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Abstract 

Scientific investigations on lakes started during the 19th century in Europe and the 

Unites States. Since this time paleolimnological and limnogeological investigations 

increased distinctly and during the last few years there has been a rapid advance in 

the understanding of processes operating in lacustrine systems. However, most 

studies focused on easily accessible locations. Despite major improvements in 

scientific knowledge of lakes up to now, there still remain gaps especially for the areas 

investigated in this thesis, i.e., the different rainfall zones of South Africa, the Tibetan 

Plateau, the steppe parts of Argentinean Patagonia, the eastern Ecuadorian Andes, 

and the Island of Sulawesi (Indonesia). The papers in this thesis try to close some of 

these gaps and try to contribute to a better understanding of processes that occurred 

in the past and their (paleo-)environmental consequences in regions that have rarely 

been investigated so far. The aim of this thesis is to provide new paleolimnological and 

limnogeological information and develop process based conceptual models from areas 

of the world where this kind of information is very scarce to inexistent. A special 

emphasis will be on the construction of reliable chronologies using multi-dating 

approaches. In this context one focus will be on the evaluation of chronologies using 

paleomagnetic secular variations wherever this was possible depending on sediment 

properties.  

In order to reach this aim the papers forming this thesis are structured as follows: 

1. New conceptual approaches  

2. Paleoenvironmental reconstructions using simple magnetostratigraphically not 

confirmed chronologies since no paleomagnetic secular variation data could be 

obtained from the sediment and other paleolimnological and limnogeological 

investigations  

3. Paleomagnetic investigations and/or magnetostratigraphic evaluations of chronologies 

4. Paleoenvironmental information from magnetostratigraphically corroborated 

chronologies 

5. Other dating approaches 
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Zusammenfassung 

 

Erste wissenschaftliche Untersuchungen an Seen begannen im 19. Jahrhundert in 

Europa und den USA. Seitdem hat die Zahl der paläolimnologischen und 

limnogeologischen Untersuchungen deutlich zugenommen. Während der letzten 

Jahre verbesserte sich so zunehmend das Verständnis für Prozesse, die in lakustrinen 

Systemen ablaufen. Allerdings konzentrierten sich die meisten Studien auf leicht 

zugängliche Regionen. Trotz deutlicher wissenschaftlicher Fortschritte, gibt es deshalb 

noch immer Lücken auf dem Gebiet der Seenforschung, vor allem in den schwieriger 

zugänglichen Gegenden, die in dieser Arbeit untersucht werden. Dies sind die 

verschiedenen Regenzonen Südafrikas, das Tibetische Plateau, der argentinische Teil 

der patagonischen Steppe, die östlichen Anden Ecuadors und die Insel Sulawesi in 

Indonesien. Die Beiträge in dieser Arbeit versuchen einige dieser Lücken zu schließen. 

Weiterhin versuchen sie, zu einem besseren Verständnis von Prozessen, die in der 

Vergangenheit abgelaufen sind, und deren Konsequenzen für die (Paläo-)Umwelt 

welche bisher in nur unzureichendem Maße untersucht wurden, beizutragen. Ziel 

dieser Arbeit ist es zum einen, neue paläolimnologische und limnogeologische 

Informationen zu sammeln. Zum anderen sollen in Gegenden, aus denen es bisher 

nur wenige Informationen gibt, neue prozessorientierte Ansätze entwickelt werden. Ein 

Fokus wird auf die Erstellung verlässlicher Chronologien mit Hilfe eines Multiplen-

Datierungs-Ansatzes gelegt. Der Schwerpunkt liegt dabei auf der Evaluierung von 

Altersmodellen mit Hilfe von paläomagnetischen Säkularvariationen. Um dieses Ziel 

zu erreichen, sind die in dieser Arbeit enthaltenen Beiträge wie folgt strukturiert: 

1. Neue konzeptionelle Ansätze 

2. Paläoumweltrekonstruktionen basierend auf einfachen, nicht magnetostratigraphisch 

abgesicherten Altersmodellen, da keine Extraktion von paläomagnetischen 

Säkularvariationen aus diesen Sedimenten möglich war, sowie andere 

paläolimnologische und limnogeologische Untersuchungen 

3. Paläomagnetische Untersuchungen und/oder magnetostratigraphische Evaluierungen 

von Altersmodellen 

4. Paläoumweltrekonstruktionen basierend auf magnetostratigraphisch abgesicherten 

Altersmodellen 

5. Andere Datierungsansätze   
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The use of lacustrine sediments for 
paleoenvironmental reconstructions 

 

The currently occurring climate change with its consequences such as rising 

temperatures or sea level as reported by the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC) (Masson-Delmotte et al. 2013; 

Stocker et al. 2013) has major impacts on modern societies and will impose increased 

stress on many regions of the world (Last 2002; Haberzettl et al. 2014, Appendix 12). 

Global warming can for example affect human health (Franchini & Mannucci 2015) and 

climate change is going to alter ecosystems (Scholze et al. 2006; Warszawski et al. 

2013) and considerably exacerbate water scarcity in different parts of the world 

(Schewe et al. 2014). In order to predict future climatic developments, sophisticated 

models are required which need to be calibrated and evaluated (Bradley & Eddy 1991; 

Smol 2008). Unfortunately, measured climatic and environmental data for this purpose 

for western Europe are only available since the late 17th or early 18th century (Jones & 

Bradley 1995). On a global scale data only go back to the mid-19th century (Stocker et 

al. 2013). Apart from this, instrumental and observational datasets are very sparse or 

suffer from an insufficient quality (Smol 2008). Hence, they provide an inadequate 

perspective on climate variability and the evolution and history of climate (Bradley 

1999). In addition to that, the period covered by instrumental data is already intensively 

influenced by an anthropogenic impact in many regions of the world and many climatic 

and environmental changes occurred far back in time before observation was possible 

(Birks & Birks 2006). The only option to overcome this issue of short time series of 

measured data and anthropogenic impact is the use of natural geoarchives from less 

anthropogenically influenced areas for paleoenvironmental reconstructions (Bradley & 

Eddy 1991; Haberzettl 2006; Zolitschka et al. 2006). Paleoclimate reconstructions from 

such geoarchives can distinctly extend the climatic records further back in time and 

allow current variations in, for example, sea level or climate (including extreme events 

like droughts and floods) to be placed in a broader perspective of (paleo-) 

environmental change (Stocker et al. 2013). Reconstructions may also allow to unravel 

driving factors and mechanisms for climatic changes. If these causes are understood 
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it is possible to forecast climatic variations for the future (Bradley & Eddy 1991; Bradley 

1999). 

Paleoclimate archives also record slowly occurring climate transitions and system 

feedbacks (Stocker et al. 2013) which due to their long duration are not contained in 

the short time series derived from instrumental measurements. This allows to assess 

whether recent changes are unusual or not (Masson-Delmotte et al. 2013). Although 

in a different context Winston Churchill was right when he said: “The farther backward 

you can look the farther forward you are likely to see". This look back in time can be 

realized by analyses of geoarchives like for example speleothems, glaciers – or lakes. 

 

Today, lakes form only about 1 % of the continental surface of the Earth (Collinson 

1978), however, their geological significance is much greater than this percentage 

suggests (Talbot & Allen 1996). Lakes are remarkable features and their sediments 

can be used for paleoenvironmental reconstruction in terms of space and time 

(Meybeck 1995; Verrecchia 2008). This is possible since lacustrine systems mostly 

continually respond to climatic conditions (Hostetler 1995) which is immediately stored 

in the sediments. For example climatically induced changes in precipitation and 

evaporation can induce fluctuations in lake levels (Hostetler 1995; Haberzettl et al. 

2005; Haberzettl 2006; Anselmetti et al. 2009; Kasper et al. 2012, Appendix 15; Long 

et al. 2012, Appendix 22; Kasper et al. 2013, Appendix 16; Ohlendorf et al. 2013, 

Appendix 26; Doberschütz et al. 2014, Appendix 7; Kasper et al. 2015, Appendix 17) 

pointing to changes in the hydrological cycle. 

Scientific investigations on lakes started during the second half of the 19th century 

in Switzerland (Last & Ginn 2005) focusing on bathymetry, temperature, modern lake 

level variations, or turbidity (Forel 1879-1880; Salis 1884; Forel 1887). Pioneering 

(limno-)geological investigations were also carried out in the European Alps (Forel 

1885, 1887) and on Lake Lahontan (Russel 1885) or Pleistocene Lake Bonneville 

(Gilbert 1890) in the United States. However, for the upcoming almost 100 years only 

little attention was put on real limnogeological or paleolimnological aspects probably 

because the water has been a distinct barrier to recover the sediments in a useful way 

and there was hardly any text dealing solely with paleolimnology (Reeves 1968). 

Looking at textbooks in the 1980s sedimentological processes in lakes, if mentioned 

at all, were restricted to only a few pages (Håkanson & Jansson 1983) and 
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paleoclimatology in general was still in its infancy (Bradley 1999). Therefore, only a 

few decades ago, the status of lake sediment research was still described as the hole 

in a donut (Collinson 1978). Since this time limnogeological investigations increased 

distinctly. During the last few years there has been rapid advance in the understanding 

of processes operating in lacustrine systems and how these processes influence 

sedimentological records preserved in these systems (Bradley 1999; Last 2002; Last 

& Ginn 2005; Cabrera et al. 2009; Birks 2012). Today, paleoclimatology including 

paleolimnology is a major field in earth sciences (Bradley 1999). Probably no other 

continental archive has so much to offer for potential significant contributions to 

geosciences as lacustrine environments (Talbot & Allen 1996; Last 2002; Last & Ginn 

2005). Consequently, lacustrine paleoenvironmental reconstructions can be seen as 

complementary to marine records (Cabrera et al. 2009) since they allow an 

environmental reconstruction to be performed directly in and from the region of interest. 

However, most lacustrine studies seem to have focused on easily accessible locations. 

Despite major improvements in scientific knowledge of lakes up to now there still 

remain gaps especially for the areas investigated in this thesis, e.g., South Africa 

(Meadows 2001; Holmgren et al. 2003; Haberzettl et al. 2014, Appendix 12), Patagonia 

(Argentina) (Anselmetti et al. 2009; Fey et al. 2009, Appendix 8), the Island of Sulawesi 

(Indonesia) (Kirleis et al. 2011; Wündsch et al. 2014, Appendix 33; Biagioni et al. 2015, 

Appendix 4), or the only marine archive investigated in this thesis, the epicontinental 

sea of the Hudson Bay including Hudson Strait (Haberzettl et al. 2010, Appendix 10). 

This thesis has to be seen in the context and as part of the rapidly progressing fields 

of limnogeology and paleolimnology. Most papers in this thesis contribute to a better 

understanding of processes that occurred in the past and their paleoenvironmental 

consequences in regions that have rarely been investigated so far. In this context, 

another focus of this thesis will be on the establishment of reliable chronologies by for 

example testing age-depth models using magnetostratigraphy on geologically seen 

very young sediments, i.e., <4 ka. 
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Dating sediments 

 

For all paleoenvironmental studies accurate dating is of crucial importance (Bradley & 

Eddy 1991). Without an accurate chronology the determination of synchronicities, 

leads, or lags for certain climatic events or shifts is impossible (Bradley 1999). Dating 

is also essential if the speed and frequency at which past environmental changes 

occurred is of interest (Bradley & Eddy 1991; Bradley 1999). On short time scales and 

for recent sediments chronologies can be established using radioisotopic techniques 

such as 137Cs or 210Pb. For longer time scales ages are usually provided by (high-

resolution) AMS radiocarbon dating, in an ideal case on determined fragile terrestrial 

plant material (Birks & Birks 2006) such as leaves which make a reworking of the 

material unlikely. Unfortunately, such kind of material is rare in many areas of the world 

as for example the Tibetan Plateau (Kasper et al. 2012, Appendix 15; Doberschütz et 

al. 2014, Appendix 7; Miehe et al. 2014, Appendix 24; Kasper et al. 2015, Appendix 

17) or Patagonia (Fey et al. 2009, Appendix 8; Kastner et al. 2010, Appendix 18). In 

most cases the only solution in such areas is the application of radiocarbon dating on 

aquatic plant remains or bulk sediment samples if only radiocarbon dating is available 

to establish a chronology (Niemann et al. 2009, Appendix 25; Haberzettl et al. 2013, 

Appendix 11; Reinwarth et al. 2013, Appendix 29). Often such chronologies suffer from 

a hard water effect which has been overcome by various approaches like for example 

subtracting the age of the sediment water interface from each individual radiocarbon 

age (Kasper et al. 2012, Appendix 15). However, even today in some cases imprecise 

reservoir correction on the Tibetan Plateau leads to troubles in correlating records from 

different lacustrine archives. If this is the case this inhibits a final conclusion about 

regional synchronicities of climatic shifts in this area. 

Often chronologies based on bulk sediment ages also contain many age reversals 

due to reworking of fine organic sediment. The only solution in this case is to use the 

youngest ages in stratigraphic order as maximum ages (Fig. 1). Although this is a very 

conservative approach, comparisons of climate reconstructions from these archives to 

reconstructions from nearby archives often reveal remarkable similarities (Wündsch et 

al. 2014, Appendix 33). 



 
11 

 

  

A major step forward in age-depth-modeling is the incorporation of independent 

time marker layers as for example macro or micro tephras (Lowe 2011) which can 

either be used to establish or confirm existing chronologies (Haberzettl et al. 2007; 

Haberzettl et al. 2009, Appendix 9). However, such layers are not globally available. In 

these cases paleomagnetic data derived from the sediments might help to confirm or 

establish chronologies as will be illustrated in the following chapter. 

 

 
Paleomagnetism and 
magnetostratigraphy 

 

Magnetostratigraphy uses magnetic parameters to describe, correlate, and date 

sediment sequences (Lowrie 2007). Usually this term is associated with recorded 

polarity reversals of the geomagnetic field on long time scales (Opdyke & Channell 

1996). However, in principle, any rock magnetic parameter could be used (Lowrie 

Fig. 1: Chronology of sediment core TAN10-4 from Lake Tangra Yumco (Tibet). In this case 
reservoir corrected bulk ages and an age of a piece of wood was used for age-depth 
modeling. The only solution to establish a chronology for records containing age reversals 
as it is the case here is to use the youngest ages in stratigraphic order as maximum ages 
(Haberzettl et al. 2015, Appendix 13, modified). 
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2007). In this thesis the focus will be on magnetic susceptibility and paleomagnetic 

secular variations which are very important in terms of chronostratigraphy especially 

when dealing with young, i.e., (Late) Holocene sediments. 

 

 

Magnetic susceptibility 

Often the first paleomagnetic measurement is low field magnetic susceptibility which 

has evolved as a standard technique in core to core correlation on cores from a 

coherent depositional environment (Thompson 1986; Opdyke & Channell 1996; 

Ellwood 2007; Maher 2007; Merrill & McFadden 2007; Roberts 2007; Haberzettl et al. 

2009, Appendix 9; Kastner et al. 2010, Appendix 18; Roberts & Turner 2013; Ahlborn 

et al. 2015, Appendix 1; Akita et al. 2015, Appendix 2) (Fig. 2). Magnetic susceptibility 

has the advantage to be measured simple, fast, and easy (Binford et al. 1983; Evans 

& Heller 2003; Ellwood 2007). It measures the magnetizability of a sample which is the 

Fig. 2: Core to core correlation using magnetic susceptibility (k) on sediment cores from a 
coherent depositional environment (Haberzettl et al. 2009, Appendix 9). 
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magnetization of the samples in response to an applied 

magnetic field.  Different mineralogical compositions, 

concentrations of certain minerals, and their magnetic grain 

size and morphology affect the magnetic susceptibility 

signal (Ellwood 2007; Hatfield & Stoner 2013). Therefore 

magnetic susceptibility can for example help to detect the 

allochthonous minerogenic input as it has often been the 

case in various paleolimnological studies (Thompson et al. 

1975; Niemann et al. 2009, Appendix 25; Kastner et al. 

2010, Appendix 18) (Fig. 3).  

If the source of the sediment is very heterogeneous 

magnetic susceptibility can be used as a provenance 

indicator (Haberzettl et al. 2010, Appendix 10). For example 

in Hudson Bay and Strait the final outburst flood of Lake 

Agassiz-Ojibway deposited a so-called red bed in this area 

which compared to the surrounding geology yields low 

magnetic susceptibility due to a dominance of hematite 

(Haberzettl et al. 2010, Appendix 10). In the same study in 

combination with total inorganic carbon (TIC) it was possible 

to further distinguish between Paleozoic limestone sources 

underlying parts of Hudson Bay and Strait and Precambrian 

granitoids from the Canadian Shield (Haberzettl et al. 2010, 

Appendix 10). 

A density related settling of comparatively heavy 

magnetic minerals within a magnetically weak matrix can 

also create a characteristic magnetic susceptibility signal 

(Hatfield & Stoner 2013). Magnetic susceptibility spikes can 

therefore help to identify turbidite layers and to distinguish 

them from background sedimentation (Hatfield & Stoner 

2013; Ahlborn et al. 2015, Appendix 1; Akita et al. 2015, 

Appendix 2). 

Based on comparisons with dust records from Antarctica low field magnetic 

susceptibility was also suggested as a dust indicator at Laguna Potrok Aike (Argentina) 

Fig. 3: Magnetic 
susceptibility reflecting 
minerogenic input (in 
this case by runoff) to a 
depositional system 
(Kastner et al. 2010, 
Appendix 18, modified). 
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which is located in the dust source of southern Patagonia (Haberzettl et al. 2009, 

Appendix 9). Within this archive the difference in magnetic susceptibility between 

glacial and Holocene times, in concert with the contemporaneous change in grain size 

as well as the dependency of magnetic susceptibility on grain size (Hatfield & Stoner 

2013) indicates a causal relationship between these two parameters (Haberzettl et al. 

2009, Appendix 9). This suggests that magnetic susceptibility might be used as 

chronostratigraphic tool which was similarly assumed for carbonate-free pelagic 

sediments from the Southern Ocean to constrain chronologies (Pugh et al. 2009; 

Weber et al. 2012). However, interpreting magnetic susceptibility records is seldom 

straightforward (Haberzettl et al. 2009, Appendix 9; Lisé-Pronovost et al. 2015, 

Appendix 21). It is rarely possible to determine the factors driving the magnetic 

susceptibility signal from the measured susceptibility signal alone. Therefore, a greater 

suite of magnetic measurements is necessary (Hatfield & Stoner 2013). More detailed 

magnetic studies on the sediments of Laguna Potrok Aike revealed that magnetic 

susceptibility reflects the estimated flux of magnetite to the lake and therefore low field 

magnetic susceptibility can only be interpreted as a dust indicator and for 

chronostratigraphic purposes at the millennial time scale (Lisé-Pronovost et al. 2015, 

Appendix 21). In contrast, the median destructive field of isothermal remanent 

magnetization (MDFIRM) was established as a wind intensity indicator at the centennial 

time scale at Laguna Potrok Aike (Lisé-Pronovost et al. 2015, Appendix 21). 

As has been shown in this paragraph magnetic susceptibility has many 

applications in modern paleolimnology if the process leading to a specific signal is well 

understood. Therefore, it is essential to interpret the individual magnetic susceptibility 

record within the context of its location and processes acting in its formation (Hatfield 

& Stoner 2013). In some cases magnetic susceptibility can even be used for 

stratigraphic purposes to establish chronologies. However, a much higher potential for 

stratigraphic purposes is in the application of magnetostratigraphy by using 

paleomagnetic secular variations (PSV) as described in the following. 
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Paleomagnetic secular variation (PSV) stratigraphy 

As magnetic particles in lakes settle down and get deposited they align themselves 

with the ambient geomagnetic field (Tauxe 1993; Roberts & Turner 2013) and act like 

a compass needle (Merrill & McFadden 2007). Subsequently, when further sediment 

is deposited on top they are mechanically 

locked-in and therefore preserve the 

directional record (Fig. 4).     

Magnetostratigraphy has long been 

used as a dating tool and it adds a 

significant new dimension to 

paleolimnological studies (Oldfield & 

Richardson 1990). Up to now the focus 

has mostly been on the difference 

between normally and reversed polarity of 

sedimentary archives the so called 

Geomagnetic Polarity Time Scale (GPTS). 

This concept was developed in the early 

1960s (Cox et al. 1963; Opdyke & 

Channell 1996; Laj & Channell 2007; 

Singer 2007; Stoner & St-Onge 2007) 

when according to their polarity sediment 

sequences were divided in polarity chrons (Lowrie 2007). The midpoint of the last 

magnetic reversal, the Brunhes-Matuyama transition occurred at some time between 

786.1 ± 1.5 ka (Sagnotti et al. 2014) and 773.1 ± 0.4 ka (Channell et al. 2010) or 

773 ± 1 ka (Singer 2014). However, due to a scarcity of records with long time scales 

this rather simple method cannot be applied to many lacustrine archives. 

On shorter time scales geomagnetic excursions might help. However, Roberts & 

Turner (2013) argue that excursions are the most abused geomagnetic phenomena 

and should if at all only be used with extreme caution unless they are accompanied by 

precise additional chronological constraints since such single events could also be 

caused by sediment deformation. Geomagnetic excursions occur rather frequently (Laj 

& Channell 2007) and are described as short episodes when the magnetic field of the 

Fig. 4: Settling of magnetic particles and 
subsequent lock-in (Tauxe 1993, 
modified). 
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Earth deviates into an intermediate polarity (Roberts 2008) or simply as a significant 

departure from the geocentric axial dipole (King & Peck 2001) beyond the normal range 

of secular variations (Lund et al. 2006; Laj & Channell 2007; Lund 2007). The discovery 

of 27 well-documented geomagnetic field instabilities manifested in excursions that 

occurred during the Quaternary with 14 of them occurring during the Brunhes polarity 

chron (the most recent one we are living in) contributed to the compilation of a 

geomagnetic instability time scale (GITS) which also delineates the many excursions 

that took place during periods of stable polarity (Singer 2014). However, this must be 

viewed as a work in progress that will be subject to refinement in the near future (Singer 

2014) as there is no general consensus about the number of excursion found during 

the Brunhes chron so far (Laj & Channell 2007; Lund 2007). The best known and 

investigated excursions are the Laschamp Event (40.7 ± 1 ka) (Singer et al. 2009) and 

the Mono Lake Event (32.4 ± 0.3 ka) (Singer 2007). Both have been demonstrated to 

occur globally (Lund 2007; Roberts 2008) and either of them (Mazaud et al. 2002) or 

both (Cassata et al. 2008; Lisé-Pronovost et al. 2013, Appendix 20) were also found 

on the southern hemisphere. However, ages for these swings differ significantly in 

many studies (Lisé-Pronovost et al. 2013, Appendix 20). Another geomagnetic 

excursion, the Hilina Pali excursion is less pronounced and not well established yet 

(Teanby et al. 2002). Although still much debated it probably occurred between 17 ka 

(Laj et al. 2002; Singer 2014) and 22 ka cal BP (Peck et al. 1996; Nowaczyk & Knies 

2000; Nowaczyk et al. 2003) when distinct inclination lows were found in these studies. 

It was also found recently in Fram Strait in various archives (Haberzettl unpublished 

data) and potentially at Laguna Potrok Aike (Argentina) (Lisé-Pronovost et al. 2013, 

Appendix 20). 

Nevertheless, covering ‘only’ 20 ka is also a challenge for many lacustrine 

sequences. On shorter time scales smaller geomagnetic directional shifts are called 

paleomagnetic secular variations (PSVs) (Thompson 1986; Stoner & St-Onge 2007). 

PSVs which can be used as chronostratigraphic tool especially during the Holocene 

appear to be better suited for dating purposes than geomagnetic excursion (Roberts & 

Turner 2013). The first study on PSVs was carried out by Mackereth (1971) on 

lacustrine sediments from Lake Windermere, UK, where changes in declination were 

investigated (Creer & Tucholka 1983; Oldfield & Richardson 1990). “This work paved 

the way for the development of the field of secular variation magnetic 
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stratigraphy” (Opdyke & Channell 1996) and paleomagnetic “work on lake sediments 

mushroomed” (Creer & Tucholka 1983). Due to the convenience of not having to open 

or extrude the cores often only declination was measured these days (Dearing 1986; 

Oldfield & Richardson 1990; Leemann & Niessen 1994; Opdyke & Channell 1996). 

Inclination measurements required the cores to be opened and subsampled (Oldfield 

& Richardson 1990). More recently inclination records turned out to be often more 

suitable in lacustrine environments, especially in lower latitudes (Creer & Tucholka 

1983; Thompson 1986; Oldfield & Richardson 1990; Anker et al. 2001; Haberzettl et 

al. 2015, Appendix 13). Although the spatial occurrence of lakes suitable for PSV 

studies is rather erratic most studies establishing PSV records originate from this 

environment since sedimentation rates in marine archives are often too low for high-

resolution records (Opdyke & Channell 1996). However, PSV records from lakes are 

still patchy with distinct gaps in Tibet (Haberzettl et al. 2015, Appendix 13) and the 

other regions investigated in this thesis (Korte & Constable 2011; Korte et al. 2011) 

(Fig. 5).  

 

Fig. 5: Distribution of sediment records contained in the CALS3k.3 global geomagnetic field 
model (stars) covering the past 3,000 years. Red ellipses indicate new records obtained 
within this thesis (Korte & Constable 2011, modified). 
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Due to the absence of measured PSV records magnetostratigraphic comparisons 

in this thesis were initially drawn with global geomagnetic field models like the 

CALS3k.x (Korte et al. 2009), the CALS7k.2 (Korte et al. 2005), or the pfm9k (Nilsson 

et al. 2014) model (Kasper et al. 2012, Appendix 15; Haberzettl et al. 2013, Appendix 

11; Ahlborn et al. 2015, Appendix 1). This already helped to improve reservoir effect 

affected radiocarbon based chronologies distinctively. Unfortunately, such models are 

limited by the reliability of incorporated data, age uncertainties, and the regional bias 

of data availability (Yu et al. 2010). This means that due to a lack of data comparisons 

to such models are sometimes unreliable. This is especially the case for Patagonia 

(Ohlendorf et al. 2014, Appendix 27) and to a certain extend for Tibet before 2 

ka cal BP (Haberzettl et al. 2015, Appendix 13). Hence, after an initial comparison with 

the models it was always tried to build a data base (≥2 records) with various archives 

for comparison which was successfully accomplished for Sulawesi (Biagioni et al. 

2015, Appendix 3) and Tibet (Haberzettl et al. 2015, Appendix 13) within this thesis. 

Finally, it has to be mentioned that each site has to be tested if PSVs can be used 

as chronostratigraphic tool since not all sediment sequences are suited for 

paleomagnetic dating (Oldfield & Richardson 1990). Only 20 % of all lake studies 

generated inclination and declination records are suited for correlation (Opdyke & 

Channell 1996). In general it is difficult to predict which sites are suited and which are 

not, though some controlling factors have become apparent (Dearing 1986; Oldfield & 

Richardson 1990): 

a) In coarse grained sediments such as sand the paleomagnetic remanence is not 

sufficiently well locked to retain a signal from the ambient magnetic field of the 

Earth at the time of deposition. Therefore, sediments dominated by coarse 

grains usually do not faithfully record magnetic field information from the time of 

deposition (Roberts 2007; Roberts & Turner 2013). 

b) A high content of diamagnetic components such as carbonates, water, or 

organic matter and hence a low minerogenic proportion of the sediment often 

results in a weak unstable natural remanence. 

However, once a regional master curve of PSVs is established this can be used as a 

chronostratigraphic tool (Lund et al. 2006) to date surrounding paleoenvironmental 

records (Oldfield & Richardson 1990) with a precision of decadal to millennial-scale 

resolution during the Holocene (Roberts & Turner 2013). Due to non-dipolar 
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components of the magnetic field of the earth this PSV stratigraphy is limited to the 

continental scale (Roberts & Turner 2013), i.e., a certain area around the type site 

typically ranging between 1,000 - 2,000 km (Thompson 1986; Oldfield & Richardson 

1990; Lund et al. 2006) and 3,000 - 5,000 km (King & Peck 2001; Lund 2007). Around 

the Tibetan Plateau PSV similarities over an area of >3,000 km have been observed 

in this thesis (Haberzettl et al. 2015, Appendix 13). 

 

 

Multi-dating-approach 

 

The most powerful tool to obtain accurate chronologies from lacustrine archives is a 

multi-dating-approach (King & Peck 2001). This could consist of radiocarbon dating on 

various materials (e.g., organic bulk, inorganic bulk, terrestrial organic matter, etc.) 

(Haberzettl et al. 2005), component specific radiocarbon dating (e.g., lignin phenols) 

(Hou et al. 2010), optical dating (Long et al. 2015, Appendix 23), 230Th/234U-dating 

(Wagner 1998), tephrochronology (Haberzettl et al. 2007; Haberzettl et al. 2009, 

Appendix 9), radioisotopes (137Cs/210Pb) in the most recent part (Kasper et al. 2012, 

Appendix 15; Haberzettl et al. 2015, Appendix 13), etc. Subsequently, chronologies 

should be evaluated using magnetostratigraphy (Kasper et al. 2012, Appendix 15; 

Haberzettl et al. 2015, Appendix 13). Such approaches need to bring together various 

expertise and disciplines. However, such an approach often suffers from insufficient 

time and/or manpower to carry out all these investigations. In some cases also the 

material turns out to be unsuitable for one or the other method. Within this thesis such 

an approach was aimed for Lake Tangra Yumco on the Tibetan Plateau. Here 

radiocarbon dating of lignin phenols and 230Th/234U-dating turned out not to be feasible. 

Therefore, the focus was put on radiocarbon dating of a piece of wood and reservoir 

corrected bulk ages (Haberzettl et al. 2015, Appendix 13) (Fig. 1). The chronology was 

tested with optical dating revealing ages in the range of the reservoir corrected ages 

(Long et al. 2015, Appendix 23) and magnetostratigraphy (Haberzettl et al. 2015, 

Appendix 13) confirming this approach. 
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Conclusions and Outlook 

 

The analysis of lacustrine sediments to extract paleoenvironmental information is a 

very promising field of research. Their study needs a multidisciplinary approach which 

involves different proxies, proxy calibration- and monitoring studies, allowing 

paleoenvironments and paleoclimate, as well as recent climate change, to be 

investigated with increasing accuracy (Verrecchia 2008). However, it is still a long way 

to go to fully understand lacustrine systems and their paleoclimatic significance. Any 

new piece of information will take us closer to the ultimate goal of understanding 

lacustrine environments through space and time (Cabrera et al. 2009). 

Future work beyond this thesis will contribute to a better understanding of system 

processes, system interactions, and system feedbacks. For this purpose parallel 

investigations on different but neighboring systems should be carried out. For example 

a small lake with a limited catchment located close to a larger system could be 

investigated. Both systems continuously record environmental changes. While the 

larger system records processes occurring over a large area in the small system large-

scale changes might be overprinted by local information. Comparing the two systems 

(including catchment and monitoring results) and their respective records will provide 

a deeper insight in processes acting on diverse spatio-temporal scales. First steps 

concerning this approach are on the way in southern central Tibet where processes 

affecting the large system of Lake Tangra Yumco (Akita et al. 2015, Appendix 2) and 

two smaller systems (Miehe et al. 2014, Appendix 24; Ahlborn et al. 2015, Appendix 

1) located in the catchment area of this lake have been investigated. Future detailed 

comparisons will allow for a differentiation of processes acting on different spatial and 

temporal scales and hence contribute to a better understanding of the individual 

system. 

Most other studies presented in this thesis are also planned to continue in future. 

Further manuscripts about Tibet, South Africa, and Hudson Bay are in preparation. 

Additionally, processing of already measured paleomagnetic data from Eilandvlei 

(South Africa), Xuru and Peiku Co (Tibet), Fram Strait, Maxwell Bay (Antarctica), and 

some sites in Patagonia (Argentina) is in progress.  



 
21 

 

In terms of limnogeological investigations future work will focus on the extension 

of the existing paleoenvironmental database which was gathered within the RAiN 

(Regional Archives for Integrated iNvestigations) project (Haberzettl et al. 2014, 

Appendix 12). Based on investigations of terrestrial and marine paleoenvironmental 

archives in different rainfall zones in South Africa, RAiN assesses the compatibility of 

the two types of archives in terms of past climate and ecosystem changes and 

contributes to an improved knowledge of land-ocean interactions by following transport 

pathways from source to sink (Haberzettl et al. 2014, Appendix 12). Up to now from 

the year-round rainfall zone sediment cores have been recovered in 2013 from offshore 

and onshore the Wilderness Coastal Section of the Garden Route National Park. Cores 

have already been opened and analyzed using a large suite of parameters for 

paleoenvironmental reconstruction. In terms of paleomagnetic measurements it turned 

out that marine sediments are unsuited for PSV reconstructions in this area. This might 

be the consequence of dilution of the sediment by diamagnetic marine carbonates. 

Lacustrine facies showed a sufficiently high magnetization on sediments from Lakes 

Eilandvlei and Swartvlei (Haberzettl unpublished data). A similar picture was observed 

on the West Coast of South Africa, where the top sediments of Lake Verlorenvlei have 

a sufficiently high magnetization but offshore sediments do not. Paleolimnological 

investigations at Verlorenvlei just started in 2014 but are very promising. 

In Tibet the successful work as also seen in this thesis during the past years within 

the DFG (German Research Foundation) priority program 1372 TiP (Tibetan Plateau: 

Formation-Climate-Ecosystems) and the BMBF (German Federal Ministry of 

Education and Research) funded CAME (Central Asia – Monsoon dynamics and Geo-

ecosystems) program encouraged some colleagues including myself to promote a 

deep drilling effort at Lake Nam Co within the framework of the International 

Continental Scientific Drilling Program (ICDP). Preliminary seismic investigations 

revealed a sediment thickness of at least 800 m since no bottom reflector was found 

down to this depth (Spiess et al. 2014). A conservative age estimation results in an 

age of 460 to 1,900 ka for this seismically imaged sequence (Spiess et al. 2014). This 

will result in an enormous amount of paleoenvironmental information from 

paleoclimatic studies, molecular clock investigations, and tectonic research. 

According to the stratigraphic interpretation of the preliminary seismic data, 

continuous sedimentation at Nam Co occurred during several glacial-interglacial 
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cycles. Considering the short time coverage of other continuous lacustrine records on 

the Tibetan Plateau (<32 ka) this makes Nam Co the perfect site to study large-scale 

atmospheric circulation variations (Monsoon and Westerlies) on much longer time 

scales. This is of paramount significance since from the whole area information on past 

interglacials, especially the ones which are commonly regarded as analogue to the 

Holocene like Marine Isotope Stage (MIS) 11 (McManus et al. 2013), are lacking. Nam 

Co might provide a unique opportunity to study the internal variability of MIS 11 in 

Southeast Asia. Analyses of such analogues could be very valuable for the 

understanding of the interactions of climate systems such as Monsoon and Westerlies 

enabling better future climate scenarios. Up to now only few terrestrial records covering 

this interval have been recovered. However, these are not close to Nam Co (Rousseau 

2013).  

So far it also remains unclear how the atmospheric circulation systems changed 

on the Tibetan Plateau during older glacial-interglacial cycles (or even interstadials). 

From the last glacial-interglacial transition it is known that changes from a dry and cold 

to a moist and warm environment occurred very fast with a strong moisture pulse in 

the early Holocene, i.e., within <1000 years (Kasper et al. 2015, Appendix 17). 

However, transitions from interglacial to glacial conditions have not been observed in 

this area yet. 

Based on dating of ancient lake level terraces around Nam Co, Zhu et al. (2004) 

reconstructed an “Ancient Large Lake” on the TP for the period between 115 and 

40 ka BP incorporating Nam Co. However, no continuous hydrological information is 

available for this interval, inhibiting a detailed investigation of hydrological variations in 

this area. The recovery of continuous records would allow to study feedback 

mechanisms of a “Pan-Lake” environment to the surrounding area (e.g., vegetation) or 

to the climate system itself. Such a large water body would likely cause intensive water 

recycling on the Tibetan Plateau in addition to or in contrast to monsoon influence. 

From the paleomagnetic perspective the recovery of a long drill core from Nam Co 

means that many excursion of the Brunhes chron potentially the Brunhes-Matuyama 

transition will be contained in this record in high-resolution since sedimentation rates 

at Nam Co can reach up to 2.4 mm a-1 (Kasper et al. 2015, Appendix 17).  

Besides the deep drilling of Nam Co another major future aim will be the 

construction of a PSV stack for the Tibetan Plateau. Currently eight short lasting 
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records between 400 and 4,000 years are available although not yet completely 

processed and more sediment records will be measured in the near future. Once, 

reliable chronologies are available for the records this task will be addressed. Similar 

PSV stacks have previously been published for East Asia (Zheng et al. 2014), eastern 

Canada (Barletta et al. 2010), northeastern United States (King & Peck 2001), 

Fennoscandia (Snowball et al. 2007; Lougheed et al. 2014), central-northern Great 

Britain (Turner & Thompson 1981), and the West Eifel (Germany) (Stockhausen 1998). 

Such a stack for Tibet bears the great potential to be used as a reference curve for 

dating purposes for a very large region.   
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Outline and structure of the thesis 

 

The aim of this thesis is to provide new paleolimnological and limnogeological 

information and develop conceptual approaches from areas of the world where this 

kind of information is very scarce to (almost) inexistent such as the steppe parts of 

southern Patagonia (Argentina), the eastern Ecuadorian Andes, the Island of Sulawesi 

(Indonesia), the epicontinental sea of the Hudson Bay, the Tibetan Plateau, or the 

different rainfall zones of South Africa. A special emphasis will be on the construction 

of reliable chronologies using multi-dating approaches. In this context one focus will 

be on the evaluation of chronologies using PSVs wherever this was possible 

depending on sediment properties.  

For this thesis only internationally published peer-reviewed articles are considered. 

Although, some contributions are from Laguna Potrok Aike which was the investigated 

site of my PhD thesis (Haberzettl 2006) all contributions to this habilitation thesis 

postdate the successful completion of the PhD thesis and were hence compiled 

independently. Even though the papers are in alphabetical order they can be structured 

as follows: 

1. New conceptual approaches  

2. Paleoenvironmental reconstructions using simple magnetostratigraphically 

not confirmed chronologies since no paleomagnetic secular variation data 

could be obtained from the sediment and other paleolimnological and 

limnogeological investigations such as studies on sediment distributions 

(including one marine study from the epicontinental sea of the Hudson Bay)  

3. Paleomagnetic investigations and/or magnetostratigraphic evaluations of 

chronologies 

4. Paleoenvironmental information from magnetostratigraphically corroborated 

chronologies  

5. Other dating approaches  
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Table 1: List of manuscripts used for this thesis. No. corresponds to the appendix number. 
Category refers to the categorization given on the previous page. 
 

No. Manuscript Category Contribution to 

1 

Ahlborn M., Haberzettl T., Wang J., Alivernini 
M., Schlütz F., Schwarz A., Su Y., Frenzel P., 
Daut G., Zhu L. & Mäusbacher R. (2015): 
Sediment dynamics and hydrologic events 
affecting small lacustrine systems on the 
southern-central Tibetan Plateau – the 
example of TT Lake. The Holocene 25(3), 
508-522. 

1, 3, 4 

concept of research 
approach / data 
acquisition / data 
analysis and 
interpretation / writing 
manuscript  

2 

Akita L.G., Frenzel P., Haberzettl T., Kasper 
T., Wang J. & Reicherter K. (2015): Ostracoda 
(Crustacea) as indicators of subaqueous mass 
movements: An example from the large 
brackish lake Tangra Yumco on the southern 
Tibetan Plateau, China. Palaeogeography, 
Palaeoclimatology, Palaeoecology 419, 60-74. 

1 

data acquisition for 
physical and 
geochemical sediment 
properties / comparison 
to physical and 
chemical sediment 
properties / writing 
manuscript  

3 

Biagioni S., Haberzettl T., Wang L., St-Onge 
G. & Behling H. (2015): Unravelling the past 
1,000 years of history of human-climate-
landscape interactions at the Lindu plain 
(Sulawesi, Indonesia). Vegetation History and 
Archaeobotany, doi:10.1007/s00334-015-
0523-1 

3, 4 

concept of research 
approach / 
paleomagnetic data 
acquisition / data 
analysis and 
interpretation / writing 
manuscript 

4 

Biagioni S., Wündsch M., Haberzettl T. & 
Behling H. (2015): Assessing 
resilience/sensitivity of tropical mountain 
rainforests towards climate variability of the 
last 1500 years: The long-term perspective at 
Lake Kalimpaa (Sulawesi, Indonesia). Review 
of Palaeobotany and Palynology 213, 42-53. 

4 

concept of research 
approach / stratigraphy 
/ chronology / 
discussion of data in 
context of chemical 
sediment properties 

5 

Brunschön C., Haberzettl T. & Behling H. 
(2010): High-resolution studies on vegetation 
succession, hydrological variations, 
anthropogenic impact and genesis of a 
subrecent lake in southern Ecuador. 
Vegetation History and Archaeobotany 19(3), 
191-206. 

2 

concept of research 
approach / data 
acquisition for 
geochemical sediment 
properties / data 
analysis and 
interpretation / writing 
manuscript 

6 

Dietze E., Maussion F., Ahlborn M., Diekmann 
B., Hartmann K., Henkel K., Kasper T., Lockot 
G., Opitz S. & Haberzettl T. (2014): Sediment 
transport processes across the Tibetan 
Plateau inferred from robust grain-size end 
members in lake sediments. Climate of the 
Past 10(1), 91-106. 

1 
data acquisition and 
interpretation / writing 
manuscript  
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Doberschütz S., Frenzel P., Haberzettl T., 
Kasper T., Wang J., Zhu L., Daut G., Schwalb 
A. & Mäusbacher R. (2014): Monsoonal 
forcing of Holocene paleoenvironmental 
change on the central Tibetan Plateau inferred 
using a sediment record from Lake Nam Co 
(Xizang, China). Journal of 
Paleolimnology 51(2), 253-266. 

2, 4 

concept of research 
approach / 
geochemical data 
analysis and 
interpretation 

8 

Fey M., Korr C., Maidana N.I., Carrevedo M.L., 
Corbella H., Dietrich S., Haberzettl T., Kuhn 
G., Lücke A., Mayr C., Ohlendorf C., Paez 
M.M., Quintana F.A., Schäbitz F. & Zolitschka 
B. (2009): Palaeoenvironmental changes 
during the last 1600 years inferred from the 
sediment record of a cirque lake in southern 
Patagonia (Laguna Las Vizcachas, Argentina). 
Palaeogeography, Palaeoclimatology, 
Palaeoecology 281(3-4), 363-375. 

2 

concept of research 
approach / data 
analysis and 
interpretation 

9 

Haberzettl T., Anselmetti F.S., Bowen S.W., 
Fey M., Mayr C., Zolitschka B., Ariztegui D., 
Mauz B., Ohlendorf C., Kastner S., Lücke A., 
Schäbitz F. & Wille M. (2009): Late 
Pleistocene dust deposition in the Patagonian 
steppe - extending and refining the 
paleoenvironmental and tephrochronological 
record from Laguna Potrok Aike back to 55 ka. 
Quaternary Science Reviews 28(25-26), 2927-
2939. 

1-5 

concept of research 
approach / data 
assessment / data 
analysis and 
interpretation / writing 
manuscript  

10 

Haberzettl T., St-Onge G. & Lajeunesse P. 
(2010): Multi-proxy records of environmental 
changes in Hudson Bay and Strait since the 
final outburst flood of Lake Agassiz-Ojibway. 
Marine Geology 271(1-2), 93-105. 

2, 3 

concept of research 
approach / data 
assessment / data 
analysis and 
interpretation / writing 
manuscript  

11 

Haberzettl T., St-Onge G., Behling H. & Kirleis 
W. (2013): Holocene radiocarbon-based 
chronologies by matching palaeomagnetic 
secular variations to geomagnetic field 
models: an example from Lake Kalimpaa 
(Sulawesi, Indonesia). In: Jovane L., Herrero-
Bervera E., Hinnov L.A. & Housen B.A. (Eds.), 
Magnetic Methods and the Timing of 
Geological Processes. London: Geological 
Society London Special Publications. pp. 245-
259. 

3 

concept of research 
approach / data 
acquisition / data 
analysis and 
interpretation / writing 
manuscript  
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12 

Haberzettl T., Baade J., Compton J., Daut G., 
Dupont L., Finch J., Frenzel P., Green A., 
Hahn A., Hebbeln D., Helmschrot J., 
Humphries M., Kasper T., Kirsten K., 
Mäusbacher R., Meadows M., Meschner S., 
Quick L., Schefuß E., Wündsch M. & Zabel M. 
(2014): Paleoenvironmental investigations 
using a combination of terrestrial and marine 
sediments from South Africa - The RAIN 
(Regional Archives for Integrated 
iNvestigations) approach. Zentralblatt für 
Geologie und Paläontologie, Teil I(1), 55-73. 

1 
concept of research 
approach / writing 
manuscript  

13 

Haberzettl T., Henkel K., Kasper T., Ahlborn 
M., Su Y., Wang J., Appel E., St-Onge G., 
Stoner J., Daut G., Zhu L. & Mäusbacher R. 
(2015): Independently dated paleomagnetic 
secular variation records from the Tibetan 
Plateau. Earth and Planetary Science Letters 
416, 98-108. 

3 

concept of research 
approach / data 
acquisition / data 
analysis and 
interpretation / writing 
manuscript  

14 

Jouve G., Francus P., Lamoureux S., 
Provencher-Nolet L., Hahn A., Haberzettl T., 
Fortin D. & Nuttin L. (2013): 
Microsedimentological characterization using 
image analysis and μ-XRF as indicators of 
sedimentary processes and climate changes 
during Lateglacial at Laguna Potrok Aike, 
Santa Cruz, Argentina. Quaternary Science 
Reviews 71, 191-204. 

2 
data analysis and 
interpretation 

15 

Kasper T., Haberzettl T., Doberschütz S., 
Daut G., Wang J., Zhu L., Nowaczyk N. & 
Mäusbacher R. (2012): Indian Ocean Summer 
Monsoon (IOSM)-dynamics within the past 
4 ka recorded in the sediments of Lake Nam 
Co, central Tibetan Plateau (China). 
Quaternary Science Reviews 39, 73-85. 

3, 4 

concept of research 
approach / data 
acquisition / data 
analysis and 
interpretation / writing 
manuscript  

16 

Kasper T., Frenzel P., Haberzettl T., Schwarz 
A., Daut G., Meschner S., Wang J., Zhu L. & 
Mäusbacher R. (2013): Interplay between 
redox conditions and hydrological changes in 
sediments from Lake Nam Co (Tibetan 
Plateau) during the past 4000 cal BP inferred 
from geochemical and micropaleontological 
analyses. Palaeogeography, 
Palaeoclimatology, Palaeoecology 392, 261-
271. 

4 

concept of research 
approach / 
geochemical data 
acquisition / data 
analysis and 
interpretation 
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17 

Kasper T., Haberzettl T., Wang J., Daut G., 
Doberschütz S., Zhu L. & Mäusbacher R. 
(2015): Hydrological variations on the Central 
Tibetan Plateau since the Last Glacial 
Maximum and their teleconnection to inter-
regional and hemispheric climate variations. 
Journal of Quaternary Science 30(1), 70-78. 

2, 4 

concept of research 
approach / data 
acquisition / data 
analysis and 
interpretation 

18 

Kastner S., Enters D., Ohlendorf C., 
Haberzettl T., Kuhn G., Lücke A., Mayr C., 
Reyss J.-L., Wastegård S. & Zolitschka B. 
(2010a): Reconstructing 2000 years of 
hydrological variation derived from laminated 
proglacial sediments of Lago del Desierto at 
the eastern margin of the South Patagonian 
Ice Field, Argentina. Global and Planetary 
Change 72(3), 201-214. 

2 

concept of research 
approach / geophysical 
data acquisition / data 
analysis and 
interpretation 

19 

Kastner S., Ohlendorf C., Haberzettl T., Lücke 
A., Mayr C., Maidana N., Schäbitz F. & 
Zolitschka B. (2010b): Southern hemispheric 
westerlies control the spatial distribution of 
modern sediments in Laguna Potrok Aike, 
Argentina. Journal of Paleolimnology 44(4), 
887-902. 

1 

concept of research 
approach / data 
analysis and 
interpretation 

20 

Lisé-Pronovost A., St-Onge G., Gogorza C., 
Haberzettl T., Preda M., Kliem P., Francus P. 
& Zolitschka B. (2013): High-resolution 
paleomagnetic secular variations and relative 
paleointensity since the Late Pleistocene in 
southern South America. Quaternary Science 
Reviews 71, 91-108. 

3 
concept of research 
approach / data 
interpretation 

21 

Lisé-Pronovost A., St-Onge G., Gogorza C., 
Haberzettl T., Jouve G., Francus P., 
Ohlendorf C., Gebhardt C. & Zolitschka B. 
(2015): Rock-magnetic proxies of wind 
intensity and dust since 51,200 cal BP from 
lacustrine sediments of Laguna Potrok Aike, 
southeastern Patagonia. Earth and Planetary 
Science Letters 411, 72-86. 

3 
concept of research 
approach / data 
interpretation 

22 

Long H., Lai Z., Frenzel P., Fuchs M. & 
Haberzettl T. (2012): Holocene moist period 
recorded by the chronostratigraphy of a lake 
sedimentary sequence from Lake Tangra 
Yumco on the south Tibetan Plateau. 
Quaternary Geochronology 10, 136-142. 
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concept of research 
approach / data 
interpretation 
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J., Kasper T., Daut G., Zhu L., Mäusbacher R. 
& Frechen M. (2015): Luminescence dating of 
lacustrine sediments from Tangra Yumco 
(southern Tibetan Plateau) using post-IR IRSL 
signals from polymineral grains. Boreas 44(1), 
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approach / data 
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interpretation 

24 
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steppe in the Tangra Yumco Basin, west-
central Tibet, China: despite or in 
consequence of Holocene lake-level changes? 
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approach / chronology / 
sedimentology / data 
interpretation / writing 
manuscript  

25 
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(2009): Holocene climate variability and 
vegetation dynamics inferred from the (11700 
cal. yr BP) Laguna Rabadilla de Vaca 
sediment record, southeastern Ecuadorian 
Andes. The Holocene 19(2), 307-316. 
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Zolitschka B. (2013): Mechanisms of lake-level 
change at Laguna Potrok Aike (Argentina) – 
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