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Abstract  
 

You invoke a new future when you envision your past in the light of your present.”― 

Eric Micha'el Leventhal 

 

High-mountain saline closed lakes and their organisms (e.g., meiobenthos) are 

very sensitive to environmental and climate change and corresponding impacts on 

precipitation/ evaporation balance. The primary aim of this work is to evaluate 

ecology and palaeoecology of ostracods (small crustaceans) in a large brackish lake, 

Tangra Yumco, and adjacent waters on the southern Tibetan Plateau thereby 

contributing to the understanding of past, present and future environmental and 

climate changes in central Asia. 

This study provides the first ecological data and informationon the habitats and 

ecology of eleven Recent Tibetan ostracods (nine living and two empty shells) in 

high mountain aquatic ecosystems (lakes Tangqung Co, Tangra Yumco, Monco 

Bunnyi, Xuru Co and adjacent waters like rivers, ponds, streams and springs) on the 

southern Tibetan Plateau. Cluster analysis indicates two types of ostracod groups: (i) 

permanent lacustrine species – Leucocytherella sinensis, Leucocythere? 

dorsotuberosa, Fabaeformiscandona gyirongensis, Limnocythere inopinata and 

Candona xizangensis and (ii) species of temporary freshwater – Tonnacypris 

gyirongensis, Candona candida, Heterocypris incongruens, Ilyocypris sp. 

Heterocypris salina and Potamocypris cf. villosa (one valve only). Spearman and 

multivariate analyses indicate a significant relationship between living ostracods to 

environment variables. Multivariate analysis indicates conductivity and habitat 

types to be controlling presence and abundance of ostracods. 

The documented ostracod species were present and abundant in specific aquatic 

habitats. Indicator species include: (i) L. sinensis dominating Ca-depleted brackish 

waters despite being commonly present in diverse aquatic habitats; (ii) L.? 

dorsotuberosa inhabiting fresh to brackish waters; (iii) L. inopinata predominating in 

mesohaline to polyhaline waters; (iv) F. gyirongensis inhabiting exclusively brackish 

lacustrine deeper waters; (v) C. candida colonising freshwaters; (vi) T. gyirongensis 

and Ilyocypris sp. populate shallow temporary waters; and (vii) H. incongruens 

occurring in ponds.  

Water-depth-indicators within the lakes include (i) L. sinensis, L. inopinata and 

C. xizangensis as phytal shallow-water species and (ii) F. gyirongensis and L.? 

dorsotuberosa as deep-water fauna. 

The first calibration on shell chemistry (δ
18

O, δ
13

C, Mg/Ca, Sr/Ca, Fe/Ca, Mn/Ca 

and U/Ca) of four Recent ostracods (L. sinensis, L.? dorsotuberosa, L. inopinata and 

T. gyirongensis) reveals species-specific stable isotope fractionation and elemental 

incorporation into the calcitic ostracod shell. Ostracod shell chemistry (δ
18

O, δ
13

C) is 

related to water chemistry with variable disequilibrium. There is a significant linear 

relationship between Mg/Cashell and Sr/Cashell and Mg/Cawater and Mg/Cawater. The 

Mg/Cashell reflects a change in Mg/Cawater and salinity of the waterbody. There is a 

linear relationship between shell chemistry of L.? dorsotuberosa and water chemistry; 

Sr/Cashell is related to Sr/Cawater and significantly correlates with specific conductivity 

of the water. The shell chemistry of L.? dorsotuberosa is a good indicator of changes 

in Sr/Cawater reflecting salinity variability bound to lake water volume balance. In this 

study, the incorporation of both Mg and Sr into ostracod calcite was temperature-
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independent. Fe/Ca, Mn/Ca and U/Ca ratios of ostracods shells are evidence for redox 

and oxygen conditions of the aquatic ecosystems they dwell in. 

A first conceptual model of lacustrine sub-aquatic mass transport was developed 

and tested using ostracod associations and sediment features. The very low abundance 

or the lack of ostracod valves in event sediment layers are evidence of subaqueous 

sediment flows from a steep slope to the deep basin of Tangra Yumco. Ostracods 

(valves of L. sinensis, L.? dorsotuberosa, L. inopinata and F. gyirongensis) are 

lacking in sediment events layers due to coarser sediment accumulation caused by 

bottom currents as well. 

This study provides the first continuous reconstruction of Late Holocene 

environment and climate variability of Tangra Yumco (last 3,300 years) inferred from 

palaeoecological analysis of ostracod associations and shell chemistry (δ
18

O, δ
13

C, 

Mg/Ca, Sr/Ca) together with sedimentological analysis. Ostracod assemblages and 

abundance reflect mainly lake level, salinity and productivity of Tangra Yumco. 

The five phases of Late Quaternary climate transitions are: 

(i) Leucocythere sinensis predominates (87.5%), other lacustrine-brackish 

ostracod species are scarce, low species richness (3), low δ
18

Oshell and Mg/Cashell, high 

δ
18

Cshell  and Sr/Cashell, slowly increasing values of total inorganic carbon (TIC) in 

3300 to 2320 cal BP, suggesting a high lake level and relatively low salinity (fresh to 

oligohaline) and moderate productivity in a relatively cool and wet climate. This was 

caused by relatively high precipitation (strengthening of monsoon) with high 

freshwater input into the lake and decreasing evaporation. During this period, Tangra 

Yumco was an open lake system with an outflow into Tangqunq Co. 

(ii) A decline in L. sinensis abundance and transition to L.? dorsotuberosa 

dominance (51.5%) with increased species richness (6) and both shallow and deep 

water ostracod taxa, high total organic carbon (TOC) indicate a decreasing lake level 

marked by a gradual increased salinity (oligohaline) and highest productivity in a 

warm and dry climate from 2300 to 1760 cal BP. This is triggered by decreasing 

precipitation due to weakening of monsoon acitivity and increasing evaporation. 

During this period, Tangra Yumco begins to separate from Tangqunq Co becoming a 

closed lake system. The lake remains closed until today.  

(iii) The very low abundance of ostracods (average 13.6 valves/ml) and very high 

total inorganic carbon in 1740 to 1104 cal BP indicate falling of the lake level 

accompanied by increasing salinity (oligo- to mesohaline) and extreme low 

productivity induced by decreasing precipitation (weakening of monsoon) in a dry 

climate.  

(iv) A gradual recovering of ostracod assemblages and prevalence of L. inopinata 

(61.7%), rise in species richness (4) and diversity, high δ
18

Oshell and Mg/Cashell, low 

δ
18

Cshell and Sr/Cashell, coarser grains with a maximum at the onset of the Little Ice 

Age, very high potassium, highest TOC and high TOC/TN (atomic) in a cold and 

driest climate are indicated from 1065 to 444 cal BP. The Little Ice Age period from 

c. 650 – 100 cal BP is characterised by a lowering of lake level marked by increased 

salinity (mesohaline) and high productivity. This is caused by low precipitation 

(weakening of the monsoon) and increasing evaporation due to cool and dry climate.  

(v) During 405 cal BP to present, there was a transition of L. inopinata 

predominance to L. sinensis dominance, with low adult/juvenile ratio, low 

carapace/valve ratio, low K and TOC in a cool and relatively wet climate, suggesting 

lake expansion but with low lake level and moderate salinity (oligo-mesohaline) and 

high productivity. The lake system was influenced by relatively high precipitation 
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(strengthening of monsoonal rainfall) and minimal increase of evaporation due to 

increased temperatures. 

In conclusion, ostracod assemblages and associations, abundance and diversity 

can be successfully used to characterise (i) water types, permanence, depth and 

salinity; (ii) hydrology, primary production, redox conditions and oxygen availability; 

(iii) subaqueous sediment transport, depositional environments in a deep lacustrine 

basin and (iv) aquatic ecology, environment and climatic conditions. Ostracods are 

sensitive bioindicators/proxies suitable for palaeoenvironmental and palaeoclimate  

research on the Tibetan Plateau. 
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Zusammenfassung 

Saline Hochgebirgsseen mit hydrologisch geschlossenem Einzugsgebiet und ihre 

Fauna, beispielsweise das Meiobenthos, reagieren sensibel auf Umwelt- und 

Klimaveränderungen sowie auf damit verbundene Schwankungen des Niederschlags-

/Verdunstungs-Verhältnisses. Wichtigstes Ziel der vorliegenden Arbeit ist die 

Untersuchung der Ökologie und Paläoökologie von Ostrakoden (Kleinkrebse) in dem 

großen, brackischen See Tangra Yumco und umliegenden Gewässern auf dem 

südlichen Tibetplateau. Damit werden Erkenntnisse zum besseren Verständnis 

vergangener, gegenwärtiger und zukünftiger Umwelt- und Klimaveränderungen in 

Mittelasien gewonnen. 

Die vorliegenden Untersuchungen behandeln erstmals Habitatpräferenzen und 

Ökologie von elf rezenten Tibetischen Ostrakodenarten aus alpinen Ökosystemen des 

südlichen Tibetplateaus, nämlich den Seen Tangqung Co, Tangra Yumco, Monco 

Bunnyi und Xuru Co sowie Flüssen, Bächen, Tümpeln und Quellen ihrer Umgebung. 

Neun dieser Arten konnten lebend nachgewiesen werden, zwei nur durch leere 

Klappen. Durch Clusteranalysen lassen sich zwei Gruppen von Arten unterscheiden: 

(1) Arten permanenter Seen – Leucocytherella sinensis, Leucocythere? 

dorsotuberosa, Fabaeformiscandona gyirongensis, Limnocythere inopinata und 

Candona xizangensis. (2) Arten temporärer Süßgewässer – Tonnacypris 

gyirongensis, Candona candida, Heterocypris incongruens, Ilyocypris sp. 

Heterocypris salina und Potamocypris cf. villosa, letztere nur durch eine leere Klappe 

belegt. Spearman-Korrelations- und multivariate Analysen belegen einen 

siginfikanten Zusammenhang zwischen der Verbreitung lebender Ostrakoden und 

verschiedenen Umweltparametern. Vor allem Leitfähigkeit und Habitattypen 

kontrollieren danach das Vorkommen und die Abundanz der Ostracodenarten. 

Die dokumentierten Ostrakodenarten sind für spezifische aquatische Habitate 

charakteristisch. Indikatorarten sind: (1) L. sinensis dominiert in Ca-abgereichertem 

Brackwasser, aber kommt auch in den meisten anderen aquatischen Habitaten vor; (2) 

L.? dorsotuberosa lebt in Süß- und Brackwasser der Seen; (3) L. inopinata herrscht 

bei mesohaliner bis polyhaliner Salinität vor; (4) F. gyirongensis kommt 

ausschließlich im tieferen Brackwasser der Seen vor; (5) C. candida besiedelt 

verschiedene Süßgewässer; (6) T. gyirongensis und Ilyocypris sp. sind für flache, 

temporäre Gewässer typisch; und (7) H. incongruens wurde nur in Tümpeln 

gefunden. 

Wassertiefen-Indikatoren der Seen sind (1) L. sinensis, L. inopinata und C. 

xizangensis als Flachwasserarten des Phytals und (2) F. gyirongensis und L.? 

dorsotuberosa als TIefwasserarten. 

Erstmalig wurde eine Kalibration zur Schalenchemie (δ
18

O, δ
13

C, Mg/Ca, Sr/Ca, 

Fe/Ca, Mn/Ca und U/Ca) von vier rezenten tibetischen Ostrakodenarten durchgeführt 

(L. sinensis, L.? dorsotuberosa, L. inopinata und T. gyirongensis). Sowohl 

artspezifische Fraktionierungen von stabilen Isotopen, als auch artspezifischer Einbau 

von Spurenelementen in den Kalzit der Schalen konnten dabei belegt werden. Die 

Isotopie der Ostrakoden (δ
18

O, δ
13

C) steht mit jener des Habitatwassers in einem 

variable Ungleichgewicht. Es besteht ein signifikanter, linearer Zusammenhang 

zwischen Mg/CaSchale und Sr/CaSchale mit Mg/CaWasser und Mg/CaWasser. Das Mg/Ca-

Verhältnis der Schalen spiegelt Veränderungen im Mg/Ca-Verhältnis und die Salinität 

des umgebenden Wassers wider. Es besteht eine lineare Korrelation zwischen der 

Schalenchemie von L.? dorsotuberosa und der Wasserchemie; Sr/CaSchale korreliert 
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mit Sr/CaWasser und der Spezifischen Leitfähigkeit des Wassers signifikant. Die 

Schalenchemie von L.? dorsotuberosa ist ein guter Indikator für Veränderungen des 

Sr/Ca-Verhältnisses des Wassers, das mit der Salinität und entsprechenden 

Volumenänderungen des Sees in Zusammenhang steht. Die Daten der vorliegenden 

Untersuchungen zeigen einen temperaturunabhängigen Einbau von Mg und Sr in den 

Kalzit der Ostrakodenschalen. Fe/Ca-, Mn/Ca- und U/Ca-Verhältnisse der 

Ostrakodenschalen können für die Rekonstruktion von Redoxbedingungen und 

Sauerstoffverfügbarkeit in den aquatischen Ökosystemen genutzt werden. 

Ein erstes konzeptuelles Modell lakustriner subaquatischer Massentransporte 

beruhend auf der kombinierten Analyse von Ostrakodenassoziationen und 

Sedimenteigenschaften wurde in der vorliegenden Dissertation entwickelt. Eine sehr 

geringe Abundanz oder das Fehlen von Ostrakodenklappen in Ereignislagen aus dem 

untersuchten Sedimentkern belegen vom steilen Osthang des Tangra Yumco-Beckens 

ausgehende Turbiditströme. Lakustrine Ostrakoden (L. sinensis, L.? dorsotuberosa, L. 

inopinata und F. gyirongensis) fehlen ebenso in einer durch Bodenströmungen 

verursachten grobkörnigen Sedimentlage.  

Die Analyse der Ostrakodenfauna des Sedimentkerns TAN10/4 ist die erste 

kontinuierliche Rekonstruktion spätholozäner Umwelt- und Klimaveränderungen im 

Gebiet des Tangra Yumco für die letzten 3300 Jahre. Diese auf paläoökologischen 

und schalenchemischen Analysen (δ
18

O, δ
13

C, Mg/Ca, Sr/Ca) beruhenden 

Untersuchungen wurden in einem Multi-Proxy-Ansatz mit sedimentologischen 

Analysen kombiniert. Die Ostrakodengemeinschaften und ihre Abundanz spiegeln vor 

allem die Höhe des Seespiegels, Salinität und Produktivität des Tangra Yumco 

wider. Es lassen sich fünf Entwicklungsphasen unterscheiden: 

(I) Leucocythere sinensis dominiert (87,5 %), andere lakustrin-brackische 

Ostrakodenarten sind selten, die Artenzahl ist gering (3), δ
18

OSchale und Mg/CaSchale 

sind niedrig, δ
18

CSchale  und Sr/CaSchale dagegen hoch, der inorganische Kohlenstoff 

(TIC) steigt zwischen 3300 und 2320 cal BP langsam an, was auf einen relativ hohen 

Seespiegel und relativ niedrige Salinität (Süßwasser bis oligohalin) bei mittlerer 

Produktivität in relativ kühlem und feuchtem Klima hinweist. Relativ hohe 

Niederschläge durch einen verstärkten Monsun führten zu einem höheren 

Süßwassereinstrom und relativ geringerer Evaporation. Zu dieser Zeit war der Tangra 

Yumco ein hydrologisch offener See mit einem Überlauf in den Tangqunq Co. 

(II) Ein Rückgang von L. sinensis und Übergang zur Dominanz von L.? 

dorsotuberosa (51,5 %) mit höherer Artenzahl (6) und sowohl für das Flachwasser als 

auch für das Profundal typischen Arten sowie hohe Gehalte an organischem 

Kohlenstoff (TOC) belegen einen fallenden Seespiegel und langsam steigende 

Salinität (oligohalin) bei höchster Produktivität in warmem und trockenem Klima 

zwischen 2300 und 1760 cal BP. Durch geringere Monsunintensität abnehmende 

Niederschläge und eine Zunahme der Evaporation lösten diese Entwicklung aus. In 

dieser Phase wurde der Tangra Yumco endgültig vom Tangqunq Co abgetrennt und 

verwandelte sich in ein geschlossenes Seesystem. Der See blieb von dieser 

Entwicklungsphase an bis heute ein geschlossenes System.  

(III) Die sehr geringe Abundanz der Ostrakoden (durchschnittlich 13,6 

Klappen/ml) und sehr hohe Gehalte inorganischen Kohlenstoffs (TIC) zwischen 1740 

und 1104 cal BP zeigen einen fallenden Seespiegel, begleitet von zunehmender 

Salinität (oligo- bis mesohalin), und eine sehr niedrige Produktivität an, was durch 

den weiteren Rückgang der Niederschläge (geringere Monsunintensität) in einem 

trockenen Klima hervorgerufen wurde. 

(IV) Die langsame Erholung der Ostrakodenpopulation und das Vorherrschen von 
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L. inopinata (61,7 %), die Zunahme der Artenzahl (4) und Diversität, hohe Werte von 

δ
18

OSchale und Mg/CaSchale, niedrige δ
18

CSchale und Sr/CaSchale, gröbere Korngrößen mit 

einem Maximum zu Beginn der Kleinen Eiszeit, sehr hohe Konzentrationen von 

Kalium, höchste TOC und hohe TOC/TN-Werte zeigen ein kaltes und das trockenste 

Klima zwischen 1065 und 444 cal BP an. Der Zeitabschnitt der Kleinen Eiszeit (ca. 

650 – 100 cal BP) ist durch einen zurückgehenden Seespiegel und erhöhte Salinität 

(mesohalin) sowie höhere Produktivität gekennzeichnet. Dies wird durch geringe 

Niederschläge (weiterer Rückgang des Monsuns) und relativ hohe Verdunstung in 

kühlem und trockenem Klima hervorgerufen.  

(V) In der Phase von 405 cal BP bis heute löste L. sinensis L. inopinata als 

dominierende Art ab, das Adult/Juvenil-Verhältnis war niedrig, wie auch der Anteil 

doppelklappig erhaltener Ostrakoden, K- und TOC-Gehalte, was auf ein relativ 

feuchtes Klima und eine allmähliche Vergrößerung des Sees bei moderater Salinität 

(oligo- bis mesohalin) bei höherer Produktivität hinweist. Größere 

Niederschlagsmengen (Zunahme des Monsuns) und nur geringfügig erhöhte 

Verdunstung aufgrund der etwas höheren Temperaturen sind anzunehmen.  

Zusammenfassend kann festgestellt werden, dass Ostrakodengemeinschaften und 

–assoziationen sowie ihre Abundanz und Diversität erfolgreich für die 

Charakterisierung von (1) Gewässertypen und ihrer Permanenz, Wassertiefe, Salinität, 

(2) Hydrologie, Primärproduktion, Redoxbedingungen und Sauerstoffverfügbarkeit, 

(3) subaquatischen Sedimenttransport und Sedimentationsbedingungen in großen 

lakustrinen Becken sowie (4) für aquatischer Ökologie, Umwelt- und Klimaforschung 

eingesetzt werden. Ostrakoden sind sensible Bioindikatoren und Proxys in 

Paläomilieuanalysen und Paläoklimaforschung auf dem Tibetplateau. 
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Chapter 1 

1.0 Introduction 
 

“Species would die out gradually and new ones will slowly evolve, one after 

another, both on land and in the waters, but the mean complexity of life would not 

alter and its basic designs, created at the beginning, would endure to the end of 

time.”  ~ Charles Darwain, On the Origin of Species (1859). 

The organisms and their fossil (dead remains) provide long records of natural 

variability of environmental, ecological and climate in time (Jablonski and Sepkoski, 

1996; Alverson et al., 2000; Curry, 2003; Dietl and Flessa, 2011). The ecology 

(biological interactions) is the study of living organisms and their environment (both, 

biotic-all relationship of organisms and abiotic factors-physical, chemical, climatic, 

food, compositions of water and soil) (Begon et al., 1996; Beeby and Brennan, 1997; 

Williams, 2006; Walter and Hengeveld, 2014). The palaeoecology (fossil records) is 

the study of ancient ecologies, life relations of prehistoric organism, interaction of 

past organisms and their ancient environment (Dodd and Stanton, 1990; Hardt et al., 

2007; Benton, 2009; Seppä, 2009). Both ecology and palaeoecology are different 

approaches towards a common objective: ecological understanding of the biosphere 

(Benton and Harper, 2009; Rull, 2010; Birks, 2012; Bjune et al., 2014; Davies et al., 

2014). 

Biological monitoring (structure of biological communities and indicator 

organisms; ecology and palaeoecology) supports evidence of spatial and temporal 

environmental and climate changes (Elliott, 1990; Courtemanch, 1994; Curry, 1999; 

Külköylüoğlu, 2004; Daufresne et al., 2009). Aquatic environment monitoring 

through biological systems is essential for ecosystems sustainability policy in water 

resources management and biodiversity conservation (Likens and Bormann, 1985; 

Barnes and Mann, 1991; Polunin, 2008; Dietl et al., 2015). 

 

 

1.1 Ostracoda 
 

The class Ostracoda (Bivalved: Arthropoda) is within the subphylum Crustacea, 

with two major subclasses, Podocopa and the Myodocopa (Fig. 1-2) (Horne et al., 

2002; Newman, 2005; Rodriquez-Lazaro and Ruiz-Muñoz, 2012). Ostracoda provides 

information on environmental processes, biological activities, ecological, sedimentary 

events, geological and climatic conditions (Carbonel, 1988; De Deckker and Forester, 

1988a; Smith and Delorme, 2010; Scott et al., 2012). It is oldest fossil arthropod 

group (The Cambrian to Early Ordovician period and the present) with living 

representatives (about 65, 000 living species) (Maddocks, 1982; Kempf, 1996; 

Newman, 2005; Willams et al., 2008). The global diversity of Ostracoda estimates 

about 20,000 living species from marine and transitional waters (Martens et al., 2008). 

The success of ostracods to invade freshwater habitats is due to efficient osmotic 

physiological adapation (calcification in low mineralsation waters) and wide tolerance 

to different salinity regimes (Iglikowska, 2014; Iglikowska and Pawlowska, 2015). 
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Ostracods are efficient colonisers of new habitats (Newman, 2005; Iglikowska, 2014). 

The wide geographical distribution and simulateous appearance in palaeocontinents 

indicate their rapid dispersal, reproductive modes and wide environmental tolerance 

(Willams et al., 2008). 

 

1.1.1 Environmental conditions 
 

Ostracods are small crustaceans without appendages on the abdomen and the 

second major group of freshwater entomostracans (cladoceras and copepods) 

(Morgan, 1930; Frey, 1964; Cronin, 2009). Ostracods (clam shells, soft body enclosed 

two low Mg calcite valves joined by hinged) are mainly 0.7-1.0 mm long, but their 

size ranges between 0.3 and 5.0 mm in freshwater systems (De Deckker, 1981a; 

Danielopol et al., 1993; Henderson, 2002). They live in nearly all types of aquatic 

environments from marine, brackish (lake, lagoons and estuaries), freshwater (lake, 

rivers, springs, streams), temporary pools (ponds, ground water), mosses, on aquatic 

plants and semi-terrestrial environment (Morgan, 1930; Bronshtein, 1988; Benzie, 

1989; Frenzel and Boomer, 2005; Griffiths, 2006). Species specific occupy spatial-

temporal pattern of distribution due to varying environmental and climatic parameters 

(De Deckker, 1981a; Carbonel, 1988; Griffiths, 2006; Walter and Hengeveld, 2014). 

Each species is specifically adapted to a subset of environmental and climatic factors 

(De Deckker, 1981a; Forester, 1983, 1986; Carbonel, 1988; Griffiths, 2006; Walter 

and Hengeveld, 2014). Ostracod reproduces by sexually (copulation) and asexually 

(parthenogenesis) (Kesling, 1961; Cohen and Morin, 1990; Chaplin et al., 1994; 

Griffiths and Butlin, 1995). Ostracods (“Seed Shrimp”) are mostly microbenthos but 

few are planktonic (Delorme, 1989; Griffiths and Holmes, 2000). Lacustrine 

ostracods live in phytal to deeper depths and commonly preserved as fossils in lake 

sediments (Decrouy, 2009a). 

 

1.1.2 Palaeoecology 

 

The linking of past and present conditions (thus inteprepating fossil record and 

reconstructing past life forms using modern life forms) is based on the Principle of 

Uniformitarianism (Actualism), “The present is the key to the past”(Lyell, 1835; 

Darwin, 1889; Birks and Birks, 1980; Gould, 1984; Etter, 1994): 

 

I. Laws of nature do not change on Earth in time and space. 

II. Process that influenced geological phenomena in the past occurs in the 

same manner in present day. 

III. The speed of geological and biological process does not change. 

IV. In the past the same materials and the same conditions existed. 

 

The ancient ecosystems is reconstructed using fossil records and understanding of 

process that influence life forms in the past, evolving systems bsed on three critical 

factors (Behrensmeyer, 1992; Etter, 1994; Hardt et al., 2007). This is based on three 

critical factors (Behrensmeyer, 1992; Etter, 1994; Hardt et al., 2007): 

 

I. Accurate determination and systematic classification of the collected 

specimen. 

II. Putting all investigated profiles in a temporal and stratigraphical precise 

order. 
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III. Understanding of ecological context and specific adaptation of the 

organism that influence the ability to survive in a particular environment  

 

 

The fossil shells (dead remains) of ostracods are a source of carbonate for 

biostratigraphical and geochemical analysis in reconstruction of lake environment, 

hydrology and climate (Bate and East, 1972; Benson, 1981; Griffiths et al., 1992; 

Holmes, 1992; Sepkoski, 2000). Ostracods are very abundant in alkaline sediments. 

Ostracod populations are mainly controlled by environmental parameters (e.g., 

temperature, salinity, water depth, habitat preference, dissolve oxygen concentration 

and among many) (Benzie, 1989; Griffiths and Holmes, 2000). The presence and 

absence and relative abundance are valuable environmental indicators (Benzie, 1989; 

Griffiths and Holmes, 2000). The (palaeo)-ecology and geochemical information of 

ostracods are useful palaeoenvironmental and climate indicators (Holmes, 1996; 

Cronin, 2010). Knowledge on living species is the basis for usage of the fossil 

communities reconstruction of past aquatic ecosystem dynamics (Boomer, 2002; 

Boomer et al., 2003; Vermeij and Herbert, 2004). The fossil (dead) associations are 

assumed to be related to the living communities (Gall, 1983). The quantitative 

estimation of both living and empty valves (dead) ostracod associations is important 

for understanding past ecology of fossil assemblages and their deposition in ancient 

environments. Most of Quaternary ostracod has the living representatives. Modern 

classification of Quaternary and living ostracods consist of 10 suborders and 16 

superfamilies of the orders Myodocopida, Halocyprida, Platycopida, Podocopida and 

Palaeocopida (Horne et al., 2002; Horne, 2005; Rodriquez-Lazaro and Ruiz-Muñoz, 

2012) (Fig. 1-2). The different taxonomic groups are distinguished either by either 

“soft part” (primarily limbs or appendages) or “hard part” (calcified valves) 

morphologies (Horne et al., 2002; Rodriquez-Lazaro and Ruiz-Muñoz, 2012) (Fig. 2). 

Fossil ostracods (taxonomic groups) are characterised by mainly carapace 

morphologies (ornamental pattern) and muscle scars (Benson, 1981). There are rarely 

fossil ostracods with soft parts (exceptional, oldest ostracods with preserved soft 

anatomy- myodocopes) (Willams et al., 2008). 

Quaternary freshwater ostracods are good indicators of Recent environmental and 

climatic change (Fig. 2) (Benson and Macdonald, 1963; Frey, 1964; Cronin et al., 

2002; Holmes and Chivas, 2002). The ecological niches of modern species can be 

used to infer palaeoecology of fossil assemblages and past changes of environmental 

and climate parameters. There is strong relation between the recent ecology and 

ancient ecology (palaeoecology), although with little variability (Tab. 1) (Hardt et al., 

2007; Seppä, 2009). The palaeoecology of fossil assemblages is based on the 

assumption that they reflect ecology of living associations (Tab. 1) (Ladd, 1957; 

Holmes, 1992; Smol et al., 2001; Smol, 2002; Birks, 2008)). 

 

 

1.1.3 Ostracoda shell chemistry 

 

Ostracods grow by successive moulting (ecdysis) shedding of valves, about 8-9 

times prior to adulthood and maturity (Kesling, 1951). Each calcitic precipitation 

(calcium carbonate) is a snapshot of the water chemistry at a point in time. The 

secretion of ostracods shells occurs fairly rapidly, a few hours to a few days, and 

directly takes up elemental composition from ambient water (Turpen and Angell, 

1971a; Chivas et al., 1983a; Chivas et al., 1986b; Roca and Wansard, 1997). The low-
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Mg calcite of ostracods are derived directly from the ambient water chemistry (Ca, Sr 

and Mg incorporated into calcite carapace) and only at the time of calcification 

(Turpen and Angell, 1971; Chivas et al., 1983; Chivas et al., 1986; Roca and 

Wansard, 1997). 

The geochemistry (trace-elements and stable isotopes) of ostracod shells is a 

biomarker of ambient water chemistry at time of secretion (conductivity, dissolved 

ions and solute compositions) (Forester, 1983; Griffiths, 2006; Ito and Forester, 

2009b; Deocampo, 2010; Yang et al., 2014b). The geochemical information stored in 

ostracod shells (e. g., low Mg/Ca) is commonly used for palaeo-environmental 

evolution of continental water bodies (Forester, 1986; Holmes, 1996; Xia et al., 

1997a; Xia et al., 1997c; Ito et al., 2003a). The ecology and geochemistry of ostracods 

is a reliable tool for reconstruction of past aquatic environmental and climatic 

conditions (Chivas et al., 1983a; Gasse et al., 1987; Carbonel, 1988; De Deckker, 

1988; De Deckker and Forester, 1988a; Decrouy et al., 2011a). 

The chemical shell compositions (Mg, Sr, Na and Ba) are useful for reconstruction 

of past water temperature, water balance and salinity (Chivas et al., 1983a; Griffiths 

and Holmes, 2000; Gouramanis and De Deckker, 2010). The changes in Sr/Ca 

ostracod shell are believed to reflect changes in salinity while the  changes in Mg/Ca 

shell to reflect both salinity and water temperature (Forester, 1986; Ito and Forester, 

2009b). Ostracod cations (Chivas et al. 1983; 1985; 1986) can be used for quantitative 

salinity reconstruction (Chivas et al., 1983a, 1985; Chivas et al., 1986b; Chivas et al., 

1993; Xia et al., 1997a; De Deckker et al., 1999a). Nonetheless, recent research 

suggest theoretical and practical uncertainties within quantitative salinity inferences 

(Wansard et al., 1998a; Ito, 2002; Ito and Forester, 2009b; Gouramanis and De 

Deckker, 2010; Gouramanis et al., 2010). Yet still the goal of initial objective of 

ostracod-based quantitative salinity reconstruction has not been abandoned (Shen et 

al., 2001; Zhang et al., 2004a). 

Ostracod isotopic composition (δ
18

O andδ
13

C) is used to infer past temperature 

changes in deep lakes (von Grafenstein, 2002) and hydroclimatic evolution of the 

continental waters (von Grafenstein et al., 1999; Ito, 2002; Schwalb, 2003b; Wrozyna 

et al., 2010; Börner et al., 2013b). The isotope and trace-element composition of 

ostracods shells records chemical conditions of the lake water (e.g., temperature, 

salinity, dissolved ion composition, hydrology, conductivity) (Smith, 1993; Holmes, 

1996; Shen et al., 2002; Mischke et al., 2007). However, ostracods from perennial 

springs may be an exception as they tend to be at a constant temperature and can show 

the isotope values of the precipitation that feeds the spring (Emi Ito personal 

communication). Geochemistry of ostracod shells is useful proxy of past water 

chemistry, temperature and salinity, although the chemical composition of each 

genera is complex and poorly understood (Holmes, 1996; De Deckker et al., 1999a; 

Ito et al., 2003a). Furthermore, a careful hydrological and climate inferences should 

be made using geochemistry of ostracod shells due to uncertainties of the carbonate 

biomineralisation (Holmes, 1996; Xia et al., 1997a; Ito et al., 2003a; Decrouy et al., 

2011a). 

 

1.1.4 Palaeoenvironment 
 

Ostracods are excellent proxies for palaeoenvironmental reconstructions (Holmes, 

1996; Boomer and Eisenhauser, 2002; Ito et al., 2003a). Nonetheless, Late Quaternary 

and living ostracods from mountain ecosystems are still poorly known. Understanding 

of auto-ecology (e. g., micro-habitats and life cycle) and geochemistry of living and 
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Recent ostracods is critical for the application of fossil ostracods for environmental 

and climate reconstructions (Decrouy et al., 2012b; Börner et al., 2013b; Börner et al., 

re-submitted). The simultaneous application of both isotopic composition and trace 

element ratios combined with palaeoecological and sedimentological investigations 

provide detailed palaeoenvironmental and palaeoclimate reconstructions (Holmes, 

1992; Chivas et al., 1993; Janz and Vennemann, 2005; Mischke et al., 2015). 

 

 
Fig. 1 Quaternary and living ostracods: synoptic characteristics o the two subclass 

and five orders. Cms. Central muscle cars, characteristic patterns. (Rodriquez-Lazaro 

and Ruiz-Muñoz; fig. 1.4). 
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Fig. 2 Freshwater ostracod internal view of a right valve (RV): Al = anterior inner 

lamella; g= gential impression; l = list; ma = mandibular scars; mu = muscle scars; p 

= pore; pl = posterior inner lamella; s = sulci; sl = selvage. (Griffiths et al., 1992; fig. 

24). 

 

 

Table 1 The difference between current auto-ecology and palaeoecology (modified, 

Hardt et al. 2007). 

 

 

 

 

 

Current auto-ecology Palaeoecology 

Current living organisms are true 

biological communities (intact) and 

indicators of ecosystems 

Fossil assemblages and age estimation 

data are needed 

Precise and comprehensive description of 

environment and organism in an 

ecosystem is possible, parameters can 

actually be measured 

Mostly characterization of a former 

milieu in order to subsequently state 

inference on environmental factors and 

organisms factors 

Potentially that all faunal and flora 

components are available in the observed 

biocoenosis 

Fossils are the only documents available; 

hardly ever is the fossil record  complete 

and many questions stay unanswered 

Data acquisition is limited to a few years 

or even months and days only 

Excavated facies span a time of 

thousands and even millions of years. 
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Fig.3a Linking of the past and the present ecosystems. The present-day ecosystems 

and its biota are treated largely from historical viewpont. The contempeorary fossil 

are used as the basis for the inference about the past (Hardt et. al. 2007; fig. 17:1) 

 

Fig. 3b Summary of methods in application of ecology and chemistry of ostracod 

shells in palaeolimnology (Holmes, 1992; fig. 2) 
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1.2 The Tibetan Plateau 
 

1.2.1 General Environment 
 

“I will open rivers in high places, and fountains in the midst of the valleys: I will 

make the wilderness a pool of water and the dry land springs of water.” Isaiah 41: 18 

 

The Tibetan Plateau is highland with complex interactions (e.g., atmospheric, 

biospheric, cryospheric, geological, climatic, hydrological and environmental 

processes.) and plays a key role in the Earth’s climate, biodiversity, water cycle and 

ecoystems (Fig. 1) (Yao et al., 2011a; Yao et al., 2012a). 

 

 

 
 

Fig. 1. The water cycle on Earth; (a) The four major processes are evaporation, 

transpiration, condensation and precipitation-Source: 

http://earthobservatory.nasa.gov/Library/Water/water.html (b) Ecosystems 

interactions-Source: Millennium Ecosystem Assessment. Ecosystems and Human 

Well-Being: Wetlands Synthesis .Word Resources Institute; Washington, D.C. 2005. 

 

1.2.2 The geography of Tibetan Plateau 

 
The Tibetan Plateau (TP) is situated in 75－105

o
 E, 27.5－37.5

o
N, with an average 

elevation of 4000 - 5000 meters above sea level (a.s.l) and covers a total area of about 

2.5 million km
2 

(Li et al., 1983; Molnar, 1989; Tuttle and Schaeffer, 2013). The 

Tibetan Plateau is surrounded by the Himalayas and Gangdise to the south, the 

Karakoram Range and the Pamirs to the west, the Hengduan Mountains to the east 

and the Kunlun and Qilian Mountains to the north (terrain accreted into Eurasia 

continent) (Fig. 2) (Dewey et al., 1988; Lehmkuhl and Haselein, 2000; Lehmkuhl and 

Owen, 2005; Yao et al., 2012a). It is known as the “Roof of the World`” due to it’s 

complex terrain, ecological variability, high plateau environment heterogeneity and 

climatic variability (Qiu, 2008; Yao et al., 2011a; Chen et al., 2015).The vegetation is 

ecologically variable, scarce and patchy distributed, influencing the climate (Fig. 2) 

(Chang, 1981b; Yu et al., 2010; Liang et al., 2012; Tian et al., 2014) (Fig. 2). The 

high mountains ranges are intercepted with lakes and rivers, unique flora and fauna 

(Zheng et al., 2000a; Yao et al., 2011b). It is the third sensitive “hot spot” akin to the 

Arctic and the Antarctic, for the assessment of environmental, ecological and climate 

change (Yao et al., 1997; Myers et al., 2000; Ma et al., 2009). It is the highest and 

a b 

http://earthobservatory.nasa.gov/Library/Water/water.html
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largest plateau in the world with a variety of climate and pristine ecosystems (Fang, 

1991; Gasse et al., 1991; An et al., 2001; Owen et al., 2005; Duan et al., 2006; Harris, 

2006). 

The earth's climate is influenced strongly by the presence of mountains and 

plateaus (Overpeck et al., 2005; Steffen et al., 2005; Ruddiman, 2008; Kohler and 

Maselli, 2009). The Tibetan Plateau exerts profound influences not only on the local 

climate and environment but also on the global atmospheric circulation through its 

topographic features, sensible and latent forcing (Yanai et al., 1992; Liu and Yanai, 

2001; Yanai and Wu, 2006). It plays an important role in the Asian monsoon system 

by acting as an anomalous mid tropospheric heat source (Li and Yanai, 1996; 

Zhisheng et al., 2001; Taniguchi and Koike, 2007; Duan et al., 2008; Park et al., 

2012). The global climate system and its interaction such as landscape components as 

vegetation, geology, topography, and soil are highly nonlinear (Beniston, 1994). 

Many of the modern geographic patterns of temperature, precipitation, and wind are 

explained by the presence of topographic barriers (Trewartha, 1968; Zhao and Moore, 

2004) and experiments with numerical climate models have confirmed these 

relationships (Hahn and Manabe, 1975; Manabe and Broccoli, 1990). Additionally, 

significant surface uplift (increased elevation) of the Tibetan Plateau in the past 10-20 

million years (Harrison et al., 1992; Molnar et al., 1993) and several other major 

plateau systems during the Cenozoic further described these phenomena(Kutzbach et 

al., 1989; Ruddiman and Kutzbach, 1990). 

The mountains play a significant role in water resources of the world (Northrop, 

1887; Viviroli et al., 2003; Viviroli and Weingartner, 2004; Kohler and Maselli, 

2009). The Tibetan Plateau directly life-supports about a tenth of humankind and 

indirectly sustains more than one-half humankind (Ives and Messerli, 1989; Boos and 

Kuang, 2010). The third pole environment (variable topography boundaries) is 

characterised by semi-humid-summer steppe climate with cold and dry winter, due to 

the variability of topography and different monsoon systems (Webster et al., 1998; 

Zheng et al., 2000a; Bookhagen and Burbank, 2006; Molnar et al., 2010). 

 

 

 

 
 

Fig. 2 The geography of Tibetan Plateau and surrounding mountains (Yao et al. 

2012: fig.1). 
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Fig. 3 The vegetation types and weather stations on the Tibetan Plateau (Yu et al. 

2010: fig.1). The vegetation distribution is controlled by summer precipitation 

gradient in southeast to northeast. The vegetation changes from forest to meadow, to 

steppe and to desert. 

 

1.2.3 The Tibetan Plateau and monsoons 

 

The Tibetan Plateau is created by the India-Asia collision (Flohn, 1987; Shen, 

1987; Dewey et al., 1988; Xiao and Li, 1995; Chen and Wang, 1996; Pan et al., 2012; 

Chatterjee et al., 2013). The uplift of the Himalayan-Tibetan orogen has played a 

major role in controlling local and global climates on long and short time scales over 

the last 50 Ma (Kutzbach et al., 1989; Ruddiman and Kutzbach, 1989; An et al., 2001; 

Dettman et al., 2003; Molnar et al., 2010). It plays a great role in climate evolution in 

South-East Asia, formation and development of Asian Monsoon (He et al., 1987; 

Yanai et al., 1992; Li and Yanai, 1996; Webster et al., 1998; Wang et al., 2005) and of 

atmospheric circulation in the Northern Hemisphere (Murakami, 1987; Ruddiman and 

Raymo, 1988; Ruddiman and Kutzbach, 1991; Harrison et al., 1992; Raymo and 

Ruddiman, 1992; Molnar et al., 1993; Murphy et al., 1997; Harris, 2006). The Tibetan 

Plateau is located in the interaction zone of monsoon climatic systems (polar air 

masses from Arctic, continental air masses through central Asia (Westerlies), Indian 

summer monsoon and East Asian summer monsoon) (Fig. 4-5) (Prell and Kutzbach, 

1992; Raymo and Ruddiman, 1992; Molnar et al., 1993; Lal et al., 1994; Herzschuh, 

2006). The uplift of Tibetan Plateau, due to India-Asia collision, is the primary cause 
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of monsoon initiation and intensification (Kutzbach et al., 1989; Coleman and 

Hodges, 1995; An et al., 2001; Harris, 2006; Chatterjee et al., 2013). Moisture 

penetrating into the southeastern Tibetan Plateau is predominantly derived from 

monsoonal air masses originating from the Bay of Bengal and transported into the 

eastern Himalayan syntaxis along the Brahmaputra River (Hamilton, 1977; Hren et 

al., 2009; Yao et al., 2012b; Chatterjee et al., 2013). However, monsoonal-derived 

moisture is progressively mixed with central Asian air masses in the western and 

northern parts of the Tibetan Plateau (Hren et al., 2009; Zhang et al., 2012b; Zhao et 

al., 2012). 

 

 

 

Fig. 4. The Tibetan Plateau (elevation of 3 km within 70–105°E and 25–40°N, south 

slope (3 km within 70–105°E and 25–35°N) and the monsoon (70–105°E, 10–25°N) 

(Fu et al. 2006a: fig.1;Yao et al., 2011b;fig. 3). 
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Fig. 5 The monsoon circulation on the Tibetan Plateau (Yao et al. 2012b: fig.1). 

The Tibetan Plateau-Himalayas region is characterised by spatial heterogeneity in 

precipitation (Fig. 6-7) (Molnar et al., 1993; Immerzeel et al., 2005; Anders et al., 

2006; Vaid and Liang, 2015). The variability of precipitation is due to uneven 

topography and four major climatic systems. The climatic system consist of the 

Siberian high-pressure systems to the north, the mid-latitude Westerlies to the west, 

the East Asian Monsoon to the east and the Indian Summer Monsoons (ISM) to the 

south (Fig. 6-7) (Hamilton, 1977; Schickhoff, 2000; Bookhagen and Burbank, 2006; 

Fu et al., 2006a). During the summer period, moisture is transported from the Bay of 

Bengal and Southeast Asia northwest along the range front, where it is orographically 

lifted and adiabatically cooled producing heavy monsoonal rainfall Indian (Chang, 

1981a; Fu et al., 2006a). On the eastern edge of the range, moisture penetrates the 

Himalaya along the Siang–Brahmaputra river valley bringing seasonal monsoonal 

moisture fluxes to the southern Tibetan Plateau (Fu et al., 2006b; Immerzeel and 

Bierkens, 2010a). The mean annual precipitation across the Himalaya and TP ranges 

from greater than 3 m/yr south of the Himalaya along tributaries of the Siang to less 

than 0.2 m/yr in central and western Tibet (Bookhagen and Burbank, 2006; 

Immerzeel, 2008). The contribution of summer precipitation (May to Oct) is ~80% in 

the south and 95% in the uppermost reaches of the Brahmaputra and central Tibetan 

Plateau (Haigh, 2000; Bookhagen and Burbank, 2006; Immerzeel, 2008; Bookhagen, 

2010). 

The component crossing through gaps into Indochina, the southern Tibetan 

Plateau-Himalayas range (e.g., Brahmaputra, Mekong, Jinsha, Salween and among 

othe large headwaters, all flow out) delivers the largest part of precipitation on the 

south central Tibetan Plateau (Chang, 1981a; Spicer et al., 2003; Immerzeel and 

Bierkens, 2010b). The eastern part of the plateau gets its rain from the East Asian 

summer monsoon (Clark et al., 2004; Lehmkuhl and Owen, 2005; Böhner, 2006; Fu 

et al., 2006a; He et al., 2006; Zhao et al., 2007). 

The Tibetan Plateau-Himalayan realm is characterised by two main rainfall 

gradients: an approximately five-fold east-to west gradient related to the distance 

from the moisture source (Bay of Bengal) and a ten-fold south-to-north rainfall 

gradient reaching from the monsoon-soaked Ganges Plain to the arid Tibetan Plateau 

that lies in the lee of the Himalayan orographic barrier (Fig. 6-7) (Hamilton, 1977; 

Chang, 1981a; Clark et al., 2004; Bookhagen, 2010). The mean daily summer (May–

October) monsoon rainfall on the Ganges Plain ranges from 10 to more than 20 mm 

day
-1

 south of the Shillong Plateau (Fig. 6-7) (Li and Yanai, 1996; Clark et al., 2004; 

Bookhagen, 2010). The Tibetan Plateau receives overall less than 5 mm day
-1 

rainfall, 

with significantly drier western areas (Bookhagen, 2010). The summer (May–

October) monsoon rainfall provides more than 80% of the annual moisture budget for 

large parts of the Ganges Plain and central Himalaya (Fig. 6) (Bookhagen, 2010). The 

western and eastern areas receive lower rainfall during the summer and their moisture 

budget is dominated by the westerlies and during winter by the East Asian monsoon 

(Bookhagen, 2010; Rajagopalan and Molnar, 2013). 
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The Tibetan Plateau thermal and sensible force both in summer and in late winter 

and spring can influence the variation of Eastern Asian summer rainfall (Ye, 1981; He 

et al., 1987; Qian et al., 2011; Jin et al., 2013). A combined index using both snow 

cover over the Tibetan Plateau and the ENSO index in winter shows a better seasonal 

forecast (Webster and Chou, 1980; Yanai et al., 1992; Li and Yanai, 1996; Liu and 

Yanai, 2001). 

Strong sensible heating over the Tibetan Plateau in spring contributes significantly 

to anchor the earliest Asian monsoon being over the eastern Bay of Bengal (BOB) and 

the western Indochina peninsula (Lau et al., 2000; Liu et al., 2002b; Kau et al., 2003; 

Schneider et al., 2003; Wu et al., 2011). The heating over the Tibetan Plateau 

significantly influences the variability of the atmospheric circulation (Schneider and 

Lindzen, 1977; Ye, 1981; Ruddiman and Kutzbach, 1991; D. and Chan, 2005; Roe, 

2005; Harris, 2006; Zhao et al., 2007). 

 

 

 

Fig. 6. Topography of Tibetan Plateau-Himalayan mountain ranges. The western and 

eastern of southern front are characterised by one-step topography. While the central 

border is characterised by two-step topography, which consist of two distinctive 

rainfall peaks. White stars represent extreme rainfall (Bookhagen, 2010; fig.1). 
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Fig. 7 The two distinct rainfall gradients on the Tibetan Plateau-Himalaya 

(Bookhagen, 2010: fig.3). 

 

 

1.2.4 The monsoon systems 

 

The monsoon originates from the Arabic word “Mausam”, which means season 

(Ramage, 1971; Webster et al., 1998; Chao, 2000).The monsoon is circulation system 

associated with change in land-sea thermal contrast induced by seasonal evolution of 

solar radiation (Fig. 8-9) (Lau and Bua, 1998; Webster et al., 1998; Holton, 2004; 

Kottek et al., 2006; Wang, 2006). The monsoon is annual seasonal reversal of surface 

winds (at least 120° between January and July) and change in rainfall pattern (distinct 

wet/dry seasons) (Fig. 8-9) (Ramage, 1971; Webster et al., 1998; Chao, 2000). The 

low – level winds of the “wet” summer monsoon flows from the ocean to the 

continent and high – level winds “dry” winter monsoon flows from the continent to 

the ocean (Fig. 7) (Ramage, 1971; Webster et al., 1998; Chao, 2000).  

In summer time, the lower tropospheric winds flow toward heated continents away 

from the colder oceanic regions of the winter hemisphere (Ramage, 1971; Charney 

and Shukla, 1981; Krishnamurti et al., 1989; Webster et al., 1998). In the upper 

troposphere the flow is reversed, with flow from the summer to the winter hemisphere 

(Ramage, 1971; Charney and Shukla, 1981; Webster et al., 1998). In summer 

precipitation is centered in time on either side of the summer solstice and located over 
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the heated continents and the adjacent oceans and seas in the vicinity of a trough of 

low pressure referred to as the ‘monsoon trough’ (Webster et al., 1998; Clift and 

Plumb, 2008; Sanyal and Sinha, 2010). Most summer rainfall is associated with 

synoptic disturbances that propagate through the region (Ramage, 1971; Webster et 

al., 1998; Bollasina and Ming, 2013). However, these disturbances are grouped in 

periods lasting from 10 to 30 days (Ramage, 1971; Webster et al., 1998; Bollasina and 

Ming, 2013). The envelopes of disturbed weather and heavy rainfall are referred to as 

‘active periods of the monsoon’ (Ramage, 1971; Hamilton, 1977; Webster et al., 

1998; Krishnan et al., 2000). The intervening periods of mini drought are referred to 

as ‘monsoon breaks’(Ramage, 1971; Hamilton, 1977; Webster et al., 1998; Krishnan 

et al., 2000). The monsoon trough (axis of heavy precipitation) is located poleward of 

the oceanic intertropical convergence zone (ITCZ) (Fig. 8-9), surface low pressure 

with clouds and rainfall (Wang, 1994; Wang and Wang, 1999). The ITCZ is known as 

Doldrums and near-equatorial trough, east–west band of deep conveyor belt that 

circulates the globe (Chao, 2000; Raymond et al., 2006). It is a junction of 

convergence of northeast and southeast trade winds (driven by heating and moisture) 

(Wang and Wang, 1999; Sugimoto et al., 2008; Yan et al., 2015). The convergence is 

parallel to the equator but moves north or south with the earth rotations, which 

determines the seasons (primarily winter and summer) (Chao, 2000; Sanyal and 

Sinha, 2010). The ITCZ is also associated with intensive tropical precipitation (Wang, 

1994; Chao, 2000; Sanyal and Sinha, 2010). For instance, the rainfall associated with 

the South Asian monsoon falls at the same latitudes as the great deserts of the planet 

(Webster et al., 1998; Clift and Plumb, 2008; Sanyal and Sinha, 2010). 

Monsoon circulations, particularly those in Northern Hemisphere (boreal) summer, 

strongly affect the general atmospheric circulations (Fig. 8-9) (Charney and Shukla, 

1981; Webster, 1994; Webster et al., 1998). The monsoons are continental- and 

seasonal-scale sea breeze circulations (Fein and Stephens, 1987; Harrison et al., 1992; 

An et al., 2000). The south Asian and North American summer monsoons are deep 

circulations, with closed anticyclones extending up to at least 70 hPa in the 

stratosphere in June-July (Fig. 8-9) (Krishnamurti et al., 1989; Dunkerton, 1995; Liu 

et al., 2002b; Wu et al., 2012). The two monsoon circulations are different in 

magnitude, horizontal extent and depth, but similar in their forcing (a high-altitude 

land mass of the Himalayan-Tibetan or Colorado plateau to the north, and warm 

ocean regions of the Bay of Bengal or the Gulf of Mexico to the south (Dunkerton, 

1995; Liu et al., 2002b; Wu et al., 2012). These deep circulations may have a 

significant impact on stratosphere-troposphere exchange and on the entry of air into 

the stratosphere (Ramage, 1971; Webster, 1994; Roe, 2005; Clift and Plumb, 2008). 

The global monsoon climatic systems (changes in annual precipitation in tropical 

and subtropical regions) are located in Asia (the largest), Austrialia, America and 

Africa continents (Fig. 9) (Ramage, 1971; Charney and Shukla, 1981; Webster et al., 

1998; Qian et al., 2002; Nicholson and Webster, 2007; Sanyal and Sinha, 2010). The 

global climate classifications is primary linked to precipitation, temperature and 

vegetation (Fig. 10) (Lamb, 1969; Kottek et al., 2006; Nicholson, 2011; Blunden and 

Arndt, 2014). Each of monsoon system is characterised by different intensity and 



 
23 

interactions with other circulations (Ramage, 1971; Webster et al., 1998; Qian et al., 

2002; Wang et al., 2012a; Wang et al., 2014). The global summer monsoon 

precipitation regulate the annual cycle of the Earth climate system (e.g., temperature, 

hydroclimate, and heat transport from tropics to higher latitude) (Hoyos and Webster, 

2007; Liu et al., 2012; Wang et al., 2012a; An et al., 2015). 

Tropical monsoonal circulations, between tropics and extratropics (e.g. moisture 

extracted from the subtropical ocean under the Pacific trade winds converges over 

eastern Asia and the western Pacific warm pool providing fuel for the deep 

convection over both land and ocean) is a key regional components of the global 

circulation system (Webster, 1983, 1987; Trenberth and Solomon, 1994; Wang and 

Ding, 2008). They represent a large portion of the global hydrological cycle: the 

transport of water within and between the different reservoirs in the earth's climate 

system, some transports involving phases changes (such as evaporation and 

precipitation), which are very nonlinear due to the relationships between dynamics 

and thermodynamics (Webster, 1994; Webster et al., 2001; Roe, 2005). Monsoonal 

circulations are sensitive to the interaction of atmospheric processes, water cycle and 

climate dynamics (Chao, 2000; Rosenfeld et al., 2001; Chase et al., 2003; 

Ramanathan et al., 2005; Levermann et al., 2009; Sun and Liu, 2015). The winter 

monsoon is a flow of cool and highly polluted air mass off the Southeast Asian 

continent to the relatively warm waters of the ocean (Ramanathan et al., 2005; Liu et 

al., 2011; Sun and Liu, 2015). The polluted clouds over land need to grow beyond 6 

km in height to start precipitating (Rosenfeld et al., 2002). The atmospheric pollutants 

(aerosols) are particles of sulfate, black carbon and organic carbon and nitrate from 

human activities (biomass burning) and dust, sea salt and volcanic ash (Ramanathan 

et al., 2005; Remer et al., 2008; Yu et al., 2008; Sayer et al., 2012). The 

anthropogenic aerosols affects the earth’s energy (solar radiation), the water cycle 

(thus act as cloud condensation nuclei) and climate (Sokolik and Toon, 1996; 

Haywood and Boucher, 2000). Asia is one of the major aerosol-laden (strong dust 

storms) regions of the world due to rapid population growth, economic and human 

activities (Ramanathan et al., 2005; Lau et al., 2006; Remer et al., 2008; Yu et al., 

2008; Sayer et al., 2012). 

The Asian monsoon system, consist of two subsystems, East Asian and Indian (or 

South Asian) monsoons (Yanai et al., 1992; Webster et al., 1998; Liu and Yanai, 

2001; Schiemann et al., 2008). It exerts a dominant influence on Asian climate and 

plays a significant role in regulating regional and global climate (Tang and Reiter, 

1984; Krishnakumar and Lau, 1998; Trenberth, 1998; Krishnan et al., 2000; Wang et 

al., 2003). It is a prominent Earth’s climate system, involving complex interactions of 

the atmosphere, the hydrosphere and the biosphere (Flohn, 1987; Chen and Wang, 

1996; Trenberth et al., 2007; Trenberth, 2011). The monsoon transports abundant 

water vapor from the Pacific and Indian Oceans to the Asia monsoon region, which 

greatly affects the rainfall and water budget in the region (Elegene and Jongnam, 

2003; Fu et al., 2006b; Fu et al., 2008). 
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Fig. 8 Monsoon circulation in January and June with oceanic intertropical convergence 

zone (ITCZ). Source: www.pmfias.com 
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Fig. 9 Geographical extent of the global surface monsoons. The red and blue thick 

lines represent the ITCZ in summer and the winter respectively. The southwesterly 

and southeasterly monsoons converge in the Asian-Australian monsoon region (0◦–

20◦N, 140◦E–20◦W) within the Northern Hemisphere in June, July, and August 

(JJA). It reverses to a northeasterly wind in December, January, and February (DJF), 

with prevailing northwesterlies in the Southern Hemisphere (0◦–10◦S, 20◦E–160◦E). 

(Charney and Shuika 198; An et al., 2015). 

 

The Asian monsoon front is an important geoclimatic boundary that divides coastal 

mid-latitude Asia into two distinct climatic regimes; northwest of the front is under a 

strong influence of the Siberian (continental) air mass, characterised by low humidity 

and large seasonal temperature variability, whereas southeast of the front is governed 

by the Pacific (oceanic) air mass, characterised by wet and smaller seasonal 

temperature variability (Webster, 1987; Ruddiman and Kutzbach, 1991; Kau et al., 

2003; Nakagawa et al., 2006; Li et al., 2010; Chen et al., 2014). The climate of the 
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West Pacific and coastal East Asia tends to be characterised by clear seasonality 

because the monsoon front seasonally migrates across these regions (Webster, 1987; 

Ruddiman and Kutzbach, 1991; Nakagawa et al., 2006). The East-Asian monsoon 

consists of Southeast-Asian summer monsoon and winter monsoon (Hamilton, 1977; 

An et al., 2015). The first is driven by warm moist air mass over the subtropical and 

tropical SE-Pacific in summer (Hamilton, 1977; Hoyos and Webster, 2007; Loo et al., 

2015). The winter monsoon is driven by the cold dry mass of the Mongolia Siberia 

high pressure cell in winter. Asian monsoon is a dynamic system tightly coupled to 

global teleconnections that change their magnitudes at varying timescales (Hahn and 

Manabe, 1975; Webster, 1987; Harrison et al., 1992; Murphy et al., 1997; Spicer et 

al., 2003; Harris, 2006). The monsoon circulations (rainfall) undergoes abrupt 

changes (especially in central Asia) during the Holocene and the last glacial period 

(Liu et al., 2004; Nakagawa et al., 2006; Levermann et al., 2009; Allen et al., 2010; 

Zhang et al., 2014). 

 

 

 
 

Fig. 10 World map of Köppen- Geiger effective climate classification The light 

blue colour indicate areas with polar tundra climate based on mean annual 

temperatures between 0°C and 10° C (Kottek et. al., 2006). 

 

 

1.2.5 The hydrological significance of Tibetan Plateau  
 

The Himalayas and Tibetan Plateau region (HTP) is “third pole”, due to third 

largest storage of ice outside the north and south polar regions, radiative energy and 

climate (Yao et al., 2012a). There are about 46,000 glaciers distributed over the major 

mountain ranges such as Pamir, Karakoram and Himalaya mountain covering almost 

50,000 km
2 

on the Tibetan Plateau (Yao et al., 2007b; Yao et al., 2012b). It is a land 
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of many lakes (fresh and saline), wetlands and rivers. It is the origin of Asian great 

rivers: (Amu Darya, Tarim (Dayan), Indus, Ganges, Brahmaputra (Yarlungtsanpo), 

Irrawaddy, Salween (Nu), Mekong (Langcang), Yangtze (Jinsha), and Yellow 

(Huanghe) (Fig. 11) (Yao et al., 1997; Yao and Greenwood, 2009; Chellaney, 2011; 

Fan et al., 2015). The major rivers flow to 18 downstream countries and contributed 

to transboundary water resources and ecological security in Asia (He et al., 2014). 

The Tibetan Plateau significantly contributes to fresh water resources for over 1 

billion people through feeding the river systems (Barnett et al., 1988; Viviroli and 

Weingartner, 2004; Unger-Shayesteh et al., 2013). The Tibetan Plateau is known as 

the “Land of Snows” and “Water Tower of Asia” (Fig. 11)  (Lu et al., 2005a; 

Viviroli et al., 2007; Xu et al., 2008b; Qui, 2010; Chellaney, 2011; He et al., 2014). 

The glacial and snow melt waters are important contributors of water resources (Yao 

et al., 2004; Barnett et al., 2005; Immerzeel et al., 2010; Immerzeel et al., 2013). The  

snow and glacial melt are important hydrologic processes in the region and changes in 

temperature and precipitation will seriously affect the melt water characteristics (Yao 

et al., 2004; Barnett et al., 2005; Nayar, 2009; Immerzeel et al., 2010; Qui, 2010; 

Immerzeel et al., 2013). The precipitation in the upstream parts of the basins falls 

partly in the form of snow, causing a natural delay of river discharge (Viviroli et al., 

2003; Immerzeel et al., 2008; Immerzeel and Bierkens, 2010a). Snow cover dynamics 

on the Qinghai-Tibetan–Plateau may influence the water availability downstream in 

the major river basins of Asia, specifically in spring at the onset of the (irrigation) 

growing season (Viviroli et al., 2003; Immerzeel et al., 2008; Immerzeel and 

Bierkens, 2010a; Qui, 2010) 

 

 

 
 

Fig. 11a The ten Asia’s largest rivers originate from Tibetan Plateau (Barnett et al., 

2005). 
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1.2.6 Mountains freshwater resources and climate change 
 

The global climate warming rate in 21st century is increasing temperature (e.g., 1° 

to 4° C rise in global average temperature by 2100) and largest effect on precipitation 

(Fig. 12-13) (Giorgi et al., 1997; Gitay et al., 2002; IPCC, 2007a; Bates et al., 2008; 

Xu et al., 2008a; Giorgi et al., 2011). The amount of freshwater on Earth is finite, but 

its distribution varied driven by primarily natural cycles of freezing and thawing and 

fluctuations in precipitation, water runoff patterns and evapotranspiration (Ford and 

Thornton, 1992; Connor et al., 2009; Coates, 2010; Wang et al., 2012a). Water is 

important to the health of human and aquatic ecosystems (Cosgrove, 2007; Connor et 

al., 2009; Coates, 2010). Climate Change (long term temperature fluctuation) is the 

main drivers of changing in water resources (Ford and Thornton, 1992; Connor et al., 

2009; Coates, 2010; Lee et al., 2015). The climate change is prominent in Asia region 

(Cruz et al., 2007). Climate change caused by human activities (increasing carbon 

dioxide via burning of fuel fossils) affects ecosystems (e.g., sustainability and 

environmental disruptions) and people (e.g., economic loss, health problems) mainly 

by affecting water availability (e.g., increase frequency and intensity of heat waves 

and extreme events; flooding-heavy precipitation and drought-less rainfall) (Gitay et 

al., 2002; UNEP/GRID-Arendal, 2005; Cruz et al., 2007; Meehl et al., 2007; 

UNFCCC, 2007; Connor et al., 2009). 

The global mountains (principal source of freshwater resources) are the major 

headwaters of the world (Fig. 15a-c and Fig. 17-18)(Lee et al., 2015). The mountain 

glaciers are indicators for climate change (Gitay et al., 2002; IPCC, 2007a; Kohler 

and Maselli, 2009). The climate change is expected to intensify the hydrological cycle 

(e.g., more precipitation and more evapotranspiration) especially in high-mountains 

region (e. g., Himalayan-Tibetan Plateau) (Gitay et al., 2002; IPCC, 2007a; Bates et 

al., 2008; Kohler and Maselli, 2009). Snow and ice accumulation in mountain areas 

determine for a large part the surface hydrology and the temporal distribution of the 

availability of water (Fig. 16) (Barnett et al., 1988; Gitay et al., 2002; Viviroli and 

Weingartner, 2004; Barnett et al., 2005). The hydrological function will be altered 

with a significant rise in surface air temperatures. Increased melting of sea ice and 

freshwater influx from melting glaciers and ice sheets also has the potential to 

influence global patterns of ocean circulation (UNEP/GRID-Arendal, 2005; Meehl et 

al., 2007; UNFCCC, 2007; Connor et al., 2009). The warming is expected to be 

greatest over land and at most high northern latitudes, where snow cover is projected 

to shrink and hot temperature extremes, heat waves, and heavy precipitation events 

will continue to become more frequent in mountain basins (Barnett et al., 2005; IPCC, 

2007a; Bates et al., 2008; UNEP, 2012). The diminishing role of snow and ice as a 

natural store for water supply will have a tremendous impact (e.g., melting of glaciers 

in Himalayas-Tibetan Plateau) (Fig.17a-b) (Singh and Bengtsson, 2004; Arora et al., 

2008; Nayar, 2009; Kaser et al., 2010). The spatial variation in observed and 

projected climate change is large and mountain ranges and their downstream areas are 

particularly vulnerable due to: 

• The rate of warming in the lower troposphere increases with altitude, i.e. 

temperatures rise in high mountains is greater than at low altitudes (Bradley, 

1985; Giorgi et al., 1997). 

• There is a large high natural variation in climate because of the large difference in 

altitudes over small horizontal distances. This renders mountain areas more 

susceptible to climate change (Beniston, 1994). 

• Mountains play an important role in the water supply to downstream areas. About 
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1.3 billion people depends on water supplied by mountains and changes in 

hydrology and water availability are expected to be large in mountain basins (Fig. 

15a-c, and 16-17a-b) (Viviroli et al., 2003; Viviroli and Weingartner, 2004; 

Barnett et al., 2005; Viviroli et al., 2011). 

 

Climate change will lead to an intensification of the global hydrological cycle, 

which will affect local, regional and global water resources (Arnell, 1999; 

Vörösmarty and Sahagian, 2000; Arnell et al., 2001; Dai and Trenberth, 2002; Arnell, 

2004; Viviroli et al., 2011). For instance, human activities are releasing tiny particles 

(aerosols) into the atmosphere. The aerosols enhance scattering and absorption of 

solar radiation. They also produce brighter clouds that are less efficient at releasing 

precipitation. These in turn lead to large reductions in the amount of solar irradiance 

reaching Earth’s surface, a corresponding increase in solar heating of the atmosphere, 

changes in the atmospheric temperature structure, suppression of rainfall and less 

efficient removal of pollutants (Chou and Lan, 2012; Trenberth et al., 2015). These 

aerosol effects can lead to a weaker hydrological cycle, which connects directly to 

availability and quality of fresh water, a major environmental issue of the 21
st
 century 

(Sokolik and Toon, 1996; Kulshreshtha, 1998; Toon, 2000; Ramanathan et al., 2005). 

Global warming, due to the enhanced greenhouse gases (e.g., carbon dioxide), is 

likely to have significant impacts on the hydrological cycle (IPCC, 1996; Trenberth, 

1998; Alverson et al., 2000; Bates et al., 2008; Trenberth, 2011). The hydrological 

processes (water cycle) will be intensified, with more evaporation and more 

precipitation, but the extra precipitation will be unequally distributed across the globe 

(Trenberth, 1999b, a; Adam et al., 2006; Sanderson et al., 2011). There are different 

levels of precipitation variability (extreme events, intensity and frequency); (i) major 

alterations in the timing of wet and dry seasons (ii) spatial and temporal and (iii) local, 

region and global. Some parts of the world may experience significant intense 

precipitation (flooding) while other regions could have reduced precipitation 

(droughts) (Trenberth, 1998; Trenberth et al., 2003; Trenberth, 2011). The change in 

mean precipitation is associated with changes not only in precipitation intensity but 

also in precipitation frequency (Solomon et al., 2009; Wang et al., 2012a; Lee et al., 

2014). Changes in the total amount of precipitation (frequency and intensity) directly 

affect the magnitude and timing of run-off and the intensity of floods and droughts 

(Trenberth, 1998). However, at present, specific regional effects are uncertain (IPCC, 

1996, 2001; Trenberth et al., 2003; IPCC, 2007b; Schewe et al., 2014). 

Water vapor is an important greenhouse gas (Kiehl and Trenberth, 1997). Changes 

in water vapor amount is a major determinant of earth’s climate (radiation and energy 

feedbacks) and moisture dynamics (Held and Soden, 2000; Trenberth et al., 2005; 

Held and Soden, 2006; Voigt and Shaw, 2015). The Clausius–Clapeyron equation 

predicted a temperature increases by 1K and the water-holding capacity of the 

atmosphere to increases by 7.8 % (Trenberth et al., 2005; Voigt and Shaw, 2015). 

Climate warming has intensified the moisture in the atmosphere (Trenberth et al., 

2003; Stephens and L'Ecuyer, 2015). There are extreme precipitation events 

(especially in arid to semiarid regions) due to global warming (IPCC, 2007b). 

Atmospheric moisture contributes to 70 to 90% of precipitation (Trenberth et al., 

2005; van der Ent et al., 2010). The water vapor in the lower troposphere is a crucial 

factor for precipitation and precipitation releases latent heat, which affects the diabatic 

heating structure in the troposphere (Kiehl and Trenberth, 1997; Held and Soden, 

2000; Trenberth and Stepaniak, 2003). The availability of water is determined by the 

amount of precipitations (Krishnamurti and Biswas, 2006; Trenberth and Fasullo, 
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2013). Changes in precipitation have impacts on societies, economies and ecosystems 

(Hoyos and Webster, 2007; Wang et al., 2012b). The response of precipitation to 

global warming is a critical issue in climate science (Voigt and Shaw, 2015). Climate 

models robustly project an increase of global-mean precipitation at a rate of 1–3% per 

degree warming (IPCC, 2001; Held and Soden, 2006). 

 

 

 
 

Fig. 12 Annual mean change in temperature for the SREs; indicating the period 

2071-2100 relative to the period 1961-1990. The projections based on 

atmospheric general circulation models. The global mean annual average 

warming of the models is 1.2- 4.5°C for A2 (Gitay et al., 2002). 

 

 

 
 

Fig. 13 Annual mean change of precipitation for the SRES scenario A2; the 

period of 2071-2100 relative to the period 1961-1990. The projections based on 

atmospheric general circulation models. (Gitay et al., 2002; fig. 5). 
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Fig. 14 Climate change: processes, characteristics and threats. Source: UNEP/GRID–

Arendal, 'Climate change: processes, characteristics and threats', 
http://maps.grida.no/go/graphic/climate_change_processes_characteristics_and_threats 

(UNEP/GRID–Arendal, 2005; UNFCCC; 2007; fig. 11-1). 

 

 

 

 

 

 

 

 

 

 

http://maps.grida.no/go/graphic/climate_change_processes_characteristics_and_threats
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Fig. 15a-b Importance of mountains as “Water Towers” of the world (Viviroli et al., 

2003; Kohler and Maselli, 2009). 

 

 

a 

b 
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Fig.15c Contribution mountain area to total discharge, and size of mountain area as 

compared to total basin area for selected rivers world-wide (Viviroli et al., 2003; 

Kohler and Maselli, 2009). 

 

 

 
 

Fig. 16 Accumulated annual snowfall divided by annual runoff over the global land 

regions. The value of this dimensionless ratio lies between 0 and 1 and is given by the 

colour scale, R. The red lines indicate the regions where streamflow is snowmelt-

dominated, and where there is not adequate reservoir storage capacity to buffer shifts 

in the seasonal hydrograph. The black lines indicate additional areas where water 

availability is predominantly influenced by snowmelt generated upstream (but runoff 

generated within these areas is not snowmelt-dominated). The inset indicates regions 

of the globe that have complex topography (Adam et al., 2006; fig.1 Barnett et al. 

2005; fig.1). 

 

 

On a regional scale, the precipitation enhancement occurs worldwide, except for 

the two zonal bands (30
o
S and 30

o
N; reduced precipitation), with different variability 

(Chou and Lan, 2012; Voigt and Shaw, 2015). The annual precipitation enhancement 

is mainly associated with larger upward trends of maximum precipitation, smaller 

upward trends and downward trends of minimum precipitation (Chou and Lan, 2012). 

The dominant mechanism is vertical moisture advection, both on regional and global 

scale (Chou and Lan, 2012). The vertical moisture advection and moisture 

c 
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convergence induced by vertical motion are influenced by two processes; (i) the 

thermodynamic component, which is associated with increased water vapor and (ii) 

the dynamic component, which is associated with changes in circulation (Chou and 

Lan, 2012). The thermodynamic component enhances the annual precipitation, while 

the dynamic component tends to reduce it (Chou and Lan, 2012). Evaporation has a 

positive contribution to both maximum and minimum precipitation and a smaller 

effect to the annual precipitation (Chou and Lan, 2012). Evaporation and horizontal 

moisture advection are important on a regional basis and have a small effect on a 

global scale (Chou and Lan, 2012). 

The Tibetan Plateau precipitation variability will potentially affect the socio-

economic activities (e.g., food security, safe drinking, agriculture farming), increased 

water stress (health of aquatic ecosystems and biodiversity) and more than 2 billion 

people in the bordering countries (Fig.17-18) (Yanai et al., 1992; Webster et al., 1998; 

Qian et al., 2011). For example, one-quarter of the population of China lives in the 

western regions, where glacial melt provides the primary water source during the dry 

season (Gao et al., 2012). The climate warming will affect glacial melt and the river 

flow regimes due to hydrological extremes (Fig. 17-18) (Haines  et al., 1988; 

Kattleman, 1989; Liu et al., 2007; Yang et al., 2014a). The glaciers in Himalayans-

Tibetan Plateau region are retreating at a faster rate and predicted to disappear 

completely by 2035 (Fig. 17b) (Cruz et al., 2007; Meehl et al., 2007; Nayar, 2009; 

Qui, 2010). The warming may cause early melting and rising of floods in winter and 

prolong summer drought (Trenberth, 2011; Immerzeel et al., 2013; Manandhar et al., 

2013; Yang et al., 2014a). Local climate warming promotes vegetation growth and 

accelerates land degradation by affecting water conditions (increase in 

evapotranspiration) (Zhang et al., 1996; Schickhoff, 2000; Du et al., 2004). 

 

 

 
 

Fig. 17a Climatic variations in the Himalaya-Tibetan Plateau region. The climate 

differs between the east and west and between the north and south, with variations 

in sources and type of precipitation and in glacier behaviour and dynamics. 

Background image from ESRI ArcGlobe 10.0. (Barnet et al., 2006; UNEP, 2012; 

fig. 5;). 
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Fig. 17b. Melting of glaciers in mountainous region (Nayar, 2009). 

 

 
 

Fig. 18 Predicted percentage of glacial melts contributing to basin flows in the 

Himalayan-Tibetan Plateau basins. Shape files superimposed on background image 

from ESRI ArcGlobe 10.0 (Xu et al., 2008a; UNEP, 2012). 

 

 

1.3 Quaternary environmental change 
 

The Quaternary Period (Pleistocene and Holocene) is characterised by great 

variability in environmental and climate in the Earth history (e.g., continental ice 

sheets, sea level and lake level fluctuations) (Bradley, 1985; Dawson, 1992; Mann, 

2002; Bell and Walker, 2005; Anderson et al., 2007). The Quaternary period (last 2.6 

million years) alternate between the great cold (glacial, stadials) and with  relatively 
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greater warmth (interglacials, interstadials) due to the differences in mean temperature 

(Bowen, 1978; Bradley, 1985; Dawson, 1992; Bell and Walker, 2005).The 

Quaternary is subdivision of the geological time which includes the present day 

(Bowen, 1978; Karl et al., 1989; Bradley, 1990; Alverson, 2007). The contemporary 

surrounding is part of the Little Ice Age (Bowen, 1978; Karl et al., 1989; Bradley, 

1990; Alverson, 2007). The modern environment and organism is used as reference to 

draw conclusions from ancient ecosystems and its biota. The contempeorary 

processes and spatial distributions serve as the basis for the inference about the 

prehistorical ecological, geological and climatic shift (Bowen, 1978; Karl et al., 1989; 

Bradley, 1990; Alverson, 2007) 

The Tibetan Plateau is sensitive to global climate change (e.g., temperature rise) 

during Quaternary (Yao and Meixue, 2004; Mischke and Zhang, 2010; Zhu et al., 

2015). High lake-water-levels across in Africa, Arabia and India (monsoon rains over 

the Sahara and the Indian subcontinent (between 10,000 and 5000 years B.P., before 

present) is evidence strengthen of monsoon climate with subsequent weak monsoons 

and glacial maximum at 18,000 years BP (Street and Grove, 1979; An, 2000). 

However, the Holocene (wholly recent) environmental and climatic records from 

Tibetan Plateau are still inadequate (Zheng et al., 2000a; Liu et al., 2002a; Overpeck 

et al., 2005; Herzschuh et al., 2006; Morrill et al., 2006). 

Understanding of monsoon variability is critical due to climate change effect on 

water resources (Liu et al., 2012; Wang et al., 2012a). Direct measurement of 

precipitation (hydrological monitoring) on longer time scale (millennial to decadal) is 

lacking (Karl et al., 1989; Lee et al., 2014). Therefore, indirect inference, proxy 

archives (ice cores, lake sediments, biological organism) are often used to assess past 

natural variability of monsoon (hydrology), aquatic ecosystems, environment and 

climate dynamics on Tibetan Plateau (Mischke et al., 2008b; Gornitz, 2009). 

Palaeoclimate records (ice cores and lake sediment and ostracods) showed significant 

climate fluctuations over the Tibetan Plateau during the Late Glacial and Holocene 

period (Thompson et al., 1997; Yao and Meixue, 2004; Jin et al., 2011; Bird et al., 

2014). The majority of Holocene environmental evolution is reconstructed from lake 

records in the northeastern and western Tibetan Plateau (Gasse et al., 1991; Lister et 

al., 1991; Li et al., 1994; Gasse et al., 1996). There are few palaeo-records from 

southern Tibetan Plateau (Mischke and Herzschuh, 2003; Guo et al., 2013; Ma et al., 

2014b). The reconstruction environmental and climate history is significance to 

understanding past climate events, recent climate change and forecasting future 

climate variations (Karl et al., 1989; Bradley, 1990). 

The Quaternary environment is characterised by cold climate in the early to middle 

glacial period with increased precipitation and cold dry climate in late period (Gu et 

al., 1993; Rost, 2000; Mann, 2002; Mischke and Zhang, 2010). During the last 

glaciations, maximum advancement of small glaciers occurs at relatively humid and 

cold period between ca. 32 and 23 ka (Derbyshire, 1996; Rost, 2000; Larocque-Tobler 

et al., 2010). The dry cold stage between ca. 23 and 13 ka is characterised by slower 

glacial advancement (Derbyshire, 1996; Rost, 2000; Larocque-Tobler et al., 2010). 

The Quaternary environment is primarily characterised two phases; first, glacial 

period, cold dry winter monsoon climate and second interglacial period, a warmer 

and more humid climate (Derbyshire, 1996; Rost, 2000; Larocque-Tobler et al., 

2010). The past monsoon dynamics is reconstructed from palaeohydrology, 

periglacial dynamics, dust flux and soil formation and sedimentations (e.g., lake 

sediments, alluvial terraces and palaeo-shorelines) (Derbyshire, 1996; Larocque-

Tobler et al., 2010). 
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There was a strong abrupt rainfall change in China and India during the Holocene 

and last glacial period (Gasse and Derbyshire, 1996; Owen et al., 2005; Levermann et 

al., 2009; Amidon et al., 2013). The last interglacial is associated with an increase of 

precipitation throughout Asia (Owen et al., 2005; Amidon et al., 2013). Marine 

Isotopic Stage 4 provides no evidence whatsoever of humid conditions. Two wetter 

episodes occurred during Stage 3. A major rainfall decrease everywhere is associated 

with the Last Glacial Maximum (21-15 ka in most regions), the arid or semi-arid 

zones extending several hundred kilometers southwards, relative to the present-day 

pattern (Owen et al., 2005; Amidon et al., 2013). The two abrupt deglaciations and the 

Younger Dryas are recorded in all of the most sensitive regions, at the margins of the 

present-day monsoonal range in Asia. During the Holocene, the precipitation 

increased everywhere (by 100-400 mm, relative to the present-day values), the 

optimum at 8.5-6.5 ka (Yan and Petit-Maire, 1994). A climatic deterioration indicates 

an irregular pattern of dry/wet episodes due to different geographic conditions. The 

humid phase terminated at 3.5-3 ka in the whole transitional zone (Yan and Petit-

Maire, 1994). Temperature rise rapidly and gradually fall during the last inter-glacial 

period. (Thompson, 1992; Herzschuh et al., 2011; Yao et al., 2012b). The 

environmental and climatic change is also linked to early Holocene insolation 

maximum in low latitudes of the northern hemisphere and the strengthening of 

monsoons (Berger and Loutre, 1991). Nonetheless, there spatial heterogeneous in 

Holocene climate evolution on the Tibetan Plateau (Zheng et al., 2000a; Wu et al., 

2006; Mischke et al., 2008b; Zhao et al., 2011). 

Temperature had been rising gradually in the last 2000 years and sharp rise in 

recent decades causing a warm late Holocene (Thompson et al., 2000; Thompson et 

al., 2006; Wang et al., 2007). There are different time scales of climate change on the 

Tibetan Plateau (Davis and Thompson, 2004; Bird et al., 2014). There are also spatial 

differences and regional heterogeneity in monsoon dynamics in the Tibetan Plateau 

during the Late Glacial and Holocene (Owen et al., 2005; Mischke and Zhang, 2010; 

Amidon et al., 2013; Ma et al., 2014a). The inconsistencies may be due to spatial 

(local) and region differences in geomorphology of study sites (e.g., type of basin, 

geophysical features and hydrologic sensitivity), monsoons circulations and analytical 

techniques employed (e.g., number of cores, types of evidence and type of dating) 

(Duan et al., 2012; Mischke, 2012; Yang et al., 2014a; Mischke et al., 2015).  

 

1.3.1 Environmental Reconstruction: lake system and its biota 

 
Quaternary environmental change can be reconstructed with surface fresh water 

indicators (e.g., lake sediments, freshwater shells, ostracods, pollens and diatoms 

(Larocque-Tobler et al., 2010; Moss, 2010; Lowe et al., 2014). There more than 300 

lakes with surface areas greater than 10 km
2 

on the Tibetan Plateau (Yu et al., 2001a). 

Lake evolution is significance in the study of global environmental change (Zhu et al., 

2004). Lake is an inland body of water (Smol, 2002). Modern lakes are  often reffered 

as “indland seas” (Smol, 2002). Lake response to climatic forcing through physical, 

chemical and biological effects is recorded within the system (Talbot and Allen, 1996; 

Anderson et al., 2007; Gary, 2009).  

The area of a closed basin lake represents equilibrium between runoff from the 

catchment and the water deficit over the lake surface (Street-Perrott and Harrison, 

1985; Lodge, 2001). Closed lakes are indicators of hydrological changes (Chen et al., 

2008). The expansion and shrinkage of closed lakes are a natural response to 

punctuations in precipitation and evaporation, linked closely to changes in strength 
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and position of atmospheric circulation (Chen et al., 2008). In closed lake basins, 

especially in sub-humid to semi-arid regions, the volume and chemistry of lake water 

are sensitive to the ratio of precipitation to evaporation over the catchment, which is, 

in turn, closely coupled to climate (Smith, 1992; Gary, 2009). In open lake basins, the 

water balance is complicated by contributions from surface and subsurface inflows 

and outflows (Gary, 2009). Nonetheless, this depends on the hydrology of a lake. 

Closed basin lakes may only preserve low-frequency changes depending on the 

residence time, whereas open lakes may show high-frequency changes but with small 

amplitude so difficult to decipher (Emi Ito personal communication). 

Lake sediments preserve physical, chemical and biological information for 

reconstruction of past aquatic environments (Smol et al., 2001; Fritz, 2003; 

Williamson et al., 2009; Juggins and Birks, 2012). Lake sediments also record other 

types of environmental information such as catchment disturbance and nutrient status 

(Talbot and Allen, 1996). Variations in these characteristics may be climatically 

controlled and related to human activity (Holmes, 1992). Lake sediments are natural 

archives for reconstruction of past environmental and climate impacts (Talbot and 

Allen, 1996; Lodge, 2001; Schindler, 2009). Lakes provide continuous and long 

records of sediment accumulation over time (Last et al., 2001). Lake sediments are 

particularly suited for climate reconstruction as both high (decades to centuries) and 

low-frequency (thousands of years) climate variability components are preserved in 

the sediments (Talbot and Allen, 1996; Lodge, 2001; Schindler, 2009). 

All biological species occur in a given habitat with limited range of environmental 

factors and are most abundant with particular environmental optimum (Walter and 

Hengeveld, 2014). Therefore, a change in compositions of biological communities is 

influenced by a change in environmental variables (Walter and Hengeveld, 2014). 

Fauna successive (species replacement) is due to variation in the environments and 

time (ter braak and Prentice 1988). Biostratigraphic units is characterised by one or 

more fossil species, which described specific depositional environment. Quantitative 

reconstruction is expressed by the value of an environmental variable as a function of 

biological proxy data (e.g., ostracod assemblages) (Birks, 2003). The proxy data are 

expressed as quantitative counts (percentages, or proportions, estimate of relative 

abundance and presence and absence) (Birks, 1998; Birks, 2003). Qualitative studies 

involve indicator fauna and different biological indices (diversity) (Birks, 2003). 

Species specific abundances change with change in environment. Species abundance 

is influenced by more than one environmental variable (Birks, 2003). 

Understanding lake system and their organisms response is critical to 

understanding of ecosystem dynamics, policy formulation, water resources 

management and biodiversity conservation in the face of climate change (Haigh, 

1989; Vorosmarty et al., 2000; von Storch, 2009; Grafton et al., 2013). 

 

1.3.2. Tangra Yumco 

 

Tangra Yumco (86°23′–86°49′E, 30°45′–31°22′N and average elevation of 4600 

m a.s.l) is one of the three largest saline ancient lakes on the southern Tibetan Plateau 

(Fig. 19a-c). It is situated about 100 km east of Zhari Nam Co and about 450 km 

northwest of Lhasa in the Tibet Autonomous Region of China, Nima County (Fig. 

19a-c) (Long et al., 2012). 

Tangra Yumco is a holy lake with surface area of 836 km
2
 and a catchment of 

~8220 km². It is 70 km in length, 20 km in width and with a maximum depth of 214.8 

m (Wang et al., 2010b). The lake is an elongated S-shape with two separate parts 
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(northern part, ~220 m is much deeper than the southern, ~100 m) (Wang et al., 

2010b). Its maximum extension is ~70 km in north-south direction and ~19 km in 

west-east direction. The lake has a salinity of 8.2‰ (specific conductivity of 10.6 

mS/cm) and pH of 9.6. 

Ancient large lakes provide continuous records for the Late Quaternary 

environmental and climate change (Fig. 19a-c) (Martens, 1994; Zhu et al., 2004; 

Zhang et al., 2007; Barker, 2009; Günther et al., 2015). Tangra Yumco lake 

undergoes the strongest Quaternary lake level changes on the Tibetan Plateau (Fig. 

19a-b) (Miehe et al., 2011; Miehe et al., 2014). The high palaeo-shorelines, high-stand 

(e.g., 181–183 m) and massive sedimentary carbonate in the catchment of Tangra 

Yumco is an indicative of ancient high water events in geological history (Kong et al., 

2011b; Möbius, 2011; Long et al., 2012; Rades et al., 2013b; Ahlborn et al., 2015b). 

The northern catchment of Tangra Yumco is characterised by fossil freshwater 

stromatolites, indicating high carbonate precipitation in the early Holocene (Peter 

Frenzel personal communication). The high lake recessional terrace occurs at 4, 700 

m a.s.l (by lake sediment and peat records at 160 m above present) during the 

Pleistocene and Holocene transition (10.1 – 7.6 cal ka B.P.) (Long et al., 2012; Rades 

et al., 2013b; Miehe et al., 2014; Ahlborn et al., 2015b). However, a deep lake system 

exist in 11.0- 11.5 cal ka B.P. at 4, 720 m a.s.l (by lake sediment and ostracods 

records at 180 m above present) with a gradual decrease after the early Holocene 

maximum (Rades et al., 2013b; Miehe et al., 2014; Ahlborn et al., 2015b). 

The cold Artemisia steppe climate of Tangra Yumco is chiefly influenced by 

oceanic India Summer Monsoon, with annual precipitation 500- 600 mm (Miehe et 

al., 2011; Miehe et al., 2014). (Mischke et al., 2008b). Tangra Yumco is is situation at 

interaction of three climatic systems, with a major influenced by the India Summer 

Monsoon (Liu et al., 2007). The Westerly have a minor influence during the winter 

season. Tangra Yumco has been selected to complete (palaeo)-environmental and 

climate records (south transect; East to West) on the southern Tibetan Plateau. 

Palaeoenvironmental reconstructions using multi-proxies (sedimentology, 

geochemistry and micropaleontology) will help to decipher Late Quaternary 

environmental and climate variability in Tangra Yumco. 

 

 

 
 

 

Fig. 19a Quaternary monsoon dynamics (Indian Ocean Summer monsoon and the 

Westerlies) at Tangra Yumco on the southern Tibetan Plateau. (Modified; Güther et 

al., 2015). 

a 
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Fig. 19b-c. A Climatic variation (change in glaciers) on Himalayas-Tibetan Plateau 

and insert, location of Tangra Yumco:  Zone 1 – Mainly in Afghanistan, this area has 

relatively stable or very slowly retreating glaciers; Zone 2 – The Northwestern 

Himalayas including the Karakoram have highly varied glacier behaviour, with many 

surge glaciers, many advancing, stable, and retreating snouts and comparatively few 

large lakes. Glaciers in the Pamir Mountains of Tajikistan are generally retreating 

while further south, behaviour of the Karakoram glaciers is mixed, but lacking 

wholesale, rapid disintegration of glacier tongues and rampant lake growth; Zone 3 – 

Chiefly in India, southwestern Tibet and western Nepal, this area has mainly 

stagnating, retreating snouts and time variability with periods of slower retreat for 

some glaciers during parts of the 20th and 21st centuries. There are fewer lakes than 

in the eastern Himalayas, but large lakes may be a growing phenomenon as glaciers 

thin and tend to stagnate and Zone 4 – Primarily Nepal, Bhutan, Sikkim and 

southeastern Tibet, this area has many large glacier lakes, especially since the 1960s. 

Many glaciers are rapidly disintegrating as they stagnate and thin. Glaciers on the 

south side generally have more debris cover than they do on the north side Image 

from NASA Blue Marble and MODIS data (UNEP, 2012). 

 

 

c 
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1.4 PhD Framework 
 

1.4.1 The Framework of the DFG Priority Program 1372: TiP Tibetan 

Plateau: Formation – Climate – Ecosystems  

 
This PhD thesis is formulated within joint research “Lake systems response to 

Late Quaternary monsoon dynamics on the Tibetan Plateau”. This is part the 

German Research Foundation, thus “Deutschen Forschungsgemeinschaft (DFG)”, 

Priority Programme 1372; “Tibetan Plateau: Formation – Climate – Ecosystems 

(TiP)” in cooperation with the Institute of Tibetan Plateau Research, Chinese 

Academy of Sciences. The goal is to evaluate the monsoon climatic history, 

environmental evolution (past, present and future) and anthropogenic impact on the 

sensitive ecosystems of the Tibetan Plateau (Fig. 20) (http://www.tip.uni-

tuebingen.de/index.php/de). The key schematics of TiP are in three scales: 

I. Plateau formation and climate impact on the ecosystems during the last 

millions to several tens of millions of years (ca.70 millions years). 

II. Late Cenozoic climate evolution and environmental response to monsoon 

dynamics during the last hundreds of thousands years (decadal to 

centennial resolution). 

III. Human impact and global change on ecosystems dynamics (present, past 

ca.8000 years, and future perspectives). 

 

 
 

 

Fig. 20 Logos of the TiP Priority Project with focus on the interlinked arid-

environment processes; Plateau Formation – Climate evolution — Human 

impact and their driving forces on ecosystems. 

 

 

1.4.2 Thesis outline  
 

The primary objective is to investigate ostracods (tiny aquatic arthropods) as 

potential biological indicators for environmental reconstructions and environmental 

monitoring of aquatic ecosystems (e.g., lake evolution and monsoon dynamics) on the 

southern Tibetan Plateau. 

 

 

 

 

 

 

Tibetan Plateau: 

Formation-

Climate-

Ecosystems

TiP

http://www.tip.uni-tuebingen.de/index.php/de
http://www.tip.uni-tuebingen.de/index.php/de
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1.4.3 Specific objectives are to: 
 

 Assess Recent ostracod ecology in Tangra Yumco and adjacent aquatic 

ecosystems. 

 Calibrate the valve chemistry of Recent Ostracoda from the southern Tibetan 

Plateau. 

 Evaluate ostracods as bioindicators of subaqueous sediment gravity flows in 

Tangra Yumco. 

 Investigate the Late-Quaternary environment and climate history in Tangra 

Yumco: Sedimentary and Ostracoda perspective. 

 

1.4.4 Thesis structure 

 
This PhD thesis is structured as: 

 

 Chapter 2 explores the spatial distribution and auto-ecology of Recent 

Ostracoda from Tangra Yumco and adjacent aquatic habitats (in press in 

Limnologica). 

 

 Chapter 3 evaluates the geochemistry of Recent Ostracods shells from 

southern Tibetan lakes (resubmitted, Hydrobiologia). 

 

 Chapter 4 describes the potential of Ostracoda as indicators of subaqueous 

mass transport (publication, Palaeogeography, Palaeoclimatology, 

Palaeoecology, 419, 60-74). 

 

Chapter 5 focuses on multi-discipline (sedimentology, geochemistry and 

micropaleontology) reconstruction of Late Holocene palaeoenvironmental and 

climate dynamics in Tangra Yumco (submitted to Quaternary Research, 

December 2015).  

 

Chapter 6 syntheses of previous chapters (ostracods as environmental 

indicators of aquatic ecosystem and monsoon dynamics). A new dimension of 

auto-ecology and (palaeo)-ecology as a great biological tool for interpreting 

lacustrine environment and climatec change. Finally, highlights on the future 

outlook of (palaeo)-environmental and climate research. This contributes to 

understanding of mountain aquatic ecosystems and their microbenthic 

organisms (e.g., ostracods) and the need for long–term ecological monitoring 

due to climate change. 

 

Appendix (I-V) is numerical data about bio-chemical and physical factors of the 

mountain aquatic ecosystems investigated. Numerical data (in tables) coordinates and 

environmental factors of waterbodies (lakes, rivers, ponds, and springs), living, dead 

(empty shells) and total association of ostracods, are presented. 
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Chapter 2 

2.0 Abstract 

We elucidate the ecology of Recent Ostracoda from a deep brackish lake, Tangra 

Yumco (30°45′ - 31°22′N and 86°23′ - 86°49′E, 4595 m a.s.l.) and adjacent waters on 

the southern Tibetan Plateau. Ostracod associations (living and empty valves) in 

sixty-six sediment samples collected from diverse aquatic habitats (lakes, estuary-like 

water and lagoon-like water waters, rivers, ponds and springs) were quantitatively 

assessed. Eleven Recent Ostracoda were found (nine living and two as empty valves 

only).  

Cluster analysis established two significant (p<0.05) habitat specific associations; 

(i) Leucocytherella sinensis, Limnocythere inopinata, Leucocythere? dorsotuberosa, 

Fabaeformiscandona gyirongensis and Candona xizangensis are lacustrine fauna. (ii) 

Tonnacypris gyirongensis, Candona candida, Ilyocypris sp., Heterocypris 

incongruens and Heterocypris salina are temporary water species.  

Ostracod distribution and abundance are significantly (p<0.05) correlated to 

physico-chemical variables. The first two axes of a canonical correspondence analysis 

(CCA) explain 30.9 % of the variation in the species abundance data. Conductivity 

and habitat types are the most influential ecological factors explaining the presence 

and abundance of ostracods. Spearman correlation analysis reveals that: (i) Two 

species, L.? dorsotuberosa (r = 0.25) and L. inopinata (r = 0.36) have a significant 

positive correlation with conductivity while one species, T. gyirongensis (r = -0.68) 

displays a significant negative correlation with conductivity. Limnocythere inopinata 

correlates significantly positive (r = 0.37) with alkalinity. Fabaeformiscandona 

gyirongensis correlates significantly positive (r = 0.28) with water depth. 

Key indicator living assemblages are: (i) L. sinensis dominates Ca-depleted 

brackish waters although ubiquitously distributed; (ii) L.? dorsotuberosa dwells in 

fresh to brackish waters; (iii) L. inopinata predominates in mesohaline to polyhaline 

waters; (iv) F. gyirongensis inhabits exclusively brackishlacustrine deeper waters; (v) 

C. candida populates freshwaters; (vi) T. gyirongensis and Ilyocypris sp. are restricted 

to shallow temporary waters; (vii) H. incongruens occurs in ponds. Water depth 

indicators are F. gyirongensis and L.? dorsotuberosa, useful ostracod assemblages for 

palaeo-water depth reconstruction. 

Our results expand the knowledge of the ecological significance of Recent Tibetan 

Ostracoda ecology. This is a new insight on habitat chacteristics of both living 

assemblages and sub-Recent associations of ostracods in mountain aquatic 

ecosystems. The new modern ostracod dataset can be used for the quantitative 

reconstruction of past environmental variables (e.g., conductivity) and types of water 

environment. The key indicator ostracods are relevant in palaeolimnological and 

climate research on the Tibetan Plateau. 
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2.1 Introduction 

Ostracods (also known as seed shrimps, size range ca. 0.4 – 3 mm) are a class of 

bivalved aquatic Crustacea that secrete a calcitic shell (carapace) and easily fossilise 

(Griffiths and Holmes, 2000). They are commonly found in diverse aquatic habitats, 

including lakes, ponds, streams, rivers, estuaries, oceans and semi-terrestrial 

environments (Danielopol, 1989; Horne et al., 2002; Smith and Delorme, 2010). 

Ostracoda are widely used as proxies in palaeoclimatic reconstruction of marine and 

non-marine environments because of their small size, ecological sensitivity, shell 

chemistry signature, long stratigraphic range (Ordovician – present) and occurrence in 

sediments from lakes, estuaries, bays and oceans etc. (Griffiths and Holmes, 2000). 

Ostracods are palaeo-indicators of temperature, water depth, substrate type, 

permanence of water body and ionic concentration (salinity/conductivity) (De 

Deckker et al., 1979; Frenzel and Boomer, 2005; Mischke and Wünnemann, 2006; 

Horne, 2007; Mischke et al., 2007a; Frenzel et al., 2010a). The species-specific 

tolerance and optimum ecological requirements reflect spatial and temporal 

distribution of environmental parameters (Külköylüoğlu and Dugel, 2004; Dügel et 

al., 2008). Knowledge on the ecology of living fauna will enhance the reconstruction 

of environmental and climatic variables (Eagar, 1999; Holmes and Chivas, 2002).  

Ostracods are one of the important biological proxies used in palaeoenvironmental 

reconstruction on the Tibetan Plateau (Mischke, 2012). Knowledge on the ecology of 

living ostracods from high altitudes (>3000 m a.s.l.) is mostly limited to regions such 

as Western Europe and United States of America (Delachaux, 1928; Laprida et al., 

2006; Külköylüoğlu and Sari, 2012; Pinto, 2013) The ecology of Quaternary and 

living ostracods from continental Asia is still largely unknown (Zhang, 2000; Van der 

Meeren et al., 2010). This is due to higher altitude, complex terrain, inaccessibility of 

the aquatic ecosystems (e.g., lakes) and insufficient investigation on micro-

crustaceans from the region (Zhang, 2000; Long et al., 2012; Zhai and Zha, 2014). 

Literature on taxonomy and ecology of Tibetan ostracods is mostly published in 

Chinese language, making it largely inaccessible to the international scientific 

community (e.g., Huang, 1964, 1982; Huang et al., 1985a). Furthermore, habitat 

characteristics of non-marine ostracods from the Tibetan Plateau are mostly inferred 

from Sub-Recent ostracods (Huang et al., 1985b; Mischke et al., 2005; Wrozyna et 

al., 2009a; Wrozyna et al., 2009b; Zhang et al., 2013). Hence, knowledge on modern 

ecology and habitats of Recent fauna is urgently needed. 

The primary objective of the present study is to investigate the Recent Ostracoda in 

Tangra Yumco and adjacent waters (smaller lakes, estuary-like water, lagoon-like 

water, rivers, ponds and springs). This is achieved by assessment of species 

distribution, composition, abundance and the importance of physico-chemical 

variables. Related objectives are to: (i) characterise habitats and their typical 

associations; (ii) rank the influence of physico-chemical variables on ostracod 

distribution and abundance and (ii) to evaluate water depth distribution of species in 

the deep brackish lake Tangra Yumco. We hypothesised that species abundance is 

dependent on physico-chemical variables. Our results revealed that environmental 

factors (conductivity and habitat types) influenced the spatial distribution and 

abundance of living ostracods. The ecology of Recent Ostracoda is significant in 

palaeoenvironmental reconstruction on the Tibetan Plateau. 
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2.2 Study area 

The Tibetan Plateau is surrounded by the Himalayas to the south, the Karakoram 

Range and the Pamirs to the west, the Hengduan Mountains to the east and the 

Kunlun and Qilian Mountains to the north (Lehmkuhl and Owen, 2005; Yao et al., 

2012). The uplift of the Tibetan Plateau influences the East Asian and Indian summer 

monsoon systems. This causes a cold dry winter and heavy rainfall during summer 

(An et al., 2001; Abe et al., 2013). 

There are more than 300 lakes with surface areas greater than 10 km
2
 on the 

Tibetan Plateau (average altitude of 4500 m.a.s.l.) (Zheng, 1997; Wang and Dou, 

1998; Yu et al., 2001; Ma et al., 2011). A majority of lakes is distributed in the 

central-western section of the Tibetan Plateau. The lakes occur in tectonic depressions 

caused by west-east and north-south trending faults (Meyer et al., 1998; Mitsuishi et 

al., 2012). The 300 km long and 40 km wide graben containing the lakes Tangqung 

Co, Tangra Yumco, Monco Bunnyi, and Xuru Co is termed as Tangra Yumco lake 

system (Fig. 2.1a). It is induced by a north-south trending rift and normal faults 

cutting through the western part of the Lhasa block on the south-central Tibetan 

Plateau and northern slope of Gangdise Mountains (Zheng, 1997; Gao et al., 2007; 

Kong et al., 2011). These continental Tibetan lakes have characteristic limnological 

features (e.g., hypersaline to oligohaline waters, Tab. 2.1). Tangqung Co, Tangra 

Yumco, Monco Bunnyi, and Xuru Co belonged to a large ancient lake during the 

Quaternary period (Zheng, 1997; Zhang, 2000). The large lake gradually 

disaggregated into independent smaller lakes during the early and late Holocene due 

to an extensive drop of water level (Zheng, 1997; Zhang, 2000; Zhu et al., 2004; Liu 

et al., 2013). 

The Tangra Yumco lake system lies in a unique climatic transition between the 

central and western Tibetan Plateau controlled by the Indian Monsoon. The rainfall on 

the Tibetan Plateau is highest in the monsoon summer month of July and total annual 

precipitation (~60%) falls between May and October (Singh and Nakamura, 2009; 

Guo et al., 2014; Maussion et al., 2014). Mean annual precipitation for the Tangra 

Yumco lake system ranges from 298 to 316 mm/year (Tab. 2.1) (Hudson and Quade, 

2013). The mean annual temperature ranges from 0 to 5
o
C in the central and southern 

part of the Tibetan Plateau (Conroy and Overpeck, 2011). Monco Bunnyi, Tangra 

Yumco, and Xuru Co do not freeze up completely in some years (Kropacek et al., 

2013). 

The Tangra Yumco lake system is surrounded by temporary shallow water bodies 

such as estuary-like water mixing zones of both fresh and brackish waters with highly 

unstable hydrological conditions, lagoon-like water shallow isolated brackish water 

bodies separated from the lakes by sand or gravel bars, rivers, ponds and springs. 
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Tab. 2.1 Limnological characteristics of Tangqung Co, Tangra Yumco, 

Monco Bunnyi and Xuru Co. NA = no data available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tangra Yumco (30°45′ – 31°22′N and 86°23′ – 86°49′E, elevation of 4595 m 

above sea level, a.s.l) lies about 100 km east of Zhari Nam Co and about 450 km 

northwest of Lhasa (Fig. 2.1). Tangra Yumco is also called Lake Dangra, Dangra 

Yumtsho, Dangra gyumtsho, Dang-ra rgyal-mo, and Ocean Turquoise Lake. The holy 

lake is situated at the prime centre of the Ancient Zhang Zhung Kingdom, 150 km 

from Nima County (Bellezza, 1997). It is a closed lake with a surface area of 818 

km
2
, a drainage area of 8219 km

2
,
 
length of 71.70 km and mean width of 11.65 km 

(maximum, 19.40 km) (Long et al., 2012). Tangra Yumco is the third-largest lake on 

the south-central Tibetan Plateau and the second-deepest lake in China (Wang et al., 

2010). It stretches from north-east to south-west, forming an elongated S-shape (two 

parts joined by a narrow strip). The northern basin (~230 m) is much deeper than the 

southern basin (~100 m). 

 Tangqung 

Co 

Tangra 

Yumco 

Monco 

Bunnyi 

Xuru Co 

Other names Dangqiongco, Dangra Yum 

Tso, 

Mun Tso Shun Tso 

 Tangra 

Qonco, 

Tanghlha 

Yumco, 

  

 Small Tangra Yamzho 

Yumco, 

  

 Yumco Dangre 

Yongcuo 

  

Latitude [°N] 31° 31′ - 31° 

37′ 

30° 45' - 31° 

22’ 

30° 67′ 30° 10′ - 31° 

36′ 

Longitude [°E] 86° 41′ - 86° 

48′ 

86° 23' - 86° 

49' 

86° 22′ 86° 15′-

86°29′ 

Altitude [m a.s.l] 4475 4550 4689 4720 

Catchment [km2] 861 8220 886 1913 

Lake surface area 

[km2] 

57 818 144 206 

Maximum depth 

[m] 

NA 230 NA 210° 

Conductivity [mS 

cm-1] 

144.8 12.41 3.9 4.0 

Salinity 105.0 8.9 2.8 2.9 

Mean annual 

precipitation 

[mm/yr] 

 

298 

 

305 

 

316 

 

NA 

Lake type hypersaline mesohaline oligohaline oligohaline 
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Fig. 2.1 Location of samples (year of sampling and sample number; e.g., 12_1) 

 

Moderately glacial fed rivers and streams originating from the west and the south 

drain into Tangra Yumco (Long et al., 2012). The lake water is recharged primarily 

by precipitation and rivers such as Daguo Tsangpo, Buzhai Tsangpo, and Mainongqu 

(Shao et al., 2008). The thermocline of Tangra Yumco is situated between 20 and 30 

m water depth (Wang et al., 2010). The lowest temperature measured within the 

hypolimnion was 1.6
o
C (Wang et al., 2010). The cold semi-arid climate supports 

alpine steppe vegetation (e.g., Kobresia pygmaea and Artemisia) (Shao et al., 2008; 

Miehe et al., 2014).Remnant palaeo-shoreline and lake terraces are located about 200 

m above the present day lake level of Tangra Yumco (Rades et al., 2013), indicating a 

Holocene shrinkage of a large ancient lake (Liu et al., 2013; Long et al., 2012). Beach 

rocks, formed by the precipitation of secondary carbonates, and ancient shorelines are 

common features within the catchments of Tangra Yumco and Tangqung Co. 

Holocene stromatolites and tufa can be found in the north of Tangqung Co. 
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2.3 Materials and methods 

2.3.1 Physico-chemical measurements and sediment sampling 

The coordinates of the random sampling (altitudes, 4510 – 5091 m above sea level) 

were obtained using Global Positioning System (Garmin GPS, WGS 84) (see 

GoogleEarth file, electronic attachment). The samples have been geoarchived at 

System for Earth Sample Registration (SESAR; www.geosamples.org). A sample can 

be identified using International Geo Sample Number (IGSN) 

(http://www.geosamples.org/search_by?group_id=80). Sampling sites represent a 

variety of aquatic habitats: (i) permanent waters: four lakes – Tangqung Co, Tangra 

Yumco (major), Monco Bunnyi, and Xuru Co, and (ii) temporary waters (estuary-like 

water, lagoon-like water, rivers, ponds and springs) connected to the lakes (Fig. 2.1). 

Sampling was carried out in September 2009, 2010 and 2011 and additionally in June 

2012, covering a total land surface area of approximately 165 x 40 km.  

Physico-chemical variables (conductivity, water temperature, pH, dissolved 

oxygen concentration) were measured in situ using a WTW Multi 340i probe. Water-

depth (<50 cm) was estimated for shallow aquatic habitats while measured for lake 

systems using an echo sounder. Salinity was computed from measured specific 

conductivity by a conversion factor of 0.725 (Hölting, 1992). The alkalinity was 

determined from a 100 ml aliquot by titration with 0.1 N HCl to pH 4.5 endpoint 

using the field kit Macherey-Nagel visocolor HE Alkalinity AL7 test. The titrated 

alkalinity of water refers to the total concentration of bases expressed as 

milliequivalents per liter, where meq/l is 1/50 times mg/L equivalent calcium 

carbonate (CaCO3) (Maiti, 2001; Snoeyink and Jenkins, 1980). Bio-Environmental 

data are archived in the EarthChem Library (http://www.earthchem.org/library  

and http://dx.doi.org/10.1594/IEDA/100482). 

Water samples (500 ml each) were collected using a Niskin Bottle Sampler (KC 

60.050) for chemical analyses. Water samples were filtered through a 0.45 µm pore 

size Whatman GF/C glass microfiber filter and stored in double capped glass bottles. 

Filtered water (250 ml per sample) for cation determination was acidified (e.g., nitric 

acid, HNO3) (Crompton, 2002), but not acidified for anion measurements and 

prepared by standard methods (Greenberg et al., 1985; Clesceri et al., 1998). The 

cation concentrations (Ca
2+

, Mg
2+

, Na
+
 and K

+
) were determined quantitatively using 

Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES) (Boss and 

Fredeen, 1997; Morishige and Kimura, 2008). The anions (Cl
-
, SO4

2−
) were 

determined using High Performance Liquid Chromatography (HPLC) (Hou and 

Jones, 2000). The elemental ionic concentrations (mg/l) were converted to meq/l. The 

ionic concentration was analysed at Technical University of Braunschweig, Germany. 

Sediment samples (uppermost 1 – 2 cm depth) were collected using a Birge-Ekman 

box-corer (extraction area 15 cm x 15 cm) operated from a small boat on the lakes 

(Ekman, 1905; Blomqvist, 1990). A hand net (100 µm mesh size) was used in 

sampling temporary water bodies. Macroflora and meiofauna with associated habitat 

characteristics were documented. In the field, living ostracods were separated from 

sediment using an exhauster and then preserved in ethanol (Viehberg, 2002). 

Sediment samples were immediately preserved in 70 % ethanol for further laboratory 

processing. 

 

 

http://www.earthchem.org/library
http://dx.doi.org/10.1594/IEDA/100482
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2.3.2 Laboratory processing of sediment and meiofauna analysis 

The sediment samples were washed with tap water and filtered through standard-

size sieves (200 µm and 500 µm) (Griffiths and Holmes, 2000). The sieve residues 

were transferred to petri dishes using 99 % ethanol. Living adult ostracods (carapace 

with well-preserved soft parts) were picked from the wet residues, identified and 

preserved in 70 % ethanol for future taxonomical description of soft body parts. The 

residues were dried at room temperature. The empty valves (carapace = two valves) 

were extracted from the dried residues by hand-picking under a binocular microscope 

using a wetted fine brush. 

All ostracod valves below 300 were counted. However, ostracod rich samples 

(>500 valves) were sub-sampled using a micro-splitter (Danielopol and Casale, 1988). 

If >500 valves were present, a minimum of 300 were counted. 

Since the different habitats (lake, estuary-like water, lagoon-like water, rivers, 

ponds and springs) were not sampled equally due to heterogeneity among individual 

habitats, the number of samples from each single habitat type was taken as a common 

base for comparing the presence-absence data (occupancy of a species at a specific 

habitat) (Delorme, 1990). We calculated the preference index (PI) (adapted from 

Delorme, 1990) to determine species-specific habitat preferences as follows: 

Species X occurrence probability at a particular habitat (Ci) = Bi / Ai (1) 

Preference Index (PI) [%] = Ci x 100 / D     (2) 

Where Ai = sum of samples (sites) collected for a particular habitat; 

 Bi = number of samples with species X occurring within a particular habitat;  

D = sum of species X occurrence probability for each of the habitats (Ci + Cii + Ciii 

…+ Cn) (common base). 

The preferences index (PI) is calculated for each species for the living fauna and 

empty valves collected for a particular habitat. 

 If PI = 100 %, then the species is present in one habitat only and is missing in 

other habitats sampled. Higher PI values indicate habitats preferred by species X in 

contrast to other habitat types (the best ecological niche). 

Taxonomic identification is based on morphological characteristics of hard and soft 

parts. Taxonomic descriptions of Tibetan ostracods (Huang, 1982; Hou et al., 2002; 

Hou and Gou, 2007; Wrozyna et al., 2009b; Yu et al., 2009) and other freshwater 

ostracod faunas were used for identification (Karanovic, 2012). Adult living ostracods 

(few individuals) were mounted in Hydro-Matrix with a cover slip to avoid crushing. 

Adult specimens were dissected using fine entomological needles and observed under 

a binocular microscope x 300 with transmitted light. Empty valves and carapaces 

were photographed using light microscopy and Scanning Electron Microscopy at the 

Institute of Geosciences and the Institute of Zoology, Friedrich Schiller University 

Jena, Germany. 

The Tibetan ostracod material can be accessed as of 2016 at the Nanjing Museum 

of Palaeontology, China. 

 

2.3.3 Data analysis 

To identify both relations between ostracod communities and the diverse sampled 

habitats, cluster analyses were performed. To construct similarity dendrograms of 

ostracod assemblages, the hierarchical agglomerative clustering method was 

employed. Group linkage was performed on a Bray-Curtis similarity for both 

presence-absence (Sørenson Coefficient) and log-transformed [ln (x+1)] abundance 

data (Bray and Curtis, 1957; Clarke et al., 2006; Bellier et al., 2012). We use ostracod 
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assemblages with more than fifty valves for the analyses. A SIMPROF test (α = 0.05; 

999 permutations) was also performed to distinguish significant groups (similar 

associations) in the cluster (Ernst, 2004; Clarke et al., 2008; Somerfield and Clarke, 

2013). Characteristic ostracod biotopes were classified by clustering of samples based 

on Euclidean distance (Legendre and Legendre, 1998). The Shannon diversity index 

(H’) was calculated for each sample collected from the various aquatic habitats 

(Spellerberg and Fedor, 2003; Magurran, 2004). Statistical analyses were carried out 

using PAST and PRIMER 6 software (Hammer et al., 2001; Clarke and Gorley, 

2006). 

The Spearman rank correlation analysis was used to evaluate relationships among 

physico-chemical variables, among living ostracod communities and between 

ostracods and physico-chemical variables using SPSS version 16.0 (Leech et al., 

2011; Somerfield and Clarke, 2013). We used the presence-absence data (eight living 

species) in relation to environmental factors (six physico-chemical variables and 

water ionic concentrations). Environmental variables were log10 transformed. 

To investigate further, the relationship between living ostracods (log-transformed 

abundance) and six physico-chemical variables (water depth, conductivity, water 

temperature, pH, dissolved oxygen concentration, alkalinity), multivariate ordination, 

canonical correspondence analysis (CCA) was performed (ter Braak and Verdonschot, 

1995; Šmilauer and Lepš, 2014). Interactive selective forward selection detected a 

subset of physico-chemical variables which best explain the faunal matrix. A Monte-

Carlo permutation test (α = 0.05; 999 permutations) was used to test the effects of 

each physico-chemical variable on the explanation of total variation in living ostracod 

abundance data. A generalized linear model (GLM) (Quadratic model option, Poisson 

distributions) was used to test and display the response of ostracod abundance with 

the most significant environmental predictor. This was performed using Canoco 

software version 5.03 (Šmilauer and Lepš, 2014). 

 

2.4 Results 

2.4.1 Physico-chemical variables and habitat characteristics 

Sixty-six samples were collected from Tangra Yumco and adjacent waters 

(Appendix A). Sample metadata profiles (coordinates, physico-chemical variables and 

habitat characteristics of each sample) can be accessed at 

http://app.geosamples.org/sample_display.php?igsn=IETIP0001. The investigated 

lakes displayed a wide range in conductivity (salinity) (Tab. 2.1): Tangqung Co – 

hyperhaline; Tangra Yumco – mesohaline; Monco Bunnyi and Xuru Co – oligohaline. 

The lakes are Ca
2+

 depleted with high alkalinity. The seven major lake water ionic 

concentrations are potassium (K
+
), bicarbonate (HCO3

-
), chlorine

 
(Cl

-
), sulphate 

(SO4
2
-), magnesium (Mg

2+
), sodium (

 
Na

+
) and calcium (Ca

2+
) (orders of decreasing 

mean concentrations (Tab. 2.2 and 2.3), thus HCO3
-
 = alkalinity). Secchi depths were 

measured at 9.5 m (September 2009) and 3.9 m (September 2011) for Tangra Yumco 

and 14 m for Xuru Co (June 2012). The low Secchi depth in Tangra Yumco was 

caused by suspended sediment. Tangra Yumco is well oxygenated; oxygen 

concentration (O2) in deep water depths were: 4.6 mg/l at 200 m (September 2010) 

and 2.1 mg/l at 225 m (September 2011). 

The aquatic habitats were significantly different comparing their physico-chemical 

values (p <0.05). The sediment samples were collected from various aquatic habitats: 

lake (29 samples), river (13 samples), estuary-like water (10 samples) and lagoon-like 
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water (8 samples), pond (3 samples) and spring (3 samples). Twenty-four of the lake 

sediment samples were collected from Tangra Yumco (water depth of 10 cm to 223 

m). Sediments were composed mainly of greenish-brown detritus mud within the 

lakes (Fig. 2.2a) and medium to coarse sand and gravel within the surf zone of the 

lakes, rivers and estuary-like waters (Fig. 2.2b). The phytal zone of Tangra Yumco 

extends from 0.4 to 20 m water depth. Submerged macrophytes as Potamogeton sp. 

and charophytes (green algae) were found growing within the phytal zones of Tangra 

Yumco, Monco Bunyi, and Xuru Co (Fig. 2.2c-d) and in small standing waters. The 

aquatic plants and algae support primary productivity and serve as substrates for fish 

and macro-micro fauna communities (e.g., ostracods, chironomids and cladocerans) in 

these water bodies. 

The sediment texture in river habitats is dominated by coarse sand and gravel beds 

with large interstitial spaces (Fig. 2.2e). The lagoon-like water habitats are 

characterised by muddy substrate (Fig 2.2h). The ponds are situated in wetlands 

within Kobresia meadows (Fig. 2.2g). The substrate is composed of mud with detritus 

and floating filamentous algae. The sediment within the spring environments is 

composed of coarse sand covered by filamentous algae (Fig. 2.2h). 

 

Tab. 2.2 Physico-chemical variables measured for Tangra Yumco and adjacent 

waters: Min = minimum, Max = maximum values and SD = standard deviation 

Parameter Min – Max Median Mean (SD) Samples (n) 

Water depth [m] 0.01 – 223 0.1 9.5 (32.2) 66 

Conductivity [mS/cm] 0.07 – 144.8 3.8 7.8 (18.3) 66 

Water temperature [oC] 2.2 – 25.7 13.6 14.0 (4.9) 66 

pH 6.8 – 12.8 9.5 9.4 (0.8) 66 

O2 concentration [mg/l] 1.3 – 12.2 6.2 6.1 (2.2) 64 

Alkalinity [mmol/l] 1.3 – 344 19.9 29.2 (48.2) 66 

Ca 2+ [meq/l] 0.19 – 85.7 1.14 9.5 (20.5) 47 

Mg 2+ [meq/l] 0.3 – 73.6 15.1 14.7 (13.8) 47 

Na + [meq/l] 0.03 –228.5 4.6 8.3 (31.3) 52 

K + [meq/l] 0.09 – 1977.4 83.9 109.4 (273) 52 

Cl – [meq/l] 0.02 – 1729 17.3 64.1 (272) 40 

SO 4
2 –

 [meq/l] 0.09 – 978.6 10.4 52.6 (158.5) 38 
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Tab. 2.3 Summary of physico-chemical variables measured for Tangra Yumco and 

adjacent waters 

Aquatic 

habitats 

 WD CD WT pH O2 Al Ca
2+

 Mg
2+

 Na
+
 K

+
 Cl

-
 SO4

2-
 

Lake Mean 21.5 15.8 12.8 9.4 6.5 46.9 4.6 21.9 13.9 176.8 125.3 103.1 

water SD 46.3 25.4 5.2 0.7 2.8 60.4 10.2 13.1 42.2 358.4 389.7 229.6 

 Min 0.01 0.08 2.2 7.1 2.0 10.6 0.2 2.4 0.5 1.3 0.1 8.7 

 Max 223.0 144.8 22.3 9.4 12.8 344.0 46.5 73.6 228.5 1977.4 1729.1 978.6 

 n 29 29 29 29 28 29 26 26 28 28 19 17 

Estuary- Mean 0.1 0.4 14.3 9.8 6.1 17.4 38.3 0.9 0.2 9.2 0.9 0.9 

like SD 0.2 0.3 0.6 0.3 1.4 49.4 39.4 0.6 0.2 3.0 1.3 1.1 

waters Min 0.1 0.2 13.5 9.4 4.8 1.6 1.3 0.3 0.4 7.4 0.1 0.2 

 Max 0.5 0.9 15.3 10.1 9.3 158.0 79.3 1.6 0.4 13.7 2.9 2.6 

 n 10 10 10 10 9 10 4 4 4 4 4 4 

Lagoon- Mean 0.1 5.4 18.2 9.5 6.1 34.1 8.8 11.7 3.2 53.8 22.5 28.0 

like SD 0.04 4.6 5.6 0.3 0.9 15.8 18.5 12.3 3.3 57.6 20.8 27.7 

waters Min 0.01 0.16 11.1 9.0 4.5 13.0 0.18 0.5 0.11 0.4 0.07 0.4 

 Max 0.15 12.4 25.7 10.0 7.6 57.0 46.5 26.6 7.8 125.8 46.5 59.3 

 n 8 8 8 8 8 8 6 6 7 7 6 6 

Ponds Mean 0.14 0.4 18.1 9.3 6.4 3.7   0.5 2.5   

 SD 0.06 0.4 7.6 0.01 2.2 3.9   0.4 4.0   

 Min 0.08 0.18 9.4 9.29 4.2 1.4 6.22 1.53 0.1 0.1 0.2 0.6 

 Max 0.2 0.91 23.6 9.32 8.6 8.2   0.9 7.2   

 n 3 3 3 3 3 3 1 1 3 3 1 1 

Rivers Mean 0.1 0.3 12.9 9.7 6.3 1.9 17.9 6.4 2.1 42.9 7.1 8.6 

 SD 0.04 0.3 1.7 0.5 1.2 0.9 33.3 8.0 2.5 47.7 11.3 18.9 

 Min 0.1 0.14 10.9 8.3 4.2 1.3 0.9 0.4 0.03 0.1 0.02 0.1 

 Max 0.2 0.9 16.7 10.1 8.9 4.6 85.7 18.2 5.7 104.1 25.4 47.9 

 n 12 12 12 12 11 12 6 6 6 6 6 6 

Springs Mean 0.3 1.7 14.8 7.9 3.7 21.4 2.9 2.2 1.1 14.6 0.7 3.8 

 SD 0.4 2.3 7.4 0.9 2.3 33.3 2.1 2.1 1.8 21.5 0.8 5.5 

 Min 0.01 0.3 8.7 6.8 1.3 2.6 0.9 0.9 0.1 0.4 0.1 0.3 

 Max 0.1 5.1 24.4 9.2 6.2 71.0 5.9 3.9 3.8 45.9 1.8 11.9 

 n 3 3 3 3 3 3 3 3 3 3 3 3 



 
95 

 

 

Fig. 2.2 Aquatic habitats of Tangra Yumco and adjacent waters: (a) greenish-brown 

detritus mud within the littoral zone of Tangra Yumco (TYC), (b) gravel surf 

zone of TYC) (c) Potamogeton floating in the phytal zone of TYC, (d) 

macrophytes covered by green algae within a lagoon-like water, separated 

from TYC by a sandbar, (e) small river flowing into TYC, (f) lagoon-like 

water separated from Monco Bunnyi by a sandbar, (g) pond situated in 

wetlands meadow adjacent to Xuru Co, (h) spring, situated at the west of 

TYC. Width of photos a-d: c. 50 cm. The diameter of the wet spot in photo h 

is c. 2 m. Photos e-g are landscape impressions. Photos a-d by Steffen 

Mischke. 
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2.4.2 Ostracoda 

2.4.2.1 General observations 

Ostracods were absent in eight of the 66 samples (sampling year and number: 

9_46, 12_22, 12_36, 12_37, 12_39, 12_42, 12_43, 12_52). These samples were 

collected from high turbulence shallow waters with sandy-gravel substrate (excluding 

sample 9_46 composed of pelitic substrate).  

Living ostracods (carapace with soft parts) were found in forty-one sediment 

samples (Appendix B). Although the abundance of living ostracods was generally 

low, three samples contain higher numbers (> 100). Seventeen sediment samples 

contain only empty carapaces and valves. 

 

2.4.2.2 Species composition and abundance 

 
Eleven Recent ostracod species were identified (nine within the living fauna and 

two preserved as empty valves only) (Fig. 2.3-7). They belong to the families 

Cyprididae, Limnocytherididae and Candonidae. Each family is represented by three 

species, except Ilyocyprididae with a single species only. 

The total relative abundance of living ostracods is: Tonnacypris gyirongensis 

(Yang, 1982) (44.8 %), Limnocythere inopinata (Baird, 1843) (29.4 %), 

Leucocytherella sinensis Huang, 1982 (15.6 %), Candona candida (O.F. Müller, 

1776) (4.7 %), Fabaeformiscandona gyirongensis (Huang, 1982), (1.8 %); 

Leucocythere? dorsotuberosa Huang, 1982 (1.8 %), Ilyocypris sp. (1.6 %), 

Heterocypris incongruens (Ramdohr, 1808) (0.6 %) and Heterocypris salina (Brady, 

1868). 

The total relative abundance of empty valves is: Leucocytherella sinensis (61.1 %), 

Limnocythere inopinata (17.8 %), Tonnacypris gyirongensis (9.9 %), Leucocythere? 

dorsotuberosa (3.6 %), Fabaeformiscandona gyirongensis (2.6 %), Candona candida 

(2.1 %), Ilyocypris sp. (1.6 %), Candona xizangensis Huang, 1985 (1.1 %, empty 

valves only), Heterocypris incongruens (0.1 %) and Potamocypris cf. villosa (Jurine, 

1820) (one empty valve only). 
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Fig. 2.3 Limnocytheridae and Ilyocypris. RV – right valve, LV – left valve, all views are 

external, unless stated otherwise. 

Fig. 1 – 5 Leucocythere? dorsotuberosa Huang, 1982: (1) female RV, TiP11-67LC; 

(2) male left valve of forma postilirata, TiP11-7; (3) female RV, TiP11-67LC; (4) 

juvenile LV, internal view, TiP11-69LC; (5) female carapace, ventral view, TiP11-25. 

Fig. 6 – 10 Leucocytherella sinensis Huang, 1982: (6) male LV, TiP11-60LB; (7) 

female LV, internal view, TiP11-4; (8) female carapace, dorsal view, TiP11-25; (9) 

male RV, TiP11-4; (10) male LV, details of external view, TiP11-4, (a) slightly 

depressed sieve pore, (b) sunken sieve pore. Fig. 11 – 15 Limnocythere inopinata 

(Baird, 1843), all from TiP11-2: (11) female carapace in dorsal view, detail of anterior 

ornamentation; (12) juvenile RV; (13) female LV, strongly noded; (14) juvenile LV, 

internal view; (15) female carapace in dorsal view. Fig. 16 – 18 Ilyocypris sp.; (16) 

juvenile LV, TiP11-1; (17) adult carapace, dorsal view, TiP11-1; (18) adult RV, 

TiP11-67LC. 
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Fig. 2.4 Candona. RV – right valve, LV – left valve, all views are external if not 

stated otherwise. 

Fig. 1 – 4 Candona candida (O. F. Müller, 1776), all from TiP11-75B: (1) 

female RV, internal view; (2) juvenile LV, internal view; (3) female LV; 

(4) female carapace, dorsal view. Fig. 5 – 13 Candona xizangensis Huang, 

1985: (5) juvenile LV, internal view, TiP11-4; (6) juvenile RV, TiP11-

67LC; (7) female RV, internal view, TiP11-67LC; (8) male LV, TiP11-25; 

(9) female RV, TiP11-25; (10) adult carapace, dorsal view, TiP11-25; (11) 

surface ornamentation, detail from 13; (12) male LV, internal view, TiP11-

25; (13) female RV, TiP11-67LC. 
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Fig. 2.5 Fabaeformiscandona and Tonnacypris. RV – right valve, LV – left valve, all 

views are external if not stated otherwise. 

Fig. 1 – 7 Fabaeformiscandona gyirongensis (Huang, 1982): (1) female RV, 

internal view, TiP11-25; (2) male RV, TiP11-25; (3) female LV, TiP11-20; 

(4) juvenile LV, internal view, TiP11-25; (5) juvenile LV, internal view, 

TiP11-69LC; (6) adult carapace, dorsal view, TiP11-25; (7) male RV, 

internal view, TiP11-20. Fig. 8 – 17 Tonnacypris gyirongensis (Yang, 1982): 

(8) adult RV, internal view, TiP11-75B; (9) adult LV, external medio-dorsal 

surface ornamentation, TiP11-38; (10) adult carapace, left side, TiP11-1; (11) 

juvenile LV, internal view, TiP11-75B; (12) adult carapace, ventral view, 

TiP11-75B; (13) adult LV, internal view, antero-ventral tooth on the calcified 

inner lamella, TiP11-38; (14) adult LV, internal view, central muscle scars, 

TiP11-29; (15) adult LV, internal view, TiP11-75; (16) adult RV, TiP11-29; 

(17) adult carapace, dorsal view, TiP11-29. 
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Fig. 2.6 Heterocypris. RV – right valve, LV – left valve, all views are external if not 

stated otherwise. 
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Tab. 2.4 Living ostracods and physico-chemical conditions of their habitats: Min = 

minimum, Max = maximum values and SD = standard deviation. WD = water depth 

[m], CD = conductivity [mS/cm], WT = water temperature [
°
C], O2 = dissolved 

oxygen concentration [mg/l], Al = Alkalinity [mmol/l], cations and anions [meq/l].  

 

2.4.2.3 Ostracod abundance and diversity in different aquatic habitats  

 
The distribution of living ostracods indicates specific physico-chemical 

requirements (Tab. 2.4, 2.5); the frequency of occurrence (preference index) differs in 

the different habitats (Fig. 2.8). The characteristic ostracod associations (living and 

empty valves) are dominated by Leucocytherella sinensis, Tonnacypris gyirongensis 

and Limnocythere inopinata. 

Based on habitat-specific ecological requirements, cluster analysis separated the 

living ostracods into two groups: L. inopinata, L. sinensis, L.? dorsotuberosa and F. 

gyirongensis are in the first group and H. incongruens, C. candida, Ilyocypris sp. and 

T. gyirongensis form the second group. The empty valves are grouped into three 

associations: T. gyirongensis and Ilyocypris sp. in the first cluster, F. gyirongensis and 

C. xizangensis in the second cluster and L.? dorsotuberosa, L. sinensis and L. 

inopinata in the third cluster. Candona candida and Heterocypris incongruens are 

outliers (Fig. 2.7). 

The diversity of ostracod associations is generally low (Appendix C). The mean 

Shannon diversity indices are 0.35 (living individuals) and 0.58 (empty valves). Ponds 

and lakes record highest indices (Appendix C). 

 

Species N  WD CD WT pH O2 Al Ca
2+

 Mg
2+

 Na
+
 K

+
 Cl

-
 SO4

2-
 

T
o

n
n

a
cy

-

p
ri

s 

g
yi

ro
n

-

g
en

si
s 

582 Mean 0.5 0.9 14.7 9.5 6.2 14.6 27.9 7.6 2.1 40.9 5.6 10.4 

 SD 1.7 2.5 3.9 0.7 1.8 35.0 34.1 9.2 2.4 51.5 10.4 17.8 

 Min 0.01 0.1 9.4 6.8 1.3 1.3 0.4 0.3 0.1 0.1 0.02 0.1 

 Max 8.4 11.9 24.4 10.1 9.3 158 85.7 26.8 6.4 151.3 25.4 47.9 

 n 24 24 24 23 23 24 11 11 13 13 10 10 

L
im

n
o

-

cy
th

er
e 

in
o

p
in

a
ta

 382 Mean 7.1 10.5 16.3 9.6 5.3 38.2 13.3 13.4 4.2 81.8 25.5 33.7 

 SD 6.9 3.7 4.5 0.3 2.1 13.1 18.6 6.9 1.9 35.3 10.3 15.7 

 Min 0.1 1.4 12.8 9.0 3.2 10.6 0.9 0.5 0.1 1.2 0.1 0.4 

 Max 20.4 12.9 25.0 10.2 10.5 57.0 46.5 23.1 6.8 126.5 36.1 45.4 

 n 10 12 12 12 12 12 10 10 10 10 10 10 

L
eu

co
-

cy
th

er
el

la
 

si
n

en
si

s 

200 Mean 3.9 6.1 14.6 9.7 5.9 28.0 14.1 15.5 4.1 80.6 19.2 27.2 

 SD 5.9. 5.9 3.1 0.3 2.1 34.6 27.3 8.6 2.5 52.6 15.4 20.1 

 Min 0.1 0.1 11.4 9.2 3.2 1.3 0.4 1.3 0.2 0.4 0.02 0.1 

 Max 20.4 12.8 23.0 10.2 10.5 158.0 85.7 26.8 6.8 151.3 36.1 47.9 

 n 21 21 21 20 20 21 16 16 17 17 13 13 

C
a

n
d

o
n

a
 

ca
n

d
id

a
 61 Mean 0.11 0.41 14.8 9.4 6.5 3.6 8.7 8.3 1.80 35.90 12.8 24.2 

 SD 0.04 0.43 7.6 0.2 2.2 3.9 3.6 9.6 2.60 56.20 17.8 33.4 

 Min 0.08 0.14 9.4 9.3 4.2 1.3 6.2 1.5 0.05 0.09 0.2 0.6 

 Max 0.15 0.90 23.6 9.6 8.6 8.2 11.3 15.1 4.80 100.7 25.4 47.9 

 n 3 3 3 3 3 3 2 2 3 3 3 2 

F
a

b
a

ef
o

rm
is

-c
a

n
d
o

n
a

 

g
yi

ro
n

g
en

si
s 24 Mean 3.6 10.5 13.7 9.7 5.6 28.5 11.4 15.1 4.2 87.1 22.2 30.7 

 SD 4.8 3.7 1.1 0.3 3.0 15.3 19.7 9.4 2.4 54.2 15.1 18.6 

 Min 0.1 3.8 12.8 9.4 3.5 10.6 0.4 1.3 0.2 1.4 0.2 2.9 

 Max 9.4 12.8 15.6 10.2 10.5 40.0 46.5 26.8 6.4 151.3 34.0 41.2 

 n 5 5 5 5 5 5 5 5 5 5 4 4 

L
eu

co
cy

-

th
er

e?
 d

o
r-

so
tu

b
er

o
sa

 22 Mean 3.6 10.5 13.7 9.7 5.6 28.5 11.4 15.1 4.2 87.1 22.2 30.7 

 SD 4.8 3.7 1.1 0.3 3.0 15.3 19.7 9.4 2.4 54.2 15.1 18.6 

 Min 0.1 3.8 12.8 9.4 3.5 10.6 0.4 1.3 0.2 1.4 0.2 2.9 

 Max 9.4 12.8 15.6 10.2 10.5 40.0 46.5 26.8 6.4 151.3 34.0 41.2 

 n 5 5 5 5 5 5 5 5 5 5 4 4 

Il
yo

cy
p

ri
s 

sp
. 

21 Mean 0.13 4.8 12.9 9.6 5.4 58.2 29.7 7.7 1.9 30.7 12.3 14.4 

 SD 0.10 5.1 2.5 0.3 1.8 67.8 43.0 10.5 2.6 47.6 18.7 22.3 

 Min 0.10 0.9 9.4 9.3 3.9 8.2 3.5 1.5 0.1 0.4 0.2 0.6 

 Max 0.20 11.9 15.3 9.8 7.8 158.0 79.3 19.9 5.7 101.7 33.9 40.1 

 n 4 4 4 3 4 4 3 3 4 3 3 3 

H
et

er
o

cy
-

p
ri

s 
in

co
n

g
-

ru
en

s 

3 Mean 0.18 0.54 16.5 9.3 6.4 4.8   0.34 3.6   

 SD 0.04 0.50 10.0 0.01 3.1 4.8   0.40 4.90   

 Min 0.15 0.18 9.4 9.29 4.2 1.4 6.22 1.53 0.05 0.09 0.17 0.56 

 Max 0.20 0.90 23.6 9.30 8.6 8.2   0.62 7.20   

 n 2 2 2 2 2 2 1 1 2 2 1 1 
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Fig. 2.7 Recent ostracod associations dendrograms (group-average linkage). 

The continuous lines signify (p = 0.05%) two ‘coherent’ groups in (a) - living 

ostracods, and three ‘coherent’ groups in (b) - empty valves. Dashed lines indicate 

significant assemblages. Ln = Limnocythere inopinata, Ls = Leucocytherella sinensis, 

Ld = Leucocythere? dorsotuberosa, Fg = Fabaeformiscandona gyirongensis, Il = 

Ilyocypris sp., Cc = Candona candida, Hi = Heterocypris incongruens, Tg = 

Tonnacypris gyirongensis and Cx = Candona xizangensis. 
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Tab. 2.5 Relative abundance of empty valves and abundance of living ostracods and 

their habitats. Ls = Leucocytherella sinensis, Ld = Leucocythere? 

dorsotuberosa, Il = Ilyocypris sp., Ln = Limnocythere inopinata, Tg = 

Tonnacypris gyirongensis, Fg = Fabaeformiscandona gyirongensis, Cc = 

Candona candida and Hi = Heterocypris incongruens. 
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Fig. 2.8 Preference Index (PI)[%]: 

frequency of occurrence of ostracod 

species in six habitats; Empty 

valves – Grey bar. Living ostracod 

association – white bar. 
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2.4.2.4 Species and environment 

 
Species relate to the physico-chemical variables (Appendix D). The canonical 

correspondence analysis (CCA) reveals significant differences among aquatic habitat 

types (Fig. 2.9a, Appendix E) and separates significant species of such habitat types 

(Fig. 2.9b). The total variation is 2.5, explanatory variable account for 40.0 % 

(adjusted explained variation is 31.4 %). The two CCA axes are shown explaining 

35.8 % of the total variance (Fig. 2.9a-b, Appendix E). On the first axis species in 

small and shallow temporary waters are grouped (Heterocypris incongruens, Candona 

candida, Ilyocypris sp., Tonnacypris gyirongensis) and second axis illustrates 

permanent brackish-lacustrine fauna (Limnocythere inopinata, Leucocytherella 

sinensis, Fabaeformiscandona gyirongensis, Leucocythere? dorsotuberosa) (Fig. 

2.9b-c). 

Best ecological niches of the species may be identified (Fig. 2.9b-c): Heterocypris 

incongruens and C. candida live in ponds. Limnocythere inopinata and Ilyocypris sp. 

live mainly in lagoon-like waters. Tonnacypris gyirongensis lives in rivers, estuary-

like waters and spring habitats Fabaeformiscandona gyirongensis, L. sinensis and L.? 

dorsotuberosa are typical in brackish lacustrine waters. Three ostracod species 

significantly (p<0.05) correlate with their habitat: Heterocypris incongruens to pond 

environment, Tonnacypris gyirongensis to spring habitat and Fabaeformiscandona 

gyirongensis to lacustrine waters. 

Presence and abundance of the ostracod species are significantly (p<0.05) related 

to physico-chemical variables (Fig. 2.10a). The total variation is 2.6, explanatory 

variable accounts for 40.8 % (adjusted explained variation is 29.7 %) (Appendix E). 

The first axis explains 24.7 % of the total variation; the second axis adds another 9.6 

% (Appendix E). Species’ presence and abundance are significantly (p<0.05) 

controlled by three physico-chemical variables (conductivity, alkalinity and water 

depth) (Fig. 2.10a), and covariate (habitat types). There is colinearity between 

conductivity and alkalinity. The most influential ecological factors explaining 

presence and abundance of ostracods are conductivity (explained 21 %, pseudo-F = 

9.8, adjusted P = 0.008) and habitat types (explained 9.0 %, pseudo-F = 4.6, adjusted 

P = 0.034). Conductivity is the key environmental predictor for ostracods (presence 

and abundance) in Tangra Yumco and adjacent waters. The total variation is 2.6, 

explanatory variable accounts for 49.3 % (adjusted explained variation is 37.9 %) 

(Fig. 2.11, Appendix E). The two CCA axes explain 37.9 % of the total variance (Fig. 

2.11, Appendix E). On the second axis, L. inopinata and Ilyocypris sp. live in waters 

with high conductivity while L. sinensis, F. gyirongensis and L.? dorsotuberosa in 

waters with moderate conductivity. On the first axis, H. incongruens, C. candida and 

T. gyirongensis are preferring waters with low conductivity (Fig. 2.11). 
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Fig. 2.9 Canonical correspondence analysis (CCA) biplot: (a) samples ID 

(year/number) and the lines enclose the locations of samples from different habitats. 

Lines match with the habitat (plots) symbols and categorical variables habitat (filled 

triangles); (b) Abundance of species in specific-habitats. Pie plots of ostracod 

abundance (log-transformed abundance data) in the diverse habitats. The boxes match 

with the habitat symbols and categorical habitat type (filled triangles); (c) species-

specific habitats ecology. The first two CCA axes are shown; explaining 35.8% of the 

total variance. Species code: Ls = Leucocytherella sinensis, Ld = Leucocythere? 

dorsotuberosa, Il = Ilyocypris sp., Ln = Limnocythere inopinata, Tg = Tonnacypris 

gyirongensis, Fg = Fabaeformiscandona gyirongensis, Cc = Candona candida and Hc 

= Heterocypris incongruens. 
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Fig. 2.10 Canonical correspondence analysis (CCA) biplot of species-environmental 

variables. (a) Indication of physico-chemical variables (arrows). (b) Species-

conductivity (most influential environmental predictor). Ls = Leucocytherella 

sinensis, Ld = Leucocythere? dorsotuberosa, Il = Ilyocypris sp., Ln = Limnocythere 

inopinata, Tg = Tonnacypris gyirongensis, Fg = Fabaeformiscandona gyirongensis, 

Cc = Candona candida and Hc = Heterocypris incongruens. Cond = Conductivity, 

Dept = Depth, Alka = Alkalinity, Temp = Temperature and Oxyg = (Oxygen). 
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Fig. 2.11 Recent ostracod response curves on conductivity (µScm
-1

) fitted by a 

generalised linear model (GLM) with quadratic option and Poisson distribution. 

Limnocythere inopinata has a broad tolerance to conductivity. 

 

Spearman correlation analysis reveals that two species (L.? dorsotuberosa, r = 

0.25, p = 0.043; L. inopinata, r = 0.364, p = 0.003) have a significant positive 

correlation with conductivity and one species (T. gyirongensis, r = -0.606, p = 0.000) 

displays significant negative correlation with conductivity. Limnocythere inopinata 

demonstrates a significant positive correlation with alkalinity (r = 0.368, p = 0.002). 

Fabaeformiscandona gyirongensis displays a significant positive correlation with 

water depth (r = 0.278, p = 0.024) (Appendix D). 

 

2.4.2.5 Water depth distribution of ostracods 

 
Ostracod distribution and abundance fluctuate with water depth in Tangra Yumco 

(Fig. 2.12). Water-depth distribution of ostracods can be described in relation to three 

distinct layers (epilimnion/phytal, warm nutrient-rich surface layer, and 

hypolimnion, cold nutrient-poor bottom layer) separated by the thermocline, where 

temperature changes rapidly with depth) of deep lacustrine water. Living ostracods 

occur only in the phytal zone and empty valves are deposited in sediment of the 

hypolimnion (Fig. 2.12). Ostracod diversity is higher in the epilimnion (seven species) 

than in the hypolimnion (five taxa) (Fig. 2.12). 
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Fig. 2.12 Water depth distribution of Recent Ostracoda from Tangra Yumco. 

The shaded grey area illustrates the presence of living ostracods. Curves represent the 

relative abundance of empty valves. The dark grey shaded bar is the thermocline layer 

(20 – 30 m water depth). Species code: Ilyoc = Ilyocypris sp., Cc = Candona candida, 

Cx = Candona xizangensis, and Fg = Fabaeformiscandona gyirongensis. Ostracod 

diversity is higher in the phytal zone than in the hypolimnion. Leucocytherella 

sinensis and L. inopinata dominate the phytal zone. Leucocythere? dorsotuberosa 

(max. 32 % at 110 m) and F. gyirongensis (max. 23 % at 223 m) increase in relative 

abundance with water depth. 

 

Tonnacypris gyirongensis, Ilyocypris sp., and Candona candida are shallow water 

fauna present in relative low proportions within the epilimnion of Tangra Yumco. 

Leucocytherella sinensis and L. inopinata dominate the epilimnion (phytal zone). 

Candona xizangensis was most abundant with 3.6 % at 13 m water depth (Fig. 2.12). 

A reducing relative number of empty valves of L. sinensis but increasing for L. 

inopinata occurs in the hypolimnion. Subsequently, Leucocythere? dorsotuberosa 

(max. 32 % at 110 m) and F. gyirongensis (max. 23 % at 223 m) increase in their 

relative abundance with increasing water depth (Fig. 2.12). 

 

2.5 Discussion 

2.5.1 Ostracod taxa 

 
Species endemic to the Tibetan Plateau are typical lacustrine fauna 

(Leucocytherella sinensis, Leucocythere? dorsotuberosa, Fabaeformiscandona 

gyirongensis and Candona xizangensis) and shallow temporary fauna (Tonnacypris 

gyirongensis). Cosmopolitan fauna are Limnocythere inopinata (lake species) and 

temporary water species (Candona candida, Ilyocypris sp. and Heterocypris 

incongruens). Although living specimens of C. xizangensis were not found, empty 

valves were largely deposited in the lake sediment, hence we assume preference for 

lacustrine habitat. The dominance of an endemic ostracod fauna in Tangra Yumco and 

adjacent waters suggests an adaptation to extreme ecological conditions (low mean 

temperatures, low oxygen concentrations, high radiation and low nutrient availability) 

in high altitudes. 
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The family Limnocytheridae is the dominant group found in Tangra Yumco. It is a 

common family of continental ostracods which populates lacustrine waters on the 

Tibetan Plateau (Mischke, 2012). Limnocytheridae is a non-marine ostracod family 

with wide distribution (Danielopol et al., 1989). The limnocytherid fresh to brackish 

water genera Leucocythere, Leucocytherella and Limnocythere originate from 

Mesozoic to Cenozoic lake sediments in China (Huang, 1985; Danielopol et al., 

1989). The genus Leucocytherella occurs in Pliocene to Holocene sediments of the 

Tibetan Plateau (Huang et al., 1982; Huang et al., 1985a). 

 

2.5.2. Ostracoda taxonomy 

 
One empty valve of Potamocypris cf. villosa was found in a spring located in the 

catchment of Tangqung Co. The valve found is larger than Potamocypris cf. villosa 

specimens from Central Europe (Meisch, 2000). Tonnacypris gyirongensis, described 

by Huang et al. (1982) as Eucypris gyirongensis Yang, belongs to the genus 

Tonnacypris Diebel & Pietrzeniuk, 1975. A small and blunt antero-ventral tooth can 

be recognised on the calcified inner lamella of the left valves of T. gyirongensis (Fig. 

2.5-13). The seta d1 of T. gyirongensis is distinctively shorter than d2 on the walking 

leg of the genus Tonnacypris as described by Meisch (2000). We found high 

variability in morphological characters of T. gyirongensis expressed by different 

shapes and ornamentations. Some of the valves of T. gyirongensis are characterised 

by mesh-like structures with narrow but shallow and thin furrows on their external 

shell (Fig. 2.5-9). Tonnacypris gyirongensis resembles Tonnacypris estonica  

(Järvekülg, 1960) reported from western Mongolia (Van der Meeren et al., 2009). 

Detailed taxonomical analysis is required to check if T. gyirongensis is a younger 

synonym of T. estonica. The genus Leucocythere is given with a question mark (thus 

Leucocythere? dorsotuberosa) due to the presence of a lophodont hinge. Leucocythere 

Kaufmann, 1892 bears an antimerodont hinge (Danielopol et al., 1989). Adult 

Ilyocypris sp. lack marginal ripplets on the posterior-ventral left valve. It is clear that 

these are different morphological types of the genus Ilyocypris in comparison to 

Ilyocypris cf. mongolica from lake sediments of Nam Co (Wrozyna et al., 2009a; 

Wrozyna et al., 2009b). 

 

2.5.3. Ostracod abundance, diversity and habitat specific biotopes 

 
Ostracod presence and abundance is determined by physico-chemical parameters 

of a given water body (Tab. 2.4). The ostracod fauna occupies a specific biotope 

(most favourable ecological niche, Tab. 2.5-2.6). The salinity of continental waters 

may contribute to the low diversity of ostracods aquatic habitats on the Tibetan 

Plateau (Mischke, 2007). The lakes and ponds record higher mean diversity 

(Appendix C). Ostracod numbers increase in waters with stable hydrological 

conditions, optimum niches and high primary productivity (via terrestrial inputs and 

aquatic plants). Ostracod abundance is higher in low energy aquatic habitats 

(Athersuch et al., 1989).  

Living ostracod association and empty valves have similar composition and 

diversity. However, species proportions differ in specific habitats (Appendix C). 

Diversity of empty valves is also higher in lakes (Appendix C). This is attributed to 

quiet water environment, seasonal variation of ostracod populations, reworking and 

post-mortem transport of shallow water specimens into the permanent brackish lake. 
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Leucocytherella sinensis is a typical component of biocoenosis (life 

association) and its shells are dominating within thanatocoenosis (dead assemblages) 

in lake sediment. However, the ability to dwell in various habitats, makes it a 

characteristic component of thaphocoenosis (autochthonous dead ostracods, which 

died at the place of burial, and allochthonous, transported from different sites to the 

place of burial) in shallow waters. T. gyirongensis and C. candida are typical for 

biocoenosis of shallow waters but also for taphonocoenosis (allochthonous) in the 

epilimnion of Tangra Yumco. Leucocythere? dorsotuberosa is a component of 

allochthonous assemblage in shallow temporary waters. 

 

Tab. 2.6 Ecological preferences of the nine living ostracods from Tangra 

Yumco and adjacent waters – biological indicators useful for palaeoenvironmental 

reconstructions. 

 

 

Reworking, transport and distribution of ancient lake sediments facilitates the 

transport of fossil lacustrine ostracods to shallow temporary waters. Shallow water 

fauna can be transported into the lake during heavy rainfalls (heavy influx of river 

water) and subaqueous sediment transport (Akita et.al. 2015). 

Water-deep distribution of ostracods illustrates the zonation of the deep lake 

Tangra Yumco (Fig. 2.12). Leucocytherella sinensis and L. inopinata occur 

commonly in the epilimnion of the lake. Leucocythere? dorsotuberosa and F. 

gyirongensis occurs frequently in the hypolimnion. We assume L. inopinata can live 

in both shallow and deeper water. It occurs commonly in open shallow waters and 

lakes (Meisch, 2000). However, the species occurs in Lake Qinghai at 27 m water 

depth (Li et al., 2010). 

 

Taxon Aquatic  

habitats 

*preferred 

Conductivity  

[mS/cm] 

(salinity) 

Substrate Ecology  Indicator value 

Tonnacypris 

gyirongensis 

spring*, 

estuary-like, 

river, pond, lake 

0.08 – 11.89  

(0.06 – 8.62)  

sandy gravel, 

mud, phytal 

shallow fresh to 

brackish waters 

dominating in 

temporary fresh to 

brackish waters 

Limnocythere 

inopinata 

lake*, lagoon 1.35 – 12.81 

(0.98 – 9.28) 

mud, sand, 

phytal 

permanent brackish 

waters 

dominating in meso- 

to polyhaline water 

Leucocytherella 

sinensis 

lake*, pond, 

estuary-like, 

river, lagoon-

like  

0.08 – 12.81  

(0.06 – 9.28) 

mud, sandy 

gravel, phytal 

permanent fresh to 

brackish-lacustrine 

waters 

fresh to brackish 

waters, dominating in 

Ca
2+

 depleted water 

Candona candida pond*, river 0.14 – 0.91 

(0.10 – 0.66) 

mud, sandy 

gravel, phytal 

shallow 

temporary freshwaters 

freshwater 

Fabaeformiscan-

dona 

gyirongensis 

lake* 11.88 – 12.81 

(8.61 – 9.28) 

mud, phytal permanent brackish-

lacustrine waters 

brackish-lacustrine 

deep waters 

Leucocythere? 

dorsotuberosa 

lake*, lagoon-

like 

3.83 – 12.81 

(2.78 – 9.28) 

mud, phytal permanent fresh to 

brackish waters 

fresh to brackish 

waters 

Ilyocypris sp. pond*, lagoon-

like, estuary-

like 

0.91 – 11.9 

(0.66 – 8.63) 

mud, sandy 

gravel, high 

organic matter 

shallow fresh to 

brackish waters 

shallow fresh to 

brackish waters 

Heterocypris 

incongruens 

pond* 0.18 – 0.91 

(0.13 – 0.66) 

sandy mud, 

phytal 

perennial freshwater temporary freshwater 

Heterocypris 

salina 

hot spring* N/A various perennial freshwater temporary freshwater 
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2.5.4 Ostracod-environmental relationships 

 
Ostracod distribution and abundance are controlled by physico-chemical conditions 

of waterbody (Tab. 2.4, Appendix D). Species with similar ecological requirements 

co-exist (clusters dendrograms) in a particular water body (Tab. 2.4, Fig. 2.8-10). 

Ostracod reflect changes to environmental conditions by changes in their distribution, 

diversity, relative abundance, presence and absence of taxa, specific ecological 

tolerances and microhabitat preference (Van der Meeren et al., 2010; Decrouy et al., 

2012; Zhang et al., 2013). The dominant ostracods (presence/absence) in a particular 

habitat are correlated to favourable physico-chemical conditions (Tab. 2.2-2.4). There 

is a species-specific optimum tolerance (narrow to broad) to conductivity regimes 

(Fig. 2.11). Conductivity is the key determinant on the distribution of Tibetan 

ostracods (Mischke et al., 2007a; Mischke, 2012). 

 

2.5.5 Ecological preferences and implications for palaeoenvironmental 

reconstruction 

 
Ostracod-based reconstructions may be enhanced if the habitats of the modern 

fauna are largely known. In the following, we present the ecological characteristics of 

Recent Ostracoda of Tangra Yumco and adjacent waters and compare them with 

literature. Recent ostracod preference index, environmental requirements and 

indicator value are emphasised (Tab. 2.6). This new ecological data can be used in 

palaeolimnological, palaeoclimate and palaeoenvironmental research. We also 

adopted ostracod fauna ecological characterisation used by Meisch (2000). 

 

Leucocytherella sinensis Huang, 1982 

 

Ecology: Leucocytherella sinensis is a cold-stenothermal species of high altitude 

water bodies (Huang et al., 1985a). It is a ubiquitous ostracod; living individuals were 

found in diverse aquatic habitats (temporary fresh and permanent brackish waters). 

Leucocytherella sinensis occurs in fresh to brackish waters. Occurrences of living 

individuals: (i) lake (11 samples), lagoon-like water (3 samples), estuary-like water 

(2 samples), pond (1 sample) and river (5 samples) (ii) empty valves: lake (24 

samples), river (12 samples), estuary-like water (10 samples), lagoon-like water (5 

samples), pond (3 samples) and spring (2 samples). The species prefers shallow 

waters (0 – 20 m, Tab. 2.4–2.6) and the phytal zone of lakes with different substrates 

(mud, sand and gravel) (Tab. 2.8, Fig. 2.9b-10b). It thrives in shallow water and 

reaches its maturity in these aquatic habitats (Zhu et al., 2002, 2010). Leucocytherella 

sinensis occurs in waters with a conductivity of 0.1 - 13 mS/cm (salinity of 0.06 – 

9.28 Tab. 2.4 and 2.8). It is absent at high salinity (100) in Tangqung Co. 

Leucocytherella sinensis can survive in water with a salinity of 0 to 13 (Huang et al., 

1985b). Living Leucocytherella trispinosa, a junior synonym of L. sinensis, was 

found in a salt lake (Tagutagion) with a salinity of 20 (Zheng et al., 1989; Fürstenberg 

et al., 2015). Living L. sinensis significantly correlate positively (p = 0.006, r = 0.40) 

(Appendix D) with calcium ionic concentrations (0.4 – 85.7 meq/l) in Tangra 

Yumco and adjacent waters. 

Distribution: Leucocytherella sinensis occurs in Miocene to Recent lake sediments 

from southern, western and central Tibetan Plateau (Huang, 1982; Peng, 1997). 

Leucocytherella sinensis was found in Recent and Holocene sediments from Nam Co 
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(Wrozyna et al., 2009b), Pumayung Co (Peng et al., 2013), Bangong Co (Fan et al., 

1996), Lake Koucha (Mischke et al., 2008), on the western (Fan et al., 1996) and the 

north-western Tibetan Plateau (Li et al., 1994). It was also found in the Late 

Pleistocene to Holocene sediments of Peiku Co (Peng, 1997). Leucocytherella 

sinensis appears in Early/Middle Pleistocene sediments of the Qinghaitang formation, 

Kunlun Mountains, Qinghai Province and the Neogene of the Zhada Basin (Pang, 

1985). 

Characterisation: Leucocytherella sinensis is an endemic species, commonly 

occurring in lake systems on the south, central and west of the Tibetan Plateau. It is a 

ubiquitous species, widely distributed and abundant. It populates different aquatic 

habitats and substrates, including the profundal zone of lakes, shallow temporary and 

permanent waters. Leucocytherella sinensis can live in freshwater to mesohaline 

brackish water with a salinity of 20. The species dominates Ca-depleted waters with 

moderate alkalinity. It is classified as oligothermophilic, titanoeuryplastic, freshwater 

to mesohaline, and rheoeuryplastic species. 

Palaeoenvironmental reconstructions: Leucocytherella sinensis is ubiquitous on the 

Tibetan Plateau above 4000 m asl. It develops nodes on the calcitic valves in low 

salinity waters and can be used as a proxy for palaeosalinity this way (Fürstenberg et 

al., 2015). 

 

Leucocythere? dorsotuberosa Huang, 1982 

 

Ecology: Living Leucocythere? dorsotuberosa occurs mainly in the lake (phytal and 

muddy substrate) and lagoon-like water. Empty valves were found in different 

habitats: lake (19 samples), river (12 samples), estuary-like water (10 samples), 

lagoon-like water (4 samples), pond (2 samples) and spring (2 samples). The presence 

of empty valves in small temporary waters may be due to transport of valves from 

ancient lake sediments. Leucocythere? dorsotuberosa (empty valves) occurs in higher 

proportions at deeper water depth (Fig. 2.12). Living L.? dorsotuberosa occurs in 

waters with a conductivity of 3.8 – 12.8 mS/cm (salinity range of 2.9 – 9.6) (Tab. 2.4 

and 2.8). Leucocythere? dorsotuberosa weakly but significantly correlates (p = 0.043, 

r = 0.25) with conductivity (Appendix D). The species can tolerate a wide range of 

salinities: 0.1 – 1.6 in north-eastern Tibetan lakes (Huang et al., 1985a, b), 0.1 – 2.0 

(optimum 0.5) in Nam Co (Wrozyna et al., 2009b), and 2 on the north-eastern Tibetan 

Plateau (Wu, 1995; Mischke et al., 2007a). 

Distribution: Leucocythere? dorsotuberosa occurs on the eastern and central Tibetan 

Plateau (Wrozyna et al., 2009b). It was also found in late Cenozoic strata of the 

Qaidam Basin and in Pliocene sediments (Huang et al., 1985a; Mischke et al., 2006; 

Zhu et al., 2010). Characterisation: Leucocythere? dorsotuberosa is a lacustrine 

ostracod on the Tibetan Plateau. It lives on soft bottom and prefers deeper water. It 

can tolerate freshwater to oligohaline salinity up to 10. It is characterised as cold 

stenothermal, titanoeuryplastic, freshwater to β-oligohaline and oligorheophilic 

species. 

Palaeoenvironmental reconstructions: Indicator of high altitude fresh and brackish 

waters. It can be used as water–depth indicator. The development of distinct ribs and 

reduced reticulation is typical for the profundal zone of Tibetan lakes, this 

morphological type is known as Leucocythere? dorsotuberosa forma postilirata (see 

Wrozyna et al., 2009a). 
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Limnocythere inopinata (Baird, 1843) 

 

Ecology: Limnocythere inopinata is a common Holarctic ostracod species with broad 

ecological tolerance (Meisch, 2000). Living L. inopinata occur in the phytal habitats 

and epilimnion with muddy substrate in Tangra Yumco, and lagoon-like waters with 

sandy gravel. Empty valves are abundant in the profundal zone of Tangra Yumco. 

Empty valves were found in diverse aquatic habitats: lake (19 samples), river (7 

samples), estuary-like water (6 samples), lagoon-like water (5 samples) and pond (1 

sample). It occurs in various aquatic habitats including interstitial ground water, salt 

lakes, small pools, alpine lakes and the Baltic Sea (Meisch, 2000). Limnocythere 

inopinata prefers the shallow zone of European lakes (Schiemer et al., 1969), 

although it can live in diverse environments (Yin et al., 1999). The species populates 

water depths of 27 m in Lake Qinghai (Li et al., 2010). The nature of substrate (clay, 

mud, silt and sand) and organic matter content are major environmental factors 

influencing the distribution of L. inopinata (Jungwirth, 1979). Higher densities of L. 

inopinata were found in soft mud with high organic content (>80 %) and high loss on 

ignition (>6 %) in Neusiedlersee (Jungwirth, 1979). Limnocythere inopinata can 

survive in waters with a conductivity of 1.4 – 12.9 mS/cm (salinity range of 1.0 - 9.7) 

in Tangra Yumco and adjacent waters (Tab. 2.4 and 2.8). It prefers waters with a 

salinity range of 3 – 9 (Holmes et al., 1999), although it can withstand waters with a 

salinity of up to 25 (Griffiths and Holmes, 2000). Limnocythere inopinata can survive 

in Tibetan lake waters with a salinity of 0 – 25 (Wang et al., 1990). Nonetheless, 

living L. inopinata was found in waters with salinity of 46 and at low calcium 

concentration (Meisch, 2000). Limnocythere inopinata can dwell in waters with high 

chloride levels, enriched in Na
+
 – HCO3

- 
– CO3

2- 
but depleted in Ca

2+
 (Holmes et al., 

1999). Living L. inopinata is found in Tangra Yumco and adjacent waters with an 

alkalinity range of 10.6 – 57.0 mmol/l, a chloride range of 1.2 - 126.5 meq/l and a 

sulfate range of 0.4 - 45.4 meq/l (Tab. 2.4). It can survive in both shallow and deeper 

waters (Fig. 2.12). Living Limnocythere inopinata significantly correlate positively 

with three physico-chemical variables: conductivity (p = 0.003, r = 0.36), chloride 

(p = 0.036, r = 0.33) and sulfate ion concentrations (p = 0.017, r = 0.38) and 

negatively with two variables: alkalinity (p = 0.002, = r = -0.37) and oxygen 

concentration (p = 0.039, r = -0.26) (Appendix D). 

Distribution: Limnocythere inopinata is widely distributed in the Palaearctic region 

(Bronshtein, 1947). It was found in Pre-Quaternary (Qinghai Basin), Quaternary 

(eastern Qaidam Basin) and Holocene lake sediments from the Tibetan Plateau (Hou 

and Gou, 2007). Limnocythere inopinata (Recent, sub-Recent) is a common 

component of ostracod fauna in lakes on the Tibetan Plateau (Mischke et al., 2007a). 

It also occupies diverse aquatic habitats in Western Mongolia (Van der Meeren et al., 

2010) and brackish lakes in Inner Mongolia and Northern China (Zhai et al., 2010; 

Zhai and Zha, 2014). 

Characterisation: Limnocythere inopinata is widespread on the Tibetan Plateau and 

thrives well in brackish waters (salinity greater than 10). High relative abundance is 

typical for waters rich in Cl
-
- and SO4

2—
, Ca

2+
-depleted and high in alkalinity. 

Limnocythere inopinata is characterised as a mesothermophilic, titanoeuryplastic, 

freshwater to polyhaline and rheoeuryplastic species. 

Palaeoenvironmental reconstructions: Indicator of mesohaline to polyhaline 

permanent waters with high alkalinity. 
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Ilyocypris sp. 

 

Remark: There are different morphological types of Ilyocypris species on the Tibetan 

Plateau (Mischke, 2012). The ecological preferences for the genus and our findings 

are discussed below. Ecology: The species of the genus Ilyocypris occur in a broad 

range of freshwater habitats from lentic (lakes, ponds and ditches) to lotic waters 

(rivers) (Meisch, 2000). They swim and crawl in the bottom water. Living Ilyocypris 

sp. occur in higher proportions in shallow temporary waters (ponds, estuary-like water 

and lagoon-like water waters) than in the permanent brackish lake Tangra Yumco 

(littoral zone, < 10 cm water depth). The presence of Ilyocypris sp. in the littoral zone 

of Tangra Yumco is due to transport of temporary shallow water ostracods by heavy 

runoff during the monsoon season to the lake. Ilyocypris sp. lives in waters with a 

conductivity of 0.9 – 11.9 mS/cm (salinity of 0.7 – 8.9, Tab. 2.4 and 2.8). Empty 

valves were found in diverse habitats: river (7 samples), lake (4 samples), lagoon-like 

water (3 samples), estuary-like water (3 samples) and pond (2 samples). 

Characterisation: Ilyocypris sp. is a shallow water species preferring temporary 

lentic and lotic water bodies. It lives in freshwater and can survive in waters with 

elevated salinities of c. 9. Ilyocypris sp. is characterised as oligothermophilic, 

titanoeuryplastic, freshwater to mesohaline and rheoeuryplastic species. 

Palaeoenvironmental reconstructions: Indicator of shallow temporary fresh and 

brackish waters. 

 

Tonnacypris gyirongensis (Yang, 1982) 

 

Ecology: Tonnacypris gyirongensis is a typical species of rivers on the Tibetan 

Plateau (Zheng et al., 2011). It was found in the phytal zones of Nam Co and 

surrounding water bodies (rivers and estuaries) (Wrozyna et al., 2009b). Tonnacypris 

gyirongensis is the most common living shallow water species in our material and 

was found in estuary-like water (10 samples), river (7 samples), pond (3) and spring 

(2 samples). Empty valves occur in various water bodies: estuary-like water (10 

samples), river (10 samples), lake (7 samples), lagoon-like water (2 samples), spring 

(2 samples) and pond (1 sample). Tonnacypris gyirongensis lives in waters with a 

conductivity of 0.1 – 11.9 mS/cm (salinity range of 0.1 – 8.9) (Tab. 2.4 and 2.8). It 

can dwell in Tibetan freshwater to brackish water with a salinity range of 0 – 5 

(Huang et al., 1985a; Yang, 1988; Wrozyna et al., 2009b). Living T. gyirongensis 

significantly correlate positively with calcium ionic concentration (p = 0.002, r= 

0.43), and negatively with seven variables: conductivity (p = 0.001, r = -0.6), 

alkalinity (p = 0.001, r = -0.54), magnesium (p = 0.026, r = -0.32), sodium (p = 0.005, 

r = -0.38), potassium (p = 0.031, r = -0.30), ), chlorine (p = 0.006, r = -0.43) and 

sulphate (p = 0.015, r = -0.39) ionic concentrations (Appendix E ). 

Distribution: Tonnacypris gyirongensis occurs largely in Holocene sediment from 

Tibetan lakes such as Nam Co (Wrozyna et al., 2009b), Pumayum Co (Peng et al., 

2013), Peiku Co (Peng, 1997), and Qaidam Basin (Mischke et al., 2006). It was also 

found in Ladakh, North-West India (Shukla et al., 2002). 

Characterisation: Tonnacypris gyirongensis is typical for shallow temporary 

freshwater habitats (e.g., rivers with high turbulence). It prefers freshwater but 

tolerates salinities up to 9. The species can also withstand a broad temperature range 

and possibly possesses drying resistant eggs. It is characterised as a 

mesothermophilic, mesotitanophilic, freshwater to β-mesohaline, mesorheophilic 
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species. 

Palaeoenvironmental reconstructions: Indicator of shallow, often temporary waters. 

 

Fabaeformiscandona gyirongensis (Huang, 1982) 

 

Ecology: Living F. gyirongensis prefers the littoral zone with abundant macrophytes 

and organic-rich detritus in Nam Co (Wrozyna et al., 2009b). However, abundant 

empty valves of F. gyirongensis were observed in much greater water depth (> 50 m) 

as well in Nam Co (Zhu et al., 2010). Living F. gyirongensis was found in phytal zone 

(c. 5 – 8 m) with muddy substrate and a maximum of relative abundance of empty 

valves in the hypolimnion (223 m water depth) of Tangra Yumco. The species 

significantly correlates positively but weak with water depth (r = 0.28, p = 0.024). 

Empty valves of F. gyirongensis were found in a variety of water bodies: lake (14 

samples), estuary-like water (7 samples) and lagoon-like water (7 samples). The 

occurrence of empty valves in temporary waters may be due to reworking of ancient 

lake sediments. It dwells in water with a conductivity of 11.9 – 12.8 mS/cm (salinity 

range of: 8.9 – 9.6) in Tangra Yumco (Tab. 2.4 and 2.8). Fabaeformiscandona 

gyirongensis (sub-Recent) seems also to live in less saline waters with a conductivity 

of 0.1 – 1.7 mS/cm (salinity 0.1 – 1.3) and has an optimum of 0.5 mS/cm (salinity 

0.3) (Yu et al., 2001; Mischke et al., 2007b; Wrozyna et al., 2009b). 

Fabaeformiscandona gyirongensis correlates significantly positive (r = 0.28) with 

water depth (Appendix E). 

Distribution: Fabaeformiscandona gyirongensis occurs widely in lakes on the 

Tibetan Plateau (Mischke et al., 2006) 

Characterisation: Fabaeformiscandona gyirongensis is a brackish-lacustrine species. 

It can be characterised as coldstenothermal, titanoeuryplastic, freshwater to β-

mesohaline, oligorheophilic. 

Palaeoenvironmental reconstructions: Indicator of lacustrine waters. 

 

 

 

 

 

 

 

Candona candida (O.F. Müller, 1776) 

Ecology: Candona candida is known to be highly adaptable to cold conditions 

(Meisch, 2000) and cryophilic (thriving at low temperature) in freshwater (Zheng et 

al., 2011). The classification as cold stenothermal form is not attributed to the water 

type in which it dwells but to peculiarities of development at low temperature 

(Bronshtein, 1947; Carbonel et al., 1988; Meisch, 2000). Candona candida can live in 

the shallow zone of lakes (Carbonel et al., 1988; Danielopol et al., 1993) and in 

deeper waters (Huang et al., 1985a). It inhabits diverse water bodies, permanent and 

temporary, lotic and lentic, marshes, streams, canals, springs and large lakes down to 

a water depth of 250 m (Bronshtein, 1947). Living C. candida of the Tangra Yumco 

area is abundant in shallow temporary waters with high organic matter content. Living 

specimens and empty valves were found in lake (9 samples), estuary-like water (5 

samples), river (sandy gravel, 3 samples) pond (muddy phytal, 2 samples) and lagoon-

like water (1 sample). We found living C. candida inhabits waters with a conductivity 
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of 0.14 – 0.9 mS/cm (salinity range of 0.1 – 0.7) (Tab. 2.4 and 2.8), although it can 

survive in Tibetan lake-waters within a salinity range of 0.1 – 5.8 (Zhu et al., 2010). 

Candona candida populates the coasts of the Baltic Sea with a salinity range of 0 – 

5.7 (Frenzel et al., 2010b). Living C. candida significantly correlates negatively with 

alkalinity (r = -0.266, p = 0.031) (Appendix E). It occurs in high alkaline waters of 

small creeks and ponds (pH 8.49 – 8.64) of Lake Van (pH 9.59) in the high mountain 

region of North-eastern Turkey (Külköylüoğlu et al., 2012). The species can also 

survive acidic conditions (pH 4.6) in peat bogs (Henderson, 1990). Candona candida 

is abundant in lakes with Mg/Ca>1. It can also withstand high conductivity waters 

with elevated sulphate content (Bunbury and Gajewski, 2005). 

Distribution: Candona candida has a Holarctic distribution (Eurasia and North 

America) (Meisch, 2000) and affinity for cold freshwaters in high altitude regions 

(Transcaucasia, 1925 m, and the Swiss Alps, 2560 m) (Bronshtein, 1947). Candona 

candida is found in transitional waters connected to Lake Qinghai, Tibetan Plateau 

(Li et al., 2010). It is deposited in mid-late Holocene sediments of Gyirong and the 

Quaternary of the Qaidam Basin, Yamzhog Yumco and Yagedong Co (Hou et al., 

2002), in Bayan Har Mountains on the north-eastern Tibetan Plateau (Mischke et al., 

2008), and Bosten Lake (Mischke and Wünnemann, 2006). 

Characterisation: Candona candida is a highly adaptive, ubiquitous freshwater 

species, commonly found in ponds and rivers on the Tibetan Plateau. It occupies 

waters with Mg/Ca>1 and salinity of up to 6. It is an oligothermophilic, 

oligotitanophilic, freshwater to oligohaline, rheoeuryplastic species. 

Palaeoenvironmental reconstructions: Indicator of freshwater (e.g., ponds and 

rivers). 

 

Candona xizangensis Huang, 1985 

 

Ecology: Candona xizangensis prefers cold freshwater and water depths down to 60 

m (Zhu et al., 2010). We found C. xizangensis in different water bodies: lake (8 

samples; 20m water depth), estuary-like water (1 sample) and river (2 samples). 

Candona xizangensis is lacustrine-brackish, phytal and deep water fauna. 

Distribution: Candona xizangensis is endemic to the Tibetan Plateau. It was found in 

Mid-Pliocene to Holocene sediments of a salt lake in Jilong (Gyirong) city (Huang, 

1982). Recent specimens occur in Gar (Hou et al., 2002), Nam Co (Wrozyna et al., 

2009b), Chen Co (Zhu et al., 2002), and the paleolake Jiuér, Zhongba (Liu et al., 

2007). 

 

Characterisation: Candona xizangensis is a typical lacustrine freshwater species 

from the Tibetan Plateau. It can thrive in brackish-lacustrine waters with oligohaline 

conditions. The species is characterised as cold stenothermal, probably 

titanoeuryplastic, freshwater to oligohaline and mesorheophilic. 

Palaeoenvironmental reconstructions: Indicator of brackish-lacustrine water, phytal 

and deep-water fauna. 

 

Heterocypris incongruens (Ramdohr, 1808) 

Ecology: Heterocypris incongruens lives in shallow temporary freshwater bodies 

(ponds, lagoons and rivers) (Beyer and Meisch, 1996) and permanent water bodies 

(lakes) with clayey substrate without macrophytes cover (Meisch, 2000). We found 

living H. incongruens dominating in ponds with high organic matter content. Empty 

valves were found in pond (2 samples), lake (1 sample) and lagoon-like water (1 
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sample). It is a nektobenthic species (Rossi and Menozzi, 1993) and can withstand a 

wide range of environmental conditions (Sars, 1928) including high temperature 

variations (Geiger et al., 1998; Külköylüoğlu, 2004). Its eggs are resistant to 

desiccation, freezing and high temperature (Angell and Hancock, 1989; Geiger et al., 

1998; Henderson, 2002; Meisch, 2000). Heterocypris incongruens valves were found 

in swampy puddles, rivers, springs and man-made pools near Lake Qinghai (Li et al., 

2010). We found living H. incongruens inhabiting waters with a conductivity of 0.2 – 

0.9 mS/cm (salinity range of 0.7 – 1.1) (Tab. 2.4 and 2.8). However, H. incongruens 

can live in waters with a salinity of 12.3 (Li et al., 2010) and 20g/l (Mischke et al., 

2003). 

Distribution: Heterocypris incongruens is a cosmopolitan species (Meisch 2000). 

The species also occurs in high-mountain (altitude of 1,650 – 2,350 m a.s.l.) water 

bodies of Turkey (Külköylüoğlu et al., 2012). Heterocypris incongruens was found in 

Lake Qinghai (Mischke et al. 2003; Li et al. 2010). It also occurs in Western and 

Inner Mongolia and Northern China (Van der Meeren et al., 2010; Zhai and Zha, 

2014)  

Characterisation: Heterocypris incongruens inhabits temporary ponds on the Tibetan 

Plateau. It can withstand high temperature and a salinity of up to 20. It is a 

mesothermophilic, freshwater to mesohaline, mesorheophilic species. 

Palaeoenvironmental reconstructions: Indicator of shallow temporary waters. 

 

Heterocypris salina (Brady, 1868) 

 

Ecology: Heterocypris salina lives in shallow temporary freshwaters (e.g., springs, 

and ponds), and salty coastal and inland waters (Wang and Dou, 1998; Meisch, 2000). 

It prefers low salinity, although it occurs in waters with a salinity of up to 20 (Meisch, 

2000). The species may disappear in the cold season leaving diapausing eggs 

(Ganning, 1971). Living individuals and empty valves of H. salina were observed in a 

hot spring north-west of Tangqung Co. 

Distribution: Heterocypris salina is a holarctic species (Meisch, 2000). It occurs in 

fresh to brackish waters on the north-eastern Tibetan Plateau (Mischke et al., 2012). 

Characterisation: Heterocypris salina is thermoeuryplastic, mesotitanophilic to 

polytitanophilic, freshwater to polyhaline (Meisch, 2000). 

Palaeoenvironmental reconstructions: Indicator of temporary waters. 

Potamocypris villosa (Jurine, 1820) 

Ecology: Potamocypris villosa prefers shallow water (springs, spring-associated 

habitats, canals, pools, brooks), swamp overgrown with macrophytes and lakes (Beyer 

and Meisch, 1996; Bronshtein, 1947; Meisch, 2000; Roca and Baltanas, 1993). It 

occurs in the littoral zone of lakes and artificial basins (Meisch, 2000). Potamocypris 

villosa prefers clean and well oxygenated water bodies (Bronshtein, 1947). It is a 

temporary water species with a strong affinity to flowing water bodies with low 

conductivity at high elevation (Beyer and Meisch, 1996). High abundance of P. 

villosa was frequently found in pools with filamentous algae and charophytes 

producing high oxygen concentrations and calcium carbonate precipitation (Mezquita 

et al., 2000). The species is reported from Lake Qinghai (pH of 6.6 and salinity of 

0.57) (Li et al., 2010). We found only one valve of Potamocypris cf. villosa in a river 

(10 cm water depth). This suggests the ability of P. villosa to colonise high altitude 

riverine aquatic habitat. 

Distribution: Potamocypris villosa is widely distributed in high attitude waters (2350 

m a.s.l.) in Asia, Europe, and South America (Bronshtein, 1947; Külköylüoğlu et al., 
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2012). 

Characterisation: Potamocypris villosa is described as an oligothermophilic, 

freshwater and mesorheophilic species (Meisch, 2000). 

Application for palaeoenvironmental reconstructions: An indicator of temporary 

freshwaters. 

 

2.5.6 Water-depth distribution in the deep brackish lake Tangra Yumco 

 
Ostracod assemblages and abundance fluctuate with depth (Fig. 2.12). 

Leucocytherella sinensis can live in different water depths but the relative abundance 

decreases with water depth. Tonnacypris gyirongensis, C. candida and Ilyocypris sp. 

occur in the shallow littoral zone (about 10 cm water depth). This zone is 

characterised by unstable hydrological conditions due to fluctuation in water level and 

increased terrestrial input. Candonids and L. inopinata occur in higher proportions 

within the phytal zone under more stable ecological conditions (up to 20 m water 

depth). Candona xizangensis valves were found within the phytal zone of the lake. 

Fabaeformiscandona gyirongensis can inhabit both the phytal zone with muddy 

substrate and deeper waters. The occurrences of shallow water species (T. 

gyirongensis, Ilyocypris sp. and C. candida) within the epilimnion in less than 1 m 

water depth is attributed to transport of ostracods (living specimens and empty valves) 

during heavy rainfall (high summer monsoon precipitation), floods and rising of the 

lake-water level (Akita et al., 2015). 

Fabaeformiscandona gyirongensis and L.? dorsotuberosa occur in higher number 

within the hypolimnion of Tangra Yumco. This deep water ostracod fauna also occurs 

in the hypolimnion of Nam Co, the second-largest saline lake on the Tibetan Plateau 

(Frenzel et al., 2010b; Wrozyna et al., 2009a). However, the relative abundance of 

Limnocythere inopinata in Tangra Yumco is exceptionally high (thus in two sediment 

samples from deeper depth), although it rarely occurs in Nam Co (Frenzel et al., 

2010b). The salinity of Tangra Yumco (8.3) is higher than in Nam Co (2.0) (Frenzel 

et al., 2010b), this underlines that L. inopinata (salinity tolerant species) prefers 

waters with high salinity. 

 

 

 

2.7 Conclusions 

Knowledge on modern ostracods and their environment are needed to understand 

past ecological conditions, environmental and climate change. We elucidate Recent 

Ostracoda ecology from the deep brackish lake Tangra Yumco and adjacent waters 

(smaller lakes, estuary-like waters, lagoon-like waters, rivers, ponds and springs) on 

the southern Tibetan Plateau. Composition of the ostracod associations and abundance 

significantly (p <0.05) differ in the diverse habitats. The spatial sampling yielded a 

low abundance of living ostracods but abundant well-preserved empty shells. 

Although, there are some potential constraints, we can detect relationships between 

species and the physico-chemical variables. We summarize our findings as follows: 

 Eleven Recent Ostracoda were found (nine alive and two empty valves). The two 

major ostracod associations (cluster) based on habitat preferences are: (i) permanent 

water species – Leucocytherella sinensis, Leucocythere? dorsotuberosa, 

Fabaeformiscandona gyirongensis, Limnocythere inopinata and Candona xizangensis 

(empty valves only); (ii) shallow temporary water species – Tonnacypris 
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gyirongensis, Candona candida, Heterocypris incongruens, Ilyocypris sp. 

Heterocypris salina and Potamocypris cf. villosa (one valve only). The two types of 

ostracod association (lacustrine and temporary fauna) can be used to categorise water 

types in sediment records. 

 Indicator species are: (i) L. sinensis dominates Ca-depleted brackish waters although 

ubiquitous distributed; (ii) L.? dorsotuberosa dwells in fresh to brackish waters; (ii) L. 

inopinata predominates in mesohaline to polyhaline waters; (iv) F. gyirongensis inhabits 
exclusively brackish-lacustrine deep waters; (v) C. candida populates freshwaters; (vi) T. 

gyirongensis and Ilyocypris sp., are restricted to shallow temporary waters; (vii) H. 

incongruens predominate in ponds, whereas H. salina was only found in a hot spring. 

 Spearman correlation analysis reveals that (i) two species (L.? dorsotuberosa, r = 0.25 and L. 

inopinata, r = 0.36) have a significant positive correlation with conductivity while one species 

correlates negatively (T. gyirongensis, r = -0.68). Limnocythere inopinata significantly 

correlates positively (r = 0.37) with alkalinity. Fabaeformiscandona gyirongensis 

significantly correlates positively (r = 0.28) with water depth. 

 Ostracod presence and abundance is largely determined by the conductivity (salinity) of the 

waterbody and habitat types. 

 Water depth distribution of ostracods can be used to establish different ecological 

niches within a deep lake. The epilimnion (phytal zone) of Tangra Yumco supports 

high species richness. Fabaeformiscandona gyirongensis and L.? dorsotuberosa are 

water depth indicating ostracods, useful for palaeo-water depth reconstruction. 

 We confirm the potential usage of modern ostracods (thus species-specific ecological 

preferences) to differentiate types of aquatic habitat.  

 

The new ostracod ecological dataset can be used as a baseline to detect past and 

future disturbances (e.g., environmental and climate changes) on aquatic ecosystems 

on the southern Tibetan Plateau. Regular and long-term ecological monitoring is 

highly needed to assess the effect of climate change on high mountain aquatic 

ecosystems. We recommend science advocacy on microcrustacean biodiversity 

conservation, water resource management and environmental stewardship. 
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2.8 Appendix  
 

Appendix 2.A Sediment samples from Tangra Yumco and adjacent waters (southern 

Tibetan Plateau). 

 

 

 

 

 

 

 

 

Sampling  

 

Main 

localities  

Aquatic 

habitats 

Sample ID IGSN Number of samples 

Sept. 2009 Tangra 

Yumco 

lake 41, 43, 44, 46,  

49, 51-53 

IETIP0001-8 8 

Sept. 2010 Tangra 

Yumco 

lake 7, 8 IETIP0009 

IETIP000A 

2 

Sept. 2011 Xuru Co estuary-like 1 IETIP000B 1 

 Tangra 

Yumco 

lake 2, 4, 6,7, 9,16,18, 20, 

22, 25, 28  

IETIP000C-G, 

IETIP000N-R,T 

11 

  estuary-like 11, 12, 13, 60,61,  

63-66 

IETIP000I-K,V-Z, 

IETIP0010 

9 

  lagoon-like 27, IETIP000S 1 

  river 10, 14, 15, 29,  

67-71 

IETIP000H,L-M, U 

IETIP0011 

9 

     30 (sub-total) 

 Tangqung lake 73  IETIP0017 1 

 Co river 72, 74 IETIP0016,18 2 

  pond 75 IETIP0019 1 

     4 (sub-total) 

June 2012 Tangra lake 24, 26, 37 IETIP001D-E, I 3 

 Yumco lagoon-like 22-23 IETIP001B-C 2 

  springs 29, 35, 36 IETIP001F-H 3 

     8 (sub-total) 

 Monco lake 39 IETIP001J 1 

 Bunnyi lagoon-like 40, 41 IETIP001K-L 2 

     3 (sub-total) 

 Xuru Co lake 43, 52, 63 IETIP001N,Q,U 3 

  river 1, 42 IETIP001A, M 2 

  lagoon-like 47, 50,53 IETIP001O-P, R 3 

  pond 57, 58 IETIP001S-T 2 

     66 (Grand-total) 
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Appendix 2B  Occurrences of ostracods in sediment samples with identification 

number 

 

 

  

Species Number of 

occurrences 

Sample ID 

(year, number) 

International Geo Sample Number 

(IGSN) 

Tonnacypris 

gyirongensis 

24 9_53, 11_1, 11_11 to 15, 

11_22, 11_29, 11_60LB to 

61LB, 11_63LB, 11_64LC, 

11_65LA, 11_66LC to 

67LC, 11_68LB, 11_69LC, 

11_71LA, 11_75B, 12_29, 

12_35, 12_57 to 58 

IETIP0008, IETIP000B, IETIP000I to M, 

IETIP000Q, IETIP000U to Z,IETIP0010 to 

13, IETIP0015, IETIP0019, IETIP001F to 

G, IETIP001S to T 

Leucocytherella 

sinensis  

21 9_43, 9_52 to 53, 11_1 to 2, 

11_4, 11_7, 11_9, 11_14 to 

16, 11_18, 11_20, 11_22, 

11_29, 11_65LA, 11_69LC, 

11_74, 12_40, 12_50, 12_58 

IETIP0002, IETIP0007 to 8, IETIP000B to 

D, IETIP000F to G,IETIP000L to Q, 

IETIP000U, IETIP000Z, IETIP0013, 

IETIP0018, IETIP001K, IETIP001P, 

IETIP001T 

Limnocythere 

inopinata 

12 9_52, 11_4, 11_7, 11_9, 

11_16, 11_18, 11_20, 11_22 

to 23, 12_26, 12_40 to 41 

IETIP0007, IETIP000D, IETIP000F to G, 

IETIP000N to Q, IETIP001C , IETIP001E, 

IETIP0001K to L 

Leucocythere? 

dorsotuberosa  

5 9_52, 11_2, 11_20,11_22, 

12_50 

IETIP0007, IETIP00C, IETIP000P to Q, 

IETIP001P 

Ilyocypris sp. 4 11_1 to 2, 11_75B, 12_53 IETIP000B to C, IETIP0017, IETIP001R 

Candona candida 3 11_15, 11_75B, 12_57 IETIP000M, IETIP0019, IETIP001S 

Fabaeformiscandona 

gyirongensis 

3 9_43, 11_16, 11_18 IETIP0002, IETIP000N to O 

Heterocypris 

incongruens 

2 11_75B, 12_57 IETIP0019 to IETIP001S 
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Appendix 2C  Ostracod abundance and diversity. 

Aquatic habitats Ostracoda valves per sample Shannon diversity 

(mean, SD)  Mean Min - Max Total 

Live ostracods     

Lake (n = 12) 62 4 – 246 744 0.60 (0.4) 

Estuary-like (n = 10 ) 22 2 – 80 219 0.15 (0.3) 

Lagoon-like (n = 6) 85 9 – 253 512 0.02 (0.4) 

Pond (n = 3) 297 32 – 764 891 0.73 (0.5) 

River (n = 8) 24 4 – 54 189 0.28 (0.5) 

Spring (n = 2) 23 2 – 44 46 — 

Total samples (n = 41) 63 2 – 764 2,601 0.35 (0.4) 

Empty valves only     

Lake (n = 24) 865 2 – 4,873 20,762 0.73 (0.3) 

Estuary-like (n = 10) 571 263 – 2,441 5,714 0.52 (0.2) 

Lagoon-like (n = 5) 737 75 – 1,188 3,686 0.40 (0.2) 

Pond (n = 3) 1,373 33 – 9,400 4,118 0.73 (0.2) 

River (n = 11) 613 23 – 1,686 6,739 0.37 (0.3) 

Spring (n = 3) 250 51 – 633 751 0.31 (0.1) 

Total samples (n = 56) 746 2 – 4,873 41,770 0.58 (0.3) 

Live plus empty valves     

Lake (n = 24) 896 2 – 4,873 21,506 0.78 (0.4) 

Estuary-like (n = 10) 593 271 – 2,452  5,933 0.60 (0.2) 

Lagoon-like(n = 7) 599 9 – 1, 201 4,198 0.40 (0.3) 

Pond (n = 3) 1,670 65 – 3,646 5,009 0.75 (0.3) 

River (n = 11) 630 23 – 1,694 6,928 0.46 (0.4) 

Spring (n = 3) 266 53 – 633 797 0.30 (0.1) 

Total samples (n = 58) 765 2 – 4,873 44,371 0.61 (0.4) 
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Appendix 2D  Spearman Correlation between environmental variables and ostracods. 

Significant correlations are bolded. Two stars (**) indicate p < 0.01 and one star (*) p 

< 0.05. WD = water depth, CD = conductivity, WT = water temperature, O2 = oxygen 

concentration, Ls = Leucocytherella sinensis, Ld = Leucocythere? dorsotuberosa, Il = 

Ilyocypris sp., Ln = Limnocythere inopinata, Tg = Tonnacypris gyirongensis, Fg = 

Fabaeformiscandona gyirongensis, Cc = Candona candida, and Hi = Heterocypris 

incongruens. 
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Appendix 2E Summary results of Canonical Correspondence Analyses (CCA). 

Parameter Axis 1 Axis 2 Axis 

3 

Axis 

4 

Total 

inertia 

Species-habitat      

Eigenvalues 0.691 0.210 0.091 0.012 2.5 

Explained variation cumulative  27.5 35.8 39.4 39.9  

Pseudo-canonical correlation 0.927 0.766 0.481 0.251  

Explained fitted variation 

(cumulative 

68.7 89.6 98.6 99.7  

Percentage of total variation      40.0 % 

Species-physico-chemical 

variables 

     

Eigenvalues 0.612 0.253 0.094 0.044 2.6 

Explained variation cumulative  24.7 34.3 37.9 39.6  

Pseudo-canonical correlation 0.890 0.797 0.562 0.299  

Explained fitted variation 

(cumulative) 

60.5 84.1 92.8 96.9  

Percentage of total variation      40.8 % 

Species-Conductivity      

Eigenvalues 0.669 0.329 0.184 0.074 2.6 

Explained variation cumulative  25.4 37.9 44.8 47.7  

Pseudo-canonical correlation 0.906 0.825 0.677 0.447  

Explained fitted variation 

(cumulative) 

68. 89.6 98.6 99.7  

Percentage of total variation      49.3 % 
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Chapter 3 

3.0 Abstract 

This study evaluates the present-day relationship between environmental 

conditions and the geochemical composition of ostracod valves from the southern 

Tibetan Plateau. Stable oxygen and carbon isotope values and trace element contents 

of the four most abundant species were analyzed together with hydrochemical 

properties of host waters at the time of sampling. Results indicate species-specific 

stable isotope fractionation and trace element incorporation into the ostracod calcite. 

Stable isotope values significantly correlate with the respective water stable isotope 

composition, reflecting salinity and productivity. The offsets between δ
18

Ovalve and 

δ
13

Cvalve and equilibrium calcite suggest valve formation during the monsoon season 

and influence of pore water δ
13

C. Mg/Cavalve is primarily influenced by water Mg/Ca 

ratios and salinity and confirms the use as proxy for precipitation-evaporation balance 

and lake level.  

Oxygen isotopes and Mg/Cavalve ratios are unaffected by water temperature. 

Observed effects of water Sr/Ca or salinity on Sr/Ca incorporation are small and 

biased by the presence of aragonite precipitation, which removes bioavailable Sr from 

the host water, resulting in low Sr/Cavalve values. The negative correlation between 

δ
13

C, reflecting organic matter decay, and Fe/Ca, Mn/Ca and U/Ca in ostracod valves 

shows the potential to infer changes in redox conditions. 

 

3.1 Introduction 

On the Tibetan Plateau ostracods represent the most abundant calcareous 

organism remains in lake sediments and are thus extremely valuable Quaternary 

paleoenvironmental indicators. Their valves are used as source material for 

geochemical analysis in paleolimnological reconstructions of lake-hydrochemistry 

and climate. Stable oxygen and carbon isotopes values in ostracod valves reflect 

mainly changes in temperature and salinity, and productivity, respectively (De 

Deckker and Forester, 1988b; Lister, 1988; Von Grafenstein et al., 1992; Schwalb et 

al., 1994). Information about precipitation to evaporation (P/E) balance, water source, 

and meltwater or groundwater inflow, can be derived (Lewis and Anderson, 1992; 

Last et al., 1994; Cohen et al., 2000; Schwalb, 2003a) as well as modes of decay of 

organic matter (Schwalb et al., 2013). The most commonly used trace element proxies 

are Mg/Ca and Sr/Ca ratios. Mg/Ca ratios permit to reconstruct temperature and 

salinity changes, whereas Sr/Ca ratios are mainly dependent on salinity and Sr/Ca 

ratios of the ambient water and thus allow for the reconstruction of P/E balance, water 

source and lake level changes (Chivas et al., 1983b; Hu et al., 2008; Ito and Forester, 

2009a; De Deckker et al., 2011). Other elemental ratios have only been exploited by a 

few studies and results are summarized by Börner et al. (2013a). Chivas et al. (1983b) 

tested the dependency of Ba/Ca ratios on temperature changes, Ricketts et al. (2001) 

used U/Ca ratios to infer oxygenation cycles, vertical water mixing and organic matter 

decay, Gasse et al. (1987) used Fe and Mn to characterize redox conditions, and Zhu 

et al. (2009b) reported a correlation between Li/Ca and temperature. 

In most freshwater habitats the incorporation of various trace elements and 

stable isotopes into the ostracod valve is not only controlled by one environmental 

factor alone. In order to validate the relationship between environmental conditions 
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and their translation into the elemental ratios of ostracod valves, it is essential to 

establish a calibration using modern data, because it is important to assess how valve 

chemistry is affected by regional and seasonal trends in solute evolution of host 

waters. Especially if quantitative reconstructions are pursued, sampling has to be 

carried out shortly after molting because ostracods calcify their low-Mg calcite valves 

within a few hours to several days (Turpen and Angell, 1971b). This approach has 

been undertaken by several authors. Multiple studies focused on the calibration of 

stable isotope (δ
18

O, δ
13

C) and trace element (Mg/Ca, Sr/Ca) uptake into ostracod 

valves, either by culture experiments (De Deckker et al., 1999b; Kondo et al., 2005; 

Li and Liu, 2010) or by collecting living specimens from natural habitats over an 

annual cycle (Cronin et al., 2005; Wetterich et al., 2008; Decrouy, 2009b; Marco-

Barba et al., 2012). Decrouy et al. (2012a) analyzed stable isotopes and Mg/Ca and 

Sr/Ca ratios of different species in western Lake Geneva (Switzerland) during one 

year, and developed models to describe the relationships between ostracod Mg/Ca and 

Sr/Ca and temperature, as well as δ
18

OH2O, δ
13

CDIC and Mg/CaH2O, Sr/CaH2O. Marco-

Barba et al. (2012) calibrated valve chemistry data of Cyprideis torosa and established 

correlations of ostracod valve Sr/Ca to water Sr/Ca and δ
18

O to Total Dissolved Solids 

(TDS), but also discussed possible restrictions to these relationships. For example, in 

waters with Mg/Ca ratios below 6, no effect of temperature nor Mg/CaH2O on the 

uptake of Mg/Ca in the ostracod valve could be detected. The same species was also 

analyzed by Keatings et al. (2007) who found no relationship between valve Mg/Ca 

and Sr/Ca ratios and the respective composition of the ambient water. De Deckker et 

al. (1999b) described a temperature dependence of ostracod Mg/Ca for waters within 

a range of Mg/Ca ratios of 1 to 30 for Cyprideis australiensis. A critical assessment of 

the importance to calibrate hydrochemical controls on the element incorporation in 

ostracod calcite is given by Dettman and Dwyer (2012). 

Although ostracods are abundant in Tibetan Plateau lakes and sediments, little is 

known about the relationship between their geochemical signatures and those of their 

host waters. In order to better exploit their fossil records as paleoenvironmental 

proxies, this study investigates relationships and possible controlling factors for the 

incorporation of stable isotopes and trace elements into the ostracod valve calcite. To 

achieve this, the stable isotope and trace element content of the most abundant 

ostracod species was compared to the environmental parameters of the ambient 

waters. Our results should advance the understanding of the effects environmental 

conditions exert on isotope fractionation and trace element partitioning and thus 

increase the value of ostracod valve chemistry as paleoenvironmental proxy on the 

Tibetan Plateau.  

 

3.2. Geographical Settings 

The Tibetan Plateau is one of the most sensitive regions to climate change due 

to its high elevation exceeding 4000 m a.s.l. (Kang et al., 2010a). Consequently, air 

temperatures are low with daily temperature differences exceeding annual variations. 

Mean annual air temperature is 0°C to 5°C, with lowest values in the northeast (far 

below 0 °C) and highest in the region around Lhasa (>5°C). Mean temperature in the 

warmest month (July) is 7-15°C, in the coldest month (January) -1°C to -7°C  

(Immerzeel et al., 2005). Additionally, the Tibetan Plateau is also affecting the global 

climate system as it acts as heat source and moisture sink (Hsu and Liu, 2003). 

Precipitation is mainly brought by the East Asian Monsoon and the Indian Summer 

Monsoon, delivering highest rainfall in the summer month (June to August), and by 
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the Westerlies in the winter month. Annual precipitation is highest in the southeast 

and shows a decreasing trend towards the northwest.  

The Tibetan Plateau hosts more than 300 lakes with a surface area greater than 10 

km² (Yu et al., 2001b). We studied nine lakes including their catchments located on a 

west-east transect in the central and southern part of the Tibetan Plateau: Taro Co, 

Tangra Yumco, Tangqung Co, Monco Bunnyi, Xuru Co, Nam Co, Npen Co, Yamzho 

Yumco and Chen Co (Fig. 1). Thus, we cover different climate conditions, from cold 

and dry in the northwest to warmer and moister in the southeast. Information about 

location, altitude, lake and catchment area, annual precipitation as well as selected 

hydrological parameters is given in Table 1. 

Lake Taro Co, a freshwater lake, is located in the western part of the Tibetan 

Plateau and thus in the driest area studied. Further east lies the Tangra Yumco lake 

system, consisting of Tangra Yumco, Tangqung Co, Xuru Co and Monco Bunnyi. 

Ancient shorelines and lake terraces suggest that three of these lakes (excluding 

Monco Bunnyi) may have formed one large ancient lake in the late Quaternary that 

was separated in more recent times (7.6 ka BP) due to drier climate conditions (Liu et 

al., 2013a; Rades et al., 2013a). Tangra Yumco is the largest lake within this lake 

system and consists of two sub-basins, the southern basin with a water depth of 100m 

and the northern basin with a maximum depth of 230 m, making Tangra Yumco the 

deepest lake on the Tibetan Plateau (Wang et al., 2010a). The lake sits in a 

hydrologically closed basin, and is fed by several partially glacier fed streams. Tangra 

Yumco is a brackish lake (salinity = 7.3 ‰), showing a clear summer stratification 

with a thermocline between 20 and 25 m. The small brine lake Tangqung Co is 

located north of Tangra Yumco, and less saline lakes Monco Bunnyi and Xuru Co are 

located south of Tangra Yumco. All these lakes are hydrologically closed. Nam Co 

and Npen Co are located in the eastern part of the Tibetan Plateau (Fig. 1). This 

region is characterized by the highest annual precipitation in the study region. Nam 

Co, the second largest lake in China, is a brackish water lake within a hydrologically 

closed basin, which is mainly fed by monsoonal precipitation and, to a lesser extent, 

by meltwater runoff from the Nyainqengtanglha mountain range (Keil et al., 2010). 

Npen Co is a freshwater lake northeast of Nam Co with an outflow to Bam Co in the 

northwest. The Yamzho Yumco lake system is located further south on the northern 

foothills of the Himalayan Mountains. Part of the huge Yamzho Yumco lake system is 

Chen Co, the smallest lake in this study. Both lakes are hydrologically closed, 

precipitation is the main water supply and meltwater from glaciers accounts for just 

16 % of total water supply (Zhang et al., 2012a). 

 

3.3 Material and Methods 

3.3 1 Sampling 

 
During five fieldtrips to the Tibetan Plateau, taking place each September in 

2008 to 2011 and in June 2012, we collected living and sub-Recent ostracods from 

326 sites, including lakes, lagoons, rivers, ponds and springs. Lake sediment and 

water samples were taken from water depths of 2 m to 85.7 m. The lagoons were 

separated from the open lake waters by sand or gravel bars forming shallow 

waterbodies featuring limited mixing with the main water body and thus higher 

susceptibility to climatic changes. The sampled lagoons, ponds and rivers were partly 

dry in the summer before the monsoon season. Lake sediment samples were taken 

using an Ekman Bottom Grab, samples from shallow sites, e.g. rivers and lagoons, by 
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using a hand-net. All sediment samples were stored in Whirl-Pak bags and 70 % 

ethanol was added. For each surface sediment sample a corresponding water sample 

was taken from the same location using a Niskin type water sampler. Hydrochemical 

parameters, such as temperature, electrical conductivity, pH, and dissolved oxygen 

were measured at each site with a multi-sensor probe (WTW340i). Alkalinity was 

determined using the field titration kit visocolor HE (Macherey-Nagel). Water 

samples were filtered in the field through 0.45 µm or 1.2 µm membranes (Whatman 

GF/C) and stored in polyethylene bottles. Samples collected for cation analysis were 

fixed with 1ml HNO3. Samples collected for carbon isotope analysis were stored in 12 

ml amber glass bottles prepared with a few drops of HgCl2. Sediment samples were 

sieved using 63 and 200 µm mesh size, rinsed with deionized water and transferred to 

petri dishes using 99 % ethanol. From the 200 µm size fraction intact adult ostracods 

(carapaces with well-preserved body parts) were picked with a fine brush under a low 

magnification stereoscopic microscope, identified and stored in ethanol again. Prior to 

chemical analysis, articulated valves were separated and soft parts removed. 

Ostracod species and ecology 

The most abundant ostracod species are Leucocytherella sinensis Huang, 1982, 

Limnocythere inopinata (Baird, 1843) and Tonnacypris gyirongensis (Yang, 1982). 

Less abundant are ?Leucocythere dorsotuberosa Huang, 1982, Fabaeformiscandona 

gyirongensis (Huang, 1982), Candona candida (O.F. Müller, 1776), Candona 

xizangensis Huang, 1982, and Ilyocypris cf. mongolica Martens, 1991. Only a few or 

no living specimens were found, for example, of Heterocypris salina (Brady, 1868) 

that just occurred in some hot springs north of Tangqung Co. Thus, for geochemical 

analysis only ? Leucocythere dorsotuberosa, Leucocytherella sinensis, Limnocythere 

inopinata and Tonnacypris gyirongensis were used. 

Leucocytherella sinensis is by far the most abundant species on the southern and 

central Tibetan Plateau, covering between 50 % and 90 % of the relative abundance. It 

is a cold-stenothermal species and endemic to the southern, central and western 

Tibetan Plateau (Wrozyna et al., 2009a). It is found on all substrate types in all 

habitats, but prefers shallow waters (up to 20 m). Leucocytherella sinensis has a high 

propagating ability and a strong adaptability (Li et al., 2002). From our observations 

we conclude that L. sinensis molts starting in late spring (May/June) and produces 

several consequent generations throughout the summer season (Fürstenberg, 

personnel communication). Living specimens of ? Leucocythere dorsotuberosa were 

only found in lakes, with highest abundances in deep water below the thermocline 

(20-25 m). ?L. dorsotuberosa probably molts in late spring and again in autumn 

(September) (Fürstenberg, personnel communication). The assignment of L. 

dorsotuberosa to the genus Leucocythere was questioned by Wrozyna et al. (2009a) 

because our specimens bear a lophodont hinge contrary to the description of the genus 

Leucocythere, which possesses a characteristic hinge with the anterior tooth on right 

valve considerably smaller than the posterior tooth and a crenulated intercardinal bar 

(compare Danielopol et al. 1989). Therefore, a question mark was assigned to the 

genus. 

Limnocythere inopinata has a palearctic distribution and colonizes a wide range 

of habitats and substrate types (Meisch, 2000a). In our samples 85 % of the living 

specimens were found on muddy sediment in Tangra Yumco. In addition, L. 

inopinata is the only species we found dwelling within the sediment. Highest numbers 

were found in the upper two centimeters, but L. inopinata penetrates down to at least 

25 cm (Akita et al., submitted-a). L. inopinata was described as a summer form with 

several succeeding generations and adults calcify from late spring to early autumn 
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(von Grafenstein et al., 1999). Tonnacypris gyirongensis (formerly assigned to the 

genus Eucypris) is a species typical of shallow and turbulent freshwater habitats 

(Akita et al., submitted-a). Most living specimens originate from river habitats or 

springs but the time of molting is unknown. Further information about species 

assemblages and species ecology for most of the studied sites can be found in 

Wrozyna et al. (2009c) for Nam Co, Akita et al. (submitted-a) for the Tangra Yumco 

lake system, and Guo et al. (in press) for Taro Co. 

Analytical procedures 

Water samples were analyzed for cations by Inductively Coupled Plasma 

Optical Emission Spectrometry (ICP-OES), and anions were analyzed by ion 

chromatography at the Institute of Geographical Sciences, Freie Universität Berlin, 

Germany, and at the Max Planck Institute for Biogeochemistry, Jena, Germany 

(2012). Measurements were calibrated using standard solutions (SRM 1643e Trace 

Elements in Water). Element concentrations for water samples are reported in meq/l, 

elemental ratios are always given in mol/mol (water and ostracods). The analysis of 

stable oxygen and hydrogen isotopes was done with a Cavity Ring-Down 

Spectrometry (CRDS) analyzer (L1102-i, Picarro, Sunnyvale, CA, USA) (Brand et 

al., 2009) at the Max Planck Institute for Biogeochemistry, Jena, Germany. Water 

samples (1 ml) were injected using an A200SE autosampler (CTC Analytics, 

Zwingen, Switzerland). Standardization was done by co-injected lab reference water, 

which is calibrated against IAEA, VSMOW; SLAP and GISP reference materials 

(Gehre et al., 2004). Analytical precision is about 0.1 % for δ
18

O and <1 % for δD. All 

values are given in the standard delta notation in ‰ vs. VSMOW (Vienna Standard 

Mean Ocean Water). Water samples were analyzed for δ
13

CDIC at the University 

Erlangen-Nürnberg, Germany, using an automated equilibration unit (Gasbench 2, 

Thermo Finnigan) in continuous flow mode coupled to a Thermo Finnigan Delta plus 

XP isotope ratio mass spectrometer. All samples were measured at least in duplicates. 

All values are given in the standard delta notation in ‰ vs. VPDB (Vienna Pee Dee 

Belemnite). The data sets were corrected for machine drift during the run and 

normalized to the VPDB scale. External reproducibility was better than 0.1 ‰ (1 

sigma) for δ
13

CDIC. 

Geochemical analysis of ostracod valves was carried out on adult specimen of 

Limnocythere inopinata (Baird, 1843), ?Leucocythere dorsotuberosa Huang, 1982, 

Leucocytherella sinensis Huang, 1982 and Tonnacypris gyirongensis (Yang, 1982). 

To determine the carbon and oxygen isotope ratios, valves were bleached for 24 hours 

in 2.4 % NaOCl to remove organic matter and afterwards rinsed with double 

deionized water. Sample weight was at least 100 µg (6-15 valves). Isotopes were 

measured with a Kiel II coupled to a Finnigan MAT252 Mass spectrometer at the 

University of Minnesota, USA. Samples are normalized with respect to carbon using 

NBS-19 and LSVEC standards. Samples are normalized with respect to oxygen using 

NBS-19 and NBS-18. Analytical precision was 0.1 % for δ
18

O and δ
13

C. The isotope 

results are reported in standard delta notation in ‰ vs. VPDB. Values for equilibrium 

calcite were calculated after Friedman and O’Neil (1977) for δ
18

O, and fractionation 

of δ
13

C between DIC and calcite is 0.8 ‰ (Bottinga, 1968). 

Trace element analysis of ostracod valves was carried out at the Department of 

Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, 

Canada. In total, 110 samples were analyzed, thereof are 54 samples of L. sinensis, 19 

samples of L. inopinata, 13 samples of ?L. dorsotuberosa, and 24 samples of T. 

gyirongensis. We prepared replicate measurements for all sites. To determine the 

trace element content in ostracod valves we used the flow-through time-resolved 
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analysis (FT-TRA) technique, a continuous leaching approach developed by Haley 

and Klinkhammer (2002). FT-TRA allows for a complete monitoring of the cleaning 

and dissolution over time, and thus to distinguish the biogenic signal from secondary 

calcite or contaminants by their differences in solubility (Klinkhammer et al., 2004). 

Single valves were loaded into a leaching module (customized Dionex Gradient Pump 

system) linked to an Agilent 7700x quadrupole ICP-MS. Procedure applied started 

with a 10 min rinse with deionized water, followed by dissolution with nitric acid 

solutions, made from ultrapure HNO3 (Seastar Chemicals Inc., 15.6 M). After the 

initial rinse, the acidity of the nitric acid is increased to 25 mM over 2 min time, 

constant at to 25 mM for 8 min, followed by an increase to 50 mM over 2 min and 

constant until the final increase to 155 mM HNO3. The moment when the acidity is 

increased to 155 mM HNO3 is sample-specific, depending on when the Ca peak, 

which is associated with the dissolving ostracod valve, reaches baseline. This is 

determined by live monitoring of Ca counts per second, and the switch to 155 mM 

HNO3 is done manually. The increase to 155 mM HNO3 is needed to dissolve low 

solubility phases, such as clay. Flow-rate was constant at 0.7 ml/min.  

To minimize spectral interferences, He was used as an inert collision gas in the 

Octopole Reaction System. For internal standardization indium (
115

In) was used. 

Double-charging and oxide effects were monitored and were less than 4 % and 0.8 %, 

respectively. To calculate normalized concentrations for each isotope, a standard 

curve was generated using known dilutions of a high standard solution (2 ppm Ca, 50 

ppb Mg, 100 ppb P, 10 ppb Sr, Mn, Fe, Al, 5 ppb Li, As, Ba, Be, Cd, Mo, Ti, Zn, and 

1 ppb Ce, U, Th). Analytic reproducibility was tested using BCS-CRM No. 393 

(ECRM 752-1) Limestone and is approximately ±2.5 %. A mathematical correction is 

applied to account for surface contamination on the ostracod valves (Klinkhammer et 

al., 2004), detected by increasing Al and Ti values indicative for the clay phase. 

Me/Al molar ratios (Me being the element of interest, e.g. Mg or Ca) in the 

contamination phase (e.g. clay) are calculated to subtract the element concentration 

associated with the clay phase from the original biogenic signal using the following 

equation: 

Mecorr = Memeasured – (Almeasured * Me/Alclay)    (1) 

In addition, we can account for uneven element distribution within the ostracod 

valve. Heterogeneity in the ostracod valve is displayed in the time-resolved 

element/calcium ratios by higher or lower Me/Ca ratios compared to the original 

biogenic signal, which is constant below the Ca peak. These were excluded from the 

calculation of the biogenic signal. A detailed description of the application of FT-

TRA to ostracod valve chemistry is in preparation (Börner et al.). 

 

3.4 Results 

3.4.1 Hydrochemistry 

The sampled sites show large variation in their chemical water properties 

(Appendix, Table 2). Electrical conductivity ranges between 0.14 mS/cm and 12.8 

mS/cm, pH ranges from 6.8 up to 10.7, and water temperature from 4.8°C to 23°C. 

The most prominent anion in most waterbodies is HCO3
-
, except in Chen Co and 

Yamzho Yumco, which are dominated by SO4
2-

 (Fig. 2b). Samples from Tangra 

Yumco contain nearly equal amounts of HCO3
- 
and

 
SO4

2-
.
 
Most dominant cations are 

Na
+
 and K

+
, except for Npen Co, NamCo inflow and the ponds, where Ca

2+
 is more 

abundant (Fig. 2a), and Taro Co with equal amounts of Na
+
+K

+
 and Ca

2+
 and nearly 
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void of Mg
2+

. Our dataset did not include waterbodies dominated by Cl
-
 or Mg

2+
. The 

ionic composition seems mainly affected by the geological setting of the waterbodies. 

The calcite saturation index was positive for most of the waterbodies suggesting 

calcite saturation (Appendix, Table 2). The lakes Chen Co, Nam Co, Npen Co, 

Yamzho Yumco and two Taro Co and one Tangra Yumco inflow show negative CSI 

(-0,1 to -2,6) indicating calcite dissolution. Most waters evolve along the calcium-

carbonate and Mg-Ca carbonate trajectories. Highest Ca
2+

 content was found in some 

of the studied rivers (up to 119.75 meq/l), and highest Mg²
+
 content was measured in 

Tangra Yumco (29 meq/l). The molar Mg/Ca ratios of the waters span a wide range 

from 0.0001 to 75.64. River and spring waters show the overall lowest ratios (<0.5) 

followed by Npen Co and Taro Co lake waters with 0.65 and <1.0, respectively. 

Highest Mg/Ca ratios occur in Tangra Yumco, with values up to 75 in 2009, but in the 

following sampling years molar Mg/Ca ratios reached a maximum of 23. Figure 3c 

shows the relationship between Mg/CaH2O and TDS (r²=0.60) and reflect the calcium 

depletion trend in the sampled waterbodies. Sr/Ca ratios range from 0.0006 to 

0.02135, but are not regionally separable like the Mg/Ca ratios. Sr/Ca ratios show no 

correlation to TDS (Fig. 3d). 

The δ
18

O and δD values range from -18.8 ‰ to -0.35 ‰ and -145.75 ‰to -65.13 

‰, respectively, and are significantly positively correlated (r²=0.96; Fig. 4a) as 

expected. All lake samples are located on a local evaporation line below the Global 

Meteoric Water Line (GMWL) indicating closed basins mainly affected by 

evaporation. The δ
18

O and δD values are -6.58 ‰ and -76.8 ‰ for Tangra Yumco and 

-5.72 ‰ and -69.3 ‰ for Taro Co, respectively, and are different to spring, pond and 

river waters, which are characterized by very low δ
18

O (-18 ‰) and δD (-138 ‰) 

values plotting on the GMWL. These very low isotopic values are caused mainly by 

influx of high-altitude precipitation and also by glacial meltwater. The δ
18

O values of 

the lagoon samples are even more distant from the GMWL as they are more exposed 

to evaporation due to their shallow water depth and limited mixing with the main 

water body. In addition, the δ
18

O values correlate with TDS (r²=0.44, Fig. 3a) 

reflecting the effect of evaporation on both δ
18

O and salinity. The carbon isotope 

composition shows several distinct features. Overall δ
13

CDIC values range between -

11.86 ‰ and 5.78 ‰ vs. VPDB. The carbon isotope values show no correlation to 

measured δ
18

O and TDS , but two clusters (Fig. 3b, 4b). Lake water samples are 

characterized by positive δ
13

CDIC values and thus enrichment in 
13

C, whereas 

catchment waters (river and springs) show more depleted and negative values. The 

δ
13

CDIC between different lakes differs slightly with values of 5.0 ‰ at Tangra 

Yumco, 3.4 ‰ at Xuru Co and 2.4 ‰ at Taro Co. In addition, δ
13

CDIC show a slight 

decrease from surface water to bottom water of approximately 2‰. 

 

3.4.2 Geochemistry of ostracod valves 

 
Stable isotope data are available for three species: Limnocythere inopinata, 

Leucocytherella sinensis and Tonnacypris gyirongensis (Fig. 5). In general, δ
18

Ovalve 

and δ
13

Cvalve values show variation between species and sites. δ
18

Ovalve values range 

from -16.5 ‰ to -3.99 ‰ and δ
13

Cvalve values range from -4.51 ‰ to 4.23 ‰. L. 

inopinata and L. sinensis belong to the family Limnocytheridae and show similar 

isotope patterns with values ranging from -9 ‰ to -4 ‰ for δ
18

Ovalve and 0.5 ‰ to 3.2 

‰ for δ
13

Cvalve, respectively. In contrast, δ
18

O and δ
13

C values of T. gyirongensis, 

belonging to the family Cyprididae, show clearly more negative values ranging from -

16.5 ‰ to -13.3 ‰ for δ
18

Ovalve and -4.5 ‰ to 4.2 ‰ for δ
13

Cvalve. δ
18

Ovalve and 



 
143 

δ
13

Cvalve values of all species correlate positively with the respective isotope value of 

the ambient water (Fig. 5a,b). A correlation between δ
18

Ovalve and δ
13

Cvalve could not 

be observed, as samples cluster into two groups, one group formed by L. sinensis and 

L. inopinata, the other by T. gyirongensis (Fig. 5c). Stable carbon and oxygen isotope 

values of all analyzed species show an offset from calculated values for inorganic 

calcite. Ostracod valves show a negative offset of -7 ‰ to -17 ‰ in 
18

O compared to 

inorganic calcite, except L. sinensis valves from the rivers and springs, showing just a 

slight negative offset (-2 ‰ to 0.2 ‰) (Fig. 5b). Ostracod δ
13

Cvalve show a positive 

offset from inorganic calcite in the catchment waters (rivers, ponds, lagoons, springs) 

and a negative offset when originating from lakes. A significant relationship of 

δ
18

Ovalve to temperature could not be observed, but it is influenced by TDS (r²=0.45). 

Molar Mg/Ca ratios of all analyzed samples span a wide range, 0.0012 – 0.032 

in T. gyirongensis, 0.0056 – 0.0846 in ?L. dorsotuberosa, 0.0175 – 0.052 in L. 

inopinata and 0.0015 – 0.0415 in L. sinensis. The Mg/Ca ratio shows a significant 

correlation to TDS (r²=0.4 for L. sinensis up to r²=0.9 for T. gyirongensis) and a 

modest correlation to the Mg/Ca ratio of host water (Fig. 7a; r²=0.2 for L. sinensis up 

to r²=0.6 for T. gyirongensis). The observed molar Sr/Cavalve ratios span a total range 

of 0.00023 – 0.0126: 0.00023 – 0.0024 in T. gyirongensis, 0.00098 – 0.0037 in ?L. 

dorsotuberosa, 0.0009 – 0.0017 in L. inopinata, and 0.00051 – 0.0126 in L. sinensis. 

However, no significant correlation to TDS could be found and only a weak 

relationship of Sr/Cavalve values to the Sr/Ca of the host waters could be detected (Fig. 

7b; r²=0.2). Ba/Cavalve ratios range from 0.018×10
-3

 to 0.00058 and correlate with 

Mg/Cavalve and the Ba/Ca content of the ambient water. Molar Fe/Ca ratios in modern 

valves range from 0.05×10
-6

 to 0.0038. The Mn/Cavalve values are significantly higher 

than Fe/Cavalve, ranging from 0.024×10
-3

 to 0.0048. The U/Ca ratios are between 

0.13×10
-9

 and 0.015×10
-3

. Mn/Ca, Fe/Ca, and U/Ca show strong positive correlations 

among each other within each respective species and are negatively correlated to 

δ
13

CDIC (Fig. 8). The observed patterns are displayed in the principal component 

analysis (PCA, Fig. 6). Trace element ratios in ostracod valves cluster in two groups. 

One group is mainly affected by the TDS and, to a lesser extent, the Mg/Ca ratio of 

the host water. This group consists of the ostracods Mg/Ca, Sr/Ca and Ba/Ca ratios 

and is accompanied by the ostracods δ
18

O content. In the second group all redox 

sensitive trace elements (Fe/Ca, Mn/Ca and U/Ca) cluster together and are influenced 

by δ
13

CDIC and O2. All available data on stable isotope and trace element composition 

in ostracods from southern Tibet is summarized in Table 3 (Appendix). 

 

3.5 Discussion 

Our comparison of the trace element and stable isotope composition of ostracod 

valves sampled from natural lacustrine environments on the southern Tibetan Plateau 

is based on single sampling occasions because of the size and remoteness of the study 

area, and we were thus not able to monitor the evolution in water chemistry through 

time. Hence a direct measurement of the exact hydrochemical properties at the time of 

calcification was not possible. Uncertainty may arise as water chemistry may have 

evolved between the time of valve calcification and sampling caused by changes in 

temperature, precipitation and evaporation. Nevertheless, the observed water 

properties show distinctive variation and are well suited to investigate their influence 

on the chemical composition of ostracod valves. 
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3.5.1 Stable isotopes in ostracod valves 

The carbon isotopic composition of ostracod valves represents the δ
13

C 

signature of the dissolved inorganic carbon (DIC) at the time of valve calcification, 

which provides information about carbon sources and productivity (Mischke et al., 

2010a; Decrouy et al., 2011b; Pérez et al., 2013). Processes that affect the carbon 

isotopic composition include the exchange of CO2 with the atmosphere, groundwater 

inflow, changes in pH, photosynthesis, organic matter decay, and bacterial activity, 

for example. For our samples we observed just a weak correlation between δ
13

Cvalve 

and δ
13

CDIC (Fig. 5a), but all values scatter around the predicted values for inorganic 

calcite, probably depending on the amount of organic matter decay at the sediment-

water interface during valve formation. A relationship between δ
13

Cvalve and δ
18

Ovalve 

was not observed (Fig. 5c). The δ
13

Cvalve values from different sites also vary just 

slightly, with ostracod valves from Tangra Yumco and Taro Co being slightly 

enriched in 
13

C compared to valves from rivers. High δ
13

Cvalve in ostracods from lakes 

reflect high DIC carbon isotope values of lake waters, which are most likely caused 

by high primary productivity, especially in habitats with high abundance of 

Potamogeton such as in Taro Co. Tangra Yumco and Taro Co are stratified lakes and 

due to limited mixing of the water column we could observe decreasing δ
13

CDIC from 

the surface waters to the bottom waters, which may add to the observed scatter in 

δ
13

Cvalve. In their catchment waters, where DIC carbon isotope values are lower than 

in the lakes, attesting to lower primary productivity, ostracods show the most negative 

δ
13

Cvalve values. High primary productivity increases surface water δ
13

CDIC, but at the 

sediment-water interface, where ostracods live, organic matter decay leads to 

depletion in 
13

C. In addition, the constant supply of freshwater or groundwater may 

shift the δ
13

C signal toward lighter values. Rivers are in addition affected by 

meltwater runoff, characterized by low δ
13

CDIC.  

The carbon isotope fractionation during ostracod valve formation is out of 

equilibrium with δ
13

CDIC, and observed differences between δ
13

CDIC and δ
13

Cvalve 

(Δ
13

C = δ
13

Cvalve - δ
13

CDIC) are highly variable. Carbon isotope values of ostracods 

from lakes are generally lower compared to δ
13

CDIC (L. inopinata: -3.5 ± 0.9 ‰; L. 

sinensis: -2.29 ± 0.97 ‰) and show a negative offset compared to inorganic calcite (L. 

inopinata: -4 ‰; L. sinensis: -3 ‰). Ostracods from catchment waters show higher 

δ
13

Cvalve values (L. sinensis: +4.8 ± 0.9 ‰) compared to inorganic calcite and δ
13

CDIC. 

This variation of Δ
13

C is most likely caused by shifts in δ
13

CDIC between the time of 

valve calcification and sampling. Ostracod valves molted earlier in the year when 

primary productivity in the lakes was lower than during sampling time. This may also 

explain why the carbon isotope composition of L. sinensis valves from the catchment 

waters show nearly the same values as in the lakes, although the measured δ
13

CDIC is 5 

‰ to 10 ‰ lower in the rivers.  

Another factor causing this apparent disequilibrium may be that some of the 

studied ostracods molt in the sediment and may be influenced by the δ
13

C signature of 

the pore waters. von Grafenstein et al. (1999) found that δ
13

C in valves of ostracods 

molting in interstitial waters are expected to be lower than the measured δ
13

CDIC 

caused by organic matter decay. δ
13

CDIC in pore waters is also expected to show high 

variability within a basin due to differences in sediment composition, groundwater 

discharge, primary productivity, and organic matter decay (Marco-Barba et al., 2012), 

which may explain the scatter of δ
13

Cvalve in the studied basins. In our study L. 

inopinata, showing a high negative offset in δ
13

Cvalve, penetrates deep into the 

sediment and is therefore also influenced by the δ
13

C of the pore waters. The overall 
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lowest δ
13

Cvalve values were observed for T. gyirongensis, living in shallow river 

waters. Based on our results, we also suggest that T. gyirongensis molts at the 

sediment-water interface or even within the sediment, as their negative δ
13

Cvalve 

suggests an influence by 
13

C-depleted interstitial water. 

Factors influencing the oxygen isotopic composition in ostracods are water 

temperature as well as the isotopic composition of the host water. In closed basin 

lakes the δ
18

OH2O is mainly controlled by isotopic changes in precipitation resulting 

from air temperature variations (Von Grafenstein et al., 1992; Schwalb et al., 1994; 

Schwalb et al., 2002b). In addition, meltwater or groundwater input influence the 

δ
18

OH2O (Lewis and Anderson, 1992; Cohen et al., 2000). In our study, a weak 

correlation between δ
18

Ovalve and temperature is only given in samples originating 

from rivers, springs or ponds. Ostracod valves from lakes show a wide range of δ
18

O 

values (-4‰ to -7‰) at nearly the same temperatures (12.9 - 13.8°C) as available 

δ
18

O data for specimens living in the lakes all originate from the upper 20 m. Deeper 

and thus colder parts (minimum 2°C) of the lakes yielded not enough living 

specimens for isotopic analysis. In addition, water temperatures of shallow water 

bodies or lake surface water are highly variable, thus we are uncertain about the 

temperature at the time of valve formation. 

The observed δ
18

Ovalve values correlate with the respective δ
18

O values of the 

ambient water (Fig. 5b) and also with TDS (Fig. 6). Increasing salinity results in 

increased δ
18

OH2O and more 
18

O is consequently incorporated into ostracod valves. 

The degree to which this relationship is affected by temperature, however, could not 

be resolved in this study. The oxygen isotope composition in ostracod valves is 

apparently out of equilibrium as they generally incorporate less 
18

O compared to 

inorganic calcite. In culture experiments a species-specific vital offset was reported to 

be constant relative to the equilibrium value of inorganic calcite (Keatings et al., 

2002), but the offset may become more variable in stressful environmental conditions 

(Marco-Barba et al., 2012). In our study, the oxygen isotope values of ostracods are 

clustered into three groups (Fig. 5b). The first group are ostracods from the lakes, 

which are high in TDS and have highest δ
18

OH2O, show also the highest δ
18

Ovalve with 

an offset of -11 ‰ from inorganic calcite formed in equilibrium. The second cluster 

shows an offset nearly as high (-8 ‰) and consists of T. gyirongensis from the 

catchment waters. The lowest offset from equilibrium calcite (-1 ‰) is shown by L. 

sinensis living in the catchment waters, forming the third cluster. The overall low 

oxygen isotope values in the rivers are caused by influx of meltwater as well as high-

altitude, continental precipitation, which is characterized by low δ
18

O values. Oxygen 

isotope values for waters and ostracods from brackish lakes reflect the evaporative 

enrichment in 
18

O. The high negative offset of ostracod δ
18

O from equilibrium calcite, 

especially in the lake waters is caused by the time lag between the calcification and 

collection of the ostracods. Most of our samples were collected during the end of 

summer, a period characterized by high evaporation. Our ostracod species calcify 

from late spring during the summer, which coincides with the monsoon season (end of 

June until end of August), bringing precipitation to the southern Tibetan Plateau. In 

the lakes, the observed very negative offset of L. sinensis and L. inopinata δ
18

Ovalve 

from equilibrium calcite is due to valve formation taking place during the monsoon 

season, when the host waters had lower oxygen isotope values compared to the time 

of ostracod sampling, when evaporative enrichment already increased δ
18

OH2O. The 

δ
18

Ovalve of T. gyirongensis from river habitats show also a high offset from 

equilibrium calcite, indicating that the δ
18

Ovalve is influenced by the negative δ
18

O 

signatures of meltwater runoff. Thus, we propose that T. gyirongensis molts in spring 
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with the onset of spring runoff. Hence, our results confirm that the life cycle of the 

studied ostracod species is adapted to the monsoon season. Thus, habitat 

characteristics and seasonal history can be identified by the comparison of ostracode 

and host water isotope signals. Low δ
18

Ovalve and the very negative δ
18

O values of 

river and spring waters reflect stable systems with groundwater inflow that are 

unaffected by evaporative enrichment. High δ
18

Ovalve in ostracods from lakes with 

brackish water conditions and higher δ
18

OH2O values indicate evaporative enrichment. 

The difference between δ
18

OH2O and δ
18

Ovalve (Δ
18

O = δ
18

Ovalve - δ
18

OH2O) shows 

the same pattern as already observed for δ
13

C values. Ostracod valves are enriched in 
18

O compared to δ
18

OH2O. In waters most depleted in 
18

O, corresponding to small 

waterbodies and rivers, Δ
18

O for L. sinensis is 10 times higher than for ostracods 

living in waters with higher δ
18

O values. Variable disequilibrium effects for ostracods 

were also reported by Marco-Barba et al. (2012) and Chivas et al. (2002) for ostracods 

living in stressful hydrochemical environments. For example, Marco-Barba et al. 

(2012) reported a large decrease in Δ
18

O (Δ = δ
18

Ovalve - δ
18

OH2O) at high TDS (> 50 

g/l). In all our samples TDS is below 8 g/l, and thus far below the reported values by 

these authors (72 g/l), but our results also show the lowest Δ
18

O in the most saline 

samples from Tangra Yumco. Nevertheless, the most critical factor is the time lag 

between the calcification and collection of the ostracods, thus we are not able to test  

 

3.5.2 Elemental ratios in ostracod valves 

 
The Mg/Ca ratios have been widely used as indicator for temperature (Chivas et 

al., 1986a; Holmes et al., 1992; De Deckker et al., 1999b) and salinity changes 

(Engstrom and Nelson, 1991; Van der Meeren et al., 2011) as the Mg incorporation 

into ostracod valves is considered to be a function of temperature and the Mg/Ca 

content of the host waters. Especially in marine environments, where Mg/Ca is 

constant over time, changes in water temperature can be reconstructed using Mg/Ca in 

ostracods. In continental waters Mg/Ca is highly variable due to, for example, mineral 

dissolution, carbonate precipitation, and evaporation. Thus, the effect of Mg/Ca of the 

water on the Mg-incorporation in ostracod calcite is much larger, exceeding the 

temperature-dependence (De Deckker et al., 1999b). Strontium incorporation has been 

found to be a direct function of the Sr/Ca content of the host water but independent of 

temperature (Wansard et al., 1998b; De Deckker et al., 1999b; Ito and Forester, 

2009a). A strong relationship between salinity and Mg/Ca as well as Sr/Ca ratios in 

ostracod valves has been shown in numerous studies, but this relationship depends 

strongly on solute evolution pathways (Wansard et al., 1998b; Ito et al., 2003b; Ito 

and Forester, 2009a). Mischke et al. (2008a) reported that the Mg/Cavalve and 

Sr/Cavalve ratios in ostracods from the northern Tibetan Plateau reflect changes in the 

precipitation to evaporation balance and water source, as they were related to the 

respective Mg/Ca and Sr/Ca content of the host water as well as to salinity, but all 

studied lakes were located on the bicarbonate enrichment trend. Most of the lakes in 

our study also follow the bicarbonate enrichment trend with the exception of Chen Co 

and Taro Co, following a Ca-enrichment trend.  

In our study, the molar Mg/Ca ratios of ostracods show no significant 

correlation to measured water temperature. There seems to be an effect of Mg/CaH2O 

on Mg/Cavalve (Fig. 7), although the values show a large scatter. The effect of 

changing Mg/CaH2O on the Mg/Cavalve may also exceed the effect of temperature, as 

suggested by De Deckker et al. (1999b) and thus mask a possible temperature 
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relationship. In addition, the lack of covariance between Mg/Cavalve and temperature is 

likely caused by shifts in water temperature and solute evolution between the time of 

valve calcification and sampling. A significant relationship between Mg/Cavalve and 

TDS just exists for ?L. dorsotuberosa and T. gyirongensis. During evaporative 

enrichment, the increase of Mg/CaH2O in the lakes on the bicarbonate enrichment 

trend is higher than the increase in salinity, because calcite precipitation removes Ca, 

whereas Mg concentrations increase due to evaporation. A correlation of Mg/CaH2O 

and salinity is true for most of our study sites, except for Tangra Yumco (Fig. 3c), 

which may explain why L. sinensis and L. inopinata show just a weak to moderate 

correlation between Mg/Cavalve and TDS. In addition, we observe a significant 

correlation between Mg/Cavalve and the Mg
2+

 content of the host water. Thus, for our 

study area it is possible to use the ostracod Mg/Ca ratio to infer changes in solute 

evolution and TDS. The large scatter we observe may again be due to the time lag 

between ostracod calcification and sampling, so that the hydrochemical properties of 

the host waters have evolved during this time. In addition, it has been shown by 

several authors that ostracods calcifying in stressful environments show higher 

variation in their Mg/Ca content. In culture experiments De Deckker et al. (1999b) 

found that ostracods living in waters with high Mg/Ca (>30) are not able to control 

their Mg incorporation sufficiently resulting in higher variation of Mg/Cavalve. In our 

samples the Mg/Ca ratios of the host water have values up to 76 and as low as 0.0001, 

which may indicate stressful conditions and explain the large scatter at both ends of 

the range. Especially the high scatter in Mg/Cavalve from Tangra Yumco may be 

explained by insufficient control of Mg-uptake, as molar Mg/CaH2O ratios reach up to 

75. The correlation between Sr/Cavalve and the respective Sr/CaH2O and TDS (salinity) 

is very weak (Fig. 7). A salinity-dependence of Sr/Cavalve was described by many 

authors (Engstrom and Nelson, 1991; Holmes et al., 1992; Cohen et al., 2000), but the 

authors stated also that this signal can be biased by aragonite precipitation in the lake 

waters. Aragonite is a carbonate mineral which takes up Sr into its structure and 

removes Sr and also Ca from the water, thus controlling the Sr-bioavailability 

(Engstrom and Nelson, 1991). Today, aragonite forms in Tangra Yumco, whereas in 

Nam Co and Taro Co calcite is the dominant carbonate. For the other lakes the type of 

carbonate mineral is unidentified. For example, the Sr/Cavalve ratios of L. sinensis 

from Tangra Yumco show low values (< 0.002) and little scatter. Further insight into 

carbonate mineralogy is needed for all study sites in order to establish a correlation 

usable for quantitative reconstructions. A negative correlation is observed between 

Sr/Cavalve and water temperature for L. sinensis and ?L. dorsotuberosa. The 

incorporation of Sr into ostracod calcite, however, is not temperature dependent, the 

observed relationship actually emphasizes the correlation between Sr/Cavalve and 

Sr/CaH2O, as in our dataset cold lake waters show higher Sr/Ca and shallow waters, 

which are warmer, have lower Sr/Ca. 

Our data also shows a covariance between Sr- and Mg-incorporation into 

ostracod valves. Precipitation rate and Mg content of calcite may exert a strong effect 

on the Sr incorporation, biasing the relationship between Sr/Cavalve and Sr/CaH2O, 

which was first shown by Mucci and Morse (1983) for inorganic calcite, but also by 

Xia et al. (1997b) for ostracods. This is also true for Ba/Cavalve. Kitano et al. (1971) 

reported an increase in Ba-coprecipitation with increasing Mg/Cavalve for inorganic 

calcite. This is in agreement with our observations, as both, Ba/Cavalve as well as 

Sr/Cavalve, are influenced by the Mg content of the ostracod calcite. Molar Ba/Cavalve 

ratios correlate just slightly with the respective Ba/Ca ratios in the host waters and 

show a wide scatter. A relationship of Ba/Cavalve to either TDS or temperature has not 
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been observed for any of the studied species. 

Very few studies exist that address the potential of iron, manganese and uranium 

in ostracod valves as paleoenvironmental proxy (Gasse et al., 1987; Holmes, 1997; 

Ricketts et al., 2001). The authors relate increasing element concentrations to low 

oxygen waters and thus increased uptake of iron, manganese and uranium into the 

ostracod valve. The cycling of Fe, Mn and U is mainly controlled by the redox 

conditions, hence oxygenation, of the host water. In well oxygenized waters all 

elements are insoluble, either complexed or adsorbed on mineral surfaces. Ionic forms 

occur in oxygen-deficient waters (low redox potential) and become then available for 

incorporation in ostracod valves. A correlation between Fe/Cavalve and Mn/Cavalve and 

the respective Fe/Ca and Mn/Ca content of the ambient water was not observed. This 

may be explained by valve calcification taking place several weeks prior to sampling, 

which is also suggested by the very negative δ
18

O values. Thus, the Mn and Fe 

concentrations of the host waters at the time of sampling were not the same as at the 

time of valve formation. During all sampling periods we never encountered anoxic 

conditions, and the oxygen concentration ranged from 1.98 mg/l to 12.6 mg/l for all 

sites, thus a correlation between redox sensitive element concentration and 

oxygenation was not expected. Interestingly, the Fe/Cavalve, Mn/Cavalve and U/Cavalve 

ratios are all positively correlated to each other (Fig. 6), suggesting the same 

mechanism controlling the Fe, Mn and U incorporation into the ostracod valves. Also, 

ostracod valves from both peat sites, where reducing conditions at least temporarily 

exist and which feature the lowest observed O2 concentrations (1.98 mg/l) serve as 

test for elemental behavior under low oxygen conditions. They display some of the 

highest ratios for Mn/Ca, Fe/Ca and U/Ca. Compared to δ
13

CDIC values, all three 

elemental ratios show an increasing trend with decreasing δ
13

CDIC (Fig. 8). As 

suggested by Holmes (1997), this may reflect better availability of Fe, Mn and U ions 

during phases of carbon input from organic matter decay, which leads to reducing 

conditions. The only exceptions are valves of L. inopinata showing a positive 

correlation between Fe, Mn, U and δ
13

CDIC, but this may be an artifact as the δ
13

CDIC 

range of waters, where living L. inopinata were found, is relatively narrow compared 

to the other species. 

 

3.6 Conclusion 
 

This is the first study to assess how valve chemistry of ostracods from the 

southern Tibetan Plateau is influenced by regional changes in host water 

hydrochemistry. Results from the four most abundant ostracod taxa show that the life 

cycle is synchronized to the wet season. The seasonal history of the lakes can be 

identified by the offset of ostracod isotope values from inorganic calcite precipitating 

in equilibrium. The scatter we observe in our dataset and the negative oxygen isotope 

values of ostracods suggest that the valves were formed in fresher water during the 

monsoon season in early summer when precipitation and meltwater (low δ
18

O) are 

most abundant, in contrast to our sampling period when evaporative enrichment 

caused an increase of the isotopic composition. The time lag between ostracod valve 

formation and collection is reflected by the large negative offset of δ
18

O from 

equilibrium calcite values. The key findings are summarised as: 

(1) There is a positive correlation between δ
18

Ovalve and δ
18

OH2O, as well as TDS, 

underlining that δ
18

Ovalve is a valuable indicator for changes in salinity. 

(2) The correlation between δ
13

Cvalve and δ
13

CDIC is weak but reflects changes in primary 

productivity and organic matter decay. The observed scatter of δ
13

Cvalve close to 
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predicted values for inorganic calcite, indicates different intensities of organic matter 

decay at the sediment-water interface during valve formation. An influence of pore 

water δ
13

CDIC, which shifts the δ
13

Cvalve to more negative values, is given for L. 

inopinata and maybe also for T. gyirongensis. 

(3) In our dataset all stable isotope values and trace element ratios in ostracod valves are 

independent of temperature. Absence of a possible relationship between temperature 

and ostracod δ
18

Ovalve and Mg/Cavalve is most likely caused by changing water 

temperatures between the time of ostracod sampling and valve formation, and the 

effect of Mg/CaH2O on the Mg/Cavalve may exceed a possible temperature effect. 

Hence, using the current data, Mg/Cavalve as well as δ
18

Ovalve are not suited to 

reconstruct variations in temperatures. 

(4) Mg/Cavalve is primarily a function of the Mg/Ca content of the host water, except at 

high TDS, where ostracods are not able to control their Mg incorporation sufficiently 

as shown by high scatter. Mg/CaH2O correlates with salinity, reflecting the dominant 

solute evolution in Tibetan lakes towards bicarbonate enrichment. Thus, for our study 

area, the ostracod Mg/Ca ratio can be used to quantitatively reconstruct salinity 

changes and infer changes in precipitation-evaporation balance and lake level. 

(5) Sr/Cavalve is weakly correlated to Sr/CaH2O and to host water conductivity. The 

presence of aragonite precipitation, as occurring in Tangra Yumco, biases the effects 

of Sr/CaH2O or salinity on the Sr/Ca incorporation in ostracod valves, because 

bioavailable Sr
2+

 is removed from the host water. Thus, without information about 

carbonate mineralogy Sr/Ca can only be used as qualitative proxy reflecting changes 

in P/E and salinity. 

(6) Ba/Cavalve and Sr/Cavalve correlate with Mg/Cavalve, suggesting that the incorporation of 

Ba and Sr is strongly influenced by the Mg content of the ostracod calcite. 

(7) The cross-correlations of Fe/Ca, Mn/Ca and U/Ca ratios and their negative correlation 

to the carbon isotopic composition of the host waters underlines their potential to infer 

changes in redox conditions and oxygenation cycles. Organic matter decay leads to 

oxygen depletion and decreasing δ
13

CDIC, which increases the bioavailability of redox 

sensitive ions, such as Fe, Mn and U. More work, however, is required to understand 

the mechanisms controlling the uptake of Fe, Mn and U into ostracod valves. 
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Figure Caption 

 
 

Fig. 1 Map of the Southern Tibetan Plateau with position of sampled lake systems: 1 

Taro Co, 2 Tangqung Co, 3 Tangra Yumco, 4 Monco Bunnyi, 5 Xuru Co, 6 Nam Co, 

7 Npen Co, 8 Yamzho Yumco and 9 Chen Co. 
 

 

Fig. 2 Ternary Diagrams of the cation and anion composition of all studied locations. 
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Fig. 3 Stable isotopes (δ
18

O, δ
13

CDIC) and trace element ratios (Mg/Ca and Sr/Ca) vs. TDS. 
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Fig. 4 Isotopic composition of studied lake systems. (a) δ

18
O vs. δD (‰ vs. VSMOW) 

including Global Meteoric Water Line (GMWL; (Craig, 1961) and local evaporation line. (b) 

δ
13

CDIC (‰ vs. VPDB) vs. δ
18

O (‰ vs. VSMOW), solid line represents Tangra Yumco 

(TYC), dashed line represents Taro Co (TRC) and dotted line represents Xuru Co (XC). 

 

 

 

Fig. 5 Carbon and oxygen isotope values in ostracod valves and ambient waters: (a) 

δ
13

Cvalve vs. δ
13

CDIC; (b) δ
18

Ovalve vs. δ
18

OH2O; (c) δ
18

Ovalve vs. δ
13

Cvalve Solid line 

represent calculated fit for inorganic calcite from measured δ
13

CDIC at 15°C and 

δ
18

OH2O and temperature of the host water, respectively. 
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Fig. 6 PCA results for stable isotopes and trace elements in ostracods and host waters. 



 
160 

 

Fig. 7 Plot of Mg/Ca and Sr/Ca ratios in ostracod valves and ambient waters: (a) 

Mg/Cavalve vs. Mg/CaH2O; (b) Sr/Cavalve vs. Sr/CaH2O (gray symbols: values affected by 

aragonite precipitation). 
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Fig 8 Crossplots of Fe/Ca, Mn/Ca and U/Ca vs. δ
13

CDIC for L. sinensis, T. 

gyirongensis and L. inopinata. (a) Fe/Cavalve vs. δ
13

CDIC; (b) Mn/Cavalve vs. δ
13

CDIC; 

(c) U/Cavalve vs. δ
13

CDIC. Solid line represents linear regression calculated for L. 

sinensis, dotted line represents linear regression calculated for T. gyirongensis. 
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Table 1 Information on the studied lakes. 
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Table 2 Chemistry of the lake waters. Abbreviations are as follow: Lake systems are CC = Chen Co, MB = Monco Bunnyi, NAM = Nam Co, 

NPC = Npen Co, TAN = Tangra Yumco lake system, TQS = Tangqung Co, TRC = Taro Co lake system, TTL = small spring fed lake above the 

shore of Tangra Yumco, XC = Xuru Co, YY = Yamzho Yumco. Habitat types are LK = lake, LG = lagoon, P = pond, PT = peat, R = river, S = 

spring. 

Site code EC T pH O2 HCO3
-
 Ca Mg K Na Fe Mn Ba Sr Cl

-
 SO4

2-
 δ

18
O δD δ

13
CDIC Mg/Ca Mn/Ca Fe/Ca Sr/Ca Ba/Ca 

 mS/cm °C  mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l [‰, VSMOW] [‰, VSMOW] [‰, VPDB] x 10-3 x 10-3 x 10-3 x 10-3 x 10-3 

CC-LK1 1.33 

 

8.5 5.6 72 58.2 47.4 12.3 110.1 0.0260 0.0000 

  
26.7 547.2 

   
1.459 

 

0.343 

  
MB-LG 1.35 23.0 9.3 6.6 1190 13.7 96.5 31.2 185.0 0.0000 0.0000 

 

0.128 28.7 367.4 -6.72 -95.81 -0.26 12.616 

 

0.643 4.120 

 

NAM-LK1 1.82 

 

6.8 3.55 463 9.1 78.3 36.8 249.5 0.0000 0.0000 

  
67.7 213.0 

   
15.398 

    
NAM-LK2 1.82 

 

6.8 3.55 463 9.1 78.3 36.8 249.5 0.0000 0.0000 

  
67.7 213.0 

   
15.398 

 

0.586 2.775 

 

NAM-R 0.14 

 

8.8 7.44 94 18.7 2.9 0.7 8.8 0.3200 0.0050 

  
11.9 14.6 

   
0.274 0.0044 0.353 5.808 0.0028 

NPC-LK1 0.32 

 

8.1 8.34 103 35.4 12.4 3.8 23.2 0.0270 0.0450 

 

0.201 5.6 22.0 

   
0.627 

  
2.835 

 

NPC-LK2 0.32 

 

8.7 5.9 189 34.3 12.4 4.1 26.5 

   
0.199 5.6 22.1 

   
0.647 

 

0.467 2.791 

 

NPC-LK3 0.32 

 

8.6 10.11 110 34.5 12.3 3.9 23.8 0.0210 

  

0.197 5.6 22.0 

   

0.639 

  

2.835 

 

NPC-LK4 0.32 

 

8.7 5.9 189 34.3 12.4 4.1 26.5 

   
0.199 5.6 22.1 

   
0.647 0.0018 0.128 0.604 0.0025 

TAN-LG1 0.17 14.1 9.4 4.78 110 1297 5.4 1.9 177.0 0.2166 0.0029 0.0106 1.604 1.4 7.4 -18.51 -139.67 -3.71 0.007 0.0075 0.474 11.116 0.0040 

TAN-LG2 0.17 14.1 9.4 4.78 110 1297 5.4 1.9 177.0 0.2166 0.0029 0.0106 1.604 1.4 7.4 -18.51 -139.67 -3.71 0.007 0.0090 0.284 5.315 0.0230 

TAN-LG3 0.14 11.9 9.5 6.29 85 161.5 15.6 6.6 180.4 0.0549 0.0017 0.0075 4.566 4.9 12.9 -18.80 -140.57 -1.72 0.173 0.0082 0.261 13.817 0.0146 

TAN-LG4 0.14 11.9 9.5 6.29 85 161.5 15.6 6.6 180.4 0.0549 0.0017 0.0075 4.566 4.9 12.9 -18.80 -140.57 -1.72 0.173 0.0031 0.107 4.551 0.0009 

TAN-LK1 12.56 

 

8.4 12.24 1509 8.2 326.0 249.0 2985.0 

   
0.036 4.9 

    
70.860 0.0090 0.284 5.315 0.0230 

TAN-LK2 12.77 

 

10.2 10.34 943 8.2 308.0 250.0 2853.0 

   
0.035 4.9 

    
67.192 0.0044 0.353 5.808 0.0028 

TAN-LK3 12.60 

 

8.7 10.82 1435 8.2 314.0 302.0 2890.0 

   
0.036 5.0 

    
68.585 

  
2.083 

 

TAN-LK4 12.62 

 

9.1 12.6 1239 8.2 348.0 322.0 3107.0 

   
0.036 4.9 

    
75.642 

  
2.145 

 

TAN-LK5 12.77 

 

10.2 10.34 943 8.2 308.0 250.0 2853.0 

   
0.035 4.9 

    
67.192 

  
2.135 
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TAN-LK6 11.94 12.9 9.9 4.05 2379 225.8 183.0 185.6 2316.0 0.0370 0.0020 0.0043 4.799 900 2300.0 -6.65 -77.58 4.23 1.452 0.0668 5.509 6.185 0.0529 

TAN-LK7 11.88 13.2 9.7 3.57 2757 136.5 188.2 193.1 2253.0 0.0633 0.0031 0.0054 3.283 975 1850.0 -6.61 -76.66 3.68 2.469 0.0044 0.353 5.808 0.0028 

TAN-LK8 11.9 13.2 9.8 3.9 2440 69.3 241.6 223.8 2337.0 0.0257 0.0008 0.0051 0.754 1200 1928.0 -6.65 -76.72 5.78 6.243 0.0044 0.353 5.808 0.0028 

TAN-LK9 11.96 13.4 9.6 4.26 2379 22.0 280.2 267.4 2908.0 0.1327 0.0057 0.0053 0.305 1280 2050.0 -6.58 -76.40 5.67 22.822 

  
2.083 

 

TAN-LK10 11.89 13.6 9.6 3.5 2440 57.6 176.6 191.1 2217.0 0.0314 0.0014 0.0024 0.557 1060 1980.0 -6.41 -76.71 5.07 5.489 

  
2.145 

 

TAN-LK11 11.9 13.1 9.6 4.75 2501 406.3 175.4 189.8 1905.0 0.2510 0.0039 0.0052 9.242 1240 2000.0 -6.37 -75.33 

 

0.773 

  
2.135 

 

TAN-LK12 11.9 13.2 9.8 3.9 2440 69.3 241.6 223.8 2337.0 0.0257 0.0008 0.0051 0.754 1200 1928.0 -6.65 -76.72 5.78 6.243 

  
2.083 

 

TAN-LK13 11.87 13.6 9.6 3.2 2440 22.6 243.1 218.8 2331.0 0.0616 0.0012 0.0055 0.318 1270 2180.0 -6.71 -78.26 4.46 19.283 0.0177 0.356 11.754 0.0123 

TAN-LK14 11.88 13.5 9.6 3.54 2440 33.4 193.0 215.1 2177.0 0.2392 0.0028 0.0057 0.422 1100 1890.0 -6.66 -76.79 5.67 10.365 0.0090 0.284 5.315 0.0230 

TAN-LK15 11.85 13.3 9.7 3.89 2501 435.5 196.9 195.5 2130.0 0.2004 0.0024 0.0039 5.176 1000 2000.0 -6.57 -77.15 

 

0.810 0.2044 4.635 6.785 0.0757 

TAN-LK16 11.85 13.3 9.7 3.89 2501 435.5 196.9 195.5 2130.0 0.2004 0.0024 0.0039 5.176 1000 2000.0 -6.57 -77.15 

 

0.810 0.0384 0.586 5.324 0.0251 

TAN-R1 0.18 

 

9 4.57 177 31.8 5.9 5.8 12.0 0.1070 0.0100 

 

0.083 1.5 25.6 

   
0.331 0.2459 2.584 1.276 

 

TAN-R2 0.16 13.7 9.7 4.2 98 122.0 11.4 5.4 166.7 0.0583 0.0026 0.0393 3.130 2.7 9.5 -18.55 -139.67 -3.02 0.167 0.0763 0.961 5.650 0.2858 

TAN-R3 0.14 11.9 9.5 6.29 85 161.5 15.6 6.6 180.4 0.0549 0.0017 0.0075 4.566 4.9 12.9 -18.80 -140.57 -1.72 0.173 0.0433 2.095 6.880 0.0760 

TAN-R4 0.14 11.4 9.6 6.78 79 1717 221.5 223.4 2392.0 0.2391 0.0068 0.0048 15.990 0.8 5.0 -18.77 -140.22 -3.40 0.231 0.0668 5.509 6.185 0.0529 

TAN-R5 0.14 11.9 9.5 6.29 85 161.5 15.6 6.6 180.4 0.0549 0.0017 0.0075 4.566 4.9 12.9 -18.80 -140.57 -1.72 0.173 

  
2.083 

 

TAN-R6 0.14 11.4 9.6 6.78 79 1717 221.5 223.4 2392.0 0.2391 0.0068 0.0048 15.990 0.8 5.0 -18.77 -140.22 -3.40 0.231 0.0082 0.261 13.817 0.0146 

TAN-R7 0.16 13.7 9.7 4.2 98 122.0 11.4 5.4 166.7 0.0583 0.0026 0.0393 3.130 2.7 9.5 -18.55 -139.67 -3.02 0.167 0.0031 0.107 4.551 0.0009 

TAN-R8 0.16 13.7 9.7 4.2 98 122.0 11.4 5.4 166.7 0.0583 0.0026 0.0393 3.130 2.7 9.5 -18.55 -139.67 -3.02 0.167 0.0166 0.367 12.538 0.1002 

TAN-R9 0.16 13.7 9.7 4.2 98 122.0 11.4 5.4 166.7 0.0583 0.0026 0.0393 3.130 2.7 9.5 -18.55 -139.67 -3.02 0.167 0.0166 0.367 12.538 0.1002 

TAN-R10 0.16 13.7 9.7 4.2 98 122.0 11.4 5.4 166.7 0.0583 0.0026 0.0393 3.130 2.7 9.5 -18.55 -139.67 -3.02 0.167 0.0166 0.367 12.538 0.1002 

TAN-R11 0.28 15.6 9 5.36 122 61.7 6.8 4.0 161.4 0.0772 0.0060 0.0566 0.713 3.0 43.0 -18.23 -140.32 -5.91 0.196 0.0891 3.985 6.373 0.1330 

TQC-R 1.14 16.8 9.2 2.2 561 117.6 31.8 18.4 263.5 0.0216 0.0037 0.0170 2.831 30.0 100.0 -17.82 -142.76 

 

0.484 0.0384 0.586 5.324 0.0251 
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TQC-S 0.89 8.2 10.1 2.9 512 124.6 18.6 2.0 164.4 0.0349 0.0033 0.0360 0.768 6.0 27.0 -17.10 -126.95 1.01 0.267 0.0891 3.985 6.373 0.1330 

TRC-LG 0.24 16.6 9.4 2.99 85 89.7 8.6 0.0 158.5 0.0684 0.0044 0.0072 0.977 2.7 46.0 -18.24 -137.17 -4.80 0.171 

 

8.645 

  
TRC-LK1 0.98 13.1 10.1 3.64 372 102.7 29.9 22.1 280.3 0.1448 0.0038 0.0167 3.397 90.0 59.0 -5.91 -70.69 3.08 0.522 0.0025 0.048 6.731 0.0100 

TRC-LK2 0.98 12.6 9.1 4.27 421 305.5 15.9 8.2 248.7 0.0193 0.0010 0.0098 4.208 70.0 60.0 -5.94 -70.15 2.52 0.093 0.0025 0.048 6.731 0.0100 

TRC-LK3 0.98 12.6 9.1 4.27 421 305.5 15.9 8.2 248.7 0.0193 0.0010 0.0098 4.208 70.0 60.0 -5.94 -70.15 2.52 0.093 0.0133 0.284 5.678 0.0203 

TRC-LK4 0.99 7.2 9.1 5.52 415 239.0 13.3 7.4 236.9 0.0885 0.0041 0.0156 2.777 76.0 63.0 -5.74 -68.21 2.35 0.100 0.0034 0.181 6.236 0.0103 

TRC-LK5 0.99 5.2 9.5 5.51 409 366.5 27.8 12.0 295.5 0.0862 0.0016 0.0121 4.677 78.0 61.0 -5.45 -68.29 2.17 0.136 0.0688 4.151 18.635 0.3131 

TRC-LK6 0.99 4.8 9.3 4.05 427 25.5 14.7 10.1 277.8 0.1377 0.0022 0.0256 0.972 78.0 61.0 -5.53 -68.24 2.10 1.034 0.0034 0.181 6.236 0.0103 

TRC-LK7 0.99 5.2 9.5 5.51 409 366.5 27.8 12.0 295.5 0.0862 0.0016 0.0121 4.677 78.0 61.0 -5.45 -68.29 2.17 0.136 0.0034 0.181 6.236 0.0103 

TRC-LK8 0.99 5.2 9.5 5.51 409 366.5 27.8 12.0 295.5 0.0862 0.0016 0.0121 4.677 78.0 61.0 -5.45 -68.29 2.17 0.136 0.0365 1.610 12.611 0.0394 

TRC-LK9 0.98 13 9.6 5.3 397 51.2 15.0 9.3 271.3 0.1074 0.0024 0.0065 1.322 78.0 60.0 -5.75 -70.11 2.50 0.525 0.0413 2.451 21.350 0.2005 

TRC-LK10 0.99 7.2 9.1 5.52 415 239.0 13.3 7.4 236.9 0.0885 0.0041 0.0156 2.777 76.0 63.0 -5.74 -68.21 2.35 0.100 0.0413 2.451 21.350 0.2005 

TRC-P1 0.30 20.5 10.7 6.4 98 29.6 20.7 16.3 332.1 0.0943 0.0016 0.0190 1.291 3.0 63.0 -16.69 -136.36 -10.01 1.254 0.0133 0.284 5.678 0.0203 

TRC-PT1 0.49 8.6 9.9 1.98 329 52.0 6.3 0.0 154.0 0.1208 0.0123 0.0184 0.774 3.0 1.5 -16.92 -139.76 -8.59 0.217 0.0082 0.261 13.817 0.0146 

TRC-PT2 0.49 8.6 9.9 1.98 329 52.0 6.3 0.0 154.0 0.1208 0.0123 0.0184 0.774 3.0 1.5 -16.92 -139.76 -8.59 0.217 0.0166 0.367 12.538 0.1002 

TRC-R1 0.23 18.3 9.5 3.38 92 58.2 6.1 0.0 167.0 0.0943 0.0077 0.0081 0.677 

  
-17.82 -135.34 -4.83 0.188 0.0166 0.367 12.538 0.1002 

TRC-R2 0.24 16.7 9.4 3.64 92 2395 17.3 2.9 164.9 0.0891 0.0186 0.0253 19.490 2.4 46.0 -17.81 -135.22 -5.27 0.013 0.0031 0.107 4.551 0.0009 

TRC-R3 0.24 15 9.7 4.18 98 22.6 3.9 0.0 151.7 0.1172 0.0026 0.0096 0.295 2.4 45.0 -17.94 -136.57 -5.09 0.312 0.0011 0.025 4.564 0.0033 

TRC-R4 0.24 15 9.7 4.18 98 22.6 3.9 0.0 151.7 0.1172 0.0026 0.0096 0.295 2.4 45.0 -17.94 -136.57 -5.09 0.312 

    
TTL-LK 0.34 14.8 8.9 

 

159 352.0 14.5 6.0 159.8 0.0820 0.0004 0.0071 4.087 6.0 42.0 -16.33 -138.89 -6.24 0.074 0.2044 4.635 6.785 0.0757 

TTL-S 0.42 11 7 3.2 201 276.2 24.6 5.9 329.0 0.0731 0.0026 0.0079 3.199 3.5 55.0 -17.52 -145.75 -4.80 0.159 0.1842 1.784 7.275 0.1100 

XC-LG1 3.83 15.6 9.4 6.03 793 21.7 28.1 76.5 857.0 0.0000 0.0000 

 

0.546 614 395.5 -4.22 -78.50 3.34 2.319 

  
14.063 

 

XC-LG2 5.61 15.3 9.7 5.67 1617 47.8 9.6 31.6 1277.0 0.0400 0.0000 

 

0.403 1165 495.7 -0.35 -65.13 -11.86 0.359 
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XC-LK 4.22 8 9 6.03 952 18.0 29.0 81.5 932.0 0.0000 0.0000 

 

0.518 679 422.1 -3.21 -70.83 3.38 2.886 

    
XC-P 0.98 13.5 

 

7.75 9638 1589 18.9 17.1 315.6 0.0519 0.0022 0.0170 14.840 103 125.0 -16.33 -131.56 2.12 0.021 0.0166 0.367 12.538 0.1002 

YY-LK1 2.15 

 

9 4.72 113 35.4 26.2 2.5 13.4 0.0000 0.0000 

       
1.324 

  
4.566 

 

YY-LK2 0.83 13.8 9 4.26 342 11.1 108.6 18.7 174.1 0.0000 0.0000 

  
69.2 564.3 

   
17.456 

    
YY-P 0.58 

 

8.7 6.67 95 47.1 0.0 28.5 

 

0.5300 7.7690 

  
0.1 0.1 

   
0.000 

  
2.135 
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Table 3 Trace element ratios and stable isotope values of Recent ostracods from the 

southern Tibetan Plateau (Abbreviations see table 4). 

Site code 

Mg/Ca 

x 10-3 

Sr/Ca 

x 10-3 

Ba/Ca 

x 10-3 

Mn/Ca 

x 10-3 

Fe/Ca 

x 10-3 

U/Ca 

x 10-6 

δ13C 

[‰, VPDB] 

δ18O 

[‰, VPDB] 

Sample date 

Leucocythere dorsotuberosa  

CC-LK1 5.7720 3.4685 0.0458 1.4039 0.3620 0.0199 

  

13/09/2008 

TAN-LK1 27.0503 1.0578 0.2271 1.6479 0.0995 0.0373 

  

06/09/2009 

TAN-LK2 63.3101 1.6304 0.2761 2.5905 0.2753 0.3639 

  

06/09/2009 

TAN-LK3 54.3207 0.9759 0.2101 0.8389 0.1180 0.1147 

  

07/09/2009 

TAN-LK4 44.6204 1.3067 0.1984 0.7076 0.0302 0.0046 

  

07/09/2009 

TAN-LK5 80.3596 1.4065 0.3115 4.1836 0.1013 0.0597 

  

07/09/2009 

TAN-LK12 84.6268 1.3975 0.3067 2.1537 0.0645 0.0778 

  

12/09/2011 

TAN-LK16 60.6227 1.5756 0.2777 3.6862 0.0120 0.0135 

  

12/09/2011 

TRC-LG 41.4968 1.3912 0.2472 0.8875 0.0742 0.0185 

  

25/09/2011 

TRC-LK7 5.5775 3.0078 0.0991 1.4680 0.1558 0.0329 

  

22/09/2011 

TRC-LK10 9.0592 3.3454 0.5728 1.0148 0.1513 0.0708 

  

22/09/2011 

TRC-P1 8.8917 1.9936 0.1621 2.2916 0.0812 0.0069 

  

19/09/2011 

YY-P 7.0763 3.7033 0.0337 1.6497 0.0076 0.0075 

  

11/09/2008 

Limnocythere inopinata  

TAN-LK1 43.7442 1.1672 0.1690 3.2409 0.2688 1.7949 

  

06/09/2009 

TAN-LK2 51.7175 0.8990 0.1552 4.8136 0.4775 0.0559 

  

06/09/2009 

TAN-LK3 18.9642 0.9748 0.1623 0.9236 0.1131 0.0538 

  

07/09/2009 

TAN-LK4 37.1994 1.3677 0.2466 1.8292 0.2185 0.0625 

  

07/09/2009 

TAN-LK5 34.3015 1.6388 0.3073 0.7044 0.1329 0.1351 

  

07/09/2009 

TAN-LK6 17.4920 1.3863 0.2120 0.9157 0.0096 0.0151 1.11 -5.15 13/09/2011 

TAN-LK7 19.1127 1.0473 0.1164 0.3476 0.0516 0.0063 1.93 -4.87 13/09/2011 

TAN-LK8 27.7843 1.1108 0.1544 1.0321 0.0000 0.0013 1.66 -6.16 12/09/2011 

TAN-LK9 21.3497 1.7375 0.3934 1.6840 0.2066 0.0363 1.51 -4.98 13/09/2011 

TAN-LK10 21.7312 1.5381 0.5361 1.1146 3.8491 0.4941 0.91 -7.04 13/09/2011 

TAN-LK11 33.3176 1.3692 0.2309 0.5860 0.1508 0.1040 1.95 -5.09 13/09/2011 

TAN-LK12 26.5407 1.1810 0.1695 0.4735 0.0899 0.0803 

  

12/09/2011 

TAN-LK13 25.9269 1.2825 0.2923 1.9935 0.0294 0.0000 1.46 -5.24 12/09/2011 

TAN-LK14 27.2057 1.2547 0.1696 3.0443 0.0052 0.0096 1.57 -4.98 12/09/2011 

TAN-LK15 37.0845 1.4542 0.2987 1.3192 0.0169 0.0341 1.51 -4.80 12/09/2011 

TAN-LK16 29.8479 1.2009 0.2100 0.7883 0.0118 0.0206 

  

12/09/2011 

TAN-R5 25.1520 1.6851 0.4855 1.0690 0.0050 0.0000 

  

14/09/2011 

TAN-R10 32.5243 1.6100 0.3395 1.6476 1.5615 0.6477 

  

16/09/2011 

TRC-LG 18.9401 1.1011 0.1700 1.5646 0.0843 0.0424 

  

26/09/2011 

Leucocytherella sinensis  
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CC-LK1 3.0594 2.9305 0.0257 0.7260 0.1959 0.0709 

  

13/09/2008 

MB-LG 16.6860 1.4071 0.0703 0.1962 0.1224 2.1187 

  

21/06/2012 

NAM-LK1 10.3902 8.0457 0.1844 0.1542 0.5636 0.9236 0.63 -5.40 24/09/2008 

NAM-LK2 12.3517 10.5514 0.2279 0.0236 0.0116 0.0022 0.54 -5.65 24/09/2008 

NPC-LK1 1.4854 1.2284 0.0455 0.7137 0.0684 0.1196 

  

31/08/2009 

NPC-LK2 1.6832 1.2019 0.0472 0.4082 0.3822 1.4042 

  

31/08/2009 

NPC-LK3 1.4686 1.2278 0.0707 0.5060 0.2279 0.1922 

  

01/09/2009 

NPC-LK4 1.5887 1.1990 0.0566 0.1523 0.0621 0.2449 

  

01/09/2009 

TAN-LG1 8.2953 1.3627 0.1012 1.1262 1.0453 10.9162 1.50 -8.81 12/09/2011 

TAN-LG2 7.4208 0.7352 0.0888 1.5039 0.3252 6.4904 1.76 -7.95 12/09/2011 

TAN-LG3 13.0211 0.7313 0.0800 2.6778 1.3905 7.6689 2.75 -6.50 16/09/2011 

TAN-LG4 4.5998 2.3212 0.0812 0.5938 0.2308 1.1582 1.19 -8.94 16/09/2011 

TAN-LK1 28.8707 0.8696 0.0907 1.7797 0.3071 0.0491 

  

06/09/2009 

TAN-LK2 41.4941 0.7116 0.1019 1.2473 0.0425 0.0305 

  

06/09/2009 

TAN-LK3 9.2465 12.6238 0.2964 0.0844 0.0325 0.0364 

  

07/09/2009 

TAN-LK4 21.5282 0.8460 0.0968 0.2408 0.0547 0.0001 

  

07/09/2009 

TAN-LK5 37.8896 0.8811 0.1176 1.1422 0.1825 0.1936 

  

07/09/2009 

TAN-LK6 31.1288 0.7491 0.0600 0.1662 0.0192 0.0118 2.70 -5.91 13/09/2011 

TAN-LK8 18.2543 0.6288 0.1044 0.7624 0.2488 0.0697 2.99 -4.99 12/09/2011 

TAN-LK9 25.5445 0.8015 0.0952 0.1707 0.0235 0.0100 2.20 -5.40 13/09/2011 

TAN-LK10 32.6401 0.8685 0.1828 0.6367 0.0334 0.0141 3.21 -5.81 13/09/2011 

TAN-LK11 22.3493 0.6520 0.0857 0.3129 0.0037 0.0058 3.00 -4.39 13/09/2011 

TAN-LK12 29.4648 0.7862 0.1316 1.7091 0.5458 0.2631 

  

12/09/2011 

TAN-LK13 31.9933 0.6883 0.0665 0.8450 0.0946 0.0140 1.86 -5.02 12/09/2011 

TAN-LK14 17.4695 0.6346 0.0488 0.7225 0.0388 0.2217 2.57 -6.25 12/09/2011 

TAN-LK15 34.7707 0.8219 0.1089 1.7550 0.0771 0.0112 2.08 -6.45 12/09/2011 

TAN-LK16 28.6752 0.7577 0.1394 0.3228 0.0088 0.0002 

  

12/09/2011 

TAN-R3 12.8397 0.5938 0.0779 3.4540 0.4992 3.6606 2.14 -7.90 12/09/2011 

TAN-R4 18.8730 0.6992 0.1057 1.2495 0.2741 1.4066 2.85 -6.80 12/09/2011 

TAN-R5 21.4027 0.7438 0.0635 0.7369 0.1963 0.6696 2.34 -6.98 14/09/2011 

TAN-R6 13.1717 0.7252 0.1131 0.9595 0.2663 4.6184 1.86 -8.07 16/09/2011 

TAN-R7 16.5027 0.5136 0.0518 3.4950 1.4454 14.7215 1.53 -8.36 16/09/2011 

TAN-R8 40.5183 0.6222 0.1603 1.1005 0.0950 0.1870 2.49 -6.66 16/09/2011 

TAN-R9 13.8707 0.6133 0.0924 2.2574 0.6621 9.7040 2.26 -7.52 16/09/2011 

TAN-R10 25.5840 0.7880 0.1888 0.2878 0.0130 0.0049 1.79 -8.42 16/09/2011 

TQC-R 18.2160 0.8744 0.0738 0.1949 0.2018 0.2679 3.01 -7.19 17/09/2011 

TRC-LG 17.1340 0.7352 0.1419 1.0961 0.1064 0.0796 

  

27/09/2011 

TRC-LK1 3.9693 2.7692 0.0716 0.1460 0.0193 0.0082 

  

20/09/2011 

TRC-LK2 2.8371 2.9745 0.0733 0.2210 0.0505 0.0140 

  

20/09/2011 

TRC-LK3 3.0404 2.7454 0.1737 0.1830 0.0165 0.0160 

  

20/09/2011 
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TRC-LK4 3.4097 2.8927 0.0621 0.5585 0.0338 0.0507 

  

22/09/2011 

TRC-LK5 3.5049 2.3964 0.1056 1.2159 0.0489 0.2938 

  

22/09/2011 

TRC-LK6 3.1240 2.2343 0.0565 1.2316 0.0272 0.0133 

  

22/09/2011 

TRC-LK7 3.9955 2.4980 0.0964 1.1311 0.0433 0.0235 

  

22/09/2011 

TRC-LK8 3.5894 2.5704 0.0902 1.0337 0.0007 0.0064 

  

22/09/2011 

TRC-LK9 2.5874 2.6446 0.1786 0.1106 0.0087 0.0199 1.80 -3.99 22/09/2011 

TRC-LK10 3.1309 2.5714 0.0932 0.5308 0.0641 0.0598 

  

22/09/2011 

TRC-P1 16.7243 1.2991 0.0496 0.5271 0.0383 0.0097 

  

19/09/2011 

TTL-LK 6.6282 9.4677 0.2077 0.1078 0.0533 0.1782 

  

15/09/2011 

XC-LG1 1.5941 3.7535 0.0495 0.0717 0.0243 0.0386 

  

22/06/2012 

XC-LG2 1.9695 2.2821 0.1331 1.0831 0.3970 0.0878 

  

23/06/2012 

XC-LK 39.2747 4.2918 0.2060 0.8460 0.3295 0.4394 

  

24/06/2012 

YY-LK1 10.4062 0.7810 0.0491 0.7229 0.1472 0.0737 

  

14/09/2008 

YY-LK2 12.2479 1.1238 0.0207 0.0346 0.0245 0.0120 1.27 -4.86 14/09/2008 

Tonnycypris gyirongensis  

CC-LK1 4.7683 2.4138 0.0225 1.6386 0.4304 0.3405 

  

13/09/2008 

NAM-R 2.2353 0.6304 0.0209 0.9677 0.0239 0.0117 

  

22/09/2008 

TAN-LG1 2.1350 0.4454 0.2058 0.2527 0.0012 0.0103 

  

12/09/2011 

TAN-LK2 31.8351 0.5286 0.0302 0.7075 0.0645 0.0365 

  

06/09/2009 

TAN-LK16 24.9000 0.5971 0.0491 0.7689 0.0227 0.0064 

  

12/09/2011 

TAN-R1 4.4436 0.5795 0.0916 0.3052 0.0680 2.0861 

  

14/09/2010 

TAN-R2 1.1560 0.4897 0.0378 0.1068 0.0005 0.0005 

  

12/09/2011 

TAN-R4 2.2856 0.4212 0.0325 0.2789 0.0060 0.0127 -0.07 -13.89 12/09/2011 

TAN-R5 3.4750 0.3821 0.0440 0.3935 0.0157 0.0093 -3.32 -14.32 14/09/2011 

TAN-R7 3.3644 0.4230 0.1716 0.2960 0.0005 0.0513 -4.18 -14.35 16/09/2011 

TAN-R10 3.4939 0.4102 0.0294 0.1546 0.0063 0.0219 -4.51 -14.89 16/09/2011 

TAN-R11 2.7035 0.4535 0.0278 1.1769 0.1135 0.0063 

  

18/09/2011 

TQC-S 2.6454 0.2294 0.0852 0.0422 0.0888 0.0090 4.23 -13.34 17/09/2011 

TRC-LG 3.8159 0.5455 0.0255 1.1547 0.0138 0.0059 

  

28/09/2011 

TRC-PT1 4.1205 0.7644 0.5803 0.8751 0.1134 0.0351 

  

25/09/2011 

TRC-PT2 3.0092 0.8320 0.0470 0.7384 0.2141 0.0110 

  

25/09/2011 

TRC-R1 3.1590 0.4210 0.0326 0.6943 0.0387 0.0170 

  

23/09/2011 

TRC-R2 3.7347 0.4084 0.0321 0.8509 0.0092 0.0091 

  

23/09/2011 

TRC-R3 3.5024 0.3902 0.0295 0.6740 0.1009 0.0017 

  

23/09/2011 

TRC-R4 2.2303 0.4383 0.1597 1.6708 0.1560 0.0508 

  

24/09/2011 

TTL-S 1.6848 0.5702 0.0405 0.0671 0.0302 0.0182 

  

15/09/2011 

XC-P 1.4744 0.5555 0.0181 0.3115 0.0001 0.0000 -0.51 -16.49 10/09/2011 

YY-LK1 13.8290 0.7564 0.0353 1.5222 0.5354 0.3450 

  

14/09/2008 

YY-LK2 12.4427 1.1550 0.0220 0.0631 0.0125 0.0039 

  

14/09/2008 

TAN-R2 1.1560 0.4897 0.0378 0.1068 0.0005 0.0005 

  

12/09/2011 
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TAN-R4 2.2856 0.4212 0.0325 0.2789 0.0060 0.0127 -0.07 -13.89 12/09/2011 

TAN-R5 3.4750 0.3821 0.0440 0.3935 0.0157 0.0093 -3.32 -14.32 14/09/2011 

TAN-R7 3.3644 0.4230 0.1716 0.2960 0.0005 0.0513 -4.18 -14.35 16/09/2011 

       TAN-R10 3.4939 0.4102 0.0294 0.1546 0.0063 0.0219 -4.51 -14.89 16/09/2011 

TAN-R11 2.7035 0.4535 0.0278 1.1769 0.1135 0.0063 

  

18/09/2011 

TQC-S 2.6454 0.2294 0.0852 0.0422 0.0888 0.0090 4.23 -13.34 17/09/2011 

TRC-LG 3.8159 0.5455 0.0255 1.1547 0.0138 0.0059 

  

28/09/2011 

TRC-PT1 4.1205 0.7644 0.5803 0.8751 0.1134 0.0351 

  

25/09/2011 

TRC-PT2 3.0092 0.8320 0.0470 0.7384 0.2141 0.0110 

  

25/09/2011 

TRC-R1 3.1590 0.4210 0.0326 0.6943 0.0387 0.0170 

  

23/09/2011 

TRC-R2 3.7347 0.4084 0.0321 0.8509 0.0092 0.0091 

  

23/09/2011 

TRC-R3 3.5024 0.3902 0.0295 0.6740 0.1009 0.0017 

  

23/09/2011 

TRC-R4 2.2303 0.4383 0.1597 1.6708 0.1560 0.0508 

  

24/09/2011 

TTL-S 1.6848 0.5702 0.0405 0.0671 0.0302 0.0182 

  

15/09/2011 

XC-P 1.4744 0.5555 0.0181 0.3115 0.0001 0.0000 -0.51 -16.49 10/09/2011 

YY-LK1 13.8290 0.7564 0.0353 1.5222 0.5354 0.3450 

  

14/09/2008 

YY-LK2 12.4427 1.1550 0.0220 0.0631 0.0125 0.0039 

  

14/09/2008 
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Chapter 5 

 

5.0 Abstract 
 

Late Holocene environmental and climate change in Tangra Yumco was 

inferred from micropalaeontological and sedimentological proxies. The Ostracoda 

identified are: Leucocytherella sinensis, Leucocythere? dorsotuberosa, Limnocythere 

inopinata, Fabaeformiscandona gyirongensis, Candona xizangensis and Candona 

candida. 

The proxy records indicate five environmental phases: (i) wet and cool (3300 – 

2320 cal BP), dominance of the euryhaline L. sinensis indicating the highest lake 

level, lowest salinity and low productivity with high TIC (ii) dry and warm (2300 – 

1760 cal BP), characterised by a more diverse freshwater to mesohaline fauna (L.? 

dorsotuberosa dominant) suggesting lake level and salinity fluctuation and high 

productivity (high TOC) (iii) dry (1740 – 1100 cal BP), lowest ostracod abundance 

indicating falling lake level, very low salinity and lowest productivity (highest TIC); 

(iv) cold and dry (1070 – 440 cal BP), highest salinity (mesohaline to polyhaline), L. 

inopinata predominating, high δ18O and Mg/Ca, lowest lake level, moderate 

productivity and (v) wet and cool (410 cal BP – present day), high abundance of L. 

sinensis indicating a rising lake level, moderate salinity and high productivity. 

The multiple proxies give good evidence of variabilibty in past lake level, 

salinity and productivity in a deep lake on the southern Tibetan Plateau. 

 
 

5.1  Introduction 
 

Recent global environmental and climate change alters the Earth’s environment 

(MacCracken and Perry, 2002; Bisht, 2008; Janetos, 2008). While the Quaternary was 

a period of major environmental and climate change in general (Bradley, 1985; 

Rogers, 1993), the Late Holocene climate is marked by temperature increase and the 

advancement and retreatment of mountain glaciers (Trinkler, 1930; Mann, 2002; 

Bahadur, 2004). High elevation ecosystems are particularly vulnerable to climate 

changes; variation in precipitation may exert great influence on the local climate and 

environment (Nӗmec and Schaake, 1982; Barry, 1992; Yao et al., 2008; Chavez-

Jimenez et al., 2013). Reconstruction of past climate and environmental change is 

critical to identify past climatic variability, to understand present conditions and to 

improve future predictions (e.g., effects of a warming climate on water resources) 

(Lamb, 1969; Bradley, 1985; Bräuning and Mantwill, 2004; Barnett et al., 2005; Duan 

et al., 2006; Bates et al., 2008; Yang et al., 2014a). The Tibetan Plateau (‘The Roof of 

the World’) is highly significant to climate and palaeoenvironmental research 

(Immerzeel et al., 2010; Kang et al., 2010b; Yao et al., 2012b; Favre et al., 2015). 

The Tibetan Plateau (‘The Third Pole Environment’) is known for its high altitude, 

unique landscape and natural geo-ecosystems (Zheng and Li, 1999; Diemberger and 

Diemberger, 2000; Zhang, 2000; Qiu, 2008; Gao et al., 2010; Yao et al., 2012a; Tian 

et al., 2014). It has great influence on the Indian monsoon and global climate 

(Kutzbach et al., 1989; Yanai et al., 1992; Zheng et al., 2000a; Wu et al., 2012). The 
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impact of environmental and climate change on many large continental and saline 

lakes in Central Asia remains unexplored (Lamb, 1995; Mischke and Zhang, 2011). 

Little is known about Late Quaternary lake histories (lake-level, salinity and 

productivity), on the southern Tibetan Plateau. The fluctuation of ancient Tibetan 

lakes (especially in the Indian Monsoon domains) as quantitative measure of monsoon 

precipitation is scarce (Liu et al., 2004). 

Lake systems interact with different processes (e.g., atmosphere, biosphere and 

hydrosphere), recording climate and environmental variables at different scales 

(Battarbee, 2000; Cohen, 2003). Saline lakes are common in arid regions of the world 

(Hammer, 1986; Zheng et al., 1989). They are controlled by tectonic setting and 

climate (Hardie et al., 1978; Zheng, 1997a). Lake level fluctuation can be used as an 

indirect estimate of lake volume balance (Street-Perrott and Roberts, 1983). Lake 

volume is closely related to precipitation and evaporation over the lake surface, lake-

water recharge and discharge of the rivers within the lake basin (Street-Perrott and 

Roberts, 1983; Zhang et al., 2013a). Lakes (especially continental closed lakes) and 

biological remains (e.g., ostracods) in lake sediments and their chemical shell 

composition serve as excellent palaeo-archives of ancient environments and climates 

(Carbonel et al., 1988; De Deckker and Forester, 1988a; Mischke et al., 2005; Zhang 

et al., 2009).  

The palaeoclimate records (monsoon domains) indicate warm-humid early 

Holocene and cold-dry mid-late Holocene conditions (Gasse et al., 1996; Zheng et al., 

2000b; Zhao et al., 2009; Mischke et al., 2010b). Palaeoclimatic reconstructions are 

needed to understand past variability of monsoon and hydrological dynamics, global 

climate warming today and future climate impact on ecosystem changes (Arnell, 

1999; Arnell et al., 2001; Liu et al., 2004; Schneider and Mastrandrea, 2007). 

Palaeoclimate on the Tibetan Plateau has been reconstructed from high-resolution 

proxy data such as ice cores (Grove, 1988; Thompson et al., 1993; Davis and 

Thompson, 2004; Yao et al., 2008), tree rings (Brauning and Mantwill, 2004; Gou et 

al., 2014), lake sediments (Wu et al., 2006; Wünnemann et al., 2006; Mügler et al., 

2009b; Kasper et al., 2012; Doberschütz et al., 2013; Kasper et al., 2013; Bird et al., 

2014; Kasper et al., 2015; Zhu et al., 2015), pollen (Herzschuh et al., 2011; Ma et al., 

2014a; Miehe et al., 2014) and microfossils and their shell chemistry (Mischke et al., 

2002; Zhang et al., 2009; Zhao et al., 2009). 

Ostracods are minute bivalved crustaceans (adult size of 0.5 to 3.0 mm), which are 

commonly known as “seed shrimps” (Griffiths and Holmes, 2000; Holmes, 2001; 

Galassi et al., 2002). The soft body is enclosed in a calcite carapace (Smith, 2001; 

Smith and Delorme, 2010). Ostracods populate marine and non-marine environments 

(e.g., oceans, lagoons, estuaries, rivers, lakes, etc.) and can live even in semi-

terrestrial environments (Danielopol et al., 1986; Holmes and Chivas, 2002; Smith 

and Delorme, 2010). The fossil record of Ostracoda and sister groups, with similar 

hard parts, extends to the early Cambrian and Ordovician period (Horne et al., 2005; 

Martens et al., 2008; Rodriquez-Lazaro and Ruiz-Muñoz, 2012). Ostracods are 

increasingly used environmental reconstructions due to their  long stratigraphic range, 

small size, shell calcification, excellent shell preservation, diversity, ecological 

sensitivity, well-known biology and shell chemistry (Delorme, 1989; Holmes and 

Chivas, 2002; Cronin, 2009; Horne et al., 2012). Their assemblages are can indicate 

aquatic ecosystem dynamics (Schornikov, 2000; Ruiz et al., 2013), macrophyte 

habitats changes (Kiss, 2007), environmental change (Zhu et al., 2002a; Frenzel and 

Boomer, 2005; Ruiz et al., 2005), water temperature (Dwyer et al., 1995; Viehberg, 

2006; Horne, 2007), water depth (Wrozyna et al., 2009b; Frenzel et al., 2010; 
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Mischke et al., 2010c), solute composition of continental waters (Smith, 1993; Curry, 

1999; Schwalb et al., 2002a; Ito and Forester, 2009b) and solute concentration 

(salinity/conductivity) (De Deckker, 1981b; Mischke and Wünnemann, 2006; 

Mischke et al., 2007). Furthermore, ostracods have extensively been used for the 

reconstruction of the environmental and climatic history in high-elevation 

environments (e.,g., Tibetan Plateau) (Mischke, 2012). 

Here, we present the Late Holocene (3, 300 cal BP) environmental and climatic 

variation in Tangra Yumco. The lake situated in the India monsoon climate and the 

third largest brackish lake on the southern Tibetan Plateau. This paper address two 

specific questions: (i) What was the Late Holocene environment of Tangra Yumco? 

(ii) What can we learn about past lake evolution (e.g., monsoon intensity, lake level 

and salinity), palaeo-ecology (e.g., ostracod assemblages and abundance). Multi-

proxy techniques (sedimentology, geochemistry ad micropalaeontology) were 

employed for the palaeoenvironmental reconstruction of Tangra Yumco. We 

hypothesised that the past lake water volume in Tangra Yumco is dependent on Indian 

monsoon climate. This is a new insight into Late Holocene environment and monsoon 

climate variability in central Asia. 

 

5.2  Study area 

5.2.1 Tibetan Plateau 

The Tibetan Plateau (75 － 105
o
 E, 27.5 － 37.5

o 
N, average elevation of 5000 m 

above sea level, total area of 2.5 million km
2
) is the largest and highest plateau of the 

world (Yeshe, 1986; Zheng et al., 2000a; Tuttle and Schaeffer, 2013). It is a hot spot 

for palaeoenvironmental research due to its high altitude, size, environmental 

heterogeneity with different climatic systems (polar air masses from Arctic, 

continental air masses through central Asia (Westerlies), Indian and East Asian 

summer monsoons; Fig. 1) and its climatic teleconnections on a global scale (Hahn 

and Manabe, 1975; Ruddiman and Kutzbach, 1990; Prell and Kutzbach, 1992; Raymo 

and Ruddiman, 1992; Molnar et al., 1993; An, 2000; An et al., 2001; Wang, 2006; 

Molnar et al., 2010; Liu and Dong, 2013). Large amounts of water are stored in the 

form of glaciers, snow fields and lakes (Xu et al., 2008b). The Tibetan Plateau has 

36,800 glaciers, with a total area of 49,873 km
2
, and a total volume of 4561 km

3
 (Yao 

et al., 2007a). There are about 1055 lakes (> 1.0 km
2
) on the Tibetan Plateau 

accounting for 39% and 51% of the total lake number and area, respectively, in China. 

The Tibetan Plateau has a great importance for the water cycle is the source of the ten 

largest Asian river systems (e.g., Mekong, Yangtze, Ganges and Yellow river). This 

provides the freshwater for the maintenance of aquatic ecosystems and for about 1.4 

billion people (Immerzeel et al., 2008). Hence the plateau is often referred to as ‘The 

Water Tower of Asia’ (Bai and Xu, 2004; Lu et al., 2005b; Immerzeel and Bierkens, 

2010a; Chellaney, 2011). 

The Asian monsoon is dominated by precipitation falling in just a few months, 

hence the perennial flow of the rivers largely relies on the constant flux from the 

glaciers on the Tibetan Plateau (Immerzeel, 2008; Immerzeel et al., 2010). Most 

annual precipitation on the Tibetan Plateau (~60-90%) occurs between May and 

October, Indian Summer Monsoon (ISM) (Xu et al., 2008c; Conroy and Overpeck, 

2011). Precipitation decreases from south-east to north-west on the Tibetan Plateau 

(Immerzeel et al., 2005; You et al., 2010; Hudson and Quade, 2013). Shifts in global, 

regional and local climatic regimes (especially precipitation), will affect water supply, 
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river flow and impacting  socio-economic well-being (Barnett et al., 2005; Yao et al., 

2008; Immerzeel et al., 2010; Chellaney, 2011). 
 
 
 

5.2.2 Tangra Yumco 
 

Tangra Yumco (,Ocean Turquoise Lake’, 30°45′ – 31°22′N and 86°23′ – 86°49′E, 

4595 meters above sea level) is located at the northern slope of the Gangdise 

Mountains and about 450 km northwest of Lhasa on the southern Tibetan Plateau 

(Fig. 2). The southern Tibetan Plateau is dominated by Palaeozoic–Mesozoic 

carbonate and clastic sedimentary rocks (Galy and France-Lanord, 1999). Tangra 

Yumco is an endorheic lake formed by active tectonic movement in a north-south 

trending graben (Armijo et al., 1986; Zhu et al., 2004; Kong et al., 2011a). The flank 

of the rift and faults is composed of volcanic rocks, granitoid intrusions and potassic 

lavas (Gao et al., 2007). 

Tangra Yumco (,Lake Dangra’), is known by several names including Dangre-

yum-tso, Dang-ra Yumtsho Lake, Dāngrě Yōngcuò and Tángǔlā Yōngmùcu 

(Bellezza, 1997; Denwood, 2015). It is a famous sacred lake situated about 360 km 

west of Nam Co, the second largest holy salt lake (Hedin, 1913; Bellezza, 1997; 

Diemberger and Diemberger, 2000; Bellezza, 2014). It is the centre of the ancient 

Zhang Zhung Kingdom, a vital cradle of Tibetan civilization (Bellezza, 1997, 2008; 

Denwood, 2015). The region is characterised by rich archaeological sites; e.g. the 

megalithic site Sumbug Doring, several forts (e.g., Gyampai Dzong, Khyung Dzong 

and Ombu Dzong) and the Bon monastery Yubung (Turquoise Mist). (Tulku, 1986; 

Bellezza, 1997) (http://www.tibettravel.org/top-10-lakes). 

The lake has a surface of 818 km
2
 and a drainage area of 8219 km

2
 (Long et al., 

2012). It is the third largest saline lake (salinity of 8.3, conductivity of 10.6 mScm
-1

, 

pH 9.6), the deepest lake (maximum water depth of 230 m) on the Tibetan Plateau 

and the second-deepest lake in China (Zhu et al., 2004; Shao et al., 2008; Wang et al., 

2010b). The lake is S-shaped (Fig. 1) with two sub-basins separated by a narrow strip. 

The northern basin is much deeper (230 m) than the southern one (~100 m). The 

water cation and ionic composition is dominated by K
+
 – Cl

-
 – HCO3

- 
and is depleted 

in Ca
2+ 

(Akita et al., in press). There are numerous rivers and streams, which flow into 

Tangra Yumco. The lake is surrounded by snow-capped mountains (e.g., Targo 

Gegen, ‘Ancient Vulnerable Snow Mountain’) (Bellezza, 1997; Diemberger and 

Diemberger, 2000). The lake-water is recharged mainly by precipitation, streams and 

rivers (e.g., Daguo Tsangpo, Buzhai Tsangpo and Mainongqu) (Diemberger and 

Diemberger, 2000; Shao et al., 2008). Most of the snow (ice) caps are missing today 

due to global warming (Diemberger and Diemberger, 2000). The largest river, Daguo 

Tsangpo, originates from the Gangdise Mountains (Shao et al., 2008). 

The lake is endowed with Holocene beach terraces and palaeo-shorelines 

(maximum 185 m  above the present lake), which record lake level fluctuations 

(Zheng et al., 2000b; Zhu et al., 2004; Long et al., 2012; Liu et al., 2013b; Rades et 

al., 2013b; Ahlborn et al., 2015a). Agricultural settlement (around the sacred 

Mountain, Gangs Lung Lhatse) is recognisable at the south shore of the lake 

(Bellezza, 1996, 1997). The village of Kyisum is one of Tangra Yumco’s major 

agricultural settlements, cultivating barley and turnips (Bellezza, 1996, 1997). 

Tangra Yumco is influenced by the Indian Summer Monsoon (Miehe et al., 2013). 

The mean annual precipitation ranges from 200 to 350 mm (Miehe et al., 2013). The 
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annual mean temperature for January is -11.4
o
C while the mean  

July temperature is 10.9
o
C (Miehe et al., 2013). The lake is covered with ice in 

winter but does not completely freeze in some years (Kropacek et al., 2013). The 

cold-arid climate supports alpine meadow (e.g., Kobresia) and steppe vegetation (e.g., 

Artemisia) (Miehe et al. 2013). 

Tangra Yumco is one of the key sites used for palaeoenvironmental investigations 

within the Sino-German priority research programme TiP “Tibetan Plateau: 

Formation-Climate–Ecosystem” to assess climate history (past, present and future) 

and human impact in this sensitive geo-ecosystem of Central Asia 

(http://www.tip.uni-tuebingen.de/index.php/de/). 

 

 
5.3 Materials and methods 

 

5.3.1 Sediment coring, lithology and chronology 
 

In September 2010, a 162 cm long sediment core (TAN10/4, 30°15′9.54′′N and 

86°43′22.14′′E, Fig. 3) was recovered using a modified ETH gravity corer (Twinch 

and Ashton, 1984; Kelts et al., 1986) from 223 m water depth at the centre of the 

northern basin of Tangra Yumco. 

The sediment core was stored in a dark room with temperature of 4°C at the 

Institute of Geography, University of Jena, Germany. It was split, visually described, 

photographed scanned for magnetic susceptibility, and sampled in 1 cm intervals for 

micropalaeontology, sedimentological and geochemical analyses. Lithology, colour 

and grain size are described in Akita et al. (2015). 

Radiocarbon (
14

C) dating of bulk sediments and a piece of a woody (terrestrial) 

plant was used to establish the chronology of TAN10/4 using accelerator mass 

spectrometry (AMS) at Beta Analytic Inc. (Miami, Florida, USA) (Haberzettl et al., 

2015). The sediment-water-interface was radiocarbon dated to correct for the 

reservoir effect (Haberzettl et al., 2015). The method of dating surface sediments and 

Recent water plants was employed to estimate the carbon-reservoir effect for the 

chronology of lacustrine records (Kasper et al., 2012; Mischke et al., 2013). The 

chronology of the core was event corrected by subtracting the sediment event layers 

(four turbidites and a debrite) (Akita et al., 2015). The online version of the Calib 7.0 

program protocols (Stuiver and Reimer, 1993), employing the IntCal13 data set was 

used for the AMS 
14

C calibrated median age-depth value (thus after reservoir 

correction), which has been expressed as 2σ range (Niu et al., 2013; Reimer et al., 

2013). Ages between the dated samples were interpolated linearly and verified by 

magnetostratigraphy (Haberzettl et al., 2015). 

 

 

5.3.2 Sediment elemental analysis 
 

For the determination of total carbon (TC) and total nitrogen (TN), sediment 

samples were weighed (20 mg each) tungsten oxide was added and placed in tin-

shuttles. Further, aliquot of the sample was treated with hydrochloric acid (30% p. A.) 

to remove carbonates. After washing and centrifuging, the same sample was used in 

the determination of total organic carbon content (TOC). The element concentration 

was measured by element analyser (varioEL cube Elementar Analysensysteme 
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GmbH). Additionally, the TOC/TN ratio (total bound nitrogen) was calculated. 

 

 

5.3.3 Micropalaeontological analysis 
 

The sediment core was sampled at 1 cm intervals for microfossil analysis. Each 

sediment sample was placed in a graduated cylinder with a known volume of water. 

The volume displaced was measured. Sample were washed through 200 µm and 63 

µm mesh sieves, rinsed with deionized water and ethanol (75 %) and dried at room 

temperature (Griffiths and Holmes, 2000). 

Ostracods were separated from the residue using a fine brush wetted with deionised 

water under a binocular microscope with light source. Ostracods were identified to the 

species level using Tibetan Ostracoda taxonomic keys (Hou et al., 2002; Hou and 

Gou, 2007; Wrozyna et al., 2009d).  

The sediment size fraction >200 µm was used for the quantitative analysis of 

microfossils(Griffiths and Holmes, 2000). Adult to juvenile ratio was determined for 

the most common ostracod species, Leucocytherella sinensis. Carapaces and valves 

were separately counted. Complete carapaces are counted as two valves (Danielopol 

et al., 2002; Boomer et al., 2003). The relative abundance (the percentage of species 

within the sample) is used to assess changes within the ostracod fauna (Boomer et al., 

2003). Samples with lower occurrence of valves, a minimum of forty valves for the 

estimation of relative abundance and thirty valves for determination of adult/juvenile 

ratio of L. sinensis, were regrouped by summing up numbers of up to three adjacent 

samples. 

Selected ostracod specimens were photographed using a Scanning Electron 

Microscope. Palaeosalinity was reconstructed using a southern Tibetan ostracod-

based transfer function (Peng et al., 2014). Specific conductivity measurements can be 

used to indicate salinity (De Deckker, 1981a). Hence, specific conductivity 

measurements were converted into salinity by factor of 0.75 (Hölting, 1992). Salinity 

is classified based on the Venice System for classification of brackish waters 

(Symposium, 1958). 

 

5.3.4 Ostracod shell chemistry 
 

Adult ostracod valves were picked from sediment intervals with sufficient fossil 

material for chemical analyses. Shell chemistry analyses were performed by selection 

of well-preserved valves, for the two most frequent ostracods, Leucocytherella 

sinensis (predominate in older sediment, 1065 – 444 cal BP, 129 – 88 cm) and 

Limnocythere inopinata (dominate in younger sediment, 3300 – 2320 cal BP, 29 – 13 

cm). 

The shells were photographed prior to cleaning (removal of contamination, loosely 

attached detritus, organic matter and any other mineral on the skeleton). They were 

cleaned by soaking (bleaching) in 2.5% sodium hypochlorite (NaOCl), for 15 minutes 

to 24 hours. The shells are rinsed with de-ionized water to remove any traces of the 

bleach, followed by rinsing in ethanol (99%), and then dried. Sodium hypochlorite is 

an effective oxidizing agent for removal of organic matter on carbonate shells 

(Durazzi, 1977; Gaffey and Bronnimann, 1993; Ito, 2001; Keatings et al., 2006). To 

obtain enough carbonate for single isotopic analyses, cleaned valves of L. sinensis (8 

– 9 valves per sample) and L. inopinata (20 – 28 valves per sample) were used. 

There exist missing data in the intervals, even where L. inopinata was abundant 



  

 
193 

due to loss of shells in sample preparation (cleaning of valves). The valves of L. 

inopinata dissolved when soaked in sodium hypochlorite (NaOCl) for 24 hours. The 

cleaning time of L. inopinata in NaOCl was adjusted to less than 20 minutes.  

The stable isotope (δ
18

O, δ
13

C) and trace element (Mg/Ca and Sr/Ca) analyses were 

sequentially performed on the same ostracod valves (Xia et al., 1997a). 

 

5.3.5 Ostracod isotopic measurement 
 

The calcium carbonate (CaCO3) of ostracod valves (carbonate sample) reacted with 

105% phosphoric acid (H3PO4) (99.998% ultra-pure P2O5) at 70°C (McCrea, 1950; 

Craig, 1957; Coplen et al., 1983). This results in a conversion of carbonate to carbon 

dioxide (CO2) (McCrea, 1950; Craig, 1957; Coplen et al., 1983). Isotopic 

fractionation occurs since only two oxygens out of three in CaCO3 are converted to 

CO2 (Emi Ito personal communication). Furthermore, this allows simultaneous 

analysis of both δ
18

O and δ
13

C from the same sample (Craig, 1957; Coplen et al., 

1983). 

The ‘working standard’ was Carrara Marble, very pure limestone, with δ
18

O = - 

1.96‰ and δ
13

C = + 1.96‰ (http://www.geo.umn.edu/orgs/sil/instrumentation.html). 

The National Bureau of Standards (NBS) reference is used to obtain precise isotopic 

values and relations between sets of data from various different laboratories (Craig, 

1957). The international standard references materials used for the analysis are: (i) 

carbon; NIST NBS-18 and NBS-19 LSVEC and (ii) Oxygen; NBS-18 and NBS-19. 

The δ values of (δ
18

O and δ
13

C) are the mean values of replicate runs. The analytical 

precision is 0.1‰. The stable isotopes were measured with a Finnigan MAT 252 mass 

spectrometer connected to Kiel-II device at the Stable Isotope Laboratory, 

Department of Earth Sciences, University of Minnesota, United States of America. 

The stable isotopic composition of oxygen and carbon in the analysed sample is 

expressed as the “delta notation” or “delta values” (δ) (e.g., δ
18

O and δ
13

C), (equation 

1). This is defined as the difference in isotopic ratios, the abundance of isotopes in the 

sample, relative to an international standard (Sulzman, 2007; Thornton and Burdette, 

2013). The δ value is calculated as (Craig, 1957): 

 

δ
 
(in ‰) = (Rx/RS-1) x 1,000 ……….. Equation (1) 

Where R = the ratio of the heavy to light isotope (e.g.,
 18

O/
16

O, 
13

C/
12

C, rare-to- 

abundant) 

Rx = the ratio in the sample 

Rs = the ratio in the isotope standard 

 

 

 

 

5.3.6 Ostracod trace element determination 
 

The acid-residue from ostracod isotopic analysis (same samples) was used for 

cation analysis (Chivas et al., 1985; Chivas et al., 1986b; Chivas et al., 1993)). The 

acid-residue from each sample was diluted 200-fold for element determination (Ca, 

Mg, Sr) (Yu et al., 2002) by the Thermo Scientific iCAP 6500 duo view Inductive-

Coupled Plasma Optical Emission Spectrometer (ICP-OES) at the Aqueous 

Geochemistry Laboratory, Department of Earth Sciences, University of Minnesota, 

United States of America. The trace element concentrations are expressed as molar 

http://www.geo.umn.edu/orgs/sil/instrumentation.html
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ratios relative to calcium (Mg/Ca and Sr/Ca). The analytical precision is 2%. 
 

5.3.7 Statistical analysis 

 
The ostracod-based zonation was obtained by constrained hierarchical clustering 

using PAST (Hammer et al., 2001). To determined ostracod variability in time, both 

species richness and diversity were employed. 

Species richness is number of species present in a given sample, community or 

taxonomic group (Magurran, 2004). Species diversity (an index of species richness, 

e.g., ‘Shannon Diversity’) is a measure of the diversity within an ecological 

community (Magurran, 2004). The species diversity (relative abundance of individual 

species in a community) is influenced by species richness and species evenness 

(Magurran, 2004). Natural logarithms, In (x+1), was used to record the abundance of 

ostracods (Townend, 2002). 

 

 

Shannon Diversity Index (abundance ratios of taxa) was calculated (Shannon and 

Weaver, 1949; Hill, 1973; Spellerberg and Fedor, 2003; Chiarucci et al., 2011), as: 

H = - Σ (ni / N) log (ni / N)  

where  

H = Shannon–Wiener’s index of species diversity in individuals 

ni = Number of individuals of ith species 

N = Total number of individuals 

 

5.3.8 Ostracod-based conductivity transfer function 
 

In order to apply an ostracod-based conductivity transfer function (inference 

model), a calibration (modern training) set consisting of ostracod taxon data 

(expressed in relative abundance) and their contemporary environmental data was 

used (Birks et al., 2010; Juggins and Birks, 2012). The modern training data set 

comprises seventy five surface sediment samples collected from thirty four brackish 

lakes, distributed from west to east on the Tibetan Plateau, covering a conductivity 

range of 0.25 to 200 mS/cm (Peng et al., 2014). 

Ostracod data was log10 (x+1) transformed (Townend, 2002). The measured 

conductivity values were log-transformed as well to meet the assumption of normality 

(Zar, 2010). Weighted averaging partial least squares (WA-PLS) (based on concept of 

niche-environmental space partitioning and ecological optimum of indicator species) 

was applied to the full-dataset (nine ostracod taxon, seven environmental data) to 

produce a calibration – conductivity transfer for estimating past lake-water salinity 

(ter braak and Juggins, 1993; ter braak, 1995). With this calibration function, the 

parameters for m species are estimated from the modern training set for the 

environmental variable of interest and consequently used to reconstruct the past 

environment from these same m species in the fossil assemblages (ter braak et al., 

1993). The ostracod-based conductivity transfer function was computed using the C2 

software (Juggins, 2003). The performance of the transfer function is: R
2
 = 0.68, 

RMSEP = 0.30 (Peng et al., 2014). 
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5.4 Results 
 

5.4.1 Lithology and chronology 
 

The lithology of core TAN10/4 is composed of fine-laminated (1-5 mm) greyish 

silty clay with intercalated dark brownish to blackish fine sandy layers (Fig. 4) (Akita 

et al., 2015). The normal sedimentation is interrupted by five events layers (four 

layers are originated from turbidity flows and one was formed by a debris flow) 

(Akita et al., 2015). 

The reservoir effect was used for the determination of the reservoir corrected 

chronologies. A carbon-reservoir effect of 2120 (+110/-90) years was determined by 

the age of the sediment (Tab. 1). Only the youngest ages in the stratigraphic order 

were used for the chronology. The age from the bottom of the sediment core, TAN 

10/4 is 3, 300 cal BP (Fig. 5). Magneto stratigraphic analyses confirmed the 

radiocarbon-base chronology (Haberzettl et al., 2015). 

 
 

5.4.2 Ostracod succession 
 

Ostracods were the only microfossil found within the >200 µm size fraction. The 

total ostracod valves counted was 5039. Relying on ostracod distribution, five 

biostratigraphic zones were identified: 129 – 88 cm, 87 – 60 cm, 59 – 30 cm, 29 – 13 

cm and 12 – 0 cm sediment depth. 

The abundance of ostracods varies with depth (Fig. 6). It is higher at bottom (90 

cm – 60 cm) and lower in the upper part (59 cm – 30 cm) (Fig. 6). Mean ostracod 

abundance is 32 valves per ml (excluding sediment redeposition layers). 

Five genera and six species were identified.The ostracod species (order of 

frequency and relative abundance) are: Leucocytherella sinensis Huang, 1982 

(60.6%), Leucocythere? dorsotuberosa Huang, 1982 (18.7%), Limnocythere inopinata 

(Baird, 1843) (15.1%), Fabaeformiscandona gyirongensis (Huang, 1982) (4.7%), 

Candona xizangenesis Huang, 1982 (0.5%) and Candona candida (O.F. Müller, 

1776) (0.2%). 

The different assemblages can be used to characterise specific environmental 

history (Fig. 6). Faunal succession can be found in the oldest to youngest sediment 

depth (Fig. 6): The ostracod species composition and dominant assemblage (average 

relative abundance %) are as follows: 

(i) 129 – 88 cm: L. sinensis, L.? dorsotuberosa and F. gyirongensis. Leucocytherella 

sinensis (87.5%) is the dominant ostracod in the oldest sediment (Fig. 6: stage I). 

High adult to juvenile and carapace to valve ratios of L. sinensis occurs in 121 cm – 

105 cm depth (Fig. 6. stage I). 

(ii) 87 – 60 cm: L.? dorsotuberosa, L. sinensis, L. inopinata, F. gyirongensis, C. 

xizangenesis and C. candida. Leucocythere? dorsotuberosa (51.5%) is the dominant 

species in this depth (Fig. 6. stage II). 

(iii) 59 – 30 cm: very low abundance of ostracods (13.9%) in this depth (Fig. 6. stage 

III). 

(iv) 29 – 13 cm: L. inopinata, L.? dorsotuberosa, L. sinensis and F. gyirongensis. 

Limnocythere inopinata (61.7%) is the dominant species in this depth (stage IV). 

(v) 12 – 0 cm: five ostracod assemblages present; L. sinensis, L. inopinata, L.? 

dorsotuberosa, F. gyirongensis and C. candida. Leucocytherella sinensis (44.1%) 
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predominates the youngest sediment depth (stage V). Limnocythere inopinata (26.6%) 

is the second most abundant ostracod in this depth. 

 

Fabaeformiscandona gyirongensis occurs in relative low proportions throughout 

the core and shows a maximum at 87 – 60 cm. Candona xizangensis appears only at 

87 to 60 cm. Candona candida is rarest species. 

 
 

5.4.3 Ostacod shell oxygen isotopic analysis 
 

The two species, L. sinensis and L. inopinata differ in their carbonate isotopic and 

trace element composition (Fig. 7). Higher δ
18

O values were recorded for L. inopinata 

than for L. sinensis (Fig. 7 – 8). The δ
18

O values for L. sinensis range from -6.05 ‰ 

VPDB to -3.34 ‰ VPDB (mean = -4.51 ‰ VPDB, standard deviation = 0.58) and 

δ
18

O values for L. inopinata are between -4.37 ‰ VPDB and -1.39 (mean = -2.62, 

standard deviation = 1.05) (Fig. 7 – 8). 

High values of δ
13

C occur in the lower part of the core (from 129 to 88 cm depth). 

The measured δ
13

C values are stable above 60 cm depth. The δ
13

C values for L. 

sinensis and L. inopinata from the sediment core differ by 1.5‰ VPDB (vital offset, 

one sample) (Fig. 8). The δ
13

C values for L. sinensis range from 1.74 ‰ VPDB to 

3.51 ‰ VPDB (mean = 2. 89 ‰ VPDB, standard deviation = 0.35) and δ
18

O values 

for L. inopinata are between 0.94 ‰ VPDB and 1.25 ‰ (mean = 1.12, standard 

deviation =0.11) (Fig. 8). 

 

5.4.4 Ostracod shell trace element analysis 
 

Mg/Ca values for L. sinensis range from 0.021 to 0.042 (mean = 0.028, standard 

deviation = 0.005). In constrast, Mg/Ca for L. inopinata ranges between 0.023 and 

0.076 (mean = 0.038, standard deviation = 0.019) (Fig. 7). 

The Sr/Ca ratios are measured for. L. sinensis up to 58 cm core depth (Fig. 7). The 

Sr/Ca ratios for L. sinensis range from 0.610 to 0.779 (mean = 0.648, standard 

deviation = 0.037), wheares Sr/Ca for L. inopinata is between 0.469 and 457.4 (mean 

= 326.9, standard deviation = 222.9). 

The lowest iron/manganese (Fe/Mn) ratio (L. sinensis) occurs in the lower part of 

the core. In contrast, higher values (L. inopinata) are typical for the upper part (Fig. 

7). 

 

5.4.5 Ostracod-based conductivity transfer function: palaeo-salinity 

inferences 
 

An ostracod-based conductivity transfer function is employed to estimate 

palaeosalinity in Tangra Yumco. Tangra Yumco is a mesohaline system today (Akita 

et al., in press). However, salinity fluctuated during the Late Holocene (Fig. 8, Tab. 

2). Five major salinity phases are inferred: I (3300 – 2320 cal BP) – β-oligohaline 

conditions, the euryhaline species, L. sinensis is mainly dominant; II (2300 – 1760 cal 

BP) – β-oligohaline to β-mesohaline conditions, the fresh to brackish water species, 

L.? dorsotuberosa is dominant; III (1740 – 1104 cal BP) – β-oligohaline range, very 

low ostracod abundance; IV (1065 – 444 cal BP) – α-mesohaline range, the more salt-

tolerant species, L. inopinata predominates; V (405 cal BP to present) – α-oligohaline 

to β-mesohaline, L. sinensis prevalence (Fig. 8, Tab. 2). 
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5.5 Reconstruction and discussion 

5.5.1 Lithology and chronology 

The lithology of sediment core TAN 10/4 is characterised by horizontal layers of 

fine sand to medium silt with a thickness from <1 mm to 5 mm (Fig. 4) (Akita et al., 

2015). The undisturbed sediment layers suggest minimal bioturbation and oxygen 

deficiency in the profundal zone within a deep lake. Sediment dynamics affect the 

lake productivity and water column processes (Ahlborn et al., 2015a). 

Radiocarbon dating may provide a high resolution chronology of past events and 

rates of change (Libby et al., 1949). The 
14

C years do not directly measure calendar 

years  due to variation in the production rate of atmospheric 
14

C concentration with 

time (de Vries, 1958; Stuiver and Suess, 1966; Reimer et al., 2009). This is caused by 

geomagnetic and solar modulation of the cosmic-ray flux and the carbon cycle. The 
14

C age-models are calibrated to obtain a precise and accurate chronology based on an 

absolute dated record (Reimer et al., 2013). The 
14

C age-model provides high 

resolution of sediment records with reservoir effect of effect of 2120 (+110/-90) for 

Tangra Yumco (Haberzettl et al., 2015; Wang et al., in press). 

 

 

5.5.2 Sediment element compositions 
 

Sediment element compositions (grain size, K, TOC, TOC/TN, TIC) were 

variable during the Late Holocene(Ahlborn et al., 2015a). Changes in grain size is 

used as indicator of palaeo-water movement and turbulence.The significant  increased 

in grain size occurs only at 1065 – 444 cal BP (cold and the driest phase).The 

sediment element compositions is integrated with ostracod proxies in the Late 

Holocene environment and climatic inferenceof Tangra Yumco (Fig.10 -12). 

 

5.5.3 Ostracoda 

 

There are four endemic Tibetan ostracods (Leucocytherella sinensis, 

Leucocythere? dorsotuberosa, Fabaeformiscandona gyirongensis and Candona 

xizangensis) and two holarctic species (Limnocythere inopinata and Candona 

candida) (Tab. 3). Salt lakes, usually contain low species (richness and diversity) but 

high endemism due to geographical isolation (Lodge, 2001). 

The six species belong to two families (Limnocytherididae and Candonidae). The 

family Limnocytheridae is predominant ostracod fauna found in Tangra Yumco 

(Akita et al., in press). The family dominates lacustrine waters on the Tibetan Plateau 

(Wrozyna et al., 2009d; Mischke, 2012). The family Limnocytheridae is non-marine 

ostracod family with extensive distribution (Danielopol et al., 1989). The 

Leucocythere, Leucocytherella and Limnocythere, limnocytherid fresh to brackish 

water genera, originated from the Mesozoic to Cenozoic lake sediments in China 

(Huang, 1985; Danielopol et al., 1989). The genus Leucocytherella occurs in Pliocene 

to Holocene sediments of the Tibetan Plateau, China (Huang et al., 1982; Huang et 

al., 1985). The surface morphology of Leucocythere and Limnocythere differ only in 

the accessory limbs in the male (Zhu et al., 2007). Both species are adaptable to 

eurysalinity (hypo- to hypersaline) waters (Zhu et al., 2007). Leucocytherella sinensis 

and Leucocythere? dorsotuberosa are the dominant ostracod assemblages, inhabiting 
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large and deep lakes on the southwestern and central Tibetan Plateau (Mischke, 

2012). High abundance of individual taxa may occur under the most favourable 

ecological conditions (Tab. 3). 

Ostracods found are cold stenothermal species except L. inopinata, which is 

adapted to varying temperature (adaptable to cold and warm waters) (Tab. 3) (Meisch, 

2000b; Mischke et al., 2008b). The ostracod assemblages are dominated by 

titanoeuryplastic species tolerating poor calcium but alkaline waters (Meisch, 

2000b). 

The Late-Holocene ostracod fauna, exclusive of (Candona xizangensis, empty 

valves only found in surface sediments),  still exist (living and Recent) in the lake 

system, Tangra Yumco (Akita et al., in press). Candona candida, very rare in the 

sediment core, commonly inhabits temporary fresh waters (pond, rivers) connected to 

Tangra Yumco (Akita et al., in press). Ostracod ecological preference is related to 

environmental variables (e.g., specific conductivity) (Akita et al., in press). The 

ecological requirement of the living and Recent Ostracoda is a powerful tool for 

environmental reconstruction of fossil assemblages (Tab. 3). 

 

 

5.5.4. Ostracoda ecology: critical for palaeoecogical interpretations 

To infer the past environment and climate using the fossil ostracod assemblage in 

the sediment core, it is critical to understand the the habitat ecology of living and 

Recent Ostracoda of Tangra Yumco and other ostracod literature. In the following, we 

discussed, the ecological characteristic of ostracod species found in sediment core, 

(TAN10/4): 
 

Leucocytherella sinensis Huang, 1982 

 

Leucocytherella sinensis is a ubquitous species and the most dominant ostracod 

found in brackish Tibetan lakes (Mischke et al., 2008b; Fürstenberg et al., 2015) 

(Huang, 1982). It can thrive in diverse aquatic habitats (lakes, lagoon-like and 

estuary-like waters, rivers, ponds and springs), with tolerance to varying salinities 

(Akita et al., in press). Leucocytherella sinensis is the most dominant living and 

Recent ostracod in the phytal assemblage of Tangra Yumco (Akita et al., in press). 

Although L. sinensis can live in varied water depth, the abundance decreases with 

increasing depth (Akita et al., in press). Junior synonyms are Limnocytherellina 

bispinosa and Limnocytherellina trisponsa (Huang, 1982; Fürstenberg et al., 2015). 

Leucocytherella sinensis is adapted to waters with a salinity range of 0 – 13. The 

synonym species Limnocytherellina trispinosa tolerates salinity up to 20, although it 

can live in waters with a salinity of 173 (Zheng et al., 1989). In the Tangra Yumco 

area, living L. sinensis were found at a salinity minimum of 0.06 (Akita et al., in 

press). Leucocytherella sinensis is abundant in Ca
2+

 depleted but moderate alkaline 

waters at Tangra Yumco (Akita et al., in press).  

The development of tubercles and spines on the valves of L. sinensis is linked to 

the water chemistry (specific conductivity/ salinity and calcium ions) (Fürstenberg et 

al., 2015). The tubercles and spines occur under low salinity but constant calcium 

concentration of the water (Fürstenberg et al., 2015). 
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Leucocythere? dorsotuberosa Huang, 1982 

 

Leucocythere? dorsotuberosa is a oligorehophilic species, common in fresh and 

brackish waters (Meisch, 2000b; Mischke et al., 2006; Akita et al., in press). It is also 

part of the halophilic (salt tolerant) fauna, but can thrive waters with very low salinity 

as well (Liu et al., 1998; Mischke et al., 2010c). Leucocythere? dorsotuberosa lives in 

waters with conductivity range of 205 to 2209 µS/cm (salinity 0.1 – 1.6) and an 

optimum of 673 µS/cm (0.5) (Mischke et al., 2007). It is an indicator of deep water in 

lakes (Wrozyna et al., 2009b; Frenzel et al., 2010; Peng et al., 2013; Akita et al., in 

press). Leucocythere? dorsotuberosa was found in middle Pleistocene freshwater to 

oligohaline lakes in the Qaidam Basin (Mischke et al., 2006). 

 

Limnocythere inopinata (Baird, 1843) 

 

Limnocythere inopinata is a holarctic species mainly found in Northern Europe and 

Northern America) (Bronshtein, 1988; Meisch, 2000b; Henderson, 2002). But also 

common on the Tibetan Plateau, in western Mongolia and northwestern China (Peng 

et al., 1998; Yu et al., 2009; Zhai et al., 2010a). It is a junior synonm of Limnocythere 

dubiosa (Lister et al., 1991). It is a polythermophic rheoeuryplastic and 

mesohaloplastic species (Meisch, 2000b). Limnocythere inopinata inhabits diverse 

aquatic habitats (e.g., lake, rivers, swamps, pondsand streams etc) in fresh to 

polyhaline waters (Meisch, 2000b; Mischke et al., 2004; Van der Meeren et al., 

2010b). 

Limnocythere inopinata is a widespread ostracod with tolerance to high salinity 

and nutrient waters (Meisch, 2000b; Van der Meeren et al., 2010a). High abundance 

occurs in haline waters (Meisch, 2000b; Mischke, 2012; Van der Meeren et al., 2012). 

Increased proportions of L. inopinata were documented in soft sediment with high 

organic content (detritus), within the shallow zone of Neusiedlersee lake and sheltered 

bays (Jungwirth, 1979). Limnocythere inopinata is a typical component of phytal 

ostracod assemblages, but can also survive in deeper parts of lakes (Carbonel et al., 

1988; Meisch, 2000b; Mischke et al., 2004). 

Living L. inopinata is the predominate species in lagoon-like waters at Tangra 

Yumco, although it has a broad tolerance to specific conductivity, 1. 35 – 12.81 

(salinity range of 0.98 – 9.28) (Akita et al., in press). Limnocythere inopinata lives in 

shallow littoral habitats of European lakes (e.g., Klopeiner, Mondsee and Neusiedler 

(Schiemer et al., 1969; Carbonel et al., 1988; Danielopol et al., 1993; Meisch, 2000b). 

It is also an abundant ostracod in the shallow littoral zone of Tibetan lakes (Sipanguer 

Lake, Zhognai Lake Goulu Lake and) (Zhu et al., 2007). Living Limnocythere 

inopinata belong to the phytal assemblage (84% maximum valves in 0.04 m water 

depth), whereas Living individuals occur more frequent at deeper depth (55% at 223 

m) in Tangra Yumco (Akita et al., in press). Limnocythere inopinata response to 

salinity fluctuation is reflected in morphological variability (Yin et al., 1999; Zhai et 

al., 2010b). Salinity and size both correlated positively to physiological response in L. 

inopinata clones (Geiger et al., 1998; Yin et al., 1999). Female L. inopinata grow 

smaller in length in low salinity waters(Geiger, 1994; Yin et al., 1999). In contrast, 

male of L. inopinata are primary adapted to higher salinities, developing larger valves 

at maximum salinity (Geiger, 1994; Yin et al., 1999). 
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Fabaeformiscandona gyirongensis (Huang, 1982) 

 

Fabaeformiscandona gyirongensis is a typical ostracod fauna of brackish Tibetan 

lakes (Yin and Martens, 1997; Meisch, 2000b). In Tangra Yumco, Recent (living and 

empty shells) specimens were found only in the deep brackish lake itself (Akita et al., 

in press). Here, the conductivity varied between 11.88 – 12.81 mS cm
-1

 (salinity of 

8.61 – 9.28). Empty shells of F. gyirongensis are distributed at all water depth with a 

peak at deeper depth (23% at 223 m) in Tangra Yumco (Akita et al., in press). This 

assemblage displaying a positive correlation with water depth (Akita et al., in press). 

In Tibet, Fabaeformiscandona gyirongensis is found in moderate brackish waters, 

with a conductivity range of 124 µScm
-1

 – 1706 µScm
-1

 (salinity 0.1 – 1.3) and 

optimum of 460 µScm
-1

 (0.3) (Mischke et al., 2007). It is an indicator of permanent 

deep brackish lakes and belongs to the ostracod assemblage of the hypolimnion (Akita 

et al., in press). 

 

Candona xizangensis Huang, 1985 

 

Candona xizangensis is adapted to fresh to oligohaline waters and behaves 

mesorheophilic (Meisch, 2000b). It belongs to the phytal ostracod assemblage and 

deep water species (Huang et al., 1985; Wrozyna et al., 2009d; Akita et al., in press). 

The Recent C. xizangenesis inhabits waters with conductivity range of 0.17 to 12.8 

mS cm
-1

 and water depth of 0 – 20.4 m (Akita et al., in press). Empty shells were also 

found in rivers and estuary-like waters (Akita et al., in press). The species may be 

used as indicator of palaeowater depth (Wrozyna et al., 2009b; Frenzel et al., 2010; 

Peng et al., 2013). 

 

Candona candida (O.F. Müller, 1776) 

 

Candona candida is a Holarctic freshwater species (Meisch, 2000b; Mischke et 

al., 2003a; Karanovic, 2012). It is known as a cold climate ostracod (Carbonel et al., 

1988). Candona candida is characterised as rheoeuryplastic and oligothermophilic 

(Meisch, 2000b). It prefers diverse shallow temporary waterbodies (e.g., ponds, 

rivers, springs, swamp lakes and subterranean habitats) (Meisch, 2000b). However, it  

also exists in permanent waters, peferrably littoral, but survives in low proportions in 

the profundal zone of lakes (Meisch, 2000b). Candona candida is a common benthic 

ostracod which prefers temporary freshwaters and occupies mainly the shallow littoral 

zone of lakes on Tibetan Plateau (Mischke et al., 2003a; Mischke, 2012; Song et al., 

2015). 

Candona candida prefers akaline waters at a pH of 8-10 (Song et al., 2015). But 

C. candida are able to survive in acidic waters as well (pH below 5) (Fryer, 1980). 

Candona candida was found in brackish coastal waters with a salinity up to 5.3 

(lower mesohaline range) (Meisch, 2000b). Candona candida lives in waters with a 

conductivity between 0.14 and 0.91 µScm
-1

 (salinity 0.10 – 0.66) (Akita et al., in 

press). Living C. candida occurs frequently in ponds (maxium in ponds with high 

organic matter, 59 individuals) and rivers (Akita et al., in press). However, empty 

valves of C. candida were found typically in the epilimnion (up to 20 m) and low 

numbers in the hypolimnion (0.2 % shells at 110 m) of Tangra Yumco (Akita et al., in 

press). Candona candida is most abundant in rivers but also in Lake Luahaizi on the 

Tibetan Plateau (Mischke et al., 2003b). An optimum water depth of 16.5 m was 

documented for Lake Donggi Cona (Mischke et al., 2010c). 
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5.5.5 Ostracod fauna succession; palaeoecological implications 
 

The Late Quaternary ostracod associations (composition and abundance) suggest a 

variation in lake level (water-volume), salinity and lake productivity through time 

(Tab. 4). The ostracod associations found can co-occur in the mesohaline lake, Tangra 

Yumco. However, lake salinity influences the dominance of particular species (Tab. 

4) Hammer (1986) observed negative correlation between species richness and 

salinity. Therefore, it is assumed that salinity is an important determinant of the fauna 

of saline lakes (De Deckker, 1981a; Carbonel et al., 1988; Williams et al., 1990; 

Herbst, 2001). Each species has a physiological adaptation to a specified salinity 

range (De Deckker and Geddes, 1980). Fossil ostracod assemblages in the sediment 

core from ~3.300 cal BP suggest a general decrease in monsoon strength causing a 

falling lake-water level and increasing salinity in the Late Holocene. The Late 

Holocene ostracod fauna reveals distinct transitions of lake water-level, salinity and 

productivity with and occasional incursion of freshwater.  
 

5.5.6 Ostracod fauna succession: palaeecological interpretations 
 

Ostracoda (e.g., distribution, abundance, productivity) related to environmental 

variables (e.g., water temperature, salinity, water depth, substrate, water permanence) 

(Griffiths and Holmes, 2000). Species-specific ecological requirements are sensitivity 

indicator of aquatic conditions (Van der Meeren et al., 2010a; Akita et al., in press). 

Identification and quantification of different ostracod assemblages in a sediment 

core is critical to understand of past sediment deposition, aquatic environment and 

climatic conditions. Ostracoda (total assemblages, species richness, diversity, 

dominance and shell chemistry) is excellent biological proxies for 

palaeolimnological and palaeoenvironmental reconstruction. The ostracod 

assemblages found in the sediment core (TAN10/4) are used to characterise 

environmental and climatic conditions in Tangra Yumco during the past 3300 years. 

Optimum ecological factors may favour high abundances of individual ostracod 

species. Species specific ecological niches are: Leucocytherella sinensis (ubiquitous 

fauna), Leucocythere? dorsotuberosa (fresh-brackish water fauna), Limnocythere 

inopinata (fresh to mesohaline species), Fabaeformiscandona gyirongensis (brackish-

lacustrine fauna), Candona xizangensis (phytal littoral brackish lake fauna) and 

Candona candida (freshwater fauna) (Akita et al., in press) (Tab. 3). 
 

 

5.5.7 Ostracod assemblages as palaeoenvironmental indicators 

 

Palaeo-water depth indicators 
 

The low proportion of F. gyirongensis throughout the sediment core is a 

significant environmental condition. Fabaeformiscandona gyirongensis is a typical 

deep-water ostracod, inhabiting -cold hypolimnion zone of Tangra Yumco (Akita et 

al., in press). Although, lake salinity fluctuates with historical geological time (high, 

moderate and low), this assemblage suggests prevalence of a deep brackish lake, 

Tangra Yumco during the Late Quaternary. The maximum abundanceof F. 

gyirongensis at 87 – 60 cm indicates increased palaeo-water depth (Wrozyna et al., 

2009b; Zhu et al., 2009a; Frenzel et al., 2010). Other water-depth ostracod 

assemblages (L. dorsotuberosa, and C. xizangensis) appear together with F. 
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gyirongensis. 

Limnocythere inopinata and L. sinensis are phytal ostracods but adapted to 

different sediment depth (Akita et al., in press).  

Candona Candida is shallow-water ostracod assemblage (Meisch, 2000b; Song et 

al., 2015; Akita et al., in press). 
 

Palaeo-freshwater incursion indicators:  
 

The very low relative abundance C. xizangensis and C. candida (rare species 

found in the sediment core) suggest moderate salinity-water conditions. Candona 

candida and C. xizangensis are adapted to fresh to oligohaline waters (Tab. 2 – 3)  

Candona candida is restricted to cold temporary freshwater waters (Tab. 2 – 3). 

But C. xizangensis is more adapted to fresh and brackish waters. The genus Candona 

is fresh water ostracods. Therefore, their occurrence in sediment may suggest 

freshwater incursion induced by increasing precipitation (strengthening of monsoon). 
 

Ostracod-palaeo-salinity indicators 
 

 

Faunal succession (preserved taxa and individual abundance), are useful for 

reconstruction of different aquatic environments (local- past aquatic habitats) through 

time (De Deckker and Forester, 1988a; Cronin, 2009; Rafferty, 2011). 

The Late – Quaternary ostracod associations (composition and abundance) 

suggest a variation in lake-water volume (level), ionic compositions (salinity) and 

lake productivity through time. The ostracod associations can co – exist in the 

mesohaline of lake Tangra Yumco. However, lake water-salinity (conductivity) 

influences the dominance of particular species. Hammer (1986) observed negative 

correlation between species richness and salinity. Therefore, salinity is assumed to be 

an important determinant of the fauna of saline lakes (De Deckker, 1981a; Carbonel et 

al., 1988; Williams et al., 1990; Herbst, 2001). Salinity affects the species richness 

and diversity of saline lake fauna. Each species has a physiological adaptation to a 

specified salinity (De Deckker and Geddes, 1980). The relative abundance of species ( 

diversity) decreases as salinity increases but the number of species (richness) that can 

co-exist in a given lake may not (De Deckker and Geddes, 1980).The water ionic 

composition determines the abundances of individual fauna. The ostracod faunal 

successions (maximum abundance within a specific salinity range) illustrate five 

major fluctuations in salinity regimes (Fig. 9; Tab. 2). 

Conductivity (salinity) is the primary environmental factor that influences the 

distribution and abundance of living ostracods in Tangra Yumco and its adjacent 

waters (Akita et al., in press). Salinity defines distribution and abundance of saline 

fauna (De Deckker, 1981a; Carbonel, 1988; De Deckker and Forester, 1988a; 

Mischke, 2012). 

Increasing salinity is associated with enhance evaporation (decreasing 

precipitation and low lake level). The ostracod faunal successions characterised 

palaeosalinity fluctuations in Tangra Yumco (Fig. 7 – 9; Tab. 2): Stage I – Highest 

lake level, β-oligohaline conditions, L. sinensis, a euryhaline species, dominates; 

Stage II – more or less stable lake level with slight increase in salinity (β-oligohaline 

to β-mesohaline condition), L. dorsotuberosa dominates, typical fresh to brackish 

fauna; Stage III – decreasing lake level with moderate salinity (β-oligohaline) and low 

ostracod abundance; Stage IV – falling lake level with highest salinity (α-
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mesohaline), L. inopinata, a more salt tolerant species dominates; and Stage V – 

rising lake level with steadily decreasing salinity (α-oligohaline – β-mesohaline) and 

L. sinensis prevalence. 

 

 

5.5.8 Palaeoenvironmental inferences 
 

The use of multiple proxies within a single lake system is a better approach for 

reconstruction of environmental and climate history than relying on one proxy alone 

(Battarbee, 2000). The two proxies, sediment properties (grain size, K, TOC, 

TOC/TN, TIC) and ostracods (composition of association, abundance, shell 

chemistry, adult/juvenile rand carapace ratios) indicate fluctuations in lake level, 

salinity and productivity for the past 3,300 years (Fig. 9 – 11). A reconstruction of the 

past environment and climate are as follows: 

 

Stage I, 3300 – 2320 cal BP 
 

Freshwater to slightly brackish conditions (fresh water with α to β-oligohaline, 

Tab. 2-4) prevailed. The highest lake level with lowest salinity in this stage. The lake 

productivity was moderate with three ostracods present. At this stage, Tangra Yumco 

overflows (increasing precipitation, cool and wet climate) intoTanqung Co. 

Lake-level fluctuation (especially for close basins) is related to regional moisture 

history (Haberzettl et al., 2005; Sun et al., 2009; Thomas et al., 2009; Long et al., 

2010). The strengthening of the monsoon (Indian Monsoon) is linked to increased 

summer precipitation  and subsequent changes in aquatic ecosystems (Fang et al., 

2001; Günther et al., 2015). High precipitation means high freshwater flux into the 

lake system 

Lake-water levels rise in the past 3,000 years due to increased summer 

precipitation (Long et al., 2012). This further enhanced the transport of terrestrial and 

minerogenic material into the lake. High minerogenic fluvial (high Fe/Mnshell) input 

will lead to increased total inorganic carbon with moderate production (moderate 

species richness, three species found in this zone). Species richness correlated with 

variability salinity (high, moderate and low) (Tab. 4). 

An abrupt rise in lake-water-level is indicated by increased proportions of 

ubiquitous and euryhaline fauna, L. sinensis, and lower proportions of salt tolerant 

species, L. dorsotuberosa and L. inopinata (Fig. 6). 

High lake-water level corresponds to lowest salinity indicated by low δ
18

O of 

L.sinensis. High δ
13

C values suggest falling temperature with moderate primary 

production. Low Mg/Ca ratios of L. sinensis due to vital effects in the incorporation of 

Mg ions (Marco-Barba et al., 2013a; Marco-Barba et al., 2013b). Moderate 

productivity is associated with high/adult and carapce/ratio of L. sinensis. 

Low Sr/Ca shells suggest a fluctuating salinity. The key climatic parameter 

precipitation (absence and absence will deter the hydroogical variation) (Ivanov et al., 

2007; Chavez-Jimenez et al., 2013). Hydrological variation influence water volume in 

aquatic ecosystems. This indicates a stable lake conditions with stable outflow and 

allochthonous terrestrial input. In this period, Tangra Yumco is open lake system, 

which outflows into Tanqqung Co. 

The adult/juvenile ratio of Ostracoda indicates a decreasing trend reflecting 

decreasing water turbulence (Boomer, 2002; Boomer et al., 2003)The mean grain size 

and ostracod abundance indicate a rising lake level (Fig. 10). Furthermore, K as an 
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element indicating terrestrial input (Kasper et al., 2013) and our conductivity 

reconstruction are almost constant for this stage (Fig. 11) as envisaged in stable 

inflow/evaporation balance. For the last about 700 years of Stage I, δ
18

O of ostracod 

shells increases slightly (Fig. 11). However other proxies are not indicating a 

shrinking lake, hence we interpret the isotope signal as caused by very slow 

enrichment over time or a not significant decline of the lake level. 

The diversity of Ostracoda decreases (Fig. 11)  suggests minimum water turbulence 

in the shallow waterflow diminishing the reworking and export of valves transported 

to the central lake basin where core TAN10/4 is located. Alternatively, a change in 

bottom current circulation could explain this pattern. Productivity-related proxies as 

ostracod abundance and δ
13

C of ostracod shells (Fig. 12) reflect relatively constant 

conditions. The high values of abundance and δ
13

C indicate higher intra-lake 

productivity than in the other stages of the core. The concave form of TOC and and 

TOC/TN curves could be caused by relatively higher plankton productivity and 

subsequent microbial destruction in the middle of this stage. Compared to the 

following stages the lake level of Tangra Yumco was the highest in Stage I and 

productivity was relatively high. 

 

Stage II, 2300 – 1760 cal BP 
 

High TOC (high organic matter) indicates high productivity. Increase food 

availability means high ostracod productivity (highest species richness, six species in 

this zone). High ostracod abundance reflecting a stable hydrological condition and 

gradual increase in lake productivity. High TOC suggests increase terrestrial organic 

debri from dense vegetation in a warm climate (Zhu et al., 2002b; Kasper et al., 

2015). 

β-oligohaline – β-mesohaline condition (Tab. 2). There is a gradual increase in 

salinity with change increase ostracod associations. A change dominance of L. 

sinensis (sharp decline in relative abundance to L.? dorsotuberosa, fresh to brackish 

fauna, predominant (Fig. 6). Maximum abundance of L.? dorsotuberosa implies deep 

lake with moderate salinity (Tab. 4). Ostracod assemblages with deep-water affinitiy  

(F.gyirongensis and C. xizangensis) were frequent at stage (Wrozyna et al., 2009b; 

Frenzel et al., 2010; Akita et al., in press). At this stage the lake is an open lake 

separate from Tanqung Co. 

The highest productivity indicates favourable environmental conditions. Lake 

productivity depends on environmental factors (e.g., nutrients, organic carbon and 

oxygen) (Wetzel, 1983, 2001). The cascade hypothesis states that abiotic factors (e.g., 

mixing of water and nutrient supply) promotes potential productivity (Carpenter et al., 

1985; Bronmark and Weisner, 1996; Ellis et al., 2011). In contrast, actual productivity 

influences the food web structure, which depends on the strength of interspecific 

interactions (Paine, 1980). 

Ostracoda productivity is influences by multiple physico-chemical parameters 

such as warm temperature, stable sediments and plentiful clastic organic food 

(Carbonel et al., 1988). 

 

Stage III, 1750 – 1100 cal BP 
 

Change in environment and climate implies change in lake structure and function. 

Any change in the lake function will affect the biological organism. For instance, low 

temperature and dry climate is accompanied by low productivity of lake systems. Low 
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productivity means minimal availability of food for both plankton and benthic fauna 

within the lake system. 

A dry climate may also favour intensive weathering and soil erosion hence high 

total organic carbon (TIC). High TIC suggests low organic matter, low productivity 

and hence low ostracod productivity. Low abundance of ostracods suggests limitation 

in oxygen levels within the lake water column under extreme environmental stress. 

The scarcity of ostracod (very small populations) due to environmental stress (e.g., 

low productivity and low organic matter). A stratified lake with thermohaline layer 

could cause oxygen difficiency. Low ostracod (relative abundance, diversity) is an 

indicator of poor nutrient supply and low productivity of lake. Ostracoda productivity 

is affected by both biotic and abiotic factors (Griffiths and Holmes, 2000). Under 

extreme unstable environmental condition, there is competition for the limited food 

resources. 

 

Stage IV, 1065 – 440 cal BP 
 

High grain size (coarser sediments) occurs at the onset of the Little Ice Age, 

reflecting high monsoon rainfall (Wang et al., 2012b). Highest sediment grain size is 

linked to low lake water-level, due to increased transport of terrestrial materials into 

the lakes (Dietze et al., 2013; Dietze et al., 2014; Mischke et al., 2015). The high 

fluvial input may cause the transports of freshwater ostracod assemblages (e.g., C. 

Candida) into the mesohaline deep lake. 

A wet climate (~ 1500 cal BP and 1150 cal BP) with gradual increase in lake level 

in Nam Co, southern Tibetan Plateau (Kasper et al., 2013). The Asian climatic 

periods;1500, 1000 and 500 years is linked to wet and cold (Kravchinsky et al., 2013). 

Although, there is a steady weakening of the Asia summer monsoon between 3700 cal 

years BP and 1500 years BP in India and China due to decrease summer insolation 

(Overpeck et al., 1996; Selvaraj et al., 2007; Liu et al., 2009). 

The last interglacial is linked to 1000–1500 yr as a cold, dry period (deMenocal et 

al., 2000; Bond et al., 2001; Gupta et al., 2003). 

The lake-water salinity increased gradually to a maximum  (β-mesohaline range) 

(Tab.2 and 4). Ostracod associations (common lacustrine brackish fauna) gradually 

recovers and colonise the sediments. The maximum proportions of L. inopinata 

around at 250 cal BP is a reflection of highest salinity  conditions. The ostracod 

assemblage Limnocythere inopinata is adaptable to high salinities (Yin and Martens, 

1997; Meisch, 2000b). High The dominance of L. inopinata, and associated low 

proportions of L. sinensis and L. dorsotuberosa, is an indicative of more saline 

conditions (Ito, personal communication). In a more salineshallow lagoon waters, L. 

inopinata is the sole dominant ostracod (Akita et al., in press). The presence of L. 

inopinata suggest shallow lake conditions. The lake-water salinity varied from β-

mesohaline to oligohaline, with a declining salinity (oligohaline) at 90 years. 

The decrease salinity is associated with decreasing δ
18

O and Mg/Ca values of L. 

inopinata.The δ
18

O composition of lacustrine carbonate calcite is useful for 

reconstruction of palaeohydrological conditions (Clark and Fritz, 1997). In lacustrine 

system, the δ
18

Oshell is used as evaluation of water balances, evaporation of lake water 

causes 
18

O enrichments in the calicitic bivalve shell (Clark and Fritz, 1997). The low  

values of δ
18

O and Mg/Ca values of L. inopinata is intepreted as increasing lake, 

which facilitated decreasing salinity with reduced evaporation. 

The slightly lower abundance and slightly higher adult/juvenile ratio compared to 

the preding zone indicatea slighty drop of the lake level. Higher δ
18

O and Mg/Ca 
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values reflects increase salinity due to high evaporation. Temperature is key climate 

parameter that control fractionation of salinity (optimum tolerance) in genus 

Limnocythere (Curry, 2003). Limnocythere inopinata is a maker of higher salinity 

(Akita et al., in press). Maximum proportion of L. inopinata occurs with increase 

water salinity. Little Ice Age in this period (650 - 500 cal BP). 
 

Stages V, 410 cal BP to present: 
 

Indian summer monsoon activitiy has increased over the past 350 years on the 

southern Tibetan Plateau. Increase monsoon rainfall (high precipitation) means  

increase riverine flows and transport of terrestrial plant material (carbonate 

weathering, soil respiration) into reducing primary production (hence low carbon 

production). Moderate productivity is linked to moderate ostracod productivity. 

Although, low K and low TOC are observed, ostracod productivity was relatively 

high (five ostracod assemblage present in this zone). The variabilibity of salinity 

(oligo to beta-mesohaline ) was favourable for surviving of benthic lacustrine- 

brackish ostracod species. High ostracod productivity occurs in oligo-beta-mesohaline 

conditions. The increase in monsoon rainfall is due to global warming (Bräuning and 

Mantwill, 2004). The last ~ 250 years BP is marked by intensive solar radiation in 

Asia continent (Kravchinsky et al., 2013). The high solar radiation is linked to rising 

lake level (Frenzel et al., 2010; Kasper et al., 2012; Kasper et al., 2013). In the West 

Antarctic, global warming within the past 300 years is linked with extreme melting of 

glaciers and sea level rise (Gomez, 2015). This may facilate increasing lake-water 

level due to a ocean-land effect (global atmospheric circulation). 

The ostracod assemblage displays a further drop in salinity as reflected by 

decreasing L. inopinata relative abundance. The salinity of the oligo-mesohaline 

range is estimated for the this stage (Tab. 2 and 4). A change of L. inopinata dominant 

to L. sinensis in this stage due to variable salinity (moderate saline). Leucocythere 

sinensis regains dominance. Leucocythere sinensis suggest increasing freshwater into 

to a mesohaline lake. The Little Ice Age episodes in 300 - 100 cal BP. 

Low adult/juvenile ratio of L. sinensis suggest reworking of sediment 

(allochthonous association) (Akita et al., 2015). The decreasing adult/juvenile ratio is 

probably caused by a rising lake level (in the last 250 – 150 cal BP). Rising lake-level 

implies increase transport of juveniles of L. sinensis from shallow waters into deeper 

lake basin (Akita et al., 2015). 

 

 

5.5.9 Lake-level evaluation – Principal Components Analysis 
 

The first PCI, representing 38.3% of variance, indicates a falling lake level. This 

corresponds with the major enviromental parameters: salinity, TOC, grain size and 

δ
13

O. Minor effects are ostracod abundance, TOC/TN and K (Fig. 13a). The second 

axis (18.7%) represents reduced water turbulence expressed by proportion of adult 

ostracods, TIC and Fe/Mn of ostracod shells (Fig. 13a). The PCA confirms the five 

stages characterised by ostracod and sedimentological data during the last 3,300 years 

(Fig. 13b). PCA axis one reflects the overall trend of a falling lake level over the first 

four stages documented.  
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5.5.10 Lake evolution and palaeoclimatic implications 
 

The Holocene climate of the southern Tibetan Plateau is dominated by the South 

Asian Monsoon in summer and westerly cyclonic activitiy in winter. The strength of 

the monsoon is determined by a number of forcing mechanism operating over a 

variety of scales (Thompson et al., 2000). Strengthening of the monsoon (local 

rainfall) involves lake level rising and decreasing salinity in hydrologically closed 

basins. A drier climate causes falling lake level (decreasing monsoon impact).  

The Late Holocene ostracod associations of sediment core TAN10/4 reveal the 

transitions between different water bodies prevailing during the Holocene monsoon 

climate. Decreasing precipitation will enhanced increase evaporation. Reduce 

precipitation implies insufficient runoff, are the most probable drivers of these aquatic 

ecosystem changes. However, changes in the catchment (vegetation, sediment 

transport, weathering) could cause significant change (shift) in  lake dynamics 

(function and structure). 

Stage I: Freshwater to slightly brackish conditions (freshwater-oligohaline; Tab. 2-

4) prevailed. The highest lake level with lowest salinity occurred in this stage. The 

rising lake suggest increasing strengthen of India Summer Monsoon rainfall. 

Increasing precipation and will lead to high rate of river incursion in cool and wet 

climate. At this stage, Tangra Yumco overflows into Tanqung Co as an open ancient 

large lake (Fig. 14). The salinity of Tangra Yumco is much lower, despite the lake 

level was much lower (shrinking in lake size) than in the early Holocene (Ahlborn et 

al., 2015b). 

Stage II: A gradual falling of lake level with gradual rise salinity (β-oligohaline to 

β-mesohaline water). This indicates steady decrease in precipitation within a warm 

and dry climate. Tangra Yumco begins to separate from Tangqung Co. 

Stage III: A further falling in lake level with lower salinity (β-oligohaline water) in 

dry climate.  This suggests weakening of monsoon (less precipitation, gradual 

evaporation). At the stage, Tangra Yumco is gradually becoming a closed lake. 

Stage IV: The lowest lake level with highest salinity (α-mesohaline water), 

indicating a extremely weak monsoon (less precipitation, higher evaporation) in a 

cold and very dry climate. Tangra Yumco is now a closed lake. 

Stage V. Rising lake level with variable salinity (α-oligohaline – β-mesohaline 

water) implies a sudden enhancing of moonson rainfall (relatively high precipitation, 

stable evaporation) in a cool and wet climate. 

 
 

5.6 Conclusions 

“Study the past if you would define the future” ~Confucius 

 

The ecology of the past is hidden in biological proxies within sedimentary archives 

(Birks, 2003; Birks et al., 2010). Lake sediments and their benthic fauna (e.g., 

ostracods) provides senstive records of enivironmental and climate history. Change in 

lake’s physical and chemical parameters causes change in ostracod assemblages. Lake 

productivity relates to ostracod productivity. 

A total of six ostracods were documented: Leucocytherella sinensis (ubiquitous 

fauna), Leucocythere? dorsotuberosa (fresh-brackish water fauna), Limnocythere 

inopinata (fresh to mesohaline species), Fabaeformiscandona gyirongensis (brackish-

lacustrine fauna), Candona xizangensis (phytal littoral brackish lake fauna) and 
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Candona candida (freshwater fauna). The past ecology and environment of the 

ostracod assemblages were inferred using ecology of Recent Ostracoda. Ostracods are 

valuable booligical proxies for palaeolimnological and palaeoenvironmental 

reconstruction. 

The multi-proxies (biology, geochemistry and sedimentology) indicate lake level, 

salinity and productivity fluctuation during the past 3,300 years (Fig. 14, Tab. 4). We 

recognised three major lake environment and climate history are: 

(a) A freshwater (limnetic) β-oligohaline water with euryhaline species L. sinensis 

predominant. This suggest the strengthen of India summer monsoon (increased 

precipitation, less evaporation) linked with the highest lake level and lowest salinity 

generated by relatively cool and wet period in 3300 – 2320 cal BP  

(b) A β-oligohaline to β-mesohaline waters with increased abundance of fresh-brackish 

water toleratie ostracod fauna L.? dorsotuberosa. This indicated the weakening of 

monsoon (less precipitation, moderate evaporation) related to a lowering of lake level, 

and variable salinity in warm and dry climate dry in 1740 – 1100 cal BP. The 

highest productivity highest K, highest TOC, high TOC/TN) of the lake in this period 

is associated with high ostracod productivity (highest species richness and diversty). 

(c) A α-mesohaline waters with a more salt tolerant water ostracod, L. inopinata 

dominant. This implies a weak monsoon (reduced precipitation, higher evaporation) 

related to lower lake level and the highest salinity under a cold and dry climate in 

1070 – 440 cal BP (Little Ice Age in this period). A moderate l ake productivy 

(highest K, highest TOC, high TOC/TN) is linked with moderate species richness. 

The oxygen isotopes and Mg/Cashell of this species are relatively high in this period. 

However, low carbon isotopes, low Fe/Mn and low Sr/Ca composition in the shells of 

L. inopinata. 

 

A saline lake interracts with climate. Change in climate (e.g. precitipation and 

temperature) will affect lake system and its components (e.g., biota, catachment 

processes and hydrology). The strengthening of the moonsoon causes increasing 

precipitation with continous flowing of freshwater and an open lake system, Tangra 

Yumco in 3300 – 2320 cal BP. However, decreasing precipitation with enhanced 

evaporation, changed the open lake to a closed lake system in 2300 – 1760 cal BP. In 

the Late Holocene, the lowest lake level is linked to the weakening of the monsoon, 

with minimum precipitation during the Little Ice Age period (650 – 100  cal BP). 

Nonetheless, the last 200 years is linked to higher freshwater input into the Tangra 

Yumco, a phenomena observed in other Tibetan lakes attributed to increasing 

precipitation last decades (Zhang et al., 2011). The sedimentology and Ostracoda 

(biological remains) are evidence of Late Holocene environmental and climatic 

signals in deep brackish lake, Tangra Yumco. 

The decline of aquatic ecosystems due to global warming, will lead to loss of 

biodiversity. Any loss of lake ecosystem, will also result in loss of ecological and 

economic value and indirectly affect humankind (life is sustained by water). Long-

term research on lake ecosystems is necessary for sustainable management, 

conservation of its biota and future alternation due to climate change. 

A fully comprehensive understanding of different interactions (biological fossils, 

food webs, geomorphology, hydrology, catchment and biophysical-chemical 

processes) of a lake system is critical for more precise environmental reconstruction 

and future climate prediction. Instrumental records of climate (e.g., local precipitation 

and temperature), will support holistic palaeo-inferences. Climate modelling should 

incorporate ostracods as excellent biological proxies. 
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To increase our understanding of Quaternary climate variability in southern 

Tibetan Plateau, sediment cores covering early Holocene and Pleistocene from Tangra 

Yumco must be analysed. Evaluation of sediments cores from different of lake 

systems on the southern Tibetan Plateau, will provide a better understanding of spatial 

and temporal environmental and climate variability in the region. 

The Tibetan saline lakes will continue to play a significant role as “natural 

laboratories” in the understanding of past, present and future lake-climate dynamics 

and ecosystem changes under anthropogenic-induced climate. 
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Figures  

 

Fig. 1 Map of Tibetan Plateau and four major climate systems (polar 

air masses, westerly winds, Indian and East Asian Summer monsoons). 

The scale illustrates the altitude above sea level. Modified (Liu et al 

2009). 
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Fig. 2 Map of Tangra Yumco on the southern Tibetan Plateau. 

http://earthexplorer.usgs.gov/ 

http://earthexplorer.usgs.gov/
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Fig. 3 Bathymetry map of Tangra Yumco and sediment core TAN10/4. 
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Fig. 4 Lithology and colour as a function of depth in sediment core TAN10/4. Left – 

photography of sediment core. Right – generalized lithology with indication of four 

turbidites and a debris flow. 
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Fig. 5 Corrected sediment depth verse radiocarbon age (cal B.P) for sediment core 

TAN 10/4. Sediment ages were calculated from a linear interpolation between 

adjacent calibrated 
14

C ages. 
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Fig. 6  Distribution of Ostracoda in sediment core (TAN10/4) from Tangra Yumco. 

Relative abundance varies with depth. The dominant fauna characterised a given 

depth. Five lacustrine fauna (Leucocytherella sinensis, Leucocythere? 

dorsotuberosa, Limnocythere inopinata Fabaeformiscandona gyirongensis, Candona 

xizangensis) and one freshwater species (Candona candida) typical for smaller water 

bodies. Adult to juvenile and carapace to valve ratios of Leucocytherella sinensis, 

most frequent ostracod 
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Fig. 7 Change in shell isotopes (δ
18

O and δ
13

C, ‰ VPDB) and trace element 

composition (Mg/Ca Sr/Ca and Fe/Mn, molar ratios) of two ostracod species, 

Leucocytherella sinensis (lower part of the core) and Limnocythere inopinata (upper 

part of the core). Ostracod-based conductivity [mS/cm] is estimated for palaeo-water 

ionic conditions (the past 3300 years) in Tangra Yumco. 
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Fig. 8 Isotopic crossplot of δ
18

O versus δ
13

C values (‰VPDB) for two ostracod 

species, Limnocythere inopinata (top left, black circles) and Leucocytherella sinensis 

(bottom right, grey circles). There is a distinct difference in the isotopic composition 

of the two ostracod species: higher δ
18

O and lower δ
13

C for L. inopinata, but lower 

δ
18

O with higher δ
13

C for L. sinensis. 
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Fig. 9  Variation in relative abundance [%] of ostracod species in core TAN10/4. The 

salinity tolerances for the six ostracod species are euryhaline for Leucocytherella 

sinensis; fresh to brackish water for Leucocythere? dorsotuberosa; mesohaline to 

polyhaline for Limnocythere inopinata; freshwater to mesohaline for 

Fabaeformiscandona gyirongensis; freshwater to mesohaline for Candona 

xizangensis and freshwater to oligohaline for Candona candida. Grey curves 

represent three point moving averages of the plotted data points. Ostracod 

photographs are not scaled 
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Fig. 10 Proxies related to water depth and turbulence: Ostracod abundance, adult to 

juvenile ratio of L. sinensis and mean sediment grain size. LIA = time frame of the 

Little Ice Age. Grey curves = mean values of three data points. Grain size data from 

Ahlborn (2015). 
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Fig.11 A diagram of palaeo-water turbulence; total ostracod 

association, adult and juvenile ratio of L. sinensis and mean 

sediment grain size. LIA = Little Ice Age. Grey curves = mean 

value of three data points. 
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Fig. 12  Bioproductivity proxies (total ostracod assemblages, total organic carbon, 

total inorganic carbon, total organic carbon and total nitrogen. Grey curves = mean 

values of three data points. Carbon and nitrogen data from Ahlborn et al 2015. 
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Fig.13 Principal Component Analysis (PCA) of normalised ostracod and 

sedimentological data (a: upper diagram) and loadings on the first two axes over core 

TAN10/4 (b: lower diagram). 
 



  

 
239 

 

Fig. 14 Lake-water level evolution of Tangra Yumco.  It is an ancient large lake, 

which separate from Tangraqung Co and Xuru C. Lake-water level fluctuation is an 

indicator of monsoon climate variability in time. S = Salinity, P = precipitation. 
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Tables  

Table 1 Radiometric data for sediment core TAN10/4. Calibration was performed 

using CALIB 7.0 (Stuiver and Reimer, 1993).  

*Year of coring; **age used for reservoir correction; ***no reservoir correction; 

****values in italics are not used for chronology. 

(Haberzettle et al. 2015). 
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Table 2 Palaeosalinity (since 3,300 cal BP) fluctuation inTangra Yumco. Five phases 

of change in palaeosalinity levels 

 emphasised. Salinity estimated using Ostracoda-conductivity transfer function and 

Venice System of brackish water classification 

 (Symposium, 1958). 
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Table 3 Ecology and distribution of Late Quaternary ostracods in Tangra Yumco. All 

ostracod species are cold stenothermal, except L. inopinata living in a wide range of 

temperatures. The six ostracod species are titanoeuryplastic and thus also common in 

waters poor in calcium. Data sources: Akita et al. (in press), Mischke et al. (2012), 

Wrozyna et al. (2009)  and Meisch (2000). 
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Table 4 Summary of Late Holocene environmental and climate history of Tangra 

Yumco inferred from sedimentological and Ostracoda proxies. TOC = Total organic 

carbon, TIC = Total inorganic carbon, TN= Total nitrogen. 
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Chapter 6 

6.0 Synthesis  

 
Tibetan Plateau is a land endowed with high mountains, glaciers, snows, holy 

lakes, great rivers, variety of flora, fauna and minerals (Heath, 2005). “To the human 

eye Tibet is a place of great beauty and to the heart a sacred land (Heath, 2005).”  

Sustainable management of natural resources of Tibetan Plateau is critical to its 

people, ecosystem protection, future generations and global climate regulation (Reiter, 

1993; Xu and Grumbine, 2014). 

 

6.1 Motivation 
 

“The impact of climate change in Tibet is harsh. As the world focuses on climate 

action at United Nations’ COP21 meetings, Tibet should be central to any progress 

made. The Tibetan plateau needs protecting, not just for Tibetans, but for the 

environmental health and sustainability of the entire world. As stewards of their own 

land, Tibetans’expertise should be part of tackling climate change.” – The Dalai 

Lama 

 

The heart of Asia, the Qinghai-Tibetan Plateau, is sensitive semi-arid environment 

(‘Third Pole’) due its high altitude, topography and monsoon climate systems (Zhang 

et al., 2004b; Yao and Greenwood, 2009; Yao et al., 2012a).  The high plateaus, 

(mountains) and highlands are also known as “World water towers” since they 

provide essential freshwater (via many headwaters, river systems) for large human 

populations both upstream and downstream (Viviroli et al., 2003; Xu and Grumbine, 

2014). There are many large fresh and saline lakes on the Tibetan Plateau (Zheng et 

al., 1989; Zheng, 1997b; Zheng et al., 2000b). It is largest stored of ice (about 46,000 

glaciers) outside the polar regions and source of Asia’s major river systems (e.g., 

Yellow, Yangtze and Brahmaputra) (Xu et al., 2008b; Chellaney, 2011; Farmer, 

2015). The Tibetan Plateau contributes significantly to freshwater resources and 

drinking water for millions of people living in Central, Southern and Southeastern 

Asia (Barnett et al., 2005). 

Tectonic uplift of the Tibetan Plateau plays major role in Earth’s Quaternary 

climatic evolution (Dewey et al., 1988; Harrison et al., 1992; Prell and Kutzbach, 

1992; Molnar et al., 1993; An et al., 2001; Kitoh, 2004). The Tibetan Plateau is 

vulnerable to climate change (e.g., warmer temperatures), with potentially effect of on 

fresh water supply and indirectly impact large populations in Asia and maintenance of 

aquatic ecosystems (Xu et al., 2008c; Yao et al., 2012b; Yang et al., 2013). The 

environmental and climate impact on the high-mountain ecosystems is still inadequate 

(Funnell and Parish, 2001; Viviroli et al., 2003). 

Historical instrumentation and direct measurement of past environmental and 

climate variables is lacking on the Tibetan Plateau (Smol, 1992; Jones et al., 2001; 

Edwards et al., 2007). Palaeoclimate proxies (e.g., ice cores, lake sediments and 

ostracods) provide an indirect estimation of natural variability in environmental and 

climate history (e.g., Little Ice Age and the warming since Industrial Revolution) 

(Zheng et al., 1989; Thompson et al., 2000; Edwards et al., 2007; Hannah, 2010). 
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Lacustrine sediment and the benthic fauna (e.g., ostracods) are sensitive indicators of 

environmental and climate change (Birks and Birks, 1980; Dearing and Foster, 1986; 

Harrison and Bartlein, 2012). The variation of closed lake water-volume is associated 

with climate. A change in climate is linked with a change in lake water-level and 

subsequent change in geochemical, mineralogical, isotopic and biological conditions 

of the lake (Street-Perrott and Harrison, 1985; Lister et al., 1991). 

Ostracods (microscopic crustaceans) inhabit temporary and permanent waters 

(marine to non marine) and sometimes even semi-aquatic environments. They are in-

situ components (living organisms) of aquatic habitats and major benthic crustaceans 

in lakes and ponds (Delorme, 1991; Galassi et al., 2002; Cohen, 2003). They play a 

critical role in the nutrient recycling and energy flows and food webs in the aquatic 

environment (Bronshtein, 1988). Ostracods are the most abundant fossil crustaceans, 

an important microfossil group, with hard parts (calcitic shells), well-preserved in 

modern and ancient sediments for palaeolimnological research (Green, 1961; Schram, 

1982; Smol, 1992). Ostracods are sensitive indicators of aquatic environmental 

conditions (McKenzie, 1986; Holmes, 1992). The geochemical analysis of ostracod 

shells contributes to understanding of hydro-chemical dynamics (Forester, 1983, 

1986; Ito and Forester, 2009b). The ecology and chemical composition of living and 

Recent ostracods (especially high mountains ecosystems) is still unknown (De 

Deckker, 1981a; Fontes et al., 1985). This study contributes to the potential of 

ostracods as indicators of aquatic ecosystems and monsoon dynamics on the southern 

Tibetan Plateau. 

 

6.2 Key findings 

 

6.2.1 Spatial distribution and ecology of Recent Ostracoda (Chapter 2) 

 

A total of six samples were collected and analysed from six waterbodies (lakes-

majority from Tangra Yumco lake system-along salinity gradient, river, pond, 

spring, lagoon-like and estuary-like waters) on the southern Tibetan Plateau (Fig.1-

2). The water bodies are significantly (p< 0.05) different. A total of 44, 731 shells 

(living = 2601, empty valves = 41,771) counted. 

The relative abundance of ostracods occurrences are: (i) living ostracods 

associations: Tonnacypris gyirongensis (Yang, 1982) (44.8 %), Limnocythere 

inopinata (Baird, 1843) (29.4 %), Leucocytherella sinensis Huang, 1982 (15.6 %), 

Candona candida (O.F. Müller, 1776) (4.7 %), Fabaeformiscandona gyirongensis 

(Huang, 1982), (1.8 %); Leucocythere? dorsotuberosa Huang, 1982 (1.8 %), 

Ilyocypris sp. (1.6 %), Heterocypris incongruens (Ramdohr, 1808) (0.6 %) and 

Heterocypris salina (Brady, 1868). (ii) empty valves of Recent assemblages are: L. 

sinensis (61.1 %), L. inopinata (17.8 %), T. gyirongensis (9.9 %), L.? dorsotuberosa 

(3.6 %), F. gyirongensis (2.6 %), C. candida (2.1 %), Ilyocypris sp. (1.6 %), Candona 

xizangensis Huang, 1985 (1.1 %), H. incongruens (0.1 %) and Potamocypris cf. 

villosa (Jurine, 1820) (one empty valve). 

Cluster analysis established significantly (p<0.05) two groups of ostracod 

assocations; (i) L. sinensis, L. inopinata, L.? dorsotuberosa, F. gyirongensis and C. 

xizangensis are classified as permanent lacustrine-brackish fauna and (ii) T. 

gyirongensis, C. candida, Ilyocypris sp., H. incongruens and H. salina are classified 

as shallow temporary freshwater species. 

Ostracoda occurrence is strongly associated to environmental factors of their 
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habitats. Canonical Corresponding Analysis (CCA) indicates correlation of living 

ostracod species to the environmental parameters. The presence and abundance of 

ostracods are significantly (p<0.05) controlled by physico-chemical parameters 

(conductivity, alkalinity and water depth) and covariate with water types. 

Conductivity and water types are the primary environmental factors influencing 

spatial distribution of the ostracods (presence and abundance of particular taxa) within 

a given water body. The first two axes of a canonical correspondence analysis 

(CCA) explain 30.9 % of the variation in the species abundance data. Spearman 

correlation analysis showed that L.? dorsotuberosa (r = 0.25) and L. inopinata (r = 

0.36) have a significant positive correlation with conductivity whereas, T. 

gyirongensis (r = -0.68) displays significant negative correlation with conductivity. 

Limnocythere inopinata correlates significantly positive (r = 0.37) with alkalinity. 

Fabaeformiscandona gyirongensis correlates significantly positive (r= 0.28) with 

water depth. 

There are two kinds of ecological niches. A well-defined-niche for biocoenosis 

(living assemblage) and broader niche for empty valve associations: 

(a)The relative abundance of living ostracods in different waterbodies: (i) 

Lacustrine environment – L. inopinata (48.1 %), L. sinensis (39.2 %), F. 

gyirongensis (6.4 %), L.? dorsotuberosa (5.0 %), T. gyirongensis (1.1 %) and 

Ilyocypris sp. (0.1%); (ii) lagoon-like habitats – Limnocythere inopinata (79.0 %), L. 

sinensis (13. 0%), Ilyocypris sp. (5.0 %) and L.? dorsotuberosa (2.0 %);(iii) estuary-

like habitats – T. gyirongensis (92.0 %), L. sinensis (5.0%) and Ilyocypris sp. (3.0 

%); (iv) pond habitats with high organic matter – T. gyirongensis (84.1 %) C. 

candida (13.5 %), L. sinensis (1.1 %) and Ilyocypris sp. (0.7 %) and H. incongruens 

(0.7 %) with high organic content; (v) river habitats – T. gyirongensis (85.3 %) and 

L. sinensis (13.6 %) and C. candida (1.0 %) and (vi) spring habitats – T. 

gyirongensis. 

(b) The relative abundance of empty valves of ostracods in different 

waterbodies: (i) Lacustrine environment – L. sinensis (52.9. %), L. inopinata (34.1 

%), L.? dorsotuberosa (4.9 %), F. gyirongensis (4.8 %), C. xizangensis (2.1 %), T. 

gyirongensis (0.1 %), C. candida (0.5 %) and Ilyocypris sp. (0.03 %); (ii) lagoon-like 

habitats – L. sinensis (74.0 %), %), Ilyocypris sp. (!3.0 %), L.? dorsotuberosa (7.0 

%), L. inopinata (5.0 %), and C. candida (1.0 %); (iii) estuary-like habitats – L. 

sinensis (85.0 %), L.? dorsotuberosa (85.0 %), C. xizangensis (7.0 %), H. 

incongruens (3.0 %), L. inopinata (2.0 %), Ilyocypris sp. (2.0 %), T. gyirongensis (1.0 

%) and C. candida (1.0 %), (iv) pond habitats – T. gyirongensis (77.0 %) C. candida 

(14.6 %), L. sinensis (5.7 %), Ilyocypris sp. (1.8 %), L. inopinata (0.44 %), H. 

incongruens (0.44 %) and L.?  dorsotuberosa (0.15%), (v) river habitats – L. sinensis 

(91.0%), Tonnacypris gyirongensis (6.0 %) %), L.? dorsotuberosa (2.0%), and (vi) 

spring habitats – Tonnacypris gyirongensis (65.0 %), L. sinensis (34.0. %) and %), 

L.? dorsotuberosa (1.0%).  

The Shannon diversity index (H) indicates high diversity in lakes and ponds with 

muddy substrates. 

Water-depth distribution of ostracods characterised Tangra Yumco into three 

distinct zones (epilimnion, thermocline and hypolimnion). This is typical feature of a 

deep stratified lake. The water-depth-indicator fauna includes (i) L. sinensis, L. 

inopinata and C. xizangensis as phytal littoral shallow-water species and (ii) F. 

gyirongensis and L.? dorsotuberosa as deep-water fauna. 
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Fig. 1 Limnological features of the Tangra Yumco lake system along a salinity 

gradient (Photo by Peter Frenzel). 
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Fig. 2 Sixty-six surface sediment samples analysed from different water types on the 

southern Tibetan Plateau. Sample ID: project, year of sampling and sample number 

(e.g., TiP09-41). 

 

 

6.2.2 Geochemistry of Recent Ostracoda shells (Chapter 3) 

This study contributes to new geochemical data (δ
13

C, δ
18

O, Mg/Ca, Sr/Ca, 

Ba/Ca, Fe/Ca, Mn/Ca and U/Ca) of four Recent Tibetan Ostracoda (Leucocytherella 

sinensis, Leucocythere dorsotuberosa, Limnocythere inopinata, and Tonnacypris 

gyirongensis and their water chemistry (δ
13

CDIC, TDS, δ
18

O) (Börner et al., re-

submitted). The geochemistry of Recent Ostracoda shells and the water chemistry 

from nine Tibetan lakes (Taro Co, Tangra Yumco, Tangqung Co, Monco Bunnyi, 

Xuru Co, Nam Co, Npen Co, Yumzho Yumco and Chen Co) and their catchment 

waters were analysed. 

The water bodies (lacustrine and freshwater) are successfully separated by 

oxygen isotope and deuterium values (δ
18

O and δD). The δ
18

O and δD values range 

from -18.8 ‰ to -0.35 ‰ and -145.75 ‰ to -65.13 ‰ and positively correlated (r² = 

0.96). In water samples from saline lakes, the local evaporation is below the Global 

Meteoric Water Line (GMWL). The isotopes (δ
18

O and δD) composition of 

lacustrine brackish waters (e.g., Tangra Yumco: δ
18

O = -6.58 ‰ and δD = -76.8 ‰; 

Taro Co: δ
18

O = -5.72 ‰ and δD = -69.3 ‰) are higher than in temporary 

freshwaters (δ
18

O = -18 ‰ and δD = -138 ‰). 

The lake water has a positive δ
13

CDIC (enrichment in 
13

C), although variable for 

the different lake systems (Tangra Yumco = 5.0 ‰, Xuru Co = 3.4 ‰ and Taro Co = 

2.4 ‰). The freshwaters (river and springs) have negative δ
13

CDIC (depleted). The 

oxygen isotopic composition of ostracod (δ
18

Oshell) and water (δ
18

OH2O.) are 
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positive correlated. In contrast, δ
18

Oshell and δ
13

CDIC is weakly correlation. The 

lacustrine-brackish species are enriched in δ
18

O and δ
13

Cshell (L. inopinata: 

δ
18

Oshell = -16.5 ‰ to -3.99 ‰ and δ
13

Cshell = -4.51 ‰ to 4.23 ‰ and L. sinensis: -

δ
18

Oshell = -9 ‰ to -4 ‰ and δ
13

Cshell = 0.5 ‰ to 3.2 ‰). However, the freshwater 

ostracods (T. gyirongensis: δ
18

Oshell = -16.5 ‰ to -13.3 ‰ and δ
13

Cshell = -4.5 ‰ to 

4.2 ‰) are depleted. Nonetheless, the isotopic composition (δ
18

Oshell and δ
13

Cshell) in 

L. sinensis is significantly positive (r
2
 = 0.74) than in L. inopinata (r

2
 = 0.32), with 

vital offset for both species. The shell isotopic composition of lacustrine and 

freshwater ostracod species are not in equilibrium with host waters. The lacustrine-

brackish fauna (L. sinensis and L. inopinata) are more depleted in δ
13

Cshell than 

δ
13

CDIC but enriched for freshwater ostracods. 

Ba/Cashell and Sr/Cashell correlated with Mg/Cashell. Mg/Ca ratios of ostracod shells 

correlated significantly with conductivity of the host water. However, Sr/Ca ratios of 

L. sinensis and L. inopinata do not correlate with conductivity. Furthermore, Sr/Ca 

ratio of L. dorsotuberosa is positively correlated with conductivity. Higher variation 

of Mg/Ca values in ostracod shells is associated with increased Mg/Ca of the host 

water. No temperature dependency was observed for Mg/Cashell and Sr/Cashell, 

although lacustrine cold waters have high Sr/Ca while shallow warm freshwaters have 

lower Sr/Ca. The minor elemental composition (Fe/Ca, Mn/Ca and U/Ca ratios) in 

ostracod shells are positively correlated with each other and the host water but 

negative correlated with δ
13

CDIC of ambient. 

 

 

6.2.3 Ostracoda as sub-aqueous sediment indicators (chapter 4) 

In Tangra Yumco, sedimentary features show horizontal layering (> 25 m 

thickness of sediment) from the steep eastern slope to the deepest depth of 220m 

Tangra Yumco (Akita et al., 2015). The event layers are characterised by thick and 

dark sediments (lack of bioturbation and reducing oxygen conditions) with fining 

upward (graded) bedding, low reflectivity (low water content) and high magnetic 

susceptibility. Normal sedimentation comprises brownish fine sand to medium silt 

with higher reflectivity (high water content) and low magnetic susceptibility. Five 

event layers were identified in sediment core, TAN 10/4. The event layers of the 

core and their underlying and overlying sediments were evaluated. 

To assess ostracods as palaeoindicators of sedimentary events, a conceptual 

model of ostracods distribution was developed and tested. The vertical distribution 

of ostracod associations within the studied sediment core indicates the process of sub-

aqueous sediment transport from shallow waters to the bottom of northern basin of 

Tangra Yumco. The benthic lacustrine ostracods in sediment are (Leucocytherella 

sinensis Huang, 1982, Leucocythere? dorsotuberosa Huang, 1982, Limnocythere 

inopinata (Baird, 1843) and Fabaeformiscandona gyirongensis (Huang, 1982). 

Ostracods were very low in sediment events layers due to massive sediment 

accumulation (snap-shot intensified events) caused by bottom gravity flows. The 

fluid sediment is characterised by two grading modes (stratigraphic evidence): (i) 

proximal deposit (upper part), coarser grains and (ii) distal deposit (lower part), soft 

fine-grain sediment. Ostracod associations describe two distinct sediment gravity 

flows; event layers (four major layers) with sandy silt with graded bedding are 

interpreted as turbidites caused by turbidity currents. In contrast, the event layer (one 

layer) with fine sand and silt and without graded bedding is interpreted as debrite. 
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6.2.4 Ostracoda evidence of late-Holocene environmental change in Tangra 

Yumco (Chapter 5) 

A long sediment core, TAN10/4 (162 cm) from Tangra Yumcoo provide evidence 

of environmental and climate variability during the past 3,300 years (Akita et al., 

submitted-b). The Late Holocene fossil ostracod associations found are 

Leucocytherella sinensis, Leucocythere? dorsotuberosa, Limnocythere inopinata, 

Fabaeformiscandona gyirongensis, Candona xizangenesis and Candona candida 

(Fig. 3). Ostracoda assemblages and the dominance taxa in specific period indicate 

their ecological response to past environment and climate change (Fig. 3). The 

ostracod faunal successions characterised five deposition environment (first 

inference) and climate (secondary inference) (Fig. 3, oldest to youngest 

sediment): Stage I-L. sinensis, euryhaline species, mainly dominant, increased lake 

level (strengthen of monsoon) with lowest salinity (limnetic to β-oligohaline 

condition); Stage II-L. dorsotuberosa, fresh to brackish fauna, dominant, stable lake 

level with increasing in salinity (β-oligohaline to β-mesohaline); Stage III-low 

ostracod abundance, decreasing lake level with moderate salinity (β-oligohaline) ; 

Stage IV-L. inopinata, more salt tolerant species, predominant), falling lake level 

(weakening of monsoon during “Little Ice Age”,) with highest salinity (α-

mesohaline) and Stage V-L. sinensis prevalence, rising lake level (enhanced 

monsoon) with variable salinity (α-oligohaline – β-mesohaline). The lake water 

salinity at depth (Stage V) is higher than Stage (III). 

Moreover, F. gyirongensis occurs in relative low numbers throughout the core. 

Candona xizangensis occurs in specific time (Stage II). Candona candida is a rare 

species. 

 

 
 

Fig. 3 Late Holocene Ostracoda (palaeo)-salinity tolerance are: Leucocytherella 

sinensis (euryhaline fauna), Leucocythere? dorsotuberosa (fresh-brackish water 

fauna), Limnocythere inopinata (mesohaline to polyhaline species), 

Fabaeformiscandona gyirongensis (lacustrine-brackish fauna), Candona xizangensis 

(phytal littoral lacustrine-brackish fauna) and Candona candida (freshwater to 

oligohaline fauna). 
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6. 3 Discussions 

 

6.3.1 Spatial distribution and ecology of Recent Ostracoda (Chapter 2) 
 

There are limited studies on microcrustacean in high-mountains ecosystems from 

Eurasia region (particularly from central Asia) (Van der Meeren et al., 2010a; Zhang 

et al., 2013b). Ostracods reflect changes of environmental conditions by changes in 

their distribution, diversity, relative abundance, presence and absence of taxa, specific 

ecological tolerances and microhabitat preference (Van der Meeren et al., 2010a; Zhai 

et al., 2010b; Zhang et al., 2013b; Akita et al., in press). 

This study contributes to habitat ecology of living and Recent Ostracoda and 

environmental parameters of water bodies. The waterbodies range from fresh to 

brackish lacustrine condition (Tangra Yumco lake systems-Tangqung Co, 

Tangra Yumco, Monco Bunnyi and Xuru and their temporary waters) on the 

southern Tibetan Plateau. The eleven Recent Tibetan Ostracoda (living and 

empty valves). Species-specific ecological requirement is defined by physico-

chemical variables of the waterbody. In samples with increased number of valves (> 

500), the split- method was efficient to evaluate similar associations in equal weight 

of sediments. Assemblages with similar ecological requirements live together in a 

given habitat (by clusters of similar associations). The composition of living 

ostracods is well represented in the empty valves (dead) associations. There are five 

endermic Tibetan fauna are L. sinensis, L. inopinata, L.? dorsotuberosa, 

Fabaeformiscandona gyirongensis and T. gyirongensis and four cosmopolitan 

species are L. inopinata, C. candida H. salina and P. cf. villosa (Akita et al., in press). 

The isolated mountain ecosystems provide higher endermic species with low species 

diversity. This contributes to ecology of ostracods from high-altitude aquatic 

ecosystems. Living ostracods relates to their environment variables (p<0.05), sensitive 

ostracods are indicators for reconstruction of aquatic habitats. 

Living ostracods correlated with environmental variables. The distribution of 

living L. sinensis correlates (p < 0.05) with calcium ions concentration, L. inopinata 

with conductivity, alkalinity, chloride and sulfate ions, T. gyirongensis with 

conductivity, alkalinity, calcium, magnesium, sodium, chloride and sulfate ions, F 

.gyirongensis with water depth. Leucocythere? dorsotuberosa correlates with 

conductivity. Limnocythere inopinata showed broader tolerance to conductivity 

(salinity) tolerance and affinity for high saline waters; indicator for increased 

salinity, L.? dorsotuberosa is an indicator of transition of water bodies, from fresh 

to brackish waters. Environmental salinity (measured as specific conductivity) is the 

key ecological factor influencing ostracod distribution (freshwater, brackish and 

marine faunas) (Van Harten, 1986). Conductivity is also confirmed as the key 

determinant on the distribution of Tibetan ostracods (Mischke et al., 2007; Mischke, 

2012; Akita et al., in press). 

Living ostracod populations dominate a given aquatic habitat and water 

depth: (a) (i) Leucocytherella sinensis dominate Ca-depleted brackish waters and 

common in diverse water bodies; (ii) Leucocythere? dorsotuberosa inhabit fresh to 

brackish waters and deep water  fauna; (iii) Limnocythere inopinata predominates 

mesohaline to polyhaline waters; (iv) Fabaeformiscandona gyirongensis lives 

exclusively in brackish lacustrine deeper waters; (v) Candona candida populates 

freshwaters; (vi) Tonnacypris gyirongensis and Ilyocypris sp. occurs in shallow 

temporary waters; and (vii) Heterocypris incongruens dwells in pond habitats  
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Ostracod associations (cluster of similar associations) and geochemical data 

(stable isotope and elemental composition) distinguish the two types of water bodies 

(lacustrine-brackish and fresh waters) on the southern Tibetan Plateau. Species–

specific ecological preference describe their most favourable ecological niches: (i) in 

standing (lotic) waters and flowing (lentic) waters,; (ii) in the warm shallow 

epilimnion and cold deep waters of lake’s hypolimnion and (iii) permanent and 

temporary water bodies.  

The habitat characteristics of biocoenosis (living assemblage) and 

thanatocoenosis (dead associations) are valuable indicators for environmental 

(past, present and future). and ecological inferences. The ostracod indicator value 

includes evaluation of: (i) sediment depositional environment and (palaeo)-ecology of 

fossil ostracods; (ii) sediment transport processes (via distinguishing autochthonous 

and allochthonous ostracods, shallow and deep water fauna) and (iii) aquatic 

ecosystems dynamics. The key sensitive species are excellent indicators for 

palaeoenvironmental and climate research. The multiple ecological parameters 

(presence-absence of taxa, relative abundance, ecological preferences index, species-

environment relationship, richness and diversity) indicates species-specific 

sensitivity, useful for environmental reconstruction. Each parameter is a valuable 

environmental indicator. The ecology and shell chemistry of Recent ostracods can be 

used to differentiate different types of aquatic habitats on the southern Tibetan Plateau 

(Akita et al., in press; Börner et al., re-submitted). 

Ostracods are sensitive to water depth. The water – depth ostracods indicators 

(L. .? dorsotuberosa and F. gyirongensis) are useful indicators for (palaeo)-water 

depth estimation. They are useful for evaluating the variability of palaeo-lake water 

depth and ancient sediment environment (deposition, modes and transport processes). 

 

6.3.2 Ostracoda as sub-aqueous sediment indicators (chapter 4) 

Ostracods are preserved with their dead remains (microfossils) within sediments 

of the given aquatic habitat. However, the shells can be transported and buried in 

sediments of different habitats. The transformation of biocoenosis (in situ life 

assemblages) to taphocoenos is (dead assemblages including transported by reworked 

remains), helps to recognise transport processes by discriminating autochthonous 

components from allochthonous assemblages. Lacustrine ostracods have not been 

fully utilized in the evaluation of sub-aqueous mass movement and sediment transport 

processes. Benthic communities in lakes are associated with substrate boundaries and 

water depth (Cohen, 2003). The soft bottom and organisms are controlled by water 

turbulence, wave energy and current, influenced by proximity to shoreline (Palmer et 

al., 1997; Cohen, 2003). Lacustrine ostracods are potential tracers of sub-aqueous 

sediment transport especially in deep lakes. This study contributes to the 

sedimentological and micropaleontological evidence of sub-aqueous bottom gravity 

flows (initiated by mass movements such as slump structures, sediment accumulation 

and relocation) in a deep lake, Tangra Yumco (Akita et al., 2015). Sediment 

succession is evidence of palaeo-events (sediment gravity flows, palaeo-flood, 

palaeocurrrents and sea level rise (Penney, 1987). 

The ostracod distribution in turbidites is characterised by four features of 

the conceptual model: (i) proximal (coarser sediment grains) and distal sources 

transport, graded bedding either lacking ostracods or very limited number of ostracod 

valves, compared to underlying and overlying sediments; (ii) ostracods are sorted into 

different sizes distribution (adult/juvenile ratio) with high abundance and high 
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proportion of adult valves of L. sinensis at the base of event-layers; (iii) either lacking 

or extremely low number of ostracod carapaces within the event layers; and (iv) after 

event layer, pioneer opportunistic ostracod assemblages re-colonise the newly formed 

sediment-event habitat, with a gradual transformation to associations similar to 

association existing prior to event.  

Ostracods are good proxies for characterisation of specific sedimentation 

modes and depositional environment due their ability to live (on or in) and to colonise 

bottom sediment of all types of aquatic habitats. Ostracods are good tracers of sub-

aquaeous sediment flow dynamics (e.g., palaeo-currents). 

 

 

6.3.3 Geochemistry of Recent Ostracoda shells (Chapter 3) 

Lacustrine invertebrates dead remains (fossils record) are sources of 

palaeoenvironmental information (Holmes, 1992; Smol, 1992). Ostracod carbonate 

records information because (i) an ostracod moult (ecdysis, shedding of shells) in 

about 6-8 successive larval stages, before they reach adulthood and maturity (Chivas 

et al., 1986b) and (ii) old shells are shed and new ones are secreted producing a rich 

fossil biological remains (Griffiths, 2006). The shedding of larval shells accumulate in 

the bottom sediments of aquatic habitats (if neither damaged nor carried away by 

water movement) (Van Harten, 1986). The fossilized shells provide a snapshot of 

space specific chemical water condition during the time of biomineralisation (Holmes, 

1996). Ostracod shell chemistry is assumed to be in equilibrium with the ambient 

water, chemistry (Holmes, 1996). 

The variability of δ
13

CDIC (enrichment in 
13

C) in different lake system may be due 

to lake basin geomorphology, hydrodynamics and catchment processes. The lagoonal 

waters are more distinct from GMWL due to intensive evaporation in shallow closed 

waterbodies. High δ
18

Oshell in ostracods in lacustrine brackish water conditions and 

higher δ
18

Owater values indicate evaporative enrichment. Low δ
18

Oshell and the very 

negative δ
18

O values of river and spring waters indicate a stable aquatic environment 

with groundwater inflow but no evaporative enrichment (melt water input). The 

δ
18

Oshell positively correlated with δ
18

Owater and total dissolved solids (TDS). 

Therefore, δ
18

Oshell is a reliable indicator for detection of salinity variability. The 

differences in isotopic composition of the ostracod associations may be due to 

species-specific ecological niches, environmental requirements and life cycles. The 

negative offset of L. sinensis and L. inopinata δ
18

Oshell from equilibrium calcite is due 

to valve calcification during the monsoon season. During late spring and summer 

(June to August), the period with higher precipitation (Indian Summer Monsoon), the 

host water has lower oxygen isotope values. 

Chemical composition in both the living associations and Recent shells of L.? 

dorsotuberosa indicates positive correlation with conductivity. Therefore, 

Leucocythere? dorsotuberosa is a good indicator for detection of transition of 

different waters with variable salinity, due to its adaptation to fresh and brackish 

waters (thus confirmed by the aute-ecology, palaeoecology and shell chemistry). 

The correlation of Ba/Cashell and Sr/Cashell with Mg/Cashell, suggest the 

incorporation of both elements (Ba and Sr) to be influenced by the Mg content of the 

ostracod calcite. Mg/Ca is a better indicator for salinity. The trace element 

composition (Mg/Ca and Sr/Ca) of ostracods are reliable indicators for evaluation of 

past precipitation and evaporation and salinity changes. However, application for 
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palaeo-salinity inference must be cautiously interpreted. Ba/Ca is a nutrient indicator. 

Increased decay of organic matter leads to oxygen depletion and a decreased water 

δ
13

CDIC water. This subsequently causes increase in the speciation in redox-sensitive 

ions (Fe, Mn and U) in aquatic environment. 

The geochemistry of Recent ostracod shells is useful chemical tracer for 

reconstruction of (palaeo)-hydrological conditions of aquatic ecosystems on the 

southern Tibetan Plateau. However, a careful inference is required. The basic 

uncertainties in geochemical analysis of ostracods are summaried as (Chivas et al., 

1986b; Chivas et al., 1993; Griffiths and Holmes, 2000); especially for closed lakes: 

I. The Sr/Ca of an ostracod is a function of solute water chemistry (assumes 

a lake has a constant salinity). 

II. The Mg/Ca of an ostracod shell is a function of temperature and solute 

water chemistry (or salinity). 

III. The δ
18

O value of an ostracod shell is a function of 

evaporation/precipitation (thus salinity) and to a minor extent temperature 

in closed lakes. Shallow lake waters have a larger temperature variability 

than deeper waters, influencing the fluctuations in δ
18

O value of shells 

(different associations, phytal verse deeper water fauna). 

The assumptions (II
) 

and (III) are similar but with different response: an increase in 

temperature is related to increase in Mg/Ca but decrease in δ
18

O. But an increased in 

salinity increases Mg/Ca, Sr/Ca and δ
18

O (Chivas et al., 1986b; Chivas et al., 1993; 

Griffiths and Holmes, 2000). 

The element concentrations (e.g., Fe/Ca, Ba/Ca and Mn/Ca ratios of ostracods) 

are good redox indicators for reconstruction of (palaeo)-productivity and trophic 

state of the aquatic ecosystems (Ito et al., 2003a). 

 

6.3.4 Ostracoda evidence of late-Holocene environmental change in 

Tangra Yumco (Chapter 5) 

“We study the past ecological history, with the conscience of the present ecological 

conditions. This is the key to predict future aquatic ecosystem changes” ~ Lailah 

Gifty Akita 

Without knowledge of the past environmental and climate conditions, we cannot 

fully understand the present processes and to predict future changes. The study of 

Late Holocene lake level fluctuations are necessary to understand the lake history in 

response to environmental and climate change. The changes within the lakes are 

indicated by biological, physical and chemical records in the sediments (Digerfeldt, 

1986). Furthermore, lake complex interactions (e. g., climate, physical, chemical and 

biological processes) create significant horizontal and vertical heterogeneity in lake 

sediments (Covich et al., 1999; Lake et al., 2000). 

There are many brackish to saline and alkaline closed lakes in arid regions due to 

increasing evaporation. Closed lakes (there is surface inflow but no outlet) are 

sensitive to climate change. Lake water level fluctuates with monsoon climate 

variability. A change in water level induce changes in lake function, which can be 

detected using chemical, mineralogical, isotopic and biological analysis (Street-

Perrott and Harrison, 1985). Present-day, Tangra Yumco is a closed basin with 

mesohaline salinity of 8.3. We hypothesize that the water volume of Tangra Yumco is 

primary influenced by India monsoon summer precipitation. The two-fold questions 
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are: (i) What is the impact of environmental and climate change in lake ecosystems 

and their biological communities? (ii) How does the biological communities change 

through time?. The late Holocene environmental climatic variability is indicated by 

changes lake water level and ostracod assemblages. The lake water level fluctuates 

due to variability of monsoons in geological time. Change in lake level is associated 

with change in water salinity (thus the role of precipitation and evaporation, P/E, in 

closed lake system) (Street-Perrott and Harrison, 1985). P). Changes in aquatic 

environment are reflected in variation of fossil ostracod assemblages (abundance, 

species richness and diversity, relative abundances). Ostracod assemblages reflect 

modification of aquatic ecosystems through time. “Our ability to reconstruct past 

communities and the history of life hinges on thinking like biologist doing field work 

in ancient environments.”(Vermeij and Herbert, 2004). Change in palaeo-salinity also 

influenced the total assemblages and dominance taxa (thus due to species-specific 

salinity tolerance and optimum requirement). 

The major late Holocene environmental and climatic evolution of Tangra 

Yumco is three-folds: 

(i) The predominance of euryhaline ostracod species, Leucocytherella 

sinensis, suggest highest lake level and lowest salinity (limnetic to β-

oligohaline) linked to relatively high precipitation during a relatively cool 

and wet period in 3300 – 2320 cal B.P. Other proxies are; species 

richness (3), low δ
18

O and Mg/Cashell ratio in L. sinensis shells. But a high 

δ
13

C, high Fe/Mn and high Sr/Ca ratios in L. sinensis shells. 

(ii) The highest ostracod diversity and prevalance of a fresh and brackish 

water fauna, Leucocythere? dorsotuberosa, suggests variable salinity with 

the highest productivity during a falling lake level in warm and dry 

climate from 1740 – 1100 cal B.P. The highest productivity (highest K, 

highest TOC and high TOC/TN) of the lake in this period is associated 

with high ostracod productivity (highest species richness (6) and diversty) 

and 

(iii) The dominant of a more salt tolerant species, Limnocythere inopinata, 

indicates the highest salinity (β-oligohaline to β-mesohaline) linked to the 

lowest lake level caused by low precipitation under a cold and dry 

climate in 1070 – 440 cal B.P. A moderate lake productivity (highest K, 

highest TOC, high TOC/TN) is linked with moderate species richness. 

Other proxies are: species richness (4), high δ
18

O and Mg/Cashell in L. 

inopinata shells. However a low δ
13

C, low Fe/Mn and low Sr/Ca in L. 

inopinata shells. The Little Ice Age occurs in this period. 

 

Multi-proxies (palaeoecology, geochemistry and sedimentology) provide a 

detailed environmental reconstruction (Boomer et al., 2003; Benton and Harper, 2009; 

Mischke et al., 2015). Ostracods are excellent biological indicators for 

environmental reconstructions (e.g., aquatic habitat types, lake level, salinity and 

productivity). The application of the both aute-ecology and (palaeo)-ecology of 

ostracods will help to understand ecosystems and environment climate dynamics on 

the southern Tibetan Plateau. 

The Late Quaternary (the past 20,000 years) is period of rapid environmental and 

climatic changes (Owen, 2000; Hay et al., 2002; Bell and Walker, 2005). The 

hydrological conditions have varied in geological times especially in Quaternary 

(Viviroli and Weingartner, 2004; Mügler et al., 2009a; Günther et al., 2015). The 

monsoon dynamics on different time scales is of great interest due impacts of climate 
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change on water resources (Wang et al., 2014). Proxy records (e.g., pollen and lake 

sediments) indicate relatively warm wet in the early Holocene and cool dry in the mid 

to late Holocene (Gasse et al., 1991; Kashiwaya et al., 1991; Lister et al., 1991; 

Kashiwaya et al., 1995; Van Campo et al., 1996; Zheng et al., 2000a; Herzschuh et 

al., 2009; Herzschuh et al., 2010). 

In Tangra Yumco, a highest lake level (strengthening of monsoon) occurs in 3.3 

to 2.3 cal ka B.P (cold climate) (Long et al., 2012; Rades et al., 2013b; Akita et al., 

submitted-b). A falling lake level (weakening of monsoon) begins after 2.6 cal ka 

B.P and persistent until 1.0 - 0.4 cal ka B.P. (warm dry climate) (Rades et al., 

2013b; Miehe et al., 2014; Ahlborn et al., 2015b; Akita et al., submitted-b). A cold 

dry early Holocene (aridity), cool wet middle Holocene and warm dry late 

Holocene in Tangra Yumco (Kong et al., 2011a; Long et al., 2012; Rades et al., 

2013b; Miehe et al., 2014; Ahlborn et al., 2015b; Akita et al., submitted-b). The 

Holocene environmental and climate fluctuations in Tangra Yumco is also 

observed other lake systems (e.g., Taro Co, Xuru Co and  Nam Co) on the southern 

Tibetan Plateau) (Xu et al., 2006; Cao et al., 2009; Kasper et al., 2012; Ma et al., 

2014b). 

 

 

6.4 Conclusion 

 

“The present defines the future. The future builds on the foundation of the past” 

 ~ Lailah Gifty Akita 

 

 

Understanding the ancient environment requires the knowledge of present 

ecosystems and their fauna (Hardie et al., 1978). This study contributes to numerical 

data (ecological, physico-chemical and geochemical) to Ostracoda database 

(especially from Eurasia region, which is rarely available). 

A total of eleven Recent Ostracoda were found in an ancient large brackish lake, 

Tangra Yumco and adjacent waters. The Recent ostracod associations (living plus 

dead ) are (Akita et al., in press): Leucocytherella sinensis Huang, 1982 (58 %), 

Limnocythere inopinata (Baird, 1843) (18.5%), Tonnacypris gyirongensis (Yang, 

1982) (12.0 %), Leucocythere? dorsotuberosa Huang, 1982 (3.5%), 

Fabaeformiscandona gyirongensis (Huang, 1982) (2.5 %), Candona candida (O.F. 

Müller, 1776) (2.2 %), Ilyocypris sp., (1.6 %), Candona xizangensis Huang, 1985 (1.0 

%), Heterocypris incongruens (Ramdor, 1808), (0.1 %), Heterocypris salina (Brady, 

1868) and Potamocypris cf. villosa (Jurine, 1820). The Recent ostracods are still 

living (excluding two species, Candona xizangensis and Potamocypris cf. villosa, 

only empty shells found at time of sampling). 

The newly calibrated stable isotope and elemental composition of Recent 

ostracod shells (δ
13

C and δ
18

O, Mg/Ca, Sr/Ca, Fe/Ca, Mn/Ca and U/Ca) and ambient 

water are valuable indicators for (palaeo)-environmental reconstruction (e.g., 

salinity, redox and oxygen conditions). 

Ostracods are good indicators of sediment dynamics, past water flow dynamics 

caused palaeo-bottom currents.  

Salinity influences distribution (presence/absence) and abundance of both Recent 
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and fossil ostracod assemblages compositions. The paleoecology fossil assemblages 

relates to ecology of Recent fauna. This confirms the assumption that fossil 

assemblages relates to the living communities. Change in aquatic environment is 

reflected in variation of fossil ostracod assemblages (abundance, richness and 

diversity). Ostracod assemblages (total assemblage and individual taxon) reflect 

modification of aquatic ecosystems through time. 

 

The key findings are summarised as (Fig. 4): 
 

I. Ostracod distribution (living fauna) relate significantly (p <0.05) to their 

environmental parameters (conductivity, alkalinity, water depth and water 

types). 

II. Conductivity and water types primarily influence ostracod presence 

and abundance in a particular aquatic habitat. 

III. The multiple ecological parameters (e.g., presence and absence, 

abundance, indicator sensitive species, ecological preference index, 

species-environment relationship species richness, and diversity) are good 

indicators for environmental reconstructions. 

IV. Distinctive ostracod assemblages significantly (p<0.05) characterised 

specific aquatic habitats. 

V. Habitat characteristics of Recent Ostracoda (living and empty valves) 

provide a new ecological data-base of microcrustaceans in high-

mountain ecosystems. The basis for palaeoenvironmental and climatic 

reconstruction in Eurasia region.  

VI. The aute-ecology of modern ostracods is needed for reconstruction of 

palaeoecology of fossil remains. Individual taxon sensitive indicator 

value is excellent biomarker for palaeolimnology, palaeoenvironmental 

and climate reconstructions. 

VII. The geochemistry of four Recent ostracod shells is a good chemical 

tracers for (palaeo)-salinity and (palaeo)-hydrology and aquatic trophic 

conditions. 

VIII. Ostracods are reliable indicators of sediment flow dynamics (e.g., and 

palaeocurrents and palaeofloods) in deep lake system. The sediment modes 

(events layers; turbidites and debrite flow) can be characterised by 

ostracods and sedimentological features). 

IX. Climate change drives environmental and ecosystem dynamics. 

X. The Indian Summer Monsoon climate controlled lake water fluctuation 

through. Late Holocene. Change in lake water level influenced the change 

in sedimentologicaly, geochemical and organism (e.g., ostracods, small 

benthic fauna). 

XI. The composition (total assemblages and individual taxa) and shell 

chemistry of ostracod shells showed response to Late Holocene 

environmental and climate variability. Each species have limited range of 

environmental requirements. 

XII. Aute-ecology of Recent Ostracoda allowed the palaeoecological inference 

of fossil ostracod assemblages. Habitat characteristics of Recent Ostracoda 

enabled reconstruction of ancient environment, palaeo-ecology and 

climate. 
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XIII. Multiple proxies (e.g., sedimentology, geochemistry and 

micropalaeontology) allowed holistic environmental and climate 

inferences. 

 

 

The ecology and geochemistry of Recent Ostracoda are excellent 

environmental indicators for reconstructions on Tibetan Plateau. The 

palaeoecology of ostracods is evidence of past environmental and climate variability 

through time. The new ecological Ostracoda database is useful for policy 

formulation in biodiversity conservation, ecosystem management and environmental 

protection. Environmental stewardship, freshwater resource managers and 

community-based resource management are needed for sustainable management of 

water resources. 

 

 
Fig. 4 Summary of research outcome: ostracod as bioloigical indicators for 

environmental reconstruction. 
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6.5 Future Research 

“Every action in the present prepares us for the future.” ― Lailah Gifty Akita 

 

The existing database (ecological and geochemical data of Recent Ostracoda) is 

fundamental need in palaeoenlimnological investigations and will help identify long-

term ecosystem changes on the southern Tibetan Plateau. Effective ecosystem 

management involves data management of both modern and historical records and 

continuing research. Long-term ecological monitoring will help to understand 

environmental and climate dynamics (Elliot, 1990; Smol, 1992). 

The use of different methods of sampling (e.g., box corer, Birge-Ekman box corer, 

and plankton net) will improve the ability to detect species heterogeneity (patchiness) 

in spatial and temporal distribution of  meiobenthic crustaceans (e.g., ostracods) 

(Morrisey et al., 1992). 

A detailed biological taxonomy is essential for species identification and estimation 

of environmental data (Birks and Birks, 1980). 

The physiology and reproductive strategy of Tibetan ostracods are poorly known. 

Life history affects morphology and dynamics of species, fossil assemblages and their 

interpretation (Vermeij and Herbert, 2004). Knowledge of life cycle of living Tibetan 

ostracods and seasonal ecology will provide information on physiological response 

and reproductive adaptive strategies. This is urgently needed for interpretation of 

variability in species-specific isotopic fractionation, vital effect  

The first attempt to culture living Tibetan ostracods in the laboratory of the 

Institute of Geoscience, University of Jena, Germany were moderately successful; 

cultures survived only 2 – 3 months. There is a need for laboratory culture of living 

Tibetan ostracods to study their behaviour, reproductive behavior and life-span. 

Laboratory exposure of living Tibetan ostracods to different environmental 

parameters (e.g., salinity) will also help to establish ecological tolerances. 

Although, calcification of carbonate calcite is assumed to equilibrium with water 

chemistry, disequilibrium occurs for species-specific fractionation. Knowledge about 

shell chemistry of living ostracods and their water chemistry will support better 

understanding of species-specific vital effects in biomineralisation. Inter-laboratory 

calibration of stable and trace element analyses of ostracod calcite is needed for 

accurate palaehydrological inferences. The analysed species are selected due to 

availability of adequate valves for shell chemistry. Laboratory test of species-specific 

vital effects is needed to establish a relationship of ostracod valve and water ionic 

chemistry, and to distinguish types of water bodies. Furthermore, geochemical 

analyses of multiple fossil ostracod species from the same depth (thus with adequate 

shell preservation), in a sediment core, will provide species-specific hydrological 

response in a given historical time. 

The first attempt to investigate the interstitial depth-distribution of L. inopinata in 

sediment cores from lagoon-like waters connected to Tangra Yumco, indicate a depth 

distribution to 25 m. Analyses of additional sediment cores from this lagoon will help 

to establish the water-depth distribution in shallow-waters. There is a need to test the 

depth distribution of L. inopinata and associated shell chemistry; this would help 

understand the relationship of pore waters and lake waters. This should give a better 

understanding of the ostracod shell relationship with δ
13

CDIC water. 

Ostracod assemblage variables (e.g., abundance, adult to valve ratio of L. 

sinensis) can successfully describe past bottom currents and mass transport (e.g., 

turbidities). However, reevaluation of carapace and adult valve proportions of 



  

 
261 

ostracods in sediment events could provide knowledge on sediment transport origins. 

The mechanisms (e.g., volcanic activity) which trigger mass movement in Tangra 

Yumco The potential of ostracods as subaqueous sediment tracers, should be re-

evaluated, by analyses of additional sediment cores from Tangra Yumco and other 

deep lacustrine basins on the southern Tibeta Plateau. Soil information processes 

(e.g., climate and organisms), must be considered in the interpretation of massive 

sediment deposition. 

The stratigraphic and biostratigraphic sequence provided units and zones of 

specific depositional environment. However, a complete palaeoenvironmental 

inference is still unavailable due to large data gaps in sediment records induced by 

unfavorable environment and climate (Hardt et al., 2007; Benton, 2009). Although it 

constrained by missing data gaps and inadequate shell preservation (biological 

evidence), it is still an essential window into the past environmental, ecological 

and climatic conditions. 

The Late Holocene environment and climate condition of Tangra Yumco covers 

the last 3,300 years. Pleistocene (longer time scale) sediment cores from Tangra 

Yumco must be analysed to complete understanding of the Quaternary environmental 

and climate changes on the southern Tibetan Plateau.  

The biogeochemical processes of Tibetan lakes and their catchment are still 

largely unknown. The different interactions (e.g., climate, biology, hydrology, 

primary productivity, catchment and water column processes, etc.) that affect the 

function and structure of lake systems and their biota, when investigated, should 

provide a good understanding for precise palaeo-inferences. 
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Appendix A-4 

from: Quaternary 

Research <kesp@u.washington.edu> 

to: lailah.lailah@gmail.com, 

lailahakita@uni-jena.de 

 

date: Wed, Nov 18, 2015 at 11:05 AM 

subject: Submission Confirmation 

 

Dear Mrs. Akita, 

 

Your submission entitled "Ostracoda as environmental indicators of Late-Holocene 

climate variability in the brackish lake, Tangra Yumco on the southern Tibetan 

Plateau" has been received by Quaternary Research 

 

You may check on the progress of your paper by logging on to the Elsevier Editorial 

System as an author. The URL is http://ees.elsevier.com/yqres/. 

 

Your manuscript will be given a reference number once an Editor has been assigned. 

 

Thank you for submitting your work to this journal. 

 

Kind regards, 

 

Elsevier Editorial System 

Quaternary Research 

Research Pape 
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Appendix A-4 

From: Quaternary Research <kesp@u.washington.edu> 

to: lailah.lailah@gmail.com, lailahakita@uni-jena.de 

date: Wed, Nov 18, 2015 at 1:18 PM 

subject:  A manuscript number has been assigned: YQRES-D-15-00229 

 

Dear Mrs. Akita, 

 

Your submission entitled "Ostracoda as environmental indicators of Late-Holocene 

climate variability in the brackish lake, Tangra Yumco on the southern Tibetan 

Plateau" has been assigned the following manuscript number: YQRES-D-15-00229. 

 

You may check on the progress of your paper by logging on to the Elsevier Editorial 

System as an author. The URL is http://ees.elsevier.com/yqres/. 

Thank you for submitting your work to this journal. 

Kind regards, 

Karin Perring 

Managing Editor 

Quaternary Research 

 

mailto:lailah.lailah@gmail.com


Appendix I  Sample ID (year, month), locality, date coordinates, and physico-chemical environmental variables 

Sample ID 

(yr, no) 

Locality Date Latitude 

 (N) 

Longitude  

(E) 

Elevation 

(m, a.s.l) 

WD CD WT pH O2 Al 

9_41 

Tangra 

Yumco 9/6/2009 31°15'822'' 86°38'571'' 4554 56 12476 2.6 7.1 12.2 24.7 

9_43 

Tangra 

Yumco 9/6/2009 31°27'136'' 86°65'598'' 4550 8.6 12806 12.8 10.2 10.5 10.6 

9_44 

Tangra 

Yumco 9/7/2009 31°27'136'' 86°65'598'' 4550 110 12638 2.2 7.5 10.8 28.0 

9_46 

Tangra 

Yumco 9/7/2009 31°26'617'' 86°64'262'' 4550 23 12447 3.7 12.8 8.0 20.3 

9_49 

Tangra 

Yumco 9/7/2009 31°26'146'' 86°63'306'' 4550 13.4 12815 12.6 10.3 10.4 15.5 

9_51 

Tangra 

Yumco 9/8/2009 31°37'06'' 86°66'287'' 4550 0.2 12724 12.4 10.3 9.6 23.8 

9_52 

Tangra 

Yumco 9/8/2009 31°37'062'' 86°66'854'' 4547 0.4 12806 12.79 10.21 10.46 10.58 

9_53 

Tangra 

Yumco 9/8/2009 31°26'592'' 86°63'644'' 4548 0.2 77 19.8 9.2 NA 40 

10_7 

Tangra 

Yumco 9/17/2010 NA NA NA 0.3 10950 18.1 9.5 6.6 32.6 

10_8 

Tangra 

Yumco 9/19/2010 31°14'534'' 86°42'868'' 4540 223 12500 2.4 10.0 4.6 33.6 

11_1 Xuru Co 9/10/2011 30°17'24'' 86°27'41'' 4708 0.1 975 13.5 9.6  158.0 

11_2 

Tangra  

Yumco 9/12/2011 31°26'186'' 86°63'557'' 4546 0.2 11900 13.2 9.8 3.9 40.0 

11_4 

Tangra  

Yumco 9/12/2011 31°25'812'' 86°63'159'' 4546 9.3 11870 13.6 9.6 3.2 40.0 

11_6 

Tangra  

Yumco 9/12/2011 31°23'434'' 86°63'280'' 4546 20.5 11880 13.5 9.6 3.5 40.0 

11_7 

Tangra  

Yumco 9/12/2011 31°23'417'' 86°63'218'' 4546 7.3 11850 13.3 9.7 3.9 41.0 

11_10 

Tangra  

Yumco 9/12/2011 31°26'692'' 86°63'619'' 4550 0.05 159 13.7 9.7 4.2 1.6 

WD = water depth[m], CD = conductivity [µS/cm], water temperature [
O

C], O2 = dissolved oxygen concentration [mg/l], A lkalinity [mmol/l], NA = not available  
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Sample ID 

(yr, no) 

Locality Date Latitude  

(N) 

Longitude  

(E) 

Elevation 

(m, a.s.l) 

WD CD WT pH DO Al 

11_11 

Tangra  

Yumco 9/12/2011 31°26'623'' 86°63'642'' 4546 0.1 165 14.1 9.4 4.8 1.8 

11_12 

Tangra  

Yumco 9/12/2011 31°26'623'' 86°63'642'' 4546 0.1 165 14.1 9.4 4.8 1.8 

11_13 

Tangra  

Yumco 9/12/2011 31°15'5784'' 86°38'1161'' 4546 0.1 296 13.9 9.4 6.2 2.0 

11_14 

Tangra  

Yumco 9/12/2011 31°15'596'' 86°38'1213'' 4550 0.2 143 11.9 9.5 6.3 1.4 

11_15 

Tangra  

Yumco 9/12/2011 31°16'023'' 86°38'1131'' 4546 0.1 141 11.4 9.6 6.8 1.3 

11_16 

Tangra  

Yumco 9/13/2011 31°27'001'' 86°.63'962'' 4546 15.5 11940 12.9 9.9 4.1 39.0 

11_18 

Tangra  

Yumco 9/13/2011 31°27'158'' 86°64'011'' 4546 20.4 11880 13.2 9.7 3.6 45.2 

11_20 

Tangra  

Yumco 9/13/2011 31°27'295'' 86°63'913'' 4550 9.4 11960 13.4 9.6 4.3 39.0 

11_22 

Tangra  

Yumco 9/13/2011 31°27'834'' 86°63'860'' 4550 8.4 11890 13.6 9.6 3.5 40.0 

11_25 

Tangra  

Yumco 9/13/2011 31°28'021'' 86°64'125'' 4550 17 11900 13.1 9.6 NA 41.0 

11_27 

Tangra  

Yumco 9/14/2011 31°26'591'' 86°63'638'' 4546 0.05 156 11.1 10.2 4.5 40.7 

11_28 

Tangra  

Yumco 9/14/2011 31°26'591'' 86°63'638'' 4546 0.2 9370 13.6 10.2 7.0 40.7 

11_29 

Tangra  

Yumco 9/14/2011 31°26'668'' 86°63'580'' 4551 0.1 141 11.4 9.6 6.8 1.3 

11_60LB 

Tangra  

Yumco 9/16/2011 31°26'629'' 86°63'649'' 4552 0.5 165 15.3 10.1 5.6 1.8 

11_61LB 

Tangra  

Yumco 9/16/2011 31°26'630'' 86°63'648'' 4552 0.5 275 14.9 10.1 6.7 1.8 

11_61LB 

Tangra  

Yumco 9/16/2011 31°26'630'' 86°63'648'' 4552 0.5 275 14.9 10.1 6.7 1.8 

WD = water depth[m], CD = conductivity [µS/cm], water temperature [
O

C], O2 = dissolved oxygen concentration [mg/l], A lkalinity [mmol/l], NA = not available  
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Sample 

ID(yr, 

no 

Locality Date Latitude 

(N) 

Longitude 

(E) 

Elevation 

(m, a.s.l) 

WD CD WT pH DO Al 

11_63LB 

Tangra  

Yumco 9/16/2011 31°26'632'' 86°63'668'' 4552 0.1 172 14.3 10.0 5.4 1.8 

11_64LC 

Tangra  

Yumco 9/16/2011 31°26'630'' 86°63'680'' 4552 0.1 163 14.0 10.0 5.1 1.8 

11_65LA  

Tangra  

Yumco 9/16/2011 31°26'649'' 86°63'990'' 4553 0.1 169 14.0 10.0 6.8 2.0 

11_66LC 

Tangra  

Yumco 9/16/2011 31°26'654'' 86°63'703'' 4553 0.1 974 15.1 10.0 9.3 1.6 

11_67LC 

Tangra  

Yumco 9/16/2011 31°26'668'' 86°63'580'' 4551 0.1 167 14.2 10.0 6.8 1.6 

11_68LB 

Tangra  

Yumco 9/16/2011 31°26'694'' 86°.63'618'' 4561 0.1 170 14.5 10.0 6.7 1.6 

11_69LC 

Tangra  

Yumco 9/16/2011 31°26'710'' 86°53'585'' 4561 0.1 167 13.5 10.0 7.8 1.6 

11_70LA  

Tangra  

Yumco 9/16/2011 31°26'738'' 86°63'530'' 4561 0.1 166 12.1 10.1 7.4 1.6 

11_71LA  

Tangra  

Yumco 9/16/2011 31°26'971'' 86°63'509'' 4559 0.1 181 10.9 10.0 8.9 1.6 

11_72LA  

Tanqung 

Co  9/17/2011 31°35'45'' 86°42'49'' 4528 0.1 1135 16.8 9.2 2.2 9.2 

11_73 

Tanqung 

Co  9/17/2011 31°35'45'' 86°42'49'' 4528 0.1 144800 17.2 9.7 2.0 344.0 

11_74 

Tanqung 

Co  9/17/2011 31°61'542'' 86°74'274'' 4517 0.1 600 16.7 10.1 5.4 4.6 

11_75B 

Tanqung 

Co  
9/17/2011 

31°60'109'' 86°79'203'' 4510 0.15 910  9.3 4.2 8.2 

12_1 Xuru Co 6/14/2012 30°24'389'' 86°22'326'' 5091 0.2 124 12.9 8.2 4.5 1.7 

12_22 

Tangra 

Yumco 

 

6/17/2012 30°95'028'' 86°45'146'' 4546 0.01 12400 13.0 9.4 6.5 55.0 

12_23 

Tangra 

Yumco 
6/17/2012 

30°94'983'' 86°45'187'' 4546 0.15 12120 17.1 9.4 5.7 57.0 

12_24 

Tangra 

Yumco 
6/17/2012 

30°94'861 86°44'997'' 4539 0.05 32500 20.6 9.0 6.7 120.0 

            

WD = water depth[m], CD = conductivity [µS/cm], water temperature [
O

C], O2 = dissolved oxygen concentration [mg/l], A lkalinity [mmol/l], NA = not available  
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Sample 

ID  

(yr, no.) 

Locality Date Latitude 

(N) 

Longitude 

(E) 

Elevation 

(m, a.s.l) 

WD CD WT pH DO Al 

12_26 

Tangra 

Yumco 
6/17/2012 

30°56'133'' 86°26'555'' 4531 0.05 12920 22.3 9.0 5.2 56.0 

12_29 

Tangra 

Yumco 
6/17/2012 

31°09'034'' 86°48'808'' 4590 0.01 5140 24.4 6.8 1.3 71.0 

12_35 

Tangra 

Yumco 
6/19/2012 

31°10'423'' 86°57'168'' 4742 0.01 314 9.4 8.0 6.2 2.6 

12_36 

Tangra 

Yumco 
6/19/2012 

31°10'514'' 86°57'208'' 4761 0.02 283 8.7 7.9 5.1 2.7 

12_37 

Tangra 

Yumco 
6/19/2012 

31°26'590'' 86°63'638'' 4546 0.05 11890 13.1 9.4 7.1 46.0 

12_39 

Monco 

Bunnyi 
6/21/2012 

30°36'599'' 86°15'446'' 4696 0.05 3860 20.6 9.5 6.1 40.5 

12_40 

Monco 

Bunnyi 
6/21/2012 

30°36'596'' 86°15'448'' 4692 0.05 1349 23.0 9.3 6.6 19.5 

12_41 

Monco 

Bunnyi 
6/21/2012 

30°36'591'' 86°15'446'' 4694 0.1 3980 25.0 9.4 7.6 32.9 

12_42 Xuru Co 
6/22/2012 

30°23'205'' 86°24'145'' 4785 0.2 150 11.5 8.3 6.0 2.4 

12_43 Xuru Co 
6/22/2012 

30°22'585'' 86°24'239'' 4730 0.1 3610 11.0 9.3 6.8 27.0 

12_47 Xuru Co 
6/22/2012 

30°21'455'' 86°29'114'' 4738 0.08 3680 25.7 9.0 6.3 28.5 

12_50 Xuru Co 
6/22/2012 

30°21'388'' 86°29'52'' 4733 0.05 3830 15.6 9.4 6.0 13.0 

12_52 Xuru Co 
6/23/2012 

30°17'244'' 86°27'421'' 4727 0.09 4190 9.1 8.9 6.6 28.0 

12_52 Xuru Co 6/23/2012 30°17'244'' 86°27'421'' 4727 0.09 4190 9.1 8.9 6.6 28.0 

12_53 Xuru Co 6/23/2012 30°17'302'' 86°27'443'' 4727 0.1 5610 15.3 9.7 5.7 26.5 

12_57 Xuru Co 6/23/2012 30°10'68'' 86°26'177'' 4731 0.2 178 23.6 9.3 8.6 1.4 

12_58 Xuru Co 6/23/2012 30°10'5'' 86°26'157'' 4736 0.08 231 21.2 9.3 6.3 1.6 

12_63 Xuru Co 6/24/2012 30°22'325' 86°27'880' 4720 78 4220 8.0 9.0 6.0 15.6 

WD = water depth[m], CD = conductivity [µS/cm], water temperature [
O

C], O2 = dissolved oxygen concentration [mg/l], A lkalinity [mmol/l], NA = not available 

 



Appendix IIa  Sample ID (year, month), locality, water type, sediment type, presence of ostracods (live), phyta and other fauna (live) 

 

 

Sample Locality Water type Sediment type Phytal cover Presence of ostracods 

(live ) 

 

Other fauna (live) 

9_41 Tangra Yumco lake mud     

9_43 Tangra Yumco lake mud  grass, 20% phytal  L. sinensis, F. gyirongensis chironomids 

9_44 Tangra Yumco lake mud     

9_46 Tangra Yumco lake mud     

9_49 Tangra Yumco lake mud  grass, 30% phytal    chironomids 

9_51 Tangra Yumco lake brown mud    

9_52 Tangra Yumco lake sandy gravel plants L. sinensis , L. dorsotuberosa , L. inopinata  

9_53 Tangra Yumco lake sandy gravel green algae L. sinensis , T. gyirongensis water insects 

10_7 Tangra Yumco lake silt, plant 

residues 

   

10_8 Tangra Yumco lake silt    

11_1 Xuru Co estuary sandy  

gravel 

 L. sinensis, Ilyocypris sp., T. gyirongensis chironomids, cladocera 

isopods, copepods, fish 

11_2 Tangra Yumco lake light brown 

mud  

 L. sinensis, L. dorsotuberosa, Ilyocypris sp. chironomids 

11_4 Tangra Yumco lake light brown - 

dark yellow 

mud  

30% phytal, 

potamogeton 

L. sinensis, L. inopinata chironomids  

insects 

11_6 Tangra Yumco lake brown mud, 

sand 

 L. sinensis, L. dorsotuberosa , L. inopinata  

11_7 Tangra Yumco lake brown mud, 

sand 

70% phytal, 

potamogeton 

L. sinensis , L. inopinata chironomids 

11_9 Tangra Yumco lake medium sand, 

mud  

   

11_10 Tangra Yumco river gravel    chironomids 

11_11 Tangra Yumco estuary mud, gravel, 

bacteria films  

 T. gyirongensis  

11_12 Tangra Yumco  estuary mud, gravel, 

bacteria films  

bacteria films  T. gyirongensis  

11_13 Tangra Yumco  estuary mud, gravel  T. gyirongensis chironomids 

11_14 Tangra Yumco river gravel   L. sinensis, T. gyirongensis chironomids 

11_15 Tangra Yumco river gravel   L. sinensis, T. gyirongensis, C. candida chironomids 

11_16 Tangra Yumco lake dark - grey 

mud  

40% potamogeton L. sinensis, L. inopinata, F. gyirongensis chironomids 
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Sample Locality Water type Sediment type Phytal cover Presence of ostracods  

( live) 

Other fauna (live) 

11_18 Tangra Yumco lake brown - dark  

grey mud  

potamogeton L. sinensis, L. inopinata, F. 

gyirongensis 

 

11_20 Tangra Yumco lake  brown – dark 

 grey mud 

20% potamogeton L. sinensis, L. dorsotuberosa, 

L. inopinata 

chironomids, gammarids 

11_22 Tangra Yumco lake brown - dark  

grey mud  

30% potamogeton L. sinensis, L. dorsotuberosa 

L. inopinata , T. gyirongensis 

chironomids 

11_25 Tangra Yumco lake dark - light  

brown mud 

potamogeton L. sinensis, T. gyirongensis  

11_27 Tangra Yumco lagoon sandy gravel   chironomids 

11_28 Tangra Yumco lake gravel, interstitial   chironomids 

11_29 Tangra Yumco river gravel,  interstitial  T. gyirongensis chironomids 

11_60LB Tangra Yumco estuary fine sand , silt, gravel, 

detritus 

brown algae  T. gyirongensis chironomids 

11_61LB Tangra Yumco estuary fine sand, 

gravel 

green filamentous 

algae 

T. gyirongensis chironomids 

11_63LB Tangra Yumco estuary sandy gravel  T. gyirongensis chironomids 

11_64LC Tangra Yumco estuary fine sand, gravel, 

detritus 

brown algae  T. gyirongensis 

chironomids 

11_65LA  Tangra Yumco estuary  grey - sandy gravel, 

(stones) 

 L. sinensis, T. gyirongensis chironomids 

11_66LC Tangra Yumco estuary 

brown - dark grey sand 

 potamogeton, brown 

algae 

T. gyirongensis  

11_67LC 

Tangra Yumco 

river dark - grey sandy 

gravel 

 T. gyirongensis  

11_68LB Tangra Yumco river grey sandy gravel  T. gyirongensis gammarids 

11_69LC Tangra Yumco river 

sandy gravel, detritus 

filamentous green 

algae 

L. sinensis, T. gyirongensis  

11_70LA  

Tangra Yumco 

river 

sandy gravel 

green filamentous 

algae, chlorophytes 

T. gyirongensis  

11_71LA  Tangra Yumco river sandy gravel   chironomids 

11_72LA  Tangqung Co spring 

fine sand, mud 

green algae, brown 

algae 

 chironomids 

11_73 Tangqung Co lake grey dark sand    

11_74 Tangqung Co river coarse sand, gravel  L. sinensis  
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Sample Locality Water type Sediment type  Phytal cover Presence of ostracods 

( live) 

 

Other fauna (live) 

11_75B Tangqung 

Co  

pond organic matter 

100% 

Kobresia, filamentous 

green algae, 100% phytal 

Ilyocypris sp. T. gyirongensis, C. 

candida, H. incongruens 

chironomids, 

copepods 

12_1  Xuru Co  river coarse sand, Kobresia 10%  chironomids 

12_22 Tangra 

Yumco 

lagoon sandy gravel,  

clay 

 L. inopinata  

12_23 Tangra 

Yumco 

lagoon sandy mud, 

gravel 

5% phytal L. inopinata  

12_24 Tangra 

Yumco 

lake clay  

limestone 

potamogeton   

12_26 Tangra 

Yumco lake 

brown mud, clay, 

dark soil 40% potamogeton 

 chironomids, 

12_29 Tangra 

Yumco spring 

sandy gravel, 

dark soil 

algae (red and green) T. gyirongensis  

12_35 Tangra 

Yumco spring 

sandy gravel, 

dark soil 

80% grasses, algae T. gyirongensis chironomids,copepods 

12_36 Tangra 

Yumco 

spring 

coarse sand 

15% brown algae   

12_37 Tangra 

Yumco lake sandy gravel 

   

12_39 Monco 

Bunnyi 

lake 

sandy gravel 

   

12_40 Monco 

Bunnyi 

lagoon 

sandy gravel 

 L. sinensis, L. inopinata chironomids, 

12_41 Monco 

Bunnyi 

lagoon sandy  

gravel 

plants, grass L. inopinata chironomids 

12_42 Xuru Co river sandy gravel   chironomids 

12_43 Xuru Co lake sandy gravel    

 

 

 

 

 

 

 

 



 

 

Appendix IIa  Continued  

 

Sample Locality Water type Sediment type  Phytal cover Presence of ostracods  

( live) 

 

Other fauna (live) 

12_47 

Xuru Co lagoon 

sandy  

gravel 

70% reddish brown 

algae 

L. sinensis chironomids 

12_50 

Xuru Co 

lagoon sandy  

gravel 

brown filamentous 

algae 

L. sinensis, L. dorsotuberosa oligochaeta, cladocerans, 

chironomids 

12_52 Xuru Co lake sandy gravel    

12_53 Xuru Co lagoon muddy clay, h igh 

organic content 

grasses 50% 

potamogeton? 

Ilyocypris sp.  

12_57 Xuru Co pond sandy 

 mud brown algae  

T. gyirongensis, C. candida, 

H. incongruens 

fishes, chironomids, 

oligochaeta 

12_58 Xuru Co pond  sandy gravel plants, brown algae L. sinensis, T. gyirongensis  

12_63 Xuru Co  lake brown mud    
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Sample Locality Water 

type 

Sediment type  Phytal cover Fauna 

9_41 Tangra Yumco lake mud   

9_43 Tangra Yumco lake 
mud 

grass, 20% 

phytal 

chironomids 

9_44 Tangra Yumco lake mud   

9_46 Tangra Yumco lake mud   

9_49 Tangra Yumco lake 
mud 

grass, 30% 

phytal  

chironomids 

9_51 Tangra Yumco lake brown mud   

9_52 Tangra Yumco lake sandy gravel plants  

9_53 Tangra Yumco lake sandy gravel algae water insects 

10_7 Tangra Yumco lake silt , plant 
residues 

  

10_8 Tangra Yumco lake silt   

11_1 Xuru Co estuary/l

agoon sandy gravel 
 Chironomids, isopods, 

copepods, fish 

11_2 Tangra Yumco lake light brown mud   

11_4 Tangra Yumco lake light brown - dark 
yellow mud 

30% phytal, 

potamogeton 

chironomids  

insects 

11_6 Tangra Yumco lake brown mud, sand   

11_7 Tangra Yumco lake 
brown mud, sand 

70% phytal, 

Potamogeton 

chironomids 

11_9 Tangra Yumco lake medium sand, 
mud 

  

11_10 Tangra Yumco river gravel    

11_11 Tangra Yumco estuary/l

agoon 
mud, gravel, 
bacteria films 

  

11_12 Tangra Yumco  estuary/l

agoon 
mud, gravel, 
bacteria films 

bacteria films   

11_13 Tangra Yumco  estuary/l

agoon mud, gravel 
  

11_14 Tangra Yumco river gravel    

11_15 Tangra Yumco river gravel    

 

11_16 

Tangra Yu mco lake 
dark - grey mud 

40% 

potamogeton 

chironomids  

11_18 Tangra Yumco  lake brown - dark grey 
mud 

potamogeton  

11_20 Tangra Yumco  lake  brown - dark grey 
mud 

20% 
potamogeton 

chironomids, Gammarids 

11_22 Tangra Yumco  lake brown - dark grey 
mud 

30% 
potamogeton 

chironomids  
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Sample  Locality Water type Sediment type Phytal cover  
11_25 Tangra Yumco lake dark - light brown 

mud 
potamogeton 

11_27 Tangra Yumco estuary/lagoon sandy gravel  

11_28 Tangra Yumco lake gravel   
11_29 Tangra Yumco river gravel   
11_60LB Tangra Yumco estuary/lagoon fine sand , silt, 

gravel, detritus 

brown algae 

11_61LB Tangra Yumco estuary/lagoon 
finesand,  gravel 

green algae, 
filamentous 

11_63LB Tangra Yumco estuary/lagoon sandy gravel  

11_64LC Tangra Yumco estuary/lagoon fine sand, gravel, 
detritus 

brown algae 

11_65LA Tangra Yumco estuary/lagoon  grey - sandy gravel, 

stones 

 

11_66LC Tangra Yumco estuary/lagoon brown-dark grey 
sand 

green plants, brown 
algae 

11_67LC 

Tangra Yumco 

river dark -grey sandy 

gravel 

 

11_68LB Tangra Yumco river grey sandy gravel  

11_69LC Tangra Yumco river sandy gravel, 
detritus 

filamentous green 
algae  

11_70LA 

Tangra Yumco 

river 

sandy gravel 

green fi lamentous 

algae chlorophytes 
11_71LA Tangra Yumco river sandy gravel chironomids 

11_72LA Tanqung Co spring 
fine sand, mud 

green algae, brown 
algae 

11_73 Tanqung Co lake grey dark sand  

 

 

Tanqung Co river 

 coarse sand, gravel 

 

11_75B 

Tanqung Co 

pond 
organic matter 
(100%) 

Kobresia, 
filamentous green 
algae, 100%  Phytal 

12_1  Xuru Co  river/stream coarse sand, Kobresia 10% 
12_22 Tangra Yumco estuary/lagoon sandy gravel, clay  

12_23 Tangra Yumco estuary/lagoon sandy mud, gravel 5% Phytal 

12_24 Tangra Yumco lake clay limestone potamogeton 
12_26 Tangra Yumco 

lake 
brown mud, clay, 
dark soil 40% potamogeton  

12_29 Tangra Yumco 

river 

sandy gravel,  dark 

soil 

algae (red and 

green) 
12_35 Tangra Yumco 

spring 

sandy gravel, dark 

soil 

80% grasses & algae 



Appendix III  Sample ID, account data for live ostracods (total valves) 

Ls = L. sinensis , Ld = L. dorsotuberosa, Il = Ilyocypris sp, Ln =  L. inopinata, Tg = T. gyirongensis ; Cz =  Candona 

xizangensis; Fg = F. gyirongensis; Cc = candona candida, Hc = H. incongruens, Pv = Potamocypris cf. villosa 

 

 

 

Sample ID Ls Ld Il Ln Tg Cz Fg Cc Hc Pv 

9_41 0 0 0 0 0 0 0 0 0 0 

9_43 2 0 0 0 0 0 2 0 0 0 

9_44 0 0 0 0 0 0 0 0 0 0 

9_46 0 0 0 0 0 0 0 0 0 0 

9_49 0 0 0 0 0 0 0 0 0 0 

9_51 0 0 0 0 0 0 0 0 0 0 

9_52 2 16 0 228 0 0 0 0 0 0 

9_53 2 0 0 0 4 0 0 0 0 0 

10_7 0 0 0 0 0 0 0 0 0 0 

10_8 0 0 0 0 0 0 0 0 0 0 

11_1 4 0 6 0 70 0 0 0 0 0 

11_2 44 3 1 0 0 0 0 0 0 0 

11_4 10 0 0 2 0 0 0 0 0 0 

11_6 0 0 0 0 0 0 0 0 0 0 

11_7 48 6 0 24 0 0 0 0 0 0 

11_9 48 0 0 2 0 0 0 0 0 0 

11_10 0 0 0 0 0 0 0 0 0 0 

11_11 0 0 0 0 11 0 0 0 0 0 

11_12 0 0 0 0 40 0 0 0 0 0 

11_13 0 0 0 0 6 0 0 0 0 0 

11_14 4 0 0 0 50 0 0 0 0 0 

11_15 2 0 0 0 1 0 0 2 0 0 

11_16 28 0 0 50 0 0 28 0 0 0 

11_18 12 0 0 2 0 0 18 0 0 0 

11_20 70 8 0 24 0 0 0 0 0 0 

11_22 26 4 0 22 4 0 0 0 0 0 

11_25 0 0 0 0 0 0 0 0 0 0 

11_27 0 0 0 0 0 0 0 0 0 0 

11_28 0 0 0 0 0 0 0 0 0 0 

11_29 2 0 0 0 38 0 0 0 0 0 

11_60LB 0 0 0 0 18 0 0 0 0 0 

11_61LB 0 0 0 0 8 0 0 0 0 0 

11_63LB 0 0 0 0 26 0 0 0 0 0 

11_64LC 0 0 0 0 14 0 0 0 0 0 

11_65LA 8 0 0 0 6 0 0 0 0 0 

11_66LC 0 0 0 0 2 0 0 0 0 0 

11_67LC 0 0 0 0 8 0 0 0 0 0 

11_68LB 0 0 0 0 34 0 0 0 0 0 

11_69LC 14 0 0 0 8 0 0 0 0 0 



Appendix III  Continued 

Ls = L. sinensis, Ld = L. dorsotuberosa, Il = Ilyocypris sp, Ln = L. inopinata, Tg = T. gyirongensis; Cz = Candona 

xizangensis; Fg = F. gyirongensis; Cc = candona candida, Hc = H. incongruens, Pv = Potamocypris cf. villosa 

 

 

 

 

 

 

 

Sample ID Ls Ld Il Ln Tg Cz Fg Cc Hc Pv 

11_70LA 0 0 0 0 0 0 0 0 0 0 

11_71LA 0 0 0 0 22 0 0 0 0 0 

11_72LA 0 0 0 0 0 0 0 0 0 0 

11_73 0 0 0 0 0 0 0 0 0 0 

11_74 4 0 0 0 0 0 0 0 0 0 

11_75B 0 0 6 0 636 0 0 118 4 0 

12_1 0 0 0 0 0 0 0 0 0 0 

12_22 0 0 0 0 0 0 0 0 0 0 

12_23 0 0 0 20 0 0 0 0 0 0 

12_24 0 0 0 0 0 0 0 0 0 0 

12_26 0 0 0 4 0 0 0 0 0 0 

12_29 0 0 0 0 2 0 0 0 0 0 

12_35 0 0 0 0 44 0 0 0 0 0 

12_36 0 0 0 0 0 0 0 0 0 0 

12_37 0 0 0 0 0 0 0 0 0 0 

12_39 0 0 0 0 0 0 0 0 0 0 

12_40 3 0 0 134 0 0 0 0 0 0 

12_41 0 0 0 253 0 0 0 0 0 0 

12_42 0 0 0 0 0 0 0 0 0 0 

12_43 0 0 0 0 0 0 0 0 0 0 

12_47 9 0 0 0 0 0 0 0 0 0 

12_50 55 10 0 0 0 0 0 0 0 0 

12_52 0 0 0 0 0 0 0 0 0 0 

12_53 0 0 28 0 0 0 0 0 0 0 

12_57 0 0 0 0 91 0 0 2 2 0 

12_58 10 0 0 0 22 0 0 0 0 0 

12_63 0 0 0 0 0 0 0 0 0 0 



Appendix IV Sample ID, account data for dead ostracods (total valves) 

Ls = L. sinensis , Ld = L. dorsotuberosa, Il = Ilyocypris sp, Ln =  L. inopinata, Tg = T. gyirongensis ; Cz =  Candona 

xizangensis; Fg = F. gyirongensis; Cc = candona candida, Hc = H. incongruens, Pv = Potamocypris cf. villosa 

 

 

 

Sample ID Ls Ld Il Ln Tg Cz Fg Cc Hc Pv 

9_41 249 103 0 23 0 0 0 0 0 0 

9_43 2 0 0 1 0 0 2 0 0 0 

9_44 86 131 0 190 0 0 0 1 0 0 

9_46 0 0 0 0 0 0 0 0 0 0 

9_49 240 8 0 290 0 20 3 0 0 0 

9_51 20 0 2 2 0 0 0 0 0 0 

9_52 72 2 0 277 0 0 0 0 0 0 

9_53 285 5 3 3 6 0 4 1 0 0 

10_7 2 0 0 0 0 0 0 0 0 0 

10_8 22 63 0 221 0 0 93 0 0 0 

11_1 43 1 84 1 245 0 2 0 0 0 

11_2 881 28 0 622 0 29 4 22 0 0 

11_4 1423 82 0 1809 2 80 203 22 0 0 

11_6 3351 57 0 1442 0 0 9 14 0 0 

11_7 223 7 0 173 0 47 2 6 0 0 

11_9 394 18 0 0 0 0 3 0 0 0 

11_10 812 5 1 0 2 0 0 0 0 0 

11_11 2339 55 1 10 21 0 6 9 0 0 

11_12 516 25 3 2 38 0 18 0 0 0 

11_13 137 10 0 6 3 0 0 120 0 0 

11_14 265 7 0 2 37 0 0 0 0 0 

11_15 248 12 1 1 203 0 0 3 0 0 

11_16 163 6 0 193 6 9 177 0 0 0 

11_18 169 8 0 184 0 97 107 9 0 0 

11_20 246 5 0 180 1 51 299 1 0 0 

11_22 167 6 0 277 0 0 16 1 0 0 

11_25 876 44 0 1279 0 103 69 23 0 0 

11_27 1160 22 4 1 1 0 0 0 0 0 

11_28 52 3 2 7 1 0 0 0 0 0 

11_29 328 5 2 1 104 0 2 2 0 0 

11_60LB 339 2 0 29 19 0 3 0 0 0 

11_61LB 246 10 0 2 3 0 0 2 0 0 

11_63LB 296 1 0 0 31 0 1 0 0 0 

11_64LC 343 10 0 0 35 0 0 1 0 0 

11_65LA 263 7 0 0 18 7 0 10 0 0 

11_66LC 322 7 0 0 8 0 2 2 0 0 

11_67LC 1615 14 0 2 39 6 10 0 0 0 

11_68LB 342 0 1 1 26 0 4 0 0 0 

11_69LC 385 1 0 0 8 1 8 0 0 0 



Appendix IV  Continued 

Ls = L. sinensis , Ld = L. dorsotuberosa, Il = Ilyocypris sp, Ln = L. inopinata, Tg = T. gyirongensis ; Cz =  Candona 

xizangensis; Fg = F. gyirongensis; Cc = candona candida, Hc = H. incongruens, Pv = Potamocypris cf. villosa 

 

 

 

Sample ID Ls Ld Il Ln Tg Cz Fg Cc Hc Pv 

11_70LA 796 9 1 1 5 0 1 0 0 0 

11_71LA 1156 33 0 0 32 0 3 1 0 0 

11_72LA 606 14 1 6 1 0 4 0 0 1 

11_73 20 0 2 0 0 0 0 0 0 0 

11_74 169 2 1 0 0 0 0 0 0 0 

11_75B 5 1 73 0 2191 0 0 594 18 0 

12_1 10 13 0 0 0 0 0 0 0 0 

12_22 0 0 0 0 0 0 0 0 0 0 

12_23 21 0 488 6 16 0 0 0 0 0 

12_24 1 0 0 0 7 0 0 0 0 0 

12_26 863 36 0 10 2 0 0 0 2 0 

12_29 48 1 0 0 2 0 0 0 0 0 

12_35 8 1 0 0 58 0 0 0 0 0 

12_36 0 0 0 0 0 0 0 0 0 0 

12_37 0 0 0 0 0 0 0 0 0 0 

12_39 0 0 0 0 0 0 0 0 0 0 

12_40 55 1 0 19 0 0 0 0 0 0 

12_41 752 6 0 160 0 0 0 25 5 0 

12_42 0 0 0 0 0 0 0 0 0 0 

12_43 0 0 0 0 0 0 0 0 0 0 

12_47 0 0 0 0 0 0 0 0 0 0 

12_50 723 215 3 1 0 0 2 0 0 0 

12_52 0 0 0 0 0 0 0 0 0 0 

12_53 0 0 0 0 0 0 0 0 0 0 

12_57 217 5 1 0 975 0 0 5 0 0 

12_58 11 0 0 18 4 0 0 0 0 0 

12_63 1181 407 0 0 0 0 9 0 0 0 



Appendix V  Sample ID, account data for dead ostracods (total valves) 

Ls = L. sinensis , Ld = L. dorsotuberosa, Il = Ilyocypris sp, Ln =  L. inopinata, Tg = T. gyirongensis ; Cz =  Candona 

xizangensis; Fg = F. gyirongensis; Cc = candona candida, Hc = H. incongruens, Pv = Potamocypris cf. vill 

 

 

Sample ID Ls Ld Il Ln Tg Cz Fg Cc Hc Pv 

9_41 249 103 0 23 0 0 0 0 0 0 

9_43 4 0 0 1 0 0 4 0 0 0 

9_44 86 131 0 190 0 0 0 1 0 0 

9_46 0 0 0 0 0 0 0 0 0 0 

9_49 240 8 0 290 0 20 3 0 0 0 

9_51 20 0 2 2 0 0 0 0 0 0 

9_52 74 18 0 505 0 0 0 0 0 0 

9_53 287 5 3 3 10 0 4 1 0 0 

10_7 2 0 0 0 0 0 0 0 0 0 

10_8 22 63 0 221 0 0 93 0 0 0 

11_1 47 1 90 1 315 0 2 0 0 0 

11_2 925 31 1 622 0 29 4 22 0 0 

11_4 1433 82 0 1811 2 80 203 22 0 0 

11_6 3351 57 0 1442 0 0 9 14 0 0 

11_7 271 13 0 197 0 47 2 6 0 0 

11_9 442 18 0 2 0 0 3 0 0 0 

11_10 812 5 1 0 2 0 0 0 0 0 

11_11 2339 55 1 10 32 0 6 9 0 0 

11_12 516 25 3 2 78 0 18 0 0 0 

11_13 137 10 0 6 9 0 0 120 0 0 

11_14 269 7 0 2 87 0 0 0 0 0 

11_15 250 12 1 1 204 0 0 5 0 0 

11_16 191 6 0 243 6 9 205 0 0 0 

11_18 181 8 0 186 0 97 125 9 0 0 

11_20 316 13 0 204 1 51 299 1 0 0 

11_22 193 10 0 299 4 0 16 1 0 0 

11_25 876 44 0 1279 0 103 69 23 0 0 

11_27 1160 22 4 1 1 0 0 0 0 0 

11_28 52 3 2 7 1 0 0 0 0 0 

11_29 330 5 2 1 142 0 2 2 0 0 

11_60LB 339 2 0 29 37 0 3 0 0 0 

11_61LB 246 10 0 2 11 0 0 2 0 0 

11_63LB 296 1 0 0 57 0 1 0 0 0 

11_64LC 343 10 0 0 49 0 0 1 0 0 

11_65LA 271 7 0 0 24 7 0 10 0 0 

11_66LC 322 7 0 0 10 0 2 2 0 0 

11_67LC 1615 14 0 2 47 6 10 0 0 0 

11_68LB 342 0 1 1 60 0 4 0 0 0 

11_69LC 399 1 0 0 16 1 8 0 0 0 



Appendix V  Continued 

Ls = L. sinensis, Ld = L. dorsotuberosa, Il = Ilyocypris sp, Ln = L. inopinata, Tg = T. gyirongensis ; Cz =  Candona 

xizangensis; Fg = F. gyirongensis; Cc = candona candida, Hc = H. incongruens, Pv = Potamocypris cf. villosa 

 

 

 

Sample ID Ls Ld Il Ln Tg Cz Fg Cc Hc Pv 

11_70LA 796 9 1 1 5 0 1 0 0 0 

11_71LA 1156 33 0 0 54 0 3 1 0 0 

11_72LA 606 14 1 6 1 0 4 0 0 1 

11_73 20 0 2 0 0 0 0 0 0 0 

11_74 173 2 1 0 0 0 0 0 0 0 

11_75B 5 1 79 0 2827 0 0 712 22 0 

12_1 10 13 0 0 0 0 0 0 0 0 

12_22 0 0 0 0 0 0 0 0 0 0 

12_23 21 0 488 26 16 0 0 0 0 0 

12_24 1 0 0 0 7 0 0 0 0 0 

12_26 863 36 0 14 2 0 0 0 2 0 

12_29 48 1 0 0 4 0 0 0 0 0 

12_35 8 1 0 0 102 0 0 0 0 0 

12_36 0 0 0 0 0 0 0 0 0 0 

12_37 0 0 0 0 0 0 0 0 0 0 

12_39 0 0 0 0 0 0 0 0 0 0 

12_40 58 1 0 153 0 0 0 0 0 0 

12_41 752 6 0 413 0 0 0 25 5 0 

12_42 0 0 0 0 0 0 0 0 0 0 

12_43 0 0 0 0 0 0 0 0 0 0 

12_47 9 0 0 0 0 0 0 0 0 0 

12_50 778 225 3 1 0 0 2 0 0 0 

12_52 0 0 0 0 0 0 0 0 0 0 

12_53 0 0 28 0 0 0 0 0 0 0 

12_57 217 5 1 0 1066 0 0 7 2 0 

12_58 21 0 0 18 26 0 0 0 0 0 

12_63 1181 407 0 0 0 0 9 0 0 0 
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The light of knowledge by Lailah Gifty Akita 

 

I yearned and searched for the light, 

On my quest to find the light of knowledge, 

I traveled to the city of light, 

I journeyed onward to the Holy Mountains full of lights, 

I encountered great souls with full radiance of the light, 

The spark of light illuminated my path, renew mind and rekindle spirit, 

Now, I am a beacon of the light of knowledge, 

And I carry my candle of light to brighten the world. 
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“While the earth remains, seedtime and harvest, cold and heat, 

summer and winter, day and night, shall not cease.” 

~ Genesis 8: 22 

 

 


