Escherichia coli and Acinetobacter baylyi where genes responsible for 

biosynthesis of amino acids or nucleobases or vitamins were deleted. Almost all of the 
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auxotrophic mutants tested were generally fitter compared to prototrophic strains, in 

presence of an environmental supplementation of amino acids. Furthermore, deletion of 

different biosynthetic genes, which resulted in the same amino acid auxotrophies but 

theoretically entailed distinct protein costs, resulted in distinct fitness consequences for 

the auxotrophic bacteria, suggesting that these selective benefits originate in part from a 

general saving of costs associated with biosynthetic metabolism. These findings strongly 

suggested that selective advantages can explain the rampant loss of biosynthetic 

functions in bacteria in nature. 

 

Environmental plasticity and epistasis influence the selective advantages of gene 

loss. Since many eubacterial genomes lack multiple biosynthetic functions, the fitness 

effects of harboring multiple auxotrophies were subsequently evaluated. In general, an 

increase in auxotrophic mutations did not result in increased fitness benefits suggesting 

epistasis was prevalent and resulted in a trend of diminishing returns. Furthermore, the 

patterns of epistasis and fitness magnitudes were influenced by the carbon source that 

was provided. These findings suggest that the metabolic environment and epistasis can 

influence selection mediated biosynthetic gene loss resulting in distinct auxotrophic 

combinations being selected over others in a given environmental condition. This 

argument was in line with the findings that some combinations of auxotrophies occurred 

more often than expected randomly in sequenced bacterial genomes and suggests that 

the metabolic environment can play a crucial role in the evolution of auxotrophies.  

 

General trade-offs in metabolism and network architecture influence fitness 

benefits in auxotrophic bacteria. Different carbon sources can lead to distinct fluxes 

through a metabolic network and thus distinct metabolic costs of biosynthesis will be 

incurred depending on the carbon source. This can explain why different carbon sources 

result in distinct selective benefits for the auxotrophic strains. By employing a flux 

balance analysis on the basis of the metabolic network of E. coli the costs of metabolite 

biosynthesis that are incurred when using different carbon sources were estimated. This 

analysis revealed that the architecture of the metabolic network plays an important role 

in determining the metabolic costs associated with biosynthesis of a metabolite, in this 

case amino acids. These predictions were then experimentally verified using auxotrophic 
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strains of E. coli and the findings strongly indicate the carbon source used and its 

position in a metabolic network can dictate the growth benefits in auxotrophic strains. 

This implies that trade-offs in central metabolism can result in distinct sets of 

auxotrophs to specialize on distinct carbon resources to optimize their fitness gains upon 

gene loss. 

 

Rapid adaptive loss of biosynthetic functions in nutrient-rich environments. The 

observed selective advantages associated with the loss of biosynthetic functions suggest 

that auxotrophic genotypes should readily evolve in environments where the metabolite 

is externally supplemented. Subsequently, replicate populations of a prototrophic strain 

of Escherichia coli were serially propagated for 2,000 generations in an environment 

containing all 20 amino acids. Indeed, in amino acid-rich environments auxotrophs 

rapidly evolved and their occurrence increased over time. Surprisingly, auxotrophs also 

evolved when no amino acids were present. In all cases the loss of biosynthetic functions 

was adaptive and was a result of diverse mutations in both structural and regulatory 

genes. Interestingly, auxotrophs lost multiple biosynthetic functions but always co-

existed with prototrophic strains by negative frequency-dependent selection, suggesting 

that auxotrophs derived amino acids from prototrophic strains by cross-feeding in 

addition to the ones that were environmentally supplied. Importantly, these results 

provide strong evidence that the loss of biosynthetic genes and functions in bacteria 

observed in nature can arise as a result of adaptive processes when the requisite 

metabolite is provisioned by the biotic or abiotic environment.  

 

In summary, in this thesis using a combination of synthetic ecology, experimental 

evolution and in silico computations of genomes and metabolic networks, the causes 

underlying the biosynthetic disarmament and the factors that influence the ensuing 

dynamics were investigated. Using these findings, I make the case for adaptation as a 

major force driving the loss of biosynthetic functions in microbes in nature and for 

potentiating the evolution of metabolic interactions and networks within microbial 

communities.   
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Zusammenfassung 

Die Anpassung von Bakterien an nährstoffreiche Umgebungen ist oft verbunden mit 

einer Verkleinerung der Genomgröße. Mit dem Verlust von genetischer Information 

verlieren die entsprechenden Bakterien auch biosynthetische Fähigkeiten. Die 

Metabolite, die so nicht mehr synthetisiert werden können, aber dennoch essentiell für 

Zellwachstum und -teilung sind, müssen dementsprechend aus der Umgebung 

aufgenommen werden. Mikroorganismen, die solche Metabolite nicht mehr selbstständig 

produzieren können werden auxotroph genannt. Milchsäurebakterien und 

Endosymbionten sind typische Beispiele für auxotrophe Bakterien, die im Laufe der 

Evolution einen Großteil ihrer biosynthetischen Fähigkeiten verloren haben. Aber auch 

scheinbar freilebelende Arten fehlen häufig die entsprechenden Gene um bestimmte 

wachstumsrelevante Metabolite herzustellen. Was beeinflusst den Verlust von 

biosynthetischen Funktionen in diesen Mikroorganismen? Häufig wird der Verlust auf 

zwei evolutionäre Prozesse zurückgeführt: Genetischer Drift und natürliche Selektion. 

Wie stark der jeweilige Einfluss dieser beiden Prozesse jedoch tatsächlich ist wurde 

bislang nur marginal experimentell untersucht. Die vorliegende Arbeit beschäftigt sich 

mit den Fragen wie der verblüffend häufige Verlust von biosynthetischen Funktionen in 

Bakterien erklärt werden kann und welche evolutionären Mechanismen dabei eine Rolle 

spielen. 

 

Der Verlust von biosynthetischen Genen ist weitverbreitet in Bakterien und kann 

durch natürliche Selektion erklärt werden. Um die Häufigkeit von Auxotrophien in 

natürlich vorkommenden Bakterien abzuschätzen wurde untersucht ob bestimmte Gene 

mit biosynthetischen Funktion in komplett sequenzierten und annotierten Genomen von 

949 (später aktualisiert auf 1432) Bakterien vorkommen. Auf diese Weise konnte 

theoretisch vorhergesagt werden, ob die Stoffwechselwege für die Synthese von 

Metaboliten, die notwendig für das Zellwachstum sind, in den metabolischen 

Netzwerken der entsprechenden Arten vorhanden sind. Diese Analyse ergab, dass 76% 

der untersuchten Eubakterien die Fähigkeit fehlt eine oder mehrere Metabolite 

(einschließlich Aminosäuren, Nukleotide, Vitamine und Kofaktoren) eigenständig zu 

synthetisieren. Die untersuchten Metabolite sind essentiell für alle lebenden Zellen und 
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der Verlust von biosynthetischen Stoffwechselwegen stellt somit eine absolute 

Abhängigkeit der auxotrophen Bakterien an die Nährstoffzusammensetzung ihrer 

natürlichen Umgebung dar. Weiterhin wurde untersucht, ob natürliche Selektion den 

biosynthetischen Funktionsverlust erklären kann. Dafür wurden synthetisch auxotrophe 

Mutanten von Escherichia coli und Acinetobacter baylyi erzeugt, indem Gene aus dem 

Genom herausgeschnitten wurden, die essentiell für die Produktion von einer 

Aminosäure, einem Nukleotid oder einem Vitamin sind. Anschließend wurde die Fitness 

dieser auxotrophen Mutanten relativ zu dem jeweiligen prototrophen Wildtyp, der alle 

Metabolite weiterhin eigenständig produzieren kann, bestimmt. Nahezu alle 

untersuchten Mutanten zeigten eine höhere Fitness als der prototrophe Wildtypstamm 

wenn der entsprechende Metabolit, für den der mutierte Genotyp auxotroph ist, dem 

Wachstumsmedium hinzugefügt wurde. Des Weiteren wurden verschiedene Gene 

innerhalb des gleichen Biosyntheseweges aus dem Genom des Wildtyps entfernt. Hierbei 

zeigten sich signifikante Fitnessunterschiede zwischen verschiedenen auxotrophen 

Mutanten obwohl sie alle auxotroph für denselben Metaboliten sind. Da die Enzyme 

eines Stoffwechselweges oft unterschiedlich groß sind und in verschiedenen Mengen in 

der Zelle vorkommen spricht dieses Ergebnis dafür, dass Proteinkosten, welche mit der 

Produktion der Enzyme verbunden sind, maßgeblich den Fitnessvorteil von 

auxotrophen Genotypen beeinflussen. 

 

Plastizität der Umwelt sowie Epistasis beeinflussen den Selektionsvorteil von 

Genverlust. Ausgehend von dem vorherigen Ergebnis, dass viele Bakterienarten 

wahrscheinlich auxotroph für mehrere Metabolite sind, wurde auch der Fitnesseffekt 

von multiplen Gendeletionen, die wiederum zu multiplen Auxotrophien eines mutierten 

Genotyps führen, evaluiert. Im Allgemeinen führte der Verlust von mehreren 

biosynthetischen Funktionen zu einem Fitnessvorteil der auxotrophen Genotypen, der 

niedriger ausfiel als erwartet. Daraus lässt sich ableiten, dass häufig epistatische Effekte 

zwischen den Mutationen auftreten, die unterschiedliche Auxotrophies verursachen, und 

dabei den Fitnessvorteil von biosynthetischen Funktionsverlusts abnimmt falls der 

Genotyp bereits auxotroph für einen anderen Metaboliten ist – ein Effekt der 

abnehmender Ertrag (engl. diminishing returns) genannt wird. Der Einfluss von Epistasis war 

wiederum auch davon abhängig, welche Kohlenstoffquelle für das Zellwachstum zur 
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Verfügung stand. Diese Ergebnisse deuten darauf hin, dass die Art der 

Kohlenstoffquelle sowie Epistasis den adaptiven Verlust von Genen mit 

biosynthetischer Funktion beeinflussen, was wiederum in Übereinstimmung mit den 

genombasierten Auxotrophievorhersagen ist, bei denen bestimmte Kombinationen von 

Auxotrophies häufiger vorkommen als erwartet. 

 

In nährstoffreichen Umgebungen verliert Escherichia coli biosynthetische 

Fähigkeiten in evolutionär relativ kurzem Zeitraum. Aufgrund der enormen 

Fitnessvorteile, die mit Auxotrophiemutationen verbunden sind,  ist zu erwarten, dass 

die Häufigkeit von auxotrophe Genotypen sich innerhalb einer Population stark ansteigt 

wenn die entsprechenden Metabolite aus der Umgebung aufgenommen werden können. 

Um diese Hypothese zu testen, wurden zwölf unabhängige Populationen des anfänglich 

prototrophen E. coli Stammes für 2.000 Generationen täglich in frisches 

Wachstumsmedium übertragen, das alle 20 proteinogenen Aminosäuren enthielt. 

Auxotrophe Genotypen evolvierten schnell und stiegen in ihrer Häufigkeiten im Laufe 

des Experiments. Interessanterweise evolvierten auch auxotrophe Stämme in dem 

Kontrollexperiment, bei dem keine Aminosäuren dem Wachtsumsmedium hinzugefügt 

wurden. Es konnte darüber hinaus auch hier gezeigt werden, dass der Verlust der 

biosynthetischen Funktionen adaptiv ist und die Folge von diversen Mutationen in 

Struktur- und Regulationsgenen. Auxotrophe Genotypen verloren mehrere 

biosynthetische Funktionen aber koexistierten immer zusammen mit prototrophen 

Stämmen, was daruf hindeutet, dass auxotrophe Genotypen auch Aminosäuren von 

prototrophen Zellen beziehen, die diese Aminosäuren weiterhin produzieren. 

Zusammenfassend zeigt dieses Evolutionsexperiment, dass die Evolution von 

auxotrophen Bakterien in der Natur durch adaptive Prozesse erklärt werden kann wenn 

die entsprechenden Metabolite aus der biotischen- und/oder abiotischen Umgebungen 

bezogen werden können. 

 

Die Struktur des metabolischen Netzwerkes beeinflusst den Fitnessvorteil von 

auxotrophen Bakterien. Chemisch verschiedene Kohlenstoffquellen verursachen 

unterschiedliche Verteilungen von Reaktionsflüssen durch das metabolische Netzwerk. 

Somit können wiederum die metabolischen Kosten, die mit der Produktion von 



 

15 
 

Metaboliten verbunden sind, auch zwischen verschiedenen Kohlenstoffquellen variieren. 

Um zu testen, ob diese Kostenunterschiede auch die verschiedenen Fitnessvorteile von 

Auxotrophien, abhängig von der Kohlenstoffquelle, erklären können wurde eine Fluss-

Bilanz-Analyse (FBA) auf der Grundlage des metabolischen Netzwerks von E. coli 

durchgeführt. Mit dieser Methode konnten die metabolischen Kosten für die Produktion 

von allen 20 Aminosäuren unter einer Vielzahl von möglichen Kohlenstoffquellen 

theoretisch vorhergesagt werden. Diese Analyse zeigte, das die Kosten für die 

Produktion einer bestimmten Aminosäure tatsächlich stark zwischen zwei 

Kohelnstoffquellen variieren kann. Des Weiteren wurden die vorhergesagten 

Kostenunterschiede experimentell nachgewiesen und es konnte so gezeigt werden, dass 

die Position, an welchem eine Kohlenstoffquelle in das metabolische Netzwerk einfließt, 

deutlich den Wachstumsvorteil von auxotrophen Stämmen bestimmt. Diese Ergebnisse 

suggerieren, dass abhängig von der verfügbaren Kohlenstoffquelle unterschiedliche 

auxotrophe Genotypen evolvieren können. 

 

In dieser Arbeit wurde eine Kombination von verschiedenen Methoden aus der 

synthetischer Ökologie, experimenteller Evolution und metabolischer Modellierung 

verwendet um die evolutionären Faktoren zu beleuchten, die zur Reduktion 

biosynthetischer Selbstständigkeit von Bakterien beitragen. Die Resultate lassen darauf 

schließen, dass vor allem Adaption eine treibende Kraft ist, die den häufigen Verlust von 

biosynthetischen Fähigkeiten in Mikroorganismen in der Natur erklärt. Außerdem kann 

die Reduzierung des metabolischen Funktionsspektrums durch Adaption auch die 

Evolution von metabolischen Interaktionen und interzellulären biochemischen 

Netzwerken innerhalb von mikrobiellen Gesellschaften begünstigen. 
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Introduction 
 

Microorganisms (including viruses, bacteria, archaea, yeasts and protists) colonize every 

habitable niche on this planet. A general characteristic of microbial life in nature is that these 

organisms do not occur in isolation but rather exist within complex communities which are 

essentially assemblages of multiple species that live together [1-3]. A result of such a 

communal mode of existence is that microorganisms frequently interact with each other due 

to activities pertaining to their growth and metabolism [4]. These interactions can range from 

being negative to positive resulting in the constituent members of a microbial community to 

engage in diverse relationships that span from competition to cooperation [2,3,5,6]. In 

competitive interactions, one or both of the interacting partners are negatively affected [3,5]. 

Examples of such interactions are host-parasite relationships like those between bacteria and 

their lytic phages; or bacterial genotypes that secrete antibiotic or toxins to inhibit the growth 

of other genotypes [2,3]. In contrast, cooperative relationships or mutualisms result in 

beneficial effects for both partners [2,3,5,7]. For instance, multiple bacterial species can 

cooperate to exchange metabolic compounds [4,8] or contribute to produce components 

required to build biofilms which increase resistance to antibiotics [9,10]. Thus, these 

interactions help microorganisms address their nutrient requirements, provide protection 

from environmental factors like anti-microbial compounds or predators and allow adaptation 

to ecological niches in ever-changing environments in nature [4,10,11].  Hence, the outcome 

of these interactions along the competition-cooperation continuum will be a strong 

determinant of the evolution of an individual species, and consequently also of the evolution 

of microbial communities [1,3,6,12]. Therefore, the knowledge of how varied interactions 

between multiple species evolve in nature is critical to our understanding of the general 

principles that shape microbial life in nature.  

Empirical investigations of natural communities of bacteria have suggested that competitive 

interactions are much more frequent than cooperative relationships [13-15]. However, a large 

body of recent work supports a contrarian view that cooperative interactions are also 

prevalent in the microbial world [4,8,16-19]. A major aspect of cooperative relationships in 

nature is metabolic exchange between different microbial partners [4,5,8] and such 

interactions influence diverse processes [2,20] such as agriculture, bioremediation, nutrient 

cycling, biogeochemical cycles, and poly-microbial infections in higher animals [13,21].  

Several metabolites such as amino acids, cofactors, sugars, fatty acids, electrons and many 

other chemical species can be potentially exchanged between bacteria [4,5,22-28] Therefore, 

these interactions can have marked effects on the structure and function of microbial 

communities [29].  The molecules or chemical components mediating these interactions are 

encoded in the genome of a bacterial cell and since a large portion of the open reading 
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frames in microbial genomes is dedicated for such interactions [4], it is imperative that the 

emergence of microbial metabolic interactions will be significantly influenced by the i) 

evolution of bacterial genomes and ii) the ensuing effects of genome dynamism on the 

metabolic network of a bacterial cell.  

 

1.1 The evolution of bacterial genomes 
 
The genetic content of an organism is it’s principle information carrier from one generation 

to the next, and determines the evolutionary potential of life-forms in terms of their 

metabolic capabilities, lifestyles, and ability to occupy different ecological niches [30]. As a 

consequence, organismal genomes differ with regards to size and coding capabilities, which 

ultimately determines not only organismal structure and function, but also their evolutionary 

capacity for change and adaptability [31]. The differences in genomes are evident not only 

amongst the members of the same kingdom, but also between different kingdoms of life. For 

instance, genomes of prokaryotes and eukaryotes differ in size and coding content by several 

orders of magnitude. However, within the prokaryotic domain itself, there are stark 

differences in genome sizes. For instance at the time of writing this thesis, the smallest 

known bacterial genome was that of Candidatus Trembalaya princeps and Candidatus 

Hodgkinia cicadicola (Figure 1) [32], sized 139 kb and 144 kb respectively; while the largest 

genome (14.7 mb) was that of Sorangium cellulosum [33].  

The massive difference in genome sizes signifies the immense state of flux that bacterial 

genomes are undergoing. These dynamics and variation in gene repertoires in bacteria is 

attributable to both, gene gain or loss. Genomes can expand via gene duplication or 

horizontal gene transfer, or in contrast, contract as consequence of a loss of genetic regions 

[34-36]. Differences in genetic content often result in bacteria having an immense variety of 

gene repertoires, not only between distinct species, but also within seemingly clonal isolates 

of the same species [37]. The latter observation is best described in the pan-genome concept 

[36,38], the basis of which is that only a fraction of prokaryotic genes are present in all 

genomes of a certain species i.e. the core genome , whereas the rest are disparately distributed 

between genomes of the same species i.e. the dispensable genome [38,39]. Thus, dynamism 

across the entire gene loss and gain spectrum is critical for the evolution of bacteria with 

respect to genes which are essential for bacterial growth and survival. 

However, in a recent study, Puigbo and coworkers (2014) established that the rate of loss of 

gene families predominates over gain in bacteria [36]. Based on their results of a comparative 

genome analyses, the authors of this study observed that prokaryotic genome evolution is 

characterized by long phases where genomes contract and relatively short time periods of 

gene gain [36]. Thus, gene loss seems to be a dominant force in the evolution of microbial 
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genomes and a number of studies support this argument [40-43]. For instance, in a recent 

study, Bolotin and Hershberg (2015) observed that gene loss is prevalent within seemingly 

clonal species of pathogenic bacteria like Mycobacterium leprae [42]. They posit that gene loss 

generates the widespread genetic and phenotypic variation which is observed in many clinical 

isolates of this species [42]. 

 

Figure 1: The diversity in sizes of bacterial genomes. Circular maps indicate genes involved in 

information processing (blue), vitamin and amino acid biosynthesis (maroon), ribosomal RNA 

(green), and other processes (light grey), while breaks indicate non-coding regions. Figure from 

McCutcheon and Moran (2012) [32].  

 

1.1.1 Gene loss in bacteria 

Loss of genetic content is a common feature of many bacterial genomes, spanning the entire 

range of microbial lifestyles and environments they dwell in [44]. A characteristic feature of 

bacterial genomes is that they reduce in size with the level of specialization to a particular 

environment or association with another organism like an eukaryotic host (Figure 2) [45-47]. 

Genome reduction is especially prevalent in bacteria that are in symbiotic or parasitic 
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associations with higher organisms [32,47,48]. For instance bacterial endosymbionts of 

insects from genera like Sulcia, Buchnera, Wigglesworthia, Hogdkinia, or even the above-

mentioned Cd. Trembalaya have highly contracted genomes; that can be much smaller than 

the suggested minimal genome size for autonomous bacterial growth and survival i.e. 400 kb 

[49]. Similarly, bacteria with a pathogenic lifestyle such as those belonging to genera like 

Rickettsia or Mycoplasma have also lost a large amount of genetic content (Fig. 1 and 2) and 

possess highly reduced genomes [48,50].  

 

Figure 2: Genome size evolution across different bacterial lifestyles. The extent of genome 

reduction and the genomic features are highly related to the nature of association with a host, i.e. 

free-living, facultative, or obligate. Figure from Ochman and Davalos [45].  

 

Loss of genetic content has also been observed in bacteria belonging to the genera Pelagibacter 

[51] and Prochlorococcus [52], which are widespread in the Earth’s oceans, and saprophytic 

microorganisms like lactic acid bacteria such as Lactococcus or Lactobacillus species that are 

specialized to dairy products [53,54]. Even certain clonal isolates of pathogenic bacteria like 

Mycobacterium tuberculosis or Yersinia pestis lose genes, resulting in difference in genetic 

repertoires within species [42]. Hence, it is evident that gene loss is prevalent in the microbial 

world. An interesting question thus is: what kinds of genes are lost? 

 

1.1.2 Genes lost as a consequence of reductive genome evolution 

Several studies have explored what kinds of genetic content are lost in bacteria in the course 

of reductive genome evolution. The genomic regions that are lost constitute genes that 
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encode for a variety of distinct cellular functions in bacteria. Merhej and coworkers (2009) 

analyzed several bacterial genomes and compared their gene composition depending on the 

lifestyles of each bacterium and found that bacteria in facultative and obligate associations 

with eukaryotic hosts had significantly less orthologous gene content (COGs) than free living 

bacteria. 41% of COGs that were lost in the course of adaptation to a host dependent 

lifestyle mainly encoded for metabolism, while the other COGs which were lost are those 

that encode for cellular information processes and signaling [55]. By studying genomes of 

parasitic and mutualistic bacteria, Renesto and coworkers [56], and Shigenobu and coworkers 

[57] observed that these bacteria lacked a great number of genes for amino acid, nucleotide 

and cofactor biosynthesis. Bolotin et al. [58] analyzed the complete genomes of strains of the 

lactic acid bacterium Streptococcus thermophiles and found that genes related to virulence, energy 

metabolism, transport, and biosynthesis of amino acids, nucleotides and cofactors were 

commonly absent or truncated i.e. pseudogenized. Similarly van de Guchte et al. (2006) [54] 

analyzed the complete genome of Lactobacillus bulgaricus and observed that pseudogenization and 

gene loss was also prominent with respect to the biosynthesis of amino acids, and 

metabolism.  

In summary, a general trend towards reductive genome evolution in bacteria and the frequent 

loss of metabolic gene repertoires from genomes of bacteria entails that they develop 

dependencies on the environment they dwell in. A major implication as a result of the loss of 

conditionally essential genes from the genome of a bacterial cell is the alteration of the 

metabolic network. This is because certain reactions encoded by the lost genes will now be non-

functional. What are the changes that occur in metabolic processes in bacteria that lose 

essential biosynthetic genes?  

 

1.2 The reductive evolution of bacterial metabolism  

Metabolic processes in microbial cells serve two main purposes: catabolism and anabolism 

[59,60]. In catabolism, energetic resources are broken down into readily usable forms of 

energy that the organism can use whereas in anabolism, cellular biomolecules are synthesized 

from chemical sources [60,61]. These biomolecules comprise the proteinogenic amino acids, 

nucleotides, lipids and cofactors. A consequence of the immense variation in gene repertoires 

is that bacteria can exhibit a wide spectrum of metabolic capabilities. Expectedly, a trend 

towards a general contraction of genomes and a specialization to nutrient-rich and stable 

environments will likely also result in a general reduction of the metabolic breadth of bacteria. 

For instance the size of the metabolic network  of the free-living bacterium Escherichia coli 

consists of 904 genes which are involved in 941 biochemical reactions [62]. In contrast, the 

metabolic network of an obligate endosymbiont Buchnera asp. APS, a close relative of E.coli [63] 

and  having a highly reduced genome, is comprised of 196 gene products which take part in 
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263 reactions. This constitutes only 21% of genes and 27% of the reactions in the E. coli [64]. 

Furthermore, Parter and colleagues have shown that the size of the metabolic network tends 

to decrease depending on the lifestyle of a bacterium i.e. bacteria in obligate associations with 

eukaryotic hosts have smaller metabolic networks as compared to free-living bacteria (Fig. 3) 

[65]. As depicted in Fig. 3, metabolic network size in bacteria tends to decrease as 

microorganisms transition from conditions that would favor the prevalence of free-living 

bacteria such as those in soil (terrestrial: T) or across diverse host ranges (multiple: M) to 

conditions that that are have specialized (S) or that would favor facultative (F) or obligate 

associations (O) with eukaryotic hosts.  

 

 

Figure 3: Size of the metabolic network increases with increasing environmental variability.    

The abbreviations on the X axis denote each environment type: O-Obligate, S-Specialized, AQ-

Aquatic, F-Facultative, M-Multiple, T-Terrestrial. Figure from Parter et al., (2007) [65]  

 

The widespread reduction in bacterial metabolic capabilities is intriguing for a number of 

reasons. First, loss of catabolic functions will severely reduce the metabolic breadth of 

bacteria. These losses however, do not impose any dependencies on a bacterial cell since they 

probably can utilize other catabolic sources and rather reflect adaptations to the 

environment. Second, the loss of anabolic abilities, especially the gene repertoire to 

biosynthesize essential metabolites will hinge organismal growth and survival on an 

environmental uptake of these nutrients. Endosymbiotic, facultative and specialized bacteria 

are all devoid of some form of biosynthetic abilities [32,58,66,67]. Since most molecular 

components of a bacterial cell are either composed of amino acids and nucleotides or require 

cofactors for their activity (e.g. enzymes), an unrestricted supply of these compounds is the 

primary requisite for the optimal functioning of bacterial cells. 

However, metabolic changes associated with adaptation to certain environments or lifestyles 

in an organism can bring about changes in relationships between coexisting organisms [68]. 
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For instance, endosymbionts like Buchnera, Sulcia or Baumannia form intricate metabolic 

complementarities with their eukaryotic hosts and/or with co-occurring bacterial 

endosymbionts [60,66,69]. In the case of the sharpshooter insect, the coevolution of the 

endosymbionts Sulcia muelleri and Baumannia cicadellinicola has resulted in the partitioning of 

their biosynthetic pathway such that the sum of their metabolic pathways complement the 

nutritional needs of each other and the host [69]. Similarly, coevolving strains of lactic acid 

suffice their anabolic needs by cross-feeding essential nutrients [8,54]. Pathogens like Rickettsia 

and Mycoplasma get these compounds from the eukaryotic hosts they infect [56]. Therefore, a 

general consequence of losses of metabolism associated reactions can result in previously 

non-existing associations or dependencies between microorganisms coexisting in a certain 

environment.  

As I stated earlier the losses of anabolic capabilities is especially intriguing. Why must a 

prototrophic bacterial genotype lose autonomous anabolic capabilities and instead become 

completely dependent on the environment for the uptake of these metabolic compounds for 

cellular functioning? This question is the central focus of this thesis. On the outset, the loss 

of biosynthetic functions is likely a general adaptation to the specialized environment. 

However, the understanding of the evolution of metabolic dependencies in bacteria or their 

prevalence in nature has rarely been tested. Our knowledge of the loss of biosynthetic 

functions is limited to numerous comparative genomic studies which show that bacteria lack 

genes encoding these functions. Such approaches examine genetic segments and changes at 

the molecular level rather than investigating the fitness consequences of the loss of a 

function. In the next section, the mechanisms that have been proposed to be causal reasons 

for the loss of genes and the corresponding functions in bacteria will be discussed.  

 

1.3 Evolutionary mechanisms driving the loss of genes and functions 

Two prominent mechanistic explanations exist on the subject of gene loss in bacteria: 

random genetic drift and selection. A great deal of theoretical and empirical effort has been 

directed towards understanding the relative contributions of either mechanism in shaping 

microbial genome evolution and a set of criteria has been proposed under which drift or 

selection will be strong agents of evolutionary change. Therefore, it is very likely that these 

criteria will also have significant effects on the loss of biosynthetic functions in bacteria with 

distinct lifestyles. 

 

1.3.1 Random genetic drift 

Genetic drift - the stochastic changes of allele frequencies in a finite population- has been 

suggested as the primary process to explain the extreme genome reduction in endosymbiotic 

bacteria [32,70,71]. A consequence of their obligate associations with an eukaryotic host is 
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that the activities of endosymbiotic bacteria are confined to the intracellular environment in 

which they live [46]. The number of bacterial cells within the host are thus subject to drastic 

reductions in size i.e. bottlenecks at periodic intervals when transmitted vertically to the 

offspring [71-73].  A reduction in population sizes (Ne; Box 1) can greatly affect the impact 

of genetic drift [41,73]. When Ne is low, mutations with deleterious effects can persist and 

even become fixed in the populations [73]. This is because a low Ne reduces the chances of 

deleterious mutations being eliminated by selection [46]. Furthermore, the intracellular 

environment of the host significantly restricts the opportunity for recombination to purge 

deleterious mutations [71,73]. Thus, selection fails to retain even essential genes, resulting in 

the irreversible accumulation of multiple deleterious mutations or an inactivation of multiple 

genes, in the same genome, in a process termed as Muller’s Ratchet [46,71]. This process 

combined with the fact that mutational outcomes in bacteria are strongly biased towards 

deletions as opposed to insertions [74,75] indicate that genome reduction in bacterial 

endosymbionts can occur due to genetic drift. Experimental evolution studies with the 

bacterium Salmonella typhimurium do provide support for this hypothesis [76]. When this 

bacterium was subjected to repeated single cell bottlenecks for a long period of time, a general 

reduction in genome size along with a loss of essential genes was observed [76].  

Most studies exploring the role of genetic drift usually employ comparative genomic 

approaches. For instance, theoretical studies with Buchnera, an endosymbiont of aphids, 

suggest that proteins in this bacterium are less stable due to the accrual of deleterious 

mutations over time in protein coding genes [71,77]. These stabilities are buffered by an 

increase in the activity of chaperones. Mutations in these chaperones were favored by natural 

selection in order to optimize their chaperoning capabilities [46]. Another study of 42 closely 

related bacteria found that the dN/dS ratios (Box 1) of bacteria with reduced genomes were 

consistently higher as compared to bacteria with larger genomes, suggesting that selection 

tries to counter-act the negative effects arising from the deleterious mutations accruing as a 

result of drift [74]. However, such studies most often do not account for the presence of 

certain fitness increasing mutations or changes and rather indicate that deleterious mutations 

consistently accrue in small genome bacteria. Furthermore, experimental investigations that 

actually scrutinize the fitness consequences of gene loss or those that validate the link 

between drift and loss of biosynthetic functions have rarely been conducted. Furthermore, 

the loss of genes and functions results in bacteria developing metabolic dependencies on the 

environment. In many instances these dependencies come in the form of intricate 

associations with eukaryotic hosts [72,78,79] or coevolving bacteria [32,66,69] and result in 

intricate metabolic complementarities between these organisms. Explaining such tightly 

integrated patterns of metabolic dependencies is difficult, especially in the context of random 
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genetic drift. Thus, it is highly likely that selection could have also contributed to the loss of 

these functions. 

Box 1: Effective population size (Ne) and dN/dS 

The parameter Ne is called the effective size of the 

population. It is the size of an idealized and 

theoretical population that has the same value of a 

certain genetic property (for e.g. the level of 

genetic drift it undergoes) as that of a complicated 

population in question [41,73,80]. It is used in 

classical population genetic models to describe the 

level of genetic drift that a population undergoes 

[41,46]. Accordingly, the fixation probability of a 

mutant allelic variant in populations (Box figure 1: 

From Martinez-Cano et al., (2015) [46])    depends  

on the product of Ne and s (Nes), where s is the coefficient of selection [41,46]. When Nes > 1, the 

fate of the mutant allele is determined by selection whereas when Nes <1, genetic drift determines 

the fixation probability of this allele [41,46,73,80]. Therefore, in populations where Ne is low, Nes will 

be low and thus the strong effects of drift will render selection inefficient [41,73]. Conversely in 

populations with a large Ne, Nes will be large and effects of selection will be much stronger. 

However, Ne cannot always be used to compare distantly related organisms since most measures 

of Ne are limited by the fact that it cannot discern between divergent ecotypes of the same species 

[41]. The solution used in many studies is to thus use the dN/dS ratio which is the rate of non-

synonymous substitutions over the rate of synonymous substitutions in genes [41]. Thus, the ratio 

can be calculated using a comparison of sequence data of orthologous genes from various species 

and then used to gauge the strength of selection [41,81]. The basic idea is that selection of 

synonymous sites is negligible [41]. Thus, the ratio dN/dS is expected to be higher than 1 if natural 

selection promotes changes in the protein sequence; whereas a ratio lesser than 1 is expected only 

if natural selection suppresses protein changes [81]. 

 

1.3.2 Natural selection 

Genome reduction can be thought to be a consequence of adaptive process under three 

distinct circumstances. The first hypothesis is based on the idea that selection will drive the 

loss of superfluous genes that impose a fitness cost to a bacterium. In certain environments, 

particular genetic regions that are no longer required and thus offer no or very less adaptive 

value can be irreversibly lost from the genome, along with the concomitant loss of encoded 

functions. This process is termed as ‘genome-streamlining’ and could potentially result in the 

transfer of metabolic burden that was otherwise dedicated for functions which are now 

under relaxed selection to other important cellular processes [75,82]. The basic crux of this 

hypothesis is that natural selection favors genome reduction in free-living bacteria as a way to 

cellular economization [46,82]. This is a plausible theory to explain the genome reduction of 

free-living bacteria such as Prochlorococcus, which live in generally nutrient-poor, but stable 

environments [37]. This trend is also shared by Candiatus Pelagibacter ubique, which inhabits 
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similar nutrient-limited environments [41]. These prokaryotes have relatively large population 

sizes in contrast to endosymbionts [46]. Since high Ne renders the effect of drift to be 

negligible (Box 1) [41,46,83] the effect of selection is very strong causing fitness increasing 

mutations like deletions to be fixed in the population. 

The second hypothesis can be thought to of as an extension of the first one discussed above. 

It is based on the idea that selection can favor gene loss in predictable or stable 

environments, where robustness with regards to the ability to respond to changing 

environments is no longer required [46,84]. A source of robustness in bacteria is the presence 

of multiple genes which are redundant in the function they perform. For instance, E. coli has 

multiple transketolase enzymes which are 99 % identical to each other but function in 

different metabolic pathways [84]. Thus, if one of these enzymes is lost, another redundant 

function can fulfill the role of the lost enzyme [84]. Endosymbiotic bacteria inhabit 

intracellular niches that are relatively stable. However, these bacteria have lesser redundancy in 

functions compared to free-living prokaryotes [84]. For instance, bacteria with reduced 

genomes have more protein families but each family has very few members and the thus it is 

hypothesized that the protein family diversity in endosymbiotic or host associated bacteria 

probably arises as a result of host specific adaptation since the probability of losing a gene is 

higher if multiple copies or paralogs are present [84]. Thus, selection could have favored the 

loss of genes which are redundant in cellular functions and have multiple copies in bacteria 

inhabiting stable and predictable environments [46,84].  

The third hypothesis is based on the idea that selection favors the loss of biosynthetic 

functions in bacteria when the lost function can be supplemented by the environment. The 

pioneering studies of Zamenhoff and Eichhorn (1967) using amino acid auxotrophic strains 

of Bacillus subtilis was one of the first experimental evidences to suggest that loss of 

biosynthetic capability when the function was no longer needed and instead provided in the 

environment, could be adaptive [85]. The authors made this argument since in their 

experiments, auxotrophic strains of the bacterium where selectively favored over 

prototrophic strains in the presence of the required amino acid i.e. histidine in the 

environment [85]. These findings were further supported by another study by Dykhuizen 

(1978) who also found that auxotrophic mutants of E. coli which required tryptophan are 

selectively favored over prototrophic strains in presence of this amino acid in the 

environment [86]. Why would auxotrophs be selected over prototrophs in presence of the 

metabolite? Zamenhof and Eichhorn (1967) posit that when the metabolite is present in the 

environment bacterial cells can shut down their endogenous machinery to produce the 

metabolite and thus save the costs associated with production of the metabolite [85]. The 

biosynthesis of macromolecules in cells entails metabolic costs like the energy for chemical 

transformations to produce the metabolite [87,88] and the costs associated with the  
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Figure 4: Summary of the main mechanisms proposed to drive the loss of genes and 

functions in bacteria. The main criteria that determine if genetic drift or natural selection strongly 

influence the loss of biosynthetic genes in bacteria with distinct lifestyles are listed on the right 

[41,46,71,82,84,85].  

 
production of the protein machinery to transcribe and translate genetically encoded functions 

[89,90]. The savings of these costs can result in selective advantages that can drive the loss of 

biosynthetic functions in microorganisms. Thus, based on this hypothesis, microorganisms 

that dwell in nutrient-rich environments should readily lose metabolic genes and functions 

because of the advantages related to cellular economy that are on offer.  

The importance of natural selection in driving genome size reduction in bacteria also comes 

from multiple experimental evolution experiments [91,92]. Lee and Marx (2012) found that 

non-essential accessory genes were frequently lost from almost 80 % of the evolving 

populations of the bacterium Methylobacterium extorquens AM1 [91]. Gene loss was 
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accompanied with an increase in fitness suggesting that selection favors the loss of 

superfluous genes during adaption to specialized environments [91]. In another study, 

Koskiniemi (2012) tested the fitness consequences [92] of losing genetic segments in the 

bacterium Salmonella enterica and found that fitness increasing deletions were rapidly fixed in 

the experimental populations.  

Thus, a large body of evidence strongly suggests that selection can favor the loss of 

biosynthetic functions in bacteria. However as evident from the mechanistic explanations, 

several factors can influence the potential contributions of genetic drift and selection in 

driving the evolution of dependency.  

 

1.4 Factors determining the loss of biosynthetic genes in bacteria 

As with most organisms, the diverse nature of bacterial lifestyles and their ecological niches 

makes their evolutionary progress contingent on a variety of factors such as the selective 

pressures exerted by the changes in their population dynamics [41,71,93], environment 

[65,94], their metabolism [19,60,84,95], interactions between different genetic loci [96-99], 

and interactions with other organisms [26,46,100]. These factors may influence, either in 

isolation or in combination, gene loss in bacteria by way of natural selection or drift. Thus it 

is paramount to understand the effects exerted by each factor to cause natural selection or 

drift to drive the loss of functions in bacteria.  

 

1.4.1 The population biology of bacteria  

As discussed earlier Ne strongly influences the efficacy of selection or drift [72,73] and thus 

should have a decisive effect on genome size (Box 1) [41]. Cao and colleagues (2014) have 

observed that population sizes of bacteria are also important factors governing the fitness 

consequences of gene deletions in E. coli  [101]. In this study, the variation in fitness for 28 

deletion mutant strains of E. coli ranged from 5 to 174 % between high and low population 

densities [101]. Natural bacterial populations are variable in terms of their population sizes 

depending on the environments they inhabit. For instance, the number of Bacteriodes cells in 

the intestinal content of humans generally range from 1011 – 1012 cells g-1 , while those of E. 

coli in the same environment are in the range of 107-108 cells g-1 [102]. In contrast, 

populations of endosymbionts have been suggested to be very small in size [71], although 

experimental evidence from the European beewolf indicates that the populations of 

symbiotic bacterium Candidatus Streptomyces philanthi consist of around 107 cells [103]. 

However, insect endosymbionts undergo repeated bouts of bottlenecks. For instance, in the 

beewolf system, bottlenecks reduce endosymbiont population size by 105 leading to the 

bacterial load in the new progeny being around 970 cells [103].  
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Very large population sizes reduce the effects of genetic drift, while increasing the influence 

of selection to act on natural populations of bacteria [46]. Conversely as mentioned earlier in 

endosymbionts, small population sizes should lead to drift overriding selection [71]. 

Interestingly, Wahl and coworkers (2002) mathematically modelled the effect of bottlenecks 

in the exponentially expanding experimental bacterial populations and observed that fitness 

gains of adaptive mutations can still be high at low bottleneck sizes, even though the rate of 

adaptation was low at these bottleneck sizes [104]. Thus, it is plausible that adaptive 

mutations can also occur at low population sizes. However, experimental studies have rarely 

tested the effect of population bottlenecks on influencing appearance or outcome of 

biosynthetic mutations (such as those conferring the loss of biosynthetic genes) and if they 

can indeed be adaptive.    

 

1.4.2 The metabolic environment and network 

Nutrition is likely the most important factor governing the evolution of bacteria as 

environmental supply of utilizable resources directly determines the fitness of a bacterial 

species. The diverse ecological interactions including cooperation or competition in 

microbial communities are a direct result of variation in metabolism [4,105]. Bacterial cells 

need to optimally tune their growth strategies in a particular environment by using metabolic 

resources in the environment and allocating them to cellular processes like catabolism and 

anabolism in addition to the general cellular ribosomal machinery [106,107]. These growth 

strategies will in turn determine if cells can achieve the highest growth rates in the prevailing 

environment [106].  The growth rate to a large extent will determine the fitness of a bacterial 

cell and as a consequence mutant strains that are able to respond better to a certain 

environment by regulating their cellular composition will have high growth rates and 

outnumber other genotypes [108]. Therefore, it is quite clear that environmental conditions 

impose strong selective pressures on the evolution of microorganisms. To understand how 

these selective pressures manifest in cells it is essential to understand the interplay between 

selection, biochemistry and structure of the metabolic network in a bacterial cell [107].  

Any change in the constituent reactions, e.g. loss of enzymes, of a metabolic network can alter 

its structure and  have marked effects on its evolution [60].  The enzymes in a metabolic 

pathway are controlled by a series of regulatory mechanisms which precisely control flux in 

metabolic networks [89]. These regulatory mechanisms serve to optimize costs such that they 

are minimized and also to allow cells to respond quickly to environmental changes [89]. Since 

costs incurred in metabolism, especially biosynthesis, play an important role in determining 

cellular growth [88,90,109], they will have important consequences for the fitness of bacterial 

cells. Furthermore, selection tends to favor bacteria that make the most energetic gains from 

a given resource [110]. Thus, the metabolic network is likely an important factor governing the 
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adaptation to an environment especially in the context of a reduction in the biosynthetic 

capabilities of bacteria.  

As mentioned earlier, selection can favor the loss of biosynthetic functions in bacteria in 

presence of anabolites in the metabolic environment. Thus it can be hypothesized that the 

presence of ready-to-use anabolites in the external environment can be considered as 

incentives to stop autonomous production of metabolites whereas the type of catabolic 

resource determines the exact value of the incentive, which is in turn influenced by the 

metabolic network of a bacterium. 

 

1.4.3 Metabolic interactions 

An important factor governing the adaptive evolution of metabolic dependencies in nature 

can be the presence of organisms that provide the required metabolite. A majority of 

interactions within members of microbial communities involve metabolic exchange which is 

likely a consequence of a general leakage of metabolites from bacterial cells due to the 

inherent nature of their metabolic activities [4,5,100,111]. A result of this leakage of functions 

in the environment is that not only can the growth of dependent genotypes be supported by 

genotypes that produce these metabolites, but also potentiate the loss of functions by 

providing the required selective impetus. 

The ‘Black Queen Hypothesis’ (BQH) proposed by Morris and coworkers (2012) describes 

such a process of the origin of dependencies through  leaky benefits termed as Black Queen 

(BQ) functions [51]. Such BQ functions are both essential for the growth of the constituents of 

a bacterial community and at the same time is freely or partially available to all members of 

the community. The basic premise of the BQH is built on two conditions. First, these BQ 

functions are publicly available. Second, bacteria that use this freely available BQ function can 

benefit from losing genes associated with their own autonomous production of this BQ 

function. These mutants, which are also termed as ‘beneficiaries’ can stably coexist with strains 

that retain the function i.e. ‘helpers’ in the community. Thus the BQH describes an adaptive 

mechanism under which bacteria may lose essential functions [26,100]. The BQH was first 

used to describe the loss of functions and origin of dependency relating to hydrogen 

peroxide (HOOH) detoxification in a natural community of marine bacteria, where 

Prochlorococcus species (beneficiaries) depend on other helper bacteria [112]. These bacteria 

lack the genes for catalase-peroxidase, an enzyme that breaks down HOOH. However, the 

‘helper’ bacteria that are often found in the natural community have retained this function, 

which is also leaky. Thus, as a result of detoxifying HOOH for themselves, the ‘helpers’ also 

reduce HOOH in the extracellular environment allowing the growth of the ‘beneficiaries’ i.e 

Prochlorococcus [51]. However, the BQH can be easily applicable to other leaky functions such 

as metabolic by-products, enzymes like invertase or iron chelating molecules [100,113].  
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1.4.4 Genetic interactions: Epistasis 

Genome reduced bacteria often lose large stretches genetic content [32,72,76,92] or multiple 

coding genes [42,46,58,114] and frequently multiple and diverse biosynthetic genes are lost 

[54,58,66,69]. Moreover, bacterial genomes harboring deletions in biosynthetic genes may 

also contain mutations in non-biosynthetic genes. A result of harboring multiple gene 

mutations in the same genotype can be such that the phenotypic impact, e.g. fitness effect, of 

one mutation is dependent on the effect of the other mutation [115]. This dependence is 

termed as epistasis (Box 3) and is evolutionarily important since epistatic effects can alter the 

course of evolution for adaptively evolving populations (Box 3) [97,99,115-117].  

 

Box 2: Epistasis and its effects on fitness 

Epistasis implies that the phenotypic effect of one mutation depends on the presence of other 

mutations in genetic background in which it occurs [97,115,118]. Epistasis can have multiple 

consequences on phenotypic fitness (Box Figure 2: From Poelwijk et al., (2007) [118]). Consider 

two alleles ‘a’ and ‘b’ which theoretically can mutate to allelic forms ‘A’ and ‘B’, respectively.   

 

In the case when there is no epistasis, mutation from ‘a’ to ‘A’ yields the same fitness effect for in 

different genotypes (‘b’ or ‘B’), while for magnitude epistasis the fitness effect can differ in 

magnitude, but not in sign. The magnitude can be more than expected from the product of the 

effect of individual mutations in isolation i.e. positive epistasis or less than that is expected from 

the product of the individual effects i.e. negative epistasis. In the case of sign epistasis, the sign of 

the fitness effect changes. A change in sign of the fitness effect can also occur for both mutations, 

which is termed as reciprocal sign epistasis [118-120]. Mutations exhibiting magnitude epistasis or 

no epistasis are always favored (or disfavored), regardless of the genetic background in which 

they appear [118]. In contrast, mutations exhibiting sign epistasis may be rejected by natural 

selection, even if they are eventually required to increase fitness [118].  

 

Several studies have shown that epistasis is prevalent in the metabolic networks of many 

organisms [115,121,122]. For instance, a general trend observed in epistatic patterns of genes 

involved in metabolism in Saccharomyces cerevisiae and E. coli is that the type of epistatic 

interaction strongly depends on the essentiality and redundancy of the interacting genes 

[122]. Non-essential genes with overlapping functions often display negative epistasis whereas, 

essential genes without overlapping functions frequently show positive epistasis [122]. This 

finding is especially interesting for the study of the loss of biosynthetic genes in bacteria  

which can be thought of as being conditionally essential and thus may display positive or negative 
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epistasis, both of which have been shown to be favored by natural selection [118]. Thus, 

gaining knowledge of the magnitude of effects that is exerted by epistasis on reductive 

genome evolution and loss of biosynthetic functions in bacteria is necessary. However, 

experimental studies to investigate these effects have rarely been undertaken. 

 

1.5 Approaches to determine evolutionary mechanisms of reductive 

evolution of biosynthetic functions 

The ideal way to determine the reasons for tremendous diversity in genomes and metabolism 

of microbial communities is to observe their evolutionary progression in terms of various 

parameters, for e.g. population dynamics, growth and fitness.  However, studies involving 

natural populations of bacteria will suffer from certain consistent drawbacks. Firstly, the 

natural populations and their genomes in their current state are simply snapshots of multiple, 

ongoing evolutionary processes and will offer limited information with regards to what drove 

the genomes to their current state. Secondly, since these populations are only a snapshot, the 

lack of a prototrophic or metabolically autonomous ancestor for each species will make a 

comparative analysis difficult. Thirdly, most of the bacteria having highly reduced genomes, 

because of their close associations with their environments and complex nutritional 

requirements, are limited by their cultivability on standard laboratory growth media or even 

tractable to genetic approaches. In order to circumvent these issues many alternate 

approaches employing in silico analyses, and/or studies with model organisms combined with 

laboratory approaches can be employed to address fundamental questions in microbial 

evolutionary ecology.  

 

1.5.1 Synthetic ecology 

Synthetic biology has been traditionally employed to better understand biological systems by 

constructing their simplified or synthetic forms, thus eliminating the complexities associated 

with nature, to determine functioning of biological systems [123,124]. An important 

component of synthetic ecology is that it employs a bottom-up approach to address the 

limitations that are associated with studying natural communities in order to design synthetic 

microbial consortia that could serve as simplified models of their natural counterparts, while 

affording enhanced tractability and controllability [125]. Thus, by experimentally measuring 

observable properties of a synthetically engineered system, such as interactions between 

genotypes in a consortium and stability of the consortia, fundamental principles underlying 

the basis of evolution in microbial communities can be understood [125].  

For instance, synthetic ecology can be used to implement defined genetic or environmental 

perturbations, which can potentially result in new inter-species interactions through 

metabolite exchange or alter the stability of a community [125]. Synthetic ecology has been 
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recently employed by two distinct studies to understand the evolutionary ecology of 

cooperation in microorganisms. Shou and coworkers (2007) engineered a complementary 

metabolic interaction based on the exchange of lysine and adenine between two yeast strains 

[126]. Similarly Pande and colleagues (2013) introduced cooperative interactions between 

different E.coli strains based on the complementary exchange of amino acids. Using such 

purposefully designed interactions within microbial consortia, the evolutionary stability and 

dynamics between the interacting types in these communities were determined [24].  

Importantly, employing such an approach allows the experimental measurement of fitness 

consequence of the genetic or environmental or genetic perturbation since the evolutionary 

success of an organism is based on its fitness in a given environment. Thus, if a trait is 

adaptive it should have positive fitness consequences for genotypes bearing this trait. For 

instance, Khan and colleagues measured the fitness of genotypes that differed in the 

presence of five beneficial mutations that first appeared in an E. coli population evolving to 

minimal medium [117]. By reconstructing these mutations into ancestral genetic backgrounds 

in different combinations they could disentangle the specific fitness effects of each mutation 

when alone or present with other mutations [117].  Thus, by adopting such a bottom-up 

approach and a rational experimental design, fitness and growth patterns of genotypes of a 

model organism lacking one or a certain set of biosynthetic genes  can be compared to the 

fitness and growth of a completely prototrophic genotype in a consortium. Thus, the fitness 

consequence of being auxotrophic or prototrophic can be experimentally quantified, 

knowledge of which is essential to understand if the loss of function can be favored by 

natural selection. Furthermore, by manipulating the environmental conditions to modulate 

both, the supplementation of the required anabolite to auxotrophs and the nature of 

catabolic resource, fitness consequences at a range of concentrations of the anabolite and 

effects relating to environmental plasticity can be quantitatively elucidated.  

 

1.5.2 Experimental evolution 

Experimental evolution is the study of evolutionary processes that occur in experimental 

populations in response to a set of conditions that are imposed by the experimenter 

[127].  The basic essence of such approaches is to propagate replicate population of an 

organism to a particular environment for a defined number of generations, to gain an 

understanding of how organisms adapt to the environment. Inferences are then made by 

comparing the evolved populations to their ancestral relatives with regards to multiple 

distinct life history parameters like fitness [128]. Thus, experiments can be tailored to unravel 

the influence of drift, mutations, gene flow, and selection on gene variation and on heritable 

phenotypic traits [129]. The use of long-term evolutionary studies also make it possible to 

directly investigate an important question in evolutionary biology: what is the genetic basis of 
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adaptation? [130] Thus by attempting to link phenotypes, genotypes and fitness to each other 

allows unravelling of causes and consequences underlying adaptation in experimental 

populations. 

Employing such experimental approaches using model bacterial species along-with 

experimental evolution offers considerable advantages over other approaches. First, due to 

their relatively short generation times, long term experiments over large evolutionary time 

scales can be performed. For instance, the most famous long term experimental evolution 

has been running for ~60,000 generations of E. coli growth, spanning the last 27 years (as of 

June 2015) [131]. Second, representative population samples from several time points over 

the time course of the experiment can be preserved as frozen stocks. This allows the analysis 

of the ‘fossil record’ of several populations of the evolving populations for insights into 

fitness and genomics of adaptation over different evolutionary time points. Third, replicate 

populations are initiated from the same isogenic ancestor, and thus undergo the same 

selection regimes allowing the experimenter to measure the effect of chance in adaptive 

processes. Fourth, the use of microbial populations allows for easy imposition or changes of 

different selection pressures, such as the type of metabolic environment. Last, the use of 

model organisms with a completely sequenced and well-annotated genome allows the use of 

whole genome sequencing approaches in the derived populations to identify the causal 

molecular mechanisms that underlie adaptive changes in the evolving populations or the 

basis of a phenotype [129]. Thus, an experimental evolution approach can offer significant 

insights into how selective pressures shape microbial populations in their natural 

environments. 

Interestingly adaptive trait loss has been observed in experimental evolution experiments. 

Cooper and Lenski (2000) found that adaptive evolution in a particular metabolic 

environment caused the decay of unused catabolic functions, which are otherwise required in 

alternate environments [132]. Trait loss has also been observed in the case of Bacillus subtilis 

populations which were evolved in rich medium repeatedly leading to evolution of cells 

which had lost the ability to sporulate, a function which was no longer required in this 

environment [133]. Thus, experimental evolution allows for a careful design to test the effect 

of both adaptive and non-adaptive processes on the concomitant evolution of genomes and 

biosynthetic functions along with the ability to manipulate selection regimes.  

 

1.5.3 in silico approaches 

An increasingly large pool of genomic and metagenome datasets has provided a rich resource 

to test the generality of initial observations linking bacterial lifestyle to genome features 

[21,134]. Using this genomic information, the metabolic potential of different species which 

have a completely sequenced genome can be reconstructed by analyzing the information 



37 
 

provided in the annotated genome combined with information from curated databases and 

literature [135]. Such genome-scale metabolic network reconstructions (Box 3) have been successfully 

applied to understand the metabolic capabilities and engineer several bacteria 

[21,134,136,137] as well as to predict metabolic interactions in the context of microbial 

communities [138,139]. Furthermore, flux balance analysis is a critical component to 

understand the quantitative nature of metabolic fluxes through such metabolic networks. 

 

Box 3: Genome-scale metabolic network reconstructions 

Genome-scale metabolic network reconstructions involve building a draft reconstruction of a 

metabolic network of an organism from the information derived from analysis of its genome 

annotation using databases to find homologous proteins with known enzymatic activity. 

Subsequently, a metabolic objective is defined, which for microbes is often assumed to be a 

biomass equation and it is generally assumed that bacterial cells are optimized to have high 

growth rates. Exchange reactions are then defined which will allow metabolites to enter the 

reconstructed metabolic network. Next, the reactions constituting this network are then compiled 

into a stoichiometric matrix (S). Flux balance analysis is then used to determine flux distributions 

through the network that optimize the metabolic objective subject to steady-state constraints and 

fluxes. Figure from Biggs et al., (2015) [21,134] 

 

 
 

FBA calculates the flow of metabolites through a reconstructed metabolic network (Box 3). 

Thus it is possible to predict the growth rate of an organism or the rate of production of a 

certain metabolite [140]. The analysis is performed under steady-state conditions and it only 

requires information about the stoichiometry of reactions involved in metabolic pathways 

and on the metabolic demands [141]. An important assumption is that the cell performs 

optimally with respect to a metabolic function, such as maximization of biomass production 

or minimization of nutrient utilization, on the premise that selection pressures during 

evolution guide the systems towards optimality [142]. FBA has been used to analyze and 

predict the metabolic genotype–phenotype relation, the effect of gene deletions, and also 
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analysis of genome scale models of metabolism in various organisms [141]. Furthermore, in 

conjunction with experimental kinetic data, it is possible to verify the predictions of FBA 

models and thus build a framework to elucidate links between growth yield, network 

robustness, and gene essentiality [143,144]. Thus, the use of such in silico approaches could be 

extremely beneficial in determining the metabolic adaptations that underlie bacterial growth 

in a certain metabolic environment.  
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1.6 Aims and outline of the thesis 

The ubiquity and importance of bacterial communities in nature is well known. In contrast, 

very little information is known with regards to the importance of the interactions between 

constituent members in the formation of these assemblages [100]. The loss of metabolic 

functions from microbial genomes can give rise to previously absent dependencies between 

species and thus forge metabolic interactions between members of microbial communities. 

Also, the seemingly widespread trend towards a reduction in genetic content and metabolic 

functions further highlight the possible importance of the loss of functions in governing the 

evolution of microbial communities. However, the evolutionary mechanisms that drive these 

losses are unclear. Is the loss of biosynthetic functions in bacteria and the ensuing metabolic 

dependencies an evolutionary adaptation to the environment? Answering this question is of 

paramount importance to understand the evolution of metabolic interactions, and 

communities. In order to address the above question, it is essential to it break it down into 

two distinct parts to better understand the evolution of dependencies in bacteria.  

The first part aims to understand if selection can explain the loss of biosynthetic functions 

and attempts to answer these questions: (i) Is the loss of biosynthetic genes and functions 

common among diverse groups of bacteria? (ii) When bacteria lose biosynthetic functions, 

what is the effect on the fitness on such bacterial strains? iii)  How do genetic interactions 

between biosynthetic mutations i.e. epistasis affect fitness of the strains that have lost multiple 

biosynthetic functions? (iv) Can distinct metabolic environments influence the fitness 

consequences of the loss of biosynthetic functions? And (v) how do these metabolic 

environments and the underlying metabolic network influence the metabolic costs incurred 

by a bacterial cell? The answers to this question were explored using a combination of 

computational and experimental approaches. First, an in silico estimation of the prevalence of 

biosynthetic gene loss in nature was addressed (chapter 1). Second, the consequences of 

biosynthetic gene loss was determined using mutant strains of two model bacterial genotypes 

E. coli and Acinetobacter baylyi that lacked biosynthetic genes in a variety of nutritional  

environments (chapter 1). Third, multiple biosynthetic mutations were introduced into the 

same genome to unravel the effect of epistasis (chapter 2). Finally, a computational analysis 

of metabolic costs in different metabolic environments and a comparison with growth 

strategies of bacteria was attempted (chapter 3).  

In the second part, the issue of natural selection was directly tackled and it was asked 

whether natural selection favors the loss of metabolic autonomy in bacteria in nutrient-rich 

environments, thus making them dependent on the environment. Isogenic populations of E. 

coli were evolved for 2000 generations in nutrient-rich or poor environments to determine 

the propensity of bacteria to lose biosynthetic genes and functions in either environment 

(chapter 4). The evolved genotypes were characterized in terms of their fitness, the presence 
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or absence of biosynthetic functions, and the genomic basis for the observed evolutionary 

changes (chapter 4). 

In the general discussion section, I discuss the major conclusions from the findings of this 

thesis and their implications on the adaptive evolution of bacterial interactions, and 

communities. 
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Chapter 1 

Less is more: selective advantages can explain the 

prevalent loss of biosynthetic genes in bacteria 

 

Published in: Evolution (2015); Volume 68; Pages: 2559-2570; DOI: 10.1111/evo.12468  

Only minor typographical modifications have been made to the published article in this chapter. 

Authors: Glen D’Souza, Silvio Waschina, Samay Pande, Katrin Bohl, Christoph Kaleta, and 

Christian Kost 

 

 

Bacteria that have adapted to nutrient-rich and stable environments are typically 

characterized by reduced genomes. The loss of biosynthetic genes frequently renders these 

lineages auxotroph, hinging their survival on an environmental uptake of certain metabolites. 

The evolutionary forces that drive this genome degradation, however, remain elusive. Our 

analysis of 949 metabolic networks revealed auxotrophies are likely highly prevalent in both 

symbiotic and free-living bacteria. To unravel whether selective advantages can account for 

the rampant loss of anabolic genes, we systematically determined the fitness consequences 

that result from deleting conditionally essential biosynthetic genes from the genomes of 

Escherichia coli and Acinetobacter baylyi in the presence of the focal nutrient. Pairwise 

competition experiments with each of 20 mutants auxotrophic for different amino acids, 

vitamins, and nucleobases against the prototrophic wild type unveiled a pronounced, 

concentration-dependent growth advantage of around 13% for virtually all mutants tested. 

Individually deleting different genes from the same biosynthesis pathway entailed gene-

specific fitness consequences and loss of the same biosynthetic genes from the genomes of 

E. coli and A. baylyi differentially affected the fitness of the resulting auxotrophic mutants. 

Taken together, our findings suggest adaptive benefits could drive the loss of conditionally 

essential biosynthetic genes.  
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1. Introduction 

Although it has been known for a long time that factors such as deletions, duplications, and 

horizontal gene transfer can drastically shape the size and information content of bacterial 

genomes, one of the most surprising insights that resulted from sequencing multiple isolates 

of the same, seemingly identical species was the enormous plasticity that characterized all 

genomes analysed so far [145-147]. For example, a comparison of sixty-one publically 

available Escherichia coli and Shigella spp. genome sequences revealed that only 6% of the 

predicted gene families were represented in every genome (i.e. the ‘core genome’), while all 

others were present only in a subset of strains (i.e. the ‘accessory’ or ‘pan-genome’) [148]. 

Interestingly, even the gene repertoire that constituted the core genome lacked genes that 

were otherwise deemed essential for the growth of E. coli [149-151]. These observations raise 

the question what major forces drive the loss of genes that essentially contribute to cellular 

fitness. 

Genome reduction is a typifying feature of bacteria that occur in nutrient-rich or constant 

environments such as lactic acid bacteria [54], endosymbionts [69], or pathogens [47], 

respectively. Under these conditions, coding regions that provide little or no adaptive value 

in a given environment may be lost [47,133]. This so-called ‘genome streamlining’ is thought to 

reduce the metabolic burden for basic cellular processes and could thus provide the resulting 

genotype with selective advantages over other genotypes that still bear these costs [52]. 

Adaptive benefits as a consequence of losing essential biosynthetic functions may arise when 

the corresponding metabolite is sufficiently present in the bacterial growth environment or 

provided by a co-occurring organism [51]. The latter scenario likely explains why amino acid 

biosynthesis pathways are sometimes partitioned between a eukaryotic host and its 

prokaryotic endosymbiont [63] or between multiple co-symbionts [69]. 

[48,50,74]. When bacteria transition from a free-living to a symbiotic lifestyle such as the 

bacterial endosymbionts of insects [47,69,152], repeated bottlenecks of relatively small 

populations may result in a weakened selection even for required genes, thus resulting in an 

elimination of dispensable genes [79]. Indeed, experimentally evolving Salmonella enterica by 

subjecting it to regular population bottlenecks resulted in a reduction of genome size and a 

concomitant loss of essential genes [76]. Similar mechanisms might act on obligate bacterial 

endosymbionts, thus explaining their typically extremely reduced genomes that retain few 

essential biosynthetic genes. However, it is generally difficult to infer from genomic analyses 

whether drift or selection was the main force to explain genome degradation. Hence, 

alternative approaches are necessary to determine the drivers of bacterial gene loss. 

In vitro approaches are ideal for this purpose, because experiments can be purposefully 

designed and environmental conditions rigorously controlled. Long-term evolution 

experiments, in which different bacterial strains were serially propagated and thus allowed to 
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adapt to the respective environments have shown that large genomic deletions are indeed 

prevalent under these conditions [91,92,153]. Moreover, fitness advantages accompanied 

some of these deletions, suggesting selection rather than drift drove the loss of these genes 

[91,92,117]. Interestingly, in a study with the bacterium Methylobacterium extorquens AM1 [91], 

the observed fitness advantage did not seem to result from a general shortening of the 

genome, but was rather due to the loss of specific genes. However, determining whether the 

deletion of a metabolic gene has a negative, neutral or beneficial effect on the fitness of the 

resulting mutant is a non-trivial task. Problems that arise when naturally evolved mutants are 

being analysed are first that very often multiple genes are lost simultaneously [92], thus 

making it difficult to link an observed change in fitness to the loss of a particular gene. 

Second, multiple auxotrophies often hamper the culturability and hence experimental 

amenability of a given strain (e.g. bacterial endosymbionts). Third, genetic interactions 

among different mutations that arose independently impede the determination of fitness 

consequences of a single mutation. These problems can be circumvented by analysing 

genetically well-characterized natural or engineered mutants. Indeed, Bacillus subtilis [85]and 

Escherichia coli [86] mutants impaired in tryptophan biosynthesis revealed significant fitness 

advantages in the presence of the amino acid relative to prototrophic cells. However, 

whether the loss of essential metabolic genes always results in selective advantages when the 

required metabolite is present in the environment as well as which causal mechanisms 

explain this observation remain obscure. 

Here we combine in silico analyses with systematic laboratory experiments of genetically 

engineered mutants to address the following questions: i) How widespread is the loss of 

conditionally essential metabolic genes amongst bacteria in nature? ii) What fitness 

consequences result from the loss of a metabolic gene? iii) Does the fitness effect depend on 

a) the gene analysed, b) the concentration of the corresponding metabolite in the growth 

environment, or c) the position of the catalytic enzyme within a metabolic pathway?, and iv) 

Do different species differ in their fitness consequences upon gene loss? 

 

2. Materials and methods 

2.1 Competitive fitness assays 
 

To predict putative auxotrophies in different bacterial species, the metabolic networks of 949 

bacteria were examined for the presence of metabolic routes leading to the formation of 

amino acids, vitamins, or nucleobases. As a first step, all biosynthetic pathways known in 

bacteria to be involved in the formation of each of 20 amino acids, 3 vitamins, and 2 

nucleobases (Table S1) were collected from the manually curated metabolic pathway 

database MetaCyc [154]. The pathways were consolidated (Fig. S3) to identify alternative 

biosynthetic routes and pathway dependencies (e.g. a pathway that provides the precursor 
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metabolite). In a second step, the existence of the individual pathway reactions in 949 

bacterial species was inferred using the MicroScope genome annotation and analysis 

platform [155]. Briefly, the MicroScope platform is a collection of microbial metabolic 

networks, which consist of a subset of those reactions from the MetaCyc database, for which 

a genome segment (including plasmids) was identified or predicted, that is part of a gene for 

an enzyme that can catalyse the corresponding reaction. In a third step, an organism was 

predicted to be auxotrophic for a given metabolite if all possible metabolite-forming routes 

(Fig. S3) lacked more than 50% of the pathway’s reactions as indicated by the absence of the 

corresponding annotated genes from the organism’s genome sequence. This 50% cut-off 

was chosen, to increase robustness of the predictions against sequencing errors (i.e. missing 

annotations) and errors during the process of the metabolic network reconstruction. Genes 

annotated as pseudogenes were excluded from the analysis, since pseudogenes are often a 

transitional stage of the gene from a functional gene towards complete gene loss [156]. 

Therefore, all reactions that depended on pseudogenes were classified as ‘not present’. The 

observed results thus represent a conservative estimate of the frequency of auxotrophies in 

bacteria with a sequenced genome. 

All bacterial strains were categorised as ‘free-living’, ‘gut-inhabiting’, or ‘endosymbiotic’ based on 

the genome meta-information stored in the Genomes Online Database [157]. 

The total mass of each protein in Mega Dalton (i.e. mass of the individual protein multiplied 

with the abundance of protein copies per cell) that was involved in the biosynthesis of Arg, 

His, and Trp was obtained from [89].  

 

2.2 Culture conditions 

All cultures were incubated at 30 °C under shaking conditions and experiments were 

performed in MMAB minimal medium [158] without biotin and using fructose (5 g l-1) 

instead of malate as carbon source. Growth kinetic studies were performed in 96-microwell 

plates (Nunc, Denmark) with a culture volume of 0.2 ml. Competitive fitness experiments 

were performed in 96-deepwell plates (Eppendorf, Germany) with a culture volume of 1 ml. 

 

2.3 Construction of strains 

Single gene deletions in E. coli that would lead to auxotrophy for a single amino acid, 

nucleobase, or vitamin were identified using the KEGG pathway- [159] and the Ecocyc 

database [160]. All deletions were transferred from existing strains [149] using P1 phage-

mediated transduction [161] into E. coli BW 25113 [149]. To distinguish different strains in 

competition experiments, the arabinose utilization locus (Ara+) of E. coli strain REL 607 

[162]  was introduced into all auxotrophs by P1 transduction. Potential genetic targets to 
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construct auxotrophs for Arg, His, Leu, and Trp in A. baylyi were identified using the KEGG 

pathway database [159] and deletion mutants were constructed as described [163] (see 

Supporting Methods for details). Conditional lethality of these mutations in MMAB medium 

was verified in previous studies [149,150,164] as well as by inoculating 105 colony-forming 

units (CFUs) ml-1 of these strains into 1 ml MMAB medium. After 24 h, their optical density 

(OD) was determined spectrophotometrically at 600 nm using a Tecan Infinite F200 Pro 

platereader (Tecan Group Ltd., Switzerland) and the mutation was deemed conditionally 

essential when the auxotroph’s growth did not exceed the OD600nm of uninoculated minimal 

medium. In contrast, when the mutant was able to grow (i.e. exceed the OD600nm of 

uninoculated minimal medium) the strain was excluded from further analysis and the next 

gene upstream the biosynthetic pathway was deleted until a mutant was found that satisfied 

the criterion of conditional essentiality. Gene deletions were in all cases confirmed by 

sequencing the corresponding genomic regions. 

 

2.4 Growth kinetic and fitness assays 

For all experiments, auxotrophs were precultured at 30 °C in MMAB medium supplemented 

with 200 µM of the required nutrient. Growth kinetics of auxotrophic strains and a matching 

prototrophic WT were recorded in MMAB medium supplemented with the focal nutrient at 

the respective concentration. The pH of the medium did not change significantly over the 

course of the experiments. The medium was inoculated with ~105 CFUs ml-1 of an over- 

night culture (i.e. 16 h). Growth kinetic experiments were performed in a Tecan Infinite Pro 

200 plate reader (Tecan Group Ltd., Switzerland). Growth was measured as absorbance at 

600 nm (i.e. OD) every 8 minutes for 24 hours with 3 min of shaking between 

measurements. The maximum population density (i.e. OD) reached was calculated using the 

Magellan 7.1 software (Tecan Group Ltd., Switzerland). The relative maximum OD was 

calculated by dividing the OD of the auxotroph by the OD of the WT grown at the same 

metabolite concentration. Monoculture experiments of every auxotroph and its cognate WT 

control were replicated four times for each metabolite concentration tested.  

For competitive fitness assays, ~105 CFUs ml-1 of either WT or auxotrophs were inoculated 

into 1 ml MMAB medium with the requisite nutrient concentration and cell numbers were 

determined at 0 h and 24 h by plating. E. coli auxotrophs were differentiated from WT using 

the arabinose utilisation marker (Ara+/ Ara-) as described [162] and A. baylyi, strains were 

differentiated using an antibiotic marker (kanamycin). The ara marker was swapped between 

competitors. None of the two markers used incurred detectable fitness costs (paired samples 

t-test: P>0.05, n=8). Competitive fitness of auxotrophs versus WT was determined by 

calculating the Malthusian parameter (M) of both genotypes: M = (ln (Nf/ Ni)/ 24), where Ni 

is initial number of CFUs at 0 h and Nf is the final CFU count after 24 h [162]. Relative 
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fitness was calculated as the ratio of Malthusian parameters. Coculture experiments were 

replicated eight times (i.e. comparison of a) WT and deletion mutants within the same 

biosynthetic pathway, and b) WT and auxo-trophic A. baylyi mutants) or four times for each 

metabolite concentration tested (all others).  

The two methods used to quantify bacterial productivity were quantitatively comparable, as 

indicated by a significant correlation between CFU plate counts and OD readings (Spearman 

rank correlation: ρ =0.76, P=4.4*10-26, n= 128). 

 

2.5 Statistical analysis 

Frequency distributions of auxotrophic bacteria with different lifestyles were compared with 

a Pearson's Chi-squared test with Yates' continuity correction and the distributions of the 

number of auxotrophies per organism with the Wilcoxon rank sum test with continuity 

correction. The Levene’s test was used to assess homogeneity of variances and variances 

were assumed to be inhomogeneous when P>0.05.  

Statistical differences in the growth parameters (i.e. OD, relative fitness) of WT and 

auxotrophs were determined by independent sample t-tests (monoculture growth 

experiments) or paired sample t-tests (co-culture competition experiments). Brown-Forsythe 

tests followed by either Tamhane’s T2 (non-homogenous variances) or LSD (homogenous 

variances) post-hoc tests were used to infer statistical differences in the relative fitness of 

mutants lacking different genes of the same biosynthetic pathway. The False Discovery Rate 

(FDR) procedure of Benjamini et al. (2006) was applied to correct P values after multiple 

testing [165]. The concentrations required by auxotrophs to exceed WT fitness were 

compared with Mann-Whitney U-tests. Two-sample t-tests were used to detect fitness costs 

of genetic markers. The relationship between monoculture OD and plate counts as well as 

between protein mass invested and the relative position within the three biosynthetic 

pathways was investigated by applying Spearman’s rank correlations. All statistical analyses 

were performed using the R software (R Development Core Team 2013, version 2.15.3) 

[166] and the SPSS package (version 17.0, IBM, USA).  

 

3. Results 

3.1 Loss of conditionally essential biosynthetic functions is common in bacteria 

To determine how common the loss of conditionally essential biosynthetic functions is 

among natural bacterial isolates, we investigated the frequency with which auxotrophies 

occurred in each of 949 sequenced eubacterial genomes. The set of genomes analysed 

covered a phylogenetically diverse spectrum of bacterial phyla (Fig. S1), yet was biased in its 

composition towards bacteria of biotechnological or medical relevance. Taking advantage of 
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genome sequences, pathway information, and genome annotation, we focussed our analysis 

on all 20 proteinogenic amino acids, two nucleosides, as well as three vitamins (Table S1). A 

majority of Eubacteria (i.e. 76%) were predicted to be auxotrophic for between one and 25 

different metabolites that are needed for growth and metabolism (Fig. 1A). The most 

commonly predicted compounds that could not be synthesized by the organisms analysed 

were biotin (36%), phenylalanine (36%), and asparagine (37%) (Fig. 1C). In contrast, very 

few bacteria (i.e. 7%) were auxotrophic for proline and isoleucine. Notably, three fourth of 

all strains predicted to be auxotrophic had lost more than 85% of the genes involved in the 

biosynthesis of tryptophan, histidine, leucine, pyrimidines, and purines (Fig. S4), which are 

the longest linear pathways analysed (Fig. S3). This finding suggests that auxotrophic strains 

tend to lose entire pathways once a biosynthetic function has been lost. 

When putative auxotrophy frequencies were determined for the phylum Enterobacteriaceae 

(i.e. 116 organisms), 13% of all strains in this subset were predicted to be auxotrophic (Fig. 

1A). Here, the most commonly found auxotrophy was tyrosine (Fig. 1D), which could not be 

synthesized by 9% of the tested Enterobacteriaceae. None of the enterobacterial genomes 

analysed had lost the ability to produce methionine or threonine.  

Mapping all detected auxotrophies onto the lifestyles of the 949 Eubacterial species analysed 

(Pagani et al. 2012) indicated that 85% free-living, 64% gut-inhabiting, and 91% 

endosymbiotic bacteria were predicted to be auxotrophic for at least one metabolite (Fig. 

1B). Bacteria of the intestinal microflora were less frequently auxotrophic than free-living 

bacteria and endosymbionts (Chi-squared test with Yates correction: χ² = 19, P = 1.5*10-5, 

n=111 and 246 and χ² = 13, P = 3.3*10-4, n=111 and 57, respectively; Fig. 1B). Furthermore, 

auxotrophic endosymbionts were predicted to be auxotrophic for 20 metabolites per 

organism (median), which is significantly more than was predicted for auxotrophic free-living 

and gut-inhabiting bacteria (both groups: median of 2 auxotrophies per organism) (Mann-

Whitney U-test with continuity correction: W = 9541, P<2.2*10-16, n=52 and 209 and W = 

3033.5, P = 8.8*10-10, n=52 and 71, respectively; Fig. 1B). The phylogenetic distribution of 

lifestyles among the 949 analysed organisms strikingly matched the phylogenetic distribution 

of all known bacteria with a completely sequenced genome (Fig. S2). 
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Figure 1. Distribution of metabolic auxotrophies in bacteria. Loss of a given biosynthetic function 

was predicted in-silico using 949 eubacterial, genome-annotated taxa (Vallenet et al. 2009; Caspi et 

al. 2012). (A) Distribution and median (dashed line) of the number of predicted auxotrophies per 

auxotrophic organism for Eubacteria (dark grey, n=949) and Enterobacteriaceae (light grey, n=116) 

for all 25 metabolites analysed. Percentages indicate the fractions of predicted auxotrophic 

organisms. Violin plots are scaled to the same maximum width. (B) Distribution and median 

(dashed line) of the number of auxotrophies for all auxotrophic Eubacteria depending on their 

lifestyle. Percentages indicate the fractions of predicted auxotrophic organisms within each lifestyle 

group. The lifestyle group sizes are: free-living (n=246), intestinal microflora-associated (n=111), 

and endosymbiotic organisms (n=57). Violin plots are scaled to the same maximum width. 

Frequencies of auxotrophies within (C) Eubacteria (n=949), and (D) Enterbacteriaceae (n=116). 

See Table S1 for abbreviations of metabolite names. 

 

Taken together, our in silico analysis of eubacterial genomes predicted a surprisingly pervasive 

loss of multiple conditionally essential metabolic functions including the biosynthesis of 

amino acids, nucleosides, and vitamins. Furthermore, the distribution and frequency of 

auxotrophies was strongly dependent on the lifestyle of the bacterial species analysed. 
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3.2 Auxotrophy-causing mutations are beneficial when the focal metabolite is present 

in the environment 

The growth of E. coli WT in monocultures was significantly enhanced by the 

supplementation of five compounds (i.e. His, Met, Phe, Trp, and Nad; FDR-corrected 

independent sample t-tests: P≤0.05, n=4; Fig. S5A,C) although different concentrations of 

each metabolite were required to achieve this effect. In contrast, growth was unaffected by 

the addition of eight metabolites (i.e. Ile, Leu, Lys, Pro, Tyr Cyt, Bio, and Pan; FDR-

corrected independent sample t-tests: P>0.05, n=4; Fig. S5) and even inhibited by three of 

the sixteen metabolites tested (i.e. Arg, Thr, and Gua; FDR-corrected independent sample t-

tests: P≤0.05, n=4; Fig. S5A,B).  

When each of these metabolites was supplied in increasing concentrations to the 

corresponding auxotrophs, growth was strongly dependent on the concentration of the 

respective nutrient (Fig. S6). Half of all gene deletions tested resulted in a maximum 

population density (i.e. OD) that was significantly increased over WT levels (FDR-corrected 

independent sample t-tests: P≤0.05, n=4; Fig. 2A; Fig. S6) at some concentration of the focal 

metabolite. Exceptions were the auxotrophs for His, Lys, Phe, Tyr, Cyt, and Nad, whose 

maximum population density did not exceed WT levels (FDR-corrected independent sample 

t-tests: P>0.05, n=4, Fig. 2A; Fig. S6) as well as the Pro- and Thr auxotrophs that did not 

even reach WT levels under the range of concentrations tested (FDR-corrected independent 

sample t-tests: P<0.05, n=4; Fig. 2A; Fig. S6A). The growth advantage over WT of the Arg- 

and Gua auxotrophs was probably attributable to a significant inhibitory effect of the 

metabolites added on the growth of the WT (FDR-corrected independent sample t-tests: 

P≤0.05, n=4; Fig. S5A,B, Fig. S6A,B), rather than an enhanced growth of the auxotrophic 

strains. Notably, growth of vitamin auxotrophs exceeded WT levels at much lower 

concentrations (0.2 - 0.5 µM) than was the case for nucleobase- and amino acid auxotrophs 

(25 - 200 µM; Mann-Whitney U-test: P=1.04*10-9, n=12 and 28; Fig. 2A, Fig. S6). 

To verify whether the observed fitness advantages also manifest when an auxotrophic 

mutant directly competes against its prototrophic ancestor, pairwise competition experiments 

were performed, in which each of 16 auxotrophs were directly competed against the 

prototrophic WT in environments that contained different concentrations of the focal 

metabolites. Under these conditions, all auxotrophs except the Cyt and Nad auxotrophs 

reached fitness values that significantly exceeded WT levels (FDR-corrected paired sample t-

tests: P≤0.05, n=4; Fig. 2B; Fig. S6). This included also auxotrophs, whose fitness did not 

increase over WT levels in monocultures (i.e. auxotrophs for His, Lys, Phe, Pro, Thr, Tyr). 

Similar to monocultures, vitamin auxotrophs achieved their maximum relative fitness at 

much lower concentrations (0.05 - 0.5 µM) than amino acid- and nucleobase-deficient strains 

(25 – 200 µM) required to exceed WT growth (Mann-Whitney U-test: P=3.58*10-10, n=16 
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and 52; Fig. 2B; Fig. S6).  Biotin, one of the compounds for which biosynthesis genes were 

most frequently lost in natural bacterial isolates (Fig. 1) was required in the lowest 

concentrations of all metabolites analysed in both mono- and co-culture experiments (Fig. 

2A,B; Fig. S6).  

 

Figure 2. Maximum productivity and competitive fitness of Escherichia coli auxotrophs relative to 

WT. (A) Maximum OD in monoculture, and (B) maximum fitness in coculture of the amino acid- 

(circles), vitamin- (squares), and nucleobase auxotrophs (diamonds) relative to WT. All values are 

medians (± 95% CI) of four replicates and are significantly different from WT levels (i.e. dashed line; 

FDR-corrected independent sample t-tests (monoculture) and paired sample t-tests (coculture): 

P≤0.05, n=4), except those marked by ‘ns’. See Table S1 for abbreviations of metabolite names. 

 

Taken together, these results indicate that the loss of essential biosynthetic genes from the 

genome of E. coli generally resulted in strong and significant fitness advantages over the 

prototrophic WT when the required compounds were sufficiently present in the 

environment. The extent of fitness advantage, however, was context-dependent and strongly 
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affected by i) the concentration of the metabolite in the environment, ii) the identity of the 

metabolite, and iii) the absence/ presence of a competitor.  

 

3.3 Fitness benefits depend on which gene of a biosynthetic pathway is lost 

Amino acid biosynthesis involves the action of multiple enzymes that are encoded by 

different genes. Thus, the fitness benefit a strain gains by not having to carry out a certain 

biosynthetic step may differ depending on which gene has been lost. Observing different 

fitness benefits when different genes of the same pathway are lost may reflect differences in 

the biosynthetic costs incurred at each step or regulatory interactions among genes. 

To verify this possibility, several genes were individually deleted from the biosynthetic 

pathways for Arg (6 genes), His (4), and Trp (4) (Fig. 3, and Table S2) whose deletion 

renders the resulting mutant auxotroph for the corresponding amino acid. All generated 

mutants were individually competed against WT in three environments, which differed in the 

concentration of the focal amino acid. The range of these concentrations covered a span (± 

50 μM) around the concentration at which the terminal deletion mutant of each pathway had 

reached maximum fitness relative to cocultured WT (Fig. 2B, Fig. S6). 

Fitness consequences resulting from the loss of a conditionally essential gene from one of 

the three multi-step pathways analysed strongly depended on both the identity of the lost 

gene as well as the concentration of amino acids available (Fig. 3). A pattern that seemed to 

emerge was that as the amino acid concentration in the environment increased, deletion of 

terminal genes tended to be more advantageous than the loss of more anterior genes (FDR-

corrected paired-sample t-tests and Brown Forsythe tests followed by a LSD or Tamhane’s 

T2 post-hoc test : P<0.05, n=8; Fig. 3). This trend was evident in two out of the three amino 

acid concentrations assayed for each of the three pathways analysed (Fig. 3). Furthermore, 

one of the three amino acid concentrations tested for each biosynthetic pathway caused a 

significant positive correlation between the mutants’ relative fitness and the position of the 

deleted gene within the pathway (Pearson product-moment correlation: Arg pathway, 100 

μM: r = 0.33, P = 0.012, n = 48; His pathway, 200 μM: r = 0.5, P = 0.05, n = 28; Trp 

pathway, 200 μM: r = 0.55, P < 0.001, n = 32). Interestingly, when the amount of protein 

invested by E. coli to catalyse different steps of these biosynthetic pathways was taken into 

account, the protein investment also increased towards the end of these pathways 

(Spearman's rank correlation: ρ=0.55, P=0.02, n=17; Fig. S7). Calculating the energetic cost 

for the individual coding sequences of these three pathways as well as the corresponding  
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Figure 3. Competitive fitness of auxotrophic Escherichia coli mutants that lack different genes of 

the same biosynthetic pathway. Fitness of different deletion mutants that are auxotrophic for (A) 

Arg, (B) His, and (C) Trp was determined relative to WT. Experiments were conducted in minimal 

medium to which 50 μM, 100 μM, and 150 μM of Arg (A) or 100 μM, 150 μM, and 200 μM of either 

His (B) and Trp (C) has been supplemented. X-axes are labelled with the last letter of the focal 

gene’s name (e.g. A for argA, hisA or trpA). Asterisks denote significant differences from WT levels 

(i.e. dashed line; FDR-corrected paired sample t-tests: *P<0.05, **P<0.01, and ***P<0.001). 

Different letters indicate significant differences among deletion mutants (univariate ANOVA followed 

by a LSD or Tamhane’s T2 post-hoc test: P<0.05; n=8). Boxplot: median (horizontal lines in boxes), 

interquartile range (boxes, 1.5x- interquartile range (whiskers). Pathway insert: The flow of 

biosynthetic steps in each pathway. Unlabelled arrows represent non-essential genes. 5-PRDP: 5-

phospho-α-D-ribose 1-diphosphate. 
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protein machinery in E. coli (Supporting Methods) revealed a significant greater protein cost 

(Wilcoxon signed rank test: P=0.002, n=10) that exceeded DNA biosynthesis costs by factor 

34 (Table S3). Hence, these results suggest that a saving of protein costs may be involved in 

explaining the observed gain in fitness. 

In case of the Arg biosynthetic pathway, the argA deletion mutant displayed a particularly 

strong fitness increase over WT in two of the three Arg concentrations tested (FDR-

corrected paired sample t-test: P<0.05, n=8; Fig. 3A). Interestingly, the gene product of argA 

(i.e. N-acetylglutamate synthase) catalyses the first step in the Arg biosynthesis pathway and 

is the target enzyme for feedback inhibition by arginine (Vyas and Maas 1963). However, 

deletion of trpE and trpD (i.e. anthranilate synthase), which fulfil the same function in the 

Trp biosynthesis pathway (Pabst et al. 1973), did not result in a similar effect (Fig. 3C). Thus, 

the particularly strong fitness advantage gained by argA deletion mutants in the presence of 

sufficient amounts of Arg points to a special regulatory role this gene plays within the Arg 

biosynthesis pathway.  

Together, these results demonstrate significant gene-specific fitness effects that arise 

upon deletion of different genes of the same metabolic pathway and suggest the saving of 

protein costs may be involved in explaining these differences.  

 

3.4 Also Acinetobacter baylyi auxotrophs gain a fitness advantage upon gene loss 

All Acinetobacter baylyi auxotrophs (i.e. ΔhisD, ΔleuB, and ΔtrpB) except the ΔargH mutant 

gained a significant fitness advantage upon gene loss when the corresponding amino acid was 

present (FDR-corrected paired sample t-tests: P≤0.05, n=8; Fig. 4). As previously observed 

in E. coli, the fitness advantage gained by A. baylyi auxotrophs was strongly dependent on the 

concentration of the focal metabolite, yet followed a completely different, downright 

opposite pattern (Fig. 4). Interestingly, only one of the four A. baylyi auxotrophs tested (i.e. 

ΔhisD) gained an advantage in relative fitness that was significantly increased over the fitness 

levels that the corresponding E. coli auxotrophs achieved under the same conditions (FDR-

corrected independent sample t-tests: P≤0.05, n≥4). In sum, these results corroborate that 

the loss of essential biosynthetic genes can be selected for when the required metabolite is 

present in the environment, yet point to significant, species-specific differences. 
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Figure 4. Competitive fitness of Acinetobacter baylyi and Escherichia coli auxotrophs relative to WT 

in increasing concentrations of the focal amino acids. Fitness of E. coli (circles) and A. baylyi 

(squares) mutants auxotrophic for Arg, His, Leu, and Trp relative to the corresponding WT. All 

values are medians of four replicates for E. coli and eight replicates for A. baylyi. The grey and dark 

grey regions mark the 95% confidence intervals for E. coli and A. baylyi, respectively, and the grey 

and dark grey asterisks mark significant differences of the E. coli and A. baylyi auxotrophs to WT 

levels (i.e. dashed line; FDR-corrected paired sample t-tests: *P<0.05, **P<0.01, and ***P<0.001, 

n≥4).  

 

4. Discussion 

Our analysis revealed that the loss of conditionally essential genes, which likely results in 

metabolic auxotrophies, is not limited to bacterial endosymbionts, but equally prevalent 

amongst free-living bacteria. However, why do microorganisms loose genes at the expense of 

their metabolic autonomy? For endosymbiotic bacteria, this question is commonly answered 

by pointing to their small population sizes and a lack of genetic recombination. These factors 

should result in a relaxed selection even for essential genes and - combined with a strong 

effect of genetic drift - could explain the rapid erosion of symbiont genomes 

[47,48,50,63,74,82,152]. However, free-living and gut-dwelling bacteria drastically differ from 

bacteria with an intracellular lifestyle in terms of their population biology as well as the 

selective environment they experience. Also, the high degree of metabolic complementarity 

and mutual inter-dependency that has been frequently observed among co-occurring 

endosymbionts [66,69,79] is likely favoured and maintained by natural selection. 
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To experimentally determine the potential role of selection in favouring mutants that lack 

essential genes, different biosynthetic genes were individually deleted from the genomes of 

two bacterial species and the resulting auxotrophic mutants systematically analysed. This 

analysis revealed that i) the loss of essential biosynthetic genes was generally beneficial when 

the required metabolite was sufficiently present in the cells’ growth environment, ii) the 

metabolite concentration an auxotroph required to attain WT growth levels differed 

significantly depending on the metabolite as well as the species analysed, iii) the loss of 

different genes from the same metabolic pathway resulted in differential fitness 

consequences for the corresponding mutants, and iv) auxotrophs of two species that lacked 

the same biosynthetic gene responded very differently when exposed to the same 

concentrations of the required amino acid.  

 

4.1 What causes the unexpectedly strong fitness advantage? 

A key finding of this study is that the loss of different biosynthetic genes gave rise to 

different fitness benefits when the focal metabolite was sufficiently present in the mutants’ 

growth environment. This was not only true for genes of different metabolic pathways, but 

also when genes of the same biosynthetic pathway were considered. A number of relevant 

insights emerge from this analysis. First, it made a significant difference whether a mutant’s 

phenotype was indirectly compared to WT (monoculture) or directly competed against WT 

(coculture). Here, both i) the minimally required metabolite concentration as well as ii) the 

maximally achieved advantage over WT differed between the two perspectives. These 

findings cannot be exclusively explained by the costs auxotrophs save for the production of 

the focal metabolite relative to WT. Instead, other factors like the cells’ requirement for a 

given metabolite and/ or the auxotrophs’ transport efficiency with which they can take up 

different metabolites may have caused this pattern. Second, the finding that the deletion of 

different genes from the same biosynthetic pathway engendered different fitness 

consequences for the resulting auxotrophic mutants, suggests the unexpectedly strong fitness 

advantage of auxotrophs is at least partially caused by effects emanating from the loss of 

individual genes rather than a systemic response. The seeming increase of the fitness 

advantage auxotrophic mutants gained when terminal genes of a given pathway were deleted 

together with the concurrent enlarged investment of protein mass towards the end of these 

pathways implies the saving of protein costs may contribute to the observed gain in fitness. 

This interpretation is in line with empirical evidence, which suggests protein costs can 

significantly limit bacterial growth [90,109,167] or cause redistributions of metabolic fluxes to 

less expensive pathways [168]. However, Dykhuizen (1978), who addressed this question 

previously in E. coli did not find evidence for a cost-saving of Trp auxotrophs relative to 

prototrophic revertants [86]. Another possibility is a metabolic or regulatory rewiring that 
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renders auxotrophs more efficient in coping with amino-acid deficient conditions [169]. This 

could be achieved by an enhanced uptake of amino acids or a reallocation of the cell-internal 

protein pool. Future work should scrutinize these hypotheses.  

 

4.2 Distribution of metabolic auxotrophies in nature 

Our in silico analysis provides a first systematic assessment of the prevalence of putative 

metabolic auxotrophies among eubacteria. Even our conservative estimation indicated that 

the vast majority of genomes analysed lacked conditionally essential biosynthetic genes. A 

recent study corroborates these findings: reconstructing metabolic models of 55 sequenced 

E. coli and Shigella strains revealed multiple auxotrophies for vitamins and amino acids in 

twelve of these strains [67]. Taken together, these analyses suggest metabolic auxotrophies 

may be more widespread than previously thought. 

However, can the distribution pattern of auxotrophies predicted for Enterobacteriaceae (Fig. 

1D) be explained with the different fitness advantages observed in this study (Fig. 2; Fig. S6)? 

A series of experimental tests in which different kinetic parameters determined in this study 

(i.e. maximum OD/ relative fitness reached after 24 h, slope of metabolite dependency curve 

(i.e. metabolite concentrations versus OD/ relative fitness after 24 h)) was correlated to the 

predicted enterobacterial auxotrophy frequencies did not detect significant relationships 

between these parameters (Spearman rank correlation: P > 0.05 in all cases). This result is 

likely caused by fact that the frequency with which certain biosynthetic genes are lost is due 

to the availability of the corresponding metabolites in the strains’ natural environments and 

not the potentially gained fitness advantage. Moreover, since strains are likely auxotrophic for 

more than one metabolite (Fig. 1A), epistatic interactions among these mutations may affect 

the fitness consequences of individual mutations.  

 

4.3 Adaptive gene loss and the formation of inter-organismal networks 

Our results imply that whenever local metabolite concentrations exceed certain threshold 

levels, strong selection pressures build up that favour the loss of the corresponding 

biosynthetic functions in bacteria. Thus, our analysis provides a plausible adaptive 

explanation for the widespread loss of conditionally essential biosynthetic genes (Fig. 1). 

Accordingly, amino acid concentrations in certain bacteria-inhabited environments such as 

soil or insect guts generally exceeded the levels required for auxotrophic mutants to 

outcompete prototrophic cells by orders of magnitude (Figure S8). In contrast, freshwater 

lakes exhibited only meagre amounts of free amino acids (i.e. 2.6 - 4124 nM) [170], which 

may explain why prototrophic E. coli strains seem to dominate in these environments [171]. 

Finally, metabolic auxotrophies have been observed to readily emerge in laboratory evolution 
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experiments with e.g. Pseudomonas aeruginosa [172], mutator strains of E. coli [173] that adapted 

to the mouse gut or Legionella pneumophila parasites adapting to mouse macrophages [174].  

As these examples illustrate, metabolites can either originate from the growth environment 

or be produced by another organism [51,175]. The ‘compensated gene loss’ resulting from the 

latter [175] can account for the rapid reduction of genome size of both parasitic [176]) and 

mutualistic bacterial symbionts and is likely also driving the formation of tightly integrated 

metabolic networks of co-occurring bacterial endosymbionts [69,177]. Our finding that this 

phenomenon is not restricted to organisms that interact over long periods of time, but also 

occurs among seemingly independent and free-living bacteria (Fig. 1) implies a pervasive role 

of adaptive gene loss for driving the evolution within microbial communities. An 

unavoidable leakage of vital metabolites during bacterial growth and subsistence [51] 

combined with the enormous and prevalent fitness advantages gained upon gene loss as 

observed in this and other studies [24,85,86], should result in the formation of intricately 

connected, inter-cellular networks. By mutually exchanging metabolites as ‘public goods’, while 

at the same time specialising in the production of a reduced subset of metabolites, both the 

individual genotype and the whole bacterial community might benefit [24,178]. In particular, 

the difference in the concentration-dependent fitness advantage observed between two 

bacterial species (Fig. 4) may facilitate interspecific cross-feeding interactions. The general 

difficulty to isolate bacterial species from the wild [179,180] may be a reflection of this 

pattern. 
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5. Conclusions and outlook 

Our study provides strong empirical support for the hypothesis that adaptive fitness 

advantages can account for the frequently observed loss of biosynthetic functions in bacteria. 

Our findings have a number of significant ramifications that should be investigated in future 

studies. First, the molecular causes underlying the unexpectedly strong fitness advantage 

upon gene loss should be identified. Second, as evidenced in our study, the natural bacterial 

isolates analysed were rarely auxotrophic for just one metabolite, but commonly lacked 

multiple biosynthetic capabilities simultaneously (Fig. 1A). Hence, future studies should 

address the question whether fitness effects combine additively when multiple auxotrophies 

are combined in one genetic background, or whether epistatic interactions limit an even 

further increase of the auxotrophs’ fitness. Third, the ‘black queen hypothesis’ [51] predicts for 

bacterial strains, which loose costly metabolites by leakage and that coevolve within a 

microbial community, to continuously loose biosynthetic genes until an equilibrium is 

reached, at which the benefit of gene loss is outweighed by its costs. Our study provides a 

first estimate of these benefits, thus allowing to further explore how they affect the race for 

biosynthetic disarmament within microbial communities. 
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Abstract 

Many bacterial lineages lack seemingly essential metabolic genes. Previous work suggested 

selective benefits could drive the loss of biosynthetic functions from bacterial genomes when 

the corresponding metabolites are sufficiently available in the environment. However, the 

factors that govern this ‘genome streamlining’ remain poorly understood. Here we determine 

the effect of plasticity and epistasis on the fitness of Escherichia coli genotypes from whose 

genome biosynthetic genes for one, two, or three different amino acids have been deleted. 

Competitive fitness experiments between auxotrophic mutants and prototrophic wild type 

cells in one of two carbon environments revealed that plasticity and epistasis strongly 

affected the mutants’ fitness individually and interactively. Positive and negative epistatic 

interactions were prevalent, yet on average cancelled each other out. Moreover, epistasis 

correlated negatively with the expected effects of combined auxotrophy-causing mutations, 

thus producing a pattern of diminishing returns. Moreover, computationally analysing 1,432 

eubacterial metabolic networks revealed that most pairs of auxotrophies co-occurred 

significantly more often than expected by chance, suggesting epistatic interactions and/ or 

environmental factors favoured these combinations. Our results demonstrate that both the 

genetic background and environmental conditions determine the adaptive value of a loss-of-

biochemical-function mutation and that fitness gains decelerate, as more biochemical 

functions are lost. 
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1. Introduction 

Bacterial genomes are not static entities, but are highly dynamic on evolutionary time-scales 

in terms of both size and composition [36]. Variation in the size of prokaryotic genomes can 

be caused by the duplication of existing genes, the acquisition of new genetic information 

from the environment (i.e. horizontal gene transfer), or, alternatively, by gene loss. Reductive 

genome evolution is a feature that characterizes many bacterial taxa and comparative 

genomics indicates that gene loss appears to be more important for shaping prokaryotic 

genomes than gene gain by horizontal gene transfer [36]. In many cases, one or more 

essential biosynthetic genes are lost, thus rendering the resulting auxotrophic bacteria 

dependent on an environmental uptake of the required metabolites [22,67,181]. Surprisingly, 

the loss of essential biosynthetic functions is not limited to endosymbiotic bacteria or 

intracellular parasites where essential nutrients can potentially be obtained from the host, but 

also prevails in free-living taxa such as saprophytes [53,182] or marine bacteria [83,183].  

Two main scenarios can account for the frequently observed loss of conditionally essential 

biosynthetic genes from prokaryotic genomes: First, genetic drift may weaken selection even 

for essential genes and could thus explain the fixation of maladaptive mutations. This effect 

is likely strongest in small bacterial populations [50,74,76] such as endosymbiotic bacteria, 

which repeatedly undergo severe population bottlenecks during host-to-host transmission 

[79]. Second, the loss of biosynthesis genes may be selectively favored when the required 

metabolite is either sufficiently present in the growth environment or provided by co-

occurring organisms [51,52]. Under these conditions, mutations that deactivate the 

biosynthetic machinery for a certain metabolite may result in the saving of production costs 

or could induce regulatory changes to economize the cell’s resources, for example by 

rerouting metabolic fluxes, which allow the bacterial cell to better cope with starvation for 

the required metabolite.  

Several studies using different bacterial species support the hypothesis that adaptive benefits 

may drive the loss of essential biosynthetic functions. In these cases, pairwise competition 

experiments between prototrophic bacterial cells and mutants lacking the ability to 

biosynthesize a certain metabolite pointed to a significant fitness advantage auxotrophs gain 

over prototrophic genotypes when the required metabolite is sufficiently present in the cells’ 

growth environment [24,85,86,181]. Even though these studies suggest that metabolic loss-

of-function mutants can be selectively favored, very little is known on how metabolic 

auxotrophies evolve.  

Given that theoretical evidence predicts multiple auxotrophy-causing mutations are 

frequently co-occurring in the same genetic background [181], the extent to which these 

mutations interact with each other (i.e. epistasis) remains poorly understood. In other words, 

do the previously observed positive fitness effects combine additively as more loss-of-
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function mutations accumulate in the same genome, or do epistatic effects constrain the 

fitness achievable by a multiply auxotrophic genotype? Moreover, natural habitats of bacteria 

are usually quite complex and may not only contain several primary metabolites (e.g. amino 

acids or vitamins), but also differ in the available carbon source. Since fluxes through 

metabolic networks change depending on the carbon source used [116,184], fitness and 

ultimately also epistatic interactions among mutations are expected to depend on the carbon 

source metabolized (i.e. plasticity).  

An increasing number of studies suggest both epistasis [117,185,186] and plasticity [99,187] 

can significantly influence the trajectories of beneficial mutations accessible to evolving 

bacteria. The general pattern that seems to emerge from these analyses is that negative 

epistasis is prevalent and often results in diminishing returns as more beneficial mutations 

accrue in a single genetic background [117,186,187].  

Understanding the constraints that determine evolutionary routes leading to multiply 

auxotrophic bacteria requires insight into how plasticity and epistasis influence the fitness 

consequences upon loss of metabolic genes. However, examining these effects in natural 

isolates is hampered by difficulties of cultivating auxotrophic genotypes under laboratory 

conditions or to manipulate the genome of non-model organisms. Thus, deleting a defined 

number of genes from the genome of a well-characterized model organism and evaluating 

the fitness consequences under carefully controlled growth conditions provides a tractable 

approach to quantify how environmental and genetic effects determine the fitness of 

multiply auxotrophic genotypes. Here we use a combination of computational and 

experimental approaches to address the following questions: (1) Do certain combinations of 

biosynthetic genes show an increased propensity to be jointly lost from bacterial genomes in 

nature? (2) How do fitness effects combine as multiple auxotrophy-causing mutations 

accumulate in the same genome? (3) Does the available carbon source affect fitness 

consequences of auxotrophy-causing mutations? (4) Do epistasis and plasticity interactively 

influence the effects of auxotrophy-causing mutations? 

 

2. Materials and methods 

2.1 Co-occurrence prediction of multiple auxotrophies 

A previously published data set of amino acid auxotrophies that were predicted for different 

bacterial species [181] was updated to include the most recently available sequenced genomes 

and the resulting 1,432 eubacterial metabolic networks were subjected to further 

examination. To test, whether pairs of auxotrophies were statistically over- or 

underrepresented, the presence of reactions required for amino acid biosynthesis [181] was 

randomized, whilst controlling for the number of deletions (i.e. absence of a particular 
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reaction) per species and the number of species possessing a particular reaction. A total of 

8,000 samples were randomly drawn from the [species x reaction existence] space using the 

Rasch Sampler [188] and auxotrophy frequencies were re-calculated from these random 

samples. Then, the frequencies of auxotrophy pairs predicted in the original data set to co-

occur were compared to the expected distribution of double-auxotrophies inferred from the 

randomized data set. This approach allowed correcting the frequencies of predicted double-

auxotrophies by the expected co-occurrence pattern of auxotrophies, which are simply due 

to chance (e.g. genetic drift) or the structure of the metabolic network (i.e. shared reactions 

in the biosynthetic pathways of two or more amino acids). 

To test whether the observed co-occurrence pattern was reflecting the distribution of amino 

acids in natural environments, predicted auxotrophy frequencies were correlated with a 

published data set of 69 different aquatic, terrestrial, and host-associated environments [189]. 

For this, the medians of the pairwise products of relative amino acid abundances were 

correlated with the pairwise co-occurrence of predicted amino acid auxotrophies. In this 

analysis, the amino acids Glu/ Gln and Asp/ Asn were not considered, because the data set 

used did not allow distinguishing these pairs of amino acids. 

 

2.2 Bacterial strains and their construction 

Eleven different single gene deletions that each would render E. coli auxotrophic for a single 

amino acid were identified and constructed as described [181,190] (Table S1). All deletion 

alleles were transferred from existing strains [149] into E. coli BW 25113 [149] using P1 

phage-mediated transduction [161] and recombinants were selected for their ability to grow 

on kanamycin-containing LB plates (50 µg ml-1). In addition, 50 of the 55 possible 

combinations of double deletion mutants and 16 of 165 possible triple deletion mutants were 

successfully generated (Table S1). For this, single deletion mutants were first cured of the 

kanamycin resistance by excising the kanamycin cassette from the mutant’s genomes using 

the pCP20 plasmid, which harbours the FLP recombinase [191]. Subsequently the second 

deletion allele was transferred into the resulting strains and successful recombinants were 

again selected for their resistance to kanamycin. A subset of double deletion mutants was 

cured of the kanamycin resistance cassette using the above-mentioned approach to yield 

triple deletion mutants. All generated genotypes used for subsequent experiments thus 

contained one copy of the kanamycin cassette in their genome, albeit at different 

chromosomal locations.  

To examine the possibility that unintended, secondary mutations have been co-transduced, a 

control experiment was performed where the same deletion allele was repeatedly 

reintroduced into the same recipient genotype via P1 phage transduction. For this, three 

different deletion alleles were randomly selected (i.e. ΔasnB, Δmdh, ΔargH). After 



69 
 

transduction of E. coli BW 25113, the kanamycin cassette was cured and the same phage 

lysates were used to re-infect the recipient now carrying a deletion allele. This procedure was 

repeated three-times to mimic the number of transduction steps required to construct triple 

auxotrophic mutants. Fitness of the genotypes resulting from each mutational step was 

determined relative to the ancestral WT as described below. In none of the three cases was 

the fitness of the resulting mutants significantly affected by the number of transduction 

rounds (one-way ANOVA: P > 0.05, n=8 for each genotype). Thus, the phage transduction 

procedure used is very unlikely to have produced unintended, secondary mutations. 

Conditional lethality of multiple auxotrophies was verified by inoculating 105 colony-forming 

units (CFUs) of these genotypes into 1 ml minimal medium for Azospirillium brasilense 

(MMAB) [158] without biotin and using fructose (5 g l-1) as a carbon source. The optical 

density (OD) the corresponding mutant strain achieved during 24 h of growth was 

determined spectrophotometrically at 600 nm using a Tecan Infinite F200 Pro platereader 

(Tecan Group Ltd., Switzerland). The mutation was deemed conditionally essential when the 

auxotroph’s growth did not exceed the OD600nm of uninoculated minimal medium. This was 

the case for all double- and triple-gene deletion mutants generated. Gene deletions were 

confirmed by sequencing the corresponding genomic regions. To phenotypically distinguish 

genotypes in fitness experiments, the arabinose utilization locus (Ara+) from strain REL 607 

[162] was introduced into BW 25113 using P1 phage-mediated transduction [161]. 

 

2.3 Culture conditions  

Cultures were incubated at 30 °C under shaking conditions and experiments were performed 

in MMAB minimal medium [158] without biotin and using either fructose (5 g l-1) or 

disodium succinate (8.86 g l-1) instead of malate as carbon source. The concentration of 

fructose and succinate was chosen such that, at least theoretically, the same amount of 

biomass could be produced under both carbon sources (see Supporting Methods for details). 

In addition, both media were supplemented with a mixture of all 11 amino acids, each at a 

concentration of 100 μM.  

 

2.4 Competitive fitness assays 

Competitive fitness experiments were performed in 96-deepwell plates (Eppendorf, 

Germany) with a culture volume of 1 ml. Auxotrophs were pre-cultured at 30 °C in MMAB 

medium supplemented with amino acids and the corresponding carbon source. For 

competitive fitness assays, ~105 CFUs ml-1 of WT and a focal auxotrophic mutant were co-

inoculated into 1 ml MMAB medium (ratio: 1:1) supplemented with amino acids and the 

respective carbon source (i.e. fructose or succinate) and cell numbers were determined at 0 h 
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and 24 h by dilution plating. E. coli auxotrophs (Ara-) were differentiated from WT (Ara+) 

using the arabinose utilisation marker as described (Lenski et al. 1991). Competitive fitness of 

auxotrophs versus WT was determined by calculating the Malthusian parameter (M) of both 

genotypes: M = (ln (Nf/ Ni)/ 24), where Ni is initial number of CFUs at 0 h and Nf is the 

final CFU count after 24 h (Lenski et al. 1991). Relative fitness was calculated as the ratio of 

Malthusian parameters. Each competition assay was replicated eight times. Competition 

experiments between WT that did or did not contain the Ara marker provided no evidence 

for a fitness cost of the marker in either environment (i.e. fructose and succinate; 

independent sample t-test: P > 0.05, n = 8). 

Given that all auxotrophic mutants generated contained a kanamycin resistance cassette in 

their genome, a possible fitness cost of this marker could theoretically affect the determined 

epistasis values: erroneously considering the cost of the marker multiple times when 

calculating the fitness expected for double and triple mutants from the fitness values of 

single gene deletion mutants, yet just once when determining the observed fitness of double- 

and triple mutants, could have resulted in an overestimation of the true epistatic effect (see 

below). To assess if the kanamycin marker incurred a cost to the auxotrophic strains, the 

Malthusian parameter of eleven single, four double, and four triple auxotrophic strains 

containing the kanamycin marker was determined in coculture with the same genotypes that 

have been cured from the marker (Table S2) as described above. Each competition 

experiment was initiated by mixing ~105 CFUs ml-1 of both competitors (ratio: 1:1) into 1 ml 

MMAB medium that contained fructose as the sole carbon source. The number of CFUs at 0 

h and 24 h was determined by plating on LB agar plates that did or did not contain 

kanamycin (50 µg ml-1) and the Malthusian parameter was calculated as described above. 

Finding that in these competition experiments the Malthusian parameter of none of the 

kanamycin-resistant mutants differed significantly from its kanamycin-sensitive counterpart 

(independent sample t-test: P > 0.05, n = 10 for all mutants, Table S2) provided no evidence 

for a fitness cost of this marker. The estimated minimum difference detectable by these tests 

[192] ranged between 0.24% - 2.8% (Table S2), which was well below the size of epistatic 

interactions determined (Tables S3 and S4), suggesting that a possible fitness cost of the 

kanamycin resistance marker used is very unlikely to have affected our results.  

 

2.5 Calculating epistasis 

Epistasis for multiple deletion mutants was calculated as the difference between the observed 

and expected fitness. Expected fitness was calculated by applying the multiplicative model 

[119,120,187]. Accordingly, for a genotype bearing two auxotrophy-causing mutations, the 

expected fitness would be the product of the observed relative fitness of the two mutations 

when individually present in a genotype. Epistasis was estimated as:  
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ℰ𝑥𝑦 = 𝑊𝑥𝑦 −𝑊𝑥𝑊𝑦                                                           (1) 

         ℰ𝑥𝑦𝑧 = 𝑊𝑥𝑦𝑧 −𝑊𝑥𝑊𝑦𝑊𝑧                                                                           (2) 

Equation 1 shows the calculation of epistasis for double deletion mutants and equation 2 for 

higher order (i.e. triple deletion) mutants. W is the relative fitness, Wxy and Wxyz is the relative 

fitness of strains with the entire set of two or three mutations respectively, and Wx, Wy, and 

Wz is the relative fitness of genotypes with just one deletion mutation. For higher order 

interactions (eq. 2), the sum of the effect of the lower order mutations was subtracted from 

ℰ𝑥𝑦𝑧 in eq. 2 to obtain the net effect of higher order epistasis as show in equation 3:  

ℰ′𝑥𝑦𝑧 = ℰ𝑥𝑦𝑧 − (ℰ𝑥𝑦 + ℰ𝑦𝑧 + ℰ𝑥𝑧)                                       (3) 

Error for the estimated value of ℰ was calculated using the method of error propagation 

[119,120] and epistasis was considered significant for a given combination of deletion alleles 

if ℰ was outside the error. 

 

2.6 Statistical analysis 

The statistical relationship between the co-occurrence of predicted auxotrophies and the 

distribution of the corresponding amino acids in natural environments was assessed via a 

Kendall’s rank correlation. Normal distribution of data was assessed using the Kolmogorov-

Smirnov test. Homogeneity of variances was determined by applying Levene’s test and 

variances were considered to be homogeneous when P>0.05. Fitness differences between 

auxotrophic mutants and their wild type competitors as well as between auxotrophic mutants 

in the two environments were determined with independent sample t-tests. One-way 

ANOVAs followed by Least Significant Difference (LSD) post hoc tests were employed to 

test if the mutants’ fitness in either environment depended on the number of mutations. 

Significant deviations of epistasis from zero (no epistasis) were determined by applying one 

sample t-tests to the values of all mutants quantified in both environments. The statistical 

relationship between expected fitness and epistasis was analysed via a Pearson’s product-

moment correlation. The False Discovery Rate (FDR) procedure of Benjamini et al. (2006) 

was applied to correct P values after multiple testing [165]. The relationship between 

expected and observed fitness was analysed using a type II regression model. Slopes of 

regression lines were considered to be significantly smaller than 1 when their 95% confidence 

intervals did not include the 45° line (i.e. the perfect correlation between expected and 

observed fitness, which is the null hypothesis for non-epistatic interactions). A general linear 

model with ‘fitness’ as dependent variable and ‘environment’ as well as the presence of one of 11 

mutations as ‘mutation 1’, ‘mutation 2’, and ‘mutation 3’ as fixed factors was calculated to 

identify interactive effects among mutations and/ or the environment. Statistical analyses 

were performed using the SPSS package (version 17.0, IBM, USA) and the R software [166]. 
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3 Results 

3.1 Prevalent positive co-occurrence of auxotrophies in eubacterial genomes 

A recent analysis of 949 eubacterial genomes and their inferred metabolic networks 

suggested that biosynthetic functions for amino acids, nucleotides, and vitamins are 

frequently lacking in the corresponding metabolic networks, indicating that auxotrophies are 

prevalent in natural populations of bacteria [181]. Interestingly, by re-analysing a more recent 

collection of 1,432 eubacterial genomes, 37% of all bacteria analysed were auxotrophic for 

two or more metabolites. If mutations that deactivate biosynthetic functions interact 

epistatically (i.e. non-additively), pairwise co-occurrence patterns of auxotrophies are 

expected to significantly deviate from a random distribution. Testing this prediction for a 

subset of 458 eubacteria that were predicted to be auxotrophic for multiple amino acids 

revealed for most pairwise comparisons (152 of 190) a significant positive association (FDR-

corrected one-sample Wilcoxon test: P < 0.05, n = 8,000, Fig. 1), indicating that 

auxotrophies co-occur more frequently than expected by chance. A smaller fraction of 37 

auxotrophy pairs co-occurred significantly less often than expected by chance (FDR-

corrected one-sample Wilcoxon test: P < 0.05, n = 8,000) and only two pairs (Gly-Thr, Thr-

Gly) showed a distribution that was statistically undistinguishable from a random distribution 

(FDR-corrected one-sample Wilcoxon test: P > 0.05, n = 8,000). Finding that virtually all 

amino acid double-auxotrophies deviate significantly in their frequency from the frequency 

expected by chance suggests epistatic interactions and/ or environmental factors favored 

these combinations.  

To test whether auxotrophy co-occurrences were caused by an increased propensity of 

certain amino acids to co-occur in natural environments, the predicted auxotrophy 

frequencies were correlated with quantitative measurements of relative amino acid 

concentrations in 69 different environments [189]. At first, the median of pairwise products 

of relative amino acid concentrations did not correlate significantly with the auxotrophy co-

occurrence data (Kendall’s rank correlation: Rτ = 0.04, P = 0.49, n = 120). However, a closer 

look at this correlation revealed that in most environments the amino acids alanine (Ala) and 

glycine (Gly) were relatively abundant, while the corresponding auxotrophies were relatively 

rare [181]. As the two smallest proteinogenic amino acids, Ala and Gly are the metabolically 

cheapest to produce [87,88]. Thus, Ala and Gly auxotrophies might not be very frequent in 

eubacteria, because the energetic savings to lose these biosynthetic functions (i.e. the 

selective advantages) are relatively low. Moreover, several possible alternative biosynthetic 

reactions for Ala and Gly exist in prokaryotes [181], which might limit the frequency of 

auxotrophies. Excluding Ala and Gly from the analysis for these reasons resulted in a highly 

significant positive correlation between the frequency of double-auxotrophies and the 

pairwise abundance of amino acids in the environment (Kendall’s rank correlation, Rτ = 0.22, 
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P = 0.003, n = 91, Fig. S1), which is consistent with an environmentally favoured loss of 

metabolic genes. Taken together, the analysis of amino acid auxotrophy distributions in 

eubacteria suggests epistatic interactions and/ or an environmentally compensated gene loss 

may have caused the observed co-occurrence pattern of amino acid auxotrophies.  

 
 

 

 

 

 

 

3.2 Negative epistasis causes diminishing returns with fitness of multiply 

auxotrophic genotypes 

How does cellular fitness scale with an increase in the number of auxotrophy-causing 

mutations? To address this question, one, two, or three of 11 genes that render the resulting 

mutant auxotrophic for amino acids were deleted from the same genetic background of E. 

coli. Altogether, 11 mutant strains bearing one (hereafter: ‘single mutants’), 50 mutants bearing 

two (hereafter: ‘double mutants’), and 16 strains bearing three different amino acid auxotrophy-

causing mutations (hereafter: ‘triple mutants’) were generated (Table S1). Subsequently, the 

competitive fitness against prototrophic WT was determined for all 77 strains in two distinct 

growth environments that contained an equimolar concentration of 11 amino acids (100 μM 

each), yet differed in the carbon source available (i.e. either fructose or succinate). These 

Figure 1. Predicted pairwise co-occurrence of amino acid auxotrophies in eubacterial genomes. 

Sizes of circles represent the proportion of genotypes (%) predicted to be simultaneously auxotroph for 

the two corresponding amino acids. Filled circles indicate pairs of auxotrophies, which co-occurred 

significantly more (black) or less often (grey) than expected by chance (FDR-corrected one-sample 

Wilcoxon test: P < 0.05, n = 8,000), while unfilled circles depict pairs with a random co-occurrence 

pattern (P > 0.05, n = 8,000).  The data set included 1,432 eubacterial genomes that were predicted to 

be auxotrophic (584) for one or more of 20 different amino acids or prototrophic (848) for all amino acids.  
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carbon sources were chosen as they are important intermediates in the primary metabolism 

of most bacterial species, but derive from different points of the cells’ metabolic network: 

fructose-6-phosphate being a core metabolite in glycolysis, while succinate is part of the 

tricarboxylic acid pathway.  

This analysis indicated for the fructose-containing environment that both double and triple 

mutants were significantly less fit than the corresponding single gene deletion mutants (one-

way ANOVA followed by a LSD post-hoc test: P < 0.05, d.f. = 76; Fig 2 A). In contrast, the 

relative fitness of single-, double-, and triple-gene deletion mutants did not differ in the 

succinate environment (one-way ANOVA followed by a LSD post-hoc test: P > 0.05, d.f. = 

76; Fig 2 B). 

Quantitatively assessing the degree with which the effects of focal mutations deviated from 

expected finesses revealed on average no predominant influence of either positive or 

negative epistatic effects (Fig. S2). This pattern held true for both the fructose (mean 

epistasis: -0.05 ± 0.05, one sample t-test: P = 0.26, d.f. = 65, Fig. S2) and the succinate 

environment (mean epistasis: 0.003 ± 0.03, one sample t-test: P = 0.93, d.f. = 65, Fig. S2). 

However, analysing epistatic effects for all genotypes individually uncovered for the fructose 

environment 20 cases of  

significantly negative and 13 cases of significantly positive epistatic interactions (Table S3), 

while in the succinate environment 26 instances showed significant negative and 25 cases 

significant positive epistatic interactions (Table S4) (one sample t-test: P < 0.05, n = 8; Table 

1). Thus, positive and negative epistatic effects cancelled each other out, thereby causing the 

abovementioned non-significant average deviation. 

When the relation between expected relative fitness effects of multiple gene deletions as 

predicted from individual mutations and observed epistasis was scrutinized, a negative 

correlation (Pearson product-moment correlation: r = -0.27, P = 0.03 for fructose and r = -

0.27, P = 0.03 for succinate) was observed for both carbon environments tested (Fig. 2 C 

and D). In other words, epistatic interactions among mutations became more negative as the 

predicted fitness increased. Theoretically, this relationship could also be caused through a 

phenomenon called regression-to-the-mean [193], in which measurement error alone can 

cause a negative correlation between expected fitness and epistasis due to the statistical non-

independence between expected fitness and epistasis. To test whether this phenomenon 

could explain the observed diminishing fitness returns, a Type II regression was applied. 

Finding no correlation between observed and expected fitness in either carbon environment 

(Type II regression: P > 0.05, n = 66, Fig. S3), while both slopes were significantly smaller 

than 1 corroborated that the fitness of multiply auxotrophic genotypes showed a pattern of 

true diminishing returns.  
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Table 1. Number of epistatic interaction identified in 50 double- and 16 triple gene deletion mutants 

in both carbon (C) environments analysed.  

 Epistasis
1
 in double mutants  Epistasis

1
 in triple mutants 

C-environment negative zero positive  negative zero positive 

Fructose 14 27 9  6 6 4 

Succinate 22 14 14  4 1 11 

 

1
For details on how epistatic interactions were determined please see Materials and methods.  

 

Taken together, these experiments showed that the fitness consequences of losing 

conditionally essential biosynthetic genes did not increase linearly with the number of 

biosynthetic functions lost and that negative epistasis caused diminishing returns with mutant 

fitness. 

 

Figure 2. Change of relative fitness with increasing numbers of auxotrophy-causing mutations 

and relation between epistasis and expected relative fitness. (A, B) Competitive fitness of mutants 

bearing one, two or three auxotrophy-causing mutations relative to prototrophic WT cells in minimal 

media containing either (A) fructose or (B) succinate. The dashed line represents fitness levels of the WT. 

Different letters indicate significant differences among deletion mutants (univariate ANOVA followed by a 

LSD post-hoc test: P < 0.05; n = 11 (single deletions), 50 (double deletions), and 16 (triple deletions)). 

Boxplots: median (horizontal lines in boxes), interquartile range (boxes, 1.5x- interquartile range 

(whiskers). (C, D) Relation between absolute epistasis and expected fitness determined in minimal 

medium containing (C) fructose and (D) succinate. Values of all double- and triple gene deletion mutants 

are shown and both panels include the results of a Pearson’s product-moment correlation. 

.  
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3.3 Fitness consequences of auxotrophy-causing mutations depend on the available 

carbon source 

Directly comparing the fitness levels the single gene deletion mutants achieved in both 

environments revealed that only the fitness of one of eleven auxotrophs tested (i.e. ΔilvA) 

was plastic with respect to the carbon source present and significantly fitter in the fructose- 

than in the succinate-containing environment (FDR-corrected independent samples t-test, P 

< 0.05, d.f. ≥ 8; Fig. 3 A). When multiply auxotrophic genotypes were also considered, a 

tenth (5/50) of the double mutants and two of the 16 triple mutants tested attained a 

significantly higher relative fitness when grown in fructose than when grown in succinate 

(FDR-corrected independent samples t-test: P < 0.05, d.f. ≥ 10 ; Fig 3 B and C). Conversely, 

about half of the other double and triple mutants (22/50 and 10/16, respectively) were fitter 

in the succinate than in the fructose-containing environment (FDR-corrected independent 

samples t-test: P < 0.05, d.f. ≥ 10; Fig. 3 B and C). However, the fitness of 23 double 

mutants (46%) and four triple mutants (25%) was unaffected by the available carbon source 

used (FDR corrected independent samples t-test: P < 0.05; Fig 3 B and C). Together, these 

results suggest that the fitness of auxotrophic mutants is highly dependent on the ambient 

environmental conditions. 

 

 

 

 

 

 

Figure 3. Reaction norms of competitive fitness of different auxotrophic genotypes against 

prototrophic wild type in two different carbon environments. Each line depicts the competitive 

fitness of genotypes having (A) one, (B) two, or (C) three auxotrophy-causing mutations. Competition 

experiments against prototrophic WT (dashed line) were conducted in minimal media containing either 

fructose (F) or succinate (S). Differences in the mutants’ relative finesses in both carbon environments 

were assessed using FDR-corrected independent sample t-tests (P < 0.05, d.f. ≥ 8). Numbers above 

panels indicate the number of cases (left) and the total number of mutants tested (right). 

 

 

.  
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3.4 Plasticity and epistasis jointly influence the fitness of multiply auxotrophic 

mutants 

The above findings suggested that interactions among mutations (i.e. epistasis, G x G), 

interactions between mutations and the environment (G x E), and possibly also interactions 

of epistasis and the environment (G x G x E) determined the fitness of defined auxotrophic 

mutant genotypes. Statistically evaluating the effect of these three parameters on the mutants’ 

fitness indicated indeed a highly significant effect of epistasis (univariate ANOVA: P < 

0.0001), G x E (univariate ANOVA: P < 0.001), and G x G x E (univariate ANOVA: P < 

0.0001). Together, these findings show that the fitness associated with loosing conditionally 

essential biosynthetic genes is strongly affected by other metabolic mutations in the genome 

as well as the given nutritional environment. 

 

4. Discussion 

Knowledge on how fitness effects of a given mutation depend on other mutations present in 

the genome, the selective environment or both is key to understanding adaptive processes, 

because the topology of the genotype-phenotype map determines the evolutionary 

trajectories that are accessible to organisms evolving within these fitness landscapes. Here we 

focus on the fitness consequences upon loss of one or more conditionally essential amino 

acid biosynthesis genes from bacterial genomes. Our computational analysis of 1,432 

eubacterial genomes uncovered that in the vast majority of cases pairs of different 

auxotrophy-causing mutations co-occurred significantly more often than is expected by 

chance.  Experimentally evaluating the fitness consequences resulting from introducing one, 

two, or three auxotrophy-causing mutations into the genome of E. coli in the presence of the 

required amino acids and in one of two carbon environments unravelled that (i) both positive 

and negative epistasis were prevalent among auxotrophy-causing genes, (ii) epistasis 

produced diminishing returns with increasing expected genotype fitness, and (iii) both the 

fitness of auxotrophic mutants and epistatic effects strongly depended on the carbon source 

available in the environment. 

In our computational analysis, auxotrophy-causing genes showed a strong tendency to co-

occur, which in most cases significantly exceeded what would be expected if mutations were 

randomly distributed (Fig. 1). Three main mechanisms may, independently or in 

combination, have contributed to this pattern: First, an increased co-occurrence of two 

amino acid auxotrophies could reflect the likelihood of the two corresponding amino acids 

to co-occur in the respective genotype’s natural environment, thus favouring mutants that 

loose the corresponding biosynthesis genes. Indeed, the partial correlation observed between 

the co-occurrence of amino acids in nature and the co-occurrence of amino acid 
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auxotrophies in bacterial genomes (Fig. S 1) supports this scenario. Second, the probability 

of two amino acid biosynthesis genes to be simultaneously lost might be indicative of the 

fitness consequences arising upon loss of both genes in the corresponding bacterial strains. 

Third, amino acid biosynthesis genes that are localized in close spatial proximity on a 

bacterial chromosome might be simultaneously lost in large chromosomal deletion events, 

thus causing an increased co-occurrence of two amino acid auxotrophies. 

In contrast, drift is unlikely to produce the observed co-occurrence pattern, because 

randomly fixing deletion alleles should rather display a frequency distribution that is not 

different from a random distribution. Since this was the case in only two of the 190 pairwise 

comparisons considered, drift is unlikely to be a major determinant of the observed co-

occurrence pattern.  

However, statistically evaluating the relationship between the experimentally determined 

relative fitness or epistasis of different E. coli mutants with the frequencies, with which 

auxotrophy-causing mutations have been predicted to co-occur in eubacterial genomes (Fig. 

1), did not yield significant correlations in either case (Spearman’s rank correlation: P > 0.05). 

The lack of a statistical relationship between these parameters could be due to one or a 

combination of several of the following factors. First, bacteria frequently lose large portions 

of their genome. A simultaneous loss of multiple biosynthetic genes could thus explain the 

mismatch between the distribution of auxotrophy-causing mutations and expectations based 

on their epistatic interactions. Similarly, other mutations in the genome that were not 

considered in the present study could interact with auxotrophy-causing mutations, thus 

affecting the fitness of multiply-auxotrophic genotypes. Second, the effective size of bacterial 

populations is likely to affect the probability with which bacteria loose biosynthetic genes. 

Genetic drift is more effective when population sizes are small as is the case for most 

endosymbiotic bacteria. Under these conditions even non-adaptive alleles can fix in the 

population. Third, environmental conditions that the analysed eubacterial strains experience 

in their natural environments were not evaluated in the current study, yet can affect the 

fitness of multiply-auxotrophic genotypes. Fourth, epistatic interactions identified for E. coli 

might not be representative for the taxonomic diversity of eubacterial genomes analysed (Fig. 

1). Fifth, in our study, exclusively structural biosynthetic genes were deleted. However, in an 

amino acid-containing environment, natural selection might also favour mutations in 

regulatory elements, which could lead to the simultaneous deactivation of multiple 

biosynthetic pathways. Their subsequent loss from the mutants’ genome would reflect 

regulatory relationships among groups of genes rather than epistatic interactions among 

multiple genes that were individually lost. Thus, future work is necessary to elucidate how 

auxotrophies evolve and to which extent epistatic interactions determine the mutational 

paths taken.   
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Previous work showed positive fitness effects generally accompany the loss of a conditionally 

essential biosynthetic gene when the focal metabolite is sufficiently available in the 

environment [24,85,86,181,194]. However, our study revealed that the sign and magnitude of 

fitness consequences can drastically change depending on the environment and the presence 

of additional auxotrophy-causing mutations. As such, our results strikingly matched 

theoretical predictions of a recent study, in which a flux-balance analysis of the metabolic 

network of E. coli identified strong effects of the carbon source used on epistatic interactions 

among deleted metabolic genes [116]. However, which mechanisms caused this functional 

relationship? One factor that could account for these observations, is that the loss of 

conditionally essential biosynthetic genes is likely to trigger a strong regulatory response that 

allows bacterial cells to survive despite amino acid starvation [195]. Most probably, these 

changes involve an up-regulation of amino acid transporters as well as a rerouting of 

metabolic fluxes through multiple pathways [195] leading to a globally restructured 

metabolism [196]. Since such systemic changes may be specifically tailored to compensate 

specific shortages associated with losing certain sets of genes, these regulatory differences 

could explain the observed plasticity and epistatic interactions among mutations. Second, our 

competition experiments were performed in relatively complex nutritional environments 

that, besides one of two carbon sources, also contained eleven different amino acids. Thus, 

epistatic effects could be caused by a competitive inhibition of amino acid uptake systems 

[197], competition of transporters for membrane space [198], or effects resulting from 

alterations of cell-internal amino acid pools [199]. Future work should examine these 

possibilities.  

Interestingly, increasing the number of metabolic auxotrophies did not result in an additive 

increase of fitness effects caused by individual mutations, but on average mostly showed an 

overall decline or neutral effect in the succinate and fructose environment respectively (Fig. 2 

A and B). This observation is consistent with previous experimental works [96,117,186,187] 

showing negative epistasis acts to diminish mutational effects. Finding this pattern also for 

auxotrophy-causing mutations suggests a common mechanism caused the beneficial fitness 

effects of different single gene deletion mutants. Intriguingly, a saving of protein expression 

costs has been previously suggested as a mechanistic cause for the fitness effects upon loss of 

conditionally essential biosynthetic genes from the genome of E. coli [181] as well as for the 

diminishing returns epistasis observed when four beneficial alleles were analysed in 

Methylobacterium extorquens AM1 [96]. In any case, if epistatic interactions determine the order 

in which auxotrophy-causing mutations are fixed in bacterial genomes, the current work 

provides several testable hypotheses that could be verified in a laboratory-based evolution 

experiment. 



80 
 

Finally, a particularly strong beneficial effect upon loss of the first metabolic gene may act as 

a spring-loaded mechanism that facilitates the establishment of metabolic cross-feeding 

interactions within microbial communities [23,24,51,200]; or aids the establishment of 

symbiotic associations between microbial symbionts and their host  [201,202].  

 

5. Conclusions and outlook 

Our study provides first empirical insights into the selective consequences bacterial 

genotypes face when losing multiple auxotrophy-causing mutations. Especially the observed 

impact the ambient environment and the number of genes lost had on the fitness of 

auxotrophic genotypes implies a strong context-dependency of metabolic loss-of-function 

mutations that needs to be taken into account when such mutations are interpreted. 

Observing that epistasis produced diminishing returns with increasing expected genotype 

fitness points to a yet unknown molecular mechanism that constrains the fitness achievable 

by multiply auxotrophic genotypes. Identifying this mechanism will not only shed light on 

what causes the strong fitness benefits conferred by auxotrophy-causing mutations, but will 

also help to understand the molecular links that connect different biosynthetic genes. In 

particular laboratory-based evolution experiments, in which bacterial populations evolve 

under carefully controlled environmental conditions, provide a unique opportunity to 

identify which genes (e.g. regulatory versus structural genes) are prime targets of natural 

selection during the adaptive evolution of metabolic auxotrophies. Together with the 

approaches used in this study, such experiments would allow to further dissect how 

phenotypic plasticity and epistasis interactively guide the adaptive loss of biosynthetic 

functions.  
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Abstract: 

Metabolism is essential to organismal life, because it provides energy and building block 

metabolites. Even though it is known that the biosynthesis of metabolites consumes a 

significant proportion of the resources available to a cell, the factors that determine their 

production costs remain less well understood. In this context, it is especially unclear how the 

nutritional environment affects the costs of metabolite production. Here we use the amino 

acid metabolism of Escherichia coli as a model to show that the point at which a carbon source 

enters central metabolic pathways is a major determinant of individual metabolite production 

costs. Growth rates of auxotrophic genotypes, which in the presence of the required amino 

acid save biosynthetic costs, were compared to the growth rates that prototrophic cells 

achieved under the same conditions. The experimental results showed a strong concordance 

with computationally-estimated biosynthetic costs, which allowed us, for the first time, to 

systematically quantify carbon source-dependent metabolite production costs. Thus, we 

demonstrate that the nutritional environment in combination with network architecture is an 

important but hitherto underestimated factor influencing biosynthetic costs and thus 

microbial growth. Our observations are highly relevant for the optimization of 

biotechnological processes as well as for understanding the ecology of microorganisms in 

their natural environments. 
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1. Introduction 

Most bacterial species are heterotrophic and thus derive their carbon from breaking down 

organic compounds [203]. The structural diversity of organic compounds bacteria encounter 

in their natural environments is remarkable and for several species it is known that they can 

utilize an extremely wide range of chemically different carbon sources [61]. Escherichia coli, for 

instance, is able to utilize more than 80 compounds as sole source of energy and carbon 

[204]. However, since carbon sources differ drastically in terms of their energy content as 

well as the molecular routes how a given bacterial cell can import and degrade the 

corresponding chemical, bacterial growth depends decisively on the nature of the carbon 

source used [205]. In this context, it has been proposed that biochemical constraints in the 

allocation of resources may limit the growth rate of bacterial cells [206,207]. In particular, 

such a pattern could be caused by the distribution of fluxes through the metabolic network 

to provide an optimal supply of building block metabolites (i.e. amino acids, nucleotides, and 

lipids) and growth factors (i.e. vitamins and co-factors) for cell growth. 

Assuming that the architecture of a cell’s metabolic network determines fluxes through the 

network, flux distributions should depend on the point at which a given carbon source enters 

the metabolic network. Indeed, it has been shown that the entry points of a given carbon 

source can cause considerably higher relative fluxes through reactions closer to the entry 

point than fluxes of reactions more distant to the entry point of the carbon source [208]. As 

a consequence, locally increased fluxes could also affect the biosynthetic costs of metabolites 

by locally increasing the amount of substrate available to a given biosynthetic reaction 

relative to all other growth-related functions. Thus, differences in flux distributions caused by 

different carbon sources should also translate into different biosynthetic costs of metabolites. 

Here we test this hypothesis by combining theoretical predictions with targeted experiments 

using amino acid biosynthesis of E. coli as a tractable model. Amino acid metabolism was 

chosen as a test case, because the biosynthesis of amino acids diverts an immense fraction of 

the total carbon source budget of a bacterial cell during growth [209]. It is therefore not 

surprising that bacterial species are under strong selective pressure to economize their amino 

acid usage [88,210]. We used a genome-scale model of the metabolic network of E. coli to 

estimate the biosynthetic cost for each of 20 proteinogenic amino acids depending on the 

utilized carbon source. Next, we validated these predictions by comparing the growth rates 

of genotypes auxotrophic for individual focal amino acids and the prototrophic wild type of 

E. coli grown on different carbon sources, while supplementing increasing concentrations of 

the focal amino acid to the growth environment. Under these conditions, auxotrophic 

genotypes increasingly saved the costs to biosynthesize the focal amino acid relative to the 

prototrophic wild type, and could thus invest the economized carbon source in other cell 

growth-related functions. By gradually relaxing the amino acid limitation for the growth of 



87 
 

auxotrophs in this way, and comparing their maximum growth rates relative to the growth 

rates achieved by prototrophic wild type cells, allowed quantifying the carbon source-

dependent costs to produce individual amino acids.   

Both theoretical predictions and experimental results revealed strong differences in the 

production costs of central metabolites in bacteria depending on the point at which the 

utilized carbon source enters the cell’s metabolic network. The observed shifts of 

biosynthetic costs depending on the utilized carbon source are physiologically relevant and 

are caused by the structure of the underlying metabolic network. 

 

2. Materials and methods 

2.1 Prediction of biosynthetic costs 

The biosynthetic costs of all 20 proteinogenic amino acids for 61 different carbon sources 

(see Table S3), which theoretically support the growth of E. coli, were estimated using flux 

balance analysis (FBA). Biosynthetic costs 𝑝𝑘,𝑥  of an amino acid k were defined as the 

proportion of carbon source x, which is at least required to produce 1 mmol gDW-1 h-1 of 

the amino acid relative to the amount of carbon source x required to form 1 mmol gDW-1 h-1 

biomass. The estimation incorporates the ‘dual costs of amino acids’ [88]: (1) the resources 

required to generate energy in form of high-energy phosphor bonds (ATP and GTP) as well 

as the reducing power in form of NADH, NADPH, and FADH2, which is consumed by 

enzymes of the biosynthetic pathway, and (2) the resources required to produce precursors 

for amino acid synthesis. 

Two optimizations were performed within the FBA-framework using a genome-scale 

metabolic network reconstructions of E. coli K12 [211]: (1) nk,x was defined as the minimum 

amount of a carbon source x (in mmol gDW-1 h-1; DW = dry weight) to produce one unit 

(i.e. 1 mmol gDW-1 h-1) of an amino acid k. nk,x was determined by minimizing the influx of 

the carbon source x and fixing an outflow reaction of the amino acid k to a flux value of 1 

mmol gDW-1 h-1. (2) mx was defined as the minimum amount of a carbon source x required 

to form 1 mmol gDW-1 h-1  biomass. mx was calculated by constraining the flux through the 

biomass reaction (with 53.95 GAM estimate) of the metabolic model to a value equal 1 mmol 

gDW-1 h-1 and by minimizing the influx of the carbon source x. The optimizations were 

performed within Matlab 7.14 (Mathworks, USA) using the COBRA Toolbox version 2.0.5 

[212] and the TOMLAB /CPLEX version 7.9 (TOMLAB Optimization, USA) as linear 

programming solver. The media elements used for the genome-scale model were Ca2+, Cl-, 

CO2, Co2+, Cu2+, Fe2+, Fe3+, H+, H2O, K+, Mg2+, Mn2+, molybdate, Na2+, NH4
+, Ni2+, O2, 

phosphate, SO4, tungstate, and Zn2+. 
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Finally, the biosynthetic cost estimations pk,x for all amino acid – carbon source combinations 

were calculated as 

𝑝𝑘,𝑥 = 𝑛𝑘,𝑥 𝑚𝑥⁄ . 

 

2.2 Bacterial strains  

Amino acid auxotrophic genotypes used in this study have been generated as described 

previously [181] (Table S2). The auxotrophic strains were derived from the E. coli BW25113 

strain, which is the prototrophic wild type. Mutant strains were cured of the kanamycin 

resistance marker by excising the kanamycin cassette from the mutant’s genome using pCP20 

plasmid, which harbors the FLP recombinase [191]. For unknown reasons, it was not 

possible to cure the tyrosine auxotroph of the kanamycin resistance. Thus, the original 

kanamycin resistant mutant was used for growth kinetic assays instead. However, it has been 

previously demonstrated that this resistance marker does not incur detectable fitness effects 

under non-selective (i.e. antibiotic-free) conditions [213]. 

 

2.3 Culture conditions 

All cultures were incubated under shaking conditions at 30 °C and grown in Minimal Media 

for Azospirillum brasilense (MMAB) [158] containing K2HPO4 (3 g L-1), NaH2PO4 (1 g L-1), 

NH4Cl (1 g L-1), MgSO4 ∙ 7H2O (0.3 g L-1), KCl (0.15 g L-1), CaCl2 ∙ 2H2O (0.01 g L-1), FeSO4 

∙ 7H2O (0.0025 g L-1), Na2MoO4∙ 2H2O (0.05 g L-1), and using different carbon sources. The 

concentrations of the carbon sources were 5 g L-1 D-fructose, 8.86 g L-1 disodium succinate, 

8.61 g L-1 potassium L-lactate, 4.42 g L-1 glycerol, 8.17 g L-1 sodium pyruvate, 10.64 g L-1 

disodium L-malate, 5 g L-1 D-maltose monohydrate or 5.06 g L-1 D-xylose.  The 

concentrations of carbon sources were chosen such that – at least theoretically – the same 

amount of biomass could have been produced under all nutritional conditions. For this, we 

used the above-introduced value 𝑚𝑥, i.e. the minimum amount of carbon source x required 

to form one unit of biomass. The final concentration of carbon source x was calculated as 

𝑐𝑥 = 𝑐𝐹𝑟𝑢 ⋅ 𝑚𝑥 𝑚𝐹𝑟𝑢⁄  using 5 g L-1 fructose ( 𝑐𝐹𝑟𝑢  = 27.75 mM) as reference. This 

procedure is similar to the approach described by [214]), where concentrations were adjusted 

to match the number of reducible carbon atoms. However, using the genome-scale metabolic 

network of E. coli allows to take the physiological capabilities of the cell to transform a 

certain carbon source into biomass more precisely into account. 

The eight carbon sources fructose, maltose, xylose, glycerol, pyruvate, lactate, succinate, and 

malate were chosen, because these substrates enter the central metabolic network of E. coli at 

different points (Fig. 1A) and the predicted biosynthetic costs of amino acids differed 

considerably between these carbon sources (Fig. 1B). Fructose, maltose, and glycerol are 
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catabolized via the Embden-Meyerhof-Parnas (EMP) Pathway. Xylose is converted to the 

pentose phosphate pathway intermediate D-xylulose 5-phosphate. L-lactate can be oxidized 

to pyruvate, a central metabolite, which links the glycolysis and the tricarboxylic acid (TCA) 

cycle. The carbon sources succinate and L-malate are intermediates of the TCA cycle. 

 

2.4 Growth kinetic assays 

The response of seven amino acid auxotrophic E. coli mutants and the prototrophic wild type 

strain in terms of the maximum growth rate to the supplementation of the focal amino acids 

was quantified in growth kinetic assays. For this, seven genotypes that were auxotrophic for 

one of the following amino acids were selected (deleted gene in brackets): histidine (hisD), 

tyrosine (tyrA), phenylalanine (pheA), tryptophan (trpB), leucine (leuB), lysine (lysA), and 

isoleucine (ilvA). These amino acids were chosen based on three criteria: (1) these amino 

acids cannot be catabolized and utilized as carbon source by E. coli. Tryptophan was the 

exception, which can be partially degraded to pyruvate and indole (indole cannot be further 

degraded) [215]. (2) No other cellular functions besides protein synthesis is known for these 

seven amino acids. For example, E. coli cannot degrade methionine, but can utilize it also as a 

precursor for S-adenosyl-L-methionine (SAM), the major methyl group donor in the cell. (3) 

No other reaction is known, with which E. coli can transform another metabolite into the 

focal amino acid [190]. The above criteria were applied to exclude unwanted confounding 

effects to influence the growth kinetics. 

For each amino acid, six E. coli BW25113 wild type colonies and six colonies of the 

corresponding auxotrophic genotype were used to inoculate 1 ml overnight cultures (16 h) 

with fructose as carbon source. The media used to cultivate auxotrophic strains was 

supplemented with the amino acid the focal auxotroph required to grow (see Table S1 for 

exact amino acid concentrations). Each of these cultures was used to inoculate eight 1 ml 

pre-cultures (96-deep-well plates, Eppendorf, Germany), each containing one of the eight 

different carbon sources (i.e. fructose, maltose, xylose, glycerol, pyruvate, lactate, succinate, 

and malate) and the focal amino acid (see Table S1 for exact amino acid concentrations). Pre-

cultures were incubated for 26 h at 30 °C under shaking conditions (220 rpm). 

To test whether the maximum growth rates of prototrophic wild type cells was sensitive to 

increasing amino acid concentration in the growth medium, wild type precultures were used 

to inoculate 50 µl cultures in 384-well plates (flat bottom and transparent, Greiner Bio-One, 

Kremsmünster, Austria) with an initial cell density of 105 colony-forming units (CFUs) mL-1. 

The MMAB medium used for these experiments contained the same carbon source as the 

preculture, yet in addition one of eight different concentrations of the focal amino acid, with 

the lowest level corresponding to no amino acid supplementation (see Table S1 for exact 

amino acid concentrations). In this way, each of the 64 combinations of eight carbon sources 
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and eight amino acid concentrations was independently replicated six times. A second 384-

well plate with the exact same media layout was inoculated accordingly from the precultures 

of auxotrophic genotypes. Wells without amino acid supplementation were inoculated with 

the wild type strain as control. Growth kinetics were determined in a Tecan Infinite 200 Pro 

plate reader (Tecan Group, Männedorf, Switzerland) for automated kinetic measurements for 

48 h at 30 °C and a 10 min kinetic cycle consisting of 7.5 minutes of orbital shaking (2 mm 

amplitude), 1 min waiting (no shaking), and 1.5 minutes for measuring the optical density at 

600 nm (OD600nm, 10 nm bandwidth) with 5 flashes. 

 

2.5 Statistical data analysis 

For each culture of the growth kinetic experiment, the maximum growth rate µmax was 

determined. Since E. coli reaches substantially different maximum growth rates in the eight 

different carbon source regimes and to compare the increase of µmax with increasing amino 

acid concentration, the µmax values were normalized by the median of the maximum growth 

rates the wild type strain achieved under the same carbon condition without amino acid 

supplementation. Hereafter, we will refer to the normalized maximum growth rates as µ̅max. 

The increase of the growth rate per µM of the focal amino acid (7 data points for the 

auxotrophic genotypes, 8 for the wild type strain) was calculated for each cognate population 

(i.e. populations which originated from the same clonal colony) and for each carbon source 

by linear regression [166,216]. 

For correlation analysis between increases of growth rates with either amino acid 

concentration or with predicted metabolic costs, a linear mixed-effects model was fitted 

considering the ‘cognate population identity’ as random effect and the ‘amino acid concentration’ or 

‘predicted metabolic costs’, respectively, as fixed effects. Models were fitted by maximizing the 

restricted log-likelihood until convergence. Conditional R2 values of the fitted models were 

calculated according to [217]. 

Principle component analysis (PCA) and k-means clustering were performed to analyze the 

variance of biosynthetic costs of amino acids under various carbon sources. Only the main 

PCA axes, which together explained more than 90% of the observed variation, were used for 

k-means clustering. The algorithm by [218], for k-means clustering was applied starting with 

25 random initial sets and optimization (minimizing within-group sum of squares) until 

convergence. P-values were corrected after multiple testing using the false discovery rate 

(FDR) procedure of [165]). All statistical analyses were using the R software (version 3.1.1) 

[166]. 
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3. Results 

3.1 Metabolic costs of amino acid depend on carbon source 

To determine whether or not the metabolic costs to biosynthesize each of 20 proteinogenic 

amino acids depend on the carbon source used, amino acid production costs were 

computationally estimated for all 61 carbon sources, which are known to support the growth 

of E. coli K12 as sole source of carbon and energy [219] (Fig. 1). The mean costs of amino 

acids predicted in this way quantitatively matched previous predictions of energetic costs of 

amino acid biosynthesis (Pearson's product-moment correlation: R = 0.96, N = 20, P < 

0.0001, supporting information Fig. S1, [88]). This correlation shows that the cost prediction 

method presented here is in line with previous estimations, but further enables to 

systematically assess metabolite production costs differences between various carbon 

substrates. To identify whether and to which extent the metabolic costs of a single amino 

acid were affected by the available carbon source, the metabolic cost estimated for all amino 

acid and 61 carbon sources were analyzed by principle component analysis (PCA) (Fig. 1C).  

Clustering for the correlation values of the observed amino acid costs with these three main 

principal components revealed three distinct groups: group 1 (blue) consisted of amino acids 

with precursors in glycolysis and/or the pentose phosphate pathway (i.e. Cys, Gly, His, Met, 

Phe, Ser, Trp, Tyr, and Ser), group 2 (green) contained pyruvate-derived amino acids (i.e. Ala, 

Leu, and Val), and group 3 (red) comprised amino acids with precursors from the 

tricarboxylic acid (TCA) cycle (i.e. Arg, Asn, Asp, Glu, Gln, Ile, Lys, Pro, and Thr) (Fig. 1A). 

The differences between groups reflect diverging biosynthetic costs associated to different 

classes of carbon sources: Amino acids of group 1 are metabolically cheaper to produce 

when glycolytic substrates (sugars/ sugar alcohols) are utilized as carbon source, yet more 

cost-intensive when only gluconeogenic substrates (e.g pyruvate, lactate, TCA-cycle 

intermediates) are available, and vice versa for the amino acids of group 2 and 3 (Tukey 

multiple comparisons of means: P < 0.05, for samples sizes see Fig. 1D). Consequently, there 

is a cost trade-off between the different groups of amino acids: reduced costs to produce 

amino acids in one group come at the expense of higher costs to synthesize amino acids of 

another group. 
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Furthermore, the quantitative impact of different types of carbon sources on the absolute 

metabolic costs of amino acids varied among amino acids (Fig. 2). The highest variability of 

metabolic costs were observed for the leucine and glutamate, whose biosynthetic costs varied 

up to 13% from the mean metabolic costs based on the estimations assuming 61 different 

types of carbon sources. The lowest variability of 6% was observed for alanine. 

Figure 1. In silico estimations of carbon source- and network structure-dependent 

metabolic costs of proteinogenic amino acids. (A) Schematic representation of the central 

metabolism of Escherichia coli (glycolysis – solid arrows, TCA cycle – dashed arrows, pentose 

phosphate pathway – dotted arrows). Carbon sources used in this study are shown in boldface, 

amino acids in italics. (B) Estimated metabolic costs of amino acids for 8 carbon sources including 

4 organic acids (grey) and 4 sugars/ sugar-alcohol (black). For a better visualization, metabolic 

costs of each amino acid were z-transformed (same range of values). (C) Principle component 

analysis (PCA) of estimated metabolic costs of amino acids based on 61 carbon sources. Shown 

are the correlations of the metabolic costs of each amino acid with the three main PCA 

components (Comp 1-3), which together explain >91% of the observed variation. Data points are 

colored according to k-means clustering with three centers: (group 1, blue): Cys, Gly, His, Met, 

Phe, Ser, Trp, and Tyr;  (group 2, green): Ala, Leu, and Val; (group 3, red): Asn, Asp, Arg, Gln, 

Glu, Ile, Lys, Pro, and Thr. (D) Estimated (z-transformed) metabolic costs of amino acids for 

glycolytic- and gluconeogenic carbon sources. Amino acids are grouped according to the k-means 

clustering in (C). Different letters denote significant differences (Tukey multiple comparisons of 

means: P < 0.05, numbers below amino acid groups denote sample sizes). 
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3.2 The response of auxotrophs to amino acid supplementation depends on the 

carbon source 

The maximum growth rates of all seven auxotrophs were tested under amino acid 

supplementation and eight different carbon source conditions. Auxotrophic strains were 

chosen to study the effect of amino acid supplementation and to ensure that the cells actually 

save the biosynthetic costs to produce the focal amino acids and use amino acids from the 

media. The seven auxotrophies were chosen for the experiments, because no other cellular 

function than the incorporation into proteins have been described for the respective amino 

acids. Other effects, than the saving of metabolic costs, of the amino acid supplementation 

on the growth of the E. coli auxotrophs could therefore be prevented.  

The maximum growth rate of all seven auxotrophs increased significantly with increasing 

amino acid supplementation (FDR-corrected linear mixed-model fit by maximizing the 

restricted log-likelihood: P < 0.05, n=42, Fig. 3 and Fig. S2). The only exception to the  

otherwise consistent pattern was the case of the isoleucine auxotroph using succinate as 

carbon source (FDR-corrected linear mixed-model fit by maximizing the restricted log-

likelihood, P = 0.42, n = 42). In contrast, the maximum growth rates of populations of 

prototrophic E. coli wild type cells did not respond significantly to increasing amino acid 

concentrations in 32 out of 56 amino acid-carbon source combinations analyzed (Fig. S3). In 

22 cases, the maximum growth rate increased significantly with amino acid supplementation, 

in two cases (i.e. histidine and xylose/ succinate) it even decreased significantly with 

increasing amino acid concentrations (FDR-corrected linear mixed-model fit by maximizing 

the restricted log-likelihood: P < 0.05, n=42, Fig. S3). 

In virtually none of the cases examined did the auxotrophic genotypes reach maximal growth 

levels of WT populations (Figs. 3 and S2), indicating that under the focal conditions growth 

of auxotrophic genotypes was mainly limited by the availability of the required amino acid. 

After normalizing the auxotroph's growth rate by the growth rate the prototrophic WT strain 

had achieved under the same carbon source condition without amino acid supplementation 

(in the following, µ̅max refers to the normalized growth rate), it became clear that the increase 

Figure 2. Variability of amino acid metabolic costs. The variability of metabolic costs was 

calculated as the 95% confidence interval size divided by the mean metabolic cost of the respective 

amino acid based on the costs estimations assuming 61 different types of carbon sources. 
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of the relative maximum growth rate µ̅max strongly depended on the carbon source provided 

for growth (FDR-corrected repeated measures ANOVA: all P < 0.001, dfcarbon sources = 7, 

dferror = 35, Figs. 3 and S2). For example, the tryptophan auxotroph responded to tryptophan 

supplementation with an increase of 4.4 µ̅max (mM Trp)-1 (mean) with fructose as carbon 

source, whereas with 10 µ̅max (mM Trp)-1 the increase was significantly higher when utilizing 

pyruvate (paired t-test: P < 0.001, n = 6, Fig. 3). 

 

 

 

 

 

 

 

 

Taken together, the growth-kinetic assays revealed a strong effect of the carbon source on 

the growth physiology of the seven amino acid auxotrophic strains tested when the 

availability of the required amino acid was limiting growth. 

 

3.3 Biosynthetic costs can explain the growth rate increase upon amino acid 

supplementation 

A significant positive correlation between estimated biosynthetic costs and growth rate 

increases was observed for five of the seven amino acids tested: histidine (P < 0.05), 

tryptophan (P < 0.01), leucine (P < 0.001), lysine (P < 0.05), and isoleucine (P < 0.001, 

FDR-corrected linear mixed-model fit by maximizing the restricted log-likelihood: n=48, Fig. 

4). These five amino acids represent all three main groups identified in the above-mentioned 

in silico analysis of the costs to biosynthesize the 20 proteinogenic amino acids (Fig. 1C). In 

other words, the same metabolic trade-offs in the efficiencies to synthesize amino acids that 

were theoretically predicted (Fig. 1D) were also found experimentally (Fig. 4). 

 

Figure 3. Carbon source-dependent growth rate response of the tryptophan auxotrophic 

genotype to increasing tryptophan supplementation. Shown are the mean maximum growth rates 

(± 95% confidence interval) of the tryptophan (Trp) auxotrophic genotype relative ( µ̅max) to the 

prototrophic wild type (=1, dashed line) in four carbon source regimes and seven different Trp 

concentrations. Filled circles indicate growth rates of the auxotrophs, which are significantly lower 

than the maximum growth rate of the prototrophic wild type under the same carbon source conditions 

without Trp supplementation (FDR-corrected Welch two sample t-tests: P < 0.05, n = 6). Unfilled 

circles denote no statistical difference. This figure is representative for the complete data set shown 

in Fig. S2. 
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A significantly negative correlation was observed between the predicted biosynthetic costs 

and growth rate increases for tyrosine (FDR-corrected linear mixed-model fit by maximizing 

the restricted log-likelihood: P = 0.001, n=48, Fig. 4), while no statistical relationship 

between these two parameters could be detected for phenylalanine (FDR-corrected linear 

mixed-model fit by maximizing the restricted log-likelihood: P = 0.6, n=48, Fig. 4).  

 

4. Discussion 

Microorganisms invest a significant proportion of their available carbon resources in the 

biosynthesis of metabolites. The amount of carbon source a cell needs to produce individual 

metabolites (i.e. biosynthetic costs) can be estimated based on the organisms’ genome 

sequence and information on the nutritional composition of the natural habitat [220]. 

However, natural environments can fluctuate widely in the availability of different resources 

[221,222] and many microorganisms are able to utilize a broad range of different carbon 

sources [61]. Two main questions arise from these facts: i) How are metabolite production 

costs affected by the nutritional environment?, and ii) How variable are these costs within an 

organism? Here, we tested for the first time whether the variability of biosynthetic costs 

within a given organism can be explained by the carbon source used. The main findings of 

this study are that the structure of the metabolic network determines biosynthetic costs and 

Figure 4. Correlation of predicted- and measured biosynthetic costs. The response in growth 

rate of auxotrophic genotypes to amino acid supplementation can be explained by the metabolic 

network structure. Shown are the correlations of predicted metabolic costs 𝑝𝑘,𝑥 (x-axes) for amino 

acid k and carbon source x and the experimentally-determined increase of the relative growth rates 

µ̅max of auxotrophs with increasing amino acid concentration (Y). Mean values ± 95% confidence 

intervals are shown. See Table S1 for amino acid abbreviations. 
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that these costs are variable depending on (1) the position of the precursor metabolites 

within the metabolic network, and (2) the point at which the carbon source enters central 

metabolism (Fig. 1D). 

A genome-scale metabolic network of E. coli was employed to predict differences in amino 

acid production costs depending on the nutritional environment. To test the in silico cost 

estimations, growth kinetic assays of amino acid auxotrophic E. coli strains and the 

prototrophic wild type were performed for eight different carbon sources and seven amino 

acids in increasing concentrations. By comparing the maximum growth rates achieved by 

auxotrophic and prototrophic genotypes under specific conditions, it was possible to 

experimentally determine the biosynthetic costs, which auxotrophic genotypes saved by not 

having to synthetize the respective amino acid autonomously. The experimental measures 

derived in this way matched theoretical predictions of the carbon source-dependent 

biosynthetic costs for five of the seven amino acids tested: histidine, isoleucine, leucine, 

lysine, and tryptophan (Fig. 4). A discrepancy between cost prediction and experimental 

approximation was observed only for phenylalanine and tyrosine. The biosynthetic pathways 

for these two amino acids are closely connected: both amino acids originate from the 

common precursor chorismate and the biosynthetic pathways consist both of three reactions 

where only the second step is catalyzed by distinct enzymes [223]. Furthermore, both 

pathways are tightly co-regulated [224]. This interconnection of both pathways might cause 

additional effects besides the focal biosynthetic costs, when only one of the two amino acids 

is supplemented to the media.  

To avoid confounding factors affecting the growth kinetics that are independent of 

biosynthetic costs, we focused our analysis on amino acids, which cannot be degraded and, 

hence, cannot be utilized as an alternative carbon source. Also, by using auxotrophic 

genotypes that cannot convert any other metabolite into the focal amino acid [190], it was 

possible to directly and precisely control the amount of the focal amino acid that was 

available to the cells. Taken together, our study provides, for the first time, a comparison of 

the growth response of E. coli to amino acid supplementation with a metabolic model using 

the flux balance analysis framework. The detected cost differences between carbon sources 

strongly influenced bacterial growth and thus significantly affected bacterial fitness.  

To understand the evolution of a microbial metabolic network requires knowledge on the 

factors that determine biosynthetic costs within a given organism. The results presented in 

this work provide first evidence that metabolite production costs are affected by 

environmental factors such as the available carbon source. Most notable differences were 

found for the amino acids leucine, glutamate, and glutamine, whose costs varied by up to 

13% between carbon sources. The observation of carbon source-dependent metabolic costs 

of amino acids is in line with recent findings that gene deletion mutations, which lead to the 
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loss of biosynthetic functions, can have different fitness effects depending on which carbon 

source is provided for growth [213]. In addition, it has been shown that synthetically 

generated amino acid-, nucleotide- , and vitamin auxotrophic mutants of E. coli had a 

significant fitness advantage over their prototrophic ancestor in environments where the 

respective metabolite was sufficiently present – even when both strains directly competed 

against each other [181]. These fitness benefits are likely to be due to the biosynthetic costs, 

which the auxotrophs save by not having to synthesize the respective metabolite [225].  

Another interesting outcome of our study was, that the comparison of the biosynthetic costs 

of all 20 proteinogenic amino acids for 61 different carbon sources pointed to a metabolic 

cost trade-off between the efficiencies to produce different classes of amino acids (Fig. 1D). 

Thus, amino acids that are less costly to produce utilizing one specific carbon source (e.g. 

amino acids derived from TCA cycle intermediates) relative to another carbon source come 

at the expense of higher costs for other amino acids (e.g. derived from glycolysis 

intermediates). Biochemical trade-offs are thought to play a key role for metabolic 

specialization [226]. Hence, our results provide a plausible explanation for the evolution and 

maintenance of metabolic cross-feeding interactions where subpopulations, which specialized 

on preferentially performing certain metabolic functions, share the products of these 

functions [24]. Based on our results, metabolite cross-feeding could be especially promoted 

in environments, where multiple carbon sources are simultaneously present and 

subpopulation have specialized on utilizing distinct carbon sources. Sympatric specialization 

to utilize different carbon sources has been observed in laboratory evolution experiments of 

E. coli [227,228]. In a prominent example of a long term evolution experiment, in which E. 

coli was serially propagated in glucose minimal media, an adaptive mutation emerged in one 

population after 31,500 generations, through which the newly evolved variants acquired the 

ability to utilize citrate as carbon source, which has been included as part of the media 

formulation [228]. In another long-term continuous culture of E. coli, where glucose was 

provided as sole carbon source, two subpopulations evolved: one, which utilized glucose and 

produced acetate as a metabolic by-product and a second subpopulation, which specialized 

to utilize the exogenously available acetate [227]. Consequently, the utilization of different 

carbon sources can cause significant differences in the distribution of metabolic fluxes 

[208,229,230] and, as shown in this study, different biosynthetic costs. Interestingly, the 

amino acid biosynthetic cost differences between the two specialized subpopulations in the 

two above mentioned examples are highly reciprocal, because glucose is a glycolytic carbon 

source, whereas citrate, or acetate, respectively are gluconeogenic substrates (Fig. 1D). These 

differences in turn could favor the evolution of amino acid cross-feeding, where each 

specialized subpopulation can receive mutual benefits by saving biosynthetic costs. 
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Our results are not only relevant to understand adaptive processes of bacteria that are 

exposed to different nutritional environments, but have also implications for  more applied 

contexts, for example the optimization of biotechnological processes where microorganism 

are used to produce value-added compounds such as biofuels, amino acids, or recombinant 

proteins. Metabolic engineering uses recombinant DNA techniques to modify the structure 

of metabolic networks by introducing new biosynthetic capabilities to the cell or improving 

the production rate of a specific molecule [231]. Another way to optimize production rates of 

desired metabolites is to rationally design the nutritional environment that is used as culture 

media [232]. Based on the presented results, it will be possible to increase the yield of a 

desired compound by rationally choosing a carbon source that minimizes production costs of 

the focal metabolite. Thus, a better understanding of the (environmental) factors that 

determine the production costs of desired compounds can significantly improve 

biotechnological production processes. 

All growing cells allocate resources to different biosynthetic pathways in response to the 

nutritional environment. The resource costs associated with the biosynthesis of metabolites 

strongly affect the fitness of a species. In this study, the interplay between the chemical 

nature of a carbon source and its conversion into cell constituents was systematically 

assessed. The presented results unravel the link between a cell’s nutritional environment and 

the architecture of its metabolic network as a key determinant of biosynthetic costs and 

microbial growth. As the structure of a metabolic network has evolved in response to natural 

selection, the here observed variability of biosynthetic costs depending on the available 

carbon source is indicative of the crucial role of the environmental context for the evolution 

of biochemical networks and the ecology of microorganisms. Future work is necessary to 

extent the economical concept of metabolic costs in more natural settings where multiple 

microbial species with diverse metabolic capabilities coexist and where several different 

substrates are available for cell growth. 
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Abstract 

Bacteria that adapt to nutrient-containing environments frequently lose biosynthetic genes, 

thus making them dependent on an environmental uptake of the corresponding metabolite. 

Despite the ubiquity of this ‘genome streamlining’, it is generally unclear whether the 

concomitant loss of biosynthetic functions is favored by natural selection or rather caused by 

random genetic drift. Here we demonstrate experimentally that a loss of metabolic functions 

is strongly selected for when the corresponding metabolites can be derived from the 

environment. Serially propagating replicate populations of the bacterium Escherichia coli in 

amino acid-containing environments revealed that auxotrophic genotypes rapidly evolved in 

less than 2,000 generations in almost all populations. Moreover, auxotrophs also evolved in 

environments lacking amino acids – yet to a much lesser extent. Loss of these biosynthetic 

functions was adaptive and due to mutations in both structural and regulatory genes. 

Interestingly, auxotrophic mutants derived amino acids not only via an environmental 

uptake, but also by cross-feeding from coexisting prototrophs. Our results provide strong 

quantitative evidence that adaptive fitness benefits favor loss-of-function mutants when the 

corresponding metabolite can be obtained from the biotic and abiotic environment, which 

can drive the establishment of metabolic interactions within microbial communities. 
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1. Introduction 

 
Bacterial genomes are highly dynamic in terms of both size and composition [36]. The 

extensive variation in gene repertoires that characterizes prokaryotic genomes can be caused 

by genome expansion via horizontal gene transfer and gene duplication or, alternatively, 

contraction due to gene loss. Interestingly, comparative analyses have provided evidence that 

gene loss may in fact be quantitatively more important for determining the size of 

prokaryotic genomes than the gain of new genetic information [36,42,46]. Indeed, as 

sequencing technologies improve, more and more microorganisms are being discovered that 

feature tremendously small genomes [73]; some of which are even smaller than the suggested 

minimal genome size for cellular life of ~300 kb [49]. Analyzing the genetic content of these 

reduced genomes revealed - besides a lack of dispensable elements such as 

extrachromosomal replicons or redundant genes [48] - also the elimination of seemingly 

essential biosynthetic functions [181]. For example, reconstructing metabolic networks from 

sequence data to predict the phenotype of the focal organism unraveled that the majority of 

bacterial genomes analyzed lacked the biosynthetic capability to produce several essential 

building block metabolites such as amino acids, vitamins, or even nucleobases 

[22,67,181,213]. Surprisingly, the list of genotypes that cannot produce certain metabolites 

autonomously (hereafter: auxotrophic genotypes) does not only include host-associated bacteria 

such as pathogens [174] or endosymbionts [32,47,69], which potentially obtain the required 

metabolites from the host cytoplasm, but also free-living bacteria such as Prochlorococcus and 

Pelagibacter [183,233] that are known to mainly inhabit nutrient-poor environments. The 

ubiquity of biosynthetic loss-of-function mutations in bacteria that inhabit ecologically 

disparate environments begs an explanation: Which evolutionary mechanisms have favored a 

loss of biosynthetic genes over metabolic autonomy in these bacteria?  

Two main hypotheses have been put forward to explain these striking observations. First, 

genetic drift has been suggested to drive gene loss in bacteria which are in obligate 

associations with eukaryotic hosts and usually experience nutrient-rich or constant 

environments [234]. These bacteria undergo frequent reductions in population sizes due to 

periodic bottlenecks, and - as a consequence thereof -render the effects of drift to be 

stronger than those of selection [46]. Furthermore, a lack or reduced frequency of 

recombination may accelerate the fixation of non-beneficial or deleterious mutations to fix in 

the population [47]. This hypothesis is supported by comparative genomic datasets and 

experimental evidence for this idea comes from an experimental evolution experiment where 

bacterial populations were subjected to periodic single-cell bottlenecks resulting in the 

bacteria with strikingly reduced genomes [76].  

The second main hypothesis that has been proposed to explain the apparent ‘genome 

streamlining’, especially in bacteria with free-living lifestyles and those that inhabit low nutrient 
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environments, is natural selection. The large population effective sizes in such environments 

would render the benefits of selection to be strong and thus cause fitness increasing deletions 

to fix in the populations [46]. Thus, gene loss in environments where the gene is no longer 

required may benefit bacteria with genomes of a reduced size over conspecifics with a larger 

genome - primarily due to the adaptive benefits stemming from a more optimized cellular 

economization [82]. An increased cellular economy can result from the rerouting of 

resources from redundant functions, which are supplemented from the environment, to 

other cellular processes. This hypothesis has received experimental support from various 

studies where deletions were found to be selectively beneficial in evolving bacterial 

populations [92,235]. Also, previous studies that compared the growth of synthetically 

engineered auxotrophic bacterial strains to prototrophic ones, demonstrated that metabolic 

auxotrophies can be beneficial when the required biosynthetic product is sufficiently 

available in the environment [85,181,213]. Although these studies highlight that selection can 

account for losses of biosynthetic functions, it is unclear whether adaptive mutants which 

have lost biosynthetic functions can rapidly evolve and spread to detectable frequencies in 

populations in rich environments. Therefore, direct experimental evidence implicating 

natural selection in the loss of biosynthetic functions and the subsequent metabolic 

specialization when metabolites are present in the environment is lacking.  

However, based on previous experimental studies [85,181] it can be hypothesized that 

adaptive benefits can result in bacterial populations losing genes and concomitantly the 

encoded biosynthetic functions, in rich environments, where the requisite metabolite is 

abundant. Altogether, insights from genomic and experimental studies strongly favor the 

argument that selection can be an especially strong force in driving the evolution of 

metabolic auxotrophies. To unravel whether fitness advantages can indeed drive the loss of 

biosynthetic functions in nutrient-containing environments, we experimentally evolved 

replicate populations of the prototrophic bacterium Escherichia coli in amino acid-replete 

(hereafter: AA-regime) or -deficient environments (hereafter: non-AA regime) We observed 

that auxotrophic mutants, which required multiple amino acids rapidly evolved in multiple 

replicate populations propagated in presence of amino acids. Surprisingly, auxotrophic 

mutants also evolved in the non-amino acid environment, albeit at lower frequencies than 

the amino acid-environment. Loss of biosynthetic functions in the auxotrophic genotypes 

was adaptive only in the presence of amino acids in the environment. Interestingly, 

auxotrophic genotypes also derived amino acids from coexisting prototrophic strains and this 

interaction was maintained by negative frequency-dependent selection. A genomic analysis of 

the evolved auxotrophic genotypes revealed that distinct genetic changes in both structural 

and regulatory genes potentially resulted in the adaptive loss of biosynthetic functions.    
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2.  Material and methods 

2.1 Strains, media, and growth conditions 

The isogenic ancestor of the evolution experiment was Escherichia coli BW25113 Ara- or Ara+. 

The Ara+ phenotypic marker was used to discriminate the strains for future experiments as 

described previously [181]. Unless stated otherwise, liquid minimal medium for Azospirillum 

brasillense (MMAB) [158] with 0.5 % fructose as the carbon source and without biotin was 

used for cultivating bacteria in all experiments. For some experiments, all 20 amino acids 

(+AA regime) were supplemented to the MMAB medium - each at a final concentration of 

100 μM. When solid MMAB medium was used, 1.5 % agar was supplemented to the liquid 

minimal medium. For all experimental assays, strains and populations were first pre-cultured 

in the conditions they evolved in before inoculating the experimental assay (a 1:100 dilution). 

All pre-cultures and growth assays were performed at 30 °C with shaking at 220 rpm for 18 

or 24 hours. All experiments involving monocultures were initiated using ~105 cells ml-1 of 

the focal strain or population and co-cultures were inoculated with ~105 cells ml-1 of each 

strain or population. 

 

2.2 Evolution experiment  

Eight independent lineages were founded from four isogenic clones of either E. coli 

BW25113 (Ara-) [149] or E. coli BW25113 (Ara+) [181]. The two pairs of lineages differed 

only with respect to the presence of the araA gene [181,213]. Its presence or absence allows 

to phenotypically discriminate the two strains from their evolutionary ancestor (red and 

white differentiation) [162]. The eight lineages were serially propagated by daily transfers into 

fresh 1 ml MMAB medium for 2,000 generations containing a mixture of all of the 20 

essential amino acids. This treatment represented the AA regime of the experiment (i.e. with 

amino acids). Similarly, eight additional lineages, which descended from the same ancestral 

colonies as the lineages mentioned above, were propagated for 2,000 generations by daily 

transfers into MMAB medium that did not contain any amino acid. Each day, 1 μl of culture 

medium was transferred to 999 μl of fresh medium (a 1:1,000 dilution). The transfer volume 

contained ~103 cells and the population expanded to ~106 cells after 24 hours of growth, 

resulting in ~10 generations ever day (generations = [(log number of cells after 24 h) - (log 

number of cells initially present)]/ 0.301). Evolving populations were frozen at -80 °C at 250, 

500, 1,000, 1,500, and 2,000 generations along with 50% glycerol for subsequent 

experimental assays. 
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2.3 Measurement of growth parameters 

Productivity of the evolving populations was measured by determining the number of CFUs 

ml-1 on Lysogeny Broth (LB) agar plates at 15; 180; 450; 750; 870; 1,170; 1,365; 1,590; 1,695; 

1,920; and 1,995 generations.  Growth kinetic parameters like the maximal growth rate (μmax 

h-1) and the maximum optical density reached (ODmax) were determined for populations and 

clones isolated from different time points over the course of the evolution experiment. For 

this, frozen samples were revived by inoculating 10 μl into 1 ml of the corresponding 

medium as described above. Growth assays were performed in 50 μl of medium in a 384 

micro-well plate (Greiner, Germany) and growth kinetics were monitored in a Tecan Infinite 

Pro Microplate reader (Tecan, Austria) by recording the OD every eight minutes for 24 h at 

30 °C with shaking at 2.5 Hz in the interim. Differences in kinetics between different growth 

conditions for a specific population were determined by calculating the Δμmax h-1  (μmax h-1
-AA - 

μMax h-1
+AA).  

 

2.4 Determination of auxotrophies 

The appearance of auxotrophic mutants in the evolving populations was determined by 

resuscitating and pre-culturing frozen samples from generations 250; 500; 1,000; 1,500; and 

2,000 of both selection regimes. These cultures were then serially diluted such that each 

population contained ~103 CFUs ml-1 and plated on MMAB agar plates that contained all 

amino acids. 1,000 colonies from each population of the two regimes were then inoculated 

onto a new MMAB agar plate that contained all AAs. The colonies were then replicated 

using a 96-pin replicator on MMAB agar plates without any AAs to identify colonies that will 

be unable to grow. Any colonies that failed to grow on MMAB without AAs were deemed as 

auxotrophs. These colonies were then selected and replica-plated on MMAB plates without 

AAs and 20 different MMAB ‘dropout’ media, each containing a different combination of 19 

AAs, leaving out one specific AA (Table S1). This approach allowed determining for which 

specific amino acids the focal strains were auxotrophic for. Any strain that did not grow on 

un-supplemented MMAB media, but grew on MMAB medium containing all AAs or one or 

more of the media that were lacking one AA was scored as auxotroph. Strains that were 

unable to grow on MMAB without AA supplementation yet could grow on all 20 dropout 

media were deemed ‘unassigned’.   

 

2.5 Competitive fitness assays 

The fitness of each auxotrophic or prototrophic type that has been isolated after 1,000; 

1,500; and 2,000 generations of growth in the AA-regime and after 500 and 1,500 generations 

in the non-AA regime was determined in competition experiments against the evolutionary 
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ancestor. For this, ~105 cells of the derived clone as well as of the evolutionary ancestor that 

was carrying the respective other Arabinose utilization marker (i.e. Ara+ versus Ara- and vice 

versa) were pre-cultured and subsequently co-inoculated into 1 ml of MMAB with or without 

AA. The relative fitness of strains from the AA-regime was determined in the absence or 

presence of AAs, while the strains from the non-AA regime were only analyzed in the 

absence of AAs. The number of CFUs ml-1 was determined at the start (i.e. 0 h) and the end 

of the co-culture period (i.e. after 24 h) by plating on TA agar with arabinose and TTC [162]. 

After that the Malthusian fitness parameter was calculated as described previously [162]. 

Each strain type in the experiment was replicated 8-times.  

 

2.6 Metabolic dependency 

To determine to which extent the growth of derived auxotrophs depended on the availability 

of AAs in the environment and/or the presence of a co-cultured prototroph, auxotrophic 

strains that have been isolated from the AA-regime after 2,000 generations or after 500 and 

1,500 generations from the non-AA regime were pre-cultured in AA-supplemented MMAB 

medium. The corresponding prototrophs (which have been isolated from the same 

population and the same time points as the auxotroph) or the evolutionary ancestor were 

similarly pre-cultured in MMAB medium with or without AA-supplementation, depending 

on the medium of the main experiment. ~105 cells of the focal auxotrophic mutant were 

inoculated into 1 ml MMAB with or without AAs. The same experimental set-up was 

repeated three times: (i) with the auxotrophs grown in monoculture, or by co-inoculating 

~105 cells per ml of (ii) a co-evolved prototrophic strain that has been isolated from the same 

replicate and time-point, or (iii) the evolutionary ancestor. Each experimental treatment was 

replicated 4-times. All of these cultures were incubated for 24 h. The number of CFUs ml-1 

was determined for each strain at the start (0 h) and the end of the experiment (24 h). Since 

the derived auxotrophic and prototrophic types in each co-culture carried the same Ara 

marker, because they descend from the same ancestor, both types were distinguished by 

plating on an un-supplemented MMAB plate and LB plates. Thus, the number of CFUs ml-1 

of prototrophic or ancestral strains (i.e. CFUs on the MMAB plate) and CFUs ml-1 of the 

auxotroph (i.e. CFUs on the LB plate minus CFUs on the MMAB plate) were determined 

and the Malthusian parameter of the auxotrophic strain calculated as previously [162].  

 

2.7 Invasion-from-rare experiment 

Cultures of auxotrophs and the corresponding prototrophs that have been isolated after 

2,000 generations of evolution in the AA-regime or after 500 and 1,500 generations of 

growth in the non-AA regime were prepared. Subsequently, co-cultures between both 
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partners were inoculated together at different initial frequencies (i.e. 1:100 or 100:1), such 

that the initial cell density of the co-culture was 105 CFUs ml-1. Each experimental treatment 

was replicated 4-times. The prototrophic or ancestral strains that derived from the same 

population were plated and distinguished as described above at the onset (0 h) and after the 

experiment (24 h). The number of CFUs ml-1 was determined for both types and the 

selection coefficients of the invading (rare) type was calculated as described previously [236].  

 

2.8 Whole-genome sequencing 

One representative auxotrophic was selected from six populations of the AA-supplemented 

environment where these types were detected  and one prototroph of 4 of the same 

populations was selected for genome sequencing (10 in total). In addition, 2 auxotrophs from 

the 2 populations that evolved under un-supplemented conditions and 2 prototrophic 

isolates from this regime (i.e those which coevolved with auxotrophs) were also selected for 

sequencing (4 in total). Genomic DNA was extracted after these strains had been grown in 

LB medium for 24 h using the Epicentre MasterPure DNA extraction kit (Biozym Scientific, 

Germany). Quality control and library preparation (TruSeq, Illumina) was performed by the 

Max Planck Genome Centre Cologne, Germany (http://mpgc.mpipz.mpg.de/home/) and 

sequencing was performed on the Ilumina HiSeq2500 platform. The resulting raw Illumina 

sequences were aligned to the published reference genome of Escherichia coli BW25113 

(CP009273_1) [237] using the breseq pipeline [153,238] and mutations were thus identified.  

 

2.9 Statistical analysis 

Normal distribution of data was assessed using the Kolmogorov-Smirnov test. Homogeneity 

of variances was determined by applying Levene’s test and variances were considered to be 

homogeneous when P>0.05. Independent sample t-tests were used to compare fitness and 

growth rates of populations evolved under the two regimes as well as fitness of auxotrophic 

or prototrophic strains relative to the evolutionary ancestor. Paired samples t-tests were used 

to compare growth rates of AA-evolved populations in the presence or absence of amino 

acids. The productivity of populations over evolutionary time was fitted using exponential 

fits and the slopes of the fitted lines were compared using independent sample t-tests [239]. 

One-way ANOVAs followed by LSD post-hoc tests were used to distinguish the Malthusian 

fitness in the metabolic dependence experiments and the growth kinetic parameters of 

different genotypes in the growth experiments. One sample t-tests were used to determine if 

selection coefficients of the auxotrophic genotypes were significantly different from 0. 
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3. Results 

3.1 The metabolic environment influences adaptive capabilities of the evolving 

populations 

To determine how the metabolic environment can affect the evolution of adapting bacterial 

populations, 8 replicate populations of Escherichia coli were serially propagated by daily 

transfer of 1,000 cells in minimal medium that did or did not contain all of 20 different 

amino acids (AA). Quantifying the productivity that each population achieved at different 

time points of the evolution experiment as the number of colony forming units (CFUs) ml-1 

indicated that the mere presence of AAs already benefitted the ancestral genotype as 

indicated by a significantly increased productivity relative to AA-deficient conditions  

(independent sample t-test: P<0.05, n=8, Fig. 1A). This pattern consistently remained as 

these populations were further propagated, resulting in a significantly increased slope of the 

populations that evolved in the presence of amino acids as compared to populations that 

were selected in un-supplemented minimal medium (linear regression of fitted lines: P<0.05, 

n=88, Fig 1A). In other words, the presence of additional nutrients increased the rate of 

adaptation. Interestingly, a comparison of growth rates of derived populations revealed that 

the increase of this kinetic parameter over evolutionary time was statistically indistinguishable 

between populations that evolved in the two selection regimes (independent samples t-test, 

P<0.05, Figure S1). This finding indicates that although the rate at which cells divided was 

similar, the presence of AAs likely offered more resources for the AA-evolved populations to 

exploit.  

To determine whether the increased productivity of populations that evolved in the presence 

of AAs was indeed due to the increased availability of nutrients, the growth rates (μmax h-1) 

the focal populations achieved in the presence (i.e. the selection regime) of AAs was 

subtracted from the growth rates of the same populations determined under AA-deficient 

conditions. The resulting value (Δ μmax) was significantly greater than zero for 4 of 8 of the 

ancestral populations (paired samples t-test: P<0.05, n=4, Fig. 1B), indicating that the growth 

of the evolutionary ancestor was reduced when AAs were present. However, over the course 

of evolution, omission of amino acids from the test medium resulted in a decline of the Δ 

μmax values for most of the replicate populations to the point that at 2,000 generations seven 

out of eight populations showed reduced growth rates when AAs were absent (paired 

samples t-test: P<0.05, n=4, Fig. 1B).  
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Figure 1: Growth dynamics of evolved populations and amino acid dependency of AA-

evolved lines. (A) Mean productivity of the populations that evolved in the presence (black boxes) 

or absence of AA (red circles) over the course of the evolution experiment. Each data point 

represents the mean productivity (± 95% confidence interval) of eight replicate populations that are 

displayed as the log10 of the number of colony forming units per ml (CFU ml
-1

) at different time 

points of the experiment. The black and red line represent the exponential fit of the individual points 

(linear regression of fitted lines: P<0.05, n=88). (B) Differences in the maximal growth rates (μmax h
-

1
) of the AA-evolved populations when growing in media with or without AA supplementation. 

Differences were calculated by subtracting the growth rates populations achieved under the AA-

replete conditions from the growth rates achieved in un-supplemented minimal medium. Circles 

represent the different replicate populations and asterisks represent significant differences in growth 

rates in the two environments (paired samples t-test: P<0.05, n=4). 

 

Taken together, these analyses showed that the presence of amino acids in the growth 

environment increased the rate with which populations of E. coli adapted to these conditions, 
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yet also rendered the increase of the population-level productivity contingent on an 

environmental availability of AAs. 

 

3.2 AA auxotrophies rapidly emerge in AA-containing environments 

One possibility to explain the AA-dependent increase in the productivity of populations that 

evolved in AA-containing environments could be the emergence of AA auxotrophic 

genotypes that benefitted from utilizing AAs that are available in the environment. These 

strains would be unable to grow in the absence of AAs, yet show an increased productivity in 

the presence of AA [181]. To determine whether and to which extent auxotrophic genotypes 

evolved in both selection regimes, 1,000 colonies of each replicate population from different 

evolutionary time points were screened for the presence of auxotrophic genotypes. After 0, 

250, and 500 generations, no auxotrophic CFU was detected in any of the populations that 

evolved in the presence of AAs (Fig 2A.). However, when populations from later time points 

were sampled, 50% (1,000 generations), 25% (1,500 gens.), and 75% (2,000 gens.) of the AA-

evolved populations contained auxotrophic genotypes (Fig 2A). After 1,000 generations, the 

proportion of auxotrophic genotypes detected in these populations ranged between 0.8% 

and 2.5%, after 1,500 generations between 5.7% and 20%, and between 0.6% to 7.5% after 

2,000 generations of evolution in an AA-containing environment (Fig 2A).  

Intriguingly, 3 of the 8 populations that evolved without an external supply of AAs also 

featured AA auxotrophic strains (Fig 2B): Replicate population 3, which had evolved for 500 

generations, contained nearly 2% of auxotrophic genotypes, while replicate populations 7 

and 8 comprised approximately 1% of auxotrophic strains after 1,500 generations of 

evolution (Fig 2B). Detecting auxotrophic genotypes in populations that evolved in the 

absence of AAs is surprising and suggests that these loss-of-function mutants likely obtained 

the AAs they required for growth from the coexisting prototrophic genotypes, which were 

present at high frequencies. 

A striking pattern that arose in both selection regimes was the dynamics that characterized 

the emergence of auxotrophic genotypes. Even though the number of auxotrophic 

genotypes generally increased over evolutionary time, their distribution and abundance 

within replicate populations showed a high degree of fluctuation around the detection limit 

of 1,000 cells (Fig. 2). Given that a frequency change of 1% corresponds to at least 104 

auxotrophic cells, the observed fluctuations are significant on a population-level. Moreover, 

the fact that their frequency rose to detectable levels (≥104 cells) implies these mutants were 

likely selectively favored. 
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Figure 2: Rapid evolution of amino acid auxotrophies. (A,B) Heatmaps depicts the population-

level frequency that the AA-auxotrophic genotypes reached per 1,000 CFUs per population 

analyzed when evolving in (A) the presence of AAs, and (B) the absence of AAs. Rows represent 

replicate populations (R1-R8) over different time points (columns). Black fields indicate prototrophic 

populations, whereas different shadings of red represent different frequencies of auxotrophic strains 

(legend in the figure). (C,D) Distribution of the number of amino acid auxotrophies in the 

auxotrophic fraction of populations over the course of evolutionary time in the (C) AA and (D) non-

AA regimes. Violin plots are scaled to the same maximum width and lines within plot indicates the 

median of the distribution. 

 

Analyzing the number of different metabolic auxotrophies that were found on a genotype-

level revealed that strains isolated from the AA-containing environment were generally 

impaired in the biosynthesis of more than four different AAs simultaneously, while 

auxotrophs that evolved in the AA-deficient environment depended on average on only one 

or two different AAs (Fig. 2C,D). Some of the strains, which have been isolated after 2,000 

generations of evolution in the AA-containing environment, even required all 20 AAs (Fig 

2C) for growth. Furthermore, the auxotrophic types that emerged in the individual 
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populations after 2,000 generations of adapting to an AA-containing environment showed a 

striking congruence in the identity of amino acid auxotrophies that evolved in these 

populations (Fig. S2), suggesting adaptive advantages likely drove this pattern. 

Taken together, these results demonstrate that AA auxotrophies evolved in both selection 

regimes, yet to a significantly larger extent when AAs have been supplemented to the 

environment. The finding that their frequency increased under both conditions to detectable 

levels implies that these loss-of-function mutants were selectively favored.  

 

3.3 Evolved auxotrophies are adaptive when amino acids are environmentally 

available 

To identify whether the rapid emergence and spread of auxotrophic genotypes was driven by 

selective advantages that resulted from the loss of biosynthetic functions, auxotrophic and 

prototrophic genotypes that evolved in either the absence or presence of all AAs were 

competed against their evolutionary ancestor. Determining competitive fitness in this way 

revealed that auxotrophic strains, which have evolved in presence of AAs, were significantly 

fitter than the ancestral genotype when all 20 AAs  were present in the environment (i.e. the 

selection regime) (independent sample t-tests: P<0.05, n=130, Fig. 3A). However, when AAs 

were omitted, these auxotrophic genotypes were significantly less fit than their ancestor 

(independent sample t-tests: P<0.05, n=130, Fig 3A). This observation suggests that 

auxotrophic genotypes increased in frequency, because they gained an adaptive advantage 

when AAs were present in the environment. In contrast, the evolutionary success of derived 

prototrophs was independent of an environmental availability of AAs, as indicated by the 

observation that their fitness was significantly increased over ancestral levels independent of 

whether or not AAs were present in the environment (independent sample t-tests: P<0.05, 

n=130, Fig. 3A). A qualitatively similar picture emerged when the derived strains of the non-

AA regime were analyzed: Supplementing AAs to the growth medium resulted in an 

increased fitness of auxotrophic genotypes relative to their prototrophic ancestor 

(independent sample t-tests: P<0.05, n=12, Fig. 3B). However, under un-supplemented 

conditions (i.e. the selection regime), auxotrophs were less fit than the ancestor (independent 

sample t-tests: P<0.05, n=12, Fig. 3B), while prototrophic isolates gained a significant fitness 

advantage over the ancestor (independent sample t-tests: P>0.05, n=12, Fig. 3B) that was 

quantitatively comparable to the advantage AA-evolved prototrophs gained in the presence 

of AAs. 
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Figure 3: Fitness advantage of auxotrophs, but not prototrophs is AA-dependent. Relative 

fitness of auxotrophs that evolved in (A) the presence of AAs or (B) absence of AAs. Competitive 

fitness of auxotrophs (red boxes) or prototrophs (green boxes) relative to the evolutionary ancestor 

was measured in the presence (filled boxes) or absence (filled boxes) of amino acids. Asterisks 

indicate significant fitness differences relative to the prototrophic ancestor  while ‘ns’ denotes non-

significant differences (independent samples t-tests: P>0.05, n=130 for AA regime and n= 12 for 

non-AA regime). The dashed line at y=1 represents the fitness of the ancestor. Box plots consist of 

medians (horizontal lines within boxes), interquartile range (boxes), and 1.5x-interquartile range 

(whiskers). 

 

Taken together, these findings imply that an environmental availability of amino acids 

favored mutants that have lost the ability to biosynthesize certain AAs autonomously. In 

contrast, the fitness advantage gained by prototrophic genotypes was independent of the 

presence of AAs in the environment. 
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3.4 Auxotrophs evolved a metabolic dependency on coexisting prototrophs  

Two findings of the abovementioned experiments beg an explanation. First, AA 

auxotrophies evolved even when no AAs were present in the environment (Fig. 2B). Second, 

even though AA-evolved auxotrophs were less fit than the ancestor when no AAs were 

present in the environment (independent sample t-test: P<0.05, n=130, Fig. 3A), these 

genotypes still grew to detectable levels and were not lost from these populations. From 

where did these auxotrophic genotypes obtain the amino acids they needed to grow? A likely 

source could be the prototrophs that coexisted with the auxotrophic genotypes in the two 

abovementioned experiments. To test this possibility, auxotrophic genotypes were grown in 

monoculture, together with the prototroph they co-evolved with, or the evolutionary 

ancestor (both co-cultures: 1:1 ratio). This test was performed in either the absence or the 

presence of AAs and the productivity of the auxotrophs (i.e. the Malthusian parameter) was 

determined by plating. 

As expected, auxotrophs were unable to grow when no AAs were present in the 

environment, yet grew when all AAs were supplemented to the growth medium. This held 

true for all auxotrophs analyzed from both selection regimes (Fig. 4A,B). However, co-

culturing auxotrophic genotypes in the absence of AAs together with the prototrophic strain 

they had coevolved with, resulted in productivity levels of the auxotrophs that were 

statistically indistinguishable to the levels they have reached in monoculture in the presence 

of AAs (one-way ANOVA followed by a LSD post-hoc test: P<0.05, n=130 (AA-regime), 

n=12 (non-AA regime), Fig. 4A,B) indicating that auxotrophs derived amino acids from the 

co-cultured prototrophs. Supplementing these co-cultures with additional AAs further 

increase the productivity of AA-evolved auxotrophs over the productivity they reached 

under un-supplemented conditions (one-way ANOVA followed by a LSD post-hoc test: 

P<0.05, n=130, Fig. 4A), while the growth of non-AA-evolved auxotrophs did not change 

upon AA supplementation (one-way ANOVA followed by a LSD post-hoc test: P>0.05, 

n=12, Fig. 4B). Interestingly, when the focal auxotrophs were co-cultured with the 

evolutionary ancestor and not the coevolved prototrophs, the auxotrophs isolated from the 

AA regime showed generally reduced productivity levels compared to the situation when the 

coevolved prototroph was present (one-way ANOVA followed by a LSD post-hoc test: 

P<0.05, n=130, Fig. 4A). Still, AA supplementation significantly enhanced the productivity 

of AA-evolved auxotrophs in co-culture with the ancestor over the productivity reached in 

unsupplemented medium (one-way ANOVA followed by a LSD post-hoc test: P<0.05, 

n=130, Fig. 4A). This pattern is consistent with a coevolutionary change between derived 

auxotrophs and prototrophs that is absent when the ancestral prototroph is the interaction 

partner. In contrast, for the auxotrophs that evolved in the non-AA regime, it did not make a 

difference whether the coevolved prototrophs or the evolutionary ancestor was present  
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Figure 4: Auxotrophic strains evolve frequency-dependent interactions with coexisting 

prototrophs. (A,B) Malthusian growth parameters of auxotrophic strains that have been isolated 

after 2,000 generations of growth under (A) AA-replete and (B) AA-deficient conditions. Growth was 

determined in monoculture (MC) or in co-culture with either a prototrophic strain isolated from the 

same time-point and population (PT) or the evolutionary ancestor (ANC) in the presence (red 

boxes) or absence of amino acids (empty boxes). Different letters in panels A and B indicate 

significant differences in the auxotrophs’ fitness (one-way ANOVA followed by a LSD post-hoc test: 

P<0.05, n=130 for AA regime and n= 12 for non-AA regime). (C,D) Reciprocal invasion-from-rare 

experiment shows the interaction between co-occurring auxotrophs and prototrophs is stabilized by 

negative frequency-dependent selection. Selection coefficients of the auxotrophs from (C) the AA 

regime and (D) non- AA regimes. Selection coefficients of the auxotrophic strains were measured 

when a resident population of auxotrophs or prototrophs was invaded at rare frequencies by the 

corresponding type, indicated by the direction of the arrows, in the presence (solid arrows) or 

absence (dashed arrows) of AAs. All comparisons are statistically significant (one sample t-test: 

P<0.05, n=130 for AA regime and n= 12 for non-AA regime).  

 

when the co-culture was exposed to un-supplemented minimal medium (one-way ANOVA 

followed by a LSD post-hoc test: P>0.05, n=12, Fig. 4B). However, when amino acids were 

provided to these cultures, the auxotrophs reached the highest productivity of all 
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experimental conditions analyzed (one-way ANOVA followed by a LSD post-hoc test: 

P>0.05, n=12, Fig. 4B). 

Altogether, these observations suggest that either the auxotrophs’ ability to derive amino 

acids from the coexisting prototrophs increased over time or, alternatively, the prototrophic 

cells increased their amino acid production levels. In either way, these results demonstrate 

that evolved auxotrophs utilized the AAs that are available in the growth environment as well 

as those they could obtain from other, coexisting strains.  

 

3.5 Negative frequency-dependent selection maintains genotypic diversity 

Which ecological mechanism maintained the evolved genotypic diversity (i.e. both 

auxotrophic and prototrophic genotypes) in the evolution experiment? A likely mechanism 

that has been previously identified to be key for maintaining synthetically engineered cross-

feeding genotypes that reciprocally exchanged essential amino acids is negative frequency-

dependent selection [24]. To determine whether the same mechanism also stabilized our 

naturally evolved genotypes, the ability of the derived auxotrophs and prototrophs to invade 

a population of the respective other strain when rare was determined in the absence and 

presence of AAs in the environment. Under all conditions tested was the initially rare type 

(i.e. auxotroph or prototroph, initial ratio: 1:100) able to invade a resident population of the 

respective other strain as evidenced by the significantly increased selection coefficients of the 

invading type (one-sample t-test: P<0.05, n=24, Fig. 4C,D). This finding corroborated the 

hypothesis that AA cross-feeding between prototrophic donor cells and auxotrophic 

recipients is maintained by negative frequency-dependent selection.   

Finally, growing monocultures of AA-evolved genotypes and the evolutionary ancestor in the 

presence of AAs and comparing their growth kinetic parameters revealed that the derived 

auxotrophic and prototrophic strains grew significantly faster and achieved a higher 

productivity than the ancestral strain (one-way ANOVA followed by a LSD post hoc test: 

P<0.05, n=20, Fig S3A). Moreover, the growth of auxotrophic strains was characterized by a 

significantly shorter lag phase (one-way ANOVA followed by a LSD post hoc test: P<0.05, 

n=20, Fig S3A) and an earlier onset of the stationary phase than was the case for both 

derived and ancestral prototrophic strains (one-way ANOVA followed by a LSD post hoc 

test: P<0.05, n=20, Fig S3B), indicating that auxotrophic strains likely utilized 

environmentally available AAs until this pool was depleted. In contrast, prototrophic 

genotypes remained much longer in the exponential growth phase than auxotrophs (one-way 

ANOVA followed by a LSD post hoc test: P<0.05, n=20, Fig S3C), suggesting that their 

growth was limited by the carbon source rather than the amount of AAs present in the 

environment.  
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Taken together, these observations suggest that because of their inability to produce certain 

amino acids autonomously, auxotrophs utilize first the pool of environmentally available 

AAs, before exploiting the AAs produced by other, coexisting strains. This bi-phasic growth 

pattern along with the obligate dependency of auxotrophs on coexisting prototrophs likely 

maintained auxotrophs by negative frequency-dependent selection. 

 

3.6 Mutations in both structural and regulatory genes caused auxotrophic 

phenotypes 

To unravel the genetic basis of the metabolic auxotrophies that emerged in the course of the 

evolution experiment, genomes of 8 representative auxotrophs and 6 representative 

prototrophs from different replicate populations, which had evolved for 2,000 generations in 

the absence or presence of AAs, were re-sequenced and compared to the genome of the 

evolutionary ancestor. This analysis revealed that prototrophs and auxotrophs had very few 

mutations in common (Fig. 5, Table S2 and S3), thereby confirming that the two coevolved 

strains represented indeed genetically distinct subpopulations.  

Next we focused on those mutations that occurred exclusively in genomes of auxotrophic 

types to determine if these could be causal for these phenotypes. Both, auxotrophs isolated 

from the non-AA regime carried identical SNPs in the rpoB and yqiB gene. The former gene 

encodes the β subunit of RNA polymerase (RNAP) [240] and the latter a predicted 

dehydrogenase (b3033, ECK3024; Ecocyc [219]). Interestingly, both of these genotypes were 

auxotrophic for lysine and tryptophan. The mutation identified in the rpoB gene has been 

predicted to negatively affect protein activity [241] (Table S3). It has been shown that similar 

mutations, such as deletions in the β-subunit of RNAP, confer increased growth rates in 

minimal medium to the corresponding E. coli mutants and affect the ability of RNAP to bind 

to certain operons or promoters, especially those involved in amino acid biosynthesis, 

resulting in a general down-regulation of genes of this class [242].  

In contrast, the auxotrophies that arose in the AA-containing environment were caused by 

completely different mechanisms including the loss of regulatory and structural genes. One 

auxotroph (isolated from population R2) lost approximately 13 kb from its genome (Fig. 5, 

Table S3). The deleted fragment comprised 14 genes, which included the ones encoding the 

BaeSR two-component regulatory system. Deletion of these two genes has previously been 

shown to result in down-regulation of multiple regulatory and amino acid biosynthesis-

associated proteins [243]. Another auxotroph (population R5) carried a non-sense mutation, 

which inactivated the sspA gene that encodes the stringent starvation protein A (Fig. 5, Table 

S2 and S3). This gene is known to be involved in the regulation of amino acid biosynthesis 

and mutants lacking this gene have been previously shown to lose viability under arginine-

limiting conditions [244]. Moreover, the sspA protein is known to inhibit the accumulation 
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of H-NS, a global gene regulator [245]. H-NS in turn is known to inhibit the expression of 

several genes and regulons, especially those involved in amino acid biosynthesis such as the 

leucine regulatory protein (lrp) [246]. Lrp in turn controls multiple amino acid biosynthetic 

operons and regulons [247]. Thus, a loss of function mutation causing a loss of protein 

activity in the auxotrophic strains would result in increased H-NS levels, which in turn would 

repress lrp and multiple biosynthetic regions, thereby causing the auxotrophic phenotypes 

that have been seen in the mutants.  

The only case in which a biosynthetic gene has actually been lost from the genome was in 

case of an auxotroph that has been isolated from population 6. This mutant had lost a 13 kb 

region from its genome that contained 20 genes, including proA and proB that are essential 

for the biosynthesis of the AA proline [248]. In addition, this strain also carried a mutation in 

the stpA gene, which encodes for the starvation protein A (Fig. 5, Table S3. Interestingly, 

starvation protein A is known to interact with H-NS and lrp in regulating the expression of 

amino acid biosynthesis genes in E. coli - especially under conditions of amino acid starvation 

[246]. Although it is not known whether the observed SNP affects protein function (Table 

S3) [241], this mutation could have resulted in a reduced binding ability of starvation protein 

A to H-NS, leaving the latter free to repress biosynthetic genes in a lrp-mediated manner, 

similar to the case described above. Surprisingly, the genomes of the other auxotrophs (R3, 

R4, and R8; Fig. 5, Table S3) showed no mutations with obvious links to amino acid 

biosynthesis. 

In sum, analyzing the genomes of the evolved strains identified numerous mutations in genes 

that have been previously implicated in amino acid metabolism, suggesting that they are likely 

causal for the observed auxotrophic phenotypes.    
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Figure 5: Genomic consequences of adaptation to the two selection regimes.  

(A, B) Each ring represents the genome of a single auxotrophic or prototrophic clone that has been 

been isolated from different replicate populations, which have evolved for 2,000 generations under 

(A) AA-replete and (B) AA-deficient conditions. The order of rings represents the replicate 

populations from which the cognate auxotroph and prototroph have been isolated. Labels and lines 

connecting dots on the rings represent mutations and their positions on the genome with the color 

of the label and dot specifying the type of mutation (see legend in the figure). (C) Venn diagrams 

depict mutations which are unique to auxotrophs (orange rectangles) and prototrophs (purple 

rectangles) and those that are common between both types (region encompassing both rectangles) 

for the strains from the AA (top rectangles) and non-AA regimes (bottom rectangles). Numbers 

indicate the number of common mutations between the strains. 
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4. Discussion 

Why are metabolic auxotrophies so common in natural microbial communities? 

Hypothesizing that adaptive benefits may account for the frequently observed loss of 

metabolic functions, our evolution experiment revealed that prototrophic Escherichia coli cells 

rapidly evolved metabolic auxotrophies when adapting to environments that contained all of 

20 different amino acids. Interestingly, also serial propagation in AA-free environments 

resulted in the emergence of genotypes that had a lost the ability to autonomously produce 

some amino acids, yet the number of auxotrophies per strain, the number of auxotrophic 

strains per population, and the number of populations containing auxotrophs was 

significantly lower relative to populations that evolved under AA-replete conditions. In line 

with the initial hypothesis, auxotrophic genotypes that evolved in AA-containing 

environments gained an adaptive advantage over their evolutionary ancestor, yet the 

observed fitness benefit was contingent on the presence of AAs in the environment. 

Surprisingly, all evolved auxotrophs also derived amino acids from coexisting prototrophic 

cells and this interaction was stabilized by negative frequency-dependent selection. Finally, 

multiple genetic routes lead to the inactivation of amino acid biosynthetic abilities, including 

mutations in regulatory and structural genes.  

A main outcome of the evolution experiment was that adaptive benefits drove the rapid loss 

of biosynthetic functions when the focal metabolites were sufficiently present in the cell-

external environment. These findings are in line with previous analyses, which revealed a 

significant fitness advantage synthetically engineered, auxotrophic mutants gained over 

competing prototrophic types when AAs were sufficiently present in the environment 

[24,85,181,213]. A prediction that follows from these observations is that metabolic 

auxotrophies should rapidly evolve whenever bacteria are cultivated in AA-rich media or 

inhabit environments with increased AA-availabilities [181,249,250]. Indeed, metabolic 

auxotrophies have been repeatedly reported to arise in laboratory-based evolution 

experiments [172-174] or have been detected in natural microbial communities 

[22,24,37,58,67,82,181,213,251]. In our experiment, derived auxotrophs always coexisted 

together with metabolically autonomous prototrophs. A strikingly similar pattern has been 

previously observed in populations of Pseudomonas aeruginosa that adapted to the lungs of 

cystic fibrosis (CF) patients: both prototrophic and auxotrophic strains have been isolated 

from the amino acid-rich mucus that fills the lungs of these CF patients [251,252].  

Independent of whether or not AAs were present in the selective environment, auxotrophs 

that evolved in our evolution experiment always obtained AAs also from other community 

members such as the coexisting prototrophs. Two mechanisms are conceivable how 

auxotrophs obtained the AAs they required for growth: metabolites might be exchanged 

among genotypes via diffusion through the cell-external environment [26,51,113] or, 
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alternatively, in a contact-dependent manner [253,254]. Recently it has been described that 

auxotrophic cells of E. coli can produce so-called nanotubes to directly obtain cytoplasmic AAs 

from other bacterial cells [254]. By reducing the loss of AAs to the cell-external environment, 

these structures likely minimize the costs to the AA-producing cell and might thus be 

interpreted as a strategy of bacteria to survive under AA-limiting conditions.  

Analyzing the genomes of derived mutants unraveled the mutational causes that gave rise to 

the observed phenotypes. In contrast to expectations, deactivation of amino acid 

biosynthetic pathways via a loss of the corresponding structural genes was much less 

common than a loss or inactivation of key regulatory elements (Fig. 5, Table S3). 

Interestingly, auxotrophies that evolved in the non-AA regime were mostly due to a 

mutational down-regulation of biosynthetic gene expression, while most auxotrophies that 

evolved in the AA-containing environment were caused by a complete loss of enzyme-

encoding regions or an inactivation of the corresponding regulatory elements. This pattern 

likely mirrors differences in the two selective regimes. While the environment that did not 

contain AAs likely penalized any newly evolved auxotroph, whose metabolic deficiency could 

not be compensated by any of the prototrophic types present, the AA-replete condition likely 

favored many more different auxotrophs. Indeed, the only auxotrophs that could be detected 

in the lines that evolved under AA-free conditions had lost the ability to produce leucine, 

lysine, and tryptophan, which incur relatively low metabolic costs to produce [87] and are 

thus cheaper for the corresponding prototrophs. In contrast, in the AA-replete environment 

many more auxotrophic mutants evolved; with all replicate populations displaying a core set 

of common auxotrophies (Fig. S2), indicating that such parallel loss of these biosynthetic 

abilities was a convenient and tractable adaptive path for these bacteria, adequately 

compensated for by the environment.  

Theoretical predictions of metabolic auxotrophies have been largely based on whether or not 

a biosynthetic route exists in a given bacterial genome [22,181,213]. Due to a lack of 

understanding of the underlying regulatory networks, these approaches usually neglect the 

multifarious genetic routes that can possibly cause metabolic auxotrophies. Consequently, 

previously published estimates that only consider the absence or presence of biosynthetic 

genes [22,181,213] likely underestimate the true number of auxotrophic prokaryotes in nature 

dramatically. Given that the fitness advantage multiply auxotrophic bacteria gain are strongly 

affected by epistatic interactions among the auxotrophy-causing mutations [213], 

mutationally-induced regulatory changes could represent an effective bypass of this 

evolutionary constraint. 

The adaptive loss of metabolic capabilities and the emergent dependence on other co-

occurring strains as observed in this study have significant ramifications for the evolution of 

bacterial genomes. A striking pattern that emerges when genomes of multiple different 
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bacterial clones are sequenced that have coexisted together for extended time periods, is not 

only the frequent loss of many biosynthetic functions from their genomes, but often also a 

high degree of metabolic complementarity on the genomic level. Examples involve both 

free-living bacterial communities [255] and consortia of endosymbiotic bacteria, whose 

metabolite production is intricately interwoven between their eukaryotic host [47,79,152] and 

other coevolving bacteria [32,66,177]. Given the ease, with which metabolic auxotrophies can 

evolve, thereby rendering the resulting mutants dependent on other coexisting organisms, it 

is conceivable how this event can set the stage for a co-evolutionary race, in which the 

interacting partners may benefit from losing additional metabolic functions. This race will 

most likely favor those loss-of-function mutants, who are fitter than other, competing 

genotypes given the presence of a donor that can sufficiently compensate for their 

deficiencies. In the long-run, this ‘black-queen’-like process [113] may lead to co-adaptations 

on both sides. Indeed, our observation that the AA-evolved auxotrophs grew significantly 

better when co-cultured with the derived prototrophs than their evolutionary ancestor 

supports this interpretation (Fig. 4A). In the long-run, this process should lead to intricately 

connected metabolic networks between multiple different bacterial genotypes. Ultimately, the 

findings of our study may provide a plausible explanation of why most bacterial species 

known are difficult to cultivate under laboratory conditions [179,180]: most likely they have 

adapted to the nutritional biotic and abiotic environment, which complicates a reproduction 

of these conditions in the laboratory.  
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Table S3: Mutations unique to auxotrophic strains and their predicted functional 

implications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



126 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



127 
 

 
 
 
 
 
 
 
 
 
 

General  
Discussion  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



128 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



129 
 

General Discussion  

The genomic and metabolic composition of an organism are important determinants of their 

adaptive capabilities in the environments they dwell in [256]. A result of reductive evolution 

of bacterial genomes is a concomitant decline in biosynthetic capabilities and loss of 

metabolic autonomy, which makes such organisms dependent on the environment for the 

uptake of key metabolites. The loss of biosynthetic functions involved in production of 

metabolites like amino acids, nucleobases, and cofactors is intriguing since such metabolites 

serve as constituents of important cellular macromolecules, e.g. amino acids in protein 

synthesis, or are required for their activity, e.g. cofactors in enzyme catalysis. Thus, the 

functioning of key cellular processes would be reliant on environmental availabilities of these 

metabolites. However, the evolutionary mechanisms that cause the loss of such biosynthetic 

capabilities in bacteria are generally unclear with natural selection and random genetic drift 

suggested as possible mechanisms.  

In order to unravel the causes driving a reduction in biosynthetic functions in bacteria, a first 

step that was attempted was to quantify the extent of such losses in bacteria. An in silico 

analysis of 949 (later updated to 1432) completely sequenced bacterial genomes and their 

metabolic reconstructions revealed that loss of biosynthetic genes and functions, i.e. 

auxotrophy for amino acids, cofactors and nucleobases is surprisingly prevalent in the 

bacterial world. Interestingly, free-living bacteria also were frequently auxotrophic. What 

could be the fitness consequence of losing such biosynthetic functions in bacteria? 

Experiments using auxotrophic strains of Escherichia coli and Acinetobacter baylyi showed that in 

most cases a loss of biosynthetic genes resulted in the increased fitness of auxotrophs relative 

to the prototrophic counterparts when the requisite metabolite required by the auxotrophic 

strains was present in the environment. Thus, the selective advantages that the auxotrophic 

strains gain over prototrophic types can explain why bacteria in nature lose their metabolic 

autonomy and become dependent on the environment.  

Another common observation from the in silico analysis was that bacteria spanning different 

lifestyles frequently also lost multiple biosynthetic functions. How can the genetic 

interactions between different biosynthetic gene deletions, i.e. epistasis, influence the fitness 

consequences of losing biosynthetic genes? Competitive fitness measurements of 

auxotrophic E. coli strains, which had lost one or multiple biosynthetic genes, versus the 

prototrophic strain revealed prevalent epistasis between biosynthetic functions. Interestingly, 

epistasis significantly constrains the rate of adaptation by causing a pattern of diminishing 

returns of adaptive benefits with an increasing number of biosynthetic mutations. 

Furthermore, the observed epistatic patterns between biosynthetic genes and selective 

advantages of gene loss were strongly dependent on the type of carbon source present in the 
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nutritional environment. These findings suggest that the adaptive loss of biosynthetic 

functions can be strongly influenced by epistasis and environmental plasticity.    

How can the selective advantages observed in auxotrophic strains and the variation in fitness 

in different carbon source environments be explained? A two pronged approach of 

computational and experimental analyses revealed that the type of carbon source and the 

architecture of the metabolic network, determines the metabolic costs of production of a 

metabolite. These costs in turn determine the growth advantages that bacteria gain upon loss 

of biosynthetic genes. This result provides a rich insight into how biochemical trade-offs, 

which are shaped by a cell’s metabolic network can influence metabolic growth strategies in 

bacteria. Thus, the results of chapter 1, 2 and 3 strongly make the case for adaptive benefits 

in driving the prevalent loss of biosynthetic functions in bacteria in environments rich in 

metabolites.  

Does natural selection favor the loss of genes in nutrient-rich environments? An 

experimental evolution approach revealed that the loss of biosynthetic genes and functions is 

indeed favored by selection. Replicate isogenic populations of an initially prototrophic strain 

of E.coli repeatedly evolved to become auxotrophic when serially propagated in both amino 

acid-rich and -poor environments. However, the frequency of evolved auxotrophic strains 

was much higher in the amino acid-rich environment. Nonetheless, all the auxotrophic 

genotypes were adaptive when amino acids were present in the environment. Interestingly, 

auxotrophic strains also evolved to become dependent on the coexisting prototrophs, thus 

giving rise to a previously absent metabolic interaction. The stable coexistence and the 

unidirectional dependency between auxotrophic and prototrophic genotypes was stabilized 

by negative frequency-dependent selection.  

Taken together, the findings described in this thesis provide strong experimental evidence 

for natural selection in shaping the evolution of microbial communities by: i) driving the loss 

of biosynthetic functions and thereby causing a dependency on the environment, ii) 

promoting metabolic specialization of bacterial genotypes, and ii) consolidating specialization 

and dependencies through ecological interactions. In the subsequent sections I discuss how 

these processes might occur in bacterial collectives and their implications for the evolution of 

microbial communities.  

 

1.1 Metabolic dependencies are widespread in the bacterial world 

A major revelation from this thesis is that bacteria with seemingly free-living lifestyles also 

lose biosynthetic genes like bacteria with specialized lifestyles i.e. endosymbionts or gut 

dwelling bacteria. The prevalence of auxotrophies in bacteria (chapter 1) is supported by 

findings of other studies. In one study, Mee and coworkers (2014) employed in silico 

approaches to quantify the presence or absence of complete and intact biosynthetic pathways 
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and observed that a large proportion of  bacterial genomes lack complete biosynthetic 

pathways for multiple amino acids [22]. In another study, Monk and coworkers (2013) used 

genome scale reconstructions of metabolic networks to predict the anabolic capabilities of 55 

Shigella and E.coli strains. The authors found that almost 22 % of the analyzed strains were 

auxotrophic for amino acids and multiple vitamins [67]. A caveat that needs to be accounted 

for here is that the approaches employed to estimate the loss of biosynthetic capabilities are 

explicitly based on inferences from a comparative analysis of bacterial genomes and not on 

the basis of phenotypic surveys of auxotrophic bacteria in nature. Can these in silico 

predictions be corroborated by occurrences of auxotrophs in nature? Auxotrophic isolates 

are frequently isolated from diverse habitats: vitamin requiring strains dominate microbial 

communities in soil and aquatic environments [257], amino acid auxotrophic strains of 

Pseudomonas aeruginosa are present in the infected lungs of human individuals who suffer from 

cystic fibrosis [251], endosymbiotic strains of Rhizobium in root nodules of plants are 

auxotrophic for amino acids [258,259] in addition to the numerous genome reduced 

endosymbiotic bacteria that are well-described in literature [32,45,69,177]. In addition, 

auxotrophic mutants have also been observed to rapidly evolve in experimentally evolving 

bacterial populations (as in chapter 4). For instance, when pathogenic strains of Legionella 

pneumonophila were adapted to mouse macrophages [174], E.coli strains were adapted to the 

mouse gut [173], Pseudomonas aeruginosa strains were propagated as biofilm cultures [172] or 

when Bacillus subtilis strains were adapted to nutrient-rich environments [133].  

 

1.1.1 A diversity of mechanisms can cause metabolic dependencies 

The estimates of metabolic auxotrophies that are based on genome reconstructions and 

lifestyles of 949 and 1437 genomes in this thesis (chapter 1 and 2) are among the first 

systematically reported predictions for bacteria. However, these estimates are likely very 

conservative for multiple reasons. First, the criteria to consider if biosynthetic capabilities 

were intact in a genome was very stringent and required at least 50% of a biosynthetic 

pathway to be lost for a bacterial species to be deemed as auxotrophic. However, as in the 

case for E. coli and A. baylyi (chapter 1 and 2), a single deletion was sufficient to cause an 

auxotrophic phenotype in the bacterium. Second, the in silico analyses are impeded by the 

limited number of completely sequenced and annotated genomes that are available. Genome 

databases are also inherently biased, because a large proportion of bacterial genomes in these 

datasets are those that are of pathogenic or economic importance (e.g. biotechnology), and 

thus these databases are considerably underrepresented with bacteria having alternate 

lifestyles [260,261]. Last, only structural genes are taken into account in the in-silico analyses and 

the auxotrophies that arise due to regulatory elements, which have been suggested to play an 

important role in adaptation [169,262], not considered. Understanding how mutations in 
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structural or regulatory elements influence loss of biosynthetic function in bacteria is essential to 

accurately predict the extent of such losses in nature.   

In bacteria the biosynthesis of essential cellular metabolites is tightly governed by numerous 

other genetic elements and molecules in addition to enzymes. These include structural elements 

such as sequences of DNA like promoters, coding regions, and terminators, to which 

regulatory elements bind and coordinate expression of genes and pathways. Loss of any of these 

elements can result in an inactivation or down-regulation of a gene product involved in 

metabolite biosynthesis, thus causing a cell to display an auxotrophic phenotype. 

Interestingly, the evolution of auxotrophs in this study could be attributed to mutations in 

both structural and regulatory elements (chapter 4). How can diverse genetic alterations lead to 

convergent phenotypes (in this case the loss of functions)? For structural elements, the answer is 

simple. Loss of the DNA sequence due to mutations can cause a loss of function or abolish 

the binding ability of a regulatory element. However, in the case of regulatory elements the case is 

quite different.  

The explanation is centered around the architecture of cellular networks in bacteria, which 

are inherently modular  [169]. As a result, a single mutation in a regulatory element (For instance 

hns in Fig. 1A) can have consequences on multiple (90 downstream target ORFs for hns, 

Fig. 1A) components coherently elsewhere in the network [263]. For instance, in E. coli there 

are 300 transcription factors which are organized hierarchically with few master regulators 

(Fig. 1A) [263]. Of these, the regulatory proteins CRP, FNR, IHF, Fis, ArcA, NarL, H-NS, 

Fur and Lrp control over half of all genes, through direct and indirect interactions [263]. 

Thus, a loss of function mutation in any of these genes will alter or shut down expression of 

associated genes, and additionally trigger far-reaching changes in cellular metabolism [169].    

In the specific case of amino acid metabolism in E. coli, the transcription factors ArgR, Lrp, 

TrpR and TyrR directly or indirectly regulate the biosynthetic pathways of almost all of  20 

amino acids (Fig. 1B)[247,264,265]. These transcriptional factors are in turn regulated 

hierarchically by many more core cellular regulators (Fig. 1A) [244-246]. Therefore, a 

mutation that inactivates the function of any of these regulatory elements in bacteria can lead to 

a loss of the ability to autonomously biosynthesize these metabolites leading these genotypes 

to depend on the environment. Similar mechanisms likely also operate in other bacterial 

genotypes. For instance, uracil auxotrophy in isolates of Lactobacillus plantarum has been 

shown to account as a result of losses of genes involved in biosynthesis as well as mutations 

in regulatory elements [266].  

The complicated hierarchy and interconnectedness of the components in cellular networks 

underlying amino acid metabolism in bacteria have two important implications. First, they 

expand the suite of genetic targets (in addition to structural genes) likely accessible to natural 

selection to mediate the inactivation of biosynthetic functions in bacteria. This, is especially 
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interesting in light of a recent study where it was observed that the deletions of regulatory 

functions were in most cases accompanied by increases in fitness [169]. This finding is 

indicative that the adaptive losses of regulatory elements facilitate the emergence of new 

phenotypes [169]. Furthermore, it is well known that mutations in regulatory elements play an 

important role in the early steps of adaptation to new environments [169,262].  Second, the 

inactivation of regulatory elements can result the in the loss of multiple biosynthetic functions 

simultaneously. In this study, the loss of multiple structural genes resulted in prominent epistatic 

effects which constrain (or diminish) the increase of adaptive benefits (chapter 2) in multiply 

auxotrophic strains. Inactivation of regulatory elements could reflect an alleviation of these 

constraints that are imposed by epistasis on adaptive evolution. Indeed the finding that 

regulatory elements were subject to mutations in the case of the derived auxotrophic strains 

(chapter 4), strengthens this argument.    

 

Figure 1A: Network of cellular transcription and sigma factors in E. coli. Green, red and blue 

arrows denote direct activating, repressing and dual interactions. Sigma factors, master regulators 

and lower-tier regulators are in purple, yellow and beige, respectively. The numbers denote the total 

number of direct downstream ORF–gene interactions that controlled by each node. Figure from 

Isalan et al., (2008) [263]. 

Figure 1B: Functional gene categories that are directly regulated by ArgR, Lrp and TrpR. 

Yellow bars indicate categories that are related to amino acid metabolism whereas black bars 

represent genes involved in energy metabolism. The percentage represents the total fraction of 

amino acid metabolism related functions. Figure from Cho et al., (2011) [247].  

 

In summary, the loss of biosynthetic functions could be much more prevalent than estimated 

by in silico analyses because of the multiple ways that can lead to metabolic auxotrophies in 

bacteria.  
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1.2 Evolutionary adaptation rather than drift can explain loss of biosynthetic 

functions in bacteria 

The outcomes in this thesis strongly imply that loss of biosynthetic gene loss in bacteria is 

primarily a consequence of adaptive processes and that selection favors the loss of costly 

biosynthetic functions when the metabolite is sufficiently compensated by the environment 

(chapter 1,2 and 4). Therefore, one implication of this finding is that selection favors the 

removal of constraints that bacteria face during growth and survival in their environment. It 

is a well-known paradigm that bacterial growth is severely constrained by the expression of 

unneeded proteins since their production diverts resources from making other important and 

beneficial proteins that are immediately relevant to the cells environment [90,109]. Most 

natural environments of bacteria are rich in many important metabolites required by a 

bacterial cell, for instance amino acids (chapter 1 and Table 1) [257]. In the case of 

biosynthetic functions, the environmental availabilities of metabolites make the autonomous 

production capabilities of these metabolites redundant and thus mean that prototrophic cells 

have to incur the costs of production. Although, it can be argued that regulatory mechanisms 

in bacterial cells act to shut down biosynthetic pathways when the metabolite is present in 

the environment, evidence suggests that regulatory processes might be inefficient transiently 

during adaptation to a new environment [267]. The costs associated with biosynthesis of 

amino acids constitute an important part of the metabolic costs that are incurred by a 

bacterial cell [88] and the results in this thesis show that both, metabolic and protein costs 

can determine growth rates (chapter 3) and fitness (chapter 1) of bacterial cells. Thus, by a 

loss of these functions, bacterial strains can be freed in part from growth related constraints 

and distribute the resources that were earlier associated with these functions to other 

important cellular functions. This argument is in line with the ‘streamlining theory’ which has 

been proposed to explain genome reduction in free-living organisms [268]. The basic idea is 

that selection favors a reduction in genome size in order to give rise to a cell architecture that 

minimizes the resources required for replication in such organisms [41,82,268]. However, 

what causes drive losses in endosymbiotic or host restricted bacteria?  

In this study selection drove the loss of functions rather than a reduction of genome size 

(chapter 4). A similar result was observed in serially propagated populations of 

Methylobacterium extorquens AM1 wherein most of the evolved populations had lost accessory 

genes [91]. This result has an important implication in context of drift or selection in driving 

the loss functions and genes in bacteria. Based on population genetic models the propensity 

of drift to influence the fixation of an allele is high when Nes < 1 (Box 1 in Introduction) 

[41,46,80]. This scenario, where Nes is less than unity, has been postulated to be applicable 

for endosymbionts because these bacteria have a low Ne. However, such models fail to 
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account for the possibility that if s is high enough, it can potentially result in a high Nes i.e. 

Nes <1, thus potentially over-riding the effects of low Ne. 

 

Table 1: Relative abundances of amino acids in different environments. Amino acid 

abundances were weighted based on their concentrations in the total fraction amino acids in 

present in the environment. Table from  Moura et al., (2013) [189].        

 

 

In this study, a loss of biosynthetic genes resulted in enormous fitness increases gains, on 

average 13%, in the auxotrophic strains in the presence of metabolites, and in different 

carbon source environments (chapter 1,2 and 4). Since, selection coefficients and fitness are 

interlinked [236], a plausible hypothesis is that if the fitness effect of the mutation is high 

enough, it can increase s and cause selection to influence the fixation of the mutation in the 

population irrespective of the population size or bottlenecks. Environments containing 

symbionts or host associated bacteria are normally rich in amino acids such as eukaryotic 

cells [269], and insect [249] and mammalian guts [270] (Table 1). Thus, selective advantages 

of auxotrophy could easily manifest in such environments. Future work should scrutinize 

and experimentally test this hypothesis. Furthermore, an experimental estimation of Ne of 

most endosymbiotic bacteria is often not possible. However, some studies have attempted to 

estimate population sizes in symbionts of insects. For instance the number of Candidatus 

Streptomyces philanthi individuals in the European bee-wolf increase from ~970 cells after 

vertical transmission as a result of logistic growth in the offspring 3-5 days after transmission, 

to range in-between  107-108 [103]. Similarly, in stinkbugs, population sizes of the symbiotic 

bacterium Candidatus Ishikawaella capsulata are estimated to be around 2 × 107 cells after 

increasing from 1.9 × 106 cells during vertical transmission [271]. Interestingly, the 
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population and bottleneck sizes imposed on the evolving E. coli populations in chapter 4 

(population sizes of 107- 108 and bottleneck size of 1,000 cells) were strikingly similar to the 

above mentioned estimates for symbionts in their hosts, and yet adaptive processes were 

operational in driving the loss of biosynthetic functions. Thus, in the case of endosymbionts, 

a relatively small Ne combined with the enormous selective benefits (s) can also account for 

loss of biosynthetic functions in bacteria. Additionally, it is difficult to reconcile the 

frequently observed reciprocal losses of metabolic functions between hosts and bacteria 

[72,73] or between multiple endosymbionts [32,66,69] in the same host by genetic drift rather 

than a consistent period of adaptive coevolution. However, the possibility that other less 

costly or neutral functions are lost from bacterial genomes as a result of drift cannot be ruled 

out.  

If the loss of biosynthetic functions is an evolutionary adaptation to the environment, how 

does a loss of metabolic autonomy help auxotrophic genotypes to colonize or exploit their 

environments? For instance, in bacterial pathogens a reduction in biosynthetic functions 

could result in selective fitness benefits that could help in infecting and proliferating within 

their animal hosts. The pathogen L. pneumophilia, the causative agent of Legionnaires disease, 

is auxotrophic for multiple amino acids and derives these metabolites by triggering 

degradation of proteins in its eukaryotic hosts by using a virulence factor [272]. Thus an 

acquisition of amino acids from the host cytoplasm helps this organism to successfully 

establish an intracellular infection [272]. Auxotrophies also exist in other microbial pathogens 

like Rickettsia and Mycoplasma  [47,48]  and could reflect general nutrient adaptations in such 

organisms and thus potentially represent an important force for pathogenic evolution [272].  

The loss of metabolic autonomy in one bacterial genotype can also be an evolutionary 

adaptation in response to the presence of other bacterial genotypes in the environment 

(chapter 4) [175]. Such a process of ‘compensated trait loss’, where functions are lost due to 

provisioning of resources by ecological interaction [175,273], is also envisioned in the BQH 

and could be relevant in microbial communities where multiple genotypes are present and 

interact with each other. An interesting case of such a pattern of ‘compensated trait loss’ in 

bacteria is that of an evolved syntrophic mutualism between Desulfovibrio vulgaris and 

Methanococcus maripaludis [274,275]. Both the ancestral genotypes are metabolically 

autonomous when grown on certain substrates but in the conditions of the experiment both 

genotypes were required to be dependent on each other [274,275]. Over the course of 

syntrophic growth both species evolved to be increasingly metabolically dependent on each 

other and increase their stability and productivity. Interestingly, in independently evolved 

populations, D. vulgaris genotypes arose that had accumulated adaptive loss of function 

mutations in genes essential for metabolic autonomy in alternate environments resulting in 

an obligate dependency of these genotypes on M. maripaludis [274].   
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Thus, a significant outcome of such ‘compensated trait losses’ is the increased potential for 

diverse genotypes to develop interdependencies on each other [7,51,274]. A question thus is, 

how can initially metabolically autonomous genotypes diversify into being metabolically 

specialized and dependent in response to activities of other genotypes? I address possible 

ecological mechanisms in the following section.    

 

1.3 The origins of diversity and mechanisms of coexistence and dependency 

in bacterial communities 

Adaptive radiations have been often attributed to account for the widespread biological 

diversity existent in nature [276-278]. Simply put, adaptive radiation is the differentiation of a 

single ancestral type into different groups that can have distinct ecological roles and role-

specific adaptations [278,279]. Often such radiation events can be a consequence of 

interactions, which can be frequency dependent, between individuals of a population and 

result in adaptive diversification of the ancestral lineage [280,281]. Such diversification events 

which lead to the coexistence of multiple bacterial types that originated from a single 

ancestral strain have been a frequent outcome of many selection experiments with microbes 

in sympatric, i.e. well mixed conditions [276,277,281-283]. Interestingly, a similar pattern of 

sympatric adaptive diversification was also observed in the evolution experiment in the non AA-

regime in chapter 4. The prototrophic ancestral strain diversified into two distinct variants, 

one of which was still prototrophic while the other was auxotrophic for multiple amino acids 

(chapter 4). A likely explanation for the emergence and continued existence of auxotrophic 

genotypes is that changes (genetic or metabolic) in the evolving prototrophic sub-population 

provided a new niche i.e. niche construction, e.g. by secretion of amino acids, for the 

auxotrophic sub-population to fill. The two genotypes had distinct growth profiles and their 

coexistence of the auxotrophic genotypes was maintained by negative frequency-dependent 

selection (chapter 4). Thus, niche construction by one genotype facilitated the evolution of a 

dependent genotype. Two experimental studies have documented strikingly similar patterns 

of adaptive diversification events in terms of the metabolic capabilities of bacteria.   

In one study, E.coli populations founded from a single genotype repeatedly evolved two 

distinct metabolic phenotypes when propagated in medium containing glucose [281,284]. 

The E. coli cells that were evolving to the glucose medium excreted acetate into the 

environment, thus creating a new niche which another sub-population evolved to fill 

[281,284]. Thus, two genetically distinct populations, which evolved from the same ancestor, 

specialized on two distinct components of the environment, glucose and acetate [281,284]. 

The glucose specialized genotypes grow faster when glucose is abundant but inefficiently 

utilize acetate [281,284]. In contrast, the acetate specialized genotypes catabolize acetate 

efficiently [281,284]. Both, these genotypes are maintained by negative frequency-dependent 
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selection, which is generated because of a limitation of resources due to the metabolic 

specialization of each genotype and daily transfers [281,283,284]. In another study involving 

a long term evolution experiment with E.coli populations that were adapting to glucose, an 

interesting case of what can be thought of as diversification was observed [285]. In one of 

the twelve adapting populations of E. coli, the ability to utilize citrate (cit+ cells) as a carbon 

source emerged [285]. These cit+ genotypes did not completely eliminate the cit- genotypes 

(which display the ancestral phenotype) and instead coexist with cit- cells in a frequency-

dependent manner [285]. The basis for their coexistence was that cit+ genotypes secreted 

carbon sources such as succinate, fumarate, and malate into the environment which 

benefitted cit- genotypes since these types could catabolize these compounds [285].  

These experimental outcomes signify the importance of niche construction by a certain bacterial 

genotype, for instance through metabolic changes, has on the evolution of metabolic 

specialized genotypes. It has been suggested that adaptive diversification can be a key driver of 

speciation in microbial communities [286]. However, it can be also argued that natural 

environments are exceptionally complex in terms of the temporal and spatial variations in 

nutrient compositions and thus, adaptive diversification observed in consistent environments in 

the laboratory experiments, such as in chapter 4 and those mentioned above [281,284,285], 

would not necessarily proceed in a similar fashion in nature as in the environment [286]. 

However, the ease with which rapid specialization occurs in experimental populations 

repeatedly suggests that even small periods of environmental stability can result in adaptive 

diversification of bacteria in the nature [286].  

One important question thus begs an explanation. How can niche construction occur in 

microbial communities? A feature of microbial growth called ‘overflow metabolism’ can 

provide the likely explanation. Many bacterial genotypes under certain conditions of growth 

can excrete large quantities of metabolic waste or by-products into their external 

environment [287]. This process is termed as overflow metabolism [287] and results in public 

goods (or alternately BQ functions in this context)  like metabolites, carbon sources, enzymes, 

siderophores being available for exploitation by other genotypes in the environment [26,28]. 

The primary reasons of such metabolic export by a bacterial cell is to maintain the balance of 

the metabolic system as well as to maintain the chemical and physical integrity of the 

metabolic network in a cell [28]. However, the presence of such public goods can favor adaptive 

diversification like in case of the experimental observations [281,284,285] mentioned earlier or 

alternately favor distinct genotypes, for e.g. auxotrophic types, to utilize these metabolites. 

Perhaps this could also explain why prototrophic and auxotrophic strains of Pseudomonas 

aeruginosa that descended from the same ancestral genotype often inhabit the same 

environments, i.e. the exudates of cystic fibrosis infected patients [251,252,288] or why co-
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occurrences of auxotrophic and prototrophic genotypes have also been noted in freshwater 

microbial communities [171,255]. 

Nonetheless, an important consequence of diversification would be the development of 

metabolic dependencies between different genotypes on each other. In the examples of 

adaptive diversification, the metabolic dependence was such that only one of the two 

genotypes is completely reliant on the other, and not vice versa. For instance, acetate specialists 

are dependent on the glucose specialists [284], auxotrophic genotypes on prototrophic 

genotypes (chapter 4), and cit- genotypes are dependent on cit+  genotypes [285]. However, 

most cases of metabolic dependencies are in the form of intricate bi-directional metabolic 

complementarities such as those observed in the case of coevolving bacterial consortia which 

exchange nutrients, e.g. syntrophy, [2,8,274] or coevolving endosymbionts within eukaryotic 

hosts which display striking complementarity in their metabolic pathways 

[32,47,49,66,69,274]. How can such metabolic interdependencies originate in nature? I 

discuss possible routes to intricate metabolic associations in the next section. 

 

1.4 From adaptive loss of functions to inter-bacterial metabolic 

complementarily in microbial communities 

The prevalent loss of functions coupled with by-product utilization can result in intricate and 

obligate interdependencies between partners in coevolving consortia [51,100]. However, 

classical models of mutualisms predict that the evolution of such interdependencies between 

two partners through by-product reciprocity would be shaped by natural selection such that 

receivers of by-products maximize their benefits by being cooperative to producers [7,100]. 

Sachs and Hollowell (2012), and Kost (2015) have postulated a possible path to the evolution 

of interdependencies in bacteria which are in principal similar to the predictions of the BQH 

(Figure 2) [51,100,289]. The first step is the selfish use by one species of by-products 

secreted into the environment by another species [100]. The second step will be the loss of 

these costly functions that are now gained from the environment [100]. A last step will then 

be the evolution of costly cooperative traits in order to maximize the functions that are 

produced by others [100]. The first two steps have been explained so far in the context of the 

adaptive diversification (section 6.3) and the adaptive loss of functions (section 6.2). How can 

the third step i.e. the production of costly functions come about?  
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Figure 2: Steps towards the evolution of reciprocal metabolic dependencies in bacteria from 

initially metabolically autonomous genotypes. (A) Bacteria release metabolites into the 

environment (orange circle). (B) The presence of these metabolites in the environment results in the 

adaptive loss of metabolic autonomy in another species or subpopulation (red cells). (C) Bacteria 

which have lost functions can in turn produce other metabolites (yellow) which can result in the loss 

of metabolic autonomy in another population or species. (D) Reciprocal feedbacks can increase the 

strength of the interaction and give rise to intricate metabolic dependencies between the two cell 

types. Figure from Kost (2015) [289]. 

 

A recently proposed theory called the biological general equilibrium theory (BGET) attempts 

to provide a framework to explain the evolution of interdependencies (Figure 3) [29]. This 

theory is based on the general equilibrium theory (GET) that is used in economics to explain 

the behavior of trade and markets [29]. The basic premise of the BGET framework is that 

microbial communities will be more productive in terms of growth when their constituent 

members lose biosynthetic functions and enter into inter-cellular exchange compared to a 

scenario where the constituent members of a community are completely prototrophic [29]. 

This is because natural selection optimizes metabolite production and growth in specific 

environments by favoring specialization [29]. As a result, genotypes, which are already 

endowed with productivity differences and are functionally distinct can come together to 

function as a single metabolic unit [29]. Thus a key requirement for metabolic reciprocity is 

specialization in metabolite production. A question then is how such specialization can occur 

in bacteria. 

Findings in chapter 3, strongly suggest that the structure of metabolic network in E. coli 

results in a trade-off in the biosynthesis of amino acids. Briefly, amino acids, which are 

synthesized from glycolytic precursors, entail lower metabolic costs if glycolytic carbon 

sources, e.g. fructose, are present as compared to costs when a gluconeogenic carbon source 

is used (e.g. succinate). In contrast, amino acids which have their precursors in the 

tricarboxylic acid cycle, induce lower metabolic costs when gluconeogenic carbon sources are 

present compared to growth on glycolytic carbon sources. This trade-off probably also 

accounts for why distinct epistatic patterns emerged in the fructose and succinate 

environments (chapter 2). Metabolic trade-offs in bacteria can result from biochemical 
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conflicts resulting from distinct metabolic processes competiting for resources like energy 

(ATP), bio-elements (carbon and nitrogen) or core cellular machinery like metabolic enzymes 

and protein synthesis [226]. These resources are limiting in a bacterial cell and if a cell invests 

more in one metabolic process, it can invest less resources in another metabolic process 

[226]. Importantly, such biochemical trade-offs can promote metabolic specialization 

wherein specialized cell types that can only perform a certain set of metabolic processes 

optimally, can emerge [226]. The evolution of acetate specialists described in section 6.3 is an 

example of the evolution of metabolic specialists as a result of trade-offs in central carbon 

metabolism in bacteria [281,282,284].  

 

 

 

Figure 3: Evolution of metabolic exchanges between metabolically specialized microbial 

cell-types under the BGET framework. Microbes can convert catabolites (grey pentagons) to fuel 

the biosynthesis of metabolites required for synthesis of essential cellular macromolecules. Instead 

of performing all of the biosynthetic reactions in one cell-type, cells can produce metabolites by 

splitting these functions between different cells. Thus, cell 1 can specialize on the production of a 

single metabolite (blue squares) while cell 2 produces more of another metabolite (red triangles). 

Export of these anabolites into the environment can lead to a reciprocal exchange of these 

compounds, helping such specialized cell types to cooperate and maximize individual growth rates. 

Figure from Tasoff et al. (2015) [29]. 

 

Thus, as result of metabolic trade-offs, dependent genotypes will specialize on the 

production of only certain sets of metabolites, which they can exchange and thus maximize 

their productivity (Figure 3) [29]. This idea is supported by empirical work, which has shown 

that two or more auxotrophic genotypes can reciprocally exchange amino acids to 

complement each other’s metabolic needs [20,23,24,28,126,254,290] and that such metabolic 

exchange can be favored by natural selection [24,290]. For instance, Pande and coworkers 
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(2014) constructed synthetically engineered consortia composed of two E.coli strains, each of 

which was auxotrophic for a certain amino acid while also overproducing a different set of 

amino acids [24]. Thus, these genotypes could metabolically complement each other’s amino 

acid deficiencies by reciprocally exchanging amino acids [24]. The authors observed that in 

general cross-feeding consortia had a pronounced fitness advantage over prototrophic 

populations [24]. In another study, Zhang and Reed studied the dynamics of a cross-feeding 

consortia composed of two auxotrophic strains over the course of time found that these 

consortia adaptively evolved to increase their growth rates up to 3 fold compared to the 

ancestral consortia [290].  

An important factor or problem for the evolution of interdependencies in bacteria is often 

the requirement for dependent bacteria to always have available genotypes which can 

provision metabolites that are required [13]. Spatial structure is a likely solution to this 

problem and has also been frequently suggested to favor the evolution of mutualisms 

[7,291,292]: by being in close spatial proximities of provisioning genotypes, dependent strains 

can derive the metabolites that have been released into the external environment by other 

genotypes [5,7,11,136,291-293]. Since a prominent mode of growth in the microbial world is 

as biofilm communities [294-298], such spatial structure be can easy to achieve in nature and 

helps dependent genotypes to be in close vicinities of each other. Estrella and coworkers 

have also addressed the factors that determine the transition towards mutual independencies 

(2015) [111].  They found that the level of privatization i.e. the extent of the retention of 

metabolic functions, by the providing genotype (e.g. a prototroph) of a BQ function (such as 

a metabolite) determines the feasibility of such a transition. When the level of privatization 

by a provider genotype is high, coexistence and mutual interdependencies are strongly 

disfavored whereas low to intermediate levels of metabolite privatization strongly promote 

the evolution of metabolic interdependencies [111]. The aforementioned spatial structure is 

one way how cells of a provider genotype can privatize the supply of metabolites. For 

instance, it has been shown that growth of cooperating genotypes of yeast [299] and bacteria 

[300] that reciprocally exchange amino acids in a spatial structured environment, is often 

restricted to regions where cooperating genotypes are present. In the bacterial consortia it 

was also observed that cooperating genotypes were localized in metabolite-rich regions [300]. 

The argument of spatial structure has also been used to explain enhanced metabolic activity 

at syntrophic interfaces in a consortium of methanogens [27] and sulfate reducing bacteria 

isolated from nature [301]. Cooperating genotypes can also exchange metabolites through 

nanotubes [253,254]. For instance, it was recently discovered in two different studies that 

strains can alleviate their metabolic needs by deriving nutrients from producer genotypes 

through membrane derived extensions which not only mediate cell-cell contact but also 

facilitate the transport of nutrients across cells [253,254]. Such metabolite exchange through 
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nanotubes could be another way how strains can create spatially structured environments and 

potentially privatize metabolites [254]. 

An important question that arises at this point is how can metabolic complementarities 

emerge in natural communities of bacteria? Consider a hypothetical scenario of a microbial 

community in nature existing as a biofilm (Figure 4). This community has access to several 

utilizable metabolites and catabolic resources to enable the growth and survival of the 

genotypes that comprise this community in nature [302,303]. In addition, community 

members also produce metabolites and these are released into the external environment. As a 

result of the adaptive loss of metabolic autonomy and specialization in the production of 

metabolites, intricate metabolic complementarities can emerge between members of the 

community (Figure 4). Furthermore, genotypes can also modify their metabolic environment 

resulting in diversification into newer metabolically distinct species. Nonetheless, repeated 

bouts of coevolution, and increased investments by each partner into the cooperative 

exchange, should result in loss of functions in both partners, due the enormous fitness 

benefits of losing biosynthetic functions [51,100]. Over time, this BQH-like process should 

result in biosynthetic losses and give rise to complementarities at the level of metabolic 

functions in the coevolving genotypes similar to those observed in bacteria isolated from 

nature [26]. Thus, a simple process of adaptive gene loss can bring about remarkable changes 

in the structure, and possibly function of microbial communities in nature. 
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Figure 4: Evolution of inter-bacterial metabolic complementarities in microbial communities. 

Natural selection favors the loss of biosynthetic autonomy from initially prototrophic genotypes 

(yellow cells) in the presence of anabolites (colored triangles) in the environment, thus causing 

these genotypes to instead depend on the metabolic environment or other genotypes to 

compensate for a loss of these functions. However, prototrophic genotypes will not be selected 

against but are maintained in the population. The dependent genotypes can then diversify to utilize 

specific subsets of the available catabolic resources (circles, squares or pentagons) to maximize 

their fitness, while metabolic trade-offs will lead to the specialization in production of specific 

metabolites. This functional specialization can result in the evolution of interdependencies (colored 

lines) between different specialized genotypes, which could be connected through nanotubes, 

resulting in the formation of a single connected functional metabolic unit. Orange, purple and green 

cells represent different auxotrophic genotypes. Colored lines represent physical cell-cell 

connections that mediate metabolic exchanges between diverse cell types. 
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Can such processes be implicated in the evolution of natural communities? A recent 

metagenomic and empirical survey of ecologically relevant methanogenic communities in a 

controlled laboratory environment [304] strongly indicates that the answer is yes. The 

authors observed that these communities are tightly integrated in terms of catabolic 

interactions between different members [304]. However, most members in the community 

occupied similar metabolic niches but still coexisted with each other, contrary to expectations 

[304]. For instance, in one of the communities which catabolizes hexadecane, Desulfovibrio 

was present, which was surprising since sulfate reduction, a core attribute of this genus, was 

not detected in this community [304]. Interestingly, based on an analysis of transcriptional 

activity, members of the community were found to have distinct patterns of amino acid 

auxotrophies, such that many members selective express only certain sets of biosynthesis 

pathways when catabolizing different catabolic compounds (Figure 5) [304]. For instance, 

Desulfovibrio is the only member of the hexadecane community which can provision 

methionine and proline to other 

genotypes, in community 

catabolizing caprylate and 

hexadecane respectively (Figure 5) 

[304]. Interestingly, only certain 

members of the community, e.g. 

Smithella and Syntrophomonas 

provide the more biosynthetically 

expensive amino acids to other 

community members [304]. The 

differential provisioning of 

different amino acids by distinct 

genotypes in different catabolic 

conditions strengthens the key 

predictions made in chapter 3 as 

well as in the BGET that the type 

of catabolic resource and 

metabolic trade-offs shape the 

specialization in the type of 

metabolites that can be produced. 

The authors posit that the factors 

influencing community structure 

and function could extend beyond catabolism to include the importance of amino acid 

dependencies in nature [304]. A similar distribution of biosynthetic functions has also been 

Figure 5: Biosynthetic functions are distributed 

between species in methanogenic communities.  

The amino acids are ordered by their biosynthetic cost 

(arrow). A colored square indicates the amino acid that 

a species can produce, and the intensity of color 

represents the relative expression of the corresponding 

amino acid biosynthesis pathway. Those amino acids 

exclusively produced by one species are highlighted in 

red. Figure from Embree et al., (2015) [304]. 
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observed in a freshwater microbial community [255]. The aforementioned multiple cases of 

genome reduced insect endosymbionts are another striking example of separate organisms 

that function as a single metabolic unit [305]. Dependencies have likely driven the extreme 

integration of genomes and metabolism  of host and endosymbionts [63,73] or of multiple 

endosymbionts [69,177], even causing the diversification of endosymbionts in certain cases 

[305,306]. For instance, based on the genomic capabilities, the endosymbionts of Glassy-

Winged Sharpshooter, Sulcia muelleri and Baumannia cicadellinicola, have been predicted to have 

evolved multiple complementarities in their biosynthetic functions (Figure 6) [69]. The 

predictions of such interdependencies in these organisms fit nicely with the outcomes from 

this thesis. 

 

 

Figure 6: Metabolic interdependencies predicted in Sulcia and Baumannia. Some metabolites 

can be gained from the xylem sap (green boxes). Metabolites produced by endosymbionts which 

can be used by the host are indicated using large arrows while those that are shared between 

endosymbionts are indicate with small arrows. Metabolites, pathways, and genes in red and blue 

boxes are involved in amino acid and vitamin biosynthesis, respectively. Purple boxes indicate   

various   other   metabolic functions whereas dashed arrows indicate processes and genes shared 

between the symbionts. Figure from McCutcheon and Moran (2007) [69]. 

                                                                                                                                                                           

It is well known that cross-feeding interactions can stabilize genetic polymorphisms in 

bacteria [227,307-309] but as evidenced in the above example [304] and also in this study, 

adaptive metabolic interdependencies can in fact also have tremendous impacts on the 
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potential to drive the evolution of structure and function in microbial communities. These 

findings strongly makes the case for the microbial community to act as one integrated 

metabolic unit, whereby the entire set of metabolic functions may be distributed in parts 

amongst different community members, to enhance the productivity and stability of such 

communities. In the future, a targeted sampling of natural communities for their metabolic 

abilities and empirical studies of their metabolic activities should reveal the actual scale and 

function of metabolic interdependencies in nature. 

 

1.5 Concluding remarks 

The insights achieved from the theoretical and empirical findings of this dissertation strongly 

suggest that the natural selection strongly favors the loss of biosynthetic functions in bacteria 

across diverse lifestyles. These losses can potentiate the evolution of interdependencies 

between members of a microbial community because the adaptive benefits associated with 

being interdependent strongly outweigh the costs of employing a metabolically autonomous 

strategy. In addition, bacteria can also induce metabolic changes in environments causing 

adaptive radiations and the evolution of new metabolic phenotypes, and ecological interactions. 

Such intricate metabolic interdependencies could be a general feature of microbial life within 

communities whereby the entire bacterial collective functions as one metabolic unit (Figure 3 

and 4). A great number of bacteria are simply uncultivable in laboratory environments unless 

co-cultured with strains which complement their metabolic needs [125,310]. This difficulty 

with cultivating most bacteria could simply be a general reflection of the extent of metabolic 

losses and interdependencies in nature. Perhaps, joining forces and accomplishing tasks that 

are otherwise energetically unfavorable if performed individually [1,311] is the norm in 

microbial communities in nature.  
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Supporting Information for chapter 1 

SUPPORTING METHODS 

Computation of protein and DNA sequence biosynthetic costs 

Biosynthetic costs were estimated as the amount of carbon source that is 

required to produce 1 the amount of a certain protein per cell and 2 the DNA 

sequence of a certain gene. We used flux balance analysis within the Cobra 

toolbox v2.0 Schellenberger et al. 2011 in a genome-scale metabolic network of 

Escherichia coli K12 Orth et al. 2011. For each protein, the artificial reactions for 

protein synthesis,  

(𝟏) 𝑙 ( ∑ 𝑛𝑗
𝑎 a𝑗

a𝑗∈ AA

+ (𝑞 ∗ 𝑚𝑝)ATP)

→ 𝑙 ∗ 𝑚𝑝  H2O + 𝑞 ADP +  𝑞 Phosphate +  𝑞 H+  

or for the synthesis of the corresponding DNA sequence 

(𝟐) 𝑘 ∗  ∑ 𝑛𝑗
𝑑

d𝑗 ∈ 𝑁𝐴

 d𝑗 → 𝑘 ∗ 𝑚𝐷𝑁𝐴 Pyrophosphate 

have been included into the model. AA is the set of all 20 proteinogenic amino 

acids, NA is the set of the four desoxynucleoside triphosphates dATP, dCTP, 

dGTP, and dTTP. na
j represents the number of occurrences of amino acid aj in 

the amino acid sequence of the protein and nd
j the number of occurrences of the 

desoxynucleoside triphosphate dj in the DNA sequence of the gene. mp is the 

length of the amino acid sequence of the protein and mDNA the length of the 

corresponding DNA sequence. The abundance of the protein per cell has been 

incorporated in the calculations by the parameter l and the number of DNA 

sequence copies by parameter k. Protein abundance data were taken from 

Wessely et al. 2011 and a maximum of 6.54 DNA sequence copies k=6.54 were 

assumed for all sequences, which corresponds to the maximal chromosomal 

copy-number of a single-locus gene near the origin of replication in an E. coli cell 

at 2.5 doublings per hour  Klumpp et al. 2009. The parameter q represents the 

ATP requirement per amino acid residue during the polymerization process of 

translation. A previously reported value of q=4.2 was used Kaleta et al. 2013. 
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The lower bound for the flux of these reactions was set to a value of 1. The 

consumption of fructose as sole carbon source was minimized by linear 

programming to determine the minimal amount of fructose required to produce 

the corresponding proteins and DNA sequence. DNA and protein sequences 

were retrieved from the EcoCyc database Keseler et al. 2013.  

 

 

Construction of auxotrophic strains of Acinetobacter baylyi 

Linear constructs of the kanamycin cassette with 5’-overhangs homologous to the 

insertion site were produced by PCR. To this end, plasmid pKD4 Datsenko and 

Wanner 2000 DNA was used as a template to amplify the kanamycin resistance 

cassette. Upstream and downstream regions homologous to argH, hisD, leuB, 

and trpB were amplified using primers with a 5’-extension that was 

complementary to the primers used to amplify the kanamycin cassette Table S4. 

The three resulting products were combined by PCR to finally obtain the 

kanamycin cassette fused to the upstream and downstream homologous 

overhangs. Natural competence of A. baylyi was utilized to transform the linear 

fragments into the WT strain. Transformation was done by diluting 20 µl of a 16 h 

old culture grown in LB medium. This diluted culture was again incubated at 30 

°C with shaking. 50 µl PCR mix containing the deletion cassette was added to 

this culture and again incubated at 30 °C with shaking for 2 h. Finally, the whole 

culture volume was concentrated to 100 µl and plated on LB agar plates 

containing kanamycin and incubated at 30 °C for colonies to appear. 
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Figure S2. Taxonomic distribution of eubacterial strains used for in silico 

prediction of auxotrophies. Triangle size indicates the proportion of the phylum in 

the sample of 949 bacterial species from the MicroCyc database, which were 

used for auxotrophy prediction left cladogram and, for comparison, the proportion 

of each phylum in the National Center for Biotechnology Information NCBI 
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taxonomy database of all phylum-classified Eubacteria status: March 2013. 

Phylogeny adapted from Ciccarelli et al. 2006. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Phylogenetic distribution of free-living, gut-inhabiting, and 

endosymbiotic bacteria within the MicroCyc database i.e. 949 organisms; 

Vallenet et al. 2009 and the Genomes OnLine Database GOLD; 10,489 

organisms; Pagani et al. 2012. Only organisms for which the whole genome 

sequence as well as its lifestyle as listed in the Genomes OnLine Database were 

known were included. Numbers below bars indicate the number of organisms 

within the corresponding phylum and database. Phylogeny adapted from 

Ciccarelli et al. 2006. 



177 

 

 



178 

 

 



179 

 

 



180 

 

 



181 

 

 

 

Figure S1. Metabolic pathways that were considered for the prediction of 

auxotrophies. Pathways including EC numbers were collected from the MetaCyc 

database Caspi et al. 2012. Target compounds of each metabolic route are 

written in red. Metabolites written in black bold type are indicating dependencies 

on other biosynthetic pathways. All reactions are named by the corresponding EC 

number or the MetaCyc reaction ID if no EC number is assigned to the reaction in 

MetaCyc. UMP uridine monophosphate is the precursor for cytosine and IMP 

inosine monophosphate is the precursor for guanosine. Abbreviations: pyr: 

pyruvate, acCoA: acetyl CoA, tRNACys: uncharged tRNA for L-cysteine, Cys-

tRNACys: L-cysteine-charged tRNA for L-cysteine, 2-keto-Ile: 2-keto-isoleucine, 2-

mb-CoA: 2-methylbutanoyl-CoA, carb-p: carbamyl-phosphate, N-acOrn: N-acetyl-

L-ornithine, orn: L-ornithine, akg: α-keto-glutarat, glu-semiAH: L-glutamate-5-

semialdehyd, THDP: S-2,3,4,5-tetrahydrodipicolinate, DAP: L,L-diaminopimelate, 

mDAP: meso-diaminopimelate, kyn: L-kynurenine, cysth: L-cystathionine, hSer: 

L-homoserine, hCys: L-homocysteine, THF: tetrahydrofolate, mTHF: 5,10-

methylenetetrahydrofolate, acp: acyl carrier protein, mal-acp: a malonyl acp, acyl-

acp: a long chain acyl-acp, pim: pimelate, pim-acp: pimelyl-acp, a-oxon: 8-amino-

7-oxononanoate, hAnth: 3-hydroxyanthranilate, pr-ai:  5-amino-1-5-phospho-β-

D-ribosylimidazole, pr-ai-carboxy: 5-amino-1-5-phospho-D-ribosylimidazole-4-

carboxylate, prop-diam: propane-1,3-diamine,  [spon]: spontaneous reaction. 
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Figure S3: Incompleteness of the biosynthetic pathways forming tryptophan, 

histidine, leucine, pyrimidine, and purine within all Eubacteria predicted to be 

auxotrophic for these metabolites. The numbers behind the auxotrophy indicate 

the total number of strains, which are predicted to be auxotrophic for the 

corresponding compound. Predictions are based on analyses of the MicroCyc 

database i.e. 949 organisms; Vallenet et al. 2009. These five pathways were 

chosen, because they are the longest linear pathways in the data set see Fig. S1. 
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Figure S5: Growth response of Escherichia coli WT to increasing concentrations 

of the focal metabolites. Growth within 24 h was determined as optical density at 

600 nm and is displayed as growth in minimal medium that contained a particular 

metabolite at a certain concentration relative to its growth in pure minimal 

medium. Each plot shows the concentration-dependent normalized growth 

response of WT in the presence of A an amino acid, B a nucleobase, or C a 

vitamin. All values are medians of four replicates and the grey-shaded area 

delimits the 95% confidence intervals. Asterisks mark significant differences from 

the growth of the WT in the absence of the focal compound i.e. dashed line; 
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FDR-corrected independent sample t-tests: *P<0.05, **P<0.01, and ***P<0.001, 

n=4. See Table S1 for abbreviations of metabolite names. 
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Figure S6. Productivity and competitive fitness of Escherichia coli auxotrophs 

relative to WT in increasing concentrations of the focal metabolites. Productivity 

i.e. OD and fitness of auxotrophic mutants within 24 h was determined relative to 

WT in both mono- circles or coculture squares using minimal medium that has 

been supplemented with A an amino acid, B a nucleobase, or C a vitamin in 

increasing concentrations. Relative OD of monocultures was determined as the 

ratio of the auxotroph’s and the WT’s optical densities measured at 600 nm and 

the relative fitness of cocultures is expressed as the ratio of their Malthusian 

parameters. Medians of four replicates are displayed. The dark and light grey 

regions mark the 95% confidence intervals for mono- and cocultures, 

respectively. Black and light grey asterisks mark significant differences of 

auxotrophs to WT levels i.e. dashed line in mono- and cocultures, respectively 
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monocultures: FDR-corrected independent sample t-tests, cocultures: FDR-

corrected paired sample t-tests: *P<0.05, **P<0.01, and ***P<0.001; n=4. See 

Table S1 for abbreviations of metabolite names. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7. Relationship between the amount of protein invested by Escherichia 

coli into a certain biosynthetic step and the position of the gene within the 

biosynthetic pathways of arginine Arg, histidine His, and tryptophan Trp. Protein 

investment in Mega Dalton is the mass of the individual protein multiplied with the 

abundance of protein copies per cell. Data was obtained from Wessely et al. 

2011. Pathway position is the normalised localisation of each gene between the 

start 0.1 and the end 1.0 of the pathway. The line is the linear fit line between 

both variables. 
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Figure S8. Amino acid concentrations in natural habitats of bacteria. 

Concentrations of individual amino acids found in A three different soil samples 

mM kg-1 soil Werdin-Pfisterer et al. 2012 and B the gut of four different termite 

species mM gut-1 Fujita and Abe 2002. Each circle indicates the amount of amino 

acid quantified in either a single soil sample or termite species. The dashed line 

represents the upper limit of amino acid concentrations i.e. 200 µM used in this 

study to determine the fitness of auxotrophic mutants. Crosses X signify 

instances in which the corresponding amino acid was not detected.  

A 

B 
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Table S1. Overview over the different auxotrophies analysed and the 

abbreviations used. 

 

   Auxotrophy analysed in 

Class Metabolite Abbreviation Escherichia coli Acinetobacter baylyi 

Amino acid Alanine Ala   

 Arginine Arg   

 Asparagine Asn   

 Aspartic acid Asp   

 Cysteine Cys   

 Glutamine Gln   

 Glutamic acid Glu   

 Glycine Gly   

 Histidine His   

 Isoleucine Ile   

 Leucine Leu   

 Lysine Lys   

 Methionine Met   

 Phenylalanine Phe   

 Proline Pro   

 Serine Ser   

 Threonine Thr   

 Tryptophan Trp   

 Tyrosine Tyr   

 Valine Val   

Nucleobase Cytosine Cyt   

 Guanine Gua   

Vitamin Biotin Bio   

 
Nicotinamide 
adenine 
dinucleotide  

Nad   

 Pantothenate Pan   
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Table S2. Strains used in this study. Abbreviations: ara+/- = ability to use 

arabinose as a C-source absent/ present, AT = auxotroph, WT = wild type. 

 

Strain Genotype Phenotype Reference 

Escherichia coli  
BW25113 ara

-
 

F-, ΔaraD-araB567, ΔlacZ4787::rrnB-3, λ
-
, 

rph-1, ΔrhaD-rhaB568, hsdR514 
WT Red Baba et al. 2006 

Escherichia coli  
BW25113 ara

+
 

F-, ΔaraD-araB567, ΔlacZ4787::rrnB-3, λ
-
, 

rph-1, ΔrhaD-rhaB568, hsdR514, araA 
WT White This study 

∆argH ara
-
 WT ara

-
, ∆argH::kan

R
 AT This study 

∆hisD ara
-
 WT ara

-
, ∆hisD::kan

R
 AT This study 

∆ilvA ara
-
 WT ara

-
, ∆ilvA::kan

R
 AT This study 

∆leuB ara
-
 WT ara

-
, ∆leuB::kan

R
 AT This study 

∆lysA ara
-
 WT ara

-
, ∆lysA::kan

R
 AT This study 

∆metA ara
-
 WT ara

-
, ∆metA::kan

R
 AT This study 

∆pheA ara
-
 WT ara

-
, ∆pheA::kan

R
 AT This study 

∆proC ara
-
 WT ara

-
, ∆proC::kan

R
 AT This study 

∆thrC ara
-
 WT ara

-
, ∆thrC::kan

R
 AT This study 

∆trpB ara
-
 WT ara

-
, ∆trpB::kan

R
 AT This study 

∆tyrA ara
-
 WT ara

-
, ∆tyrA::kan

R
 AT This study 

∆pyrF ara
-
 WT ara

-
, ∆pyrF::kan

R
 AT This study 

∆guaB ara
-
 WT ara

-
, ∆guaB::kan

R
 AT This study 

∆bioF ara
-
 WT ara

-
, ∆bioH::kan

R
 AT This study 

∆nadA ara
-
 WT ara

-
, ∆nadA::kan

R
 AT This study 

∆panC ara
-
 WT ara

-
, ∆panC::kan

R
 AT This study 

∆argH ara
+
 WT ara

+
, ∆argH::kan

R
 AT This study 

∆hisD ara
+
 WT ara

+
, ∆hisD::kan

R
 AT This study 

∆ilvA ara
+
 WT ara

+
, ∆ilvA::kan

R
 AT This study 

∆leuB ara
+
 WT ara

+
, ∆leuB::kan

R
 AT This study 

∆lysA ara
+
 WT ara

+
, ∆lysA::kan

R
 AT This study 

∆metA ara
+
 WT ara

+
, ∆metA::kan

R
 AT This study 

∆pheA ara
+
 WT ara

+
, ∆pheA::kan

R
 AT This study 

∆proC ara
+
 WT ara

+
, ∆proC::kan

R
 AT This study 

∆thrC ara
+
 WT ara

+
, ∆thrC::kan

R
 AT This study 

∆trpB ara
+
 WT ara

+
, ∆trpB::kan

R
 AT This study 

∆tyrA ara
+
 WT ara

+
, ∆tyrA::kan

R
 AT This study 

∆pyrF ara
+
 WT ara

+
, ∆pyrF::kan

R
 AT This study 

∆guaB ara
+
 WT ara

+
, ∆guaB::kan

R
 AT This study 

∆bioH ara
+
 WT ara

+
, ∆bioH::kan

R
 AT This study 

∆nadA ara
+
 WT ara

+
, ∆nadA::kan

R
 AT This study 

∆panC ara
+
 WT ara

+
, ∆panC::kan

R
 AT This study 
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∆argA ara
-
 WT ara

-
, ∆argA::kan

R
 AT This study 

∆argB ara
-
 WT ara

-
, ∆argB::kan

R
 AT This study 

∆argC ara
-
 WT ara

-
, ∆argC::kan

R
 AT This study 

∆argE ara
-
 WT ara

-
, ∆argE::kan

R
 AT This study 

∆argG ara
-
 WT ara

-
, ∆argG::kan

R
 AT This study 

∆argA ara
+
 WT ara

+
, ∆argA::kan

R
 AT This study 

∆argB ara
+
 WT ara

+
, ∆argB::kan

R
 AT This study 

∆argC ara
+
 WT ara

+
, ∆argC::kan

R
 AT This study 

∆argE ara
+
 WT ara

+
, ∆argE::kan

R
 AT This study 

∆argG ara
+
 WT ara

+
, ∆argG::kan

R
 AT This study 

∆trpA ara
-
 WT ara

-
, ∆trpA::kan

R
 AT This study 

∆trpD ara
-
 WT ara

-
, ∆trpD::kan

R
 AT This study 

∆trpE ara
-
 WT ara

-
, ∆trpE::kan

R
 AT This study 

∆trpA ara
+
 WT ara

+
, ∆trpA::kan

R
 AT This study 

∆trpD ara
+
 WT ara

+
, ∆trpD::kan

R
 AT This study 

∆trpE ara
+
 WT ara

+
, ∆trpE::kan

R
 AT This study 

∆hisA ara
-
 WT ara

-
, ∆hisA::kan

R
 AT This study 

∆hisB ara
-
 WT ara

-
, ∆hisB::kan

R
 AT This study 

∆hisC ara
-
 WT ara

-
, ∆hisC::kan

R
 AT This study 

∆hisA ara
+
 WT ara

+
, ∆hisA::kan

R
 AT This study 

∆hisB ara
+
 WT ara

+
, ∆hisB::kan

R
 AT This study 

∆hisC ara
+
 WT ara

+
, ∆hisC::kan

R
 AT This study 

∆argH WT, ∆argH::kan
R
 AT Baba et al. 2006 

∆hisD WT, ∆hisD::kan
R
 AT Baba et al. 2006 

∆ilvA WT, ∆ilvA::kan
R
 AT Baba et al. 2006 

∆leuB WT, ∆leuB::kan
R
 AT Baba et al. 2006 

∆lysA WT, ∆lysA::kan
R
 AT Baba et al. 2006 

∆metA WT, ∆metA::kan
R
 AT Baba et al. 2006 

∆pheA WT, ∆pheA::kan
R
 AT Baba et al. 2006 

∆proC WT, ∆proC::kan
R
 AT Baba et al. 2006 

∆thrC WT, ∆thrC::kan
R
 AT Baba et al. 2006 

∆trpB WT, ∆trpB::kan
R
 AT Baba et al. 2006 

∆tyrA WT , ∆tyrA::kan
R
 AT Baba et al. 2006 

∆pyrF WT , ∆pyrF::kan
R
 AT Baba et al. 2006 

∆guaB WT, ∆guaB::kan
R
 AT Baba et al. 2006 

∆bioF WT, ∆bioH::kan
R
 AT Baba et al. 2006 

∆nadA WT, ∆nadA::kan
R
 AT Baba et al. 2006 

∆panC WT, ∆panC::kan
R
 AT Baba et al. 2006 

∆argA WT ,∆argA::kan
R
 AT Baba et al. 2006 

∆argB WT ,∆argB::kan
R
 AT Baba et al. 2006 



191 

 

∆argC WT ,∆argC::kan
R
 AT Baba et al. 2006 

∆argE WT, ∆argE::kan
R
 AT Baba et al. 2006 

∆argG WT, ∆argG::kan
R
 AT Baba et al. 2006 

∆trpA WT, ∆trpA::kan
R
 AT Baba et al. 2006 

∆trpD WT, ∆trpD::kan
R
 AT Baba et al. 2006 

∆trpE  WT, ∆trpE::kan
R
 AT Baba et al. 2006 

∆hisA WT, ∆hisA::kan
R
 AT Baba et al. 2006 

∆hisB WT, ∆hisB::kan
R
 AT Baba et al. 2006 

∆hisC WT, ∆hisC::kan
R
 AT Baba et al. 2006 

REL 606 
F-,tsx-467Am, araA 92D, lon, rpsL227 
strR, hsdR, [mal+]LamS 

 Studier et al. 2009 

REL 607 
F-, tsx-467Am, araA 92G, lon-, rpsL227 

strR, hsdR-, [mal+]LamS 
 Lenski et al. 1991 

Acinetobacter 
baylyi ADP1 

 WT 
Vaneechoutte  
et al. 2006 

A. baylyi ∆argH WT, ∆argH::kan
R
 AT This study 

A. baylyi ∆hisD WT, ∆hisD::kan
R
 AT This study 

A. baylyi ∆leuB WT, ∆leuB::kan
R
 AT This study 

A. baylyi ∆trpB WT, ∆trpB::kan
R
 AT This study 
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Table S3. Comparison of biosynthetic costs for DNA sequence and the 

corresponding protein. Cost are given as fructose molecules that are at least 

needed to produce the DNA sequence of the gene or the amount of the protein. 

NA=no data available. 

 

 

 

 

 

 

 

 

  

 

 

Gene 
Cost of DNA Sequence 
10

4
 fructose molecules 

Cost of Protein 
10

4
 fructose molecules 

argA 1.783502731 3.439609569 

argB 1.088531764 NA 

argC 1.373221287 NA 

argE 1.555713634 5.507498182 

argG 1.796792481 273.9335755 

argH 1.8338215 64.23576185 

hisA 1.042527654 NA 

hisB 1.451117531 NA 

hisC 1.452515028 30.78864344 

hisD 1.739683547 24.86644536 

trpA 1.126263614 61.31053206 

trpB 1.607108823 89.72362679 

trpD 2.103003962 16.01084019 

trpE 2.061666192 15.98466297 
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Table S4. Primers used for the construction of Acinetobacter baylyi auxotrophs. 

UF = upstream forward, UR = Upstream reverse, DF = downstream forward, DR 

= downstream reverse.   
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Supporting Information for chapter 2 

 

SUPPORTING METHODS 

Adjustment of fructose and succinate concentrations 

We used Flux-Balance-Analysis and a genome-scale metabolic model of E. coli 

(Orth et al. 2011) to calculate how many mole of a carbon source are needed to 

produce '1 mole of biomass'. We refer to this value using 𝑞𝑥 for a carbon source 

x. In detail, 𝑞𝑥 was calculated by constraining the flux through the biomass 

reaction (growth associated maintenance (GAM) estimate: 53.95) of the model to 

a value equal 1 mmol x gDW-1 x h-1 and by minimizing the influx of the carbon 

source x. The optimization was performed within Matlab 7.14 (Mathworks) with 

the COBRA Toolbox version 2.0.5 (Schellenberger et al. 2011) and the TOMLAB 

v7.9 as linear programming solver. The final concentration of carbon source x 

was calculated as 

𝑐𝑥 = 𝑐𝐹𝑟𝑢 ⋅ 𝑞𝑥 𝑞𝐹𝑟𝑢⁄  

using 5 g l-1 fructose (𝑐𝐹𝑟𝑢= 27.75 mM) as reference. The corresponding 

concentration of disodium succinate was 8.86 g l-1 (𝑐𝑆𝑢𝑐 = 54.68 mM). 

This procedure is similar to the approach used by Adadi et al. (2012), where 

concentrations were adjusted to match the number of reducible carbon atoms. 

Using the genome-scale metabolic network of E. coli also takes the physiological 

capabilities of the cell to transform a certain carbon source into biomass into 

account. 
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SUPPORTING FIGURES 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Correlation of the frequency of double auxotrophies among 1,432 

eubacteria and the median of pairwise products of amino acid abundances in 69 

natural environments (Moura et al. 2013). Kendall’s rank correlation: Rτ = 0.22, P 

= 0.003, n = 91. 
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Figure S2. Frequency distribution of epistatic effects for 55 double- and 16 triple 

gene deletion mutants as determined in (A) the fructose- and (B) the succinate-

containing environment. 
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Figure S3. Type II Standard Major Axis (SMA) regression of observed and 

expected fitness as determined in (A) the fructose- and (B) the succinate-

containing environment. The solid red line represents the regression (P > 0.05, n 

= 66), while the dotted black line indicates the null model assuming no epistasis. 

 

 

 

 

 

r = -0.1, P  = 0.41 

Slope: - 0.85 

(95% CI: -1 to -0.6)  

r = -0.03, P = 0.78 

Slope: - 1.04  

(95% CI: -1.3 to -0.8)  
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SUPPORTING TABLES 

Table S1. Strains used in this study. Abbreviations: ara+/- = ability to use 

arabinose as a carbon source present/ absent, AT = auxotroph, WT = wild type. 

 

Strain Genotype Phenotype Reference 

Escherichia coli  
BW25113 ara

-
 

F-, ΔaraD-araB567, ΔlacZ4787::rrnB-3, 
λ

-
, rph-1, ΔrhaD-rhaB568, hsdR514 

WT Red Baba et al. 2006 

Escherichia coli  
BW25113 ara

+
 

F-, ΔaraD-araB567, ΔlacZ4787::rrnB-3, 
λ

-
, rph-1, ΔrhaD-rhaB568, hsdR514, 

araA 
WT White D’Souza et al. 2014 

∆argH  WT ara
-
, ∆argH::kan

R
 AT D’Souza et al. 2014 

∆hisD  WT ara
-
, ∆hisD::kan

R
 AT D’Souza et al. 2014 

∆ilvA WT ara
-
, ∆ilvA::kan

R
 AT D’Souza et al. 2014 

∆leuB  WT ara
-
, ∆leuB::kan

R
 AT D’Souza et al. 2014 

∆lysA  WT ara
-
, ∆lysA::kan

R
 AT D’Souza et al. 2014 

∆metA  WT ara
-
, ∆metA::kan

R
 AT D’Souza et al. 2014 

∆pheA  WT ara
-
, ∆pheA::kan

R
 AT D’Souza et al. 2014 

∆proC WT ara
-
, ∆proC::kan

R
 AT D’Souza et al. 2014 

∆thrC  WT ara
-
, ∆thrC::kan

R
 AT D’Souza et al. 2014 

∆trpB  WT ara
-
, ∆trpB::kan

R
 AT D’Souza et al. 2014 

∆tyrA  WT ara
-
, ∆tyrA::kan

R
 AT D’Souza et al. 2014 

∆argH ∆ilvA  WT ara
-
, ∆argH, ∆ilvA::kan

R
 AT This study 

∆argH ∆leuB WT ara
-
, ∆argH, ∆leuB::kan

R
 AT This study 

∆argH ∆lysA WT ara
-
, ∆argH, ∆lysA::kan

R
 AT This study 

∆metA ∆argH  WT ara
-
, ∆metA, ∆argH::kan

R
 AT This study 

∆argH ∆pheA WT ara
-
, ∆argH, ∆pheA::kan

R
 AT This study 

∆proC ∆argH  WT ara
-
, ∆proC, ∆argH::kan

R
 AT This study 

∆argH ∆thrC WT ara
-
, ∆argH, ∆thrC::kan

R
 AT This study 

∆argH ∆trpB WT ara
-
, ∆argH, ∆trpB::kan

R
 AT This study 

∆argH ∆tyrA WT ara
-
, ∆argH, ∆tyrA::kan

R
 AT This study 

∆ilvA ∆hisD  WT ara
-
, ∆ilvA, ∆hisD::kan

R
 AT This study 

∆leuB ∆hisD WT ara
-
, ∆leuB, ∆hisD::kan

R
 AT This study 

∆lysA ∆hisD  WT ara
-
, ∆lysA, ∆hisD::kan

R
 AT This study 

∆metA ∆hisD  WT ara
-
, ∆metA, ∆hisD::kan

R
 AT This study 

∆hisD ∆pheA   WT ara
-
, ∆hisD, ∆pheA::kan

R
 AT This study 

∆hisD ∆proC WT ara
-
, ∆hisD, ∆proC::kan

R
 AT This study 

∆hisD ∆thrC WT ara
-
, ∆hisD, ∆thrC::kan

R
 AT This study 

∆hisD ∆trpB WT ara
-
, ∆hisD, ∆trpB::kan

R
 AT This study 

∆hisD ∆tyrA WT ara
-
, ∆hisD, ∆tyrA::kan

R
 AT This study 

∆ilvA ∆leuB WT ara
-
, ∆ilvA, ∆leuB::kan

R
 AT This study 
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∆ilvA ∆lysA  WT ara
-
, ∆ilvA, ∆lysA::kan

R
 AT This study 

∆ilvA ∆metA WT ara
-
, ∆ilvA, ∆metA::kan

R
 AT This study 

∆ilvA ∆pheA   WT ara
-
, ∆ilvA, ∆pheA::kan

R
 AT This study 

∆ilvA ∆proC WT ara
-
, ∆ilvA, ∆proC::kan

R
 AT This study 

∆ilvA ∆thrC WT ara
-
, ∆ilvA, ∆thrC::kan

R
 AT This study 

∆trpB ∆ilvA  WT ara
-
, ∆trpB, ∆ilvA::kan

R
 AT This study 

∆ilvA ∆tyrA WT ara
-
, ∆ilvA, ∆tyrA::kan

R
 AT This study 

∆leuB ∆lysA  WT ara
-
, ∆leuB, ∆lysA::kan

R
 AT This study 

∆metA ∆leuB  WT ara
-
, ∆metA, ∆leuB::kan

R
 AT This study 

∆pheA  ∆leuB  WT ara
-
, ∆pheA, ∆leuB::kan

R
 AT This study 

∆proC ∆leuB  WT ara
-
, ∆proC, ∆leuB::kan

R
 AT This study 

∆thrC ∆leuB  WT ara
-
, ∆thrC, ∆leuB::kan

R
 AT This study 

∆leuB ∆trpB WT ara
-
, ∆leuB, ∆trpB::kan

R
 AT This study 

∆lysA ∆metA  WT ara
-
, ∆lysA, ∆metA::kan

R
 AT This study 

∆lysA ∆pheA  WT ara
-
, ∆lysA, ∆pheA ::kan

R
 AT This study 

∆lysA ∆proC WT ara
-
, ∆lysA, ∆proC::kan

R
 AT This study 

∆thrC ∆lysA  WT ara
-
, ∆thrC, ∆lysA::kan

R
 AT This study 

∆lysA ∆trpB WT ara
-
, ∆lysA, ∆trpB::kan

R
 AT This study 

∆metA ∆pheA   WT ara
-
, ∆metA, ∆pheA::kan

R
 AT This study 

∆proC ∆metA  WT ara
-
, ∆proC, ∆metA::kan

R
 AT This study 

∆metA ∆thrC WT ara
-
, ∆metA, ∆thrC::kan

R
 AT This study 

∆metA ∆trpB WT ara
-
, ∆metA, ∆trpB::kan

R
 AT This study 

∆pheA ∆proC WT ara
-
, ∆pheA, ∆proC::kan

R
 AT This study 

∆pheA ∆thrC WT ara
-
, ∆pheA, ∆thrC::kan

R
 AT This study 

∆pheA ∆trpB WT ara
-
, ∆pheA, ∆trpB::kan

R
 AT This study 

∆pheA ∆tyrA WT ara
-
, ∆pheA, ∆tyrA::kan

R
 AT This study 

∆proC ∆thrC WT ara
-
, ∆proC, ∆thrC::kan

R
 AT This study 

∆trpB ∆proC  WT ara
-
, ∆trpB , ∆proC::kan

R
 AT This study 

∆thrC ∆trpB      WT ara
-
, ∆thrC, ∆trpB::kan

R
 AT This study 

∆thrC ∆tyrA WT ara
-
, ∆thrC, ∆tyrA::kan

R
 AT This study 

∆trpB ∆tyrA WT ara
-
, ∆trpB, ∆tyrA::kan

R
 AT This study 

∆trpB ∆pheA ∆tyrA WT ara
-
, ∆trpB, ∆pheA, ∆tyrA::kan

R
 AT This study 

∆lysA ∆metA ∆argH WT ara
-
, ∆lysA, ∆metA, ∆argH::kan

R
 AT This study 

∆lysA ∆metA ∆thrC WT ara
-
, ∆ lysA ∆metA ∆thrC::kan

R
 AT This study 

∆trpB ∆pheA ∆metA WT ara
-
, ∆trpB, ∆pheA, ∆metA::kan

R
 AT This study 

∆trpB ∆pheA ∆leuB WT ara
-
, ∆trpB, ∆pheA, ∆leuB::kan

R
 AT This study 

∆metA ∆thrC ∆argH WT ara
-
, ∆metA, ∆thrC, ∆argH::kan

R
 AT This study 

∆metA ∆thrC ∆hisD WT ara
-
, ∆metA, ∆thrC, ∆hisD::kan

R
 AT This study 

∆thrC ∆lysA ∆hisD WT ara
-
, ∆thrC, ∆lysA, ∆hisD::kan

R
 AT This study 

∆trpB ∆pheA ∆hisD WT ara
-
, ∆trpB, ∆pheA, ∆hisD::kan

R
 AT This study 
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∆proC ∆thrC ∆ilvA WT ara
-
, ∆proC, ∆thrC, ∆ilvA::kan

R
 AT This study 

∆trpB ∆leuB ∆thrC WT ara
-
, ∆trpB, ∆leuB, ∆thrC::kan

R
 AT This study 

∆metA ∆argH ∆hisD WT ara
-
, ∆metA, ∆argH, ∆hisD::kan

R
 AT This study 

∆proC ∆lysA ∆hisD WT ara
-
, ∆proC, ∆lysA, ∆hisD::kan

R
 AT This study 

∆proC ∆lysA ∆tyrA WT ara
-
, ∆proC, ∆lysA, ∆tyrA::kan

R
 AT This study 

∆ilvA ∆thrC ∆trpB WT ara
-
, ∆ilvA, ∆thrC, ∆trpB::kan

R
 AT This study 

∆trpB ∆pheA ∆thrC WT ara
-
, ∆trpB, ∆pheA, ∆thrC::kan

R
 AT This study 

∆argH::kan
S
 WT ara

-
, ∆argH::kan

S
 AT This study 

∆hisD::kan
S
 WT ara

-
, ∆hisD::kan

S
 AT This study 

∆ilvA::kan
S
 WT ara

-
, ∆ilvA::kan

S
 AT This study 

∆leuB::kan
S
 WT ara

-
, ∆leuB::kan

S
 AT This study 

∆lysA::kan
S
 WT ara

-
, ∆lysA::kan

S
 AT This study 

∆metA::kan
S
 WT ara

-
, ∆metA::kan

S
 AT This study 

∆pheA::kan
S
 WT ara

-
, ∆pheA::kan

S
 AT This study 

∆proC::kan
S
 WT ara

-
, ∆proC::kan

S
 AT This study 

∆thrC::kan
S
 WT ara

-
, ∆thrC::kan

S
 AT This study 

∆trpB::kan
S
 WT ara

-
, ∆trpB::kan

S
 AT This study 

∆ilvA ∆leuB::kan
S
 WT ara

-
, ∆ilvA, ∆leuB::kan

S
 AT This study 

∆ilvA ∆thrC::kan
S
 WT ara

-
, ∆ilvA, ∆thrC::kan

S
 AT This study 

∆thrC ∆trpB::kan
S
     WT ara

-
, ∆thrC, ∆trpB::kan

S
     AT This study 

∆thrC ∆trpB::kan
S
     WT ara

-
, ∆thrC, ∆trpB::kan

S
     AT This study 

∆ilvA ∆thrC ∆trpB::kan
S
 WT ara

-
, ∆ilvA, ∆thrC, ∆trpB::kan

S
 AT This study 

∆lysA ∆metA ∆thrC::kan
S
 WT ara

-
, ∆lysA, ∆metA, ∆thrC::kan

S
 AT This study 

∆trpB ∆pheA ∆thrC::kan
S
 WT ara

-
, ∆trpB, ∆pheA, ∆thrC::kan

S
 AT This study 

∆trpB ∆leuB ∆thrC::kan
S
 WT ara

-
, ∆trpB, ∆leuB, ∆thrC::kan

S
 AT This study 

∆argH WT, ∆argH::kan
R
 AT Baba et al. 2006 

∆hisD WT, ∆hisD::kan
R
 AT Baba et al. 2006 

∆ilvA WT, ∆ilvA::kan
R
 AT Baba et al. 2006 

∆leuB WT, ∆leuB::kan
R
 AT Baba et al. 2006 

∆lysA WT, ∆lysA::kan
R
 AT Baba et al. 2006 

∆metA WT, ∆metA::kan
R
 AT Baba et al. 2006 

∆pheA WT, ∆pheA::kan
R
 AT Baba et al. 2006 

∆proC WT, ∆proC::kan
R
 AT Baba et al. 2006 

∆thrC WT, ∆thrC::kan
R
 AT Baba et al. 2006 

∆trpB WT, ∆trpB::kan
R
 AT Baba et al. 2006 

∆tyrA WT , ∆tyrA::kan
R
 AT Baba et al. 2006 
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Table S2. Fitness cost of the kanamycin resistance marker. Mean Malthusian 

parameter (± 95% confidence interval (CI)) of kanamycin resistant (kanR) and 

sensitive (kanS) auxotrophic mutants was determined by coculturing both 

competitors in the fructose-containing environment for 24 h. Each comparison 

has been replicated 10 times. P values of independent sample t-tests are given. 

% MDD = minimum detectable difference calculated as described (Zar 1999). 

 

Genotype Malthusian parameter ± 95% CI P value % MDD 

∆argH::kan
R
 5.59 0.24 

0.95 2.80 
∆argH::kan

S
 5.60 0.20 

∆hisD::kan
R
 4.64 0.10 

0.10 0.24 
∆hisD::kan

S
 4.76 0.09 

∆ilvA::kan
R
 5.93 0.30 

0.73 2.24 
∆ilvA::kan

S
 6.01 0.28 

∆leuB::kan
R
 5.48 0.13 

0.31 0.92 
∆leuB::kan

S
 5.55 0.11 

∆lysA::kan
R
 5.10 0.17 

0.31 0.85 
∆lysA::kan

S
 5.01 0.05 

∆metA::kan
R
 5.24 0.07 

0.66 1.84 
∆metA::kan

S
 5.27 0.07 

∆pheA::kan
R
 5.09 0.10 

0.62 1.67 
∆pheA::kan

S
 5.05 0.09 

∆proC::kan
R
 4.89 0.11 

0.05 0.13 
∆proC::kan

S
 4.75 0.06 

∆thrC::kan
R
 5.24 0.05 

0.82 2.27 
∆thrC::kan

S
 5.23 0.06 

∆trpB::kan
R
 6.29 0.07 

0.65 2.15 
∆trpB::kan

S
 6.27 0.06 

∆ilvA ∆leuB::kan
R
 4.82 0.24 

0.91 2.31 
∆ilvA ∆leuB::kan

S
 4.83 0.18 

∆ilvA ∆thrC::kan
R
 5.38 0.67 

0.33 0.93 
∆ilvA ∆thrC::kan

S
 4.88 0.73 

∆lysA ∆metA::kan
R
 5.04 0.07 

0.67 1.77 
∆lysA ∆metA::kan

S
 5.02 0.07 

∆thrC ∆trpB::kan
R
     4.92 0.58 

0.42 1.07 
∆thrC ∆trpB::kan

S
     4.59 0.52 

∆ilvA ∆thrC ∆trpB::kan
R
 6.19 0.19 

0.41 1.35 
∆ilvA ∆thrC ∆trpB::kan

S
 6.29 0.11 

∆lysA ∆metA ∆thrC::kan
R
 5.66 0.09 

0.91 2.72 
∆lysA ∆metA ∆thrC::kan

S
 5.67 0.14 

∆trpB ∆pheA ∆thrC::kan
R
 5.87 0.07 

0.68 2.09 
∆trpB ∆pheA ∆thrC::kan

S
 5.89 0.08 

∆trpB ∆leuB ∆thrC::kan
R
 5.78 0.07 

0.49 1.51 
∆trpB ∆leuB ∆thrC::kan

S
 5.83 0.12 
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Table S3. Relative fitness and epistatic interactions among auxotrophy-causing 

mutations in the fructose-containing environment. Mean fitness of each mutant 

genotype relative to wild type (± 95% confidence interval (CI)) was calculated 

from 8 replicates. Epistasis was estimated by comparing estimated and observed 

fitness values using a multiplicative model. Instances of significant epistasis are 

depicted in bold. NA = not applicable. 

 

Genotype Relative fitness ± 95% CI Epistasis 

∆argH 0.84 0.08 NA 

∆hisD 0.95 0.05 NA 

∆ilvA 1.23 0.13 NA 

∆leuB 1.02 0.08 NA 

∆lysA 0.88 0.05 NA 

∆metA 1.21 0.07 NA 

∆pheA 1.17 0.10 NA 

∆proC 1.00 0.04 NA 

∆thrC 0.99 0.07 NA 

∆trpB 0.95 0.08 NA 

∆tyrA 1.01 0.04 NA 

∆argH ∆ilvA 1.02 0.03 -0.01 

∆argH ∆leuB 1.02 0.03 -0.03 

∆argH ∆lysA 0.95 0.06 0.20 

∆metA ∆argH 0.82 0.07 -0.20 

∆argH ∆pheA 1.02 0.04 0.02 

∆proC ∆argH 1.07 0.03 0.21 

∆argH ∆thrC 1.07 0.11 0.23 

∆argH ∆trpB 1.12 0.06 0.30 

∆argH ∆tyrA 0.72 0.09 -0.13 

∆ilvA ∆hisD 0.84 0.05 -0.32 

∆leuB ∆hisD 0.88 0.09 0.04 

∆lysA ∆hisD 1.03 0.05 0.19 

∆metA ∆hisD 1.06 0.05 -0.09 

∆hisD ∆pheA 0.88 0.06 -0.23 

∆hisD ∆proC 0.86 0.03 -0.08 

∆hisD ∆thrC 0.66 0.05 -0.28 

∆hisD ∆trpB 0.88 0.08 -0.02 

∆hisD ∆tyrA 0.72 0.03 -0.23 

∆ilvA ∆leuB 0.84 0.03 -0.42 

∆ilvA ∆lysA 0.96 0.11 -0.12 

∆ilvA ∆metA 0.81 0.08 -0.68 

∆ilvA ∆pheA 0.81 0.06 -0.63 

∆ilvA ∆proC 0.75 0.06 -0.49 

∆ilvA ∆thrC 1.14 0.09 -0.08 

∆trpB ∆ilvA 1.11 0.22 -0.07 

∆ilvA ∆tyrA 1.01 0.07 -0.23 
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∆leuB ∆lysA 1.05 0.16 0.15 

∆metA ∆leuB 0.94 0.17 -0.29 

∆pheA  ∆leuB 1.03 0.05 -0.17 

∆proC ∆leuB 0.87 0.06 -0.15 

∆thrC ∆leuB 0.95 0.06 -0.06 

∆leuB ∆trpB 0.94 0.05 -0.04 

∆lysA ∆metA 1.06 0.04 -0.01 

∆lysA ∆pheA 1.21 0.12 0.17 

∆lysA ∆proC 1.08 0.07 0.19 

∆thrC ∆lysA 1.17 0.08 0.29 

∆lysA ∆trpB 1.02 0.08 0.17 

∆metA ∆pheA 1.10 0.09 -0.32 

∆proC ∆metA 0.85 0.02 -0.36 

∆metA ∆thrC 0.69 0.04 -0.51 

∆metA ∆trpB 0.89 0.12 -0.27 

∆pheA ∆proC 0.77 0.06 -0.41 

∆pheA ∆thrC 0.78 0.10 -0.38 

∆pheA ∆trpB 0.75 0.09 -0.37 

∆pheA ∆tyrA 0.89 0.08 -0.28 

∆proC ∆thrC 0.76 0.08 -0.24 

∆trpB ∆proC 0.84 0.05 -0.12 

∆thrC ∆trpB 0.89 0.10 -0.06 

∆thrC ∆tyrA 0.93 0.10 -0.07 

∆trpB ∆tyrA 0.75 0.07 -0.21 

∆trpB ∆pheA ∆tyrA 1.01 0.13 0.74 

∆lysA ∆metA ∆argH 0.77 0.07 0.23 

∆lysA ∆metA ∆thrC 0.79 0.04 -0.10 

∆trpB ∆pheA ∆metA 0.81 0.04 0.41 

∆trpB ∆pheA ∆leuB 1.08 0.12 0.51 

∆metA ∆thrC ∆argH 0.85 0.10 0.31 

∆metA ∆thrC ∆hisD 0.74 0.04 0.48 

∆thrC ∆lysA ∆hisD 0.90 0.06 -0.13 

∆trpB ∆pheA ∆hisD 0.79 0.11 0.49 

∆proC ∆thrC ∆ilvA 1.35 0.12 0.91 

∆trpB ∆leuB ∆thrC 0.93 0.07 0.51 

∆metA ∆argH ∆hisD 0.90 0.08 0.10 

∆proC ∆lysA ∆hisD 0.79 0.07 -1.48 

∆proC ∆lysA ∆tyrA 0.77 0.07 -0.37 

∆ilvA ∆thrC ∆trpB 0.84 0.08 0.71 

∆trpB ∆pheA ∆thrC 0.79 0.07 -0.16 

 

 

 

 



206 

 

Table S4. Relative fitness and epistatic interactions among auxotrophy-causing 

mutations in the succinate-containing environment. Mean fitness of each mutant 

genotype relative to wild type (± 95% confidence interval (CI)) was calculated 

from 8 replicates. Epistasis was estimated by comparing estimated and observed 

fitness values using a multiplicative model. Instances of significant epistasis are 

depicted in bold. NA = not applicable. 

 

Genotype Relative fitness ± 95% CI Epistasis 

∆argH 0.95 0.15 NA 

∆hisD 0.85 0.07 NA 

∆ilvA 0.90 0.03 NA 

∆leuB 1.02 0.08 NA 

∆lysA 0.95 0.06 NA 

∆metA 1.14 0.05 NA 

∆pheA 1.08 0.05 NA 

∆proC 1.04 0.06 NA 

∆thrC 0.96 0.05 NA 

∆trpB 0.97 0.03 NA 

∆tyrA 1.00 0.03 NA 

∆argH ∆ilvA 1.08 0.06 0.22 

∆argH ∆leuB 1.02 0.08 -0.08 

∆argH ∆lysA 1.00 0.05 0.08 

∆metA ∆argH 1.03 0.07 -0.05 

∆argH ∆pheA 0.95 0.03 -0.07 

∆proC ∆argH 1.06 0.07 0.06 

∆argH ∆thrC 1.05 0.05 0.12 

∆argH ∆trpB 1.10 0.10 0.17 

∆argH ∆tyrA 0.95 0.04 -0.00 

∆ilvA ∆hisD 1.11 0.05 0.34 

∆leuB ∆hisD 1.02 0.03 0.20 

∆lysA ∆hisD 0.81 0.07 -0.00 

∆metA ∆hisD 0.89 0.07 -0.08 

∆hisD ∆pheA 1.12 0.03 0.20 

∆hisD ∆proC 0.76 0.06 -0.12 

∆hisD ∆thrC 0.98 0.06 0.16 

∆hisD ∆trpB 0.96 0.04 0.13 

∆hisD ∆tyrA 0.89 0.05 0.03 

∆ilvA ∆leuB 1.13 0.04 0.21 

∆ilvA ∆lysA 0.94 0.08 0.08 

∆ilvA ∆metA 0.93 0.03 -0.09 

∆ilvA ∆pheA 0.99 0.05 0.01 

∆ilvA ∆proC 1.02 0.05 0.07 

∆ilvA ∆thrC 0.94 0.06 0.06 

∆trpB ∆ilvA 0.85 0.04 -0.02 

∆ilvA ∆tyrA 1.04 0.11 0.13 
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∆leuB ∆lysA 1.01 0.05 0.03 

∆metA ∆leuB 0.92 0.07 -0.24 

∆pheA  ∆leuB 0.90 0.03 -0.20 

∆proC ∆leuB 0.94 0.08 -0.12 

∆thrC ∆leuB 1.02 0.04 0.04 

∆leuB ∆trpB 0.98 0.03 -0.01 

∆lysA ∆metA 0.99 0.11 -0.09 

∆lysA ∆pheA 1.10 0.07 0.06 

∆lysA ∆proC 1.07 0.07 0.07 

∆thrC ∆lysA 1.31 0.13 0.39 

∆lysA ∆trpB 1.15 0.04 0.22 

∆metA ∆pheA 1.17 0.07 -0.06 

∆proC ∆metA 1.18 0.05 -0.01 

∆metA ∆thrC 1.17 0.10 0.07 

∆metA ∆trpB 0.93 0.06 -0.18 

∆pheA ∆proC 1.07 0.18 -0.06 

∆pheA ∆thrC 0.98 0.08 -0.05 

∆pheA ∆trpB 1.02 0.10 -0.03 

∆pheA ∆tyrA 1.12 0.17 0.03 

∆proC ∆thrC 0.95 0.09 -0.05 

∆trpB ∆proC 1.02 0.04 0.00 

∆thrC ∆trpB 1.03 0.05 0.09 

∆thrC ∆tyrA 0.96 0.04 -0.00 

∆trpB ∆tyrA 1.15 0.13 0.18 

∆trpB ∆pheA ∆tyrA 0.97 0.02 -0.26 

∆lysA ∆metA ∆argH 1.00 0.04 -0.36 

∆lysA ∆metA ∆thrC 0.92 0.02 -0.05 

∆trpB ∆pheA ∆metA 0.96 0.08 0.04 

∆trpB ∆pheA ∆leuB 0.75 0.11 -0.07 

∆metA ∆thrC ∆argH 0.84 0.05 -0.34 

∆metA ∆thrC ∆hisD 1.17 0.14 0.08 

∆thrC ∆lysA ∆hisD 1.04 0.11 -0.29 

∆trpB ∆pheA ∆hisD 0.94 0.17 -0.07 

∆proC ∆thrC ∆ilvA 1.02 0.06 -0.18 

∆trpB ∆leuB ∆thrC 1.13 0.05 0.13 

∆metA ∆argH ∆hisD 1.07 0.06 -0.00 

∆proC ∆lysA ∆hisD 0.87 0.04 -1.66 

∆proC ∆lysA ∆tyrA 1.02 0.07 0.22 

∆ilvA ∆thrC ∆trpB 1.19 0.08 0.93 

∆trpB ∆pheA ∆thrC 1.24 0.06 0.25 
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Supporting information for chapter 3 

 

Table S1. Final amino acid concentrations (µM) in the media used for the precultures of 

auxotrophs and for the growth kinetic assays. 

Amino acid 
Auxotroph 
precultures Growth kinetic assays 

  Lvl 1 Lvl 2 Lvl 3 Lvl 4 Lvl 5 Lvl 6 Lvl 7 Lvl 8 

His 15 0 2.5 3.75 5 6.25 7.5 8.75 10 

Tyr 30 0 5 7.5 10 12.5 15 17.5 20 

Phe 30 0 5 7.5 10 12.5 15 17.5 20 

Trp 150 0 25 37.5 50 62.5 75 87.5 100 

Leu 60 0 10 15 20 25 30 35 40 

Lys 60 0 10 15 20 25 30 35 40 

Ile 45 0 7.5 11.25 15 18.75 22.5 26.25 30 
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Table S2. Strains used in this study. 

Strain Genotype Phenotype Reference 

Escherichia coli 

BW25113 ara- 

F-, ΔaraD-araB567, 

ΔlacZ4787::rrnB-3, λ-, rph-1, 

ΔrhaD-rhaB568, hsdR514 

WT Baba et al. (2006) 

∆hisD  WT ara-, ∆hisD::kanR AT D’Souza et al. (2014) 

∆pheA  WT ara-, ∆pheA::kanR AT D’Souza et al. (2014) 

∆tyrA  WT ara-, ∆tyrA::kanR AT D’Souza et al. (2014) 

∆trpB  WT ara-, ∆trpB::kanR AT D’Souza et al. (2014) 

∆leuB  WT ara-, ∆leuB::kanR AT D’Souza et al. (2014) 

∆lysA  WT ara-, ∆lysA::kanR AT D’Souza et al. (2014) 

∆ilvA WT ara-, ∆ilvA::kanR AT D’Souza et al. (2014) 

∆hisD  WT ara-, ∆hisD AT, kanS This study 

∆pheA  WT ara-, ∆pheA AT, kanS This study 

∆trpB  WT ara-, ∆trpB AT, kanS This study 

∆leuB  WT ara-, ∆leuB AT, kanS This study 

∆lysA  WT ara-, ∆lysA AT, kanS This study 

∆ilvA WT ara-, ∆ilvA AT, kanS This study 

Abbreviations: ara- – inability to use arabinose as carbon source, WT – wild type, AT – 

auxotroph, kanS – kanamycine sensitive. 
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Table S3. Carbon sources considered for biosynthetic cost estimation. 

D-fructose, L-lactate, succinate, L-malate, α-ketoglutarate, D-galactose, maltose, D-glucsoe, 

pyruvate, acetate, L-arabinose, N-acetyl-D-glucosamine, D-glucarate, L-aspartate, D-alanine, 

threhalose, D-mannose, D-sorbitol, glycerol, L-fucose, D-glucuronate, D-gluconate, glycerol 

3-phosphate, D-xylose, D-mannitol, L-glutamate, D-glucose 6-phosphate, D-malate, D-

ribose, L-rhamnose, melibiose, thymidine, L-asparagine, octadecenoate, fumarate, butyrate, 

phenylacetaldehyde, 5-dehydro-D-gluconate, acetoacetate, adenosine, L-alanine, D-allose, D-

fructose 6-phosphate, D-galactarate, galactitol, D-galacturonate, D-glucosamine, 

deoxyadenosine, dihydroxyacetone, L-glutamine, inosine, (S)-Propane-1,2-diol, L-tartrate, 

lactose, maltotriose, N-acetyl-D-mannosamine, N-acetylneuraminate, propionate, uridine, D-

glucose 1-phosphate, and L-lyxose. 
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Figure S1. Biosynthetic cost estimations from this study are in line with previously reported 

estimations (Akashi and Gojobori 2002). 

 

Reference 
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Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA. 2002, 99:3695–3700. 
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Figure S2. Maximum growth rates of auxotrophs under various carbon sources and amino acid concentrations relative to the maximum growth rate level of the wild type 

growing under the same carbon source and without amino acid supplementation (=1, dashed line). Error bars indicate the 95% confidence intervals. Filled circles denote 

the growth rates of the auxotrophs which are significantly lower than the WT strain growth rate (FDR-corrected Welch two sample t-tests, P < 0.05, n = 6), empty circles 

indicate no significant difference. 
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Figure S3. Maximum growth rates of the E. coli wild type strain under various carbon sources and amino acid concentrations relative to the maximum growth rate level of 

the wild type growing under the same carbon source and without amino acid supplementation (=1, dashed line). Error bars indicate the 95% confidence intervals. Arrows 

indicate significant correlation (up- or down arrows) or no significant correlation (horizontal arrows) of the two axes (FDR corrected linear mixed-model fit by maximizing 

the restricted log-likelihood, n=48).
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Supporting information for chapter 4 

Figure S1: Growth rates relative to the ancestor of populations evolving under 

the two different regimes 

 

Box plots span the growth rates (μMax h-1) of the replicate populations from the AA 

(empty boxes) and non-AA (dashed lines) regimes. Asterisks indicate significant 

differences in fitness (P<0.05) as determined by independent sample t-tests. Box 

plots consist of medians (horizontal lines within boxes), interquartile range (boxes) 

and 1.5x- interquartile range (whiskers). 
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Figure S2: Amino acid auxotrophy profiles in the replicate populations over 

time 
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The color grid depicts the fraction of the population which was auxotrophic for amino 

acids. The intensity of the colors reflects the percentage of specific amino acid 

auxotrophic strains (per 1000 colonies sampled) at different points that were found in 

(A) populations evolving in the non-AA and (B) AA regime. Black grids indicate 

completely prototrophic populations whereas red indicates a high frequency of 

auxotrophic strains (Percent range: 0.1-20%). For each color-grid, a column 

represents one of the replicate populations (R1 – R8) over different time points 

(separated by thick gray lines) in the course of the experiment for the two regimes.  
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Figure S3: Growth kinetic parameters of the ancestral, auxotrophic and 

prototrophic strains from the AA-regime 

 

Box plots span the (A) μMax h-1, (B) duration of lag phase (h), and (C) duration of the 

growth rate (h) of the ancestral (Anc), auxotrophic (AT) and prototrophic (PT) strains 

from the AA-regime. Letters (a,b or c) denote significant differences in the measures 

of the different strains. (One way ANOVA and LSD post hoc test, p<0.05). Box plots 
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consist of medians (horizontal lines within boxes), interquartile range (boxes) and 

1.5x- interquartile range (whiskers). 
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Supporting Tables: 

Table S1: Composition of different dropout media 

Medium 
AA 
excluded 

AAs present (Concentration 
= 100μM each) 

Function 

MMAB -AA 
All 

None 
Non-AA regime, 
Determination of 
auxotrophy 

MMAB +AA 

None Ala, Arg, Asn, Asp, Cys, Gln, 
Glu, Gly, His, Ile, Leu, Lys, Met, 
Phe, Pro, Ser, Thr, Trp, Tyr, 
Val 

AA regime 
Allows growth of all 
auxotrophs 

Alanine - 

Ala Arg, Asn, Asp, Cys, Gln, Glu, 
Gly, His, Ile, Leu, Lys, Met, 
Phe, Pro, Ser, Thr, Trp, Tyr, 
Val 

Allows growth of all 
auxotrophs except 
those for Ala 

Arginine - 

Arg Ala , Asn, Asp, Cys, Gln, Glu, 
Gly, His, Ile, Leu, Lys, Met, 
Phe, Pro, Ser, Thr, Trp, Tyr. 
Val 

Allows growth of all 
auxotrophs except 
those for Arg 

Asparigine - 

Asn Ala, Arg, Asp, Cys, Gln, Glu, 
Gly, His, Ile, Leu, Lys, Met, 
Phe, Pro, Ser, Thr, Trp, Tyr, 
Val 

Allows growth of all 
auxotrophs except 
those for Asn 

Aspartate - 

Asp Ala, Arg, Asn, Cys, Gln, Glu, 
Gly, His, Ile, Leu, Lys, Met, 
Phe, Pro, Ser, Thr, Trp, Tyr, 
Val 

Allows growth of all 
auxotrophs except 
those for  Asp 

Cysteine - 

Cys Ala, Arg, Asn, Asp, Gln, Glu, 
Gly, His, Ile, Leu, Lys, Met, 
Phe, Pro, Ser, Thr, Trp, Tyr, 
Val 

Allows growth of all 
auxotrophs except 
those for Cys 

Glutamine - 

Gln Ala, Arg, Asn, Asp, Cys, Glu, 
Gly, His, Ile, Leu, Lys, Met, 
Phe, Pro, Ser, Thr, Trp, Tyr, 
Val 

Allows growth of all 
auxotrophs except 
those for Gln 

Glutamate - 

Glu Ala, Arg, Asn, Asp, Cys, Gln, 
Gly, His, Ile, Leu, Lys, Met, 
Phe, Pro, Ser, Thr, Trp, Tyr, 
Val 

Allows growth of all 
auxotrophs except 
those for Glu 

Glycine - 

Gly Ala, Arg, Asn, Asp, Cys, Gln, 
Glu, His, Ile, Leu, Lys, Met, 
Phe, Pro, Ser, Thr, Trp, Tyr, 
Val 

Allows growth of all 
auxotrophs except 
those for Gly 

Histidine - 

His Ala, Arg, Asn, Asp, Cys, Gln, 
Glu, Gly, Ile, Leu, Lys, Met, 
Phe, Pro, Ser, Thr, Trp, Tyr, 
Val 

Allows growth of all 
auxotrophs except 
those for His 

Isoleucine - 

Ile Ala, Arg, Asn, Asp, Cys, Gln, 
Glu, Gly, His, Leu, Lys, Met, 
Phe, Pro, Ser, Thr, Trp, Tyr, 
Val 

Allows growth of all 
auxotrophs except 
those for Ile 

Leucine - 

Leu Ala, Arg, Asn, Asp, Cys, Gln, 
Glu, Gly, His, Ile, Lys, Met, 
Phe, Pro, Ser, Thr, Trp, Tyr, 
Val 

Allows growth of all 
auxotrophs except 
those for Leu 
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Lysine - 

Lys Ala, Arg, Asn, Asp, Cys, Gln, 
Glu, Gly, His, Ile, Leu, Met, 
Phe, Pro, Ser, Thr, Trp, Tyr, 
Val 

Allows growth of all 
auxotrophs except 
those for Lys 

Methionine - 

Met Ala, Arg, Asn, Asp, Cys, Gln, 
Glu, Gly, His, Ile, Leu, Lys, 
Phe, Pro, Ser, Thr, Trp, Tyr, 
Val 

Allows growth of all 
auxotrophs except 
those for Met 

Phenylalanine - 
Phe Ala, Arg, Asn, Asp, Cys, Gln, 

Glu, Gly, His, Ile, Leu, Lys, Met, 
Pro, Ser, Thr, Trp, Tyr, Val 

Allows growth of all 
auxotrophs except 
those for Phe 

Proline - 
Pro Ala, Arg, Asn, Asp, Cys, Gln, 

Glu, Gly, His, Ile, Leu, Lys, Met, 
Phe, Ser, Thr, Trp, Tyr, Val 

Allows growth of all 
auxotrophs except 
those for Pro 

Serine- 
Ser Ala, Arg, Asn, Asp, Cys, Gln, 

Glu, Gly, His, Ile, Leu, Lys, Met, 
Phe, Pro, Thr, Trp, Tyr, Val 

Allows growth of all 
auxotrophs except 
those for Ser 

Threonine - 
Thr Ala, Arg, Asn, Asp, Cys, Gln, 

Glu, Gly, His, Ile, Leu, Lys, Met, 
Phe, Pro, Ser, Trp, Tyr, Val 

Allows growth of all 
auxotrophs except 
those for Thr 

Tryptophan - 
Trp Ala, Arg, Asn, Asp, Cys, Gln, 

Glu, Gly, His, Ile, Leu, Lys, Met, 
Phe, Pro, Ser, Thr, Tyr, Val 

Allows growth of all 
auxotrophs except 
those for Trp 

Tyrosine - 
Tyr Ala, Arg, Asn, Asp, Cys, Gln, 

Glu, Gly, His, Ile, Leu, Lys, Met, 
Phe, Pro, Ser, Thr, Trp, Val 

Allows growth of all 
auxotrophs except 
those for Tyr 

Valine - 
Val Ala, Arg, Asn, Asp, Cys, Gln, 

Glu, Gly, His, Ile, Leu, Lys, Met, 
Phe, Pro, Ser, Thr, Trp, Tyr 

Allows growth of all 
auxotrophs except 
those for Val 

 

 

Table S2:  Genetic regions with mutations in the auxotrophic and prototrophic 

strains from the two regimes. Single nucleotide polymorphisms (SNPs) in coding 

or intergenic regions, insertions and deletions arising in the auxotrophic (AT) and 

prototrophic (PT) strains isolated from the AA or Non-AA regime are listed along with 

their occurrences in the all the strains sequenced 

Genetic region Mutation type Regime/s Strain Instances 

ptsP SNP,Coding AA AT 1/14 

yoaA SNP,Coding AA AT 1/14 

hemF SNP,Coding AA AT 1/14 

dhaM SNP,Coding AA AT 1/14 

sspA SNP,Coding AA AT 1/14 
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stpA  SNP,Coding AA AT 1/14 

yhdW  SNP,Coding AA AT 1/14 

rpoB  SNP,Coding Non-AA AT 2/14 

yqiB  SNP,Coding Non-AA AT 2/14 

metG SNP,Coding Non-AA AT 1/14 

cra /ilvH SNP, Intergenic AA AT 1/14 

dxr/frr SNP, Intergenic Non-AA AT 1/14 

ynaE/pinR SNP, Intergenic Non-AA AT 1/14 

yaeF/nlpE SNP, Intergenic Non-AA AT 1/14 

yfjM /yfjL Insertion AA AT 1/14 

uspC/flhD Insertion AA AT 1/14 

ykfC–proB Deletion 
AA 

AT 1/14 

insF1–mdtB Deletion AA AT 1/14 

wcaN  Deletion AA AT 1/14 

gltD  SNP,Coding AA AT,PT 4/14 

crr/ptsI SNP, Intergenic AA AT,PT 2/14 

rcnR/thiM SNP, Intergenic AA AT,PT 3/14 

rph Deletion AA, AT,PT 4/14 

rph/pyrE Deletion AA, Non-AA AT,PT 4/14 

wzxC/wcaK Insertion AA, Non-AA AT,PT 2/14 

rpsK SNP,Coding AA PT 1/14 

cra SNP,Coding AA PT 1/14 

fecR SNP,Coding AA PT 1/14 

hflC SNP,Coding AA PT 1/14 

mppA/pgrR  Insertion Non-AA PT 1/14 
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Table S3: Mutations unique to auxotrophic strains and their predicted 

functional implications. *Growth: Y, No growth: N ; NA: Not applicable ; Growth 

data is based on previous studies 

Gene  

Replicate; 
regime 

Function Mutation Predicted effect on 
protein activity [26] 

Growth on 
minimal 
medium of 
deletion 
genotype  

Ref. 

ptsP 2,AA Phosphoenol-pyruvate-
protein phosphor-
transferase 

M604R Neutral NA  

yoaA 2,AA conserved protein D121Y Neutral NA  

hemF 3;AA coproporphyrinogen III 
oxidase 

G127V Deleterious Y  [56] 

dhaM 3;AA dihydroxyacetone kinase 
subunit M 

V196A Neutral NA  

sspA 5;AA stringent starvation 
protein A 

Q24* Deleterious N  [29] 

stpA  6;AA H-NS-like DNA-binding 
protein with RNA 
chaperone activity 

R49S Neutral NA  

yhdW  8;AA putative transport protein C→A,  

pseudogene 

NA NA  

rpoB  7,8;  
Non-AA 

RNA polymerase, β 
subunit 

T135P Deleterious N  [56] 

yqiB  7,8;  
Non-AA 

predicted 
dehydrogenase 

Q117K Deleterious Y  

metG 7;  
Non-AA 

methionyl-tRNA 
synthetase 

R600P Deleterious N  

cra /ilvH 4;AA NA C→T, 

intergenic 

NA NA   

dxr/frr 8;  
Non-AA 

NA T→A,  

intergenic 

NA NA   

ynaE/pi
nR 

8;  
Non-AA 

NA A→G, 

intergenic 

NA NA  

yaeF/nl
pE 

7;  
Non-AA 

NA A→C,  

intergenic 

NA NA  

yfjM 
/yfjL 

4;AA NA (CATAGTGC)6

→7,intergenic 

NA NA  

uspC/flh
D 

6;AA NA +4 bp,  
intergenic 

NA NA  

ΔykfC 6;AA CP4-6 prophage; 
conserved protein 

Deletion NA Y 

[56] 
ΔinsN 6;AA CP4-6 prophage; partial 

regulator of insertion 
element IS911A 

Deletion NA N 

ΔinsI1 
 

6;AA transposase of IS30 Deletion NA N 

ΔperR 
 

6;AA PerR transcriptional 
regulator 

Deletion NA Y 

ΔykfA 
 

6;AA predicted GTP-binding 
protein 

Deletion NA Y 
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ΔyafZ 
 

6;AA CP4-6 prophage; 
conserved protein 

Deletion NA Y 

ΔykfK 
 

6;AA Pseudogene Deletion NA N 

ΔykfL 
 

6;AA Pseudogene Deletion NA N 

ΔyafY 
 

6;AA CP4-6 prophage; inner 
membrane lipoprotein 

Deletion NA Y 

ΔykfB 
 

6;AA predicted protein Deletion NA Y 

ΔykfF 
 

6;AA predicted protein Deletion NA Y 

ΔyafX 
 

6;AA predicted protein Deletion NA Y 

ΔykfG 
 

6;AA predicted DNA repair 
protein 

Deletion NA Y 

ΔykfH 
 

6;AA predicted protein Deletion NA Y 

ΔyafW 
 

6;AA antitoxin of the YkfI-
YafW toxin-antitoxin pair 

Deletion NA Y 

ΔykfI 
 

6;AA toxin of the YkfI-YafW 
toxin-antitoxin system 

Deletion NA Y 

ΔykfN 
 

6;AA Pseudogene Deletion NA Y 

ΔthrW 
 

6;AA tRNA: tRNA
thrW

 Deletion NA Y 

ΔproA 
 

6;AA component of glutamate-
5-semialdehyde 
dehydrogenase 

Deletion NA N 

ΔproB 6;AA component of γ-glutamyl 
kinase 

Deletion NA N 

ΔinsF1 
 

2,AA IS3 element protein InsF Deletion NA Y 

ΔinsE1 
 

2,AA IS3 element protein InsE Deletion NA Y 

ΔgatR 
 

2,AA negative DNA-binding 
transcriptional regulator 
of galactitol metabolism 

Deletion NA Y 

ΔyegS 
 

2,AA lipid kinase Deletion NA Y 

ΔyegR 
 

2,AA predicted protein Deletion NA Y 

ΔyegZ 
 

2,AA predicted protein 
fragment 

Deletion NA Y 

ΔogrK 
 

2,AA DNA-binding 
transcriptional regulator, 
prophage P2 remnant 

Deletion NA Y 

ΔyegQ 
 

2,AA predicted peptidase Deletion NA Y 

ΔyegP 
 

2,AA predicted protein Deletion NA Y 

ΔbaeR 
 

2,AA BaeR transcriptional 
regulator 

Deletion NA Y 

ΔbaeS 
 

2,AA BaeS sensory histidine 
kinase 

Deletion NA Y 

ΔmdtD 
 

2,AA putative transport 
protein, major facilitator 
superfamily (MFS) 

Deletion NA Y 

ΔmdtC 
 

2,AA MdtABC-TolC multidrug 
efflux system - 
membrane subunit 

Deletion NA Y 
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ΔmdtB 2,AA MdtABC-TolC multidrug 
efflux system - 
membrane subunit 

Deletion NA Y 

wcaN 6;AA predicted 
uridylyltransferase 
subunit with GalU 

-1  bp,  
coding 

Deleterious Y  
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