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Abstract

You invoke a new future when you envision your past in the light of your present.”—
Eric Micha'el Leventhal

High-mountain saline closed lakes and their organisms (e.g., meiobenthos) are
very sensitive to environmental and climate change and corresponding impacts on
precipitation/ evaporation balance. The primary aim of this work is to evaluate
ecology and palacoecology of ostracods (small crustaceans) in a large brackish lake,
Tangra Yumco, and adjacent waters on the southern Tibetan Plateau thereby
contributing to the understanding of past, present and future environmental and
climate changes in central Asia.

This study provides the first ecological data and informationon the habitats and
ecology of eleven Recent Tibetan ostracods (nine living and two empty shells) in
high mountain aquatic ecosystems (lakes Tangqung Co, Tangra Yumco, Monco
Bunnyi, Xuru Co and adjacent waters like rivers, ponds, streams and springs) on the
southern Tibetan Plateau. Cluster analysis indicates two types of ostracod groups: (i)
permanent lacustrine species — Leucocytherella sinensis, Leucocythere?
dorsotuberosa, Fabaeformiscandona gyirongensis, Limnocythere inopinata and
Candona xizangensis and (i1) species of temporary freshwater — Tonnacypris
gvirongensis, Candona candida, Heterocypris incongruens, Ilyocypris sp.
Heterocypris salina and Potamocypris cf. villosa (one valve only). Spearman and
multivariate analyses indicate a significant relationship between living ostracods to
environment variables. Multivariate analysis indicates conductivity and habitat
types to be controlling presence and abundance of ostracods.

The documented ostracod species were present and abundant in specific aquatic
habitats. Indicator species include: (i) L. sinensis dominating Ca-depleted brackish
waters despite being commonly present in diverse aquatic habitats; (ii) L.?
dorsotuberosa inhabiting fresh to brackish waters; (iii) L. inopinata predominating in
mesohaline to polyhaline waters; (iv) F. gyirongensis inhabiting exclusively brackish
lacustrine deeper waters; (v) C. candida colonising freshwaters; (vi) T. gyirongensis
and Ilyocypris sp. populate shallow temporary waters; and (vii) H. incongruens
occurring in ponds.

Water-depth-indicators within the lakes include (1) L. sinensis, L. inopinata and
C. xizangensis as phytal shallow-water species and (ii) F. gyirongensis and L.?
dorsotuberosa as deep-water fauna.

The first calibration on shell chemistry (8180, 613C, Mg/Ca, Sr/Ca, Fe/Ca, Mn/Ca
and U/Ca) of four Recent ostracods (L. sinensis, L.? dorsotuberosa, L. inopinata and
T. gyirongensis) reveals species-specific stable isotope fractionation and elemental
incorporation into the calcitic ostracod shell. Ostracod shell chemistry (80, 8"C) is
related to water chemistry with variable disequilibrium. There is a significant linear
relationship between Mg/Cagen and Sr/Caghen and Mg/Cayater and Mg/Cayaer. The
Mg/Cagnen reflects a change in Mg/Cayater and salinity of the waterbody. There is a
linear relationship between shell chemistry of L.? dorsotuberosa and water chemistry;
St/Cagpen 1s related to Sr/Cayaier and significantly correlates with specific conductivity
of the water. The shell chemistry of L.? dorsotuberosa is a good indicator of changes
in St/Cayater reflecting salinity variability bound to lake water volume balance. In this
study, the incorporation of both Mg and Sr into ostracod calcite was temperature-



independent. Fe/Ca, Mn/Ca and U/Ca ratios of ostracods shells are evidence for redox
and oxygen conditions of the aquatic ecosystems they dwell in.

A first conceptual model of lacustrine sub-aquatic mass transport was developed
and tested using ostracod associations and sediment features. The very low abundance
or the lack of ostracod valves in event sediment layers are evidence of subaqueous
sediment flows from a steep slope to the deep basin of Tangra Yumco. Ostracods
(valves of L. sinensis, L.? dorsotuberosa, L. inopinata and F. gyirongensis) are
lacking in sediment events layers due to coarser sediment accumulation caused by
bottom currents as well.

This study provides the first continuous reconstruction of Late Holocene
environment and climate variability of Tangra Yumco (last 3,300 years) inferred from
palacoecological analysis of ostracod associations and shell chemistry (8'°0, §"°C,
Mg/Ca, Sr/Ca) together with sedimentological analysis. Ostracod assemblages and
abundance reflect mainly lake level, salinity and productivity of Tangra Yumco.
The five phases of Late Quaternary climate transitions are:

(1) Leucocythere sinensis predominates (87.5%), other lacustrine-brackish
ostracod species are scarce, low species richness (3), low 8'*Ogen and Mg/Cagen, high
8" Caenr and Sr/Cagnen, slowly increasing values of total inorganic carbon (TIC) in
3300 to 2320 cal BP, suggesting a high lake level and relatively low salinity (fresh to
oligohaline) and moderate productivity in a relatively cool and wet climate. This was
caused by relatively high precipitation (strengthening of monsoon) with high
freshwater input into the lake and decreasing evaporation. During this period, Tangra
Yumco was an open lake system with an outflow into Tangqunq Co.

(i) A decline in L. sinensis abundance and transition to L.? dorsotuberosa
dominance (51.5%) with increased species richness (6) and both shallow and deep
water ostracod taxa, high total organic carbon (TOC) indicate a decreasing lake level
marked by a gradual increased salinity (oligohaline) and highest productivity in a
warm and dry climate from 2300 to 1760 cal BP. This is triggered by decreasing
precipitation due to weakening of monsoon acitivity and increasing evaporation.
During this period, Tangra Yumco begins to separate from Tangqunq Co becoming a
closed lake system. The lake remains closed until today.

(111)) The very low abundance of ostracods (average 13.6 valves/ml) and very high
total inorganic carbon in 1740 to 1104 cal BP indicate falling of the lake level
accompanied by increasing salinity (oligo- to mesohaline) and extreme low
productivity induced by decreasing precipitation (weakening of monsoon) in a dry
climate.

(iv) A gradual recovering of ostracod assemblages and prevalence of L. inopinata
(61.7%), rise in species richness (4) and diversity, high 81SOshen and Mg/Cagpepi, low
818C5heu and Sr/Cagen, coarser grains with a maximum at the onset of the Little Ice
Age, very high potassium, highest TOC and high TOC/TN (atomic) in a cold and
driest climate are indicated from 1065 to 444 cal BP. The Little Ice Age period from
c. 650 — 100 cal BP is characterised by a lowering of lake level marked by increased
salinity (mesohaline) and high productivity. This is caused by low precipitation
(weakening of the monsoon) and increasing evaporation due to cool and dry climate.

(v) During 405 cal BP to present, there was a transition of L. inopinata
predominance to L. sinensis dominance, with low adult/juvenile ratio, low
carapace/valve ratio, low K and TOC in a cool and relatively wet climate, suggesting
lake expansion but with low lake level and moderate salinity (oligo-mesohaline) and
high productivity. The lake system was influenced by relatively high precipitation



(strengthening of monsoonal rainfall) and minimal increase of evaporation due to
increased temperatures.

In conclusion, ostracod assemblages and associations, abundance and diversity
can be successfully used to characterise (i) water types, permanence, depth and
salinity; (ii) hydrology, primary production, redox conditions and oxygen availability;
(iii) subaqueous sediment transport, depositional environments in a deep lacustrine
basin and (iv) aquatic ecology, environment and climatic conditions. Ostracods are
sensitive bioindicators/proxies suitable for palacoenvironmental and palacoclimate
research on the Tibetan Plateau.



Zusammenfassung

Saline Hochgebirgsseen mit hydrologisch geschlossenem Einzugsgebiet und ihre
Fauna, beispiclsweise das Meiobenthos, reagieren sensibel auf Umwelt- und
Klimaverdnderungen sowie auf damit verbundene Schwankungen des Niederschlags-
/Verdunstungs-Verhiltnisses. Wichtigstes Ziel der vorliegenden Arbeit ist die
Untersuchung der Okologie und Paliodkologie von Ostrakoden (Kleinkrebse) in dem
groBen, brackischen See Tangra Yumco und umliegenden Gewéssern auf dem
stidlichen Tibetplateau. Damit werden Erkenntnisse zum besseren Verstindnis
vergangener, gegenwdrtiger und zukiinftiger Umwelt- und Klimaverdnderungen in
Mittelasien gewonnen.

Die vorliegenden Untersuchungen behandeln erstmals Habitatpriferenzen und
Okologie von elf rezenten Tibetischen Ostrakodenarten aus alpinen Okosystemen des
stidlichen Tibetplateaus, nimlich den Seen Tangqung Co, Tangra Yumco, Monco
Bunnyi und Xuru Co sowie Fliissen, Bachen, Tiimpeln und Quellen ihrer Umgebung.
Neun dieser Arten konnten lebend nachgewiesen werden, zwei nur durch leere
Klappen. Durch Clusteranalysen lassen sich zwei Gruppen von Arten unterscheiden:
(1) Arten permanenter Seen Leucocytherella  sinensis, Leucocythere?
dorsotuberosa, Fabaeformiscandona gyirongensis, Limnocythere inopinata und
Candona xizangensis. (2) Arten temporirer Siillgewisser — Tonnacypris
gvirongensis, Candona candida, Heterocypris incongruens, Ilyocypris sp.
Heterocypris salina und Potamocypris cf. villosa, letztere nur durch eine leere Klappe
belegt. Spearman-Korrelations- und multivariate Analysen belegen einen
siginfikanten Zusammenhang zwischen der Verbreitung lebender Ostrakoden und
verschiedenen Umweltparametern. Vor allem Leitfihigkeit und Habitattypen
kontrollieren danach das Vorkommen und die Abundanz der Ostracodenarten.

Die dokumentierten Ostrakodenarten sind flir spezifische aquatische Habitate
charakteristisch. Indikatorarten sind: (1) L. sinensis dominiert in Ca-abgereichertem
Brackwasser, aber kommt auch in den meisten anderen aquatischen Habitaten vor; (2)
L.? dorsotuberosa lebt in Siil- und Brackwasser der Seen; (3) L. inopinata herrscht
bei mesohaliner bis polyhaliner Salinitdit vor; (4) F. gyirongensis kommt
ausschlieBlich im tieferen Brackwasser der Seen vor; (5) C. candida besiedelt
verschiedene SiiBgewisser; (6) T. gyirongensis und Ilyocypris sp. sind fiir flache,
tempordre Gewdsser typisch; und (7) H. incongruens wurde nur in Timpeln
gefunden.

Wassertiefen-Indikatoren der Seen sind (1) L. sinensis, L. inopinata und C.
xizangensis als Flachwasserarten des Phytals und (2) F. gyirongensis und L.?
dorsotuberosa als Tlefwasserarten.

Erstmalig wurde eine Kalibration zur Schalenchemie (6180, 613C, Mg/Ca, Sr/Ca,
Fe/Ca, Mn/Ca und U/Ca) von vier rezenten tibetischen Ostrakodenarten durchgefiihrt
(L. sinensis, L.? dorsotuberosa, L. inopinata und T. gyirongensis). Sowohl
artspezifische Fraktionierungen von stabilen Isotopen, als auch artspezifischer Einbau
von Spurenelementen in den Kalzit der Schalen konnten dabei belegt werden. Die
Isotopie der Ostrakoden (880, 8"°C) steht mit jener des Habitatwassers in einem
variable Ungleichgewicht. Es besteht ein signifikanter, linearer Zusammenhang
zwischen Mg/Caschale Und St/Cagchale mit Mg/Cawasser Und Mg/Cawasser. Das Mg/Ca-
Verhiltnis der Schalen spiegelt Verdnderungen im Mg/Ca-Verhéltnis und die Salinitét
des umgebenden Wassers wider. Es besteht eine lineare Korrelation zwischen der
Schalenchemie von L.? dorsotuberosa und der Wasserchemie; Sr/Cagchae korreliert



mit Sr/Cawasser Und der Spezifischen Leitfdhigkeit des Wassers signifikant. Die
Schalenchemie von L.? dorsotuberosa ist ein guter Indikator fiir Verdnderungen des
Sr/Ca-Verhiltnisses des Wassers, das mit der Salinitit und entsprechenden
Volumenédnderungen des Sees in Zusammenhang steht. Die Daten der vorliegenden
Untersuchungen zeigen einen temperaturunabhéngigen Einbau von Mg und Sr in den
Kalzit der Ostrakodenschalen. Fe/Ca-, Mn/Ca- und U/Ca-Verhiltnisse der
Ostrakodenschalen konnen fiir die Rekonstruktion von Redoxbedingungen und
Sauerstoftverfiigbarkeit in den aquatischen Okosystemen genutzt werden.

Ein erstes konzeptuelles Modell lakustriner subaquatischer Massentransporte
beruhend auf der kombinierten Analyse von Ostrakodenassoziationen und
Sedimenteigenschaften wurde in der vorliegenden Dissertation entwickelt. Eine sehr
geringe Abundanz oder das Fehlen von Ostrakodenklappen in Ereignislagen aus dem
untersuchten Sedimentkern belegen vom steilen Osthang des Tangra Yumco-Beckens
ausgehende Turbiditstrome. Lakustrine Ostrakoden (L. sinensis, L.? dorsotuberosa, L.
inopinata und F. gyirongensis) fehlen ebenso in einer durch Bodenstromungen
verursachten grobkornigen Sedimentlage.

Die Analyse der Ostrakodenfauna des Sedimentkerns TAN10/4 ist die erste
kontinuierliche Rekonstruktion spdtholozdner Umwelt- und Klimaverdnderungen im
Gebiet des Tangra Yumco fiir die letzten 3300 Jahre. Diese auf paldodkologischen
und schalenchemischen Analysen (5'°0, &"C, Mg/Ca, Sr/Ca) beruhenden
Untersuchungen wurden in einem Multi-Proxy-Ansatz mit sedimentologischen
Analysen kombiniert. Die Ostrakodengemeinschaften und ihre Abundanz spiegeln vor
allem die Hohe des Seespiegels, Salinitit und Produktivitit des Tangra Yumco
wider. Es lassen sich flinf Entwicklungsphasen unterscheiden:

(I) Leucocythere sinensis dominiert (87,5 %), andere lakustrin-brackische
Ostrakodenarten sind selten, die Artenzahl ist gering (3), SISOsChale und Mg/Cascpale
sind niedrig, SlngChale und Sr/Caschale dagegen hoch, der inorganische Kohlenstoff
(TIC) steigt zwischen 3300 und 2320 cal BP langsam an, was auf einen relativ hohen
Seespiegel und relativ niedrige Salinitdt (SiilBwasser bis oligohalin) bei mittlerer
Produktivitit in relativ kiihlem und feuchtem Klima hinweist. Relativ hohe
Niederschldge durch einen verstirkten Monsun fiihrten zu einem hdheren
StiBwassereinstrom und relativ geringerer Evaporation. Zu dieser Zeit war der Tangra
Yumco ein hydrologisch offener See mit einem Uberlauf in den Tangqunq Co.

(II) Ein Riickgang von L. sinensis und Ubergang zur Dominanz von L.?
dorsotuberosa (51,5 %) mit hoherer Artenzahl (6) und sowohl fiir das Flachwasser als
auch fiir das Profundal typischen Arten sowie hohe Gehalte an organischem
Kohlenstoff (TOC) belegen einen fallenden Seespiegel und langsam steigende
Salinitdt (oligohalin) bei hochster Produktivitdt in warmem und trockenem Klima
zwischen 2300 und 1760 cal BP. Durch geringere Monsunintensitdt abnehmende
Niederschldge und eine Zunahme der Evaporation 16sten diese Entwicklung aus. In
dieser Phase wurde der Tangra Yumco endgiiltig vom Tangqunq Co abgetrennt und
verwandelte sich in ein geschlossenes Seesystem. Der See blieb von dieser
Entwicklungsphase an bis heute ein geschlossenes System.

(IIT) Die sehr geringe Abundanz der Ostrakoden (durchschnittlich 13,6
Klappen/ml) und sehr hohe Gehalte inorganischen Kohlenstoffs (TIC) zwischen 1740
und 1104 cal BP zeigen einen fallenden Seespiegel, begleitet von zunehmender
Salinitédt (oligo- bis mesohalin), und eine sehr niedrige Produktivitidt an, was durch
den weiteren Riickgang der Niederschlige (geringere Monsunintensitit) in einem
trockenen Klima hervorgerufen wurde.

(IV) Die langsame Erholung der Ostrakodenpopulation und das Vorherrschen von



L. inopinata (61,7 %), die Zunahme der Artenzahl (4) und Diversitdt, hohe Werte von
8" 0sehate und Mg/Caschale, niedrige 88 Cqehate und Str/Caschale, grobere KorngroB3en mit
einem Maximum zu Beginn der Kleinen Eiszeit, sehr hohe Konzentrationen von
Kalium, hochste TOC und hohe TOC/TN-Werte zeigen ein kaltes und das trockenste
Klima zwischen 1065 und 444 cal BP an. Der Zeitabschnitt der Kleinen Eiszeit (ca.
650 — 100 cal BP) ist durch einen zuriickgehenden Seespiegel und erhohte Salinitit
(mesohalin) sowie hohere Produktivitidt gekennzeichnet. Dies wird durch geringe
Niederschldge (weiterer Riickgang des Monsuns) und relativ hohe Verdunstung in
kiihlem und trockenem Klima hervorgerufen.

(V) In der Phase von 405 cal BP bis heute 16ste L. sinensis L. inopinata als
dominierende Art ab, das Adult/Juvenil-Verhédltnis war niedrig, wie auch der Anteil
doppelklappig erhaltener Ostrakoden, K- und TOC-Gehalte, was auf ein relativ
feuchtes Klima und eine allmihliche VergroBBerung des Sees bei moderater Salinitét
(oligo- bis mesohalin) bei  hoherer Produktivitit hinweist.  GroBere
Niederschlagsmengen (Zunahme des Monsuns) und nur geringfiigig erhohte
Verdunstung aufgrund der etwas hoheren Temperaturen sind anzunehmen.

Zusammenfassend kann festgestellt werden, dass Ostrakodengemeinschaften und
—assoziationen sowie ihre Abundanz wund Diversitit erfolgreich fir die
Charakterisierung von (1) Gewéssertypen und ihrer Permanenz, Wassertiefe, Salinitét,
(2) Hydrologie, Primérproduktion, Redoxbedingungen und Sauerstoffverfiigbarkeit,
(3) subaquatischen Sedimenttransport und Sedimentationsbedingungen in grof3en
lakustrinen Becken sowie (4) fiir aquatischer Okologie, Umwelt- und Klimaforschung
eingesetzt werden. Ostrakoden sind sensible Bioindikatoren und Proxys in
Paldomilieuanalysen und Paldoklimaforschung auf dem Tibetplateau.
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Chapter 1

1.0 Introduction

“Species would die out gradually and new ones will slowly evolve, one after
another, both on land and in the waters, but the mean complexity of life would not
alter and its basic designs, created at the beginning, would endure to the end of
time.” ~ Charles Darwain, On the Origin of Species (1859).

The organisms and their fossil (dead remains) provide long records of natural
variability of environmental, ecological and climate in time (Jablonski and Sepkoski,
1996; Alverson et al., 2000; Curry, 2003; Dietl and Flessa, 2011). The ecology
(biological interactions) is the study of living organisms and their environment (both,
biotic-all relationship of organisms and abiotic factors-physical, chemical, climatic,
food, compositions of water and soil) (Begon et al., 1996; Beeby and Brennan, 1997;
Williams, 2006; Walter and Hengeveld, 2014). The palaeoecology (fossil records) is
the study of ancient ecologies, life relations of prehistoric organism, interaction of
past organisms and their ancient environment (Dodd and Stanton, 1990; Hardt et al.,
2007; Benton, 2009; Seppid, 2009). Both ecology and palaecoecology are different
approaches towards a common objective: ecological understanding of the biosphere
(Benton and Harper, 2009; Rull, 2010; Birks, 2012; Bjune et al., 2014; Davies et al..
2014).

Biological monitoring (structure of biological communities and indicator
organisms; ecology and palaecoecology) supports evidence of spatial and temporal
environmental and climate changes (Elliott, 1990; Courtemanch, 1994; Curry, 1999;
Kiilkdyliioglu, 2004; Daufresne et al., 2009). Aquatic environment monitoring
through biological systems is essential for ecosystems sustainability policy in water
resources management and biodiversity conservation (Likens and Bormann, 1985;
Barnes and Mann, 1991; Polunin, 2008; Dietl et al., 2015).

1.1 Ostracoda

The class Ostracoda (Bivalved: Arthropoda) is within the subphylum Crustacea,
with two major subclasses, Podocopa and the Myodocopa (Fig. 1-2) (Horne et al.
2002; Newman, 2005; Rodriquez-Lazaro and Ruiz-Mufoz, 2012). Ostracoda provides
information on environmental processes, biological activities, ecological, sedimentary
events, geological and climatic conditions (Carbonel, 1988; De Deckker and Forester,
1988a; Smith and Delorme, 2010; Scott et al., 2012). It is oldest fossil arthropod
group (The Cambrian to Early Ordovician period and the present) with living
representatives (about 65, 000 living species) (Maddocks, 1982; Kempf, 1996;
Newman, 2005; Willams et al., 2008). The global diversity of Ostracoda estimates
about 20,000 living species from marine and transitional waters (Martens et al., 2008).
The success of ostracods to invade freshwater habitats is due to efficient osmotic
physiological adapation (calcification in low mineralsation waters) and wide tolerance
to different salinity regimes (Iglikowska, 2014; Iglikowska and Pawlowska, 2015).




Ostracods are efficient colonisers of new habitats (Newman, 2005; Iglikowska, 2014).
The wide geographical distribution and simulateous appearance in palacocontinents
indicate their rapid dispersal, reproductive modes and wide environmental tolerance
(Willams et al., 2008).

1.1.1 Environmental conditions

Ostracods are small crustaceans without appendages on the abdomen and the
second major group of freshwater entomostracans (cladoceras and copepods)
(Morgan, 1930; Frey, 1964; Cronin, 2009). Ostracods (clam shells, soft body enclosed
two low Mg calcite valves joined by hinged) are mainly 0.7-1.0 mm long, but their
size ranges between 0.3 and 5.0 mm in freshwater systems (De Deckker, 1981a;
Danielopol et al., 1993; Henderson, 2002). They live in nearly all types of aquatic
environments from marine, brackish (lake, lagoons and estuaries), freshwater (lake,
rivers, springs, streams), temporary pools (ponds, ground water), mosses, on aquatic
plants and semi-terrestrial environment (Morgan, 1930; Bronshtein, 1988; Benzie,
1989; Frenzel and Boomer, 2005; Griffiths, 2006). Species specific occupy spatial-
temporal pattern of distribution due to varying environmental and climatic parameters
(De Deckker, 1981a; Carbonel, 1988; Griffiths, 2006; Walter and Hengeveld, 2014).
Each species is specifically adapted to a subset of environmental and climatic factors
(De Deckker, 1981a; Forester, 1983, 1986; Carbonel, 1988; Griffiths, 2006; Walter
and Hengeveld, 2014). Ostracod reproduces by sexually (copulation) and asexually
(parthenogenesis) (Kesling, 1961; Cohen and Morin, 1990; Chaplin et al., 1994;
Griffiths and Butlin, 1995). Ostracods (“Seed Shrimp”) are mostly microbenthos but
few are planktonic (Delorme, 1989; Griffiths and Holmes, 2000). Lacustrine
ostracods live in phytal to deeper depths and commonly preserved as fossils in lake
sediments (Decrouy, 2009a).

1.1.2 Palaeoecology

The linking of past and present conditions (thus inteprepating fossil record and
reconstructing past life forms using modern life forms) is based on the Principle of
Uniformitarianism (Actualism), “The present is the key to the past”(Lyell, 1835;
Darwin, 1889: Birks and Birks, 1980; Gould, 1984; Etter, 1994):

. Laws of nature do not change on Earth in time and space.
II.  Process that influenced geological phenomena in the past occurs in the
same manner in present day.
III.  The speed of geological and biological process does not change.
IV. Inthe past the same materials and the same conditions existed.

The ancient ecosystems is reconstructed using fossil records and understanding of
process that influence life forms in the past, evolving systems bsed on three critical
factors (Behrensmeyer, 1992; Etter, 1994; Hardt et al., 2007). This is based on three
critical factors (Behrensmeyer, 1992; Etter, 1994; Hardt et al., 2007):

I.  Accurate determination and systematic classification of the collected
specimen.

II.  Putting all investigated profiles in a temporal and stratigraphical precise
order.
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III.  Understanding of ecological context and specific adaptation of the
organism that influence the ability to survive in a particular environment

The fossil shells (dead remains) of ostracods are a source of carbonate for
biostratigraphical and geochemical analysis in reconstruction of lake environment,
hydrology and climate (Bate and East, 1972; Benson, 1981; Griffiths et al., 1992;
Holmes, 1992; Sepkoski, 2000). Ostracods are very abundant in alkaline sediments.
Ostracod populations are mainly controlled by environmental parameters (e.g.,
temperature, salinity, water depth, habitat preference, dissolve oxygen concentration
and among many) (Benzie, 1989; Griffiths and Holmes, 2000). The presence and
absence and relative abundance are valuable environmental indicators (Benzie, 1989;
Griffiths and Holmes, 2000). The (palaco)-ecology and geochemical information of
ostracods are useful palacoenvironmental and climate indicators (Holmes, 1996;
Cronin, 2010). Knowledge on living species is the basis for usage of the fossil
communities reconstruction of past aquatic ecosystem dynamics (Boomer, 2002;
Boomer et al., 2003; Vermeij and Herbert, 2004). The fossil (dead) associations are
assumed to be related to the living communities (Gall, 1983). The quantitative
estimation of both living and empty valves (dead) ostracod associations is important
for understanding past ecology of fossil assemblages and their deposition in ancient
environments. Most of Quaternary ostracod has the living representatives. Modern
classification of Quaternary and living ostracods consist of 10 suborders and 16
superfamilies of the orders Myodocopida, Halocyprida, Platycopida, Podocopida and
Palaeocopida (Horne et al., 2002; Horne, 2005; Rodriquez-Lazaro and Ruiz-Mufioz,
2012) (Fig. 1-2). The different taxonomic groups are distinguished either by either
“soft part” (primarily limbs or appendages) or “hard part” (calcified valves)
morphologies (Horne et al., 2002; Rodriquez-Lazaro and Ruiz-Muioz, 2012) (Fig. 2).
Fossil ostracods (taxonomic groups) are characterised by mainly carapace
morphologies (ornamental pattern) and muscle scars (Benson, 1981). There are rarely
fossil ostracods with soft parts (exceptional, oldest ostracods with preserved soft
anatomy- myodocopes) (Willams et al., 2008).

Quaternary freshwater ostracods are good indicators of Recent environmental and
climatic change (Fig. 2) (Benson and Macdonald, 1963; Frey, 1964; Cronin et al.,
2002; Holmes and Chivas, 2002). The ecological niches of modern species can be
used to infer palacoecology of fossil assemblages and past changes of environmental
and climate parameters. There is strong relation between the recent ecology and
ancient ecology (palaeoecology), although with little variability (Tab. 1) (Hardt et al.
2007; Seppd, 2009). The palaeoecology of fossil assemblages is based on the
assumption that they reflect ecology of living associations (Tab. 1) (Ladd, 1957,
Holmes, 1992; Smol et al., 2001; Smol, 2002; Birks, 2008)).

1.1.3 Ostracoda shell chemistry

Ostracods grow by successive moulting (ecdysis) shedding of valves, about 8-9
times prior to adulthood and maturity (Kesling, 1951). Each calcitic precipitation
(calcium carbonate) is a snapshot of the water chemistry at a point in time. The
secretion of ostracods shells occurs fairly rapidly, a few hours to a few days, and
directly takes up elemental composition from ambient water (Turpen and Angell,
1971a; Chivas et al., 1983a; Chivas et al., 1986b; Roca and Wansard, 1997). The low-




Mg calcite of ostracods are derived directly from the ambient water chemistry (Ca, Sr
and Mg incorporated into calcite carapace) and only at the time of calcification
(Turpen and Angell, 1971; Chivas et al., 1983; Chivas et al., 1986; Roca and
Wansard, 1997).

The geochemistry (trace-elements and stable isotopes) of ostracod shells is a
biomarker of ambient water chemistry at time of secretion (conductivity, dissolved
ions and solute compositions) (Forester, 1983; Griffiths, 2006; Ito and Forester,
2009b; Deocampo, 2010; Yang et al., 2014b). The geochemical information stored in
ostracod shells (e. g., low Mg/Ca) is commonly used for palaco-environmental
evolution of continental water bodies (Forester, 1986; Holmes, 1996; Xia et al.,
1997a; Xia et al., 1997¢; Ito et al., 2003a). The ecology and geochemistry of ostracods
is a reliable tool for reconstruction of past aquatic environmental and climatic
conditions (Chivas et al., 1983a; Gasse et al., 1987; Carbonel, 1988; De Deckker,
1988; De Deckker and Forester, 1988a; Decrouy et al., 2011a).

The chemical shell compositions (Mg, Sr, Na and Ba) are useful for reconstruction
of past water temperature, water balance and salinity (Chivas et al., 1983a; Griftiths
and Holmes, 2000; Gouramanis and De Deckker, 2010). The changes in Sr/Ca
ostracod shell are believed to reflect changes in salinity while the changes in Mg/Ca
shell to reflect both salinity and water temperature (Forester, 1986; Ito and Forester,
2009b). Ostracod cations (Chivas et al. 1983; 1985; 1986) can be used for quantitative
salinity reconstruction (Chivas et al., 1983a, 1985; Chivas et al., 1986b; Chivas et al.,
1993; Xia et al., 1997a; De Deckker et al., 1999a). Nonetheless, recent research
suggest theoretical and practical uncertainties within quantitative salinity inferences
(Wansard et al., 1998a; Ito, 2002; Ito and Forester, 2009b; Gouramanis and De
Deckker, 2010; Gouramanis et al., 2010). Yet still the goal of initial objective of
ostracod-based quantitative salinity reconstruction has not been abandoned (Shen et
al., 2001; Zhang et al., 2004a).

Ostracod isotopic composition (8'*0 and8'’C) is used to infer past temperature
changes in deep lakes (von Grafenstein, 2002) and hydroclimatic evolution of the
continental waters (von Grafenstein et al., 1999: Ito, 2002; Schwalb, 2003b; Wrozyna
et al., 2010; Borner et al., 2013b). The isotope and trace-element composition of
ostracods shells records chemical conditions of the lake water (e.g., temperature,
salinity, dissolved ion composition, hydrology, conductivity) (Smith, 1993; Holmes,
1996; Shen et al., 2002; Mischke et al., 2007). However, ostracods from perennial
springs may be an exception as they tend to be at a constant temperature and can show
the isotope values of the precipitation that feeds the spring (Emi Ito personal
communication). Geochemistry of ostracod shells is useful proxy of past water
chemistry, temperature and salinity, although the chemical composition of each
genera is complex and poorly understood (Holmes, 1996; De Deckker et al., 1999a;
Ito et al., 2003a). Furthermore, a careful hydrological and climate inferences should
be made using geochemistry of ostracod shells due to uncertainties of the carbonate
biomineralisation (Holmes, 1996; Xia et al., 1997a; Ito et al., 2003a; Decrouy et al.,
2011a).

1.1.4 Palaeoenvironment

Ostracods are excellent proxies for palacoenvironmental reconstructions (Holmes
1996; Boomer and Eisenhauser, 2002; Ito et al., 2003a). Nonetheless, Late Quaternary
and living ostracods from mountain ecosystems are still poorly known. Understanding
of auto-ecology (e. g., micro-habitats and life cycle) and geochemistry of living and
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Recent ostracods is critical for the application of fossil ostracods for environmental
and climate reconstructions (Decrouy et al., 2012b; Borner et al., 2013b; Borner et al.,
re-submitted). The simultaneous application of both isotopic composition and trace
element ratios combined with palaeoecological and sedimentological investigations
provide detailed palacoenvironmental and palaecoclimate reconstructions (Holmes
1992; Chivas et al., 1993; Janz and Vennemann, 2005; Mischke et al., 2015).

Class OSTRACODA

Bivalved arthropods which in the adult stage have up to 8 pairs of unambiguous limbs and
a furca, all of which can be totally enclosed by a bivalved carapace which lacks growth lines,
(Home et al., 2002; Cohen and Morin, 2003; Horne, 2005; Horme ef al, 2005)

Subclass MYODOCOPA

Subclass PODOCOPA

carapace

limbs

carapace

limbs

= Typically subovate, ventral
MArgin Never concave

* Anterior rostrum and
incisure present or sbsent

= Minimal valve ovarlap

= Hinge adont, weak

* Marrow marginal zonefinfold

* 5-7 pairs
+ genital apparatus
+ robust furca
® Antennal exopodile
well-developad
= Maxillula without
branchial plate
# Fifth limb with large
branchial plate
* Furca posterior 1o anws
= Branchial plates
are epipadites
* Bellonci organ presant
* Compound lateral eyes
present or absent

* Subguadrate, subtriangular,

subovate or reniform. venfral

margin oflen concave
* Anterior restrum and
incisure absent
* Overlap minimal 1o strong
® Hinge adom 1o complex
= Marginal zone simple
te complex

* -8 pairs (typically 7}
+ genital apparatus
+ mobust or reduced furca

= Antennal endopodite
well-davsloped

® faxillula with large
branchial plate

® Fifth limb with or
without branchial plate

* Furca antenor to anus

* Branchial plates
are exopodites

» Compound lateral eyes
and Bellonci organ
NEVver present

Order Myodocopada

Carapaca typically
ovate or subcircular
Female wood space

T pairs of limbs

Tth limb a vermiform
cleaning limb )
Compound lateral eyes
lypically prasent

Ordovician - Recent
Marine, nektobenthonic

L3 Cylindrolebendoldea
d'- Y

5 )
.."\.".‘_-|= Cyprdmoidea

. . .
2%, Sarsicloides

Order Platycopida

Marginal zone nammow, simple -

RV overaps LV
Hinge adont
Femala brood space

oms

Female with & pairs of imbs

Antennal exopodite with 2 pc-:lmneres

Trunk segmentation clear

QOrdovician - Recent
Marine, benthonic

Order Halocyprida

Carapace typically

Silurian - Recant
Marine,
nekiobenthonic and pelagic

semi-lunale, ovale
ar subcircular
Typically withaul
brood space

5-7 pairs of limbs

Tih limb simple,

reduced or absent

Blind

crnrs;'
Halucypndmclﬂa

# Thaumatocypridoidea

.- Cladocopoidsa

Order Podocopida
Marginal zone typically broad,
simple or complex

LV = or = RY

Hinge adont or complex
Same with brood space

Female with 7 limbs

Antennal exopodite reduced
Trurk segmentation weak or absenl

ems
aaz Bairdicidea
% Macrocypridoidea
o Ponlocypridoidea

~w, Cypridoidea

Ordovician - Recant

Marine and nonmarine,
some termrestrial,

benthanic or nekto-benthonic

'% Terrestricytheroidea
. 'a. Cytheroidea
&% sigitioidea

& Darwinuloidea

'OI‘E*EI‘ Palaaocoplda Ordovician - Recent

{mosily exfinel, Palasozaic)
Marme berthanic

Hinge line straight
Valves gape widely in life
B pairs of limbs

=
Ems ' Y

Representad by single living genus Marawa
Fig. 1 Quaternary and living ostracods: synoptic characteristics o the two subclass

and five orders. Cms. Central muscle cars, characteristic patterns. (Rodriquez-Lazaro
and Ruiz-Mufioz; fig. 1.4).
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sl

dorsal
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ventral

Fig. 2 Freshwater ostracod internal view of a right valve (RV): Al = anterior inner
lamella; g= gential impression; 1 = list; ma = mandibular scars; mu = muscle scars; p
= pore; pl = posterior inner lamella; s = sulci; sl = selvage. (Griffiths et al., 1992; fig.

24).

Table 1 The difference between current auto-ecology and palaeoecology (modified,
Hardt et al. 2007).

Current auto-ecology

Palaeoecology

Current living organisms are true
biological communities (intact) and
indicators of ecosystems

Precise and comprehensive description of
environment and organism in an
ecosystem is possible, parameters can
actually be measured

Potentially that all faunal and flora
components are available in the observed
biocoenosis

Data acquisition is limited to a few years
or even months and days only

Fossil assemblages and age estimation
data are needed

Mostly characterization of a former
milieu in order to subsequently state
inference on environmental factors and
organisms factors

Fossils are the only documents available;
hardly ever is the fossil record complete
and many questions stay unanswered

Excavated facies span a time of
thousands and even millions of years.
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Fig.3a Linking of the past and the present ecosystems. The present-day ecosystems
and its biota are treated largely from historical viewpont. The contempeorary fossil
are used as the basis for the inference about the past (Hardt et. al. 2007; fig. 17:1)

Ecological Preferences of ostracod species
Kp[M] for ostracod species
Stable-isotope fractionation for ostracod species
Relationships between hydrology/salinity, stable isotope
composition and M/Ca

Ostracod species assemblages
Trace-element chemistry of ostracod shells
Oxyzen and carbon isotope composition of ostracod shells

!

Fig. 3b Summary of methods in application of ecology and chemistry of ostracod
shells in palacolimnology (Holmes, 1992; fig. 2)



1.2 The Tibetan Plateau

1.2.1 General Environment

“I will open rivers in high places, and fountains in the midst of the valleys: I will
make the wilderness a pool of water and the dry land springs of water.” Isaiah 41: 18

The Tibetan Plateau is highland with complex interactions (e.g., atmospheric,
biospheric, cryospheric, geological, climatic, hydrological and environmental
processes.) and plays a key role in the Earth’s climate, biodiversity, water cycle and
ecoystems (Fig. 1) (Yao et al., 2011a; Yao et al., 2012a).
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Fig. 1. The water cycle on Earth; (a) The four major processes are evaporation,
transpiration, condensation and precipitation-Source:
http://earthobservatory.nasa.gov/Library/ Water/water.html (b) Ecosystems
interactions-Source: Millennium Ecosystem Assessment. Ecosystems and Human
Well-Being: Wetlands Synthesis .Word Resources Institute; Washington, D.C. 2005.

1.2.2 The geography of Tibetan Plateau

The Tibetan Plateau (TP) is situated in 75—105° E, 27.5—37.5°N, with an average
elevation of 4000 - 5000 meters above sea level (a.s.) and covers a total area of about
2.5 million km? (Li et al., 1983; Molnar, 1989; Tuttle and Schaeffer, 2013). The
Tibetan Plateau is surrounded by the Himalayas and Gangdise to the south, the
Karakoram Range and the Pamirs to the west, the Hengduan Mountains to the east
and the Kunlun and Qilian Mountains to the north (terrain accreted into Eurasia
continent) (Fig. 2) (Dewey et al., 1988; Lehmkuhl and Haselein, 2000; Lehmkuhl and
Owen, 2005; Yao et al., 2012a). It is known as the “Roof of the World™ due to it’s
complex terrain, ecological variability, high plateau environment heterogeneity and
climatic variability (Qiu, 2008; Yao et al., 2011a; Chen et al., 2015).The vegetation is
ecologically variable, scarce and patchy distributed, influencing the climate (Fig. 2)
(Chang, 1981b; Yu et al., 2010; Liang et al., 2012; Tian et al., 2014) (Fig. 2). The
high mountains ranges are intercepted with lakes and rivers, unique flora and fauna
(Zheng et al., 2000a; Yao et al., 2011b). It is the third sensitive “hot spot” akin to the
Arctic and the Antarctic, for the assessment of environmental, ecological and climate
change (Yao et al., 1997; Myers et al., 2000; Ma et al., 2009). It is the highest and
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largest plateau in the world with a variety of climate and pristine ecosystems (Fang,
1991; Gasse et al., 1991; An et al., 2001; Owen et al., 2005; Duan et al., 2006; Harris,
2006).

The earth's climate is influenced strongly by the presence of mountains and
plateaus (Overpeck et al., 2005; Steffen et al., 2005; Ruddiman, 2008; Kohler and
Maselli, 2009). The Tibetan Plateau exerts profound influences not only on the local
climate and environment but also on the global atmospheric circulation through its
topographic features, sensible and latent forcing (Yanai et al., 1992; Liu and Yanai,
2001; Yanai and Wu, 2006). It plays an important role in the Asian monsoon system
by acting as an anomalous mid tropospheric heat source (Li and Yanai, 1996;
Zhisheng et al., 2001; Taniguchi and Koike, 2007; Duan et al., 2008; Park et al.,
2012). The global climate system and its interaction such as landscape components as
vegetation, geology, topography, and soil are highly nonlinear (Beniston, 1994).
Many of the modern geographic patterns of temperature, precipitation, and wind are
explained by the presence of topographic barriers (Trewartha, 1968; Zhao and Moore,
2004) and experiments with numerical climate models have confirmed these
relationships (Hahn and Manabe, 1975; Manabe and Broccoli, 1990). Additionally,
significant surface uplift (increased elevation) of the Tibetan Plateau in the past 10-20
million years (Harrison et al., 1992; Molnar et al., 1993) and several other major
plateau systems during the Cenozoic further described these phenomena(Kutzbach et
al., 1989; Ruddiman and Kutzbach, 1990).

The mountains play a significant role in water resources of the world (Northrop,
1887; Viviroli et al., 2003; Viviroli and Weingartner, 2004; Kohler and Maselli,
2009). The Tibetan Plateau directly life-supports about a tenth of humankind and
indirectly sustains more than one-half humankind (Ives and Messerli, 1989; Boos and
Kuang, 2010). The third pole environment (variable topography boundaries) is
characterised by semi-humid-summer steppe climate with cold and dry winter, due to
the variability of topography and different monsoon systems (Webster et al., 1998;
Zheng et al., 2000a; Bookhagen and Burbank, 2006; Molnar et al., 2010).

Fig. 2 The geography of Tibetan Plateau and surrounding mountains (Yao et al.
2012: fig.1).
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Fig. 3 The vegetation types and weather stations on the Tibetan Plateau (Yu et al.
2010: fig.1). The vegetation distribution is controlled by summer precipitation
gradient in southeast to northeast. The vegetation changes from forest to meadow, to
steppe and to desert.

1.2.3 The Tibetan Plateau and monsoons

The Tibetan Plateau is created by the India-Asia collision (Flohn, 1987; Shen,
1987; Dewey et al., 1988; Xiao and Li, 1995; Chen and Wang, 1996; Pan et al., 2012;
Chatterjee et al., 2013). The uplift of the Himalayan-Tibetan orogen has played a
major role in controlling local and global climates on long and short time scales over
the last 50 Ma (Kutzbach et al., 1989; Ruddiman and Kutzbach, 1989: An et al., 2001;
Dettman et al., 2003; Molnar et al., 2010). It plays a great role in climate evolution in
South-East Asia, formation and development of Asian Monsoon (He et al., 1987;
Yanai et al., 1992; Li and Yanai, 1996; Webster et al., 1998; Wang et al., 2005) and of
atmospheric circulation in the Northern Hemisphere (Murakami, 1987; Ruddiman and
Raymo, 1988; Ruddiman and Kutzbach, 1991; Harrison et al., 1992; Raymo and
Ruddiman, 1992; Molnar et al., 1993; Murphy et al., 1997; Harris, 2006). The Tibetan
Plateau is located in the interaction zone of monsoon climatic systems (polar air
masses from Arctic, continental air masses through central Asia (Westerlies), Indian
summer monsoon and East Asian summer monsoon) (Fig. 4-5) (Prell and Kutzbach,
1992; Raymo and Ruddiman, 1992; Molnar et al., 1993; Lal et al., 1994; Herzschuh,
2006). The uplift of Tibetan Plateau, due to India-Asia collision, is the primary cause
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of monsoon initiation and intensification (Kutzbach et al., 1989; Coleman and
Hodges, 1995; An et al., 2001; Harris, 2006; Chatterjee et al., 2013). Moisture
penetrating into the southeastern Tibetan Plateau is predominantly derived from
monsoonal air masses originating from the Bay of Bengal and transported into the
eastern Himalayan syntaxis along the Brahmaputra River (Hamilton, 1977; Hren et
al., 2009; Yao et al., 2012b; Chatterjee et al., 2013). However, monsoonal-derived
moisture is progressively mixed with central Asian air masses in the western and
northern parts of the Tibetan Plateau (Hren et al., 2009; Zhang et al., 2012b; Zhao et
al., 2012).
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Fig. 4. The Tibetan Plateau (elevation of 3 km within 70-105°E and 25-40°N, south
slope (3 km within 70—105°E and 25-35°N) and the monsoon (70-105°E, 10-25°N)
(Fu et al. 2006a: fig.1;Yao et al., 2011b;fig. 3).
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Fig. 5 The monsoon circulation on the Tibetan Plateau (Yao et al. 2012b: fig.1).

The Tibetan Plateau-Himalayas region is characterised by spatial heterogeneity in
precipitation (Fig. 6-7) (Molnar et al., 1993; Immerzeel et al., 2005; Anders et al.,
2006; Vaid and Liang, 2015). The variability of precipitation is due to uneven
topography and four major climatic systems. The climatic system consist of the
Siberian high-pressure systems to the north, the mid-latitude Westerlies to the west,
the East Asian Monsoon to the east and the Indian Summer Monsoons (ISM) to the
south (Fig. 6-7) (Hamilton, 1977; Schickhoff, 2000; Bookhagen and Burbank, 2006;
Fu et al., 2006a). During the summer period, moisture is transported from the Bay of
Bengal and Southeast Asia northwest along the range front, where it is orographically
lifted and adiabatically cooled producing heavy monsoonal rainfall Indian (Chang,
1981a; Fu et al., 2006a). On the eastern edge of the range, moisture penetrates the
Himalaya along the Siang—Brahmaputra river valley bringing seasonal monsoonal
moisture fluxes to the southern Tibetan Plateau (Fu et al., 2006b; Immerzeel and
Bierkens, 2010a). The mean annual precipitation across the Himalaya and TP ranges
from greater than 3 m/yr south of the Himalaya along tributaries of the Siang to less
than 0.2 m/yr in central and western Tibet (Bookhagen and Burbank, 2006;
Immerzeel, 2008). The contribution of summer precipitation (May to Oct) is ~80% in
the south and 95% in the uppermost reaches of the Brahmaputra and central Tibetan
Plateau (Haigh, 2000; Bookhagen and Burbank, 2006; Immerzeel, 2008; Bookhagen,
2010).

The component crossing through gaps into Indochina, the southern Tibetan
Plateau-Himalayas range (e.g., Brahmaputra, Mekong, Jinsha, Salween and among
othe large headwaters, all flow out) delivers the largest part of precipitation on the
south central Tibetan Plateau (Chang, 1981a; Spicer et al., 2003; Immerzeel and
Bierkens, 2010b). The eastern part of the plateau gets its rain from the East Asian
summer monsoon (Clark et al., 2004; Lehmkuhl and Owen, 2005; Bohner, 2006; Fu
et al., 2006a; He et al., 2006; Zhao et al., 2007).

The Tibetan Plateau-Himalayan realm is characterised by two main rainfall
gradients: an approximately five-fold east-to west gradient related to the distance
from the moisture source (Bay of Bengal) and a ten-fold south-to-north rainfall
gradient reaching from the monsoon-soaked Ganges Plain to the arid Tibetan Plateau
that lies in the lee of the Himalayan orographic barrier (Fig. 6-7) (Hamilton, 1977;
Chang, 1981a; Clark et al., 2004; Bookhagen, 2010). The mean daily summer (May—
October) monsoon rainfall on the Ganges Plain ranges from 10 to more than 20 mm
day” south of the Shillong Plateau (Fig. 6-7) (Li and Yanai, 1996; Clark et al., 2004;
Bookhagen, 2010). The Tibetan Plateau receives overall less than 5 mm day™' rainfall,
with significantly drier western areas (Bookhagen, 2010). The summer (May—
October) monsoon rainfall provides more than 80% of the annual moisture budget for
large parts of the Ganges Plain and central Himalaya (Fig. 6) (Bookhagen, 2010). The

western and eastern areas receive lower rainfall during the summer and their moisture
budget is dominated by the westerlies and during winter by the East Asian monsoon
(Bookhagen, 2010; Rajagopalan and Molnar, 2013).
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The Tibetan Plateau thermal and sensible force both in summer and in late winter
and spring can influence the variation of Eastern Asian summer rainfall (Ye, 1981; He
et al., 1987; Qian et al., 2011; Jin et al., 2013). A combined index using both snow
cover over the Tibetan Plateau and the ENSO index in winter shows a better seasonal
forecast (Webster and Chou, 1980; Yanai et al., 1992; Li and Yanai, 1996; Liu and
Yanai, 2001).

Strong sensible heating over the Tibetan Plateau in spring contributes significantly
to anchor the earliest Asian monsoon being over the eastern Bay of Bengal (BOB) and
the western Indochina peninsula (Lau et al., 2000; Liu et al., 2002b; Kau et al., 2003;
Schneider et al., 2003; Wu et al., 2011). The heating over the Tibetan Plateau
significantly influences the variability of the atmospheric circulation (Schneider and
Lindzen, 1977; Ye, 1981; Ruddiman and Kutzbach, 1991; D. and Chan, 2005; Roe,
2005; Harris, 2006; Zhao et al., 2007).

Topography (km ausi)
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Fig. 6. Topography of Tibetan Plateau-Himalayan mountain ranges. The western and
eastern of southern front are characterised by one-step topography. While the central
border is characterised by two-step topography, which consist of two distinctive
rainfall peaks. White stars represent extreme rainfall (Bookhagen, 2010; fig.1).
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Fig. 7 The two distinct rainfall gradients on the Tibetan Plateau-Himalaya
(Bookhagen, 2010: fig.3).

1.2.4 The monsoon systems

The monsoon originates from the Arabic word “Mausam”, which means season
(Ramage, 1971; Webster et al., 1998; Chao, 2000).The monsoon is circulation system
associated with change in land-sea thermal contrast induced by seasonal evolution of
solar radiation (Fig. 8-9) (Lau and Bua, 1998; Webster et al., 1998; Holton, 2004;
Kottek et al., 2006; Wang, 2006). The monsoon is annual seasonal reversal of surface
winds (at least 120° between January and July) and change in rainfall pattern (distinct
wet/dry seasons) (Fig. 8-9) (Ramage, 1971; Webster et al., 1998; Chao, 2000). The
low — level winds of the “wet” summer monsoon flows from the ocean to the
continent and high — level winds “dry” winter monsoon flows from the continent to
the ocean (Fig. 7) (Ramage, 1971; Webster et al., 1998; Chao, 2000).

In summer time, the lower tropospheric winds flow toward heated continents away
from the colder oceanic regions of the winter hemisphere (Ramage, 1971; Charney
and Shukla, 1981; Krishnamurti et al., 1989; Webster et al., 1998). In the upper
troposphere the flow is reversed, with flow from the summer to the winter hemisphere
(Ramage, 1971; Charney and Shukla, 1981; Webster et al., 1998). In summer
precipitation is centered in time on either side of the summer solstice and located over
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the heated continents and the adjacent oceans and seas in the vicinity of a trough of
low pressure referred to as the ‘monsoon trough’ (Webster et al., 1998; Clift and
Plumb, 2008; Sanyal and Sinha, 2010). Most summer rainfall is associated with
synoptic disturbances that propagate through the region (Ramage, 1971; Webster et
al., 1998; Bollasina and Ming, 2013). However, these disturbances are grouped in
periods lasting from 10 to 30 days (Ramage, 1971; Webster et al., 1998; Bollasina and
Ming, 2013). The envelopes of disturbed weather and heavy rainfall are referred to as
‘active periods of the monsoon’ (Ramage, 1971; Hamilton, 1977; Webster et al.,
1998; Krishnan et al., 2000). The intervening periods of mini drought are referred to
as ‘monsoon breaks’(Ramage, 1971; Hamilton, 1977; Webster et al., 1998; Krishnan
et al., 2000). The monsoon trough (axis of heavy precipitation) is located poleward of
the oceanic intertropical convergence zone (ITCZ) (Fig. 8-9), surface low pressure
with clouds and rainfall (Wang, 1994; Wang and Wang, 1999). The ITCZ is known as
Doldrums and near-equatorial trough, east—west band of deep conveyor belt that
circulates the globe (Chao, 2000; Raymond et al., 2006). It is a junction of
convergence of northeast and southeast trade winds (driven by heating and moisture)
(Wang and Wang, 1999; Sugimoto et al., 2008; Yan et al., 2015). The convergence is
parallel to the equator but moves north or south with the earth rotations, which
determines the seasons (primarily winter and summer) (Chao, 2000; Sanyal and
Sinha, 2010). The ITCZ is also associated with intensive tropical precipitation (Wang,
1994; Chao, 2000; Sanyal and Sinha, 2010). For instance, the rainfall associated with
the South Asian monsoon falls at the same latitudes as the great deserts of the planet
(Webster et al., 1998; Clift and Plumb, 2008; Sanyal and Sinha, 2010).

Monsoon circulations, particularly those in Northern Hemisphere (boreal) summer,
strongly affect the general atmospheric circulations (Fig. 8-9) (Charney and Shukla,
1981; Webster, 1994; Webster et al., 1998). The monsoons are continental- and
seasonal-scale sea breeze circulations (Fein and Stephens, 1987; Harrison et al., 1992;
An et al., 2000). The south Asian and North American summer monsoons are deep
circulations, with closed anticyclones extending up to at least 70 hPa in the
stratosphere in June-July (Fig. 8-9) (Krishnamurti et al., 1989; Dunkerton, 1995; Liu
et al., 2002b; Wu et al., 2012). The two monsoon circulations are different in
magnitude, horizontal extent and depth, but similar in their forcing (a high-altitude
land mass of the Himalayan-Tibetan or Colorado plateau to the north, and warm
ocean regions of the Bay of Bengal or the Gulf of Mexico to the south (Dunkerton
1995; Liu et al., 2002b; Wu et al., 2012). These deep circulations may have a
significant impact on stratosphere-troposphere exchange and on the entry of air into
the stratosphere (Ramage, 1971; Webster, 1994; Roe, 2005; Clift and Plumb, 2008).

The global monsoon climatic systems (changes in annual precipitation in tropical

and subtropical regions) are located in Asia (the largest), Austrialia, America and
Africa continents (Fig. 9) (Ramage, 1971; Charney and Shukla, 1981; Webster et al.,
1998; Qian et al., 2002; Nicholson and Webster, 2007; Sanyal and Sinha, 2010). The
global climate classifications is primary linked to precipitation, temperature and
vegetation (Fig. 10) (Lamb, 1969; Kottek et al., 2006; Nicholson, 2011; Blunden and
Arndt, 2014). Each of monsoon system is characterised by different intensity and




interactions with other circulations (Ramage, 1971; Webster et al., 1998; Qian et al.,
2002; Wang et al., 2012a; Wang et al., 2014). The global summer monsoon
precipitation regulate the annual cycle of the Earth climate system (e.g., temperature,
hydroclimate, and heat transport from tropics to higher latitude) (Hoyos and Webster,
2007; Liu et al., 2012; Wang et al., 2012a; An et al., 2015).

Tropical monsoonal circulations, between tropics and extratropics (e.g. moisture
extracted from the subtropical ocean under the Pacific trade winds converges over
eastern Asia and the western Pacific warm pool providing fuel for the deep
convection over both land and ocean) is a key regional components of the global
circulation system (Webster, 1983, 1987; Trenberth and Solomon, 1994; Wang and
Ding, 2008). They represent a large portion of the global hydrological cycle: the
transport of water within and between the different reservoirs in the earth's climate
system, some transports involving phases changes (such as evaporation and

precipitation), which are very nonlinear due to the relationships between dynamics
and thermodynamics (Webster, 1994; Webster et al., 2001; Roe, 2005). Monsoonal
circulations are sensitive to the interaction of atmospheric processes, water cycle and
climate dynamics (Chao, 2000; Rosenfeld et al., 2001; Chase et al., 2003;
Ramanathan et al., 2005; Levermann et al., 2009; Sun and Liu, 2015). The winter
monsoon is a flow of cool and highly polluted air mass off the Southeast Asian
continent to the relatively warm waters of the ocean (Ramanathan et al., 2005; Liu et
al., 2011; Sun and Liu, 2015). The polluted clouds over land need to grow beyond 6
km in height to start precipitating (Rosenfeld et al., 2002). The atmospheric pollutants
(aerosols) are particles of sulfate, black carbon and organic carbon and nitrate from
human activities (biomass burning) and dust, sea salt and volcanic ash (Ramanathan
et al., 2005; Remer et al., 2008; Yu et al., 2008:; Sayer et al., 2012). The
anthropogenic aerosols affects the earth’s energy (solar radiation), the water cycle
(thus act as cloud condensation nuclei) and climate (Sokolik and Toon, 1996;
Haywood and Boucher, 2000). Asia is one of the major aerosol-laden (strong dust

storms) regions of the world due to rapid population growth, economic and human
activities (Ramanathan et al., 2005; Lau et al., 2006; Remer et al., 2008; Yu et al..
2008; Sayer et al., 2012).

The Asian monsoon system, consist of two subsystems, East Asian and Indian (or
South Asian) monsoons (Yanai et al., 1992; Webster et al., 1998; Liu and Yanai,
2001; Schiemann et al., 2008). It exerts a dominant influence on Asian climate and

plays a significant role in regulating regional and global climate (Tang and Reiter,
1984; Krishnakumar and Lau, 1998; Trenberth, 1998; Krishnan et al., 2000; Wang et
al., 2003). It is a prominent Earth’s climate system, involving complex interactions of
the atmosphere, the hydrosphere and the biosphere (Flohn, 1987; Chen and Wang,
1996; Trenberth et al., 2007; Trenberth, 2011). The monsoon transports abundant
water vapor from the Pacific and Indian Oceans to the Asia monsoon region, which
greatly affects the rainfall and water budget in the region (Elegene and Jongnam,
2003; Fu et al., 2006b; Fu et al., 2008).
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Fig. 8 Monsoon circulation in January and June with oceanic intertropical convergence
zone (ITCZ). Source: www.pmfias.com
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Fig. 9 Geographical extent of the global surface monsoons. The red and blue thick
lines represent the ITCZ in summer and the winter respectively. The southwesterly
and southeasterly monsoons converge in the Asian-Australian monsoon region (0°—
20°N, 140°E-20-W) within the Northern Hemisphere in June, July, and August
(JJA). It reverses to a northeasterly wind in December, January, and February (DJF),
with prevailing northwesterlies in the Southern Hemisphere (0-—10°S, 20°E—160°E).
(Charney and Shuika 198; An et al., 2015).

The Asian monsoon front is an important geoclimatic boundary that divides coastal
mid-latitude Asia into two distinct climatic regimes; northwest of the front is under a
strong influence of the Siberian (continental) air mass, characterised by low humidity
and large seasonal temperature variability, whereas southeast of the front is governed
by the Pacific (oceanic) air mass, characterised by wet and smaller seasonal
temperature variability (Webster, 1987; Ruddiman and Kutzbach, 1991; Kau et al.,
2003; Nakagawa et al., 2006; Li et al., 2010; Chen et al., 2014). The climate of the
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West Pacific and coastal East Asia tends to be characterised by clear seasonality
because the monsoon front seasonally migrates across these regions (Webster, 1987;
Ruddiman and Kutzbach, 1991; Nakagawa et al., 2006). The East-Asian monsoon
consists of Southeast-Asian summer monsoon and winter monsoon (Hamilton, 1977;
An et al., 2015). The first is driven by warm moist air mass over the subtropical and

tropical SE-Pacific in summer (Hamilton, 1977; Hoyos and Webster, 2007; Loo et al.,
2015). The winter monsoon is driven by the cold dry mass of the Mongolia Siberia
high pressure cell in winter. Asian monsoon is a dynamic system tightly coupled to
global teleconnections that change their magnitudes at varying timescales (Hahn and
Manabe, 1975; Webster, 1987; Harrison et al., 1992; Murphy et al., 1997; Spicer et
al., 2003; Harris, 2006). The monsoon circulations (rainfall) undergoes abrupt
changes (especially in central Asia) during the Holocene and the last glacial period
(Liu et al., 2004; Nakagawa et al., 2006; Levermann et al., 2009; Allen et al., 2010;
Zhang et al., 2014).
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Fig. 10 World map of Kdppen- Geiger effective climate classification The light
blue colour indicate areas with polar tundra climate based on mean annual
temperatures between 0°C and 10° C (Kottek et. al., 2006).

1.2.5 The hydrological significance of Tibetan Plateau

The Himalayas and Tibetan Plateau region (HTP) is “third pole”, due to third
largest storage of ice outside the north and south polar regions, radiative energy and
climate (Yao et al., 2012a). There are about 46,000 glaciers distributed over the major
mountain ranges such as Pamir, Karakoram and Himalaya mountain covering almost
50,000 km® on the Tibetan Plateau (Yao et al., 2007b; Yao et al., 2012b). It is a land




of many lakes (fresh and saline), wetlands and rivers. It is the origin of Asian great
rivers: (Amu Darya, Tarim (Dayan), Indus, Ganges, Brahmaputra (Yarlungtsanpo),
Irrawaddy, Salween (Nu), Mekong (Langcang), Yangtze (Jinsha), and Yellow
(Huanghe) (Fig. 11) (Yao et al., 1997; Yao and Greenwood, 2009; Chellaney, 2011;
Fan et al., 2015). The major rivers flow to 18 downstream countries and contributed
to transboundary water resources and ecological security in Asia (He et al., 2014).
The Tibetan Plateau significantly contributes to fresh water resources for over 1
billion people through feeding the river systems (Barnett et al., 1988; Viviroli and
Weingartner, 2004; Unger-Shayesteh et al., 2013). The Tibetan Plateau is known as
the “Land of Snows” and “Water Tower of Asia” (Fig. 11) (Lu et al., 2005a;
Viviroli et al., 2007; Xu et al., 2008b; Qui, 2010; Chellaney, 2011; He et al., 2014).
The glacial and snow melt waters are important contributors of water resources (Yao
et al., 2004; Barnett et al., 2005; Immerzeel et al., 2010; Immerzeel et al., 2013). The
snow and glacial melt are important hydrologic processes in the region and changes in
temperature and precipitation will seriously affect the melt water characteristics (Yao
et al., 2004; Barnett et al., 2005; Nayar, 2009; Immerzeel et al., 2010; Qui, 2010;
Immerzeel et al., 2013). The precipitation in the upstream parts of the basins falls
partly in the form of snow, causing a natural delay of river discharge (Viviroli et al.
2003; Immerzeel et al., 2008; Immerzeel and Bierkens, 2010a). Snow cover dynamics
on the Qinghai-Tibetan—Plateau may influence the water availability downstream in
the major river basins of Asia, specifically in spring at the onset of the (irrigation)
growing season (Viviroli et al., 2003; Immerzeel et al., 2008; Immerzeel and
Bierkens, 2010a; Qui, 2010)
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Fig. 11a The ten Asia’s largest rivers originate from Tibetan Plateau (Barnett et al.,
2005).
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1.2.6 Mountains freshwater resources and climate change

The global climate warming rate in 21st century is increasing temperature (e.g., 1°
to 4° C rise in global average temperature by 2100) and largest effect on precipitation
(Fig. 12-13) (Giorgi et al., 1997; Gitay et al., 2002; IPCC, 2007a; Bates et al., 2008;
Xu et al., 2008a; Giorgi et al., 2011). The amount of freshwater on Earth is finite, but
its distribution varied driven by primarily natural cycles of freezing and thawing and
fluctuations in precipitation, water runoff patterns and evapotranspiration (Ford and
Thornton, 1992; Connor et al., 2009; Coates, 2010; Wang et al., 2012a). Water is
important to the health of human and aquatic ecosystems (Cosgrove, 2007; Connor et
al., 2009; Coates, 2010). Climate Change (long term temperature fluctuation) is the
main drivers of changing in water resources (Ford and Thornton, 1992; Connor et al.,
2009; Coates, 2010; Lee et al., 2015). The climate change is prominent in Asia region
(Cruz et al., 2007). Climate change caused by human activities (increasing carbon
dioxide via burning of fuel fossils) affects ecosystems (e.g., sustainability and
environmental disruptions) and people (e.g., economic loss, health problems) mainly
by affecting water availability (e.g., increase frequency and intensity of heat waves
and extreme events; flooding-heavy precipitation and drought-less rainfall) (Gitay et
al., 2002; UNEP/GRID-Arendal, 2005; Cruz et al., 2007; Meehl et al., 2007;
UNFCCC, 2007; Connor et al., 2009).

The global mountains (principal source of freshwater resources) are the major
headwaters of the world (Fig. 15a-c and Fig. 17-18)(Lee et al., 2015). The mountain
glaciers are indicators for climate change (Gitay et al., 2002; [PCC, 2007a; Kohler
and Maselli, 2009). The climate change is expected to intensify the hydrological cycle
(e.g., more precipitation and more evapotranspiration) especially in high-mountains
region (e. g., Himalayan-Tibetan Plateau) (Gitay et al., 2002; IPCC, 2007a; Bates et
al., 2008; Kohler and Maselli, 2009). Snow and ice accumulation in mountain areas
determine for a large part the surface hydrology and the temporal distribution of the
availability of water (Fig. 16) (Barnett et al., 1988; Gitay et al., 2002; Viviroli and
Weingartner, 2004; Barnett et al., 2005). The hydrological function will be altered
with a significant rise in surface air temperatures. Increased melting of sea ice and
freshwater influx from melting glaciers and ice sheets also has the potential to
influence global patterns of ocean circulation (UNEP/GRID-Arendal, 2005; Meehl et
al., 2007, UNFCCC, 2007; Connor et al., 2009). The warming is expected to be
greatest over land and at most high northern latitudes, where snow cover is projected
to shrink and hot temperature extremes, heat waves, and heavy precipitation events
will continue to become more frequent in mountain basins (Barnett et al., 2005; IPCC,
2007a; Bates et al., 2008; UNEP, 2012). The diminishing role of snow and ice as a
natural store for water supply will have a tremendous impact (e.g., melting of glaciers
in Himalayas-Tibetan Plateau) (Fig.17a-b) (Singh and Bengtsson, 2004; Arora et al.,
2008; Nayar, 2009; Kaser et al., 2010). The spatial variation in observed and
projected climate change is large and mountain ranges and their downstream areas are
particularly vulnerable due to:

* The rate of warming in the lower troposphere increases with altitude, i.e.
temperatures rise in high mountains is greater than at low altitudes (Bradley,
1985; Giorgi et al., 1997).

* There is a large high natural variation in climate because of the large difference in
altitudes over small horizontal distances. This renders mountain areas more
susceptible to climate change (Beniston, 1994).

* Mountains play an important role in the water supply to downstream areas. About




1.3 billion people depends on water supplied by mountains and changes in
hydrology and water availability are expected to be large in mountain basins (Fig.
15a-c, and 16-17a-b) (Viviroli et al., 2003; Viviroli and Weingartner, 2004;
Barnett et al., 2005; Viviroli et al., 2011).

Climate change will lead to an intensification of the global hydrological cycle,
which will affect local, regional and global water resources (Arnell, 1999;
Vorosmarty and Sahagian, 2000; Arnell et al., 2001; Dai and Trenberth, 2002; Arnell,
2004; Viviroli et al., 2011). For instance, human activities are releasing tiny particles
(aerosols) into the atmosphere. The aerosols enhance scattering and absorption of
solar radiation. They also produce brighter clouds that are less efficient at releasing
precipitation. These in turn lead to large reductions in the amount of solar irradiance
reaching Earth’s surface, a corresponding increase in solar heating of the atmosphere,
changes in the atmospheric temperature structure, suppression of rainfall and less
efficient removal of pollutants (Chou and Lan, 2012; Trenberth et al., 2015). These
aerosol effects can lead to a weaker hydrological cycle, which connects directly to
availability and quality of fresh water, a major environmental issue of the 21* century
(Sokolik and Toon, 1996; Kulshreshtha, 1998; Toon, 2000; Ramanathan et al., 2005).

Global warming, due to the enhanced greenhouse gases (e.g., carbon dioxide), is
likely to have significant impacts on the hydrological cycle (IPCC, 1996; Trenberth,
1998; Alverson et al., 2000; Bates et al., 2008; Trenberth, 2011). The hydrological
processes (water cycle) will be intensified, with more evaporation and more
precipitation, but the extra precipitation will be unequally distributed across the globe
(Trenberth, 1999b, a; Adam et al., 2006; Sanderson et al., 2011). There are different
levels of precipitation variability (extreme events, intensity and frequency); (i) major
alterations in the timing of wet and dry seasons (ii) spatial and temporal and (iii) local,
region and global. Some parts of the world may experience significant intense
precipitation (flooding) while other regions could have reduced precipitation
(droughts) (Trenberth, 1998; Trenberth et al., 2003; Trenberth, 2011). The change in
mean precipitation is associated with changes not only in precipitation intensity but
also in precipitation frequency (Solomon et al., 2009; Wang et al., 2012a; Lee et al.,
2014). Changes in the total amount of precipitation (frequency and intensity) directly
affect the magnitude and timing of run-off and the intensity of floods and droughts
(Trenberth, 1998). However, at present, specific regional effects are uncertain (IPCC,
1996, 2001; Trenberth et al., 2003; IPCC, 2007b; Schewe et al., 2014).

Water vapor is an important greenhouse gas (Kiehl and Trenberth, 1997). Changes
in water vapor amount is a major determinant of earth’s climate (radiation and energy
feedbacks) and moisture dynamics (Held and Soden, 2000; Trenberth et al., 2005;
Held and Soden, 2006; Voigt and Shaw, 2015). The Clausius—Clapeyron equation
predicted a temperature increases by 1K and the water-holding capacity of the
atmosphere to increases by 7.8 % (Trenberth et al., 2005; Voigt and Shaw, 2015).
Climate warming has intensified the moisture in the atmosphere (Trenberth et al.,
2003; Stephens and L'Ecuyer, 2015). There are extreme precipitation events
(especially in arid to semiarid regions) due to global warming (IPCC, 2007b).
Atmospheric moisture contributes to 70 to 90% of precipitation (Trenberth et al.,
2005; van der Ent et al., 2010). The water vapor in the lower troposphere is a crucial
factor for precipitation and precipitation releases latent heat, which affects the diabatic
heating structure in the troposphere (Kiehl and Trenberth, 1997; Held and Soden,
2000; Trenberth and Stepaniak, 2003). The availability of water is determined by the
amount of precipitations (Krishnamurti and Biswas, 2006; Trenberth and Fasullo,
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2013). Changes in precipitation have impacts on societies, economies and ecosystems
(Hoyos and Webster, 2007; Wang et al., 2012b). The response of precipitation to
global warming is a critical issue in climate science (Voigt and Shaw, 2015). Climate
models robustly project an increase of global-mean precipitation at a rate of 1-3% per
degree warming (IPCC, 2001; Held and Soden, 2006).
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Fig. 12 Annual mean change in temperature for the SREs; indicating the period
2071-2100 relative to the period 1961-1990. The projections based on
atmospheric general circulation models. The global mean annual average
warming of the models is 1.2- 4.5°C for A2 (Gitay et al., 2002).

Chage o icns | wvasn pmcipabon prew £y

=¥ JRM AN Rl R (L] Ifl. ¥ L] i £

Fig. 13 Annual mean change of precipitation for the SRES scenario A2; the
period of 2071-2100 relative to the period 1961-1990. The projections based on
atmospheric general circulation models. (Gitay et al., 2002; fig. 5).
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Fig. 15a-b Importance of mountains as “Water Towers” of the world (Viviroli et al.,
2003; Kohler and Maselli, 2009).

32



,,,,,,,

.QI“"-‘ [T — .
i s e H —, = yirmien
R b+ [ } AR El et ¥ L il
e 1 - N . Ny o i A, T -
] R b Sr el e g — .
. H 8 M LI 1t T St
= ] | |
E%t BN B - T—

X
-.—.I o M HE i
e g |
(38 .- 4 . |

b E L & | &

Sl 2 P S ——

1 . o i dac e
[ i j & . x o) B Har A
L

. LTF BT ST = T

Fig.15¢ Contribution mountain area to total discharge, and size of mountain area as
compared to total basin area for selected rivers world-wide (Viviroli et al., 2003;
Kohler and Maselli, 2009).
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Fig. 16 Accumulated annual snowfall divided by annual runoff over the global land
regions. The value of this dimensionless ratio lies between 0 and 1 and is given by the
colour scale, R. The red lines indicate the regions where streamflow is snowmelt-
dominated, and where there is not adequate reservoir storage capacity to buffer shifts
in the seasonal hydrograph. The black lines indicate additional areas where water
availability is predominantly influenced by snowmelt generated upstream (but runoff
generated within these areas is not snowmelt-dominated). The inset indicates regions
of the globe that have complex topography (Adam et al., 2006; fig.1 Barnett et al.
2005; fig.1).

On a regional scale, the precipitation enhancement occurs worldwide, except for
the two zonal bands (30°S and 30°N; reduced precipitation), with different variability
(Chou and Lan, 2012; Voigt and Shaw, 2015). The annual precipitation enhancement
is mainly associated with larger upward trends of maximum precipitation, smaller
upward trends and downward trends of minimum precipitation (Chou and Lan, 2012).
The dominant mechanism is vertical moisture advection, both on regional and global
scale (Chou and Lan, 2012). The vertical moisture advection and moisture
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convergence induced by vertical motion are influenced by two processes; (i) the
thermodynamic component, which is associated with increased water vapor and (ii)
the dynamic component, which is associated with changes in circulation (Chou and
Lan, 2012). The thermodynamic component enhances the annual precipitation, while
the dynamic component tends to reduce it (Chou and Lan, 2012). Evaporation has a
positive contribution to both maximum and minimum precipitation and a smaller
effect to the annual precipitation (Chou and Lan, 2012). Evaporation and horizontal
moisture advection are important on a regional basis and have a small effect on a
global scale (Chou and Lan, 2012).

The Tibetan Plateau precipitation variability will potentially affect the socio-
economic activities (e.g., food security, safe drinking, agriculture farming), increased
water stress (health of aquatic ecosystems and biodiversity) and more than 2 billion
people in the bordering countries (Fig.17-18) (Yanai et al., 1992; Webster et al., 1998;
Qian et al., 2011). For example, one-quarter of the population of China lives in the
western regions, where glacial melt provides the primary water source during the dry
season (Gao et al., 2012). The climate warming will affect glacial melt and the river
flow regimes due to hydrological extremes (Fig. 17-18) (Haines et al., 1988;
Kattleman, 1989; Liu et al., 2007; Yang et al., 2014a). The glaciers in Himalayans-
Tibetan Plateau region are retreating at a faster rate and predicted to disappear
completely by 2035 (Fig. 17b) (Cruz et al., 2007; Meehl et al., 2007; Nayar, 2009;
Qui, 2010). The warming may cause early melting and rising of floods in winter and
prolong summer drought (Trenberth, 2011; Immerzeel et al., 2013; Manandhar et al.,
2013; Yang et al., 2014a). Local climate warming promotes vegetation growth and
accelerates land degradation by affecting water conditions (increase in
evapotranspiration) (Zhang et al., 1996; Schickhoff, 2000; Du et al., 2004).
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Fig. 17a Climatic variations in the Himalaya-Tibetan Plateau region. The climate
differs between the east and west and between the north and south, with variations
in sources and type of precipitation and in glacier behaviour and dynamics.
Background image from ESRI ArcGlobe 10.0. (Barnet et al., 2006; UNEP, 2012;
fig. 5;).
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Fig. 18 Predicted percentage of glacial melts contributing to basin flows in the
Himalayan-Tibetan Plateau basins. Shape files superimposed on background image
from ESRI ArcGlobe 10.0 (Xu et al., 2008a; UNEP, 2012).

1.3 Quaternary environmental change

The Quaternary Period (Pleistocene and Holocene) is characterised by great
variability in environmental and climate in the Earth history (e.g., continental ice
sheets, sea level and lake level fluctuations) (Bradley, 1985; Dawson, 1992; Mann,
2002; Bell and Walker, 2005; Anderson et al., 2007). The Quaternary period (last 2.6
million years) alternate between the great cold (glacial, stadials) and with relatively
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greater warmth (interglacials, interstadials) due to the differences in mean temperature
(Bowen, 1978; Bradley, 1985; Dawson, 1992; Bell and Walker, 2005).The
Quaternary is subdivision of the geological time which includes the present day
(Bowen, 1978; Karl et al., 1989; Bradley, 1990; Alverson, 2007). The contemporary
surrounding is part of the Little Ice Age (Bowen, 1978; Karl et al., 1989; Bradley,
1990; Alverson, 2007). The modern environment and organism is used as reference to
draw conclusions from ancient ecosystems and its biota. The contempeorary
processes and spatial distributions serve as the basis for the inference about the
prehistorical ecological, geological and climatic shift (Bowen, 1978; Karl et al., 1989;
Bradley, 1990; Alverson, 2007)

The Tibetan Plateau is sensitive to global climate change (e.g., temperature rise)
during Quaternary (Yao and Meixue, 2004; Mischke and Zhang, 2010; Zhu et al.,
2015). High lake-water-levels across in Africa, Arabia and India (monsoon rains over
the Sahara and the Indian subcontinent (between 10,000 and 5000 years B.P., before
present) is evidence strengthen of monsoon climate with subsequent weak monsoons
and glacial maximum at 18,000 years BP (Street and Grove, 1979; An, 2000).
However, the Holocene (wholly recent) environmental and climatic records from
Tibetan Plateau are still inadequate (Zheng et al., 2000a; Liu et al., 2002a; Overpeck
et al., 2005; Herzschuh et al., 2006; Morrill et al., 2006).

Understanding of monsoon variability is critical due to climate change effect on
water resources (Liu et al., 2012; Wang et al., 2012a). Direct measurement of
precipitation (hydrological monitoring) on longer time scale (millennial to decadal) is
lacking (Karl et al., 1989; Lee et al., 2014). Therefore, indirect inference, proxy
archives (ice cores, lake sediments, biological organism) are often used to assess past
natural variability of monsoon (hydrology), aquatic ecosystems, environment and
climate dynamics on Tibetan Plateau (Mischke et al., 2008b; Gornitz, 2009).
Palaeoclimate records (ice cores and lake sediment and ostracods) showed significant
climate fluctuations over the Tibetan Plateau during the Late Glacial and Holocene
period (Thompson et al., 1997; Yao and Meixue, 2004; Jin et al., 2011; Bird et al.,
2014). The majority of Holocene environmental evolution is reconstructed from lake
records in the northeastern and western Tibetan Plateau (Gasse et al., 1991; Lister et
al., 1991; Li et al., 1994; Gasse et al., 1996). There are few palaeo-records from
southern Tibetan Plateau (Mischke and Herzschuh, 2003; Guo et al., 2013; Ma et al.,
2014b). The reconstruction environmental and climate history is significance to
understanding past climate events, recent climate change and forecasting future
climate variations (Karl et al., 1989; Bradley, 1990).

The Quaternary environment is characterised by cold climate in the early to middle
glacial period with increased precipitation and cold dry climate in late period (Gu et
al., 1993; Rost, 2000; Mann, 2002; Mischke and Zhang, 2010). During the last
glaciations, maximum advancement of small glaciers occurs at relatively humid and
cold period between ca. 32 and 23 ka (Derbyshire, 1996; Rost, 2000; Larocque-Tobler
et al., 2010). The dry cold stage between ca. 23 and 13 ka is characterised by slower
glacial advancement (Derbyshire, 1996; Rost, 2000; Larocque-Tobler et al., 2010).
The Quaternary environment is primarily characterised two phases; first, glacial
period, cold dry winter monsoon climate and second interglacial period, a warmer
and more humid climate (Derbyshire, 1996; Rost, 2000; Larocque-Tobler et al.,
2010). The past monsoon dynamics is reconstructed from palaeohydrology,
periglacial dynamics, dust flux and soil formation and sedimentations (e.g., lake
sediments, alluvial terraces and palaeco-shorelines) (Derbyshire, 1996; Larocque-
Tobler et al., 2010).




There was a strong abrupt rainfall change in China and India during the Holocene
and last glacial period (Gasse and Derbyshire, 1996; Owen et al., 2005; Levermann et
al., 2009; Amidon et al., 2013). The last interglacial is associated with an increase of
precipitation throughout Asia (Owen et al., 2005; Amidon et al., 2013). Marine
Isotopic Stage 4 provides no evidence whatsoever of humid conditions. Two wetter
episodes occurred during Stage 3. A major rainfall decrease everywhere is associated
with the Last Glacial Maximum (21-15 ka in most regions), the arid or semi-arid
zones extending several hundred kilometers southwards, relative to the present-day
pattern (Owen et al., 2005; Amidon et al., 2013). The two abrupt deglaciations and the
Younger Dryas are recorded in all of the most sensitive regions, at the margins of the
present-day monsoonal range in Asia. During the Holocene, the precipitation
increased everywhere (by 100-400 mm, relative to the present-day values), the
optimum at 8.5-6.5 ka (Yan and Petit-Maire, 1994). A climatic deterioration indicates
an irregular pattern of dry/wet episodes due to different geographic conditions. The
humid phase terminated at 3.5-3 ka in the whole transitional zone (Yan and Petit-
Maire, 1994). Temperature rise rapidly and gradually fall during the last inter-glacial
period. (Thompson, 1992; Herzschuh et al, 2011; Yao et al., 2012b). The
environmental and climatic change is also linked to early Holocene insolation
maximum in low latitudes of the northern hemisphere and the strengthening of
monsoons (Berger and Loutre, 1991). Nonetheless, there spatial heterogeneous in
Holocene climate evolution on the Tibetan Plateau (Zheng et al., 2000a; Wu et al.,
2006; Mischke et al., 2008b; Zhao et al., 2011).

Temperature had been rising gradually in the last 2000 years and sharp rise in
recent decades causing a warm late Holocene (Thompson et al., 2000; Thompson et
al., 2006; Wang et al., 2007). There are different time scales of climate change on the
Tibetan Plateau (Davis and Thompson, 2004; Bird et al., 2014). There are also spatial
differences and regional heterogeneity in monsoon dynamics in the Tibetan Plateau
during the Late Glacial and Holocene (Owen et al., 2005; Mischke and Zhang, 2010;
Amidon et al., 2013; Ma et al., 2014a). The inconsistencies may be due to spatial
(local) and region differences in geomorphology of study sites (e.g., type of basin,
geophysical features and hydrologic sensitivity), monsoons circulations and analytical
techniques employed (e.g., number of cores, types of evidence and type of dating)
(Duan et al., 2012; Mischke, 2012; Yang et al., 2014a; Mischke et al., 2015).

1.3.1 Environmental Reconstruction: lake system and its biota

Quaternary environmental change can be reconstructed with surface fresh water
indicators (e.g., lake sediments, freshwater shells, ostracods, pollens and diatoms
(Larocque-Tobler et al., 2010; Moss, 2010; Lowe et al., 2014). There more than 300
lakes with surface areas greater than 10 km?’ on the Tibetan Plateau (Yu et al., 2001a).
Lake evolution is significance in the study of global environmental change (Zhu et al.
2004). Lake is an inland body of water (Smol, 2002). Modern lakes are often reffered
as “indland seas” (Smol, 2002). Lake response to climatic forcing through physical,
chemical and biological effects is recorded within the system (Talbot and Allen, 1996;
Anderson et al., 2007; Gary, 2009).

The area of a closed basin lake represents equilibrium between runoff from the
catchment and the water deficit over the lake surface (Street-Perrott and Harrison,
1985; Lodge, 2001). Closed lakes are indicators of hydrological changes (Chen et al.
2008). The expansion and shrinkage of closed lakes are a natural response to
punctuations in precipitation and evaporation, linked closely to changes in strength
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and position of atmospheric circulation (Chen et al., 2008). In closed lake basins,
especially in sub-humid to semi-arid regions, the volume and chemistry of lake water
are sensitive to the ratio of precipitation to evaporation over the catchment, which is,
in turn, closely coupled to climate (Smith, 1992; Gary, 2009). In open lake basins, the
water balance is complicated by contributions from surface and subsurface inflows
and outflows (Gary, 2009). Nonetheless, this depends on the hydrology of a lake.
Closed basin lakes may only preserve low-frequency changes depending on the
residence time, whereas open lakes may show high-frequency changes but with small
amplitude so difficult to decipher (Emi Ito personal communication).

Lake sediments preserve physical, chemical and biological information for
reconstruction of past aquatic environments (Smol et al., 2001; Fritz, 2003;
Williamson et al., 2009; Juggins and Birks, 2012). Lake sediments also record other
types of environmental information such as catchment disturbance and nutrient status
(Talbot _and Allen, 1996). Variations in these characteristics may be climatically
controlled and related to human activity (Holmes, 1992). Lake sediments are natural
archives for reconstruction of past environmental and climate impacts (Talbot and
Allen, 1996; Lodge, 2001; Schindler, 2009). Lakes provide continuous and long
records of sediment accumulation over time (Last et al., 2001). Lake sediments are
particularly suited for climate reconstruction as both high (decades to centuries) and
low-frequency (thousands of years) climate variability components are preserved in
the sediments (Talbot and Allen, 1996; Lodge, 2001; Schindler, 2009).

All biological species occur in a given habitat with limited range of environmental
factors and are most abundant with particular environmental optimum (Walter and
Hengeveld, 2014). Therefore, a change in compositions of biological communities is
influenced by a change in environmental variables (Walter and Hengeveld, 2014).
Fauna successive (species replacement) is due to variation in the environments and
time (ter braak and Prentice 1988). Biostratigraphic units is characterised by one or
more fossil species, which described specific depositional environment. Quantitative
reconstruction is expressed by the value of an environmental variable as a function of
biological proxy data (e.g., ostracod assemblages) (Birks, 2003). The proxy data are
expressed as quantitative counts (percentages, or proportions, estimate of relative
abundance and presence and absence) (Birks, 1998; Birks, 2003). Qualitative studies
involve indicator fauna and different biological indices (diversity) (Birks, 2003).
Species specific abundances change with change in environment. Species abundance
is influenced by more than one environmental variable (Birks, 2003).

Understanding lake system and their organisms response is critical to
understanding of ecosystem dynamics, policy formulation, water resources
management and biodiversity conservation in the face of climate change (Haigh,
1989; Vorosmarty et al., 2000; von Storch, 2009; Grafton et al., 2013).

1.3.2. Tangra Yumco

Tangra Yumco (86°23'-86°49'E, 30°45'-31°22'N and average elevation of 4600
m a.s.l) is one of the three largest saline ancient lakes on the southern Tibetan Plateau
(Fig. 19a-c). It is situated about 100 km east of Zhari Nam Co and about 450 km
northwest of Lhasa in the Tibet Autonomous Region of China, Nima County (Fig.
19a-c) (Long et al., 2012).

Tangra Yumco is a holy lake with surface area of 836 km® and a catchment of
~8220 km?. It is 70 km in length, 20 km in width and with a maximum depth of 214.8
m (Wang et al., 2010b). The lake is an elongated S-shape with two separate parts




(northern part, ~220 m is much deeper than the southern, ~100 m) (Wang et al.,
2010b). Its maximum extension is ~70 km in north-south direction and ~19 km in
west-east direction. The lake has a salinity of 8.2%o (specific conductivity of 10.6
mS/cm) and pH of 9.6.

Ancient large lakes provide continuous records for the Late Quaternary
environmental and climate change (Fig. 19a-c) (Martens, 1994; Zhu et al., 2004;
Zhang et al., 2007; Barker, 2009; Giinther et al., 2015). Tangra Yumco lake
undergoes the strongest Quaternary lake level changes on the Tibetan Plateau (Fig.
19a-b) (Miehe et al., 2011; Miehe et al., 2014). The high palaco-shorelines, high-stand
(e.g., 181-183 m) and massive sedimentary carbonate in the catchment of Tangra
Yumco is an indicative of ancient high water events in geological history (Kong et al.,
2011b; Mobius, 2011; Long et al., 2012; Rades et al., 2013b; Ahlborn et al., 2015b).
The northern catchment of Tangra Yumco is characterised by fossil freshwater
stromatolites, indicating high carbonate precipitation in the early Holocene (Peter
Frenzel personal communication). The high lake recessional terrace occurs at 4, 700
m a.s.] (by lake sediment and peat records at 160 m above present) during the
Pleistocene and Holocene transition (10.1 — 7.6 cal ka B.P.) (Long et al., 2012; Rades
et al., 2013b; Miehe et al., 2014; Ahlborn et al., 2015b). However, a deep lake system
exist in 11.0- 11.5 cal ka B.P. at 4, 720 m a.s.] (by lake sediment and ostracods
records at 180 m above present) with a gradual decrease after the early Holocene
maximum (Rades et al., 2013b; Miehe et al., 2014; Ahlborn et al., 2015b).

The cold Artemisia steppe climate of Tangra Yumco is chiefly influenced by
oceanic India Summer Monsoon, with annual precipitation 500- 600 mm (Miehe et
al., 2011; Miehe et al., 2014). (Mischke et al., 2008b). Tangra Yumco is is situation at
interaction of three climatic systems, with a major influenced by the India Summer
Monsoon (Liu et al., 2007). The Westerly have a minor influence during the winter
season. Tangra Yumco has been selected to complete (palaco)-environmental and
climate records (south transect; East to West) on the southern Tibetan Plateau.
Palacoenvironmental  reconstructions  using  multi-proxies  (sedimentology,
geochemistry and micropaleontology) will help to decipher Late Quaternary
environmental and climate variability in Tangra Yumco.
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Fig. 19a Quaternary monsoon dynamics (Indian Ocean Summer monsoon and the
Westerlies) at Tangra Yumco on the southern Tibetan Plateau. (Modified; Giither et
al., 2015).
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Fig. 19b-c. A Climatic variation (change in glaciers) on Himalayas-Tibetan Plateau
and insert, location of Tangra Yumco: Zone 1 — Mainly in Afghanistan, this area has
relatively stable or very slowly retreating glaciers; Zone 2 — The Northwestern
Himalayas including the Karakoram have highly varied glacier behaviour, with many
surge glaciers, many advancing, stable, and retreating snouts and comparatively few
large lakes. Glaciers in the Pamir Mountains of Tajikistan are generally retreating
while further south, behaviour of the Karakoram glaciers is mixed, but lacking
wholesale, rapid disintegration of glacier tongues and rampant lake growth; Zone 3 —
Chiefly in India, southwestern Tibet and western Nepal, this area has mainly
stagnating, retreating snouts and time variability with periods of slower retreat for
some glaciers during parts of the 20th and 21st centuries. There are fewer lakes than
in the eastern Himalayas, but large lakes may be a growing phenomenon as glaciers
thin and tend to stagnate and Zone 4 — Primarily Nepal, Bhutan, Sikkim and
southeastern Tibet, this area has many large glacier lakes, especially since the 1960s.
Many glaciers are rapidly disintegrating as they stagnate and thin. Glaciers on the
south side generally have more debris cover than they do on the north side Image
from NASA Blue Marble and MODIS data (UNEP, 2012).



1.4 PhD Framework

1.4.1 The Framework of the DFG Priority Program 1372: TiP Tibetan
Plateau: Formation — Climate — Ecosystems

This PhD thesis is formulated within joint research “Lake systems response to
Late Quaternary monsoon dynamics on the Tibetan Plateau”. This is part the
German Research Foundation, thus “Deutschen Forschungsgemeinschaft (DFG)”,
Priority Programme 1372; “Tibetan Plateau: Formation — Climate — Ecosystems
(TiP)” in cooperation with the Institute of Tibetan Plateau Research, Chinese
Academy of Sciences. The goal is to evaluate the monsoon climatic history,
environmental evolution (past, present and future) and anthropogenic impact on the
sensitive ecosystems of the Tibetan Plateau (Fig. 20) (http:/www.tip.uni-
tuebingen.de/index.php/de). The key schematics of TiP are in three scales:

[.  Plateau formation and climate impact on the ecosystems during the last
millions to several tens of millions of years (ca.70 millions years).

II. Late Cenozoic climate evolution and environmental response to monsoon
dynamics during the last hundreds of thousands years (decadal to
centennial resolution).

III.  Human impact and global change on ecosystems dynamics (present, past

ca.8000 years, and future perspectives).

Fig. 20 Logos of the TiP Priority Project with focus on the interlinked arid-
environment processes; Plateau Formation — Climate evolution — Human
impact and their driving forces on ecosystems.

1.4.2 Thesis outline

The primary objective is to investigate ostracods (tiny aquatic arthropods) as
potential biological indicators for environmental reconstructions and environmental
monitoring of aquatic ecosystems (e.g., lake evolution and monsoon dynamics) on the
southern Tibetan Plateau.
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1.4.3 Specific objectives are to:

Assess Recent ostracod ecology in Tangra Yumco and adjacent aquatic
ecosystems.

Calibrate the valve chemistry of Recent Ostracoda from the southern Tibetan
Plateau.

Evaluate ostracods as bioindicators of subaqueous sediment gravity flows in
Tangra Yumco.

Investigate the Late-Quaternary environment and climate history in Tangra
Yumco: Sedimentary and Ostracoda perspective.

1.4.4 Thesis structure

This PhD thesis is structured as:

Chapter 2 explores the spatial distribution and auto-ecology of Recent
Ostracoda from Tangra Yumco and adjacent aquatic habitats (in press in
Limnologica).

Chapter 3 evaluates the geochemistry of Recent Ostracods shells from
southern Tibetan lakes (resubmitted, Hydrobiologia).

Chapter 4 describes the potential of Ostracoda as indicators of subaqueous
mass transport  (publication, Palacogeography, Palaeoclimatology,
Palaeoecology, 419, 60-74).

Chapter 5 focuses on multi-discipline (sedimentology, geochemistry and
micropaleontology) reconstruction of Late Holocene palacoenvironmental and
climate dynamics in Tangra Yumco (submitted to Quaternary Research,
December 2015).

Chapter 6 syntheses of previous chapters (ostracods as environmental
indicators of aquatic ecosystem and monsoon dynamics). A new dimension of
auto-ecology and (palaco)-ecology as a great biological tool for interpreting
lacustrine environment and climatec change. Finally, highlights on the future
outlook of (palaco)-environmental and climate research. This contributes to
understanding of mountain aquatic ecosystems and their microbenthic
organisms (e.g., ostracods) and the need for long—term ecological monitoring
due to climate change.

Appendix (I-V) is numerical data about bio-chemical and physical factors of the
mountain aquatic ecosystems investigated. Numerical data (in tables) coordinates and
environmental factors of waterbodies (lakes, rivers, ponds, and springs), living, dead
(empty shells) and total association of ostracods, are presented.
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Chapter 2

2.0 Abstract

We elucidate the ecology of Recent Ostracoda from a deep brackish lake, Tangra
Yumco (30°45" - 31°22'N and 86°23' - 86°49'E, 4595 m a.s.l.) and adjacent waters on
the southern Tibetan Plateau. Ostracod associations (living and empty valves) in
sixty-six sediment samples collected from diverse aquatic habitats (lakes, estuary-like
water and lagoon-like water waters, rivers, ponds and springs) were quantitatively
assessed. Eleven Recent Ostracoda were found (nine living and two as empty valves
only).

Cluster analysis established two significant (p<0.05) habitat specific associations;
(1) Leucocytherella sinensis, Limnocythere inopinata, Leucocythere? dorsotuberosa,
Fabaeformiscandona gyirongensis and Candona xizangensis are lacustrine fauna. (ii)
Tonnacypris  gyirongensis, Candona candida, Ilyocypris sp., Heterocypris
incongruens and Heterocypris salina are temporary water species.

Ostracod distribution and abundance are significantly (p<0.05) correlated to
physico-chemical variables. The first two axes of a canonical correspondence analysis
(CCA) explain 30.9 % of the variation in the species abundance data. Conductivity
and habitat types are the most influential ecological factors explaining the presence
and abundance of ostracods. Spearman correlation analysis reveals that: (1) Two
species, L.? dorsotuberosa (r = 0.25) and L. inopinata (r = 0.36) have a significant
positive correlation with conductivity while one species, 7. gyirongensis (r = -0.68)
displays a significant negative correlation with conductivity. Limnocythere inopinata
correlates significantly positive (r = 0.37) with alkalinity. Fabaeformiscandona
gyirongensis correlates significantly positive (r = 0.28) with water depth.

Key indicator living assemblages are: (i) L. sinensis dominates Ca-depleted
brackish waters although ubiquitously distributed; (ii) L.? dorsotuberosa dwells in
fresh to brackish waters; (iii) L. inopinata predominates in mesohaline to polyhaline
waters; (iv) F. gyirongensis inhabits exclusively brackishlacustrine deeper waters; (v)
C. candida populates freshwaters; (vi) T. gyirongensis and Ilyocypris sp. are restricted
to shallow temporary waters; (vii) H. incongruens occurs in ponds. Water depth
indicators are F. gyirongensis and L.? dorsotuberosa, useful ostracod assemblages for
palaco-water depth reconstruction.

Our results expand the knowledge of the ecological significance of Recent Tibetan
Ostracoda ecology. This is a new insight on habitat chacteristics of both living
assemblages and sub-Recent associations of ostracods in mountain aquatic
ecosystems. The new modern ostracod dataset can be used for the quantitative
reconstruction of past environmental variables (e.g., conductivity) and types of water
environment. The key indicator ostracods are relevant in palaeolimnological and
climate research on the Tibetan Plateau.
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2.1 Introduction

Ostracods (also known as seed shrimps, size range ca. 0.4 — 3 mm) are a class of
bivalved aquatic Crustacea that secrete a calcitic shell (carapace) and easily fossilise
(Griffiths and Holmes, 2000). They are commonly found in diverse aquatic habitats,
including lakes, ponds, streams, rivers, estuaries, oceans and semi-terrestrial
environments (Danielopol, 1989; Horne et al., 2002; Smith and Delorme, 2010).
Ostracoda are widely used as proxies in palacoclimatic reconstruction of marine and
non-marine environments because of their small size, ecological sensitivity, shell
chemistry signature, long stratigraphic range (Ordovician — present) and occurrence in
sediments from lakes, estuaries, bays and oceans etc. (Griffiths and Holmes, 2000).
Ostracods are palaco-indicators of temperature, water depth, substrate type,
permanence of water body and ionic concentration (salinity/conductivity) (De
Deckker et al., 1979; Frenzel and Boomer, 2005; Mischke and Wiinnemann, 2006;
Horne, 2007; Mischke et al., 2007a; Frenzel et al., 2010a). The species-specific
tolerance and optimum ecological requirements reflect spatial and temporal
distribution of environmental parameters (Kiilkdyliioglu and Dugel, 2004; Diigel et
al., 2008). Knowledge on the ecology of living fauna will enhance the reconstruction
of environmental and climatic variables (Eagar, 1999; Holmes and Chivas, 2002).

Ostracods are one of the important biological proxies used in palacoenvironmental
reconstruction on the Tibetan Plateau (Mischke, 2012). Knowledge on the ecology of
living ostracods from high altitudes (>3000 m a.s.l.) is mostly limited to regions such
as Western Europe and United States of America (Delachaux, 1928; Laprida et al.,
2006; Kiilkoyliioglu and Sari, 2012; Pinto, 2013) The ecology of Quaternary and
living ostracods from continental Asia is still largely unknown (Zhang, 2000; Van der
Meeren et al., 2010). This is due to higher altitude, complex terrain, inaccessibility of
the aquatic ecosystems (e.g., lakes) and insufficient investigation on micro-
crustaceans from the region (Zhang, 2000; Long et al., 2012; Zhai and Zha, 2014).
Literature on taxonomy and ecology of Tibetan ostracods is mostly published in
Chinese language, making it largely inaccessible to the international scientific
community (e.g., Huang, 1964, 1982; Huang et al., 1985a). Furthermore, habitat
characteristics of non-marine ostracods from the Tibetan Plateau are mostly inferred
from Sub-Recent ostracods (Huang et al., 1985b: Mischke et al., 2005: Wrozyna et
al., 2009a; Wrozyna et al., 2009b; Zhang et al., 2013). Hence, knowledge on modern
ecology and habitats of Recent fauna is urgently needed.

The primary objective of the present study is to investigate the Recent Ostracoda in
Tangra Yumco and adjacent waters (smaller lakes, estuary-like water, lagoon-like
water, rivers, ponds and springs). This is achieved by assessment of species
distribution, composition, abundance and the importance of physico-chemical
variables. Related objectives are to: (i) characterise habitats and their typical
associations; (ii) rank the influence of physico-chemical variables on ostracod
distribution and abundance and (ii) to evaluate water depth distribution of species in
the deep brackish lake Tangra Yumco. We hypothesised that species abundance is
dependent on physico-chemical variables. Our results revealed that environmental
factors (conductivity and habitat types) influenced the spatial distribution and
abundance of living ostracods. The ecology of Recent Ostracoda is significant in
palaeoenvironmental reconstruction on the Tibetan Plateau.




2.2 Study area

The Tibetan Plateau is surrounded by the Himalayas to the south, the Karakoram
Range and the Pamirs to the west, the Hengduan Mountains to the east and the
Kunlun and Qilian Mountains to the north (Lehmkuhl and Owen, 2005; Yao et al.,
2012). The uplift of the Tibetan Plateau influences the East Asian and Indian summer
monsoon systems. This causes a cold dry winter and heavy rainfall during summer
(Anet al., 2001; Abe et al., 2013).

There are more than 300 lakes with surface areas greater than 10 km” on the
Tibetan Plateau (average altitude of 4500 m.a.s.l.) (Zheng, 1997; Wang and Dou,
1998; Yu et al., 2001; Ma et al., 2011). A majority of lakes is distributed in the
central-western section of the Tibetan Plateau. The lakes occur in tectonic depressions
caused by west-east and north-south trending faults (Meyer et al., 1998; Mitsuishi et
al., 2012). The 300 km long and 40 km wide graben containing the lakes Tangqung
Co, Tangra Yumco, Monco Bunnyi, and Xuru Co is termed as Tangra Yumco lake
system (Fig. 2.1a). It is induced by a north-south trending rift and normal faults
cutting through the western part of the Lhasa block on the south-central Tibetan
Plateau and northern slope of Gangdise Mountains (Zheng, 1997; Gao et al., 2007;
Kong et al., 2011). These continental Tibetan lakes have characteristic limnological
features (e.g., hypersaline to oligohaline waters, Tab. 2.1). Tangqung Co, Tangra
Yumco, Monco Bunnyi, and Xuru Co belonged to a large ancient lake during the
Quaternary period (Zheng, 1997; Zhang, 2000). The large lake gradually
disaggregated into independent smaller lakes during the early and late Holocene due
to an extensive drop of water level (Zheng, 1997; Zhang, 2000; Zhu et al., 2004; Liu
et al., 2013).

The Tangra Yumco lake system lies in a unique climatic transition between the
central and western Tibetan Plateau controlled by the Indian Monsoon. The rainfall on
the Tibetan Plateau is highest in the monsoon summer month of July and total annual
precipitation (~60%) falls between May and October (Singh and Nakamura, 2009;
Guo et al., 2014; Maussion et al., 2014). Mean annual precipitation for the Tangra
Yumco lake system ranges from 298 to 316 mm/year (Tab. 2.1) (Hudson and Quade,
2013). The mean annual temperature ranges from 0 to 5°C in the central and southern
part of the Tibetan Plateau (Conroy and Overpeck, 2011). Monco Bunnyi, Tangra
Yumco, and Xuru Co do not freeze up completely in some years (Kropacek et al.,
2013).

The Tangra Yumco lake system is surrounded by temporary shallow water bodies
such as estuary-like water mixing zones of both fresh and brackish waters with highly
unstable hydrological conditions, lagoon-like water shallow isolated brackish water
bodies separated from the lakes by sand or gravel bars, rivers, ponds and springs.
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Tab. 2.1 Limnological characteristics of Tangqung Co, Tangra Yumco,
Monco Bunnyi and Xuru Co. NA = no data available.

Tangqung Tangra Monco Xuru Co
Co Yumco Bunnyi

Latitude [°N] 31°31'-31°  30°45'-31° 30° 67 30°10'-31°
37 22’ 36
Longitude [°E] 86°41'-86°  86°23'-86° 86° 22’ 86° 15'-
48’ 49 86°29’
Altitude [m a.s.l] 4475 4550 4689 4720
Catchment [km®] 861 8220 886 1913
Lake surface area 57 818 144 206
[km”]
Maximum depth NA 230 NA 210°
[m]
Conductivity [mS 144.8 12.41 3.9 4.0
em™]
Salinity 105.0 8.9 2.8 2.9
Mean annual
precipitation 298 305 316 NA
[mm/yr]
Lake type hypersaline mesohaline  oligohaline  oligohaline

Tangra Yumco (30°45" — 31°22'N and 86°23" — 86°49'E, elevation of 4595 m
above sea level, a.s.l) lies about 100 km east of Zhari Nam Co and about 450 km
northwest of Lhasa (Fig. 2.1). Tangra Yumco is also called Lake Dangra, Dangra
Yumtsho, Dangra gyumtsho, Dang-ra rgyal-mo, and Ocean Turquoise Lake. The holy
lake is situated at the prime centre of the Ancient Zhang Zhung Kingdom, 150 km
from Nima County (Bellezza, 1997). It is a closed lake with a surface area of 818
km’, a drainage area of 8219 km? length of 71.70 km and mean width of 11.65 km
(maximum, 19.40 km) (Long et al., 2012). Tangra Yumco is the third-largest lake on
the south-central Tibetan Plateau and the second-deepest lake in China (Wang et al.,
2010). It stretches from north-east to south-west, forming an elongated S-shape (two
parts joined by a narrow strip). The northern basin (~230 m) is much deeper than the
southern basin (~100 m).
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Fig. 2.1 Location of samples (year of sampling and sample number; e.g., 12 1)

Moderately glacial fed rivers and streams originating from the west and the south
drain into Tangra Yumco (Long et al., 2012). The lake water is recharged primarily
by precipitation and rivers such as Daguo Tsangpo, Buzhai Tsangpo, and Mainongqu
(Shao et al., 2008). The thermocline of Tangra Yumco is situated between 20 and 30
m water depth (Wang et al., 2010). The lowest temperature measured within the
hypolimnion was 1.6°C (Wang et al., 2010). The cold semi-arid climate supports
alpine steppe vegetation (e.g., Kobresia pygmaea and Artemisia) (Shao et al., 2008;
Miehe et al., 2014).Remnant palaeo-shoreline and lake terraces are located about 200
m above the present day lake level of Tangra Yumco (Rades et al., 2013), indicating a
Holocene shrinkage of a large ancient lake (Liu et al., 2013; Long et al., 2012). Beach
rocks, formed by the precipitation of secondary carbonates, and ancient shorelines are
common features within the catchments of Tangra Yumco and Tangqung Co.
Holocene stromatolites and tufa can be found in the north of Tangqung Co.
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2.3 Materials and methods

2.3.1 Physico-chemical measurements and sediment sampling

The coordinates of the random sampling (altitudes, 4510 — 5091 m above sea level)
were obtained using Global Positioning System (Garmin GPS, WGS 84) (see
GoogleEarth file, electronic attachment). The samples have been geoarchived at
System for Earth Sample Registration (SESAR; www.geosamples.org). A sample can
be identified using  International Geo  Sample  Number (IGSN)
(http://www.geosamples.org/search_by?group id=80). Sampling sites represent a
variety of aquatic habitats: (i) permanent waters: four lakes — Tangqung Co, Tangra
Yumco (major), Monco Bunnyi, and Xuru Co, and (ii) temporary waters (estuary-like
water, lagoon-like water, rivers, ponds and springs) connected to the lakes (Fig. 2.1).
Sampling was carried out in September 2009, 2010 and 2011 and additionally in June
2012, covering a total land surface area of approximately 165 x 40 km.

Physico-chemical variables (conductivity, water temperature, pH, dissolved
oxygen concentration) were measured in situ using a WI'W Multi 340i probe. Water-
depth (<50 cm) was estimated for shallow aquatic habitats while measured for lake
systems using an echo sounder. Salinity was computed from measured specific
conductivity by a conversion factor of 0.725 (Holting, 1992). The alkalinity was
determined from a 100 ml aliquot by titration with 0.1 N HCI to pH 4.5 endpoint
using the field kit Macherey-Nagel visocolor HE Alkalinity AL7 test. The titrated
alkalinity of water refers to the total concentration of bases expressed as
milliequivalents per liter, where meq/l is 1/50 times mg/L equivalent calcium
carbonate (CaCOs3) (Maiti, 2001; Snoeyink and Jenkins, 1980). Bio-Environmental
data are archived in the EarthChem Library (http:/www.earthchem.org/library

and http://dx.doi.org/10.1594/IEDA/100482).

Water samples (500 ml each) were collected using a Niskin Bottle Sampler (KC
60.050) for chemical analyses. Water samples were filtered through a 0.45 um pore
size Whatman GF/C glass microfiber filter and stored in double capped glass bottles.
Filtered water (250 ml per sample) for cation determination was acidified (e.g., nitric
acid, HNO3) (Crompton, 2002), but not acidified for anion measurements and
prepared by standard methods (Greenberg et al., 1985:; Clesceri et al., 1998). The
cation concentrations (Ca**, Mg*", Na" and K") were determined quantitatively using
Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES) (Boss and
Fredeen, 1997. Morishige and Kimura, 2008). The anions (CI, SO427) were
determined using High Performance Liquid Chromatography (HPLC) (Hou and
Jones, 2000). The elemental ionic concentrations (mg/l) were converted to meq/l. The
ionic concentration was analysed at Technical University of Braunschweig, Germany.

Sediment samples (uppermost 1 —2 cm depth) were collected using a Birge-Ekman
box-corer (extraction area 15 cm x 15 cm) operated from a small boat on the lakes
(Ekman, 1905: Blomgqvist, 1990). A hand net (100 pm mesh size) was used in
sampling temporary water bodies. Macroflora and meiofauna with associated habitat
characteristics were documented. In the field, living ostracods were separated from
sediment using an exhauster and then preserved in ethanol (Viehberg, 2002).
Sediment samples were immediately preserved in 70 % ethanol for further laboratory
processing.



http://www.earthchem.org/library
http://dx.doi.org/10.1594/IEDA/100482

2.3.2 Laboratory processing of sediment and meiofauna analysis

The sediment samples were washed with tap water and filtered through standard-
size sieves (200 um and 500 um) (Griffiths and Holmes, 2000). The sieve residues
were transferred to petri dishes using 99 % ethanol. Living adult ostracods (carapace
with well-preserved soft parts) were picked from the wet residues, identified and
preserved in 70 % ethanol for future taxonomical description of soft body parts. The
residues were dried at room temperature. The empty valves (carapace = two valves)
were extracted from the dried residues by hand-picking under a binocular microscope
using a wetted fine brush.

All ostracod valves below 300 were counted. However, ostracod rich samples
(>500 valves) were sub-sampled using a micro-splitter (Danielopol and Casale, 1988).
[£>500 valves were present, a minimum of 300 were counted.

Since the different habitats (lake, estuary-like water, lagoon-like water, rivers,
ponds and springs) were not sampled equally due to heterogeneity among individual
habitats, the number of samples from each single habitat type was taken as a common
base for comparing the presence-absence data (occupancy of a species at a specific
habitat) (Delorme, 1990). We calculated the preference index (PI) (adapted from
Delorme, 1990) to determine species-specific habitat preferences as follows:

Species X occurrence probability at a particular habitat (C;j) =B;/ A; (1)

Preference Index (PI) [%]=Cix 100 /D (2)

Where A;= sum of samples (sites) collected for a particular habitat;

Bi= number of samples with species X occurring within a particular habitat;

D = sum of species X occurrence probability for each of the habitats (C; + C;; + Ciji
...+ C,) (common base).

The preferences index (PI) is calculated for each species for the living fauna and
empty valves collected for a particular habitat.

If PI = 100 %, then the species is present in one habitat only and is missing in
other habitats sampled. Higher PI values indicate habitats preferred by species X in
contrast to other habitat types (the best ecological niche).

Taxonomic identification is based on morphological characteristics of hard and soft
parts. Taxonomic descriptions of Tibetan ostracods (Huang, 1982: Hou et al., 2002;
Hou and Gou, 2007: Wrozyna et al., 2009b; Yu et al., 2009) and other freshwater
ostracod faunas were used for identification (Karanovic, 2012). Adult living ostracods
(few individuals) were mounted in Hydro-Matrix with a cover slip to avoid crushing.
Adult specimens were dissected using fine entomological needles and observed under
a binocular microscope x 300 with transmitted light. Empty valves and carapaces
were photographed using light microscopy and Scanning Electron Microscopy at the
Institute of Geosciences and the Institute of Zoology, Friedrich Schiller University
Jena, Germany.

The Tibetan ostracod material can be accessed as of 2016 at the Nanjing Museum
of Palaeontology, China.

2.3.3 Data analysis

To identify both relations between ostracod communities and the diverse sampled
habitats, cluster analyses were performed. To construct similarity dendrograms of
ostracod assemblages, the hierarchical agglomerative clustering method was
employed. Group linkage was performed on a Bray-Curtis similarity for both
presence-absence (Serenson Coefficient) and log-transformed [In (x+1)] abundance
data (Bray and Curtis, 1957; Clarke et al., 2006; Bellier et al., 2012). We use ostracod
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assemblages with more than fifty valves for the analyses. A SIMPROF test (o = 0.05;
999 permutations) was also performed to distinguish significant groups (similar
associations) in the cluster (Ernst, 2004; Clarke et al., 2008; Somerfield and Clarke,
2013). Characteristic ostracod biotopes were classified by clustering of samples based
on Euclidean distance (Legendre and Legendre, 1998). The Shannon diversity index
(H”) was calculated for each sample collected from the various aquatic habitats
(Spellerberg and Fedor, 2003; Magurran, 2004). Statistical analyses were carried out
using PAST and PRIMER 6 software (Hammer et al., 2001; Clarke and Gorley,
2006).

The Spearman rank correlation analysis was used to evaluate relationships among
physico-chemical variables, among living ostracod communities and between
ostracods and physico-chemical variables using SPSS version 16.0 (Leech et al
2011; Somerfield and Clarke, 2013). We used the presence-absence data (eight living
species) in relation to environmental factors (six physico-chemical variables and
water ionic concentrations). Environmental variables were log;o transformed.

To investigate further, the relationship between living ostracods (log-transformed
abundance) and six physico-chemical variables (water depth, conductivity, water
temperature, pH, dissolved oxygen concentration, alkalinity), multivariate ordination,
canonical correspondence analysis (CCA) was performed (ter Braak and Verdonschot,
1995; Smilauer and Leps, 2014). Interactive selective forward selection detected a
subset of physico-chemical variables which best explain the faunal matrix. A Monte-
Carlo permutation test (a = 0.05; 999 permutations) was used to test the effects of
each physico-chemical variable on the explanation of total variation in living ostracod
abundance data. A generalized linear model (GLM) (Quadratic model option, Poisson
distributions) was used to test and display the response of ostracod abundance with
the most significant environmental predictor. This was performed using Canoco
software version 5.03 (Smilauer and Leps. 2014).

2.4 Results

2.4.1 Physico-chemical variables and habitat characteristics

Sixty-six samples were collected from Tangra Yumco and adjacent waters
(Appendix A). Sample metadata profiles (coordinates, physico-chemical variables and
habitat  characteristics of each  sample) can be  accessed at
http://app.geosamples.org/sample display.php?igsn=IETIP0001. The investigated
lakes displayed a wide range in conductivity (salinity) (Tab. 2.1): Tangqung Co —
hyperhaline; Tangra Yumco — mesohaline; Monco Bunnyi and Xuru Co — oligohaline.
The lakes are Ca®" depleted with high alkalinity. The seven major lake water ionic
concentrations are potassium (K'), bicarbonate (HCOs'), chlorine (CI), sulphate
(SO4>-), magnesium (Mg2+), sodium ( Na") and calcium (Ca®") (orders of decreasing
mean concentrations (Tab. 2.2 and 2.3), thus HCO; - alkalinity). Secchi depths were
measured at 9.5 m (September 2009) and 3.9 m (September 2011) for Tangra Yumco
and 14 m for Xuru Co (June 2012). The low Secchi depth in Tangra Yumco was
caused by suspended sediment. Tangra Yumco is well oxygenated; oxygen
concentration (O;) in deep water depths were: 4.6 mg/l at 200 m (September 2010)
and 2.1 mg/l at 225 m (September 2011).

The aquatic habitats were significantly different comparing their physico-chemical
values (p <0.05). The sediment samples were collected from various aquatic habitats:
lake (29 samples), river (13 samples), estuary-like water (10 samples) and lagoon-like




water (8 samples), pond (3 samples) and spring (3 samples). Twenty-four of the lake
sediment samples were collected from Tangra Yumco (water depth of 10 cm to 223
m). Sediments were composed mainly of greenish-brown detritus mud within the
lakes (Fig. 2.2a) and medium to coarse sand and gravel within the surf zone of the
lakes, rivers and estuary-like waters (Fig. 2.2b). The phytal zone of Tangra Yumco
extends from 0.4 to 20 m water depth. Submerged macrophytes as Potamogeton sp.
and charophytes (green algae) were found growing within the phytal zones of Tangra
Yumco, Monco Bunyi, and Xuru Co (Fig. 2.2¢c-d) and in small standing waters. The
aquatic plants and algae support primary productivity and serve as substrates for fish
and macro-micro fauna communities (e.g., ostracods, chironomids and cladocerans) in
these water bodies.

The sediment texture in river habitats is dominated by coarse sand and gravel beds
with large interstitial spaces (Fig. 2.2e). The lagoon-like water habitats are
characterised by muddy substrate (Fig 2.2h). The ponds are situated in wetlands
within Kobresia meadows (Fig. 2.2¢g). The substrate is composed of mud with detritus
and floating filamentous algae. The sediment within the spring environments is
composed of coarse sand covered by filamentous algae (Fig. 2.2h).

Tab. 2.2 Physico-chemical variables measured for Tangra Yumco and adjacent
waters: Min = minimum, Max = maximum values and SD = standard deviation
Parameter Min — Max Median Mean (SD) Samples (n)
Water depth [m] 0.01-223 0.1 9.5(32.2) 66
Conductivity [mS/cm] 0.07 — 144.8 3.8 7.8 (18.3) 66
Water temperature [°C] 2.2-257 13.6 14.0 (4.9) 66

pH 6.8—12.8 9.5 9.4 (0.8) 66

O, concentration [mg/1] 1.3-12.2 6.2 6.1(2.2) 64
Alkalinity [mmol/1] 1.3 344 19.9 29.2 (48.2) 66

Ca ' [meq/1] 0.19-85.7 1.14 9.5 (20.5) 47

Mg >* [meq/1] 0.3-73.6 15.1 14.7 (13.8) 47

Na * [meq/l] 0.03 -228.5 4.6 8.3(31.3) 52

K " [meq/1] 0.09 - 1977.4 83.9 109.4 (273) 52

Cl [meq/1] 0.02—1729 17.3 64.1 (272) 40

SO ™ [meq/l] 0.09 - 978.6 10.4 52.6 (158.5) 38
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Tab. 2.3 Summary of physico-chemical variables measured for Tangra Yumco and

adjacent waters

Aquatic WD CD WT pH O, Al Ca® Mg”™ Na* K* CI SO,
habitats
Lake Mean 215 158 128 94 65 469 46 219 139 1768 1253 103.1
water SD 463 254 52 07 28 604 102 13.1 422 3584 389.7 2296
Min 001 008 22 71 20 106 02 24 0.5 1.3 0.1 8.7
Max  223.0 1448 223 9.4 128 3440 465 73.6 2285 1977.4 1729.1 978.6
n 29 20 29 29 28 29 26 26 28 28 19 17
Estuary- Mean 0.1 04 143 98 61 174 383 09 0.2 9.2 0.9 0.9
like SD 02 03 06 03 14 494 394 06 0.2 3.0 1.3 1.1
waters  Min 0.1 02 135 94 48 1.6 13 03 0.4 7.4 0.1 0.2
Max 0.5 09 153 10.1 93 158.0 79.3 1.6 04 137 2.9 2.6
n 10 10 10 10 9 10 4 4 4 4 4 4
Lagoon- Mean 0.1 54 182 95 6.1 341 88 117 32 538 225 280
like SD 004 46 56 03 09 158 185 123 33 576 208 277
waters  Min 001 016 11.1 9.0 45 130 0.18 05 0.11 04  0.07 0.4
Max 0.15 124 257 100 7.6 57.0 465 26.6 7.8 1258 465 593
n 8 8 8 8 8 8 6 6 7 7 6 6
Ponds Mean  0.14 04 181 93 64 3.7 0.5 2.5
SD 006 04 7.6 001 22 3.9 0.4 4.0
Min 008 0.18 94 929 42 14 622 153 0.1 0.1 0.2 0.6
Max 02 091 236 932 8.6 8.2 0.9 7.2
n 3 3 3 3 3 3 1 1 3 3 1 1
Rivers Mean 0.1 03 129 97 63 19 179 64 21 429 7.1 8.6
SD 004 03 17 05 12 09 333 8.0 25 477 113 189
Min 0.1 014 109 83 42 13 09 04 0.03 0.1 0.02 0.1
Max 02 09 167 101 89 46 857 182 57 1041 254 479
n 12 12 12 12 11 12 6 6 6 6 6 6
Springs  Mean 0.3 17 148 79 37 214 29 22 1.1 14.6 0.7 3.8
SD 04 23 74 09 23 333 21 21 1.8 215 0.8 55
Min 0.01 03 87 68 13 26 09 09 0.1 0.4 0.1 0.3
Max 0.1 51 244 92 62 710 59 39 3.8 459 1.8 119
n 3 3 3 3 3 3 3 3 3 3 3 3




Fig. 2.2 Aquatic habitats of Tangra Yumco and adjacent waters: (a) greenish-brown
detritus mud within the littoral zone of Tangra Yumco (TYC), (b) gravel surf
zone of TYC) (c) Potamogeton floating in the phytal zone of TYC, (d)
macrophytes covered by green algae within a lagoon-like water, separated
from TYC by a sandbar, (e) small river flowing into TYC, (f) lagoon-like
water separated from Monco Bunnyi by a sandbar, (g) pond situated in
wetlands meadow adjacent to Xuru Co, (h) spring, situated at the west of
TYC. Width of photos a-d: ¢. 50 cm. The diameter of the wet spot in photo h
is c. 2 m. Photos e-g are landscape impressions. Photos a-d by Steffen
Mischke.
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2.4.2 Ostracoda

2.4.2.1 General observations

Ostracods were absent in eight of the 66 samples (sampling year and number:
9 46, 12 22, 12 36, 12 37, 12 39, 12 42, 12 43, 12 52). These samples were
collected from high turbulence shallow waters with sandy-gravel substrate (excluding
sample 9 46 composed of pelitic substrate).

Living ostracods (carapace with soft parts) were found in forty-one sediment
samples (Appendix B). Although the abundance of living ostracods was generally
low, three samples contain higher numbers (> 100). Seventeen sediment samples
contain only empty carapaces and valves.

2.4.2.2 Species composition and abundance

Eleven Recent ostracod species were identified (nine within the living fauna and
two preserved as empty valves only) (Fig. 2.3-7). They belong to the families
Cyprididae, Limnocytherididae and Candonidae. Each family is represented by three
species, except Ilyocyprididae with a single species only.

The total relative abundance of living ostracods is: Tonnacypris gyirongensis
(Yang, 1982) (44.8 %), Limnocythere inopinata (Baird, 1843) (29.4 %),
Leucocytherella sinensis Huang, 1982 (15.6 %), Candona candida (O.F. Miiller,
1776) (4.7 %), Fabaeformiscandona gyirongensis (Huang, 1982), (1.8 %);
Leucocythere? dorsotuberosa Huang, 1982 (1.8 %), Ilyocypris sp. (1.6 %),
Heterocypris incongruens (Ramdohr, 1808) (0.6 %) and Heterocypris salina (Brady,
1868).

The total relative abundance of empty valves is: Leucocytherella sinensis (61.1 %),
Limnocythere inopinata (17.8 %), Tonnacypris gyirongensis (9.9 %), Leucocythere?
dorsotuberosa (3.6 %), Fabaeformiscandona gyirongensis (2.6 %), Candona candida
(2.1 %), Ilyocypris sp. (1.6 %), Candona xizangensis Huang, 1985 (1.1 %, empty
valves only), Heterocypris incongruens (0.1 %) and Potamocypris cf. villosa (Jurine,
1820) (one empty valve only).



500 pm

Fig. 2.3 Limnocytheridae and Ilyocypris. RV — right valve, LV — left valve, all views are

external, unless stated otherwise.

Fig. 1 — 5 Leucocythere? dorsotuberosa Huang, 1982: (1) female RV, TiP11-67LC;
(2) male left valve of forma postilirata, TiP11-7; (3) female RV, TiP11-67LC; (4)
juvenile LV, internal view, TiP11-69LC; (5) female carapace, ventral view, TiP11-25.
Fig. 6 — 10 Leucocytherella sinensis Huang, 1982: (6) male LV, TiP11-60LB; (7)
female LV, internal view, TiP11-4; (8) female carapace, dorsal view, TiP11-25; (9)
male RV, TiP11-4; (10) male LV, details of external view, TiP11-4, (a) slightly
depressed sieve pore, (b) sunken sieve pore. Fig. 11 — 15 Limnocythere inopinata
(Baird, 1843), all from TiP11-2: (11) female carapace in dorsal view, detail of anterior
ornamentation; (12) juvenile RV; (13) female LV, strongly noded; (14) juvenile LV,
internal view; (15) female carapace in dorsal view. Fig. 16 — 18 Ilyocypris sp.; (16)
juvenile LV, TiP11-1; (17) adult carapace, dorsal view, TiP11-1; (18) adult RV,
TiP11-67LC.
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500 pam

Fig. 2.4 Candona. RV — right valve, LV — left valve, all views are external if not
stated otherwise.
Fig. 1 — 4 Candona candida (O. F. Miiller, 1776), all from TiP11-75B: (1)
female RV, internal view; (2) juvenile LV, internal view; (3) female LV;
(4) female carapace, dorsal view. Fig. 5 — 13 Candona xizangensis Huang,
1985: (5) juvenile LV, internal view, TiP11-4; (6) juvenile RV, TiP11-
67LC; (7) female RV, internal view, TiP11-67LC; (8) male LV, TiP11-25;
(9) female RV, TiP11-25; (10) adult carapace, dorsal view, TiP11-25; (11)
surface ornamentation, detail from 13; (12) male LV, internal view, TiP11-
25; (13) female RV, TiP11-67LC.
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Fig. 2.5 Fabaeformiscandona and Tonnacypris. RV —right valve, LV — left valve, all
views are external if not stated otherwise.
Fig. 1 — 7 Fabaeformiscandona gyirongensis (Huang, 1982): (1) female RV,
internal view, TiP11-25; (2) male RV, TiP11-25; (3) female LV, TiP11-20;
(4) juvenile LV, internal view, TiP11-25; (5) juvenile LV, internal view,
TiP11-69LC; (6) adult carapace, dorsal view, TiP11-25; (7) male RV,
internal view, TiP11-20. Fig. 8 — 17 Tonnacypris gyirongensis (Yang, 1982):
(8) adult RV, internal view, TiP11-75B; (9) adult LV, external medio-dorsal
surface ornamentation, TiP11-38; (10) adult carapace, left side, TiP11-1; (11)
juvenile LV, internal view, TiP11-75B; (12) adult carapace, ventral view,
TiP11-75B; (13) adult LV, internal view, antero-ventral tooth on the calcified
inner lamella, TiP11-38; (14) adult LV, internal view, central muscle scars,
TiP11-29; (15) adult LV, internal view, TiP11-75; (16) adult RV, TiP11-29;
(17) adult carapace, dorsal view, TiP11-29.
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Fig. 2.6 Heterocypris. RV — right valve, LV — left valve, all views are external if not
stated otherwise.
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Tab. 2.4 Living ostracods and physico-chemical conditions of their habitats: Min =
minimum, Max = maximum values and SD = standard deviation. WD = water depth
[m], CD = conductivity [mS/cm], WT = water temperature [ C], O, = dissolved
oxygen concentration [mg/1], Al = Alkalinity [mmol/l], cations and anions [meq/1].

Species N WD CD WI pH O, Al Ca®® Mg"™ Na' K* Cr S0~
. 582  Mean 05 09 147 95 62 14.6 27.9 7.6 2.1 40.9 5.6 10.4
St SD 17 25 39 07 18 35.0 34.1 9.2 24 515 10.4 17.8
g ig g Min 001 01 94 68 13 1.3 0.4 0.3 0.1 0.1 0.02 0.1
S Tme Max 84 119 244 101 93 158 85.7 268 64 1513 254 479

n 24 24 24 23 23 24 1 11 13 13 10 10

382 Mean 7.1 105 163 9.6 5.3 38.2 13.3 13.4 4.2 81.8 25.5 33.7

v g SD 69 37 45 03 21 13.1 18.6 6.9 1.9 353 103 15.7
§s£3 Min 0.1 14 128 9.0 32 10.6 0.9 0.5 0.1 12 0.1 0.4
388 Max 204 129 250 102 105 570 46.5 23.1 68 1265  36.1 454
" n 10 12 12 12 12 12 10 10 10 10 10 10
. 200 Mean 39 61 146 97 59 280 14.1 155 4.1 80.6 19.2 272
E SD 59. 59 31 03 21 34.6 273 8.6 25 52.6 15.4 20.1
§38 Min 01 01 114 92 32 13 0.4 13 0.2 0.4 0.02 0.1
~%E Max 204 128 230 102 105 1580 857 268 68 1513  36.1 479
n 21 21 21 20 20 21 16 16 17 17 13 13
61  Mean 0.11 041 148 94 65 3.6 8.7 83 180 3590 128 242
$3 SD 004 043 76 02 22 39 3.6 9.6 260 5620 17.8 33.4
T3 Min 008 0.14 94 93 42 13 6.2 1.5 0.05  0.09 0.2 0.6
S 8 Max 0.5 090 236 96 86 8.2 113 151 480 1007 254 479
n 3 3 3 3 3 3 2 2 3 3 3 2
v o 24 Mean 3.6 105 137 97 56 285 114 15.1 42 87.1 222 30.7
§g2 SD 48 37 11 03 3.0 153 19.7 9.4 24 542 15.1 18.6
$3 % Min 01 38 128 94 35 10.6 0.4 1.3 0.2 1.4 0.2 2.9
£§8 Max 94 128 156 102 105  40.0 46.5 268 64 1513 340 412
S n 5 5 5 5 5 5 5 5 5 5 4 4
s 22 Mean 3.6 105 137 97 56 285 11.4 15.1 42 87.1 222 30.7
£33 SD 48 37 11 03 30 153 19.7 9.4 2.4 542 15.1 18.6
RN Min 01 38 128 94 35 10.6 0.4 13 0.2 14 0.2 2.9
333 Max 94 128 156 102 105  40.0 46.5 268 64 1513 340 412
= = n 5 5 5 5 5 5 5 5 5 5 4 4
21 Mean 0.13 48 129 96 54 58.2 29.7 7719 30.7 123 144
g SD 010 51 25 03 18 67.8 43.0 105 2.6 47.6 18.7 223
S Min 010 09 94 93 39 8.2 35 15 01 0.4 0.2 0.6
Sa Max 020 119 153 98 78  158.0 793 199 57 1017 33.9 40.1
=@ n 4 4 4 3 4 4 3 3 4 3 3 3
3 Mean 0.18 054 165 93 64 438 034 3.6
, o SD 0.04 050 100 001 3.1 4.8 0.40 4.90
g3 Min 0.15 018 94 929 42 1.4 6.22 153 0.05 0.09 0.17 0.56
§5 ¢ Max 020 090 236 930 86 8.2 0.62 7.20
S n 2 2 2 2 2 2 1 1 2 2 1 1

2.4.2.3 Ostracod abundance and diversity in different aquatic habitats

The distribution of living ostracods indicates specific physico-chemical
requirements (Tab. 2.4, 2.5); the frequency of occurrence (preference index) differs in
the different habitats (Fig. 2.8). The characteristic ostracod associations (living and
empty valves) are dominated by Leucocytherella sinensis, Tonnacypris gyirongensis
and Limnocythere inopinata.

Based on habitat-specific ecological requirements, cluster analysis separated the
living ostracods into two groups: L. inopinata, L. sinensis, L.? dorsotuberosa and F.
gyirongensis are in the first group and H. incongruens, C. candida, Ilyocypris sp. and
T. gyirongensis form the second group. The empty valves are grouped into three
associations: 7. gyirongensis and Ilyocypris sp. in the first cluster, F. gyirongensis and
C. xizangensis in the second cluster and L.? dorsotuberosa, L. sinensis and L.
inopinata in the third cluster. Candona candida and Heterocypris incongruens are
outliers (Fig. 2.7).

The diversity of ostracod associations is generally low (Appendix C). The mean
Shannon diversity indices are 0.35 (living individuals) and 0.58 (empty valves). Ponds
and lakes record highest indices (Appendix C).
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Fig. 2.7 Recent ostracod associations dendrograms (group-average linkage).

The continuous lines signify (p = 0.05%) two ‘coherent’ groups in (a) - living
ostracods, and three ‘coherent’ groups in (b) - empty valves. Dashed lines indicate
significant assemblages. Ln = Limnocythere inopinata, Ls = Leucocytherella sinensis,
Ld = Leucocythere? dorsotuberosa, ¥g = Fabaeformiscandona gyirongensis, 11 =

Ilyocypris sp., Cc = Candona candida, Hi = Heterocypris incongruens, Tg =
Tonnacypris gyirongensis and Cx = Candona xizangensis.
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Tab. 2.5 Relative abundance of empty valves and abundance of living ostracods and

their habitats.

Ls

Leucocytherella sinensis, Ld

Leucocythere?

dorsotuberosa, 11 = Ilyocypris sp., Ln = Limnocythere inopinata, Tg =

Tonnacypris gyirongensis, ¥g = Fabaeformiscandona gyirongensis, Cc
Candona candida and Hi = Heterocypris incongruens.
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Fig. 2.8 Preference Index (P1)[%]:
frequency of occurrence of ostracod
species in six habitats; Empty
valves — Grey bar. Living ostracod
association — white bar.
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2.4.2.4 Species and environment

Species relate to the physico-chemical variables (Appendix D). The canonical
correspondence analysis (CCA) reveals significant differences among aquatic habitat
types (Fig. 2.9a, Appendix E) and separates significant species of such habitat types
(Fig. 2.9b). The total variation is 2.5, explanatory variable account for 40.0 %
(adjusted explained variation is 31.4 %). The two CCA axes are shown explaining
35.8 % of the total variance (Fig. 2.9a-b, Appendix E). On the first axis species in
small and shallow temporary waters are grouped (Heterocypris incongruens, Candona
candida, Ilyocypris sp., Tonnacypris gyirongensis) and second axis illustrates
permanent brackish-lacustrine fauna (Limnocythere inopinata, Leucocytherella
sinensis, Fabaeformiscandona gyirongensis, Leucocythere? dorsotuberosa) (Fig.
2.9b-c).

Best ecological niches of the species may be identified (Fig. 2.9b-c): Heterocypris
incongruens and C. candida live in ponds. Limnocythere inopinata and Ilyocypris sp.
live mainly in lagoon-like waters. Tonnacypris gyirongensis lives in rivers, estuary-
like waters and spring habitats Fabaeformiscandona gyirongensis, L. sinensis and L.?
dorsotuberosa are typical in brackish lacustrine waters. Three ostracod species
significantly (p<0.05) correlate with their habitat: Heterocypris incongruens to pond
environment, Tonnacypris gyirongensis to spring habitat and Fabaeformiscandona
gyirongensis to lacustrine waters.

Presence and abundance of the ostracod species are significantly (p<0.05) related
to physico-chemical variables (Fig. 2.10a). The total variation is 2.6, explanatory
variable accounts for 40.8 % (adjusted explained variation is 29.7 %) (Appendix E).
The first axis explains 24.7 % of the total variation; the second axis adds another 9.6
% (Appendix E). Species’ presence and abundance are significantly (p<0.05)
controlled by three physico-chemical variables (conductivity, alkalinity and water
depth) (Fig. 2.10a), and covariate (habitat types). There is colinearity between
conductivity and alkalinity. The most influential ecological factors explaining
presence and abundance of ostracods are conductivity (explained 21 %, pseudo-F =
9.8, adjusted P = 0.008) and habitat types (explained 9.0 %, pseudo-F = 4.6, adjusted
P = 0.034). Conductivity is the key environmental predictor for ostracods (presence
and abundance) in Tangra Yumco and adjacent waters. The total variation is 2.6,
explanatory variable accounts for 49.3 % (adjusted explained variation is 37.9 %)
(Fig. 2.11, Appendix E). The two CCA axes explain 37.9 % of the total variance (Fig.
2.11, Appendix E). On the second axis, L. inopinata and Ilyocypris sp. live in waters
with high conductivity while L. sinensis, F. gyirongensis and L.? dorsotuberosa in
waters with moderate conductivity. On the first axis, H. incongruens, C. candida and
T. gyirongensis are preferring waters with low conductivity (Fig. 2.11).

105



106

=
'-'\i Hakviats
A
]
Frals-hakilalm
L] O — s R ——
- Edilary: |8 Porsd
E Rivar Bpiing
H
—
|
H il
= ' x I _agran-likg
:E i M
S |
1818 Y
¥ n oo RN
A
T i ||:||
LS 1 i
b 33 b Trw 3
=} #H. e - Pm“:*
e 3
T ) L .
15 ,:{:
—
- i
: o
= i
o™ F Y &
@ | Lagoan-ike
é Lt LA ;
& L | Lake TH L ]
el g .I
53 3 2
~
: 'y
| Rivar
o
8 Estuary-dika
.: = Spring
‘ .
Riwar D.
L 3
-08 CCAAxis 1 (27.5%) 0.8
rF
= Spring «
o
e CCA Axis 1 (275%) 1.0
| Habitais
| &
Disiracods Pie Casses
[0 Laks B esanas [l Rve B wsgoonike [l Pone B e

(b}

Fig. 2.9 Canonical correspondence analysis (CCA) biplot: (a) samples ID
(year/number) and the lines enclose the locations of samples from different habitats.
Lines match with the habitat (plots) symbols and categorical variables habitat (filled
triangles); (b) Abundance of species in specific-habitats. Pie plots of ostracod
abundance (log-transformed abundance data) in the diverse habitats. The boxes match
with the habitat symbols and categorical habitat type (filled triangles); (c) species-
specific habitats ecology. The first two CCA axes are shown; explaining 35.8% of the
total variance. Species code: Ls = Leucocytherella sinensis, Ld = Leucocythere?
dorsotuberosa, 11 = Ilyocypris sp., Ln = Limnocythere inopinata, Tg = Tonnacypris
gyirongensis, Fg = Fabaeformiscandona gyirongensis, Cc = Candona candida and He
= Heterocypris incongruens.
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Fig. 2.10 Canonical correspondence analysis (CCA) biplot of species-environmental
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conductivity (most influential environmental predictor). Ls = Leucocytherella
sinensis, Ld = Leucocythere? dorsotuberosa, 11 = Ilyocypris sp., Ln = Limnocythere
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Dept = Depth, Alka = Alkalinity, Temp = Temperature and Oxyg = (Oxygen).
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Fig. 2.11 Recent ostracod response curves on conductivity (uScm™) fitted by a

generalised linear model (GLM) with quadratic option and Poisson distribution.
Limnocythere inopinata has a broad tolerance to conductivity.

Spearman correlation analysis reveals that two species (L.? dorsotuberosa, r =
0.25, p = 0.043; L. inopinata, r = 0.364, p = 0.003) have a significant positive
correlation with conductivity and one species (7. gyirongensis, r = -0.606, p = 0.000)
displays significant negative correlation with conductivity. Limnocythere inopinata
demonstrates a significant positive correlation with alkalinity (r = 0.368, p = 0.002).
Fabaeformiscandona gyirongensis displays a significant positive correlation with
water depth (r = 0.278, p = 0.024) (Appendix D).

2.4.2.5 Water depth distribution of ostracods

Ostracod distribution and abundance fluctuate with water depth in Tangra Yumco
(Fig. 2.12). Water-depth distribution of ostracods can be described in relation to three
distinct layers (epilimnion/phytal, warm nutrient-rich surface layer, and
hypolimnion, cold nutrient-poor bottom layer) separated by the thermocline, where
temperature changes rapidly with depth) of deep lacustrine water. Living ostracods
occur only in the phytal zone and empty valves are deposited in sediment of the
hypolimnion (Fig. 2.12). Ostracod diversity is higher in the epilimnion (seven species)
than in the hypolimnion (five taxa) (Fig. 2.12).
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Fig. 2.12 Water depth distribution of Recent Ostracoda from Tangra Yumco.
The shaded grey area illustrates the presence of living ostracods. Curves represent the
relative abundance of empty valves. The dark grey shaded bar is the thermocline layer
(20 — 30 m water depth). Species code: Ilyoc = Ilyocypris sp., Cc = Candona candida,
Cx = Candona xizangensis, and Fg = Fabaeformiscandona gyirongensis. Ostracod
diversity is higher in the phytal zone than in the hypolimnion. Leucocytherella
sinensis and L. inopinata dominate the phytal zone. Leucocythere? dorsotuberosa
(max. 32 % at 110 m) and F. gyirongensis (max. 23 % at 223 m) increase in relative
abundance with water depth.

Tonnacypris gyirongensis, Ilyocypris sp., and Candona candida are shallow water
fauna present in relative low proportions within the epilimnion of Tangra Yumco.
Leucocytherella sinensis and L. inopinata dominate the epilimnion (phytal zone).
Candona xizangensis was most abundant with 3.6 % at 13 m water depth (Fig. 2.12).

A reducing relative number of empty valves of L. sinensis but increasing for L.
inopinata occurs in the hypolimnion. Subsequently, Leucocythere? dorsotuberosa
(max. 32 % at 110 m) and F. gyirongensis (max. 23 % at 223 m) increase in their
relative abundance with increasing water depth (Fig. 2.12).

2.5 Discussion
2.5.1 Ostracod taxa

Species endemic to the Tibetan Plateau are typical lacustrine fauna
(Leucocytherella  sinensis, Leucocythere? dorsotuberosa, Fabaeformiscandona
gyirongensis and Candona xizangensis) and shallow temporary fauna (Tonnacypris
gyirongensis). Cosmopolitan fauna are Limnocythere inopinata (lake species) and
temporary water species (Candona candida, Ilyocypris sp. and Heterocypris
incongruens). Although living specimens of C. xizangensis were not found, empty
valves were largely deposited in the lake sediment, hence we assume preference for
lacustrine habitat. The dominance of an endemic ostracod fauna in Tangra Yumco and
adjacent waters suggests an adaptation to extreme ecological conditions (low mean
temperatures, low oxygen concentrations, high radiation and low nutrient availability)
in high altitudes.
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The family Limnocytheridae is the dominant group found in Tangra Yumco. It is a
common family of continental ostracods which populates lacustrine waters on the
Tibetan Plateau (Mischke, 2012). Limnocytheridae is a non-marine ostracod family
with wide distribution (Danielopol et al., 1989). The limnocytherid fresh to brackish
water genera Leucocythere, Leucocytherella and Limnocythere originate from
Mesozoic to Cenozoic lake sediments in China (Huang, 1985; Danielopol et al.,
1989). The genus Leucocytherella occurs in Pliocene to Holocene sediments of the
Tibetan Plateau (Huang et al., 1982; Huang et al., 1985a).

2.5.2. Ostracoda taxonomy

One empty valve of Potamocypris cf. villosa was found in a spring located in the
catchment of Tangqung Co. The valve found is larger than Potamocypris cf. villosa
specimens from Central Europe (Meisch, 2000). Tonnacypris gyirongensis, described
by Huang et al. (1982) as Eucypris gyirongensis Yang, belongs to the genus
Tonnacypris Diebel & Pietrzeniuk, 1975. A small and blunt antero-ventral tooth can
be recognised on the calcified inner lamella of the left valves of 7. gyirongensis (Fig.
2.5-13). The seta d1 of T. gyirongensis is distinctively shorter than d2 on the walking
leg of the genus Tonnacypris as described by Meisch (2000). We found high
variability in morphological characters of 7. gyirongensis expressed by different
shapes and ornamentations. Some of the valves of 7. gyirongensis are characterised
by mesh-like structures with narrow but shallow and thin furrows on their external
shell (Fig. 2.5-9). Tomnacypris gyirongensis resembles Tonnacypris estonica
(Jarvekiilg, 1960) reported from western Mongolia (Van der Meeren et al., 2009).
Detailed taxonomical analysis is required to check if 7. gyirongensis is a younger
synonym of 7. estonica. The genus Leucocythere is given with a question mark (thus
Leucocythere? dorsotuberosa) due to the presence of a lophodont hinge. Leucocythere
Kaufmann, 1892 bears an antimerodont hinge (Danielopol et al., 1989). Adult
Ilyocypris sp. lack marginal ripplets on the posterior-ventral left valve. It is clear that
these are different morphological types of the genus Ilyocypris in comparison to
Ilyocypris cf. mongolica from lake sediments of Nam Co (Wrozyna et al., 2009a;
Wrozyna et al., 2009b).

2.5.3. Ostracod abundance, diversity and habitat specific biotopes

Ostracod presence and abundance is determined by physico-chemical parameters
of a given water body (Tab. 2.4). The ostracod fauna occupies a specific biotope
(most favourable ecological niche, Tab. 2.5-2.6). The salinity of continental waters
may contribute to the low diversity of ostracods aquatic habitats on the Tibetan
Plateau (Mischke, 2007). The lakes and ponds record higher mean diversity
(Appendix C). Ostracod numbers increase in waters with stable hydrological
conditions, optimum niches and high primary productivity (via terrestrial inputs and
aquatic plants). Ostracod abundance is higher in low energy aquatic habitats
(Athersuch et al., 1989).

Living ostracod association and empty valves have similar composition and
diversity. However, species proportions differ in specific habitats (Appendix C).
Diversity of empty valves is also higher in lakes (Appendix C). This is attributed to
quiet water environment, seasonal variation of ostracod populations, reworking and
post-mortem transport of shallow water specimens into the permanent brackish lake.




Leucocytherella sinensis is a typical component of biocoenosis (life
association) and its shells are dominating within thanatocoenosis (dead assemblages)
in lake sediment. However, the ability to dwell in various habitats, makes it a
characteristic component of thaphocoenosis (autochthonous dead ostracods, which
died at the place of burial, and allochthonous, transported from different sites to the
place of burial) in shallow waters. T. gyirongensis and C. candida are typical for
biocoenosis of shallow waters but also for taphonocoenosis (allochthonous) in the
epilimnion of Tangra Yumco. Leucocythere? dorsotuberosa is a component of
allochthonous assemblage in shallow temporary waters.

Tab. 2.6 Ecological preferences of the nine living ostracods from Tangra
Yumco and adjacent waters — biological indicators useful for palacoenvironmental
reconstructions.
Taxon Aquatic Conductivity  Substrate Ecology Indicator value
habitats [mS/cm]
*preferred (salinity)
Tonnacypris spring*, 0.08 —11.89 sandy gravel, shallow fresh to dominating in
gyirongensis estuary-like, (0.06 — 8.62) mud, phytal brackish waters temporary fresh to
river, pond, lake brackish waters
Limnocythere lake*, lagoon 1.35-12.81 mud, sand, permanent brackish dominating in meso-
inopinata (0.98 —9.28) phytal waters to polyhaline water
Leucocytherella lake*, pond, 0.08 — 12.81 mud, sandy permanent fresh to fresh to brackish
sinensis estuary-like, (0.06 —9.28) gravel, phytal  brackish-lacustrine waters, dominating in
river, lagoon- waters Ca®" depleted water
like
Candona candida  pond*, river 0.14-091 mud, sandy shallow freshwater
(0.10 - 0.66) gravel, phytal  temporary freshwaters
Fabaeformiscan-  lake* 11.88—12.81  mud, phytal permanent brackish- brackish-lacustrine
dona (8.61 —9.28) lacustrine waters deep waters
gyirongensis
Leucocythere? lake*, lagoon- 3.83-12.81 mud, phytal permanent fresh to fresh to brackish
dorsotuberosa like (2.78 = 9.28) brackish waters waters
Ilyocypris sp. pond*, lagoon- 091 -11.9 mud, sandy shallow fresh to shallow fresh to
like, estuary- (0.66 — 8.63) gravel, high brackish waters brackish waters
like organic matter
Heterocypris pond* 0.18-0.91 sandy mud, perennial freshwater temporary freshwater
incongruens (0.13 - 0.66) phytal
Heterocypris hot spring* N/A various perennial freshwater temporary freshwater

salina

Reworking, transport and distribution of ancient lake sediments facilitates the
transport of fossil lacustrine ostracods to shallow temporary waters. Shallow water
fauna can be transported into the lake during heavy rainfalls (heavy influx of river
water) and subaqueous sediment transport (Akita et.al. 2015).

Water-deep distribution of ostracods illustrates the zonation of the deep lake
Tangra Yumco (Fig. 2.12). Leucocytherella sinensis and L. inopinata occur
commonly in the epilimnion of the lake. Leucocythere? dorsotuberosa and F.
gyirongensis occurs frequently in the hypolimnion. We assume L. inopinata can live
in both shallow and deeper water. It occurs commonly in open shallow waters and
lakes (Meisch, 2000). However, the species occurs in Lake Qinghai at 27 m water
depth (Liet al., 2010).
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2.5.4 Ostracod-environmental relationships

Ostracod distribution and abundance are controlled by physico-chemical conditions
of waterbody (Tab. 2.4, Appendix D). Species with similar ecological requirements
co-exist (clusters dendrograms) in a particular water body (Tab. 2.4, Fig. 2.8-10).
Ostracod reflect changes to environmental conditions by changes in their distribution,
diversity, relative abundance, presence and absence of taxa, specific ecological
tolerances and microhabitat preference (Van der Meeren et al., 2010; Decrouy et al.,
2012; Zhang et al., 2013). The dominant ostracods (presence/absence) in a particular
habitat are correlated to favourable physico-chemical conditions (Tab. 2.2-2.4). There
1s a species-specific optimum tolerance (narrow to broad) to conductivity regimes
(Fig. 2.11). Conductivity is the key determinant on the distribution of Tibetan
ostracods (Mischke et al., 2007a; Mischke, 2012).

2.5.5 Ecological preferences and implications for palaeoenvironmental
reconstruction

Ostracod-based reconstructions may be enhanced if the habitats of the modern
fauna are largely known. In the following, we present the ecological characteristics of
Recent Ostracoda of Tangra Yumco and adjacent waters and compare them with
literature. Recent ostracod preference index, environmental requirements and
indicator value are emphasised (Tab. 2.6). This new ecological data can be used in
palacolimnological, palaeoclimate and palacoenvironmental research. We also
adopted ostracod fauna ecological characterisation used by Meisch (2000).

Leucocytherella sinensis Huang, 1982

Ecology: Leucocytherella sinensis is a cold-stenothermal species of high altitude
water bodies (Huang et al., 1985a). It is a ubiquitous ostracod; living individuals were
found in diverse aquatic habitats (temporary fresh and permanent brackish waters).
Leucocytherella sinensis occurs in fresh to brackish waters. Occurrences of living
individuals: (i) lake (11 samples), lagoon-like water (3 samples), estuary-like water
(2 samples), pond (1 sample) and river (5 samples) (ii)) empty valves: lake (24
samples), river (12 samples), estuary-like water (10 samples), lagoon-like water (5
samples), pond (3 samples) and spring (2 samples). The species prefers shallow
waters (0 — 20 m, Tab. 2.4-2.6) and the phytal zone of lakes with different substrates
(mud, sand and gravel) (Tab. 2.8, Fig. 2.9b-10b). It thrives in shallow water and
reaches its maturity in these aquatic habitats (Zhu et al., 2002, 2010). Leucocytherella
sinensis occurs in waters with a conductivity of 0.1 - 13 mS/cm (salinity of 0.06 —
9.28 Tab. 2.4 and 2.8). It is absent at high salinity (100) in Tangqung Co.
Leucocytherella sinensis can survive in water with a salinity of 0 to 13 (Huang et al.,
1985b). Living Leucocytherella trispinosa, a junior synonym of L. sinensis, was
found in a salt lake (Tagutagion) with a salinity of 20 (Zheng et al., 1989; Fiirstenberg
et al., 2015). Living L. sinensis significantly correlate positively (p = 0.006, r = 0.40)
(Appendix D) with calcium ionic concentrations (0.4 — 85.7 meq/l) in Tangra
Yumco and adjacent waters.

Distribution: Leucocytherella sinensis occurs in Miocene to Recent lake sediments
from southern, western and central Tibetan Plateau (Huang, 1982; Peng, 1997).
Leucocytherella sinensis was found in Recent and Holocene sediments from Nam Co




(Wrozyna et al., 2009b), Pumayung Co (Peng et al., 2013), Bangong Co (Fan et al.
1996), Lake Koucha (Mischke et al., 2008), on the western (Fan et al., 1996) and the
north-western Tibetan Plateau (Li et al., 1994). It was also found in the Late
Pleistocene to Holocene sediments of Peiku Co (Peng, 1997). Leucocytherella
sinensis appears in Early/Middle Pleistocene sediments of the Qinghaitang formation,
Kunlun Mountains, Qinghai Province and the Neogene of the Zhada Basin (Pang,
1985).

Characterisation: Leucocytherella sinensis is an endemic species, commonly
occurring in lake systems on the south, central and west of the Tibetan Plateau. It is a
ubiquitous species, widely distributed and abundant. It populates different aquatic
habitats and substrates, including the profundal zone of lakes, shallow temporary and
permanent waters. Leucocytherella sinensis can live in freshwater to mesohaline
brackish water with a salinity of 20. The species dominates Ca-depleted waters with
moderate alkalinity. It is classified as oligothermophilic, titanoeuryplastic, freshwater
to mesohaline, and rheoeuryplastic species.

Palaeoenvironmental reconstructions: Leucocytherella sinensis is ubiquitous on the
Tibetan Plateau above 4000 m asl. It develops nodes on the calcitic valves in low
salinity waters and can be used as a proxy for palaeosalinity this way (Flirstenberg et
al., 2015).

Leucocythere? dorsotuberosa Huang, 1982

Ecology: Living Leucocythere? dorsotuberosa occurs mainly in the lake (phytal and
muddy substrate) and lagoon-like water. Empty valves were found in different
habitats: lake (19 samples), river (12 samples), estuary-like water (10 samples),
lagoon-like water (4 samples), pond (2 samples) and spring (2 samples). The presence
of empty valves in small temporary waters may be due to transport of valves from
ancient lake sediments. Leucocythere? dorsotuberosa (empty valves) occurs in higher
proportions at deeper water depth (Fig. 2.12). Living L.? dorsotuberosa occurs in
waters with a conductivity of 3.8 — 12.8 mS/cm (salinity range of 2.9 — 9.6) (Tab. 2.4
and 2.8). Leucocythere? dorsotuberosa weakly but significantly correlates (p = 0.043,
r = 0.25) with conductivity (Appendix D). The species can tolerate a wide range of
salinities: 0.1 — 1.6 in north-eastern Tibetan lakes (Huang et al., 1985a, b), 0.1 — 2.0
(optimum 0.5) in Nam Co (Wrozyna et al., 2009b), and 2 on the north-eastern Tibetan
Plateau (Wu, 1995:; Mischke et al., 2007a).

Distribution: Leucocythere? dorsotuberosa occurs on the eastern and central Tibetan
Plateau (Wrozyna et al., 2009b). It was also found in late Cenozoic strata of the
Qaidam Basin and in Pliocene sediments (Huang et al., 1985a; Mischke et al., 2006;
Zhu et al., 2010). Characterisation: Leucocythere? dorsotuberosa is a lacustrine
ostracod on the Tibetan Plateau. It lives on soft bottom and prefers deeper water. It
can tolerate freshwater to oligohaline salinity up to 10. It is characterised as cold
stenothermal, titanoeuryplastic, freshwater to p-oligohaline and oligorheophilic
species.

Palaeoenvironmental reconstructions: Indicator of high altitude fresh and brackish
waters. It can be used as water—depth indicator. The development of distinct ribs and
reduced reticulation is typical for the profundal zone of Tibetan lakes, this
morphological type is known as Leucocythere? dorsotuberosa forma postilirata (see
Wrozyna et al., 2009a).
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Limnocythere inopinata (Baird, 1843)

Ecology: Limnocythere inopinata is a common Holarctic ostracod species with broad
ecological tolerance (Meisch, 2000). Living L. inopinata occur in the phytal habitats
and epilimnion with muddy substrate in Tangra Yumco, and lagoon-like waters with
sandy gravel. Empty valves are abundant in the profundal zone of Tangra Yumco.
Empty valves were found in diverse aquatic habitats: lake (19 samples), river (7
samples), estuary-like water (6 samples), lagoon-like water (5 samples) and pond (1
sample). It occurs in various aquatic habitats including interstitial ground water, salt
lakes, small pools, alpine lakes and the Baltic Sea (Meisch, 2000). Limnocythere
inopinata prefers the shallow zone of European lakes (Schiemer et al., 1969),
although it can live in diverse environments (Yin et al., 1999). The species populates
water depths of 27 m in Lake Qinghai (Li et al., 2010). The nature of substrate (clay,
mud, silt and sand) and organic matter content are major environmental factors
influencing the distribution of L. inopinata (Jungwirth, 1979). Higher densities of L.
inopinata were found in soft mud with high organic content (>80 %) and high loss on
ignition (>6 %) in Neusiedlersee (Jungwirth, 1979). Limnocythere inopinata can
survive in waters with a conductivity of 1.4 — 12.9 mS/cm (salinity range of 1.0 - 9.7)
in Tangra Yumco and adjacent waters (Tab. 2.4 and 2.8). It prefers waters with a
salinity range of 3 — 9 (Holmes et al., 1999), although it can withstand waters with a
salinity of up to 25 (Griffiths and Holmes, 2000). Limnocythere inopinata can survive
in Tibetan lake waters with a salinity of 0 — 25 (Wang et al., 1990). Nonetheless,
living L. inopinata was found in waters with salinity of 46 and at low calcium
concentration (Meisch, 2000). Limnocythere inopinata can dwell in waters with high
chloride levels, enriched in Na" — HCO3 — CO;” but depleted in Ca*” (Holmes et al.
1999). Living L. inopinata is found in Tangra Yumco and adjacent waters with an
alkalinity range of 10.6 — 57.0 mmol/l, a chloride range of 1.2 - 126.5 meq/l and a
sulfate range of 0.4 - 45.4 meq/1 (Tab. 2.4). It can survive in both shallow and deeper
waters (Fig. 2.12). Living Limnocythere inopinata significantly correlate positively
with three physico-chemical variables: conductivity (p = 0.003, r = 0.36), chloride
(p = 0.036, r = 0.33) and sulfate ion concentrations (p = 0.017, r = 0.38) and
negatively with two variables: alkalinity (p = 0.002, = r = -0.37) and oxygen
concentration (p = 0.039, r =-0.26) (Appendix D).

Distribution: Limnocythere inopinata is widely distributed in the Palaearctic region
(Bronshtein, 1947). It was found in Pre-Quaternary (Qinghai Basin), Quaternary
(eastern Qaidam Basin) and Holocene lake sediments from the Tibetan Plateau (Hou
and Gou, 2007). Limnocythere inopinata (Recent, sub-Recent) is a common
component of ostracod fauna in lakes on the Tibetan Plateau (Mischke et al., 2007a).
It also occupies diverse aquatic habitats in Western Mongolia (Van der Meeren et al.,
2010) and brackish lakes in Inner Mongolia and Northern China (Zhai et al., 2010;
Zhai and Zha, 2014).

Characterisation: Limnocythere inopinata is widespread on the Tibetan Plateau and
thrives well in brackish waters (salinity greater than 10). High relative abundance is
typical for waters rich in CI'- and SO4*, Ca®"-depleted and high in alkalinity.
Limnocythere inopinata is characterised as a mesothermophilic, titanoeuryplastic,
freshwater to polyhaline and rheoeuryplastic species.

Palaeoenvironmental reconstructions: Indicator of mesohaline to polyhaline
permanent waters with high alkalinity.




Ilyocypris sp.

Remark: There are different morphological types of Ilyocypris species on the Tibetan
Plateau (Mischke, 2012). The ecological preferences for the genus and our findings
are discussed below. Ecology: The species of the genus /lyocypris occur in a broad
range of freshwater habitats from lentic (lakes, ponds and ditches) to lotic waters
(rivers) (Meisch, 2000). They swim and crawl in the bottom water. Living Ilyocypris
sp. occur in higher proportions in shallow temporary waters (ponds, estuary-like water
and lagoon-like water waters) than in the permanent brackish lake Tangra Yumco
(littoral zone, < 10 cm water depth). The presence of Ilyocypris sp. in the littoral zone
of Tangra Yumco is due to transport of temporary shallow water ostracods by heavy
runoff during the monsoon season to the lake. Ilyocypris sp. lives in waters with a
conductivity of 0.9 — 11.9 mS/cm (salinity of 0.7 — 8.9, Tab. 2.4 and 2.8). Empty
valves were found in diverse habitats: river (7 samples), lake (4 samples), lagoon-like
water (3 samples), estuary-like water (3 samples) and pond (2 samples).
Characterisation: [lyocypris sp. is a shallow water species preferring temporary
lentic and lotic water bodies. It lives in freshwater and can survive in waters with
elevated salinities of c. 9. Ilyocypris sp. is characterised as oligothermophilic,
titanoeuryplastic, freshwater to mesohaline and rheoeuryplastic species.
Palaeoenvironmental reconstructions: Indicator of shallow temporary fresh and
brackish waters.

Tonnacypris gyirongensis (Yang, 1982)

Ecology: Tonnacypris gyirongensis is a typical species of rivers on the Tibetan
Plateau (Zheng et al., 2011). It was found in the phytal zones of Nam Co and
surrounding water bodies (rivers and estuaries) (Wrozyna et al., 2009b). Tonnacypris
gvirongensis is the most common living shallow water species in our material and
was found in estuary-like water (10 samples), river (7 samples), pond (3) and spring
(2 samples). Empty valves occur in various water bodies: estuary-like water (10
samples), river (10 samples), lake (7 samples), lagoon-like water (2 samples), spring
(2 samples) and pond (1 sample). Tonnacypris gyirongensis lives in waters with a
conductivity of 0.1 — 11.9 mS/cm (salinity range of 0.1 — 8.9) (Tab. 2.4 and 2.8). It
can dwell in Tibetan freshwater to brackish water with a salinity range of 0 — 5
(Huang et al., 1985a; Yang, 1988; Wrozyna et al., 2009b). Living 7. gyirongensis
significantly correlate positively with calcium ionic concentration (p = 0.002, r=
0.43), and negatively with seven variables: conductivity (p = 0.001, r = -0.6),
alkalinity (p = 0.001, r = -0.54), magnesium (p = 0.026, r = -0.32), sodium (p = 0.005,
r = -0.38), potassium (p = 0.031, r = -0.30), ), chlorine (p = 0.006, r = -0.43) and
sulphate (p = 0.015, r =-0.39) ionic concentrations (Appendix E ).

Distribution: Tonnacypris gyirongensis occurs largely in Holocene sediment from
Tibetan lakes such as Nam Co (Wrozyna et al., 2009b), Pumayum Co (Peng et al.,
2013), Peiku Co (Peng, 1997), and Qaidam Basin (Mischke et al., 2006). It was also
found in Ladakh, North-West India (Shukla et al., 2002).

Characterisation: Tonnacypris gyirongensis 1is typical for shallow temporary
freshwater habitats (e.g., rivers with high turbulence). It prefers freshwater but
tolerates salinities up to 9. The species can also withstand a broad temperature range
and possibly possesses drying resistant eggs. It is characterised as a
mesothermophilic, mesotitanophilic, freshwater to [-mesohaline, mesorheophilic
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species.
Palaeoenvironmental reconstructions: Indicator of shallow, often temporary waters.

Fabaeformiscandona gyirongensis (Huang, 1982)

Ecology: Living F. gyirongensis prefers the littoral zone with abundant macrophytes
and organic-rich detritus in Nam Co (Wrozyna et al., 2009b). However, abundant
empty valves of F. gyirongensis were observed in much greater water depth (> 50 m)
as well in Nam Co (Zhu et al., 2010). Living F. gyirongensis was found in phytal zone
(c. 5 — 8 m) with muddy substrate and a maximum of relative abundance of empty
valves in the hypolimnion (223 m water depth) of Tangra Yumco. The species
significantly correlates positively but weak with water depth (r = 0.28, p = 0.024).
Empty valves of F. gyirongensis were found in a variety of water bodies: lake (14
samples), estuary-like water (7 samples) and lagoon-like water (7 samples). The
occurrence of empty valves in temporary waters may be due to reworking of ancient
lake sediments. It dwells in water with a conductivity of 11.9 — 12.8 mS/cm (salinity
range of: 8.9 — 9.6) in Tangra Yumco (Tab. 2.4 and 2.8). Fabaeformiscandona
gvirongensis (sub-Recent) seems also to live in less saline waters with a conductivity
of 0.1 — 1.7 mS/cm (salinity 0.1 — 1.3) and has an optimum of 0.5 mS/cm (salinity
0.3) (Yu et al, 2001; Mischke et al., 2007b; Wrozyna et al., 2009b).
Fabaeformiscandona gyirongensis correlates significantly positive (r = 0.28) with
water depth (Appendix E).

Distribution: Fabaeformiscandona gyirongensis occurs widely in lakes on the
Tibetan Plateau (Mischke et al., 2006)

Characterisation: Fabaeformiscandona gyirongensis is a brackish-lacustrine species.
It can be characterised as coldstenothermal, titanoeuryplastic, freshwater to B-
mesohaline, oligorheophilic.

Palaeoenvironmental reconstructions: Indicator of lacustrine waters.

Candona candida (O.F. Miiller, 1776)

Ecology: Candona candida is known to be highly adaptable to cold conditions
(Meisch, 2000) and cryophilic (thriving at low temperature) in freshwater (Zheng et
al., 2011). The classification as cold stenothermal form is not attributed to the water
type in which it dwells but to peculiarities of development at low temperature
(Bronshtein, 1947; Carbonel et al., 1988; Meisch, 2000). Candona candida can live in
the shallow zone of lakes (Carbonel et al., 1988; Danielopol et al., 1993) and in
deeper waters (Huang et al., 1985a). It inhabits diverse water bodies, permanent and
temporary, lotic and lentic, marshes, streams, canals, springs and large lakes down to
a water depth of 250 m (Bronshtein, 1947). Living C. candida of the Tangra Yumco
area is abundant in shallow temporary waters with high organic matter content. Living
specimens and empty valves were found in lake (9 samples), estuary-like water (5
samples), river (sandy gravel, 3 samples) pond (muddy phytal, 2 samples) and lagoon-
like water (1 sample). We found living C. candida inhabits waters with a conductivity




of 0.14 — 0.9 mS/cm (salinity range of 0.1 — 0.7) (Tab. 2.4 and 2.8), although it can
survive in Tibetan lake-waters within a salinity range of 0.1 — 5.8 (Zhu et al., 2010).
Candona candida populates the coasts of the Baltic Sea with a salinity range of 0 —
5.7 (Frenzel et al., 2010b). Living C. candida significantly correlates negatively with
alkalinity (r = -0.266, p = 0.031) (Appendix E). It occurs in high alkaline waters of
small creeks and ponds (pH 8.49 — 8.64) of Lake Van (pH 9.59) in the high mountain
region of North-eastern Turkey (Kiilkdylioglu et al., 2012). The species can also
survive acidic conditions (pH 4.6) in peat bogs (Henderson, 1990). Candona candida
is abundant in lakes with Mg/Ca>1. It can also withstand high conductivity waters
with elevated sulphate content (Bunbury and Gajewski, 2005).

Distribution: Candona candida has a Holarctic distribution (Eurasia and North
America) (Meisch, 2000) and affinity for cold freshwaters in high altitude regions
(Transcaucasia, 1925 m, and the Swiss Alps, 2560 m) (Bronshtein, 1947). Candona
candida 1s found in transitional waters connected to Lake Qinghai, Tibetan Plateau
(Liet al., 2010). It is deposited in mid-late Holocene sediments of Gyirong and the
Quaternary of the Qaidam Basin, Yamzhog Yumco and Yagedong Co (Hou et al.
2002), in Bayan Har Mountains on the north-eastern Tibetan Plateau (Mischke et al.,
2008), and Bosten Lake (Mischke and Wiinnemann, 2006).

Characterisation: Candona candida is a highly adaptive, ubiquitous freshwater
species, commonly found in ponds and rivers on the Tibetan Plateau. It occupies
waters with Mg/Ca>1 and salinity of up to 6. It is an oligothermophilic,
oligotitanophilic, freshwater to oligohaline, rheoeuryplastic species.
Palaeoenvironmental reconstructions: Indicator of freshwater (e.g., ponds and
rivers).

Candona xizangensis Huang, 1985

Ecology: Candona xizangensis prefers cold freshwater and water depths down to 60
m (Zhu et al., 2010). We found C. xizangensis in different water bodies: lake (8
samples; 20m water depth), estuary-like water (1 sample) and river (2 samples).
Candona xizangensis is lacustrine-brackish, phytal and deep water fauna.

Distribution: Candona xizangensis is endemic to the Tibetan Plateau. It was found in
Mid-Pliocene to Holocene sediments of a salt lake in Jilong (Gyirong) city (Huang,
1982). Recent specimens occur in Gar (Hou et al., 2002), Nam Co (Wrozyna et al.,
2009b), Chen Co (Zhu et al., 2002), and the paleolake Jiuér, Zhongba (Liu et al.

2007).

Characterisation: Candona xizangensis is a typical lacustrine freshwater species
from the Tibetan Plateau. It can thrive in brackish-lacustrine waters with oligohaline
conditions. The species is characterised as cold stenothermal, probably
titanoeuryplastic, freshwater to oligohaline and mesorheophilic.
Palaeoenvironmental reconstructions: Indicator of brackish-lacustrine water, phytal
and deep-water fauna.

Heterocypris incongruens (Ramdohr, 1808)

Ecology: Heterocypris incongruens lives in shallow temporary freshwater bodies
(ponds, lagoons and rivers) (Beyer and Meisch, 1996) and permanent water bodies
(lakes) with clayey substrate without macrophytes cover (Meisch, 2000). We found
living H. incongruens dominating in ponds with high organic matter content. Empty
valves were found in pond (2 samples), lake (1 sample) and lagoon-like water (1
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sample). It is a nektobenthic species (Rossi and Menozzi, 1993) and can withstand a
wide range of environmental conditions (Sars, 1928) including high temperature
variations (Geiger et al., 1998; Kiilkoylioglu, 2004). Its eggs are resistant to
desiccation, freezing and high temperature (Angell and Hancock, 1989; Geiger et al.,
1998; Henderson, 2002; Meisch, 2000). Heterocypris incongruens valves were found
in swampy puddles, rivers, springs and man-made pools near Lake Qinghai (Li et al.
2010). We found living H. incongruens inhabiting waters with a conductivity of 0.2 —
0.9 mS/cm (salinity range of 0.7 — 1.1) (Tab. 2.4 and 2.8). However, H. incongruens
can live in waters with a salinity of 12.3 (Li et al., 2010) and 20g/1 (Mischke et al.,
2003).

Distribution: Heterocypris incongruens is a cosmopolitan species (Meisch 2000).
The species also occurs in high-mountain (altitude of 1,650 — 2,350 m a.s.l.) water
bodies of Turkey (Kiilkdyliioglu et al., 2012). Heterocypris incongruens was found in
Lake Qinghai (Mischke et al. 2003; Li et al. 2010). It also occurs in Western and
Inner Mongolia and Northern China (Van der Meeren et al., 2010; Zhai and Zha,
2014)

Characterisation: Heterocypris incongruens inhabits temporary ponds on the Tibetan
Plateau. It can withstand high temperature and a salinity of up to 20. It is a
mesothermophilic, freshwater to mesohaline, mesorheophilic species.
Palaeoenvironmental reconstructions: Indicator of shallow temporary waters.

Heterocypris salina (Brady, 1868)

Ecology: Heterocypris salina lives in shallow temporary freshwaters (e.g., springs,
and ponds), and salty coastal and inland waters (Wang and Dou, 1998; Meisch, 2000).
It prefers low salinity, although it occurs in waters with a salinity of up to 20 (Meisch,
2000). The species may disappear in the cold season leaving diapausing eggs
(Ganning, 1971). Living individuals and empty valves of H. salina were observed in a
hot spring north-west of Tangqung Co.

Distribution: Heterocypris salina is a holarctic species (Meisch, 2000). It occurs in
fresh to brackish waters on the north-eastern Tibetan Plateau (Mischke et al., 2012).
Characterisation: Heterocypris salina 1s thermoeuryplastic, mesotitanophilic to
polytitanophilic, freshwater to polyhaline (Meisch, 2000).

Palaeoenvironmental reconstructions: Indicator of temporary waters.

Potamocypris villosa (Jurine, 1820)

Ecology: Potamocypris villosa prefers shallow water (springs, spring-associated
habitats, canals, pools, brooks), swamp overgrown with macrophytes and lakes (Beyer
and Meisch, 1996; Bronshtein, 1947; Meisch, 2000; Roca and Baltanas, 1993). It
occurs in the littoral zone of lakes and artificial basins (Meisch, 2000). Potamocypris
villosa prefers clean and well oxygenated water bodies (Bronshtein, 1947). It is a
temporary water species with a strong affinity to flowing water bodies with low
conductivity at high elevation (Beyer and Meisch, 1996). High abundance of P.
villosa was frequently found in pools with filamentous algae and charophytes
producing high oxygen concentrations and calcium carbonate precipitation (Mezquita
et al., 2000). The species is reported from Lake Qinghai (pH of 6.6 and salinity of
0.57) (Liet al., 2010). We found only one valve of Potamocypris cf. villosa in a river
(10 cm water depth). This suggests the ability of P. villosa to colonise high altitude
riverine aquatic habitat.

Distribution: Potamocypris villosa is widely distributed in high attitude waters (2350
m a.s.l.) in Asia, Europe, and South America (Bronshtein, 1947; Kiilkdyliioglu et al.,




2012).

Characterisation: Potamocypris villosa is described as an oligothermophilic,
freshwater and mesorheophilic species (Meisch, 2000).

Application for palaeoenvironmental reconstructions: An indicator of temporary
freshwaters.

2.5.6 Water-depth distribution in the deep brackish lake Tangra Yumco

Ostracod assemblages and abundance fluctuate with depth (Fig. 2.12).
Leucocytherella sinensis can live in different water depths but the relative abundance
decreases with water depth. Tonnacypris gyirongensis, C. candida and Ilyocypris sp.
occur in the shallow littoral zone (about 10 cm water depth). This zone is
characterised by unstable hydrological conditions due to fluctuation in water level and
increased terrestrial input. Candonids and L. inopinata occur in higher proportions
within the phytal zone under more stable ecological conditions (up to 20 m water
depth). Candona xizangensis valves were found within the phytal zone of the lake.
Fabaeformiscandona gyirongensis can inhabit both the phytal zone with muddy
substrate and deeper waters. The occurrences of shallow water species (7.
gvirongensis, Ilyocypris sp. and C. candida) within the epilimnion in less than 1 m
water depth is attributed to transport of ostracods (living specimens and empty valves)
during heavy rainfall (high summer monsoon precipitation), floods and rising of the
lake-water level (Akita et al., 2015).

Fabaeformiscandona gyirongensis and L.? dorsotuberosa occur in higher number
within the hypolimnion of Tangra Yumco. This deep water ostracod fauna also occurs
in the hypolimnion of Nam Co, the second-largest saline lake on the Tibetan Plateau
(Frenzel et al., 2010b; Wrozyna et al., 2009a). However, the relative abundance of
Limnocythere inopinata in Tangra Yumco is exceptionally high (thus in two sediment
samples from deeper depth), although it rarely occurs in Nam Co (Frenzel et al.
2010b). The salinity of Tangra Yumco (8.3) is higher than in Nam Co (2.0) (Frenzel
et al., 2010b), this underlines that L. inopinata (salinity tolerant species) prefers
waters with high salinity.

2.7 Conclusions

Knowledge on modern ostracods and their environment are needed to understand
past ecological conditions, environmental and climate change. We elucidate Recent
Ostracoda ecology from the deep brackish lake Tangra Yumco and adjacent waters
(smaller lakes, estuary-like waters, lagoon-like waters, rivers, ponds and springs) on
the southern Tibetan Plateau. Composition of the ostracod associations and abundance
significantly (p <0.05) differ in the diverse habitats. The spatial sampling yielded a
low abundance of living ostracods but abundant well-preserved empty shells.
Although, there are some potential constraints, we can detect relationships between
species and the physico-chemical variables. We summarize our findings as follows:
Eleven Recent Ostracoda were found (nine alive and two empty valves). The two
major ostracod associations (cluster) based on habitat preferences are: (i) permanent

water species — Leucocytherella sinensis, Leucocythere? dorsotuberosa,
Fabaeformiscandona gyirongensis, Limnocythere inopinata and Candona xizangensis
(empty valves only); (ii) shallow temporary water species — Tonnacypris
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gyirongensis, Candona candida, Heterocypris incongruens, Ilyocypris sp.
Heterocypris salina and Potamocypris cf. villosa (one valve only). The two types of
ostracod association (lacustrine and temporary fauna) can be used to categorise water
types in sediment records.

Indicator species are: (i) L. sinensis dominates Ca-depleted brackish waters although
ubiquitous distributed; (ii) L.? dorsotuberosa dwells in fresh to brackish waters; (ii) L.
inopinata predominates in mesohaline to polyhaline waters; (iv) F. gyirongensis inhabits
exclusively brackish-lacustrine deep waters; (v) C. candida populates freshwaters; (vi) T.
gyirongensis and Ilyocypris sp., are restricted to shallow temporary waters; (vii) H.
incongruens predominate in ponds, whereas H. salina was only found in a hot spring.
Spearman correlation analysis reveals that (i) two species (L.? dorsotuberosa, r = 0.25 and L.
inopinata, r = 0.36) have a significant positive correlation with conductivity while one species
correlates negatively (7. gyirongensis, r = -0.68). Limnocythere inopinata significantly
correlates positively (r = 0.37) with alkalinity. Fabaeformiscandona gyirongensis
significantly correlates positively (r = 0.28) with water depth.

Ostracod presence and abundance is largely determined by the conductivity (salinity) of the
waterbody and habitat types.

Water depth distribution of ostracods can be used to establish different ecological
niches within a deep lake. The epilimnion (phytal zone) of Tangra Yumco supports
high species richness. Fabaeformiscandona gyirongensis and L.? dorsotuberosa are
water depth indicating ostracods, useful for palaco-water depth reconstruction.

We confirm the potential usage of modern ostracods (thus species-specific ecological
preferences) to differentiate types of aquatic habitat.

The new ostracod ecological dataset can be used as a baseline to detect past and
future disturbances (e.g., environmental and climate changes) on aquatic ecosystems
on the southern Tibetan Plateau. Regular and long-term ecological monitoring is
highly needed to assess the effect of climate change on high mountain aquatic
ecosystems. We recommend science advocacy on microcrustacean biodiversity
conservation, water resource management and environmental stewardship.



2.8 Appendix

Appendix 2.A Sediment samples from Tangra Yumco and adjacent waters (southern

Tibetan Plateau).
Sampling Main Aquatic Sample ID IGSN Number of samples
localities habitats
Sept. 2009  Tangra lake 41, 43, 44, 46, IETIP0001-8 8
Yumco 49, 51-53
Sept. 2010  Tangra lake 7,8 IETIP0009 2
Yumco IETIPOOOA
Sept. 2011 Xuru Co estuary-like 1 IETIP00OB 1
Tangra lake 2,4,6,7,9,16,18, 20, IETIPO00C-G, 11
Yumco 22,25,28 IETIPOOON-R, T
estuary-like 11,12, 13, 60,61, IETIPOOOI-K,V-Z, 9
63-66 IETIP0010
lagoon-like 27, IETIPO00S 1
river 10, 14, 15, 29, IETIPOOOH,L-M, U 9
67-71 IETIP0O11
30 (sub-total)
Tangqung lake 73 IETIP0017 1
Co river 72,74 IETIP0016,18 2
pond 75 IETIP0019 1
4 (sub-total)
June 2012 Tangra lake 24,26,37 IETIPOOID-E, I 3
Yumco lagoon-like 22-23 IETIPO01B-C 2
springs 29, 35, 36 IETIPOO1F-H 3
8 (sub-total)
Monco lake 39 IETIP0O1J 1
Bunnyi lagoon-like 40, 41 IETIPOO1K-L 2
3 (sub-total)
Xuru Co lake 43,52, 63 IETIPOOIN,Q,U 3
river 1,42 IETIPOO1A, M 2
lagoon-like 47, 50,53 IETIP0010-P, R 3
pond 57,58 IETIPO0O1S-T 2

66 (Grand-total)
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Appendix 2B Occurrences of ostracods in sediment samples with identification

number
Species Number of Sample ID International Geo Sample Number
occurrences (year, number) (IGSN)
Tonnacypris 24 9 53,11 1,11 11to 15, IETIP0008, IETIP0O00B, IETIP0O0OI to M,
gyirongensis 11 22,11 29,11 60LBto  IETIP000Q, IETIPOOOU to Z,IETIP0010 to
61LB, 11 63LB, 11 _64LC, 13, IETIP001S, IETIP0019, IETIPOO1F to
11 _65LA, 11 _66LC to G, IETIP001S to T
67LC, 11 68LB, 11 _69LC,
11_71LA, 11_75B, 12 29,
12 35,12 57 to 58
Leucocytherella 21 9 43,9 52t053,11 1to2, IETIP0002, IETIPO007 to 8, IETIPOOOB to
sinensis 11 4,11 7,11 9,11 14to D, IETIPOOOF to G,IETIPOOOL to Q,
16,11 18,11 20,11 22, IETIPOOOU, IETIPO00Z, IETIP0013,
11 29,11 65LA, 11_69LC, IETIP0018, IETIPOOIK, IETIPOO1P,
11 74,12 40,12 50,12 58 IETIPOOIT
Limnocythere 12 952,11 4,11 7,11 9, IETIP0007, IETIPO0OD, IETIPOOOF to G,
inopinata 11 16,11 18,11 20,11 22 IETIPOOON to Q, IETIP001C, IETIPOO1E,
to 23,12 26,12 40to 41 IETIPO0O1K to L
Leucocythere? 5 952,11 2,11 20,11 22,  IETIP0007, IETIPOOC, IETIPOOOP to Q,
dorsotuberosa 12_50 IETIPOO1P
Ilyocypris sp. 4 11 1t02,11 75B,12 53  IETIPOOOB to C, IETIP0017, IETIPOO1R
Candona candida 3 11_15,11 _75B, 12 57 IETIPOOOM, IETIP0019, IETIPOO1S
Fabaeformiscandona 3 9 43,11 16,11 18 IETIP0002, IETIPOOON to O
gyirongensis
Heterocypris 2 11 _75B, 12 57 IETIP0019 to IETIPO01S

incongruens




Appendix 2C  Ostracod abundance and diversity.

Aquatic habitats Ostracoda valves per sample Shannon diversity
Mean Min - Max Total (mean, SD)
Live ostracods
Lake (n = 12) 62 4 -246 744 0.60 (0.4)
Estuary-like (n =10 ) 22 2-80 219 0.15(0.3)
Lagoon-like (n = 6) 85 9-253 512 0.02 (0.4)
Pond (n =3) 297 32 -764 891 0.73 (0.5)
River (n = 8) 24 4-54 189 0.28 (0.5)
Spring (n = 2) 23 2-44 46 —
Total samples (n = 41) 63 2-764 2,601 0.35 (0.4)
Empty valves only
Lake (n = 24) 865 2-4,873 20,762 0.73 (0.3)
Estuary-like (n = 10) 571 263 — 2,441 5,714 0.52 (0.2)
Lagoon-like (n = 5) 737 75 -1,188 3,686 0.40 (0.2)
Pond (n = 3) 1,373 33-9,400 4,118 0.73 (0.2)
River (n=11) 613 23 -1,686 6,739 0.37(0.3)
Spring (n = 3) 250 51 -633 751 0.31(0.1)
Total samples (n = 56) 746 2 —-4,873 41,770 0.58 (0.3)
Live plus empty valves
Lake (n = 24) 896 2-4,873 21,506 0.78 (0.4)
Estuary-like (n = 10) 593 271 -2,452 5,933 0.60 (0.2)
Lagoon-like(n = 7) 599 9-1,201 4,198 0.40 (0.3)
Pond (n =3) 1,670 65 — 3,646 5,009 0.75(0.3)
River (n=11) 630 23 -1,694 6,928 0.46 (0.4)
Spring (n = 3) 266 53 -633 797 0.30 (0.1)
Total samples (n = S8) 765 2-4,873 44,371 0.61 (0.4)
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Appendix 2D Spearman Correlation between environmental variables and ostracods.
Significant correlations are bolded. Two stars (**) indicate p < 0.01 and one star (*) p
< 0.05. WD = water depth, CD = conductivity, WT = water temperature, O, = oxygen
concentration, Ls = Leucocytherella sinensis, Ld = Leucocythere? dorsotuberosa, 11 =
Ilyocypris sp., Ln = Limnocythere inopinata, Tg = Tonnacypris gyirongensis, Fg =
Fabaeformiscandona gyirongensis, Cc = Candona candida, and Hi = Heterocypris

incongruens.
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Appendix 2E  Summary results of Canonical Correspondence Analyses (CCA).

Parameter Axis1 Axis2 Axis Axis Total
3 4 inertia

Species-habitat

Eigenvalues 0.691 0.210 0.091 0.012 2.5

Explained variation cumulative 27.5 35.8 39.4 39.9

Pseudo-canonical correlation 0.927 0.766 0.481 0.251

Explained fitted variation 68.7 89.6 98.6 99.7

(cumulative

Percentage of total variation 40.0 %

Species-physico-chemical

variables

Eigenvalues 0.612 0.253 0.094 0.044 2.6

Explained variation cumulative 24.7 343 37.9 39.6

Pseudo-canonical correlation 0.890 0.797 0.562 0.299

Explained fitted variation  60.5 84.1 92.8 96.9

(cumulative)

Percentage of total variation 40.8 %

Species-Conductivity

Eigenvalues 0.669 0.329 0.184 0.074 2.6

Explained variation cumulative 25.4 37.9 44.8 47.7

Pseudo-canonical correlation 0.906 0.825 0.677 0.447

Explained fitted variation  68. 89.6 98.6 99.7

(cumulative)

Percentage of total variation 49.3 %
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Chapter 3

3.0 Abstract

This study evaluates the present-day relationship between environmental
conditions and the geochemical composition of ostracod valves from the southern
Tibetan Plateau. Stable oxygen and carbon isotope values and trace element contents
of the four most abundant species were analyzed together with hydrochemical
properties of host waters at the time of sampling. Results indicate species-specific
stable isotope fractionation and trace element incorporation into the ostracod calcite.
Stable isotope values significantly correlate with the respective water stable isotope
composition, reflecting salinity and productivity. The offsets between &'*Oyane and
8" Cyanve and equilibrium calcite suggest valve formation during the monsoon season
and influence of pore water 8'°C. Mg/Cayaye is primarily influenced by water Mg/Ca
ratios and salinity and confirms the use as proxy for precipitation-evaporation balance
and lake level.

Oxygen isotopes and Mg/Cay,ye ratios are unaffected by water temperature.
Observed effects of water Sr/Ca or salinity on Sr/Ca incorporation are small and
biased by the presence of aragonite precipitation, which removes bioavailable Sr from
the host water, resulting in low Sr/Cay,ve values. The negative correlation between
8'°C, reflecting organic matter decay, and Fe/Ca, Mn/Ca and U/Ca in ostracod valves
shows the potential to infer changes in redox conditions.

3.1 Introduction

On the Tibetan Plateau ostracods represent the most abundant calcareous
organism remains in lake sediments and are thus extremely valuable Quaternary
paleoenvironmental indicators. Their valves are used as source material for
geochemical analysis in paleolimnological reconstructions of lake-hydrochemistry
and climate. Stable oxygen and carbon isotopes values in ostracod valves reflect
mainly changes in temperature and salinity, and productivity, respectively (De
Deckker and Forester, 1988b; Lister, 1988; Von Grafenstein et al., 1992; Schwalb et
al., 1994). Information about precipitation to evaporation (P/E) balance, water source,
and meltwater or groundwater inflow, can be derived (Lewis and Anderson, 1992;
Last et al., 1994; Cohen et al., 2000; Schwalb, 2003a) as well as modes of decay of
organic matter (Schwalb et al., 2013). The most commonly used trace element proxies
are Mg/Ca and Sr/Ca ratios. Mg/Ca ratios permit to reconstruct temperature and
salinity changes, whereas Sr/Ca ratios are mainly dependent on salinity and Sr/Ca
ratios of the ambient water and thus allow for the reconstruction of P/E balance, water
source and lake level changes (Chivas et al., 1983b; Hu et al., 2008; Ito and Forester,
2009a; De Deckker et al., 2011). Other elemental ratios have only been exploited by a
few studies and results are summarized by Borner et al. (2013a). Chivas et al. (1983b)
tested the dependency of Ba/Ca ratios on temperature changes, Ricketts et al. (2001)
used U/Ca ratios to infer oxygenation cycles, vertical water mixing and organic matter
decay, Gasse et al. (1987) used Fe and Mn to characterize redox conditions, and Zhu
et al. (2009b) reported a correlation between Li/Ca and temperature.

In most freshwater habitats the incorporation of various trace elements and
stable isotopes into the ostracod valve is not only controlled by one environmental
factor alone. In order to validate the relationship between environmental conditions




and their translation into the elemental ratios of ostracod valves, it is essential to
establish a calibration using modern data, because it is important to assess how valve
chemistry is affected by regional and seasonal trends in solute evolution of host
waters. Especially if quantitative reconstructions are pursued, sampling has to be
carried out shortly after molting because ostracods calcify their low-Mg calcite valves
within a few hours to several days (Turpen and Angell, 1971b). This approach has
been undertaken by several authors. Multiple studies focused on the calibration of
stable isotope (8'°0, 8'°C) and trace element (Mg/Ca, Sr/Ca) uptake into ostracod
valves, either by culture experiments (De Deckker et al., 1999b; Kondo et al., 2005;
Li and Liu, 2010) or by collecting living specimens from natural habitats over an
annual cycle (Cronin et al., 2005; Wetterich et al., 2008; Decrouy, 2009b; Marco-
Barba et al., 2012). Decrouy et al. (2012a) analyzed stable isotopes and Mg/Ca and
Sr/Ca ratios of different species in western Lake Geneva (Switzerland) during one
year, and developed models to describe the relationships between ostracod Mg/Ca and
Sr/Ca and temperature, as well as algomo, 83 Cpic and Mg/Capzo, Sr/Capo. Marco-
Barba et al. (2012) calibrated valve chemistry data of Cyprideis torosa and established
correlations of ostracod valve Sr/Ca to water Sr/Ca and 3'*O to Total Dissolved Solids
(TDS), but also discussed possible restrictions to these relationships. For example, in
waters with Mg/Ca ratios below 6, no effect of temperature nor Mg/Caypo on the
uptake of Mg/Ca in the ostracod valve could be detected. The same species was also
analyzed by Keatings et al. (2007) who found no relationship between valve Mg/Ca
and Sr/Ca ratios and the respective composition of the ambient water. De Deckker et
al. (1999b) described a temperature dependence of ostracod Mg/Ca for waters within
a range of Mg/Ca ratios of 1 to 30 for Cyprideis australiensis. A critical assessment of
the importance to calibrate hydrochemical controls on the element incorporation in
ostracod calcite is given by Dettman and Dwyer (2012).

Although ostracods are abundant in Tibetan Plateau lakes and sediments, little is
known about the relationship between their geochemical signatures and those of their
host waters. In order to better exploit their fossil records as paleoenvironmental
proxies, this study investigates relationships and possible controlling factors for the
incorporation of stable isotopes and trace elements into the ostracod valve calcite. To
achieve this, the stable isotope and trace element content of the most abundant
ostracod species was compared to the environmental parameters of the ambient
waters. Our results should advance the understanding of the effects environmental
conditions exert on isotope fractionation and trace element partitioning and thus
increase the value of ostracod valve chemistry as paleoenvironmental proxy on the
Tibetan Plateau.

3.2. Geographical Settings

The Tibetan Plateau is one of the most sensitive regions to climate change due
to its high elevation exceeding 4000 m a.s.l. (Kang et al., 2010a). Consequently, air
temperatures are low with daily temperature differences exceeding annual variations.
Mean annual air temperature is 0°C to 5°C, with lowest values in the northeast (far
below 0 °C) and highest in the region around Lhasa (>5°C). Mean temperature in the
warmest month (July) is 7-15°C, in the coldest month (January) -1°C to -7°C
(Immerzeel et al., 2005). Additionally, the Tibetan Plateau is also affecting the global
climate system as it acts as heat source and moisture sink (Hsu and Liu, 2003).
Precipitation is mainly brought by the East Asian Monsoon and the Indian Summer
Monsoon, delivering highest rainfall in the summer month (June to August), and by
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the Westerlies in the winter month. Annual precipitation is highest in the southeast
and shows a decreasing trend towards the northwest.

The Tibetan Plateau hosts more than 300 lakes with a surface area greater than 10
km? (Yu et al., 2001b). We studied nine lakes including their catchments located on a
west-east transect in the central and southern part of the Tibetan Plateau: Taro Co,
Tangra Yumco, Tangqung Co, Monco Bunnyi, Xuru Co, Nam Co, Npen Co, Yamzho
Yumco and Chen Co (Fig. 1). Thus, we cover different climate conditions, from cold
and dry in the northwest to warmer and moister in the southeast. Information about
location, altitude, lake and catchment area, annual precipitation as well as selected
hydrological parameters is given in Table 1.

Lake Taro Co, a freshwater lake, is located in the western part of the Tibetan
Plateau and thus in the driest area studied. Further east lies the Tangra Yumco lake
system, consisting of Tangra Yumco, Tangqung Co, Xuru Co and Monco Bunnyi.
Ancient shorelines and lake terraces suggest that three of these lakes (excluding
Monco Bunnyi) may have formed one large ancient lake in the late Quaternary that
was separated in more recent times (7.6 ka BP) due to drier climate conditions (Liu et
al., 2013a; Rades et al., 2013a). Tangra Yumco is the largest lake within this lake
system and consists of two sub-basins, the southern basin with a water depth of 100m
and the northern basin with a maximum depth of 230 m, making Tangra Yumco the
deepest lake on the Tibetan Plateau (Wang et al., 2010a). The lake sits in a
hydrologically closed basin, and is fed by several partially glacier fed streams. Tangra
Yumco is a brackish lake (salinity = 7.3 %o), showing a clear summer stratification
with a thermocline between 20 and 25 m. The small brine lake Tangqung Co is
located north of Tangra Yumco, and less saline lakes Monco Bunnyi and Xuru Co are
located south of Tangra Yumco. All these lakes are hydrologically closed. Nam Co
and Npen Co are located in the eastern part of the Tibetan Plateau (Fig. 1). This
region is characterized by the highest annual precipitation in the study region. Nam
Co, the second largest lake in China, is a brackish water lake within a hydrologically
closed basin, which is mainly fed by monsoonal precipitation and, to a lesser extent,
by meltwater runoff from the Nyaingengtanglha mountain range (Keil et al., 2010).
Npen Co is a freshwater lake northeast of Nam Co with an outflow to Bam Co in the
northwest. The Yamzho Yumco lake system is located further south on the northern
foothills of the Himalayan Mountains. Part of the huge Yamzho Yumco lake system is
Chen Co, the smallest lake in this study. Both lakes are hydrologically closed,
precipitation is the main water supply and meltwater from glaciers accounts for just
16 % of total water supply (Zhang et al., 2012a).

3.3 Material and Methods
3.3 1 Sampling

During five fieldtrips to the Tibetan Plateau, taking place each September in
2008 to 2011 and in June 2012, we collected living and sub-Recent ostracods from
326 sites, including lakes, lagoons, rivers, ponds and springs. Lake sediment and
water samples were taken from water depths of 2 m to 85.7 m. The lagoons were
separated from the open lake waters by sand or gravel bars forming shallow
waterbodies featuring limited mixing with the main water body and thus higher
susceptibility to climatic changes. The sampled lagoons, ponds and rivers were partly
dry in the summer before the monsoon season. Lake sediment samples were taken
using an Ekman Bottom Grab, samples from shallow sites, e.g. rivers and lagoons, by



using a hand-net. All sediment samples were stored in Whirl-Pak bags and 70 %
ethanol was added. For each surface sediment sample a corresponding water sample
was taken from the same location using a Niskin type water sampler. Hydrochemical
parameters, such as temperature, electrical conductivity, pH, and dissolved oxygen
were measured at each site with a multi-sensor probe (WTW340i). Alkalinity was
determined using the field titration kit visocolor HE (Macherey-Nagel). Water
samples were filtered in the field through 0.45 pm or 1.2 pum membranes (Whatman
GF/C) and stored in polyethylene bottles. Samples collected for cation analysis were
fixed with 1ml HNOs;. Samples collected for carbon isotope analysis were stored in 12
ml amber glass bottles prepared with a few drops of HgCl,. Sediment samples were
sieved using 63 and 200 pm mesh size, rinsed with deionized water and transferred to
petri dishes using 99 % ethanol. From the 200 um size fraction intact adult ostracods
(carapaces with well-preserved body parts) were picked with a fine brush under a low
magnification stereoscopic microscope, identified and stored in ethanol again. Prior to
chemical analysis, articulated valves were separated and soft parts removed.
Ostracod species and ecology

The most abundant ostracod species are Leucocytherella sinensis Huang, 1982,
Limnocythere inopinata (Baird, 1843) and Tonnacypris gyirongensis (Yang, 1982).
Less abundant are ?Leucocythere dorsotuberosa Huang, 1982, Fabaeformiscandona
gvirongensis (Huang, 1982), Candona candida (O.F. Miiller, 1776), Candona
xizangensis Huang, 1982, and Ilyocypris cf. mongolica Martens, 1991. Only a few or
no living specimens were found, for example, of Heterocypris salina (Brady, 1868)
that just occurred in some hot springs north of Tangqung Co. Thus, for geochemical
analysis only ? Leucocythere dorsotuberosa, Leucocytherella sinensis, Limnocythere
inopinata and Tonnacypris gyirongensis were used.

Leucocytherella sinensis is by far the most abundant species on the southern and
central Tibetan Plateau, covering between 50 % and 90 % of the relative abundance. It
is a cold-stenothermal species and endemic to the southern, central and western
Tibetan Plateau (Wrozyna et al., 2009a). It is found on all substrate types in all
habitats, but prefers shallow waters (up to 20 m). Leucocytherella sinensis has a high
propagating ability and a strong adaptability (Li et al., 2002). From our observations
we conclude that L. sinensis molts starting in late spring (May/June) and produces
several consequent generations throughout the summer season (Fiirstenberg,
personnel communication). Living specimens of ? Leucocythere dorsotuberosa were
only found in lakes, with highest abundances in deep water below the thermocline
(20-25 m). ?L. dorsotuberosa probably molts in late spring and again in autumn
(September) (Fiirstenberg, personnel communication). The assignment of L.
dorsotuberosa to the genus Leucocythere was questioned by Wrozyna et al. (2009a)
because our specimens bear a lophodont hinge contrary to the description of the genus
Leucocythere, which possesses a characteristic hinge with the anterior tooth on right
valve considerably smaller than the posterior tooth and a crenulated intercardinal bar
(compare Danielopol et al. 1989). Therefore, a question mark was assigned to the
genus.

Limnocythere inopinata has a palearctic distribution and colonizes a wide range
of habitats and substrate types (Meisch, 2000a). In our samples 85 % of the living
specimens were found on muddy sediment in Tangra Yumco. In addition, L.
inopinata is the only species we found dwelling within the sediment. Highest numbers
were found in the upper two centimeters, but L. inopinata penetrates down to at least
25 cm (Akita et al., submitted-a). L. inopinata was described as a summer form with
several succeeding generations and adults calcify from late spring to early autumn
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(von Grafenstein et al., 1999). Tonnacypris gyirongensis (formerly assigned to the
genus Eucypris) is a species typical of shallow and turbulent freshwater habitats
(Akita et al., submitted-a). Most living specimens originate from river habitats or
springs but the time of molting is unknown. Further information about species
assemblages and species ecology for most of the studied sites can be found in
Wrozyna et al. (2009¢) for Nam Co, Akita et al. (submitted-a) for the Tangra Yumco
lake system, and Guo et al. (in press) for Taro Co.
Analytical procedures

Water samples were analyzed for cations by Inductively Coupled Plasma
Optical Emission Spectrometry (ICP-OES), and anions were analyzed by ion
chromatography at the Institute of Geographical Sciences, Freie Universitidt Berlin,
Germany, and at the Max Planck Institute for Biogeochemistry, Jena, Germany
(2012). Measurements were calibrated using standard solutions (SRM 1643e Trace
Elements in Water). Element concentrations for water samples are reported in meq/I,
elemental ratios are always given in mol/mol (water and ostracods). The analysis of
stable oxygen and hydrogen isotopes was done with a Cavity Ring-Down
Spectrometry (CRDS) analyzer (L1102-1, Picarro, Sunnyvale, CA, USA) (Brand et
al., 2009) at the Max Planck Institute for Biogeochemistry, Jena, Germany. Water
samples (1 ml) were injected using an A200SE autosampler (CTC Analytics,
Zwingen, Switzerland). Standardization was done by co-injected lab reference water,
which is calibrated against IAEA, VSMOW; SLAP and GISP reference materials
(Gehre et al., 2004). Analytical precision is about 0.1 % for §'*0 and <1 % for 8D. All
values are given in the standard delta notation in %o vs. VSMOW (Vienna Standard
Mean Ocean Water). Water samples were analyzed for 8'°Cpjc at the University
Erlangen-Niirnberg, Germany, using an automated equilibration unit (Gasbench 2,
Thermo Finnigan) in continuous flow mode coupled to a Thermo Finnigan Delta plus
XP isotope ratio mass spectrometer. All samples were measured at least in duplicates.
All values are given in the standard delta notation in %o vs. VPDB (Vienna Pee Dee
Belemnite). The data sets were corrected for machine drift during the run and
normalized to the VPDB scale. External reproducibility was better than 0.1 %o (1
sigma) for 613CDIC.

Geochemical analysis of ostracod valves was carried out on adult specimen of
Limnocythere inopinata (Baird, 1843), ?Leucocythere dorsotuberosa Huang, 1982,
Leucocytherella sinensis Huang, 1982 and Tonnacypris gyirongensis (Yang, 1982).
To determine the carbon and oxygen isotope ratios, valves were bleached for 24 hours
in 2.4 % NaOCl to remove organic matter and afterwards rinsed with double
deionized water. Sample weight was at least 100 pg (6-15 valves). Isotopes were
measured with a Kiel II coupled to a Finnigan MAT252 Mass spectrometer at the
University of Minnesota, USA. Samples are normalized with respect to carbon using
NBS-19 and LSVEC standards. Samples are normalized with respect to oxygen using
NBS-19 and NBS-18. Analytical precision was 0.1 % for 880 and 8"°C. The isotope
results are reported in standard delta notation in %o vs. VPDB. Values for equilibrium
calcite were calculated after Friedman and O’Neil (1977) for "0, and fractionation
of 8'°C between DIC and calcite is 0.8 %o (Bottinga, 1968).

Trace element analysis of ostracod valves was carried out at the Department of
Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver,
Canada. In total, 110 samples were analyzed, thereof are 54 samples of L. sinensis, 19
samples of L. inopinata, 13 samples of ?L. dorsotuberosa, and 24 samples of T.
gyirongensis. We prepared replicate measurements for all sites. To determine the
trace element content in ostracod valves we used the flow-through time-resolved




analysis (FT-TRA) technique, a continuous leaching approach developed by Haley
and Klinkhammer (2002). FT-TRA allows for a complete monitoring of the cleaning
and dissolution over time, and thus to distinguish the biogenic signal from secondary
calcite or contaminants by their differences in solubility (Klinkhammer et al., 2004).
Single valves were loaded into a leaching module (customized Dionex Gradient Pump
system) linked to an Agilent 7700x quadrupole ICP-MS. Procedure applied started
with a 10 min rinse with deionized water, followed by dissolution with nitric acid
solutions, made from ultrapure HNO; (Seastar Chemicals Inc., 15.6 M). After the
initial rinse, the acidity of the nitric acid is increased to 25 mM over 2 min time,
constant at to 25 mM for 8 min, followed by an increase to 50 mM over 2 min and
constant until the final increase to 155 mM HNOs;. The moment when the acidity is
increased to 155 mM HNOs; is sample-specific, depending on when the Ca peak,
which is associated with the dissolving ostracod valve, reaches baseline. This is
determined by live monitoring of Ca counts per second, and the switch to 155 mM
HNOs; is done manually. The increase to 155 mM HNOj; is needed to dissolve low
solubility phases, such as clay. Flow-rate was constant at 0.7 ml/min.

To minimize spectral interferences, He was used as an inert collision gas in the
Octopole Reaction System. For internal standardization indium (''°In) was used.
Double-charging and oxide effects were monitored and were less than 4 % and 0.8 %,
respectively. To calculate normalized concentrations for each isotope, a standard
curve was generated using known dilutions of a high standard solution (2 ppm Ca, 50
ppb Mg, 100 ppb P, 10 ppb Sr, Mn, Fe, Al, 5 ppb Li, As, Ba, Be, Cd, Mo, Ti, Zn, and
1 ppb Ce, U, Th). Analytic reproducibility was tested using BCS-CRM No. 393
(ECRM 752-1) Limestone and is approximately £2.5 %. A mathematical correction is
applied to account for surface contamination on the ostracod valves (Klinkhammer et
al., 2004), detected by increasing Al and Ti values indicative for the clay phase.
Me/Al molar ratios (Me being the element of interest, e.g. Mg or Ca) in the
contamination phase (e.g. clay) are calculated to subtract the element concentration
associated with the clay phase from the original biogenic signal using the following
equation:

Mecorr = Memeasured - (Almeasured * Me/ Alclay) (1)

In addition, we can account for uneven element distribution within the ostracod
valve. Heterogeneity in the ostracod valve is displayed in the time-resolved
element/calcium ratios by higher or lower Me/Ca ratios compared to the original
biogenic signal, which is constant below the Ca peak. These were excluded from the
calculation of the biogenic signal. A detailed description of the application of FT-
TRA to ostracod valve chemistry is in preparation (Borner et al.).

3.4 Results
3.4.1 Hydrochemistry

The sampled sites show large variation in their chemical water properties
(Appendix, Table 2). Electrical conductivity ranges between 0.14 mS/cm and 12.8
mS/cm, pH ranges from 6.8 up to 10.7, and water temperature from 4.8°C to 23°C.
The most prominent anion in most waterbodies is HCO3", except in Chen Co and
Yamzho Yumco, which are dominated by SO,> (Fig. 2b). Samples from Tangra
Yumco contain nearly equal amounts of HCO;3;™ and SO4*. Most dominant cations are
Na” and K*, except for Npen Co, NamCo inflow and the ponds, where Ca®" is more
abundant (Fig. 2a), and Taro Co with equal amounts of Na'+K" and Ca*" and nearly
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void of Mg®". Our dataset did not include waterbodies dominated by Cl" or Mg*". The
ionic composition seems mainly affected by the geological setting of the waterbodies.
The calcite saturation index was positive for most of the waterbodies suggesting
calcite saturation (Appendix, Table 2). The lakes Chen Co, Nam Co, Npen Co,
Yamzho Yumco and two Taro Co and one Tangra Yumco inflow show negative CSI
(-0,1 to -2,6) indicating calcite dissolution. Most waters evolve along the calcium-
carbonate and Mg-Ca carbonate trajectories. Highest Ca®" content was found in some
of the studied rivers (up to 119.75 meq/l), and highest Mg?" content was measured in
Tangra Yumco (29 meq/l). The molar Mg/Ca ratios of the waters span a wide range
from 0.0001 to 75.64. River and spring waters show the overall lowest ratios (<0.5)
followed by Npen Co and Taro Co lake waters with 0.65 and <1.0, respectively.
Highest Mg/Ca ratios occur in Tangra Yumco, with values up to 75 in 2009, but in the
following sampling years molar Mg/Ca ratios reached a maximum of 23. Figure 3c
shows the relationship between Mg/Cap,o and TDS (1?=0.60) and reflect the calcium
depletion trend in the sampled waterbodies. Sr/Ca ratios range from 0.0006 to
0.02135, but are not regionally separable like the Mg/Ca ratios. Sr/Ca ratios show no
correlation to TDS (Fig. 3d).

The 8'%0 and 8D values range from -18.8 %o to -0.35 %o and -145.75 %oto -65.13
%o, respectively, and are significantly positively correlated (r>=0.96; Fig. 4a) as
expected. All lake samples are located on a local evaporation line below the Global
Meteoric Water Line (GMWL) indicating closed basins mainly affected by
evaporation. The 8'°0 and 3D values are -6.58 %o and -76.8 %o for Tangra Yumco and
-5.72 %o and -69.3 %o for Taro Co, respectively, and are different to spring, pond and
river waters, which are characterized by very low 80 (-18 %o) and 3D (-138 %o)
values plotting on the GMWL. These very low isotopic values are caused mainly by
influx of high-altitude precipitation and also by glacial meltwater. The §'*0 values of
the lagoon samples are even more distant from the GMWL as they are more exposed
to evaporation due to their shallow water depth and limited mixing with the main
water body. In addition, the 8'®0 values correlate with TDS (12=0.44, Fig. 3a)
reflecting the effect of evaporation on both §'°0 and salinity. The carbon isotope
composition shows several distinct features. Overall 813CDIC values range between -
11.86 %o and 5.78 %o vs. VPDB. The carbon isotope values show no correlation to
measured 8'°0 and TDS , but two clusters (Fig. 3b, 4b). Lake water samples are
characterized by positive 813CDIC values and thus enrichment in 13C, whereas
catchment waters (river and springs) show more depleted and negative values. The
813CDIC between different lakes differs slightly with values of 5.0 %o at Tangra
Yumco, 3.4 %o at Xuru Co and 2.4 %o at Taro Co. In addition, 813CDIC show a slight
decrease from surface water to bottom water of approximately 2%o.

3.4.2 Geochemistry of ostracod valves

Stable isotope data are available for three species: Limnocythere inopinata,
Leucocytherella sinensis and Tonnacypris gyirongensis (Fig. 5). In general, 8"*Oyaiye
and 8"’ Cyane values show variation between species and sites. 8'*Oyqe values range
from -16.5 %o to -3.99 %o and 8" °Cyaye values range from -4.51 %o to 4.23 %o. L.
inopinata and L. sinensis belong to the family Limnocytheridae and show similar
isotope patterns with values ranging from -9 %o to -4 %o for 8" Oyaive and 0.5 %o to 3.2
%o for 8"°Cyawe, respectively. In contrast, 8'*0 and 8"°C values of T. gyirongensis,
belonging to the family Cyprididae, show clearly more negative values ranging from -
16.5 %o to -13.3 %o for 8'*Ovare and -4.5 %o to 4.2 %o for 3" Cyane. 8'*Oyare and



8" Cuanve values of all species correlate positively with the respective isotope value of
the ambient water (Fig. 5a,b). A correlation between 8"80yarve and 8"°Cyarve could not
be observed, as samples cluster into two groups, one group formed by L. sinensis and
L. inopinata, the other by T. gyirongensis (Fig. 5¢). Stable carbon and oxygen isotope
values of all analyzed species show an offset from calculated values for inorganic
calcite. Ostracod valves show a negative offset of -7 %o to -17 %o in '*O compared to
inorganic calcite, except L. sinensis valves from the rivers and springs, showing just a
slight negative offset (-2 %o to 0.2 %o) (Fig. 5b). Ostracod 8"°Cyaye show a positive
offset from inorganic calcite in the catchment waters (rivers, ponds, lagoons, springs)
and a negative offset when originating from lakes. A significant relationship of
5180W to temperature could not be observed, but it is influenced by TDS (r*=0.45).

Molar Mg/Ca ratios of all analyzed samples span a wide range, 0.0012 — 0.032
in 7. gyirongensis, 0.0056 — 0.0846 in ?L. dorsotuberosa, 0.0175 — 0.052 in L.
inopinata and 0.0015 — 0.0415 in L. sinensis. The Mg/Ca ratio shows a significant
correlation to TDS (1>=0.4 for L. sinensis up to 1r>=0.9 for 7. gyirongensis) and a
modest correlation to the Mg/Ca ratio of host water (Fig. 7a; r*=0.2 for L. sinensis up
to r>=0.6 for 7. gyirongensis). The observed molar Sr/Cay,y. ratios span a total range
of 0.00023 — 0.0126: 0.00023 — 0.0024 in T. gyirongensis, 0.00098 — 0.0037 in ?L.
dorsotuberosa, 0.0009 — 0.0017 in L. inopinata, and 0.00051 — 0.0126 in L. sinensis.
However, no significant correlation to TDS could be found and only a weak
relationship of Sr/Cayarve values to the Sr/Ca of the host waters could be detected (Fig.
7b; 1>=0.2). Ba/Cayane ratios range from 0.018x10~ to 0.00058 and correlate with
Mg/Cayane and the Ba/Ca content of the ambient water. Molar Fe/Ca ratios in modern
valves range from 0.05%10°° to 0.0038. The Mn/Cayarve values are significantly higher
than Fe/Cay,yye, ranging from 0.024x107 to 0.0048. The U/Ca ratios are between
0.13x10” and 0.015x10™. Mn/Ca, Fe/Ca, and U/Ca show strong positive correlations
among each other within each respective species and are negatively correlated to
8"Cpic (Fig. 8). The observed patterns are displayed in the principal component
analysis (PCA, Fig. 6). Trace element ratios in ostracod valves cluster in two groups.
One group is mainly affected by the TDS and, to a lesser extent, the Mg/Ca ratio of
the host water. This group consists of the ostracods Mg/Ca, Sr/Ca and Ba/Ca ratios
and is accompanied by the ostracods 8'*O content. In the second group all redox
sensitive trace elements (Fe/Ca, Mn/Ca and U/Ca) cluster together and are influenced
by 813CDIC and O,. All available data on stable isotope and trace element composition
in ostracods from southern Tibet is summarized in Table 3 (Appendix).

3.5 Discussion

Our comparison of the trace element and stable isotope composition of ostracod
valves sampled from natural lacustrine environments on the southern Tibetan Plateau
is based on single sampling occasions because of the size and remoteness of the study
area, and we were thus not able to monitor the evolution in water chemistry through
time. Hence a direct measurement of the exact hydrochemical properties at the time of
calcification was not possible. Uncertainty may arise as water chemistry may have
evolved between the time of valve calcification and sampling caused by changes in
temperature, precipitation and evaporation. Nevertheless, the observed water
properties show distinctive variation and are well suited to investigate their influence
on the chemical composition of ostracod valves.
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3.5.1 Stable isotopes in ostracod valves

The carbon isotopic composition of ostracod valves represents the &'°C
signature of the dissolved inorganic carbon (DIC) at the time of valve calcification,
which provides information about carbon sources and productivity (Mischke et al.,
2010a; Decrouy et al., 2011b; Pérez et al., 2013). Processes that affect the carbon
isotopic composition include the exchange of CO, with the atmosphere, groundwater
inflow, changes in pH, photosynthesis, organic matter decay, and bacterial activity,
for example. For our samples we observed just a weak correlation between 8"Cyanve
and 8"°Cpyc (Fig. 5a), but all values scatter around the predicted values for inorganic
calcite, probably depending on the amount of organic matter decay at the sediment-
water interface during valve formation. A relationship between 53 Cyalve and slgovalve
was not observed (Fig. 5¢). The 8"Cyaye values from different sites also vary just
slightly, with ostracod valves from Tangra Yumco and Taro Co being slightly
enriched in 1*C compared to valves from rivers. High 513 Cyalve 1In ostracods from lakes
reflect high DIC carbon isotope values of lake waters, which are most likely caused
by high primary productivity, especially in habitats with high abundance of
Potamogeton such as in Taro Co. Tangra Yumco and Taro Co are stratified lakes and
due to limited mixing of the water column we could observe decreasing &'*Cpjc from
the surface waters to the bottom waters, which may add to the observed scatter in
8" Cuyanve. In their catchment waters, where DIC carbon isotope values are lower than
in the lakes, attesting to lower primary productivity, ostracods show the most negative
Slscvalve values. High primary productivity increases surface water 513 Cpic, but at the
sediment-water interface, where ostracods live, organic matter decay leads to
depletion in "*C. In addition, the constant supply of freshwater or groundwater may
shift the 8'"°C signal toward lighter values. Rivers are in addition affected by
meltwater runoff, characterized by low 813CDIC.

The carbon isotope fractionation during ostracod valve formation is out of
equilibrium with 613CDIC, and observed differences between 813CDIC and 813cvalve
(A13C = 813Cvalve - 613CDIC) are highly variable. Carbon isotope values of ostracods
from lakes are generally lower compared to 8°Cpic (L. inopinata: -3.5 + 0.9 %o; L.
sinensis: -2.29 + 0.97 %o0) and show a negative offset compared to inorganic calcite (L.
inopinata: -4 %o; L. sinensis: -3 %o). Ostracods from catchment waters show higher
813cvalve values (L. sinensis: +4.8 = 0.9 %o0) compared to inorganic calcite and 813CDIC-
This variation of A'>C is most likely caused by shifts in 813CDIC between the time of
valve calcification and sampling. Ostracod valves molted earlier in the year when
primary productivity in the lakes was lower than during sampling time. This may also
explain why the carbon isotope composition of L. sinensis valves from the catchment
waters show nearly the same values as in the lakes, although the measured 613CDIC 1S5
%0 to 10 %o lower in the rivers.

Another factor causing this apparent disequilibrium may be that some of the
studied ostracods molt in the sediment and may be influenced by the 8'°C signature of
the pore waters. von Grafenstein et al. (1999) found that 8'3C in valves of ostracods
molting in interstitial waters are expected to be lower than the measured &' Cpyc
caused by organic matter decay. 8'°Cpjc in pore waters is also expected to show high
variability within a basin due to differences in sediment composition, groundwater
discharge, primary productivity, and organic matter decay (Marco-Barba et al., 2012),
which may explain the scatter of 813C\,31Ve in the studied basins. In our study L.
inopinata, showing a high negative offset in 8" Cyue, penetrates deep into the
sediment and is therefore also influenced by the 3"°C of the pore waters. The overall




lowest 8"°Cyae values were observed for T. gyirongensis, living in shallow river
waters. Based on our results, we also suggest that T. gyirongensis molts at the
sediment-water interface or even within the sediment, as their negative B Clatve
suggests an influence by *C-depleted interstitial water.

Factors influencing the oxygen isotopic composition in ostracods are water
temperature as well as the isotopic composition of the host water. In closed basin
lakes the 8'*Oy0 is mainly controlled by isotopic changes in precipitation resulting
from air temperature variations (Von Grafenstein et al., 1992; Schwalb et al., 1994;
Schwalb et al., 2002b). In addition, meltwater or groundwater input influence the
8Om0 (Lewis and Anderson, 1992; Cohen et al.. 2000). In our study, a weak
correlation between 818ovalve and temperature is only given in samples originating
from rivers, springs or ponds. Ostracod valves from lakes show a wide range of §'*0
values (-4%o to -7%o) at nearly the same temperatures (12.9 - 13.8°C) as available
8'%0 data for specimens living in the lakes all originate from the upper 20 m. Deeper
and thus colder parts (minimum 2°C) of the lakes yielded not enough living
specimens for isotopic analysis. In addition, water temperatures of shallow water
bodies or lake surface water are highly variable, thus we are uncertain about the
temperature at the time of valve formation.

The observed 8'®Oyave values correlate with the respective 8'°0 values of the
ambient water (Fig. 5b) and also with TDS (Fig. 6). Increasing salinity results in
increased 8180H20 and more '*O is consequently incorporated into ostracod valves.

The degree to which this relationship is affected by temperature, however, could not
be resolved in this study. The oxygen isotope composition in ostracod valves is
apparently out of equilibrium as they generally incorporate less 'O compared to
inorganic calcite. In culture experiments a species-specific vital offset was reported to
be constant relative to the equilibrium value of inorganic calcite (Keatings et al.,
2002), but the offset may become more variable in stressful environmental conditions
(Marco-Barba et al., 2012). In our study, the oxygen isotope values of ostracods are
clustered into three groups (Fig. 5b). The first group are ostracods from the lakes,
which are high in TDS and have highest 3'*Oy,0, show also the highest 3'*Oyave with

an offset of -11 %o from inorganic calcite formed in equilibrium. The second cluster
shows an offset nearly as high (-8 %o0) and consists of 7. gyirongensis from the
catchment waters. The lowest offset from equilibrium calcite (-1 %o) is shown by L.
sinensis living in the catchment waters, forming the third cluster. The overall low
oxygen isotope values in the rivers are caused by influx of meltwater as well as high-
altitude, continental precipitation, which is characterized by low §'0 values. Oxygen
isotope values for waters and ostracods from brackish lakes reflect the evaporative
enrichment in '*0. The high negative offset of ostracod 8'*O from equilibrium calcite,
especially in the lake waters is caused by the time lag between the calcification and
collection of the ostracods. Most of our samples were collected during the end of
summer, a period characterized by high evaporation. Our ostracod species calcify
from late spring during the summer, which coincides with the monsoon season (end of
June until end of August), bringing precipitation to the southern Tibetan Plateau. In
the lakes, the observed very negative offset of L. sinensis and L. inopinata 8"Oyaye
from equilibrium calcite is due to valve formation taking place during the monsoon
season, when the host waters had lower oxygen isotope values compared to the time
of ostracod sampling, when evaporative enrichment already increased 8180H20. The
8" Oyanve Of T gyirongensis from river habitats show also a high offset from
equilibrium calcite, indicating that the SlgOvalve is influenced by the negative §'%0
signatures of meltwater runoff. Thus, we propose that T. gyirongensis molts in spring
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with the onset of spring runoff. Hence, our results confirm that the life cycle of the
studied ostracod species is adapted to the monsoon season. Thus, habitat
characteristics and seasonal history can be identified by the comparison of ostracode
and host water isotope signals. Low 8'*Oyae and the very negative 5'°O values of
river and spring waters reflect stable systems with groundwater inflow that are
unaffected by evaporative enrichment. High 8'®Oyae in ostracods from lakes with
brackish water conditions and higher 8800 values indicate evaporative enrichment.
The difference between 8'°0a0 and 8°0yapve (AISO = 53"80yatve - SISOHZO) shows
the same pattern as already observed for 8"°C values. Ostracod valves are enriched in
O compared to 6180H20. In waters most depleted in '*O, corresponding to small
waterbodies and rivers, A'*O for L. sinensis is 10 times higher than for ostracods
living in waters with higher §'*0 values. Variable disequilibrium effects for ostracods
were also reported by Marco-Barba et al. (2012) and Chivas et al. (2002) for ostracods
living in stressful hydrochemical environments. For example, Marco-Barba et al.
(2012) reported a large decrease in ARO (A= 8" 0valve - 8180H20) at high TDS (> 50
g/l). In all our samples TDS is below 8 g/l, and thus far below the reported values by
these authors (72 g/l), but our results also show the lowest A'™O in the most saline
samples from Tangra Yumco. Nevertheless, the most critical factor is the time lag
between the calcification and collection of the ostracods, thus we are not able to test

3.5.2 Elemental ratios in ostracod valves

The Mg/Ca ratios have been widely used as indicator for temperature (Chivas et
al., 1986a; Holmes et al., 1992; De Deckker et al., 1999b) and salinity changes
(Engstrom and Nelson, 1991; Van der Meeren et al., 2011) as the Mg incorporation
into ostracod valves is considered to be a function of temperature and the Mg/Ca
content of the host waters. Especially in marine environments, where Mg/Ca is
constant over time, changes in water temperature can be reconstructed using Mg/Ca in
ostracods. In continental waters Mg/Ca is highly variable due to, for example, mineral
dissolution, carbonate precipitation, and evaporation. Thus, the effect of Mg/Ca of the
water on the Mg-incorporation in ostracod calcite is much larger, exceeding the
temperature-dependence (De Deckker et al., 1999b). Strontium incorporation has been
found to be a direct function of the Sr/Ca content of the host water but independent of
temperature (Wansard et al., 1998b; De Deckker et al., 1999b; Ito and Forester,
2009a). A strong relationship between salinity and Mg/Ca as well as Sr/Ca ratios in
ostracod valves has been shown in numerous studies, but this relationship depends
strongly on solute evolution pathways (Wansard et al., 1998b; Ito et al., 2003b; Ito
and Forester, 2009a). Mischke et al. (2008a) reported that the Mg/Cayave and
St/Cayaive ratios in ostracods from the northern Tibetan Plateau reflect changes in the
precipitation to evaporation balance and water source, as they were related to the
respective Mg/Ca and Sr/Ca content of the host water as well as to salinity, but all
studied lakes were located on the bicarbonate enrichment trend. Most of the lakes in
our study also follow the bicarbonate enrichment trend with the exception of Chen Co
and Taro Co, following a Ca-enrichment trend.

In our study, the molar Mg/Ca ratios of ostracods show no significant
correlation to measured water temperature. There seems to be an effect of Mg/Can,o

on Mg/Cayane (Fig. 7), although the values show a large scatter. The effect of
changing Mg/Cay,o on the Mg/Cayae may also exceed the effect of temperature, as

suggested by De Deckker et al. (1999b) and thus mask a possible temperature




relationship. In addition, the lack of covariance between Mg/Ca,a and temperature is
likely caused by shifts in water temperature and solute evolution between the time of
valve calcification and sampling. A significant relationship between Mg/Cay,ve and
TDS just exists for ?L. dorsotuberosa and T. gyirongensis. During evaporative
enrichment, the increase of Mg/Caypo in the lakes on the bicarbonate enrichment
trend is higher than the increase in salinity, because calcite precipitation removes Ca,
whereas Mg concentrations increase due to evaporation. A correlation of Mg/Camo
and salinity is true for most of our study sites, except for Tangra Yumco (Fig. 3c¢),
which may explain why L. sinensis and L. inopinata show just a weak to moderate
correlation between Mg/Cayave and TDS. In addition, we observe a significant
correlation between Mg/Cay,jye and the Mg2+ content of the host water. Thus, for our
study area it is possible to use the ostracod Mg/Ca ratio to infer changes in solute
evolution and TDS. The large scatter we observe may again be due to the time lag
between ostracod calcification and sampling, so that the hydrochemical properties of
the host waters have evolved during this time. In addition, it has been shown by
several authors that ostracods calcifying in stressful environments show higher
variation in their Mg/Ca content. In culture experiments De Deckker et al. (1999b)
found that ostracods living in waters with high Mg/Ca (>30) are not able to control
their Mg incorporation sufficiently resulting in higher variation of Mg/Cay,jve. In our
samples the Mg/Ca ratios of the host water have values up to 76 and as low as 0.0001,
which may indicate stressful conditions and explain the large scatter at both ends of
the range. Especially the high scatter in Mg/Cay,e from Tangra Yumco may be
explained by insufficient control of Mg-uptake, as molar Mg/Cay,o ratios reach up to
75. The correlation between Sr/Cayaive and the respective Sr/Cap,o and TDS (salinity)

is very weak (Fig. 7). A salinity-dependence of Sr/Cayave was described by many
authors (Engstrom and Nelson, 1991; Holmes et al., 1992; Cohen et al., 2000), but the
authors stated also that this signal can be biased by aragonite precipitation in the lake
waters. Aragonite is a carbonate mineral which takes up Sr into its structure and
removes Sr and also Ca from the water, thus controlling the Sr-bioavailability
(Engstrom and Nelson, 1991). Today, aragonite forms in Tangra Yumco, whereas in
Nam Co and Taro Co calcite is the dominant carbonate. For the other lakes the type of
carbonate mineral is unidentified. For example, the Sr/Cayaye ratios of L. sinensis
from Tangra Yumco show low values (< 0.002) and little scatter. Further insight into
carbonate mineralogy is needed for all study sites in order to establish a correlation
usable for quantitative reconstructions. A negative correlation is observed between
Sr/Cayave and water temperature for L. sinensis and ?L. dorsotuberosa. The
incorporation of Sr into ostracod calcite, however, is not temperature dependent, the
observed relationship actually emphasizes the correlation between St/Cay,ye and
Sr/Can,o, as in our dataset cold lake waters show higher Sr/Ca and shallow waters,

which are warmer, have lower Sr/Ca.

Our data also shows a covariance between Sr- and Mg-incorporation into
ostracod valves. Precipitation rate and Mg content of calcite may exert a strong effect
on the Sr incorporation, biasing the relationship between Sr/Cayaive and Sr/Cap,o,

which was first shown by Mucci and Morse (1983) for inorganic calcite, but also by
Xia et al. (1997b) for ostracods. This is also true for Ba/Cay,ve. Kitano et al. (1971)
reported an increase in Ba-coprecipitation with increasing Mg/Cay,iyve for inorganic
calcite. This is in agreement with our observations, as both, Ba/Cay,. as well as
St/Cayarve, are influenced by the Mg content of the ostracod calcite. Molar Ba/Cayaiye
ratios correlate just slightly with the respective Ba/Ca ratios in the host waters and
show a wide scatter. A relationship of Ba/Cayae to either TDS or temperature has not
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been observed for any of the studied species.

Very few studies exist that address the potential of iron, manganese and uranium
in ostracod valves as paleoenvironmental proxy (Gasse et al., 1987; Holmes, 1997;
Ricketts et al., 2001). The authors relate increasing element concentrations to low
oxygen waters and thus increased uptake of iron, manganese and uranium into the
ostracod valve. The cycling of Fe, Mn and U is mainly controlled by the redox
conditions, hence oxygenation, of the host water. In well oxygenized waters all
elements are insoluble, either complexed or adsorbed on mineral surfaces. Ionic forms
occur in oxygen-deficient waters (low redox potential) and become then available for
incorporation in ostracod valves. A correlation between Fe/Cayarve and Mn/Cayarve and
the respective Fe/Ca and Mn/Ca content of the ambient water was not observed. This
may be explained by valve calcification taking place several weeks prior to sampling,
which is also suggested by the very negative 8'°O values. Thus, the Mn and Fe
concentrations of the host waters at the time of sampling were not the same as at the
time of valve formation. During all sampling periods we never encountered anoxic
conditions, and the oxygen concentration ranged from 1.98 mg/I to 12.6 mg/I for all
sites, thus a correlation between redox sensitive element concentration and
oxygenation was not expected. Interestingly, the Fe/Cayave, Mn/Cayave and U/Cayarye
ratios are all positively correlated to each other (Fig. 6), suggesting the same
mechanism controlling the Fe, Mn and U incorporation into the ostracod valves. Also,
ostracod valves from both peat sites, where reducing conditions at least temporarily
exist and which feature the lowest observed O, concentrations (1.98 mg/l) serve as
test for elemental behavior under low oxygen conditions. They display some of the
highest ratios for Mn/Ca, Fe/Ca and U/Ca. Compared to 813CDIC values, all three
elemental ratios show an increasing trend with decreasing 8'°Cpic (Fig. 8). As
suggested by Holmes (1997), this may reflect better availability of Fe, Mn and U ions
during phases of carbon input from organic matter decay, which leads to reducing
conditions. The only exceptions are valves of L. inopinata showing a positive
correlation between Fe, Mn, U and 813CDIC, but this may be an artifact as the 513 Cpic
range of waters, where living L. inopinata were found, is relatively narrow compared
to the other species.

3.6 Conclusion

This is the first study to assess how valve chemistry of ostracods from the
southern Tibetan Plateau is influenced by regional changes in host water
hydrochemistry. Results from the four most abundant ostracod taxa show that the life
cycle is synchronized to the wet season. The seasonal history of the lakes can be
identified by the offset of ostracod isotope values from inorganic calcite precipitating
in equilibrium. The scatter we observe in our dataset and the negative oxygen isotope
values of ostracods suggest that the valves were formed in fresher water during the
monsoon season in early summer when precipitation and meltwater (low 3'%0) are
most abundant, in contrast to our sampling period when evaporative enrichment
caused an increase of the isotopic composition. The time lag between ostracod valve
formation and collection is reflected by the large negative offset of 80 from
equilibrium calcite values. The key findings are summarised as:

(1) There is a positive correlation between 8" 0yanve and 6180H20, as well as TDS,

underlining that 8'®Oyq1c is a valuable indicator for changes in salinity.
(2) The correlation between 8'*Cyaye and 8°Cpyc is weak but reflects changes in primary
productivity and organic matter decay. The observed scatter of 3"Cyue close to
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predicted values for inorganic calcite, indicates different intensities of organic matter
decay at the sediment-water interface during valve formation. An influence of pore
water 813CDIC, which shifts the 8"Cyane to more negative values, is given for L.
inopinata and maybe also for T. gyirongensis.

(3) In our dataset all stable isotope values and trace element ratios in ostracod valves are
independent of temperature. Absence of a possible relationship between temperature
and ostracod 8Oy and Mg/Cayave 1s most likely caused by changing water
temperatures between the time of ostracod sampling and valve formation, and the
effect of Mg/Cap,0 on the Mg/Cayae may exceed a possible temperature effect.

Hence, using the current data, Mg/Cayave as well as 8'"80yave are not suited to
reconstruct variations in temperatures

(4) Mg/Cayarye 1s primarily a function of the Mg/Ca content of the host water, except at
high TDS, where ostracods are not able to control their Mg incorporation sufficiently
as shown by high scatter. Mg/Caypo correlates with salinity, reflecting the dominant
solute evolution in Tibetan lakes towards bicarbonate enrichment. Thus, for our study
area, the ostracod Mg/Ca ratio can be used to quantitatively reconstruct salinity
changes and infer changes in precipitation-evaporation balance and lake level.

(5) Sr/Cayaive 1s weakly correlated to Sr/Cap,0 and to host water conductivity. The

presence of aragonite precipitation, as occurring in Tangra Yumco, biases the effects
of Sr/Cap,o or salinity on the Sr/Ca incorporation in ostracod valves, because
bioavailable Sr*" is removed from the host water. Thus, without information about
carbonate mineralogy Sr/Ca can only be used as qualitative proxy reflecting changes
in P/E and salinity.

(6) Ba/Cayave and St/Cay,yve correlate with Mg/Cayarve, suggesting that the incorporation of
Ba and Sr is strongly influenced by the Mg content of the ostracod calcite.

(7) The cross-correlations of Fe/Ca, Mn/Ca and U/Ca ratios and their negative correlation
to the carbon isotopic composition of the host waters underlines their potential to infer
changes in redox conditions and oxygenation cycles. Organic matter decay leads to
oxygen depletion and decreasing 8'*Cpic, which increases the bioavailability of redox
sensitive ions, such as Fe, Mn and U. More work, however, is required to understand
the mechanisms controlling the uptake of Fe, Mn and U into ostracod valves.
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Figure Caption

Fig. 1 Map of the Southern Tibetan Plateau with position of sampled lake systems: 1
Taro Co, 2 Tangqung Co, 3 Tangra Yumco, 4 Monco Bunnyi, 5 Xuru Co, 6 Nam Co,
7 Npen Co, 8 Yamzho Yumco and 9 Chen Co.
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Fig. 2 Ternary Diagrams of the cation and anion composition of all studied locations.
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Mg/Cayalve Vs. Mg/Camno; (b) St/Cayanve vs. St/Camno (gray symbols: values affected by
aragonite precipitation).
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Fig 8 Crossplots of Fe/Ca, Mn/Ca and U/Ca vs. 8'*Cpc for L. sinensis, T.
gyirongensis and L. inopinata. (a) Fe/Cayalye Vs. 8" Cpic; (b) Mn/Cayarye vs. 8 Cpic;
(¢) U/Cayare vs. 8" Cpic. Solid line represents linear regression calculated for L.
sinensis, dotted line represents linear regression calculated for 7. gyirongensis.
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Table 1 Information on the studied lakes.
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Table 2 Chemistry of the lake waters. Abbreviations are as follow: Lake systems are CC = Chen Co, MB = Monco Bunnyi, NAM = Nam Co,
NPC = Npen Co, TAN = Tangra Yumco lake system, TQS = Tangqung Co, TRC = Taro Co lake system, TTL = small spring fed lake above the
shore of Tangra Yumco, XC = Xuru Co, YY = Yamzho Yumco. Habitat types are LK = lake, LG = lagoon, P = pond, PT = peat, R =river, S =
spring.

Site code EC T pH 0, HCO; Ca Mg K Na Fe Mn Ba Sr cr s0,” ) 6D 5 Corc Mg/Ca  Mn/Ca  Fe/Ca Sr/Ca Ba/Ca
mS/cm °C mg/| mg/| mg/| mg/| mg/| mg/| mg/| mg/| mg/| mg/| mg/| mg/| [%0, VSMOW] [%0, VSMOW] [%o, VPDB] x10-3 x10-3 x10-3 x10-3 x10-3

CC-LK1 133 8.5 5.6 72 58.2 47.4 123 1101  0.0260  0.0000 26.7 547.2 1.459 0.343

MB-LG 135 230 9.3 6.6 1190 13.7 96.5 312 1850  0.0000  0.0000 0128 287 367.4 -6.72 -95.81 026 12,616 0.643 4.120

NAM-LK1 1.82 6.8 3.55 463 9.1 783 36.8 249.5  0.0000  0.0000 67.7 213.0 15.398

NAM-LK2 1.82 6.8 3.55 463 9.1 783 36.8 249.5  0.0000  0.0000 67.7 213.0 15.398 0.586 2.775

NAM-R 0.14 8.8 7.44 94 18.7 2.9 0.7 88 03200  0.0050 11.9 14.6 0.274  0.0044 0.353 5.808 0.0028

NPC-LK1 0.32 8.1 8.34 103 35.4 12.4 3.8 232 00270  0.0450 0.201 5.6 22,0 0.627 2.835

NPC-LK2 0.32 8.7 5.9 189 343 12.4 4.1 26.5 0.199 5.6 221 0.647 0.467 2.791

NPC-LK3 0.32 86  10.11 110 345 123 3.9 238 0.0210 0.197 5.6 22,0 0.639 2.835

NPC-LK4 0.32 8.7 5.9 189 343 12.4 41 26.5 0.199 5.6 221 0.647  0.0018 0.128 0.604 0.0025

TAN-LG1 017 141 9.4 4.78 110 1297 5.4 1.9 1770 02166 0.0029 0.0106 1.604 14 7.4 -18.51 -139.67 371 0.007  0.0075 0474 11116 0.0040

TAN-LG2 017 141 9.4 4.78 110 1297 5.4 1.9 1770 02166 0.0029  0.0106 1.604 14 7.4 -18.51 -139.67 371 0.007  0.0090 0.284 5315 0.0230

TAN-LG3 014 119 9.5 6.29 85 1615 15.6 6.6 1804  0.0549  0.0017  0.0075 4.566 4.9 129 -18.80 -140.57 -1.72 0.173  0.0082 0.261  13.817 0.0146

TAN-LG4 014 119 9.5 6.29 85 1615 15.6 6.6 1804  0.0549  0.0017  0.0075 4.566 4.9 129 -18.80 -140.57 -1.72 0.173  0.0031 0.107 4551 0.0009

TAN-LK1 12.56 84 1224 1509 82 3260 2490 2985.0 0.036 4.9 70.860  0.0090 0.284 5315 0.0230

TAN-LK2 12.77 102 1034 943 82 3080 2500 2853.0 0.035 4.9 67.192  0.0044 0.353 5.808 0.0028

TAN-LK3 12.60 87  10.82 1435 82 3140 3020 2890.0 0.036 5.0 68.585 2.083

TAN-LK4 12.62 9.1 126 1239 82 3480 3220 3107.0 0.036 4.9 75.642 2.145

TAN-LK5 12.77 102 1034 943 82 3080 2500 2853.0 0.035 4.9 67.192 2.135
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TAN-LK6

TAN-LK7

TAN-LK8

TAN-LK9

TAN-LK10

TAN-LK11

TAN-LK12

TAN-LK13

TAN-LK14

TAN-LK15

TAN-LK16

TAN-R1

TAN-R2

TAN-R3

TAN-R4

TAN-R5

TAN-R6

TAN-R7

TAN-R8

TAN-R9

TAN-R10

TAN-R11

TQC-R

11.94

11.88

119

11.96

11.89

119

11.9

11.87

11.88

11.85

11.85

0.18

0.16

0.14

0.14

0.14

0.14

0.16

0.16

0.16

0.16

0.28

114

129

13.2

13.2

134

13.6

131

13.2

13.6

135

133

133

13.7

119

114

119

114

137

137

137

137

156

16.8

9.9

9.7

9.8

9.6

9.6

9.6

9.8

9.6

9.6

9.7

9.7

9.7

9.5

9.6

9.5

9.6

9.7

9.7

9.7

9.7

9.2

4.05

3.57

39

4.26

35

4.75

39

32

3.54

3.89

3.89

4.57

4.2

6.29

6.78

6.29

6.78

4.2

4.2

4.2

4.2

5.36

2.2

2379

2757

2440

2379

2440

2501

2440

2440

2440

2501

2501

177

98

85

79

85

79

98

98

98

98

122

561

225.8

136.5

69.3

22.0

57.6

406.3

69.3

22,6

334

4355

4355

31.8

122.0

161.5

1717

161.5

1717

122.0

122.0

122.0

122.0

61.7

117.6

183.0

188.2

241.6

280.2

176.6

175.4

241.6

243.1

193.0

196.9

196.9

5.9

114

15.6

2215

15.6

2215

114

114

114

114

6.8

318

185.6

193.1

223.8

267.4

191.1

189.8

2238

218.8

215.1

195.5

195.5

5.8

5.4

6.6

223.4

6.6

223.4

5.4

5.4

5.4

5.4

4.0

18.4

2316.0

2253.0

2337.0

2908.0

2217.0

1905.0

2337.0

2331.0

2177.0

2130.0

2130.0

12.0

166.7

180.4

2392.0

180.4

2392.0

166.7

166.7

166.7

166.7

161.4

263.5

0.0370

0.0633

0.0257

0.1327

0.0314

0.2510

0.0257

0.0616

0.2392

0.2004

0.2004

0.1070

0.0583

0.0549

0.2391

0.0549

0.2391

0.0583

0.0583

0.0583

0.0583

0.0772

0.0216

0.0020

0.0031

0.0008

0.0057

0.0014

0.0039

0.0008

0.0012

0.0028

0.0024

0.0024

0.0100

0.0026

0.0017

0.0068

0.0017

0.0068

0.0026

0.0026

0.0026

0.0026

0.0060

0.0037

0.0043

0.0054

0.0051

0.0053

0.0024

0.0052

0.0051

0.0055

0.0057

0.0039

0.0039

0.0393

0.0075

0.0048

0.0075

0.0048

0.0393

0.0393

0.0393

0.0393

0.0566

0.0170

4.799

3.283

0.754

0.305

0.557

9.242

0.754

0.318

0.422

5.176

5.176

0.083

3.130

4.566

15.990

4.566

15.990

3.130

3.130

3.130

3.130

0.713

2.831

900

975

1200

1280

1060

1240

1200

1270

1100

1000

1000

15

2.7

4.9

0.8

4.9

0.8

2.7

2.7

2.7

2.7

3.0

30.0

2300.0

1850.0

1928.0

2050.0

1980.0

2000.0

1928.0

2180.0

1890.0

2000.0

2000.0

25.6

9.5

12.9

5.0

12.9

5.0

9.5

9.5

9.5

9.5

43.0

100.0

-6.65

-6.61

-6.65

-6.58

-6.41

-6.37

-6.65

-6.71

-6.66

-6.57

-6.57

-18.55

-18.80

-18.77

-18.80

-18.77

-18.55

-18.55

-18.55

-18.55

-18.23

-17.82

-77.58

-76.66

-76.72

-76.40

-76.71

-75.33

-76.72

-78.26

-76.79

-77.15

-77.15

-139.67

-140.57

-140.22

-140.57

-140.22

-139.67

-139.67

-139.67

-139.67

-140.32

-142.76

4.23

3.68

5.78

5.67

5.07

5.78

4.46

5.67

-3.02

-1.72

-3.40

-1.72

-3.40

-3.02

-3.02

-3.02

-3.02

-5.91

1.452

2.469

6.243

22.822

5.489

0.773

6.243

19.283

10.365

0.810

0.810

0.331

0.167

0.173

0.231

0.173

0.231

0.167

0.167

0.167

0.167

0.196

0.484

0.0668

0.0044

0.0044

0.0177

0.0090

0.2044

0.0384

0.2459

0.0763

0.0433

0.0668

0.0082

0.0031

0.0166

0.0166

0.0166

0.0891

0.0384

5.509

0.353

0.353

0.356

0.284

4.635

0.586

2.584

0.961

2.095

5.509

0.261

0.107

0.367

0.367

0.367

3.985

0.586

6.185

5.808

5.808

2.083

2.145

2.135

2.083

11.754

5315

6.785

5324

1.276

5.650

6.880

6.185

2.083

13.817

4.551

12.538

12.538

12.538

6.373

5.324

0.0529

0.0028

0.0028

0.0123

0.0230

0.0757

0.0251

0.2858

0.0760

0.0529

0.0146

0.0009

0.1002

0.1002

0.1002

0.1330

0.0251




TQC-S

TRC-LG

TRC-LK1

TRC-LK2

TRC-LK3

TRC-LK4

TRC-LKS

TRC-LK6

TRC-LK7

TRC-LK8

TRC-LK9

TRC-LK10

TRC-P1

TRC-PT1

TRC-PT2

TRC-R1

TRC-R2

TRC-R3

TRC-R4

TTL-LK

TTL-S

XC-LG1

XC-LG2

0.89

0.24

0.98

0.98

0.98

0.99

0.99

0.99

0.99

0.99

0.98

0.99

0.30

0.49

0.49

0.23

0.24

0.24

0.24

0.34

0.42

3.83

5.61

8.2

16.6

131

126

126

7.2

52

4.8

52

52

13

7.2

20.5

8.6

8.6

183

16.7

15

15

14.8

11

156

153

10.1

9.4

10.1

9.1

9.1

9.1

9.5

9.3

9.5

9.5

9.6

9.1

10.7

9.9

9.9

9.5

9.4

9.7

9.7

8.9

9.4

9.7

29

2.99

3.64

4.27

4.27

5.52

551

4.05

551

5.51

53

552

6.4

198

198

3.38

3.64

4.18

4.18

3.2

6.03

5.67

512

85

372

421

421

415

409

427

409

409

397

415

98

329

329

92

92

98

98

159

201

793

1617

124.6

89.7

102.7

305.5

305.5

239.0

366.5

25.5

366.5

366.5

51.2

239.0

29.6

52.0

52.0

58.2

2395

226

226

352.0

276.2

21.7

47.8

18.6

8.6

15.9

15.9

133

27.8

14.7

27.8

27.8

15.0

133

20.7

6.3

6.3

6.1

17.3

3.9

3.9

145

24.6

28.1

9.6

2.0

0.0

221

8.2

8.2

7.4

12.0

10.1

12.0

12.0

9.3

7.4

16.3

0.0

0.0

0.0

2.9

0.0

0.0

6.0

5.9

76.5

316

164.4

158.5

280.3

248.7

248.7

236.9

295.5

277.8

295.5

295.5

271.3

236.9

3321

154.0

154.0

167.0

164.9

151.7

151.7

159.8

329.0

857.0

1277.0

0.0349

0.0684

0.1448

0.0193

0.0193

0.0885

0.0862

0.1377

0.0862

0.0862

0.1074

0.0885

0.0943

0.1208

0.1208

0.0943

0.0891

0.1172

0.1172

0.0820

0.0731

0.0000

0.0400

0.0033

0.0044

0.0038

0.0010

0.0010

0.0041

0.0016

0.0022

0.0016

0.0016

0.0024

0.0041

0.0016

0.0123

0.0123

0.0077

0.0186

0.0026

0.0026

0.0004

0.0026

0.0000

0.0000

0.0360

0.0072

0.0167

0.0098

0.0098

0.0156

0.0121

0.0256

0.0121

0.0121

0.0065

0.0156

0.0190

0.0184

0.0184

0.0081

0.0253

0.0096

0.0096

0.0071

0.0079

0.768

0.977

3.397

4.208

4.208

2.777

4.677

0.972

4.677

4.677

1.322

2.777

1.291

0.774

0.774

0.677

19.490

0.295

0.295

4.087

3.199

0.546

0.403

6.0

2.7

90.0

70.0

70.0

76.0

78.0

78.0

78.0

78.0

78.0

76.0

3.0

3.0

3.0

24

24

24

6.0

35

614

1165

27.0

46.0

59.0

60.0

60.0

63.0

61.0

61.0

61.0

61.0

60.0

63.0

63.0

15

15

46.0

45.0

45.0

42.0

55.0

395.5

495.7

-17.10

-18.24

-5.91

-5.94

-5.94

-5.74

-5.45

-5.53

-5.45

-5.45

-5.75

-5.74

-16.69

-16.92

-16.92

-17.82

-17.81

-17.94

-17.94

-16.33

-17.52

-4.22

-0.35

-126.95

-137.17

-70.69

-70.15

-70.15

-68.21

-68.29

-68.24

-68.29

-68.29

-70.11

-68.21

-136.36

-139.76

-139.76

-135.34

-135.22

-136.57

-136.57

-138.89

-145.75

-78.50

-65.13

1.01

-4.80

3.08

2.52

2.52

2.35

217

2.10

217

217

2.50

2.35

-10.01

-8.59

-8.59

-4.83

-5.27

-5.09

-5.09

-6.24

-4.80

334

-11.86

0.267

0.171

0.522

0.093

0.093

0.100

0.136

1.034

0.136

0.136

0.525

0.100

1.254

0.217

0.217

0.188

0.013

0.312

0.312

0.074

0.159

2319

0.359

0.0891

0.0025

0.0025

0.0133

0.0034

0.0688

0.0034

0.0034

0.0365

0.0413

0.0413

0.0133

0.0082

0.0166

0.0166

0.0031

0.0011

0.2044

0.1842

3.985

8.645

0.048

0.048

0.284

0.181

4.151

0.181

0.181

1.610

2.451

2.451

0.284

0.261

0.367

0.367

0.107

0.025

4.635

1.784

6.373

6.731

6.731

5678

6.236

18.635

6.236

6.236

12.611

21.350

21.350

5678

13.817

12.538

12.538

4.551

4.564

6.785

7.275

14.063

0.1330

0.0100

0.0100

0.0203

0.0103

03131

0.0103

0.0103

0.0394

0.2005

0.2005

0.0203

0.0146

0.1002

0.1002

0.0009

0.0033

0.0757

0.1100
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166

XC-LK

XC-P

YY-LK1

4.22

0.98

215

0.83

0.58

135

13.8

8.7

6.03

7.75

4.72

4.26

6.67

952

9638

113

342

95

18.0

1589

354

111

47.1

29.0

189

26.2

108.6

0.0

81.5

171

25

18.7

28.5

932.0

315.6

13.4

174.1

0.0000

0.0519

0.0000

0.0000

0.5300

0.0000

0.0022

0.0000

0.0000

7.7690

0.0170

0.518

14.840

679

103

69.2

0.1

422.1

125.0

564.3

0.1

-3.21

-16.33

-70.83 3.38 2.886
-131.56 212 0.021
1.324

17.456

0.000

0.0166

0.367

12.538

4.566

2.135

0.1002




Table 3 Trace element ratios and stable isotope values of Recent ostracods from the

southern Tibetan Plateau (Abbreviations see table 4).

Sample date

Mg/Ca Sr/Ca Ba/Ca Mn/Ca Fe/Ca U/Ca E(e 3'%0
Site code

x 103 x 103 x10% x10% x10? x 10°¢ [%o, VPDB] [%o, VPDB]
Leucocythere dorsotuberosa
CC-LK1 5.7720 3.4685 0.0458 1.4039 0.3620 0.0199 13/09/2008
TAN-LK1 27.0503 1.0578 0.2271 1.6479 0.0995 0.0373 06/09/2009
TAN-LK2 63.3101 1.6304 0.2761 2.5905 0.2753 0.3639 06/09/2009
TAN-LK3 54.3207 0.9759 0.2101 0.8389 0.1180 0.1147 07/09/2009
TAN-LK4 44.6204 1.3067 0.1984 0.7076 0.0302 0.0046 07/09/2009
TAN-LKS 80.3596 1.4065 0.3115 4.1836 0.1013 0.0597 07/09/2009
TAN-LK12 84.6268 1.3975 0.3067 2.1537 0.0645 0.0778 12/09/2011
TAN-LK16 60.6227 1.5756 0.2777 3.6862 0.0120 0.0135 12/09/2011
TRC-LG 41.4968 1.3912 0.2472 0.8875 0.0742 0.0185 25/09/2011
TRC-LK7 5.5775 3.0078 0.0991 1.4680 0.1558 0.0329 22/09/2011
TRC-LK10 9.0592 3.3454 0.5728 1.0148 0.1513 0.0708 22/09/2011
TRC-P1 8.8917 1.9936 0.1621 2.2916 0.0812 0.0069 19/09/2011
YY-P 7.0763 3.7033 0.0337 1.6497 0.0076 0.0075 11/09/2008
Limnocythere inopinata
TAN-LK1 43.7442 1.1672 0.1690 3.2409 0.2688 1.7949 06/09/2009
TAN-LK2 51.7175 0.8990 0.1552 4.8136 0.4775 0.0559 06/09/2009
TAN-LK3 18.9642 0.9748 0.1623 0.9236 0.1131 0.0538 07/09/2009
TAN-LK4 37.1994 1.3677 0.2466 1.8292 0.2185 0.0625 07/09/2009
TAN-LKS 34.3015 1.6388 0.3073 0.7044 0.1329 0.1351 07/09/2009
TAN-LK6 17.4920 1.3863 0.2120 0.9157 0.0096 0.0151 111 -5.15 13/09/2011
TAN-LK7 19.1127 1.0473 0.1164 0.3476 0.0516 0.0063 193 -4.87 13/09/2011
TAN-LK8 27.7843 1.1108 0.1544 1.0321 0.0000 0.0013 1.66 -6.16 12/09/2011
TAN-LK9 21.3497 1.7375 0.3934 1.6840 0.2066 0.0363 151 -4.98 13/09/2011
TAN-LK10 21.7312 1.5381 0.5361 1.1146 3.8491 0.4941 0.91 -7.04 13/09/2011
TAN-LK11 33.3176 1.3692 0.2309 0.5860 0.1508 0.1040 195 -5.09 13/09/2011
TAN-LK12 26.5407 1.1810 0.1695 0.4735 0.0899 0.0803 12/09/2011
TAN-LK13 25.9269 1.2825 0.2923 1.9935 0.0294 0.0000 1.46 -5.24 12/09/2011
TAN-LK14 27.2057 1.2547 0.1696 3.0443 0.0052 0.0096 157 -4.98 12/09/2011
TAN-LK15 37.0845 1.4542 0.2987 1.3192 0.0169 0.0341 151 -4.80 12/09/2011
TAN-LK16 29.8479 1.2009 0.2100 0.7883 0.0118 0.0206 12/09/2011
TAN-R5 25.1520 1.6851 0.4855 1.0690 0.0050 0.0000 14/09/2011
TAN-R10 32.5243 1.6100 0.3395 1.6476 1.5615 0.6477 16/09/2011
TRC-LG 18.9401 1.1011 0.1700 1.5646 0.0843 0.0424 26/09/2011

Leucocytherella sinensis
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CC-LK1

MB-LG

NAM-LK1

NAM-LK2

NPC-LK1

NPC-LK2

NPC-LK3

NPC-LK4

TAN-LG1

TAN-LG2

TAN-LG3

TAN-LG4

TAN-LK1

TAN-LK2

TAN-LK3

TAN-LK4

TAN-LK5

TAN-LK6

TAN-LK8

TAN-LK9

TAN-LK10

TAN-LK11

TAN-LK12

TAN-LK13

TAN-LK14

TAN-LK15

TAN-LK16

TAN-R3

TAN-R4

TAN-R5

TAN-R6

TAN-R7

TAN-R8

TAN-R9

TAN-R10

TQC-R

TRC-LG

TRC-LK1

TRC-LK2

TRC-LK3

3.0594

16.6860

10.3902

12.3517

1.4854

1.6832

1.4686

1.5887

8.2953

7.4208

13.0211

4.5998

28.8707

41.4941

9.2465

21.5282

37.8896

31.1288

18.2543

25.5445

32.6401

22.3493

29.4648

31.9933

17.4695

34.7707

28.6752

12.8397

18.8730

21.4027

13.1717

16.5027

40.5183

13.8707

25.5840

18.2160

17.1340

3.9693

2.8371

3.0404

2.9305

1.4071

8.0457

10.5514

1.2284

1.2019

1.2278

1.1990

1.3627

0.7352

0.7313

2.3212

0.8696

0.7116

12.6238

0.8460

0.8811

0.7491

0.6288

0.8015

0.8685

0.6520

0.7862

0.6883

0.6346

0.8219

0.7577

0.5938

0.6992

0.7438

0.7252

0.5136

0.6222

0.6133

0.7880

0.8744

0.7352

2.7692

2.9745

2.7454

0.0257

0.0703

0.1844

0.2279

0.0455

0.0472

0.0707

0.0566

0.1012

0.0888

0.0800

0.0812

0.0907

0.1019

0.2964

0.0968

0.1176

0.0600

0.1044

0.0952

0.1828

0.0857

0.1316

0.0665

0.0488

0.1089

0.1394

0.0779

0.1057

0.0635

0.1131

0.0518

0.1603

0.0924

0.1888

0.0738

0.1419

0.0716

0.0733

0.1737

0.7260

0.1962

0.1542

0.0236

0.7137

0.4082

0.5060

0.1523

1.1262

1.5039

2.6778

0.5938

1.7797

1.2473

0.0844

0.2408

1.1422

0.1662

0.7624

0.1707

0.6367

0.3129

1.7091

0.8450

0.7225

1.7550

0.3228

3.4540

1.2495

0.7369

0.9595

3.4950

1.1005

2.2574

0.2878

0.1949

1.0961

0.1460

0.2210

0.1830

0.1959

0.1224

0.5636

0.0116

0.0684

0.3822

0.2279

0.0621

1.0453

0.3252

1.3905

0.2308

0.3071

0.0425

0.0325

0.0547

0.1825

0.0192

0.2488

0.0235

0.0334

0.0037

0.5458

0.0946

0.0388

0.0771

0.0088

0.4992

0.2741

0.1963

0.2663

1.4454

0.0950

0.6621

0.0130

0.2018

0.1064

0.0193

0.0505

0.0165

0.0709

2.1187

0.9236

0.0022

0.1196

1.4042

0.1922

0.2449

10.9162

6.4904

7.6689

1.1582

0.0491

0.0305

0.0364

0.0001

0.1936

0.0118

0.0697

0.0100

0.0141

0.0058

0.2631

0.0140

0.2217

0.0112

0.0002

3.6606

1.4066

0.6696

4.6184

14.7215

0.1870

9.7040

0.0049

0.2679

0.0796

0.0082

0.0140

0.0160

0.63

0.54

1.50

1.76

2.75

1.19

2.20

321

3.00

1.86

2.57

2.08

2.14

2.85

234

1.86

1.53

249

2.26

1.79

3.01

-5.40

-5.65

-8.81

-7.95

-6.50

-8.94

-5.91

-4.99

-5.40

-5.81

-4.39

-5.02

-6.25

-6.45

-7.90

-6.80

-6.98

-8.07

-8.36

-6.66

-7.52

-8.42

-7.19

13/09/2008

21/06/2012

24/09/2008

24/09/2008

31/08/2009

31/08/2009

01/09/2009

01/09/2009

12/09/2011

12/09/2011

16/09/2011

16/09/2011

06/09/2009

06/09/2009

07/09/2009

07/09/2009

07/09/2009

13/09/2011

12/09/2011

13/09/2011

13/09/2011

13/09/2011

12/09/2011

12/09/2011

12/09/2011

12/09/2011

12/09/2011

12/09/2011

12/09/2011

14/09/2011

16/09/2011

16/09/2011

16/09/2011

16/09/2011

16/09/2011

17/09/2011

27/09/2011

20/09/2011

20/09/2011

20/09/2011




TRC-LK4 3.4097 2.8927 0.0621 0.5585 0.0338 0.0507 22/09/2011
TRC-LK5 3.5049 2.3964 0.1056 1.2159 0.0489 0.2938 22/09/2011
TRC-LK6 3.1240 2.2343 0.0565 1.2316 0.0272 0.0133 22/09/2011
TRC-LK7 3.9955 2.4980 0.0964 1.1311 0.0433 0.0235 22/09/2011
TRC-LK8 3.5894 2.5704 0.0902 1.0337 0.0007 0.0064 22/09/2011
TRC-LK9 2.5874 2.6446 0.1786 0.1106 0.0087 0.0199 1.80 -3.99 22/09/2011
TRC-LK10 3.1309 2.5714 0.0932 0.5308 0.0641 0.0598 22/09/2011
TRC-P1 16.7243 1.2991 0.0496 0.5271 0.0383 0.0097 19/09/2011
TTL-LK 6.6282 9.4677 0.2077 0.1078 0.0533 0.1782 15/09/2011
XC-LG1 1.5941 3.7535 0.0495 0.0717 0.0243 0.0386 22/06/2012
XC-LG2 1.9695 2.2821 0.1331 1.0831 0.3970 0.0878 23/06/2012
XC-LK 39.2747 4.2918 0.2060 0.8460 0.3295 0.4394 24/06/2012
YY-LK1 10.4062 0.7810 0.0491 0.7229 0.1472 0.0737 14/09/2008
YY-LK2 12.2479 1.1238 0.0207 0.0346 0.0245 0.0120 1.27 -4.86 14/09/2008
Tonnycypris gyirongensis

CC-LK1 4.7683 2.4138 0.0225 1.6386 0.4304 0.3405 13/09/2008
NAM-R 2.2353 0.6304 0.0209 0.9677 0.0239 0.0117 22/09/2008
TAN-LG1 2.1350 0.4454 0.2058 0.2527 0.0012 0.0103 12/09/2011
TAN-LK2 31.8351 0.5286 0.0302 0.7075 0.0645 0.0365 06/09/2009
TAN-LK16 24.9000 0.5971 0.0491 0.7689 0.0227 0.0064 12/09/2011
TAN-R1 4.4436 0.5795 0.0916 0.3052 0.0680 2.0861 14/09/2010
TAN-R2 1.1560 0.4897 0.0378 0.1068 0.0005 0.0005 12/09/2011
TAN-R4 2.2856 0.4212 0.0325 0.2789 0.0060 0.0127 -0.07 -13.89 12/09/2011
TAN-R5 3.4750 0.3821 0.0440 0.3935 0.0157 0.0093 -3.32 -14.32 14/09/2011
TAN-R7 3.3644 0.4230 0.1716 0.2960 0.0005 0.0513 -4.18 -14.35 16/09/2011
TAN-R10 3.4939 0.4102 0.0294 0.1546 0.0063 0.0219 -4.51 -14.89 16/09/2011
TAN-R11 2.7035 0.4535 0.0278 1.1769 0.1135 0.0063 18/09/2011
TQC-S 2.6454 0.2294 0.0852 0.0422 0.0888 0.0090 423 -13.34 17/09/2011
TRC-LG 3.8159 0.5455 0.0255 1.1547 0.0138 0.0059 28/09/2011
TRC-PT1 4.1205 0.7644 0.5803 0.8751 0.1134 0.0351 25/09/2011
TRC-PT2 3.0092 0.8320 0.0470 0.7384 0.2141 0.0110 25/09/2011
TRC-R1 3.1590 0.4210 0.0326 0.6943 0.0387 0.0170 23/09/2011
TRC-R2 3.7347 0.4084 0.0321 0.8509 0.0092 0.0091 23/09/2011
TRC-R3 3.5024 0.3902 0.0295 0.6740 0.1009 0.0017 23/09/2011
TRC-R4 2.2303 0.4383 0.1597 1.6708 0.1560 0.0508 24/09/2011
TTL-S 1.6848 0.5702 0.0405 0.0671 0.0302 0.0182 15/09/2011
XC-P 1.4744 0.5555 0.0181 0.3115 0.0001 0.0000 -0.51 -16.49 10/09/2011
YY-LK1 13.8290 0.7564 0.0353 1.5222 0.5354 0.3450 14/09/2008
YY-LK2 12.4427 1.1550 0.0220 0.0631 0.0125 0.0039 14/09/2008
TAN-R2 1.1560 0.4897 0.0378 0.1068 0.0005 0.0005 12/09/2011
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TAN-R4

TAN-RS

TAN-R7

TAN-R10

TAN-R11

TQC-S

TRC-LG

TRC-PT1

TRC-PT2

TRC-R1

TRC-R2

TRC-R3

TRC-R4

TTL-S

XC-P

YY-LK1

YY-LK2

2.2856

3.4750

3.3644

3.4939

2.7035

2.6454

3.8159

4.1205

3.0092

3.1590

3.7347

3.5024

2.2303

1.6848

1.4744

13.8290

12.4427

0.4212

0.3821

0.4230

0.4102

0.4535

0.2294

0.5455

0.7644

0.8320

0.4210

0.4084

0.3902

0.4383

0.5702

0.5555

0.7564

1.1550

0.0325

0.0440

0.1716

0.0294

0.0278

0.0852

0.0255

0.5803

0.0470

0.0326

0.0321

0.0295

0.1597

0.0405

0.0181

0.0353

0.0220

0.2789

0.3935

0.2960

0.1546

1.1769

0.0422

1.1547

0.8751

0.7384

0.6943

0.8509

0.6740

1.6708

0.0671

0.3115

1.5222

0.0631

0.0060

0.0157

0.0005

0.0063

0.1135

0.0888

0.0138

0.1134

0.2141

0.0387

0.0092

0.1009

0.1560

0.0302

0.0001

0.5354

0.0125

0.0127

0.0093

0.0513

0.0219

0.0063

0.0090

0.0059

0.0351

0.0110

0.0170

0.0091

0.0017

0.0508

0.0182

0.0000

0.3450

0.0039

-0.07

-3.32

-4.18

-4.51

4.23

-0.51

-13.89

-14.32

-14.35

-14.89

-13.34

-16.49

12/09/2011

14/09/2011

16/09/2011

16/09/2011

18/09/2011

17/09/2011

28/09/2011

25/09/2011

25/09/2011

23/09/2011

23/09/2011

23/09/2011

24/09/2011

15/09/2011

10/09/2011

14/09/2008

14/09/2008
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et povide high acoumulation of secliments sned che ow transfooms
o ooy urtudence mudely debris fow (Wesver, 19541 Debos Tlow de-
posits (debritest are classified av 2 mivmire of sediments and water
fomimg a shurry that moves downslope under the action of grawiy
ehiites formed are withowt mremal bedding and laminatson |{Locat
amel Lee, 2001, J005), Investigation of massve sediment ransported
iy dleep waader Tromm an orginal shallow water serting (5 e most effsc-
tive and indisgrensabile strategy for kennlicacion of past mass mensement
anad the threshold of different bypes of event sedimentanon in the gealog-
ical record { Ensele & al., | 996; Shild, 1996). Bentlib: orgmisms are sensi-
e prondes of sehaguasous mass myvement { langs et al. 2000; (loson
and Thotngson, 20056

Osiracods {Crustaced, Artteopoda) ace small bivahved qustaceans
enclose by a lowi-magnesivm caldre carapace nucle up of two valves
wihich are easy 1o {ossilive. They are fbund in most aguatic habitats
anwl even soene terresdrial ecosystems (Forester, 1591 Daniglopal
elal, 1994; Meisch, 2000; Horme &t al, 2002 ). Lacusirine osiracods
are mnsily benthonae, They can be found living on aquatic planis,
crawling oo sedirment |epilnna) and within the sediment | sdauna).
Chracodds hinve the ahility to reflecy the environment in fresh, brackish
dm] madcEne wabers (Yang, 1988; Frenssl and Boomisr, 20005:; Mischkes,
2012} due o thelr specific sologcal preference and tolerance
{Mezguita =t al. 24 ; Halmes and Chivas, 2002; Kulkoyisogia and
Sani, M2 ) Dutracods are imporant biologica] indicators and their mi-
cmifossls are useful for dye desorption of siratigraphical sequence and
palaroenvironmental change (Mischie et al., 2003; Fhu et al.
2000}, habitar type (Mezquita et al, 2000; Kulkoyluogiu, 2004;
Kiss, 2007; Dugel et al, 2008), water giality {Padmanabha and
Iielagali, 2008; Fier et al, 2012}, warer degih (Wrrooyna e al
2008a; Frenzel ot al, 2000), dissolved oxygen conceniration
(Boomer and Whatley, 1992, Whattey et al., J0073; Corhari et al,
2006 ), hytrochemical change (Carhonel and Peypougued, 1953;
Smith, 1Y Curry, 1990; Mischiloe er al, 2007] and other eoviron-
mental variabies.

Ctracnds are commonly Found in Lake sediments when atler im-
porant prooy ergamnems (eg, dialoms) are mod present [Holmes,
2001; Holnoes aned Chivas, 2002 |, Fossil ostraood associations sre imbica-
tors of past emvitonmentdl and climase condiiions on the Tibetan
Fageau (Pengd 1997, Mischke et al, 2005, The we of osiraoods as medi-
catony ol mass movemends |s well establisbed in the marlie realm
| Dimgle el al, 1989 lkeya and Cronin, 1993; Crondn et al, 1994; Arlas,
Z007 ). Mot lwiess, the application in laoustrine environmends is still
unknoem {De Decldoer et al, 1979)

Osiracoids are good indicatoes for the assessment of shoet-Hved
sediment events dus to (1) their ability to reflect speafic depesitional
envirmnaments with degh and tione, | G} thelr ragne response o envineae
mental desturbances, (i) patential discrimination of aliochthrnous
from atochthonous valves and shallow water species from deep-
waater speces, which coulbd reflect different types of sedimens rransport
preescmsams, | (vt abiliny Do quaniily Bssil pennais Cexpressed main-
dance ) and (v by any failure of sedimentany evidence, ostracods could
The waec] 0o ickeralifly SLshat i (RIS Ivenend,

In this paper, we use psramds to dentdy laoustrme subaguaspas
mdss movenents in the lange brakish lake Tangra Yo, central Asia
lnteprated geoplysical. sedimentodogical and micropalaeomologicial
analtyses of 4 short sediment core Trom Uais lake are discussed. The
abjeciives are; (i) o characterise sediment wvent oyers [onme) by sub-
djueoils mass movements and {4 1o examine the polential of lacoss-
i gt TS A% Endicatoes of Subaguaroans mass (e,

Thie fenar criterls defioed foe our concepiual naodel of sedinssm le-
tures and cetraced distribution cased by subagusoas Daiss movenent
it Larpge labes, based on thenretical conssdenstiong, ans:

(1) Tht thickmasti o an event-fayer varies with the distanos from (e
source. Tiis invebves the ransport of sediment Bom 4 sub-
el slope (proscimal areas) (o the depositional evironomendt
{datal areas), which 1 the deeper Botinm of the Like basin
(Fig 1A-C) The owo characterestios of an event a4} coarser
grained sediment i eroded from the steep sbope at proocimal
areas. Thee B successive deposition of suspended subagueous
sediment fornmg a graded bedding at dostal areas, The pre-
event oeven ransition is chatanerized by an sutochthomous
ostraond association which is repianed by allochrhanous ostra-
cots duiring e transport of sedimend Trom sbalbmver wales 1
the deeper ernvironament  Fig 1E-Crop L Ahundanee of ostraceds
is dfistimerrvety bewer within the svent layer than the undedying
ar| oferlying seidiments, 1) Sedirment (4 rnsporied as Bed Lol
amdl then accummidated as fine grained sedimeent &t distal areas
The eveat Loyer confaing Tt calrdctnds due o sorling oul of
thee hevier vatves duning tansport (g 18-C bousm).

(i) A limimgsumaand gracation of seciment within (e evenl layer
(Flg. I8 1op} The base of prosxdmal event Layer s composed of
cosrse-grained sedimment. Redepostion of sedinwent imobes e
seliling of smaller prains which are beld b soaspeasion by cur-
rents during trang pont, fonming a newly fmer-grained ouddy
sediment with & coarss-grained layer oo top of e event liyers
The par-autochificmnons pre-svent ostraod association oonsist
of articildded valves whersis carapaces are lacking from
tramsported ouraced assocations withen thee event layer. This is
caused by the separation ol articalated walves in the rhidaby
current. Cirapaces may be cemenled by sediment casts and
eacrustation The sadimens mdill and soonestation cause the o
trarnd carapaces o be moee stable and heaver creating ennich-
teend af denibile-valves spacimmens within the sand-sire framion.
The event layer at distal areas does not mopitsin ocoarse-graimed
sedimenl due to e soeting By cransport (Rg. T boltom ], A
shilt frem higher to lower adultjuvenile valve ratios occurs
Troen prosinal o descal sedimentaiion aees due [o socling, Far-
thiermeere, juvenie valves are smaller and lighver inoweight than
adult valwes, Eacilitating trnspoctation.

(i) Biocoenoses (life assemblagas | are burted by a sublgueos mass
inwement. In this case, the usdedying distal e Ly is char
acenized by a higher proporton of carapaces than the sediments
unclerlvineg and ovelying the svent Liver,

i) Mecolpalrtion of the post-svent sedimeats | Fig 10 by opportu-
nistic species with a high dispessal ability and adapted (o newly
sty substrate of the evenl Layer.

2. Stualy area

Tamgrd Yuemes (045 =31 20N and 3637 -86"40E) s bocatel
ahoue 450 kam northwest of Lhasa, the capital city of the Tibetan Auton-
omenis Kegion (P 20, Tangra Yoo bs also koo as Dang Beyvongruo,
Iangre Yumiso and Tanghiha Yamon. The lange bradash lake i siteated
ar rhee o thern fank of te central section of the Gangdise mountain
within a 100 km leag and 40 ke wide north-south rending graben
(R 1), which constsas of theee sub-hasing: Tanggung Co (alio called
Tangra Qonco) is siwared o the norch, Monoo Buny in the middle
] Kt G o (he south (Xuwer al, 2006, Cag ¢1 al., 2006, The nirmial
faudis cut throagh the western part of the Lhasa biock {Gao et al., 2007,
Ko ot al, 200 1) The Tibetan region (s prone to frequent eartheguakes
(Taylor and Yin 2000 W et 2l 20535, The Tangra Yamoo nill basin §s
characterized by moderate salumicity based on data from the USGS
databae (hitp:) warthouaos sisgs gov eart hoguakes ‘egarchis ), & K20-
stribcing mrend of eploenters ammingd Tangra Yumeo & observed. In the ad-
Jacent areas eartheuake oo are rathes scattered, The sarhiuakes re-
cotded instrumentally ars on e order of around 6 Minas amd e
shallow o Rare focal mechanisms {bitp:wowwglobalomtong’
OiTsesrchhiml] of larger sarthguakes demonstrate dooslnan sirke-
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Mg & Concrpiual meded of g mes s @l respone ol vseosd meecaten. Thiee phases aee peesniet: pre-svens (AL even! [§] and palever (T3 &) The gor-evem
Lalie b 'woth epilanrmal arl dbalon inkaaall o imooed friecoeneies. 1) Labe et v proowimad | Sep) el sl Dessanee [heiieen] of Dnanepordel sndimerl & pisoen haooeosn of
amnindi w prosksninng Che newly madily iienete C) Siuaton of eeear ke sedeent peaomal (o) anid @il al o soomne | oimeen] afte of earrul i

Al companing. The proinl ses i @ haeacteieed by ddntine gralsd Sebding. The decreadeg ituinms of ke ment Lges e pge B o0 i ol by salimes] s dompaicsn

The buosveepoirs | e of pood 2oocuisn], (e Diaralomenods | desl ovtrsod aeemslage ! sl the thaphos oenoun (el seireods sofodki oo, died & (Be oane of Bl anl

Al bttt i, e ed Bee AFloers somved of M) am kil

slip T g, Conugate NE=SW amid MW=SE trending faults should be
observed Bl acive [l are extension-related nermal fauls (Re )
The Mands of the graben dre geologically charsterized by valcanic mag-
mafic rocks (g, ulErapatasic b polesic v ) (Gaoetal, 2007, 205},
Rapakivi granites ancl (hiaternary alluvial deposits surround the ke
{Chen ot Al 2006,

Tangra Yuimnos i the third Lirgess Like on the Tibetan Plaieas (Loog
et al. 20027 amd hee seconed-deepest {masimmon depth 250 m) ke in
(hina (Wanyg &t al, 2000% The norihermn hasin of Tangra Yumen is
misch deeper than the stathein basin (Talsle 1), Both basins are joled
b 3 narrow “totileneck” conmection with = 1750 m warer depth.

The coddl seema-aridl clirmane of Tangra Yumoo influenced ihe growth
of alpine steppe vegelation of Kabresig pypmore and Aremisig {Miche
o al, 0145 The climate of the region s mainly nfhienced by the
Inelian Sammaer Momsoom | Mishe et al, 2004). The annual preapisation
rainges from 200 0 350 mm (Miehe ecal., 20143, Tangra Yumwo is thee-
mialky siratified in sammers; the lowest iemiperamant of 1.6 °C s recorded
inn the hyprlimimion (Wang e al, 20000, The nwean femperatare fo
January 5 114 °C while the mean July remperaiare (s 108 °C
(Mfietoe it al., 20041 The Lake B covened by doe during winder, althosgh
it dioes nat camgletely (reeze in some years | Kropacek ef al, 20131

Tangra Yumo is 3 hydrofogicaliy dosed dralnage hasin with no ow-
It pdher than evaporation The Lake bevel is maintained lanpsty by pris
apitation, surfece infliws (2. Daguo Tangpa, Burhe Tsangpo and
Masnongeu, which criginate Trom the west amd e south ol the
laks} anel partially from gaciers of Lbe western mounlaims (Shao
el al, J008: Miehe et al. 20040 The oligotrophic lake is dooinied
by K™ ~0 =007 and depleied in Ca® "

3, Material and methods
A1 Cenplriesical maalyse

Sediment coring and sanpling were conducted &1 nomhern basin of
Tangra Yurnco in Sepiember, 2000 and 2011, Hwlio-acoustic botiom
rofiling usiing 4 nan-linear 15 kM paramesinic scho sounder {SE5 96
light, Innomar Technedogie GobH, Bostce, Germany | was carried out
it Tanggra Younco (Wiinderlich and Miilker, 2000, 2000). Evalistina af
simghe hydrm-acowstic sgnal was done with e software padkage low
sedectve slactrode, 1SE, Version 2%1a (Inoomar Technsogie Gob |
Daibryemestric maps weee produced from the acousnic survey data using
the mapping software Surfee® ( Golden Soltware, 1957

I Seprember 201 v sediment cores (TAN 1R 168 oy 2250 m
waterdepth, and TAN 1071, 168 o, 186 mowates depth, Fig 5] were ne-
trieved in ihe center of (e northern Bisin of Tangra Yumoo using &
mid ified ETH-gravity corer (Kelis et al, 1986). In September 201 1,
thires: supplementary sediment cored {TAN 1171, TAN 112, TAN 1173,
Fg. 5 were aben along 3 transect aoross the northery Rasin of Tangra
Yo wsig te sanweCong dedice.

12 Sedimentalogical menilyses

Thie sdinmend cores were split oogimndinally [rom the bottom of the
setiom 1o e Lop o the core splitier wilh wine in & dark laboratory
| Departmmeent of Geography. Friedrich Schiller University) and (reshly

waposed sediment surface was digitadly photographed along with
depth scale. The color of the sediment b determined by visual



i, sty o al | Plieigrograpey, Pafanocmailiy, Pdueroigy 418 (015 -4

| 3rN WM XN MWk

g 2. Mty i e Tibetaen Plteans weich che bacation il Tangra Yurea

comparison  with Munsefl soll color chart (Munsedl, 2000;
Sanchez-hMaranon of al, 200%), The texiural propesiies (gran see and
sodl texture] of the sediment cores are also desoribed. The mean grain
sl wins determngd by e geometnc method of moaments (Hlon ad
Fye. Z001). The secliment tesxiure (s classified based on the German
Soil Survey Manual | Ad-hoc Al Boden, 2005]. Magnetc susceptibilicy
{1} wida dietermained using 4 phototype high resolition (a2 mm sgatial
resoluting) surlace scanning senssd MS2E at a spatial resalution of
2 maim (Bartingt oo hnstrovsents Lid, 1993, 1965, The lithological de-
scHptions, digral images and nagnetic suscepibility patems of each
sedimenl come were used for stratigraphic comelation between cores
{Fig &

Ragiographic image of TAN 104 was chtained wsing an TRAX XRF-
core scantwr [Crouclace o7 al. 20067 and the cormeaponding gray valies
{0-255] were determined using & mac oo for Mionosalt Excel. The sedi-
el cores TAM 1O and TAN 11,2 were sub-sampled at | om intervals
using the double-E-channel method (Nalagawa, 2007; Nakagawal
et al, 2012 ). The water content in aach sample was gravimetnically de-
fermined by weighing the samples before and after aven drying 1o 4
contant welght at 105 *C for 48 b The water mass (s the difference be-
ey The weights of the wet dad dvei drisd samgles (Topp, 2009
Pavkdn & al, 2007,

The determination of granulomesinic partiche size [or the sediment
samyples {TAK 1004) requires removal of organdc maiter, carbenates
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HFz 3. The t=on ard graten srucre willk N & trendaeg Bralty of Targra Yoros | morthem ssan;

atvl sedement dispersion, The sediment canaples wers ireated with 155
o MK hypdrogen peroxsde {M:04) [or organic matier removal { Murmag,
2005 Alben and Thomiley. 2004, wirly 106 o 155 wdrochlone acsd
(HC1} fior carbonate remeval {Baitarhes. 1986G; Battarbee et al, 2001 L
with 5 ol of sodiumpyrophosphane (M HPC=Ha0) and e hacscally
apitated through shaling for 12 h to enhance ssparation of partides
sl Tcdlitation of fracionation. Aller breakiown ol microaggregales
lor 10 s using an wlira-senie dispersion {Mayer et al, 2002; Poeplaw
arvd Do, 2014, Thee grain-size distribution of @ach sample was deter-
minid with a Laser Dillraction Particle Size Amalyoer (Beckman Coulter,
LS 73300} { Murray, 2002; Mott et al, 2004; Exhed wi al, 20041 Samples
wene feasuved with the Agqueois Liguid Mocade i several 605 cecles
il 3 reproducible signal was pbealved. The “Fraunbofer™ apticl
muslel of light scamering was used for comgiuiting grain sie distribntion
(Chrer et &b, 2000; Sworm and Balsaimo, 2000, Krawoykowsla et al,
2012}, The mean grain skee of each sample was calculated from the
It constant measuremenl,

Fow Inlgl-resseelwtion grain size distmiburion amalysis, a tan section
from: the uppermost 7.5 oo of sediment core TAN 1172 was prepared
(erpe wwew,midactoryode) (Francus, 1988; Franous of al, 0S5,
Lapointe ef al. 2002; joove et 3l 20479}, Thin section mages in plain
Al cress-podarised Lt were divuired wimg a standand Marked scin-
TeeT at 2400 dipi resolution (De Keyser, 19569 The digisal images were
[ricessed wsing a software developed af the Institole Mation] de i
Recherche Scientifigue — Eau Terre Environnement Research Centre
(INRES-ETE, Cudhec, Camada] 1o define Fry-loar negions of inferes
(KOs ) which correspond to the grain-sire measurenyvends. Racbscaten-
ing electron (BSE )} images with a resofution of 1024 « 768 piel amd
|y el st wiene acquined for the RO using a Beiss EVO® 30 scan-
N elecinon micToscope al 20 kY accelerting voliage, 07 i angle and
oo weorrkd g distamde {Lapodiie et al, 2002), Digical iinages of 8 bat
Eray scale were obtagned The mages were processed by the method
discussed by Lewis o ad, (2070] and Lapoinee ot al (2002, Particle
sixe indices, Le, megian desk apparend daameter (mily ), maximuii

sk demieter {maxdly), perventile S5% (1" 98 Dy} sl roudness index
ol |, relaton of maxmmum o masimam disk diameter of the smgle
griin=sine, wen diermined (g 7L

A7, Micrnyfivgsll orabyses

i conceptual model (Fig, 1) was teted by aalyzing e ostracod
content in sediment core TAN 1004, One hondred and sboy-twn sedi-
ment samples (1 cm indervals ) were ohiained, Seveniy-gae of these
sammglies wiene s Tor the investigation of mitracod distributeon withan
wvent layers and their overlying and underhying sedinents. The volume
for mach sedument sample (0.1 to 20 ml, mean = 1.4 o} was deter-
mmisied by displicemsnt ol waler a2 gradwated measiering cylindes.
The sediment wis washed using standard sieves {200 jum and 63 )
under 4 genkle siream ol Eap water. The materis remaming on the
sieves was rinsed with deinnized water, transfered ooto a Petri-dish
uzing 9% ethanol and dred at ropm eemperature. Microfossals were
quantitavely anabyred from the J0 e size fraction Gstracod valves
were picked with 3 wet fine brush from the residue material in 2
griclded tray under a Wild Hevrbrugg MH binocular micToscope §magni-
fucations between 25« and 50« ) with a Eght source. Osmacod valves
were denitilbed 10 species level wsing key Tibetun Ostraooda relerences
{Hou et al. 2002; Hou and Gow, 206007 ; Wiromma et al, 20080), inenile
and aduls valves were counded [or D ahuambant species Litocytherelo
Timemsis,

Adudts and juseniles ol Lo ytheneile siomsly weee diferentiaded
Iy sire and shape of the valves Juvenile valves are more triangular in
wuiiline than adukt valves. The last ontogenetic stages {A-2, A-1] and
adhale wahves of L simensés were analyosd. Thie A= stage has @ masiomim
Ieestghit of 200 jun, makding redaining on the 200 0 mesh sieve unlikely.
Therelore, an unaltered thanaboooendosis | death assemblage) consists of
Alxout one third adull valves, Alschiie abuielance of esiaomds was l-
citlaten) & the total number of valves per 1 cm® (Boomer et al,, T3],
The average ahule juvemle ratio of L sheasi (b amples widh a lsast
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A0 specimens | ncourming in the event ayers and their overying and wne
deriying sedirments were cilcislated. Carapaces of L sinemsi were cound-
wd a3 two valves and relative peroentages were caloulated. Fragmenied
amil stained gafracod valves wene dooumenisd. vestizated ostracoed
specimens are stored in the collection at the Instioate of Groscience,
Friedrich Schiller University Jena, Germany,

4. Resulis
4.1, Genpiyysival amelyses

Bt thee wesiem amid s1stem shores of the nothemn basin of Tangra
Yoo are ¢harsceioed by steep slopes witha very thin sedimient ac-
cumnilation, fadure scars. slump siruciures and sediment relocalion
(Fig ), Different types of subaqueous mass neveaset (event Liyens =
EL) and hinmigenoas harteontal Layseing (=25 m thlckinsss without

reaching the basement) were alss detected oo the transition from the
slopes oo che Mat ceniral bastn at water depth of = 220 m (Fg. 6] In be-
tween the layered pans, homogenous layers (up to -1 m thicknesa}
wigh low reflectivity were alse detected. Roe lugensd sediment end bo-
mogencas event layers were found in sediment cores TAK 1054 and
TAN 11/2. Dther observable seismic Reatres in Tangra Yamos inchude
liwar structumes { ez, submverged Like level terraces |, bectonic features
(e, weries of Gualts, P G- and graben structuees (data exchuched rom
this paper | Event lager thickness within a single sediment core de-
rezses (Tom west th ease

4.2 Sadimentary analyses
Tlae mmaln lvestigared cosre s Uhls seucly (TAN 104 b charaoierioe)

& histerogeniis Insed on ssdimient color, grain siges and micro facies
Sedfiiments are ormntally layersd with vadous thickissses betwesn
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16 b om "
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<1 moom and 5 i over Llarge parts of the core (Fg 7). Sedinent ¢ olors
alternate froam bright yelbowish brown (Munsell: 10YR 7%} aver light
heowniesh gray (Munsell: T5YR 72 o backish (Munsell: 7.5YR 1.7/1)
| Sancher-Maransg = al. 205, Thamfisen o al, 2013). Grain-slne
varies (oo fime sanal (o medium sile (Fy. 71

The majsr evend layers (EL] in the core are ELT — 162 ¢m Lo
157 cm {oldest evend Layer ), EL2 — 1275 cmbo 1155 o {secomm)
fidest svent Liver ), EL3 — 104 om io 99 i | Ui eldest event

lawer), EL4 — 145 com 1o 17 cm {second youngest svent Lioyers ) and
ELS — 4 vt 2 oo {youngest svent Layer ). The evend Layer EL1 ks
composed of findng upward sediownss without a sandy sili hase.
Theee evend layers (EL2, 1 and 5} are dharactertoed by high propor-
tions of coarse sill with dark browendsh te Backish color at the base
and frning upward with brownizh color at the top (Fig, 7. The
event layer EL4 consists of a sandy silt base with ungraded bedding.

The rafiographic image and the comesponding gray value is an ndi-
calod of sealimnent densing, Thie blackisb coboes | low gray values ) indicaie
dense material whereas lighs hreemish oolon { bigh gray values) reveal
& bovwver densiny (Fig. 7). The event layers (EL1-3 sl 5) show lnigh
proportons of dark foe sand with corresponding bower gray valses
anwl & gradual increase in grain-sixe upward (g 7] Fve event lapers
TELY =57 are characienssd by lpw waler contend belvween TI% and
S0% | comgrared o the ambient sedirmen tarion with about 66}, hIF_TI-
magnelic suriepiibility viloes between 230 and 37 - W07 51
{= 1060 - 10" 51 for the amblents sediments . The event kyers B.1-3
anl 5 are Charadterinsd by o coarser nosan grain {fine 10 oowsdiuma silc
berween 15 jum and 33 o at dee base and o findog upwand | graded bed-
ding | while BLA reveals simdlar seclimeent ary feature withour a gradled
Bedding.

The appermest parts o sedimaent core TAR 112, af a sedinent depih
ol 5.5 amto 1.7 o in TAN 112 and corresponding depth of 5 omio 2 an
in TAN 104 are chamcterized granulometrically ina very high resolu-
tion with a special emphas=s on the youngest evenl layer EL 5 {Fig. 7}
The Fimire uprwand fremied B detecabie L the BSE insages (g V. onched
mumbers | tmd |

il 2

3

668 Bil 65 Bl7 B, 75 8

M. & Targra Yomes (ki) with Sachyme mial mag of iEe portbem hain {mght) e pesioss of che ssdwnems cove (TAK U0, BAN 11320 ded wipplementany ooves. An sxamglé of &
i gmnsnza pidkiag dhplivs cerg dope witk ke eadiswis coeige



L, Aty o al, Pl gargrapey, Pataocdmamligy, PMalimecodngy 414 (15 G- &

Flg B Tangra Yismen: Saxtiom sarface wid magrafed sxamples of ydim- acoustic esdime s properies L. Bdlore, selecanon. abs, clomp aveeaes and horesncal Layenng | The wdi
et oo posiien along W | tmnses wiohie the bk lusieed. The wale o the lergsh of sediment cores difen frem she wale sf water depeh. Magoene suscepstinlisy («ar 107" 50
s are phiied bof eack sedimert oave | the rght sideof i) Tor pataliebzation, The gory thaded areas connraing The sadimen oo irseges induae cveel Ve and the poopend
enmvelation Freni Layer (ki o6 e zes B e sxdem dope bs [he ervierof (e hase

A1 Mirrafssds Limaocytheridae, namely Leucorytherslo saersis (Huang, 1882)
Leucocythede? dorseluberoin (Huang, 19821, Limhocythere inopinma

Ostrarots were (he only microlossils domumented within the (Bagrd, 1643 and the candonid Foboeformizandong gylrongensls
200 um sige fraction. Four ostracod species were ilentified {Huwang 1982) (Fig 8. The cstracod valves are well presere ( 50%) al-
im the sediment samples analyesd. Represenisd are  maindy though there are few ragmented valves {105 The average adult/
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juvenile ratio ol L, siemsis i sampies exclusive of the event Livers and
wiilh at least 30 specimens s 3730 (standard deviation = 5D, 165}
The summed ug sdulljuvenile ratio of L simeusds (n = 377 counted
within the eveni Layers s 1515 The relative percentages of carapacss
Carmirulated valves | of L sfiensis ame low | avemage LEE S0 18], soounng
i e chan bl of the samples {excduxive of the event Lavers].

411, Bwent fmyer 81

Abiolute sbundance of asliaceds is higher in the overlying sedi-
menis than within the oldest eveni Gyer, EL1 (Fig. 9 162 cm i
157 o], The ioadividual ahamdance of each species Muctuates with
depth. Lemcooythenta sineresiz and Lewoocpthere? dorsoruberess are the
misl abuidanl species m the overlying sediments. Limnocythece
ot and FafacfErmiicomdoe gTrengensis occur in low numbers
i paar record. Juwende valves of L sinewsts aré distinctively more aban-
dand i the overylying sediments than within EL1, Adult valves of
L simeasis are absent im FLY abifwiagh abandant i the overiying sedi-
maents Carspades ane Backing in EL1 and rare in the overiying layer.
Event Layer EL] bs iwnmplers, underlying sediment samples have ol
heen analyoed fr this pager

402 Feent hoyer H2

The maximsim namber of ostracods accamulated in the waderdyang
amd crverlyting sediments b bigher than within the secomd oldest eveit
Tayer, EL2 {Fig. & core depih, 13295 cmio 1155 conl All ostracmd taxa
reconded within the core are present ar the Base of EL2, There i 2
sharp decrease in absodute abundamoe and species number at the base
fLoure depih, 1247 cm) ol EL2, Levcocybheredi s is the only species
present at the top of FLZ The jkvenibe and ad it valves of L simensis are
nerce abandant at U haie than at te op of EL2 although adulk valves
drg disappexring a1 core depeh, 1245 coalo 1175 cme The reladive per-
centage of caragaces is higher in the underying sedunsents and af the
Base of EL2 aliheigh lacking (rom core depil 125 om ko 110

A1 Event foyer 03

The underlying dnd overiying sediments contin i higher number of
osracnds than within the thard oldest evenr byer, ELT (Rg 9 104 covin
g9 em) Lewpocyrherede sinenss is the most aencant faxon peesent
the hase of EL). A moderate number of Leicmythere! dorsaiuberaso
aml Febmejormiscandeng grimengrans ocoar in ELY, Hmpocythers
Inegrinets s missing in the underying sediments and FUL Juvenide
wvalves of L. simensis are more abandant than adult vabves in the amderiy-
g e ety sediments tham in FLL The relative peroentages of car-
apaces are lower inche events layer than in underlying and pverlying
sedimenis

404 Feent loyer Ba

The absolure abwindince of natracods vases distinetively with depih
e o o), I is highver i the wnderlying sedimenis than inthe over-
Tt anc sevoned yeningess sven) Lper, ELA (g 9 145 conm 1] aml Ju
venile valves of Leweocyrherefia stamnsls dominate the associariong
throsighangt the core, The maxdmum mumber of adult valves of [ snenss
oorurs a1 core depth 165 om, The relative percentages of carapaces are
very lowr o the nnderdying and overlying layers with no reconds ;i the
event laer,

415 Event hayer B3

The ahsolute aMmdance of osracods b higher o te undenying sed-
iments than inthe overbying and the youngest svent laver, BLS (g &
4 cm g d e Theere (5 sharp decrease of ostracods 3 (ke base ol
ELS. Limmocythere inopinaio is the most abundang speciss in te ovedy-
ey By il Listacoc i faerefil & e iy mainly (resent in ELS, A higher
mimiber o jusvenile than adil valves of L sdnerels ocours i ELS The rel-
ativer percentage of carapaces is higher within ELS than within the ather
fowii event layers vestigarsd.

5 Disrussinm

5.1 fwaphysics omd sedfimeninogy

The geoplwsical and sedimentological featres mdicate that the sed-
ument event yers e generated by wbagueous mass movemenls
{eg. turbudity carrenis) { Mulder and Alexander. 2001; Schnellmann
et al., H006), Several strectural and testural parameten | sandy sl
hase and graced bedding with a clavey top) of four major event Layers
(L= amd 5 in core TAR 1004 indicate that Layens were foomeed by tur
ity fow events { Mulder and Alexandes. XH11; Faner e al., J006;
G e al, 207%), Thais 15 supported by amilicially idased oaesdiy our-
rents producing smilar layers | Middbeton, 1893 Shanmugam, 1996,
19497} Bads e al, J05) where D Drbic iy heds can vary i thickieas
aconrding to sedimentary envimonmenal settings (Canyon. submanne
Tam, hasin glain et (Eldale el al, 1984; Middieion amd Meal, 1985;
Kreefler, 2003; Broums, 2004 |

The individaial coarse-grained layers are generally ooganized into
Hema seqjuences | Boumma, 20043, and the venical staciing of layers
commmraaly Brerres thinning -ugreaiand and foing-upmaand cypcles The doan-
& erosave base and Hing upward treod of the event Lavers | Ag 7: nsets
1 o4 sugparts this assunpetivn that the yoangest evinl liyer is depos-
lemih by sbugjueolss mass movenent., Snce ol otber svend layers are sed-
imentologically very similar, the resubis of the high-resolution grain size
amabyxis conild be applisd] ko the older event layem

Magnetic susceptinlity (v} parallelisaton of the event layers in the
dldferent sediment cores along 3 transect acroes the lakes sygrpests that
s fnoveneents (Fig. 6} onginate from the easterm shore of the lake,
This is due to thinning of event layers 0 a sngle core wiith nsing dis-
fance From east b west. Hisweves, the pamicular mechanism that erig-
gers he sl gueois events in Tangra Yumens remains unchear,

Turbidity curments are coemmoen feanses in deep kkes and mosty in-
terigierse the sirarigrapshy wath hemogenos netbddice Liyers {Nelson
ot al, 199 Barker, 2008, Sasethrey e al, 20030, Sediments deposated
Trom sspenaion curnents demonsimie a varely of distineive fealumes
which vary depending on the magnirade and velocny of turhidity
aniirends, The mraerial aod (he distance Trooy te sowce srea, thie oor-
phclogy of the bastn and otber factors (Einsele. 1952 1. The acoummlarion
of e sedionent fepwesents depsinon oo a sope and witical amd laseral
susrcessnns of sedimentany strucures, induding races of botom dwedl-
T orga s {Einsele, 15992), Cross lamination and rippled beds are
missbng in the analyeed sedisnent core, henefore a distal origin of sedl-
ek depusition is postubated HslL TR

52 [seroeod weh prssnation

The degres ol prevervation ol ostracod vabees is relaed o the type af
sedimermanian. ln i high-siergy environment with ragid sedimentation
astracnd valves will be disarticulated and fragmented