Optisch gepumpte Magnetometer mit reduzierter Spin-Austausch-Relaxation im Erdmagnetfeld

Dissertation
zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)
vorgelegt dem Rat der Physikalisch-Astronomischen Fakultät der
Friedrich-Schiller-Universität Jena

von Theo Scholtes
geboren am 23. Dezember 1986 in Saalfeld/Saale
Gutachter

1: Prof. Dr. Hans-Georg Meyer (Leibniz-Institut für Photonische Technologien Jena)

2: Prof. Dr. Antoine Weis (Universität Freiburg, Kanton Freiburg, Schweiz)

3: Prof. Dr. Jens Haueisen (Technische Universität Ilmenau)

Inhaltsverzeichnis

1 Einleitung
 1.1 Einführung in die (optische) Magnetometrie .. 1
 1.2 Historischer Abriss der optischen Magnetometrie 4
 1.3 Miniaturisierte optisch gepumpte Magnetometer am IPHT 5
 1.4 Motivation und Gliederung der Arbeit .. 7

2 Theoretische Grundlagen ... 9
 2.1 Alkalimetalle in der optischen Magnetometrie ... 9
 2.2 Das Cäsium-Atom und seine D_1-Linie .. 10
 2.3 Verbreiterungsmechanismen von Spektrallinien ... 12
 2.4 Optisches Pumpen .. 13
 2.5 Relaxationsmechanismen angeregter Zustände ... 16
 2.6 Wechselwirkung mit dem Magnetfeld ... 17
 2.7 B_1-Feld, Doppelresonanz und M_x-Magnetometer 18
 2.8 Magnetfeldempfindlichkeit ... 20
 2.9 Relaxationsmechanismen im Grundzustand .. 22
 2.9.1 Wandstöße ... 22
 2.9.2 Puffergas-Stöße .. 23
 2.9.3 Alkali-Stöße .. 26
 2.9.4 Wechselwirkung mit äußeren Feldern .. 29
 2.9.5 Gesamtraten .. 31

3 Experimenteller Aufbau ... 33
 3.1 Cäsium-Zellen ... 33
 3.2 Pumplicht .. 34
 3.3 Temperaturkontrolle der Zelle .. 34
 3.4 Magnetfelder .. 35
 3.5 Ausleseelektronik ... 36
 3.6 Automatisches Messprogramm .. 36
4 Bestimmung der intrinsischen Relaxationsbeiträge 38
4.1 Motivation .. 38
4.2 Bestimmung durch optisch detektierte magnetische Resonanz (ODMR) 38
4.3 Bestimmung anhand des Grundzustands-Hanle-Effekts (GZHE) 39
4.4 Experimenteller Aufbau .. 41
4.5 Ergebnisse der Relaxationsratenmessung 42

5 Dichtematrix-Simulationen 51
5.1 Motivation .. 51
5.2 Dichtematrix-Formalismus ... 52
5.3 Simulation eines einfachen Systems zweier Hyperfeinniveaus 52
5.3.1 Zeeman-Effekt und Larmor-Präzession 53
5.3.2 Optisches Pumpen ... 55
5.3.3 B_1-Feld ... 57
5.3.4 Relaxation und Repopulation 58
5.3.5 Observable und Lock-In-Signal 58
5.4 Modell des Cäsium-D_1-Systems 60

6 Das Light-Narrowing-Regime 63
6.1 Gliederung des Kapitels ... 63
6.2 Abgrenzung des LN-Regimes 64
6.3 Optimierung der Empfindlichkeit 65
6.4 Gewöhnlicher M_x-Betriebsmodus 66
6.5 LN-M_x-Betriebsmodus ... 68
6.6 Rauschmessungen im LN-Regime 72
6.6.1 Methodik ... 73
6.6.2 Resultate ... 74
6.7 Nachweis der Reduktion der Spin-Austausch-Relaxation 78
6.7.1 Methodik ... 79
6.7.2 Resultate ... 80
6.8 Richtungsabhängigkeit der Magnetfeldmessung 87
6.8.1 Nichtlinearer Zeeman-Effekt 87
6.8.2 Lichtverschiebung ... 89
6.8.3 Unterdrückung des Richtungsfehlers 90
6.8.4 Methodik ... 91
6.8.5 Resultate ... 92
6.8.6 Verbesserung der Messmethode 94

7 Zusammenfassung und Ausblick 95
Anhang

A Laserfrequenzstabilisierung mittels DAVLL
B Technologie der Zellherstellung

Literaturverzeichnis

Abbildungssverzeichnis

Tabellenverzeichnis

Verzeichnis der Formelzeichen

Verzeichnis der Abkürzungen

Danksagung

Ehrenwörtliche Erklärung

Curriculum vitae
Vorwort

In der Arbeit werden Resultate vorgestellt, welche teilweise bereits in folgenden Artikeln publiziert worden sind:

Folgende weiteren Artikel sind während der Promotion in Co-Autorschaft entstanden und enthalten teilweise ebenfalls hier präsentierte Ergebnisse:

- Volkmar Schultze, Rob IJsselsteijn, Theo Scholtes, Stefan Woetzel, Hans-Georg Meyer. “Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical M_x magnetometer”. In: *Optics Express* 20, 14201 (2012); In: *Optics Express* 20, 28056 (2012).

• Stefan Woetzel, Florian Talkenberg, Theo Scholtes, Rob IJsselsteijn, Volkmar Schultze, Hans-Georg Meyer. “Lifetime improvement of micro-fabricated alkali vapor cells by atomic layer deposited wall coatings”. In: *Surface & Coatings Technology* 221, 158 (2013).

Kapitel 1

Einleitung

1.1 Einführung in die (optische) Magnetometrie

$$\omega_L = \gamma |\vec{B}|,$$

Neben der Frage der Sensitivität des Sensors spielen weitere Kriterien wie zum Beispiel das physikalische Messprinzip eine Rolle: SQUIDs messen den durch ihre supraleitende Schleife tretenden magnetischen Fluß, detektieren also prinzipiell die Vektorkomponente des äußeren Magnetfeldes senkrecht zu der Fläche, die die Schleife aufspannt.

Ein OPM misst die Larmorfrequenz der präzedierenden Spins von Atomen welche unabhängig von der Lage des Magnetfeldvektors im Raum ist, solange die Präzes-

Während die auf Supraleitung angewiesenen SQUIDs in tiefkalten Temperaturen betrieben werden müssen, arbeiten OPMs bei Raumtemperatur oder wie bei den in dieser Arbeit eingesetzten miniaturisierten Zellen deutlich darüber. Durch den möglichen Verzicht auf Kyrotechnik sind die OPMs den SQUIDs gegenüber deshalb in Fragen der Handhabung und laufenden Betriebskosten im Vorteil. Vor allem bei der Absicht ein Sensorsystem außerhalb des Labors im Feld einzusetzen, ist es sehr attraktiv auf kryogene Flüssigkeiten verzichten zu können.

In den letzten Jahren sind die optischen Magnetometer in einem Maße weiterentwickelt worden, dass sie die bis dato konkurrenzlos empfindlichen SQUIDs in Sachen Sensitivität eingeholt haben [3]. So wurden in jüngster Zeit in den sonst ausschließlich den SQUIDs vorbehaltenen Anwendungsdomenen OPMs erfolgreich eingesetzt wie zum Beispiel der Magnetokardiographie (MKG) [4, 5], der Magnetoenzephalographie (MEG) [6, 7], der Detektion magnetischer Nanopartikel [8, 9], der Niedrigfeld-Magnetresonanztomographie (MRT) [10, 11], der Niederfeld-Kernspinresonanzspektroskopie (kurz ULF-NMR, engl. ultra-low-field NMR) [12, 13] oder zur hochgenauen Messung des Magnetfeldes in Experimenten zu Fragen fundamentaler Physik [14–16].

1.2 Historischer Abriss der optischen Magnetometrie

Den ersten Schritt zur Verknüpfung der bis dahin “spukhaften Erscheinung” Magnetismus mit optischen Phänomenen bedeutete die Beobachtung Michael Faradays im Jahre 1845, dass die Polarisation von durch ein spezielles Medium (damals ein Glas) tretendem Licht von einem äußeren Magnetfeld beeinflusst werden kann [17]. Der sich damit ergebende Zusammenhang von Licht mit Magnetismus, führte James Clark Maxwell 1865 zu der Vorhersage, dass Licht eine elektromagnetische Welle sei [18]. Gut 30 Jahre später entdeckte Pieter Zeeman den später nach ihm benannten Effekt der Aufspaltung atomarer Spektrallinien in einem äußeren Magnetfeld [19]. Dazu lieferte dessen Doktorvater Hendrik A. Lorentz eine Erklärung des Phänomens indem er annahm, dass sich bewegende Elektronen, die damals erst als Bestandteile der Atome vermutet wurden, zu einem magnetischen Moment $\vec{\mu}$ des Atoms führen, welches mit dem äußeren Magnetfeld \vec{B} wechselwirkt [20].

Klassisch veranschaulicht man sich die Wechselwirkung als Wirken eines Drehmomentes

$$\vec{D} = \vec{\mu} \times \vec{B},$$

Als Geburtsjahr der optischen Magnetometrie kann 1949 gelten, in dem die Methode der optischen Detektion der Magnetresonanz entdeckt und als Doppelresonanztechnik publiziert wurde [25, 26].

Ebenso zentral war die Entdeckung von Alfred Kastler und seinen Mitarbeitern, dass durch die Bestrahlung von Atomen mit Licht passender Wellenlänge und Polarisation die Besetzungszahlen der magnetischen Unterniveaus von atomaren Zuständen manipuliert und damit das Atom selbst polarisiert werden kann. Diese Idee des sog. optischen Pumpens (siehe dazu Abschnitt 2.4) machte die direkte optische Messung der Elektronenspinresonanz (kurz ESR, engl. electron spin resonance) möglich [27]. Darauf aufbauend wurde 1957 der Vorschlag veröffentlicht, mittels der durch
die im Magnetfeld präzedierenden Spins hervorgerufenen Modulation des Pumplichtes den Betrag des Magnetfeldes optisch zu messen [28] was noch im selben Jahr experimentell umgesetzt wurde [29]. Während die ersten Arbeiten zur nötigen Phasensynchronisation der Spins zunächst ein zusätzliches oszillierendes Magnetfeld implementierten, wurde wenig später gezeigt, dass auch moduliertes Pumplicht dazu geeignet ist [30]. Eine weitere wegweisende Arbeit führte selbstoszillierende Magnetometeranordnungen ein [31], die zwar sehr zuverlässig arbeiten, aber wie man heute weiß auch einige Nachteile aufweisen. Einen guten Überblick über die sich anschließende weitere Entwicklung des Gebiets geben die Übersichtsartikel [32–34].

Die Wiederentdeckung und rasante Weiterentwicklung der optischen Magnetometrie während der letzten 15 Jahre ist hauptsächlich auf neue technische Möglichkeiten wie neuartige Lichtquellen zurückzuführen, welche es teilweise erst möglich machten, das volle Potential dieses Sensortyps auszuschöpfen, aber auch völlig neuartige Entwicklungen ermöglichten (siehe dazu die Übersichtswerke [35–37]).

1.3 Miniaturisierte optisch gepumpte Magnetometer am IPHT

Um diese Herausforderungen zu adressieren wurde am IPHT die Entwicklung der Sensoren auf Basis mikrosystemtechnisch hergestellter Arrays eingeschlagen. Die Verwendung mehrerer möglichst identischer Sensoren verspricht die Möglichkeit, diese gegeneinander zu referenzieren und in gradiometrischen Ansätzen unerwünschte Störungen, welche beim Einsatz im Feld unweigerlich auftreten, zu eliminieren. Die-
ser Ansatz ist gut motiviert durch die in der Abteilung Quantendetektion des IPHT über Jahrzehnte gesammelte Erfahrung im Bereich feldtauglicher SQUID-Systeme [38–41].
äußeren (Erd-)Magnetfeld abgeschirmten Umgebung. Ein Aufbau, welcher durch aufwendige aktive Rückkopplung mit Hilfe eines äußeren Spulensystems im Erdmagnetfeld messen kann wurde zwar erfolgreich demonstriert [45], zeigte jedoch eine Reduktion seiner überlegenen Empfindlichkeit in Bereiche, die auch von OPMs ohne Implementation des SERF-Prinzips erreicht oder sogar überboten werden [42, 46].

1.4 Motivation und Gliederung der Arbeit

Schon während der Untersuchungen im Rahmen der Diplomarbeit deutete sich an, dass die neue Methode stärker richtungsabhängig war als der herkömmliche Betriebsmodus. Da der Sensor perspektivisch auch im Feld bewegt eingesetzt werden soll, musste die Klärung der Frage nach dem Richtungsfehler des Sensors und Möglichkeiten zu dessen Verringerung (siehe Abschnitt 6.8) besondere Priorität erhalten.

Neben der Qualifikation des Sensors für die Anwendung war es für das physikalische Verständnis des Effekts essentiell, sicher nachzuweisen, dass tatsächlich eine Reduktion der unvorteilhaften Wirkung der Spin-Austausch-Stöße auftritt. Dies war zunächst nur vermutet und nicht sicher belegt, da hier vorab Aufklärung und ein Verständnis der verschiedenen auf die polarisierten Atome wirkenden sogenannten Relaxationsmechanismen (siehe Abschnitt 2.9) erarbeitet werden musste.

\(^1\)angelehnt an den originär von Stephan Appelt et al. 1998 in einer Publikation eines sehr ähnlichen Phänomens eingeführten Begriff [48].
etablierte Konfiguration des *Light-Narrowed*-\(M_x\)-Magnetometers macht es außerdem nötig, das System in seiner allgemeinsten Konfiguration abzubilden, speziell um den Winkel \(\theta\) zwischen Ausbreitungsrichtung des Laserlichts und dem Vektor des äußeren Magnetfeldes, der in unserem System ein sehr wichtiger Parameter ist, Rechnung zu tragen.

Die vorliegende Arbeit gliedert sich folgendermaßen: Kapitel 2 bietet eine Einführung in das optische Pumpen auf der in dieser Arbeit diskutierten \(D_1\)-Linie des Cäsiumatoms. Anschließend werden die Grundprinzipien der optischen Magnetometrie und des \(M_x\)-Magnetometers erläutert und die die Magnetfeldempfindlichkeit des Sensors begrenzenden Relaxationsmechanismen diskutiert.

In Kapitel 3 werden grundlegende Komponenten des Versuchsaufbaus vorgestellt, mit dem die in den nachfolgenden Kapiteln präsentierten experimentellen Resultate gewonnen wurden. Dies betrifft einerseits die Bestimmung der intrinsischen Relaxationsbeiträge in Kapitel 4 und darauf aufbauend die Messungen zum gewöhnlichen \(M_x\)-Betriebsmodus und des Light-Narrowing-\(M_x\)-Magnetometers in Kapitel 6.

Kapitel 2

Theoretische Grundlagen

2.1 Alkalimetalle in der optischen Magnetometrie

Während Natrium, Kalium und - wie unsere Erfahrung gezeigt hat - auch Rubidium bei den nötigen Betriebstemperaturen sehr stark mit den Zellwänden reagiert,

2.2 Das Cäsium-Atom und seine D_1-Linie

Das einzelne Valenzelektron des Cäsiumatoms weist einen elektronischen Grundzustand $6s \, 6S_{1/2}$ mit Spin $S = \frac{1}{2}$, Bahndrehimpuls $L = 0$ und Gesamtdrehimpuls des Elektrons $J = \frac{1}{2}$ auf. Die beiden ersten angeregten atomaren Zustände (mit $S = \frac{1}{2}$ und $L = 1$) sind $6p \, 6P_{1/2}$ ($J = L - S = \frac{1}{2}$) und $6p \, 6P_{3/2}$ ($J = L + S = \frac{3}{2}$), welche durch Feinstrukturaufspaltung (Kopplung des Spinmoments $\vec{\mu}_S$ des Elektrons mit seinem Bahnmoment $\vec{\mu}_L$) entstehen. Die entsprechenden Energieabstände der ersten beiden angeregten Zustände zum Grundzustand werden D_1- ($\lambda_{D_1} = 894,6 \text{ nm}$) und D_2-Linie ($\lambda_{D_2} = 852,3 \text{ nm}$) genannt [49]. Das Cäsiumatom besitzt den Kernspin $I = \frac{7}{2}$ und durch Hyperfeinstrukturaufspaltung (Kopplung des Drehimpulsmoments $\vec{\mu}_J$ des Elektrons mit dem Moment des Kernspins $\vec{\mu}_I$) spalten die Zustände weiter auf. Es ergeben sich gemäß der Regel $F = |J - I|, \ldots, J + I$ die Hyperfein niveaus im Grundzustand und erstem angeregtem Zustand $F = I \pm J = \frac{7}{2} \pm \frac{1}{2} = 3, 4$ und im zweiten angeregten Zustand $F' = 2, 3, 4, 5$ (siehe Abbildung 2.1). Die angeregten Zustände haben Lebensdauern von 34,9 ns (D_1) und 30,5 ns (D_2) [49]. Innerhalb dieser Arbeit wird ausschließlich auf der D_1-Linie gearbeitet, sodass nur auf dieses System hier detaillierter eingegangen wird.

Gemäß der Auswahlregel für elektrische Dipolübergänge $|F' - F| = \Delta F = 0, \pm 1$ besitzt die D_1-Linie von Cs also vier erlaubte Hyperfeinübergänge, welche spektroskopisch detektiert werden können. Die Hyperfeinstruktur der Cs-D_1-Linie zeigt Abbildung 2.2 als Absorptionsspektrum (links). Die relative Stärke der Hyperfeinlinien ist durch

$$A_{F\leftrightarrow F'} = \frac{(2F + 1)(2F' + 1)}{2I + 1} \begin{vmatrix} J & J' & 1 \\ F' & F & I \end{vmatrix}$$

(2.1)
Abbildung 2.1: Elektronisches Termschema der D-Linie von ^{133}Cs mit Feinstruktur- und Hyperfeinstrukturaufspaltung (nicht maßstäblich). Durch Feinstrukturaufspaltung spaltet der angeregte Zustand auf, durch die wesentlich kleinere Hyperfeinstrukturwechselwirkung bilden sich weitere Unterniveaus.

gegeben, wobei gestrichene Größen für den angeregten Zustand stehen. Der Ausdruck in geschweiften Klammern ist ein sogenanntes Wigner-6-j-Symbol und kann nachgeschlagen oder mit dem Computer berechnet werden [50, 51]. Die Tabelle rechts in Abbildung 2.2 zeigt die Werte $A_{F \leftrightarrow F'}$, welche durch die Flächenverhältnisse der Absorptionspeaks näherungsweise wiedergegeben werden.

Abbildung 2.2: Absorptionsspektrum der Cs-D1-Linie einer Vakuum-Zelle (links) und entsprechende relative Übergangsstärken $A_{F \leftrightarrow F'}$ der Hyperfeinübergänge (rechts). Die Hyperfeinstruktur ist hier vollständig aufgelöst. Es wurde auf die maximale Absorption normiert, sowie der Nullpunkt der Laserfrequenz auf den Übergang der niedrigsten Energie $F = 4 \leftrightarrow F' = 3$ festgelegt.
2.3 Verbreiterungsmechanismen von Spektrallinien

Aus der Endlichkeit der Lebensdauer der angeregten Zustände der Atome τ_{nat} folgt mit der Energie-Zeit-Unbestimmtheitsrelation $\Delta E \Delta t = 2\pi \hbar \Delta \nu \Delta t \geq \hbar$ direkt die natürliche Linienbreite als $\Delta \nu_{\text{nat}} = \frac{1}{2\pi \tau_{\text{nat}}}$, $\Delta \nu_{\text{nat} \ D1} = 4.6 \text{ MHz}$. Da sich die Atome thermisch durch die Zelle bewegen, werden die Spektrallinien dopplerverbreitert. Für Atome, die eine von Null verschiedene Geschwindigkeitskomponente v_z parallel zur Ausbreitungsrichtung des Lichtes aufweisen, verschiebt sich die Resonanzfrequenz ν durch den Dopplereffekt gemäß $\nu' = \nu(1 - v_z/c)$. Dies führt zu einem gaußförmigen Linienprofil der Breite

$$\Delta \nu_{\text{G}} = \frac{\nu}{c} \sqrt{\frac{8 \ln 2}{k_B T_m}}, \quad (2.2)$$

wobei m die Atommasse, c die Lichtgeschwindigkeit und k_B die Boltzmann-Konstante bezeichnet [52]. Die Dopplerhalbwertsbreite beträgt für ^{133}Cs bei 273 K (373 K) 344 MHz (402 MHz) und ist damit im Experiment viel größer als die natürliche Linienbreite.

Wird ein zusätzliches (Puffer-)Gas in die Zelle gefüllt (siehe Abschnitt 2.9.2), verkürzen Stoße der Cs-Atome mit den Gasteilchen die Lebensdauer der angeregten Zustände. Dies führt ebenfalls zur Verbreiterung der optischen Linien gemäß $\Delta \nu_b \approx \frac{1}{2\pi \tau}$, die Lebensdauer im angeregten Zustand τ sinkt mit steigender Teilchendichte1 des Puffergases. Neben der sog. Puffergasverbreiterung beobachtet man auch eine Verschiebung der Spektrallinien, welche je nach Art des Puffergases positiv oder negativ sein kann [52], siehe auch die Übersichtswerke [53–55]. Tabelle 2.1 zeigt gemessene Koeffizienten für Verbreiterung und Verschiebung der Cs-D1-Linie durch verschiedene Puffergase, entnommen aus [56]. Während auch die Hyperfeinstruktur von Cäsium [57, 58] und allgemein aller Alkaliatome [59, 60] durch Puffergase verschoben wird, bleiben die magnetischen Unterzustände m_F innerhalb eines Hyperfeinlevels

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Puffergas & Verschiebung $\Delta \nu_s \ [\text{GHz}_{\text{amg}}]$ & Verbreiterung $\Delta \nu_b \ [\text{GHz}_{\text{amg}}]$ \\
\hline
Helium & 3,81 & 21,74 \\
Stickstoff & -6,93 & 14,7 \\
Neon & -1,39 & 9,45 \\
Argon & -5,63 & 15,9 \\
Krypton & -4,75 & 15,5 \\
Xenon & -5,60 & 17,2 \\
\hline
\end{tabular}
\end{table}

1Die Teilchendichte von Puffergasen wird hier in Amagat [amg] angegeben. 1 amg = $2,686 \cdot 10^{25} \text{m}^{-3}$, $\eta = \frac{p}{p_0} \text{ amg}$, wobei $T_0 = 273,15 \text{ K}$ und $p_0 = 101,325 \text{ kPa}$.
In dieser Arbeit wird ausschließlich mit Laserlicht gearbeitet, dessen Linienbreite viel kleiner als die Breite der Spektrallinie der bestrahlten Atome ist. Allerdings tritt bedingt durch die teilweise verwendete hohe Intensität des Laserlichts eine zusätzliche Verbreiterung der Spektrallinien durch die Laserstrahlung selbst auf (engl. power broadening) \[61\]. Diese entsteht durch Sättigung des optischen Übergangs, wenn die Pumprate \(\gamma_P \), mit der das Laserlicht Übergänge der Atome ins angeregte Niveau induziert, vergleichbar wird mit der Zerfallsrate \(\Gamma \) der Atome aus dem angeregten Zustand zurück in den Grundzustand. Da die Frequenzabhängigkeit des Sättigungsparameters \(SP(\omega) = \frac{\gamma_P(\omega)}{\Gamma} \) wie die einer homogen verbreiterten Spektrallinie selbst durch ein Lorentz-Profil gegeben ist, wird das Profil des Absorptionskoeffizienten gestaucht und die Linie entsprechend verbreitert \[52\].

2.4 Optisches Pumpen

Ohne die Einwirkung äußerer Licht- oder Magnetfelder befinden sich alle Cäsium-Atome eines Ensembles im Grundzustand. Die thermische Energie der Atome \(\frac{kbT}{h} \) ist bei Raumtemperatur (ca. 6 THz) viel kleiner als die des kleinsten optischen Überganges (D1-Linie: 335,1 THz) und viel größer als die Hyperfeinstrukturaufspaltung des Grundzustandes (9,19 GHz). Die Aufspaltung der \(m_F \)-Niveaus im Grundzustand des Cäsium-Atoms durch den Zeeman-Effekt (siehe dazu Abschnitt 2.6) im Erdmagnetfeld beträgt ca. \(\gamma B_0 = 3,5 \, \text{kHz} \cdot 50 \, \text{µT} = 175 \, \text{kHz} \), ist also auch viel kleiner als die thermische Energie der Atome. Die \(m_F \)-Unterzustände des Grundzustandes sind in sehr guter Näherung gleichverteilt besetzt und das Ensemble ist im Erdmagnetfeld dementsprechend nahezu unpolarisiert. In einem komplett unpolarisierten Ensemble kann keine Larmorpräzession (siehe Abschnitt 2.6) beobachtet werden, da sich in einem solchen Fall die Übergangsraten zwischen den einzelnen \(m_F \)-Unterniveaus exakt kompensieren. Um die Atome zu polarisieren, also ein Ungleichgewicht der Besetzung der atomaren Zustände herzustellen, nutzt man in der optischen Magnetometrie die Methode des optischen Pumpens \[32\].

Dazu strahlt man zu einem optischen Übergang (z.B. der Cs-D1-Linie, Abb. 2.3) des Atoms resonantes und (üblicherweise) zirkular polarisiertes Licht ein, welches je nach Helizität entweder Spin \(-\hbar \) (Ausrichtung des Spins in Ausbreitungsrichtung, \(\sigma^- \text{-Licht} \)) oder Spin \(+\hbar \) (Ausrichtung des Spins entgegen der Ausbreitungsrichtung, \(\sigma^+ \text{-Licht} \)) trägt. Dieses Licht regt elektrische Dipolübergänge aus dem Grund- in den jeweiligen angeregten Zustand an. Bei Verwendung von zirkular polarisiertem Licht \(\sigma^\pm \) folgen die Übergänge der Auswahlregel \(\Delta m_F = \pm 1 \) unter Vernichtung des Photons und der Übertragung seines Spins an das absorbierende Atom. Die sich
sofort anschließende Relaxation zurück in den Grundzustand erfolgt, da normalerweise die Lichtintensität klein genug ist um stimulierte Emission zu vernachlässigen, durch spontane Emission. Für diesen Prozess gelten die Auswahlregeln $\Delta F = 0, \pm 1$ und $\Delta m_F = -1, 0, 1$. Durch diesen zweistufigen Prozess wird also effektiv Drehimpuls (bzw. der Spin des Lichtes) an das Atom übertragen. Die Reemission der (Fluoreszenz-)Photonen erfolgt isotrop, das Licht wird gestreut, der Anteil transmitierten Lichts wird verkleinert. Dieser Zyklus kann wiederholt ablaufen, wobei mit jedem Durchlaufen das Atom weiter in höhere m_F-Zustände transferiert wird, bis für die optische Anregung passende Zustände im angeregten Zustand fehlen. Niveaus des Grundzustandes, die in der jeweiligen Konfiguration nicht an die angeregten Zustände koppeln, nennt man Dunkelzustände. In solchen Zuständen sammeln sich die Atome im Grundzustand an. Wenn alle Atome in Dunkelzustände gepumpt worden sind und Relaxation vernachlässigt wird, wird das Ensemble transparent für das Pumplicht.

Beispielhaft zeigt Abbildung 2.3 den üblichen Fall des optischen Pumpens eines Hyperfeinüberganges der D_1-Linie mit σ^+-Licht. In dieser Konfiguration koppelt das Licht nur die Hyperfeinniveaus $F = 4$ und $F' = 3$ miteinander. Während die Atome

$\text{Abbildung 2.3: Optisches Pumpen auf dem Hyperfeinübergang } F = 4 \leftrightarrow F' = 3 \text{ der } D_1\text{-Linie des Cäsiumatoms. Zirkular polarisiertes Licht } \sigma^+ \text{ induziert Übergänge zwischen den magnetischen Unterniveaus von Grund- und angeregtem Zustand gemäß der Auswahlregel } \Delta m_F = \pm 1. \text{ Beispielhaft angedeutet ist die Abregung aus einem angeregten } m_F\text{-Niveau durch spontane Emission. Innerhalb des gepumpten Hyperfeinübergangs treten } F - F' + 1 = 2 \text{ Dunkelzustände auf, bei denen zur Absorption passende angeregte Zustände fehlen (grau dargestellt). Das gesamte untere Grundzustandsniveau } F = 3 \text{ kann man hier auch als Dunkelzustand auffassen, da diese Atome ebenfalls nicht mehr am Zyklus des optischen Pumpens beteiligt sind.}$

$2\text{Der Begriff stammt aus der Anfangszeit des optischen Pumpens und beschrieb ursprünglich das beobachtete Ausbleiben von Fluoreszenzstrahlung, da Atome in diesen Zuständen nicht erneut optisch gepumpt werden und anschließend relaxieren können.}$
nur aus $F = 4$ mit $\Delta m_F = +1$ gepumpt werden, relaxieren sie zurück in beide Hyperfeinniveaus des Grundzustandes. Die Zustände $F = 4, m_F = 3$ und $F = 4, m_F = 4$ sind hier Dunkelzustände. Nach hinreichend langer Zeit stellt sich eine Besetzungsverteilung im Gleichgewichtszustand zwischen optischem Pumpprozess und wirkenden Relaxationsmechanismen (siehe Abschnitt 2.9) ein. Dieses bei Verwendung zirkular polarisierten Lichtes wie in Abbildung 2.4 dargestellt nicht mehr symmetrisch zu $m_F = 0$, (mindestens) ein Zustand F des Atomensembles weist eine Vektormagnetik oder Orientierung (engl. *orientation*) des Grades

\[O_F = \frac{1}{F} \sum_{m_F} m_F \rho_{m_F} \]

(2.3)
auf, wobei die ρ_{m_F} die entsprechenden Populationen bezeichnen.

Strahlt man linear polarisiertes Licht ein, erzeugt man eine Verteilung der Population, bei der die Zustände mit verschiedenem $|m_F|$ ungleich besetzt, m_F und $-m_F$ aber jeweils gleichbesetzt sind. In diesem Fall ist $O_F = 0$, aber man hat ein Polarisationsmoment höherer Ordnung erzeugt. Man spricht dann von Ausrichtung (engl. *alignment*).

Die generierten Besetzungsunterschiede der m_F-Niveaus erlauben es durch Übergänge zwischen diesen die durch das äußere Magnetfeld hervorgerufene Zeeman-Aufspaltung mittels der Doppelresonanztechnik (siehe Abschnitt 2.7) zu detektieren.

Die Abbildungen 2.3 und 2.4 deuten bereits an, dass hier ein Großteil der Atome auch in den unteren Grundzustand $F = 3$ relaxiert. Diese Tatsache ist unvorteilhaft für den Betrieb des Magnetometers, da diese Atome für die Signalgenerierung verloren sind. Einen Weg dies zu vermeiden stellt das Light-Narrowing-Regime dar (siehe Kapitel 6).
2.5 Relaxationsmechanismen angeregter Zustände

anschließender Relaxation gemäß spontaner Emission wird dabei die Polarisation, die die Photonen bei der Absorption übertragen haben, nicht transferiert, sondern lediglich die Besetzung der vom Licht gepumpten Grundzustände reduziert und die von nicht gepumpten Grundzuständen erhöht. Simulationsresultate im Rahmen der Dissertation bestätigen die Annahme, dass es trotz des quenchings durch die Stickstofffüllung in den von uns verwendeten Zellen nicht zur vollständig depolarisierten Relaxation kommt.

2.6 Wechselwirkung mit dem Magnetfeld

In einem äußeren Magnetfeld wird die Entartung der magnetischen Unterniveaus m_F durch den Zeeman-Effekt aufgehoben (siehe Abbildung 2.5). Für einen Zustand

![Abbildung 2.5: Leveldiagramm der D1-Linie von 133Cs in einem kleinen äußeren Magnetfeld ($\omega_{\text{HFS}} \gg \omega_I$) (nicht maßstäblich). Die Entartung der magnetischen Unterniveaus m_F innerhalb der Hyperfeinlevel von Grund- und angeregtem Zustand wird durch den Zeeman-Effekt aufgehoben. Die Landè-Faktoren g_F der Hyperfeinniveaus innerhalb eines Zustandes weisen nach Gleichung 2.6 in guter Näherung den selben Betrag, aber umgekehrtes Vorzeichen auf.

mit $J = \frac{1}{2}$ kann die Verschiebung der Energieniveaus geschlossen analytisch durch die bekannte Breit-Rabi-Formel [63]

$$\Delta E(F = I \pm \frac{1}{2}) = -\frac{\hbar \omega_{\text{HFS}}}{2(2I + 1)} + g_I \mu_I B m_F \pm \frac{\hbar \omega_{\text{HFS}}}{2} \sqrt{x^2 + \frac{4 \xi^4 m_F}{2I + 1} + 1} \quad (2.4)$$

angegeben werden, wobei $x = \frac{2 \mu_B + \mu_I}{\hbar \omega_{\text{HFS}}} B$ ist mit dem Bohrschen Magneton $\mu_B = \frac{e h}{2m_e} = 9.274 \cdot 10^{-24} \text{ J T}^{-1}$, dem Kernmagneton $\mu_I = \frac{1}{1836} \mu_B$, dem Landè-Faktor des Elektrons $g_s = 2,002$ und dem Landè-Faktor des 133Cs-Atomkerns $g_I = 0,732$. Die Hyperfein-Aufspaltung des Grundzustandes ω_{HFS} beträgt für Cäsium $2\pi \cdot 9,19\text{ GHz}$.
Für kleine Magnetfelder (im Bereich weniger μT) kann Gleichung 2.4 um $x = 0$ entwickelt werden mit dem Resultat

$$\Delta E(m_F) = g_F \mu B_0 m_F.$$ \hspace{1cm} (2.5)

Hier steht g_F für den Landé-Faktor des Atoms und ist eine Funktion der Quantenzahlen des betrachteten Hyperfeinzustandes und für kleine Magnetfelder näherungsweise gegeben durch [49]:

$$g_F \approx g_J \frac{F(F+1) - I(I+1) + J(J+1)}{2F(F+1)}$$

$$g_J \approx 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$ \hspace{1cm} (2.6)

Die Larmorfrequenz aus Gleichung 1.1 ist gegeben als der energetische Abstand zweier benachbarter m_F-Niveaus innerhalb eines Hyperfeinzustandes:

$$\omega_L = \frac{1}{\hbar} [\Delta E(m_F + 1) - \Delta E(m_F)] = \frac{g_F \mu B_0}{\hbar} \equiv \gamma_F B_0$$ \hspace{1cm} (2.7)

Für den Grundzustand von Cäsium beträgt $\gamma(I\pm1/2) \approx \pm3.5 \frac{Hz}{nT}$, die Larmorfrequenzen sind in beiden Hyperfeinniveaus bis auf eine (hier vernachlässigte) sehr kleine Korrektur durch den Kernspin identisch, jedoch ist ihr Präzessionssinn entgegengesetzt orientiert. Dieser Fakt spielt für die Relaxation durch Spin-Austausch-Stöße eine wichtige Rolle (Abschnitt 2.9.3).

2.7 B_1-Feld, Doppelresonanz und M_x-Magnetometer

Schließen die durch das optische Pumpen aufgebaute Polarisierung \vec{P} bzw. Magnetisierung $\vec{M} = \gamma \vec{P}$ der Atome und der Magnetfeldvektor \vec{B} einen von Null verschiedenen Winkel ein, resultiert dies nach der Bloch-Gleichung

$$\frac{d\vec{P}}{dt} = \vec{M} \times \vec{B} = \vec{P} \times \omega_L$$ \hspace{1cm} (2.8)

in einer Präzessionsbewegung von \vec{P} um \vec{B} mit der Larmorfrequenz ω_L. Diese Präzessionsbewegung führt zu einer periodischen Modulation der optischen Eigenschaften der Atome. Diese Modulation der optischen Eigenschaften erfolgt allerdings zunächst ohne eine Phasenbeziehung der einzelnen Atome zueinander. Bei Integration über das komplette Atomensemble mit seinen zufällig verteilten Phasenlagen mittelt sich diese Modulation heraus. Um makroskopische Änderungen der optischen Eigenschaften des Atomensembles detektieren zu können, muss die Phase der Präzession
synchronisiert werden. Dazu kann ein magnetisches Wechselfeld \(B_1 = 2\gamma_1 \cos(\omega_1 t) \) mit der Rabifrequenz \(\Omega_1 \) verwendet werden, dessen Modulationsfrequenz \(\omega_1 \) nahe der Larmorfrequenz der Atome \(\omega_L \) gewählt wird \([28, 29, 31]\). Das resultierende Messsignal kann phasenempfindlich mit einem Lock-In detektiert werden.

Erweitert man die Blochgleichung 2.8 um Terme, die die Relaxation der Spinpolarisation longitudinal (mit Rate \(\gamma_1 \)) und transversal (mit Rate \(\gamma_2 \)) zum statischen Magnetfeld \(\vec{B}_0 \) beschreiben und das optische Pumpen durch das unter dem Winkel \(\theta \) zu \(\vec{B}_0 \) einfallende zirkular polarisierte Pumplicht mit der Rate \(\gamma_P \) hin zu einer Gleichgewichtspolarisation \(P_0 \) berücksichtigen, erhält man die modifizierte Bloch-Gleichung \([4]\)

\[
\begin{pmatrix}
\dot{P}_x \\
\dot{P}_y \\
\dot{P}_z
\end{pmatrix} =
\begin{pmatrix}
P_x \\
P_y \\
P_z
\end{pmatrix}
\times
\begin{pmatrix}
2\Omega_1 \cos(\omega_1 t) \\
0 \\
\omega_L
\end{pmatrix}
- \begin{pmatrix}
\gamma_2 P_x \\
\gamma_2 P_y \\
\gamma_1 P_z
\end{pmatrix}
+ \begin{pmatrix}
0 \\
\gamma_P \left(P_0 \sin \theta - P_y \right) \\
- \gamma_P \left(P_0 \cos \theta - P_z \right)
\end{pmatrix}
\tag{2.9}
\]

Hier wird ein zu \(\vec{B}_0 = \gamma_\omega_L \vec{z} \) orthogonal oszillierendes Magnetfeld \(\vec{B}_1 = B_1 \vec{x} \) angenommen\(^3\). Löst man dieses Gleichungssystem unter der Annahme eines kleinen \(B_1 \)-Feldes (\(\Omega_1 \ll \omega_L \)) und mit Hilfe der Drehwellennäherung (engl. rotating wave approximation) wie in \([64]\) beschrieben, ergeben sich die In-Phase-Komponente \(P_X \), die Quadratur-Komponente \(P_Y \) sowie das Phasensignal \(\varphi \) als \([4]\)

\[
P_X = -P_0 \sin(2\theta) \frac{\Omega_1 \gamma_2}{\Omega_1^2 \gamma_1 \gamma_2 + \gamma_2^2 + \delta^2}
\]

\[
P_Y = P_0 \sin(2\theta) \frac{\Omega_1 \delta}{\Omega_1^2 \gamma_1 \gamma_2 + \gamma_2^2 + \delta^2}
\]

\[
\varphi = \arctan \left(\frac{P_Y}{P_X} \right) = - \arctan \left(\frac{\delta}{\gamma_2} \right)
\tag{2.10}
\]

Bei Lock-In-Demodulation mit passend eingestellter Referenzphase ergibt sich je eine lorentzförmige, komplett absorptive Komponente \(P_X \) und ein vollständig dispersiver Anteil \(P_Y \). Die Profile in Abhängigkeit der Verstimmung der \(B_1 \)-Frequenz von der Larmorfrequenz \(\delta = \omega_1 - \omega_L \) zeigt beispielhaft Abbildung 2.6. Bei \(\delta = 0 \) weist der Betrag von \(P_X \) sein Maximum auf, während \(P_Y \) dort einen Nulldurchgang besitzt. Die Größe des Messsignals ist proportional zu \(\sin(2\theta) \) und damit abhängig vom Winkel \(\theta \) zwischen Ausbreitungsrichtung des zirkular polarisierten Lichtes \(\vec{k} \) und dem statischen Magnetfeld \(\vec{B}_0 \). Für \(\theta = n \cdot 90^\circ \ (n \in \mathbb{Z}) \) verschwindet das Signal, man spricht von toten Zonen des Sensors. Für \(\theta = 0 \) (\(\vec{B}_0 \parallel \vec{k} \)) findet keine

\(^3\)In unseren Experimenten liegt aus praktischen Gründen \(\vec{B}_1 \) parallel zur Lichtrichtung \(\vec{k} \) und besitzt damit immer auch eine zu \(\vec{B}_0 \) orthogonale Komponente. Experimente zeigen, dass sich diese Konfiguration ebenso zur Detektion der Doppelresonanz eignet.
Larmorpräzession statt und folglich wird kein Messsignal generiert. Im Fall \(\theta = 90^\circ \) \((\vec{B}_0 \perp \vec{k})\) ist der Mechanismus der Dunkelzustände außer Kraft gesetzt, aufgrund der Larmorpräzession wird die Besetzung der \(m_F \)-Niveaus angeglichen und es kann sich keine Polarisation aufbauen (vgl. Abschnitt 6.7). Für \(\theta = 45^\circ \) wird das Signal maximal. Das Phasensignal \(\varphi \) weist entsprechend seiner Definition ebenso bei \(\delta = 0 \) seinen Nulldurchgang auf und kann wie \(P_Y \) zur Rückkopplung von \(\omega_1 \) auf \(\omega_L \) verwendet werden.

Abbildung 2.6: Lock-In-Signale \(P_X, P_Y \) und \(\varphi \) in Abhängigkeit von \(\delta = \omega_1 - \omega_L \) wie sie nach Lock-In-Demodulation auftreten.

2.8 Magnetfeldempfindlichkeit

Die Magnetfeldempfindlichkeit ist die zentrale Kenngröße eines Magnetometers. Sie gibt an welche minimale Änderung des zu messenden Magnetfeldes noch aufgelöst werden kann. Fundamental begrenzt ist die Empfindlichkeit zunächst durch das Spinprojektionsrauschen, welches sich als Konsequenz der Heisenbergschen Unschärferelation bei einer quantenmechanischen Messung einer transversalen Komponente des Drehimpulses eines Spinensembles ergibt. Für ein vollständig (bzgl. der Quantisierungssachse \(\vec{z} \)) polarisiertes Ensemble gilt \(\langle F_z \rangle = F \). Die Messunsicherheit einer zur \(\vec{z} \)-Richtung orthogonalen Komponente eines solches Ensembles von \(N \) Atomen mit Spin \(F \) beträgt

\[
\sigma(\langle F_x \rangle) = \sqrt{\frac{F}{2N}}, \tag{2.11}
\]

für ein komplett unpolarisiertes Ensemble mit \(\langle F_x^2 \rangle + \langle F_y^2 \rangle + \langle F_z^2 \rangle = F(F + 1) \) ist sie mit

\[
\sigma(\langle F_z \rangle) = \sqrt{\frac{F(F + 1)}{3N}} \tag{2.12}
\]

ähnlich groß [37]. Je größer das Ensemble ist, desto kleiner ist das Spinprojektionsrauschen.

Die erzielbare spektrale Magnetfeldempfindlichkeit eines optischen Magnetometers
bei einer Messdauer von 1 Sekunde kann damit abgeschätzt werden als

\[B_{\text{pn}} \approx \frac{1}{\gamma} \sqrt{\frac{1}{NT_2}} = \frac{1}{\gamma} \sqrt{\frac{\gamma_2}{N}}. \]

(2.13)

Sie hängt von dem gyromagnetischen Verhältnis der Alkaliatome \(\gamma \) (Cs: \(3,5 \frac{\text{rad}}{\text{T}} \)), der Zahl \(N \) der verwendeten Atome und der transversalen Relaxationszeit \(T_2 \) bzw. der transversalen Relaxationsrate der Spinpolarisation \(\gamma_2 \) ab. Zur Optimierung der Empfindlichkeit muss also bei vorgegebenem Volumen \(\gamma_2 \) möglichst klein und \(N \) möglichst groß gemacht werden. Die Teilchenzahl \(N = nV \) kann bei vorgegebenem Zellvolumen \(V \) durch Erhöhung der Atomdichte in der Gasphase \(n \) vergrößert werden, indem die Zelle mitsamt ihres Alkalireservoirs geheizt wird. Die Teilchendichte in der Gasphase ist in Abhängigkeit von der absoluten Temperatur \(T \) durch folgende empirische Formel gegeben:

\[n = \frac{1}{T} 10^{21.866 + A - B/T}. \]

(2.14)

Hierbei sind \(A = 4,165 \) und \(B = 3830 \) für Cäsium experimentell bestimmte Konstanten [65].

Die transversale Relaxationsrate \(\gamma_2 \) bzw. die Spin-Kohärenzzeit \(T_2 \) legt die Breite der magnetischen Resonanz fest. Sie spielt daher außer für die Empfindlichkeit des OPMs auch für die Bandbreite des \(M_x \)-Magnetometers, welche durch die Resonanzbreite gegeben ist, die entscheidende Rolle. Während ein kleineres \(\gamma_2 \) bzw. eine längere Spin-Kohärenzzeit \(T_2 \) die Empfindlichkeit des OPMs verbessert, reduziert dies gleichzeitig auch die Bandbreite des Sensors.

Im Vergleich zum Spinprojektionsrauschen ist das Schrotrauschen, welches einerseits durch den Quantencharakter des durch die Photodiode detektierten Lichtes selbst und andererseits durch die Wandlung des Lichtes in elektrischen Strom als eine Summe einzelner Ladungsträger (Elektronen) entsteht, in der Praxis gewöhnlich dominant. Der bei der Detektion der durch die Alkalidampf-Zelle transmittierten Photonen in der Photodiode generierte Strom \(I_{dc} \) trägt bei einer Messbandbreite \(\Delta f \) das Schrotrauschen

\[I_{\text{sn}} = \sqrt{2eI_{dc}\Delta f}. \]

(2.15)

Die auf diese Weise begrenzte spektrale Empfindlichkeit bei einer Messbandbreite von 1 Hz

\[B_{\text{sn}} = \frac{1}{\gamma} \frac{I_{\text{sn}}}{\frac{dP_Y}{d\nu}} \frac{1}{\sqrt{\Delta f}} = \frac{1}{\gamma} \sqrt{2eI_{dc}} \]

(2.16)

bezeichnet man als schrotrausch-begrenzte Empfindlichkeit des Magnetometers, wobei der Anstieg \(\frac{dP_Y}{d\nu} \) am Nulldurchgang \(\delta = \omega_1 - \omega_L = 0 \) des dispersiven Signals \(P_Y \) in Einheiten des Photostromes angegeben wird (siehe Abbildung 2.7). \(B_{\text{sn}} \) ist die Emp-
findlichkeit die erzielt werden kann, wenn das Schrottrauschen bei der Detektion des Lichtes die dominante Rauschquelle darstellt und nicht durch andere, zum Beispiel technische Rauschquellen überlagert ist.

2.9 Relaxationsmechanismen im Grundzustand

Die Empfindlichkeit eines Magnetometers ist gemäß Gleichung 2.13 neben der Teilchenzahl N abhängig von der Relaxationsrate γ_2, die sich aus Beiträgen verschiedener Relaxationsmechanismen, die gleichzeitig auf die Atome in der Zelle wirken, zusammengesetzt.

2.9.1 Wandstöße

Die durch optisches Pumpen polarisierten Alkaliatome der Masse m bewegen sich mit ihrer thermischen Geschwindigkeit

$$\bar{v} = \sqrt{\frac{8k_B T}{\pi m}}$$

(2.17)
durch die Zelle. Kommen die Atome in Kontakt mit der Zellwand führt das kurze Verbleiben an dieser (engl. sticking) durch elektrostatische Wechselwirkung zum vollständigen Verlust der Polarisation. In einfacher geometrischer Abschätzung ist die Relaxationsrate der Polarisation der Alkaliatome in einer unbehandelten Vakuum- Zelle gegeben als $R_W = \frac{\bar{v} A_W}{V}$, wobei A_W die Wandfläche der Zelle bezeichnet [66]. Ohne Gegenmaßnahmen dominiert dieser Relaxationsmechanismus, nicht nur, aber gerade in miniaturisierten Zellen, die Relaxationsrate. Deshalb wurden schon in den Anfängen der optischen Magnetometrie verschiedene essentielle Methoden entwickelt, die Wanddepolarisation zu begrenzen. Ein Weg ist die Beschichtung der
Zellwand mit speziellen Stoffen mit niedrigen Sticking-Zeiten, sodass die Alkaliatome erst nach einer großen Anzahl von Wandstößen ihre Polarisation verlieren. Ursprünglich entdeckt wurde der Effekt mit Paraffinen [67, 68], welche auch heute noch gern in großen Glazellen verwendet werden und immer noch Gegenstand aktueller Forschung sind [46, 69, 70]. Seit Kurzem werden neue Rekorde der Lebensdauer der Spinpolarisation im Sekunden-Bereich durch Einsatz von bestimmten Alkenen als Wandbeschichtung publiziert [71, 72]. Die Beschichtung der Glazellen mit diesen organischen Verbindungen ist immer noch Handarbeit und für miniaturisierte Zellen aufgrund der niedrigen Schmelztemperaturen (Paraffin: \(T \approx 60^\circ\text{C}\), Alkene aus [71]: \(T \approx 33^\circ\text{C}\)) nicht geeignet. Erst vor wenigen Jahren wurde die Effektivität von speziellen Silanen demonstriert [73], welche bei sehr viel höheren Temperaturen eingesetzt werden können (\(T \approx 150^\circ\text{C}\)) als zum Beispiel Paraffine, was sie damit sehr interessant für miniaturisierte Zellen macht. Die dazu nötige mit dem für die Zellherstellung verwendeten Waferbonden kompatible Technologie ist allerdings noch nicht etabliert und Gegenstand aktueller Forschung. So muss, um die eingebrachte Wandbeschichtung nicht unkontrolliert aufzuschmelzen oder gar zu verdampfen, die Bondtemperatur von den üblichen 300°C gesenkt werden. Dazu wurden jüngst Verfahren entwickelt, bei denen durch dünne Schichten von Indium [74] oder Lithium-Niobat-Phosphat-Glas [75] die Ionenmobilität stark erhöht und so selbst bei Raumtemperatur hermetisches anodisches Bonden möglich wird.

Eine Wandbeschichtung kann nicht nur hilfreich bei der Verlängerung der Lebensdauer der Spinpolarisation sein, sondern auch bei der Lebensdauer der Zelle selbst. Insbesondere die Verwendung der Zellen bei hoher Temperatur lässt eine begrenzte Lebensdauer der Zellen erwarten, da Alkaliemetall in die Wände diffundieren und damit für die Anwendung im Magnetometer verloren gehen kann. Eine Steigerung der erwarteten Lebensdauer der Zellen um eine Größenordnung konnte in unserer Gruppe durch Beschichtung der Zellwand mit \(\text{Al}_2\text{O}_3\) mittels Atomlagen-Abscheidung demonstriert werden [76]. Bei den in der hier vorliegenden Arbeit verwendeten Zelltemperaturen stellt die Lebensdauer der Zellen jedoch kein Problem dar und die Zellen zeigen über Jahre hinweg gleichbleibende Eigenschaften.

2.9.2 Puffergas-Stöße

Die zweite Methode die Wirkung der Wandstöße zu reduzieren beruht auf dem Befüllen der Zelle mit einem zusätzlichen Gas, dem sogenannten Puffergas. Durch dieses Gas wird die Bewegung der Alkaliatome eingeschränkt und Wandstöße finden seltener statt. Die Wandstoffrate in einer zylindrischen, puffergasgefüllten Zelle kann
modelliert werden als [77]:

\[
R_{WD} = \left[\left(\frac{\pi}{h} \right)^2 + \left(\frac{4.90}{d} \right)^2 \right] \frac{D_{0,\text{Cs-PG}}}{\eta} \sqrt{\frac{T}{273.15 \text{K}}}
\]

(2.18)

Dabei sind \(h \) die Höhe und \(d \) der Durchmesser des zylindrischen Zellvolumens, \(D_{0,\text{Cs-PG}} \) die Diffusionskonstante der Cäsiumatome im verwendeten Puffergas, \(\eta \) die Teilchendichte des Puffergases in Amagat. Es stellte sich schon in den Anfängen der optischen Magnetometrie heraus, dass die Polarisation des elektronischen Grundzustandes von Alkaliatomen im Gegensatz zur Polarisation in angeregten Niveaus sehr stabil gegenüber Stößen mit anderen Atomen geeigneter Gase sein kann [32]. Nur dadurch ist es überhaupt sinnvoll zusätzliches Gas in die Zelle zu füllen, wenngleich die Stöße mit den Puffergasatomen einen eigenen Relaxationsmechanismus für die Polarisation der Alkaliatome im Grundzustand darstellen. Dessen Rate ist gegeben durch

\[
R_{\text{PG}} = n_{\text{PG}} \bar{v}_{\text{Cs-PG}} \sigma_{\text{Cs-PG}},
\]

(2.19)

wobei \(\bar{v}_{\text{Cs-PG}} = \sqrt{\frac{8k_B T}{\pi M}} \) mit der reduzierten Masse \(M = \frac{m_{\text{Cs}} m_{\text{PG}}}{m_{\text{Cs}} + m_{\text{PG}}} \) die mittlere thermische Relativgeschwindigkeit von Cäsiumatomen und Puffergasteilchen, \(\sigma_{\text{Cs-PG}} \) den Depolarisationsquerschnitt von Cäsium im verwendeten Puffergas und \(n_{\text{PG}} = \eta n_0 \) die bei Herstellung und Verschluss der Zelle festgelegte Teilchendichte des verwendeten Puffergases bezeichnet. Die Edelgase weisen kleine Depolarisationsquerschnitte auf und sind am besten als Puffergas geeignet, ähnlich gut geeignet ist Stickstoff, welcher während der Herstellung unserer Zellen ohnehin freigesetzt wird (vgl. Anhang B) und zusätzlich für ein vorteilhaftes quenching des angeregten Zustandes (siehe Abschnitt 2.5) sorgt. Die der Literatur entnommenen, gemessenen Depolarisationsquerschnitte sind in Tabelle 2.2 zusammengefasst. Abbildung 2.8 zeigt die aus der Summe von Wand- und Puffergasstößen resultierende halbe Linienbreite des

<table>
<thead>
<tr>
<th>Puffergas</th>
<th>(D_{0,\text{Cs-PG}}) [(\text{cm}^2 \text{s}^{-1})]</th>
<th>(\sigma_{\text{Cs-PG}}) [(\text{cm}^2)]</th>
<th>red. Masse (M) in (u)</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helium</td>
<td>0,29</td>
<td>2,4 \cdot 10^{-23}</td>
<td>3,88</td>
<td>[78]</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>0,07</td>
<td>5,5 \cdot 10^{-22}</td>
<td>23,1</td>
<td>[79]</td>
</tr>
<tr>
<td>Neon</td>
<td>0,20</td>
<td>9,3 \cdot 10^{-23}</td>
<td>17,5</td>
<td>[80, 79]</td>
</tr>
<tr>
<td>Argon</td>
<td>0,10</td>
<td>1,0 \cdot 10^{-21}</td>
<td>30,7</td>
<td>[81]</td>
</tr>
<tr>
<td>Krypton</td>
<td>0,14</td>
<td>2,5 \cdot 10^{-20}</td>
<td>51,4</td>
<td>[82]</td>
</tr>
<tr>
<td>Xenon</td>
<td>k.A.</td>
<td>4,6 \cdot 10^{-20}</td>
<td>66,0</td>
<td>[83]</td>
</tr>
</tbody>
</table>
magnetischen Resonanzsignals. Sie wurde modelliert für die von uns hergestellten und verwendeten Magnetometerzellen \(h = 4 \text{ mm}, d = 4 \text{ mm} \) bei einer Temperatur von \(T = 100^\circ \text{C} \) in Abhängigkeit von der Puffergasdichte und für verschiedene Puffergase. Da die Relaxationsrate mit der Puffergasdichte zu- und die Wandstoßrate abnimmt, gibt es bei vorgegebener Zellgeometrie für das verwendete Puffergas eine optimale Teilchendichte, bei dem die Summe der Relaxationsraten durch Wand- und Puffergasstöße minimiert wird. Die kleinste Relaxationsrate ist mit einer reinen Heliumfüllung zu erwarten, jedoch wird dazu auch eine deutlich höhere Puffergasdichte benötigt als für das Erreichen des optimalen Punktes einer stickstoffgefüllten Zelle. Mit steigender Puffergasdichte verbreitern sich jedoch auch die optischen Absorptionslinien der Alkaliatome (siehe Abschnitt 2.3). Für das Pumpen mit einem schmalbandigen Laser ist eine zu starke Verbreiterung der optischen Linien nicht wünschenswert, da sich dadurch die benötigte Pumpleistung stark erhöht. Die Relaxationsraten durch Wand- und Puffergasstöße skalieren nur gering (mit der Wurzel)

2.9.3 Alkali-Stöße

Ist durch ein optimiertes Zelldesign die depolarisierende Wirkung der Wandstöße minimiert, wird die Relaxationsrate normalerweise durch einen anderen Relaxationsmechanismus dominiert: Stöße der sich thermisch durch die Zelle bewegenden Alkali-Atome miteinander begrenzen ebenfalls die Lebensdauer der Polarisation. Hierbei werden Spin-Austausch-Stöße, bei denen der atomare Gesamtspin der beiden stoßenden Atome vollständig erhalten bleibt, von Spin-Zerstörungs-Stößen unterschieden, bei welchen Drehimpuls teilweise in relative Rotationsbewegung der Atome zueinander verloren geht [87].

Spin-Austausch

Die Spin-Austausch-Wechselwirkung zweier sich annähernder Atome basiert auf den unterschiedlichen Potentialverläufen von Singulett- und Triplettzustand. Dieser Unterschied resultiert nicht, wie man zunächst annehmen könnte, aus einer magnetischen Wechselwirkung der Spins, sondern ist elektrostatischer Natur und beruht auf dem Pauliprinzip [88]. Während eines Spin-Austausch-Stoßes bleibt der Gesamtspin der Stoßpartner erhalten [89], allerdings können die Atome durch die Stöße zwischen oberem \(F = I + 1/2 \) und unterem \(F = I - 1/2 \) Hyperfeinniveau des Grundzustandes sowie deren magnetischen Sublevels \(m_F \) wechseln. Der Prozess ist von der Teilchendichte der Alkaliatome in der Gasphase \(n \), deren relativer thermischer Geschwindigkeit \(\bar{v}_{\text{Cs}} = \sqrt{2\bar{v}} \) und vom atomspezifischen Wirkungsquerschnitt \(\sigma_{\text{SE}} \) abhängig. Die Spin-Austausch-Rate

\[
R_{\text{SE}} = n\bar{v}_{\text{Cs}}\sigma_{\text{SE}} \tag{2.20}
\]

gibt an, wie oft die Spin-Austausch-Stöße zwischen den Atomen stattfinden. Davon abhängig kann man die Verbreiterung der magnetischen Resonanzlinie in erster Näherung gemäß

\[
\Delta \nu = \frac{1}{2\pi} \frac{R_{\text{SE}}}{q_{\text{SE}}} \tag{2.21}
\]
schreiben, wobei $\frac{1}{q_{SE}}$ das Verhältnis von Spin-Austausch-Rate zu Verbreiterung der magnetischen Resonanz durch Spin-Austausch-Wechselwirkung beschreibt und für den Spezialfall verschwindender Polarisation der Atome konstant ist [90, 91]: In großen Magnetfeldern ($\omega_L \gg R_{SE}$) beträgt $\frac{1}{q_{SE}}$ im oberen Grundzustand $F = 4$ von Cäsium ($I = \frac{7}{2}$)

$$\frac{1}{q_{SE}} = \frac{2I(2I-1)}{3(2I+1)^2} = \frac{7}{32}.$$ \hfill (2.22)

In sehr kleinem Magnetfeld ($\omega_L \ll R_{SE}$) ist $\frac{1}{q_{SE}} \to 0$ und beschreibt den SERF-Effekt (siehe unten).

In einem Experiment arbeitet man immer bei endlicher, um große Signale zu erzielen meist sogar mit möglichst großer Polarisation, die obigen Spezialfälle sind also nur als einfache Näherungen zu betrachten. Der Spin-Austausch-Mechanismus mischt die Atome im Grundzustand untereinander und hängt dabei wiederum von der aktuellen Besetzungsverteilung selbst ab, der Effekt ist nichtlinear und zeitabhängig. In seiner vollen Dynamik kann der Spin-Austausch nur im Dichtematrix-Formalismus abgebildet werden. In seiner Wirkung auf die Dichtematrix ρ des Grundzustandes kann er durch folgenden Ausdruck angegeben werden [92, 48, 59]:

$$\frac{\hat{\Gamma}_{SE}(\rho)}{R_{SE}} = -\frac{3}{4} \rho \hat{S} \cdot \hat{S} + \langle \hat{S} \rangle \left(\{ \hat{S}, \rho \} - 2i \hat{S} \times \rho \hat{S} \right).$$ \hfill (2.23)

$\hat{\Gamma}_{SE}(\rho)$ wird Spin-Austausch-Operator genannt. Zur Simulation (siehe Kapitel 5) ist $\hat{\Gamma}_{SE}$ an die Liouville-Gleichungen 5.1 des Grundzustandes anzufügen. Explizit ausgeschrieben mit $\hat{S} = \frac{1}{2} \hat{\sigma}$ erhält man den Ausdruck, welcher in der Simulation implementiert wurde:

$$\frac{\hat{\Gamma}_{SE}(\rho)}{R_{SE}} = \frac{1}{4} \left(-3\rho + \sigma_x \rho \sigma_x + \sigma_y \rho \sigma_y + \sigma_z \rho \sigma_z
+ \text{Tr} \left(\rho \sigma_z \right) \left(\sigma_x \rho + \rho \sigma_x - i \left(\sigma_y \rho \sigma_z - \sigma_z \rho \sigma_y \right) \right)
+ \text{Tr} \left(\rho \sigma_y \right) \left(\sigma_y \rho + \rho \sigma_y - i \left(\sigma_z \rho \sigma_x - \sigma_x \rho \sigma_z \right) \right)
+ \text{Tr} \left(\rho \sigma_z \right) \left(\sigma_z \rho + \rho \sigma_z - i \left(\sigma_x \rho \sigma_y - \sigma_y \rho \sigma_x \right) \right) \right).$$ \hfill (2.24)

Dabei repräsentieren die σ_i die Komponenten des Spin-Operators des Valenzelektrons \hat{S}, beziehungsweise die verallgemeinerten Pauli-Matrizen der Dimension $(4I + 2) \times (4I + 2)$ im Grundzustand des Alkaliatoms.

Die Stoßrate R_{SE} ist über Teilchendichte n und thermische Geschwindigkeit \bar{v} der Atome stark mit der Zelltemperatur gekoppelt. So bedeutet die Erhöhung der Teilchendichte durch Heizen neben einer Zunahme der effektiven Atomzahl N auch die Erhöhung der Spin-Austausch-Relaxation. Ab einer gewissen Zelltemperatur domi-
niert deshalb dieser Relaxationsmechanismus und legt die magnetische Resonanzbreite fest. Setzt man Gleichung 2.20 in 2.13 ein, ergibt sich dann näherungsweise

\[B_{pn} \approx \frac{1}{\gamma} \sqrt{\frac{R_{SE}}{nV}} = \frac{1}{\gamma} \sqrt{\frac{\bar{\nu} \sigma_{SE}}{V}}. \]

(2.25)

Die Empfindlichkeit wird also unabhängig von der Teilchendichte \(n \). Man kann die Empfindlichkeit durch Erhöhung der Teilchendichte bei vorgegebenem Volumen nicht beliebig verbessern, da die gesteigerte Signalamplitude durch die gleichzeitig vergrößerte Resonanzbreite kompensiert wird. Es ist allerdings möglich, die Wirkung der Spin-Austausch-Relaxation zu eliminieren (im sogenannten SERF-Regime, siehe unten) oder zumindest zu reduzieren (mit dem in Kapitel 6 beschriebenen LN-Regime) und dadurch die Empfindlichkeit über das durch Gleichung 2.25 gegebene Limit hinaus steigern.

SERF-Regime

Spin-Zerstörung

Während die meisten binären Alkali-Alkali-Stöße (bei Cäsium ca. 99%) den Gesamtspin erhalten, beobachtet man auch solche, bei denen Drehimpuls in die relative Drehbewegung der Stoßpartner zueinander umgewandelt wird. Als Mechanismus hierfür wurde die magnetische Spin-Spin-Wechselwirkung diskutiert [87]. Analog zum Spin-Austausch definiert man die Spin-Zerstörungs-Rate als

\[R_{SD} = \frac{1}{q} n \bar{v} \sigma_{SD} \]

mit dem zugehörigen Wirkungsquerschnitt \(\sigma_{SD} \), welcher für Cäsium jedoch zwei Größenordnungen kleiner als \(\sigma_{SE} \) ist. Der Vorfaktor \(\frac{1}{q} \) trägt der Wahrscheinlichkeit Rechnung, dass der polarisierte Atomkern den durch einen Spin-Zerstörungs-Stoß depolarisierten Elektronenspin wieder repolarisiert. \(q \) wird engl. *nuclear slowing-down-factor* genannt, ist eine Funktion des Polarisationsgrades des Ensembles und bewegt sich für Cäsium zwischen 22 (keine Polarisation) und 8 (maximale Polarisation) und verkleinert den Effekt zusätzlich [48, 91]. Dieser Relaxationsprozess ist nur relevant, wenn die Relaxation durch Spin-Austausch-Wechselwirkung unterdrückt und die Summe aus Wand- und Puffergasstoßrate nicht größer als \(R_{SD} \) ist. Dies ist für die in dieser Arbeit verwendeten Zellen selbst bei Annahme einer vollständigen Unterdrückung der Spin-Austausch-Relaxation erst oberhalb von ca. 140°C der Fall und kann damit vernachlässigt werden.

2.9.4 Wechselwirkung mit äußeren Feldern

Abgesehen von den oben beschriebenen Mechanismen, welche hier intrinsisch genannt werden, kann die magnetische Resonanz auch durch die wirkenden Licht- und Magnetfelder verbreitert werden. Diese durch den Betrieb des OPMs auftretenden Verbreiterungsmechanismen betreffen einerseits das Pumplicht, andererseits das oszillierende Magnetfeld \(B_1 \) sowie mögliche Gradienten des statischen Magnetfeldes \(B_0 \). Um die Eigenschaften einer Zelle zu beurteilen ist es interessant ausschließlich die intrinsischen Relaxationsbeiträge zu extrahieren (siehe Kapitel 4). Deswegen sollten Anteile der betriebsbedingten Beiträge entweder direkt bei der Messung vermieden (z.B. durch Verwendung des Phasensignals \(\varphi \) der magnetischen Resonanz) oder nachträglich herausgerechnet werden (z.B. durch Extrapolation der Messungen zu verschwindender Laserleistung). Dieses Vorgehen wird in den Kapiteln 4 und 6 erfolgreich angewandt.
Verbreiterung durch das Laserlicht

Das optische Pumpen von Grundzustandsatomen verkürzt deren Lebensdauer im Grundzustand und unterbricht zu einem zufälligen Zeitpunkt deren Larmorpräzession. Folglich führt der optische Pumpprozess zu einer effektiven Relaxation und damit zu einer Verbreiterung des magnetischen Resonanzsignals. In erster Näherung kann diese Verbreiterung für kleine Laserleistung als linear in der Intensität I_{Laser} angenommen werden,

$$R_{OP} = \varepsilon I_{\text{Laser}} \quad (2.27)$$

mit einer Proportionalitätskonstante ε.

Um diese in Messungen immer auftretende zusätzliche Verbreiterung zu eliminieren, muss man also für verschiedene kleine Laserleistungen messen und dann zu verschwindender Leistung nachträglich extrapolieren. Kleine Leistungen sind solche, die die Besetzungsverhältnisse des gepumpten Niveaus nicht zu stark ändern und damit auch der Absorptionskoeffizient näherungsweise konstant bleibt. Für sehr große Laserintensitäten werden die gepumpten Grundzustandsniveaus mehr und mehr entleert und bei entsprechend polarisiertem Licht der Gasdampf mehr und mehr polarisiert. Dies verändert den Absorptionskoeffizienten, man beobachtet ein Sättigungsnverhalten.

Verbreiterung durch das B_1-Feld

Durch das B_1-Feld werden wie durch das optische Pumpen Übergänge zwischen den einzelnen m_F-Niveaus induziert, was in vereinfachter Vorstellung zu einer Verkürzung der Lebensdauer der Spinpolarisation führt und damit zu einer Verbreiterung der magnetischen Resonanz. Aus den Lock-In-Signalen (Gleichungen 2.10) kann man die halbe Breite der Resonanz durch ein resonant abgestimmtes Wechselfeld B_1 ablesen zu

$$\Delta \omega_1 = \sqrt{\Omega_1^2 \gamma_2 / \gamma_1 + \gamma_2^2} \quad (2.28)$$

Um für eine gute Empfindlichkeit des Sensors nötige große Magnetresonanzsignale zu generieren werden Amplituden B_1 bzw. Rabifrequenzen $\Omega_1 = \gamma B_1$ des Wechselfeldes verwendet, die eine Verbreiterung von P_X und P_Y um einen nicht zu vernachlässigenden Faktor bewirken. Das Phasensignal der Lock-In-Demodulation φ ist jedoch in erster Näherung nicht von der Verbreiterung (engl. *rf-field broadening*) betroffen [94] und deshalb sehr gut geeignet die intrinsische transversale Relaxationsrate zu bestimmen.
Magnetfeldgradienten

Ein sich über das Zellvolumen erstreckender Magnetfeldgradient ΔB führt dazu, dass die Larmorfrequenz der Atome von deren Aufenthaltsort innerhalb der Zelle abhängig wird. Da das Messsignal die Beiträge aller Atome repräsentiert, wird über den Magnetfeldgradienten gemittelt und es kommt durch Überlagerung leicht verschobener Einzelresonanzen zu einer Verbreiterung des Messsignals. Bei stillstehenden Atomen kann man die Verbreiterung des Resonanzsignals des Gesamt-Ensembles angeben als

$$\Delta \omega_{\text{Grad}} = \gamma \Delta B.$$ \hspace{1cm} (2.29)

Im Experiment bewegen sich die Atome thermisch durch die Zelle und sind zu verschiedenen Zeiten verschiedenen Magnetfeldern ausgesetzt. In Zellen mit sehr hohem Puffergasdruck sind die Alkaliatome sehr stark lokalisiert, was zu einer stärker ausgeprägten Verbreiterung durch mögliche Magnetfeldgradienten führen kann.

In der verwendeten Schirmtonne werden sehr homogene statische Magnetfelder erzeugt: Im zentralen Würfel der Anordnung von Schirmtonne und Helmholtzspulen-System (siehe Kapitel 3) von 10 cm Kantenlänge ist die maximale relative Inhomogenität kleiner als $\frac{\Delta B}{B} = 2 \cdot 10^{-3}$ \cite{95}. Für die verwendeten Zellen der Dimension von 4 mm beträgt die maximale relative Abweichung also $\frac{\Delta B}{B} = 8 \cdot 10^{-5}$ und entspricht einer Abweichung der Larmorfrequenz von 14 Hz (1,4 Hz) in einem Feld von 50 μT (5 μT). Dies liegt deutlich unterhalb der gemessenen intrinsischen Relaxationsraten der Zellen (vgl. Kapitel 4), sodass der Einfluss von Gradienten auf die Breite des magnetischen Resonanzsignals im Folgenden vernachlässigt werden kann.

2.9.5 Gesamtraten

Die longitudinale und transversale Relaxationsrate (in Hz) ergeben sich als Summe der oben beschriebenen Relaxationsprozesse gemäß

$$\gamma_1 = \frac{1}{2\pi} (R_{\text{WD}} + R_{\text{PG}} + R_{\text{SD}} + R_{\text{OP}})$$ \hspace{1cm} (2.30)

und

$$\gamma_2 = \frac{1}{2\pi} (R_{\text{WD}} + R_{\text{PG}} + R_{\text{SD}} + R_{\text{SE}} + R_{\text{OP}}) = \gamma_1 + \frac{1}{2\pi} R_{\text{SE}}.$$ \hspace{1cm} (2.31)

Alle Mechanismen, die nur zur Dephasierung der Präzession der Spins beitragen, wie die Spin-Austausch-Wechselwirkung oder Magnetfeldgradienten tragen nicht zur longitudinalen Relaxationsrate bei. Dagegen tragen alle auf die longitudinale Komponente wirkenden Mechanismen auch zur transversalen Rate bei. Durch die Relaxation der longitudinalen Polarisation geht die gemeinsame Ausrichtung der Einzelspines zueinander und damit auch die Kohärenz ihrer Präzession verloren.

31
Kapitel 3

Experimenteller Aufbau

Der für die in dieser Arbeit vorgestellten experimentellen Ergebnisse verwendete Versuchsaufbau soll hier in seinen grundsätzlichen Teilen erläutert werden. Die für die jeweils in den Kapiteln 4 und 6 präsentierten Resultate nötigen Anpassungen des Aufbaus werden dort gesondert beschrieben.

3.1 Cäsium-Zellen

In dieser Arbeit wurden sechs Zell-Arrays verwendet, deren Messzellen identische Zylindergeometrie (Durchmesser 4 mm, Dicke 4 mm, Zellvolumen $V = 50 \text{ mm}^3$) aufweisen und sich nur in ihrer Stickstoffdichte η unterscheiden (siehe Tabelle 3.1). Die Stickstoffdichte wurde spektroskopisch anhand der Linienverschiebung der Cs-D$_1$-Linie der Zellen gegenüber einer Vakuum-Referenzzelle bestimmt, wobei zur Umrechnung der Literaturwert aus Tabelle 2.1 verwendet wurde. Die Messzellen sind Teil eines Array-Aufbaus wie in Abbildung 3.1 dargestellt und sind über Kanäle mit einem zentralen Cäsium-Reservoir verbunden. Dadurch wird sichergestellt, dass alle Messzellen sehr ähnliche Teilchendichten aufweisen und keine Rückstände der Cäsiumazid-Befüllung (siehe Anhang B) den Strahlengang abschatten. Durch die gute Wärmeleitfähigkeit des massiven Siliziums weisen die Messzellen immer sehr ähnliche Temperaturen auf. Durch angepasstes thermisches Design bleibt die Tem-

<table>
<thead>
<tr>
<th>Zell-Array</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_{N_2} [amm]</td>
<td>0,0082</td>
<td>0,0601</td>
<td>0,106</td>
<td>0,236</td>
<td>0,353</td>
<td>0,415</td>
</tr>
<tr>
<td>p_{N_2} [mbar] @ 100°C</td>
<td>11</td>
<td>83,2</td>
<td>147</td>
<td>326</td>
<td>489</td>
<td>574</td>
</tr>
</tbody>
</table>

33
peratur des Reservoirs immer einige °C unterhalb der der Messzellen [96]. Dadurch kondensiert beim Abkühlen des Arrays das Cäsium im Reservoir und schlägt sich nicht im Strahlengang nieder.

3.2 Pumplicht

Zum optischen Pumpen der Cäsium-Atome kommt Licht eines DFB-Lasers (engl. für distributed feedback) Toptica DL100 zum Einsatz, dessen Linienbreite ($\nu_L < 5$ MHz) immer viel kleiner als die Linienbreite der Hyperfeinübergänge ist. Die Intensität des Laserlichts wird durch ein Paar eines automatisiert rotierbaren und eines fixierten linearen Polarisators (Thorlabs LPVIS50) eingestellt. Optional kommt ein Trapezverstärker (Sacher Tapered Amplifier) zum Einsatz. Das Licht wird über eine polarisationserhaltende Single-Mode-Faser (Thorlabs P3-780PM-FC-5) zum Magnetometer-Aufbau geführt und durch eine Kombination eines linearen Polarisators (Thorlabs LPVIS50) und eines λ/4-Plättchens (Meadowlark NQ-050-895) zirkular polarisiert und bestrahlt das Eintrittsfenster der Zelle vollständig.

3.3 Temperaturkontrolle der Zelle

Die Zelle mitsamt ihres Reservoirs wird geheizt, indem nichtresonantes Licht ($\lambda = 808$ nm) eines Heizlasers (Lumics LU808C030) über Multimode-Fasern (Thorlabs BFL37-800) in die Schirmtonne (siehe unten) und wie in Abbildung 3.1 gezeigt auf die Seiten des Siliziumwafers der Zellstruktur gestrahlt wird. Die Zelltempera-

tur misst ein optischer, nichtmagnetischer, faserbasierter Temperatursensor (*Opsens Tempsens*), dessen Fühler in einem dafür in den Wafer gebohrten Loch fixiert wird.

3.4 Magnetfelder

Um ein gewünschtes Magnetfeld einstellen zu können und äußere magnetische Stö- rungen zu reduzieren, wird das Erdmagnetfeld abgeschirmt. Dazu befindet sich der Sensoraufbau innerhalb einer Schirmtonne (Länge 150 cm, äußerer Durchmesser 125 cm) aus drei Lagen µ-Metall (siehe Abbildung 3.2). Der Schirmfaktor für statische Felder beträgt in longitudinaler Richtung des Zylinders ca. 500, in transversaler Richtung etwa 1000 und steigt für Frequenzen > 10 Hz stark an [95]. Restfelder innerhalb der Schirmtonne liegen nach Entmagnetisierung der Schirmung unterhalb von 10 nT [97]. In der Schirmung kann durch ein dreiachsiges Helmholtzspulen-System ein sehr homogenes statisches Magnetfeld in beliebiger Richtung angelegt werden.

Das Stromrauschen der sechs Stromquellen *Kepco ABC 60 2-DM* (je eine pro Spule, zwei pro Raumrichtung) wird durch selbstgebaute Tiefpassfilter stark reduziert. Dieses System wird für alle Messungen bei $B_0 = 50 \mu T$ verwendet. Der Einfluß von Magnetfeldgradienten des statischen Feldes war während aller Messungen vernachlässigbar, wie der Vergleich mit Messungen bei absichtlich angelegten Gradienten zeigte.

Ein zweites, kleineres Helmholtzspulensystem (Kantenlänge 10 cm, siehe Abbildung 3.2) kann entweder ein auf alle Zellen gemeinsam wirkendes B_1-Feld oder das in den GZHE-Messungen (siehe Kapitel 4) durchgeführte longitudinale Magnetfeld B_\parallel bereitstellen. Kleine Spulen auf Leiterplatten auf Vorder- und Rückseite des Zell-Arrays (siehe Abbildung 3.1) erlauben das Anlegen von jeweils nur auf einzelne Zellen wirkender B_1-Felder (benötigt in Abschnitt 6.6).

3.5 Ausleseelektronik

Zur Detektion des durch die Messzellen transmittierten Lichtes kommen Photodioden *Hamamatsu S5106* zum Einsatz, welche durch Transimpedanzwandler *Femto DLPCA-200* vorgespannt und ausgelesen werden. Die zum Photostrom proportionalen, gewandelten Spannungssignale werden phasenempfindlich durch Lock-Ins *Signal Recovery 7280* detektiert. Die Aufnahme der Resonanzkurven bei Durchfahren der B_1-Frequenz ω_1, die Anpassung der Referenzphase des Lock-Ins zur Trennung von absorptivem P_X und dispersivem Anteil P_Y sowie die Speicherung der Messdaten kann durch das automatische Messprogramm computergesteuert erfolgen.

3.6 Automatisches Messprogramm

Abbildung 3.3: Oberfläche des OPM-Messprogramms. Es erlaubt die automatisierte Aufnahme des Magnetresonanzsignals unter Variation der Betriebsparameter wie Laserleistung P_L, Amplitude des B_1-Feldes, Zelltemperatur T oder Richtung und Größe des statischen Magnetfeldes B_0. Die gemessenen Magnetresonanzkurven werden vollautomatisch durch Fits ausgewertet. Das Programm wurde zum Beispiel zur Optimierung der schrotrausch-begrenzten Empfindlichkeit B_{sn} (Abschnitt 6.4 und 6.5) und der Bestimmung der intrinsischen Relaxationsrate γ_{20} mittels ODMR in Kapitel 4 verwendet.
Kapitel 4

Bestimmung der intrinsischen Relaxationsbeiträge

4.1 Motivation

Um die Beiträge der einzelnen, auf die polarisierten Cäsiumatome in unserer speziellen Zellkonfiguration wirkenden Relaxationsmechanismen zu unterscheiden und zu quantifizieren, wurden die Raten den Gleichungen 2.30 und 2.31 gemäß modelliert und Messungen der intrinsischen Gesamtrelaxationsrate unternommen. Dazu wurden zwei verschiedene Methoden etabliert und verglichen: Messungen der optisch detektierten magnetischen Resonanz (ODMR) und anhand des Grundzustands-Hanle-Effektes (GZHE). Diese beiden Methoden werden im Folgenden kurz erläutert und anschließend die experimentellen Resultate präsentiert.

4.2 Bestimmung durch optisch detektierte magnetische Resonanz (ODMR)

Diese Methode nutzt den M_z-Magnetometer-Aufbau: Das statische Magnetfeld B_0 schließt mit der Ausbreitungsrichtung des zirkular polarisierten resonanten Laserlichts einen Winkel von 45° ein. Das Anlegen eines zusätzlichen magnetischen Wechselfeldes B_1 erlaubt die Detektion der phasensynchronen Präzession der polarisierten Atome anhand der Modulationsamplitude und -phase des durch die Zelle transmittierten Lichtes. Fährt man die B_1-Frequenz ω_1 über die Larmorfrequenz $\omega_L = \gamma B_0$ durch, misst man bei phasenempfindlicher Detektion mit einem Lock-In bei Demodulation der ersten Harmonischen lorentzförmige Signale [46]. Obwohl die analytische Form der Messsignale P_X und P_Y bekannt ist (siehe Gleichungen 2.10), ist die Bestimmung der Relaxationsraten aus ihnen schwierig, da bei einem Fit starke
Korrelationen zwischen beiden Parametern \(\gamma_1 \) und \(\gamma_2 \) und der unbekannten Normierungskonstante \(P_0 \) bestehen. Deshalb beschränken wir uns auf die Bestimmung der transversalen Relaxationsrate \(\gamma_2 \), welche allerdings auch nach Gleichung 2.13 die interessante Größe bezogen auf die Bestimmung der Empfindlichkeit des Magnetometers ist. Dies kann zuverlässig aus dem Fit an das Phasensignal des Lock-Ins erfolgen, da dieses nur von \(\gamma_2 \) und der Verstimmung \(\delta = \omega_1 - \omega_L \) abhängt. Das Phasensignal wird im Gegensatz zu den Einzelkomponenten \(P_X \) und \(P_Y \) in erster Näherung nicht durch die Wirkung von \(B_1 \) verbreitert [94], allerdings hängt \(\gamma_2 \) von der verwendeten Laserleistung ab. Um die intrinsische Rate \(\gamma_{20} = \gamma_2(R_{OP} = 0) \) zu bestimmen, werden mehrere Messungen von \(\gamma_2 \) bei verschiedenen kleinen Laserleistungen durchgeführt und anschließend linear zu verschwindender Laserleistung extrapoliert.

\[
\varphi = \arctan \left(\frac{P_Y}{P_X} \right) = -\arctan \left(\frac{\delta}{\gamma_2} \right) \tag{4.1}
\]

4.3 Bestimmung anhand des Grundzustands-Hanle-Effekts (GZHE)

\[
\Delta B = \frac{\hbar}{\Delta m g \mu_B \tau} = \frac{2 m_e}{\Delta m e \tau}
\]

mit dem magnetischen Moment \(g \mu_B \) (\(g \) Landé-Faktor, \(\mu_B \) Bohrsches Magneton) verknüpft ist.

Dass der Hanle-Effekt auch im atomaren Grundzustand auftreten kann wurde zuerst in den 1960er Jahren in Frankreich beobachtet [103, 104]. Die Autoren erklärten die

Hier soll der in Ref. [46] beschriebene Formalismus zur Bestimmung der longitudinalen γ_1 und transversalen Relaxationszeit γ_2 der Spinpolarisation in den von uns hergestellten und verwendeten Zell-Arrays genutzt werden. Dazu beschränken wir uns auf die Variante des longitudinalen Hanle-Effekts (LHE), welcher laut Castagna und Weis bessere Datenqualität und weniger stark korreliert auftretende Fit-Parameter verspricht. Dabei fungiert ein zur Ausbreitungsrichtung des zirkular polarisierten Laserlichts orthogonales transversales Magnetfeld $B_x = B_\perp$ als Parameterfeld, welches stufenweise variiert wird. Für jeden Wert von B_\perp wird ein longitudinales Magnetfeld (parallel zur Lichtausbreitungsrichtung) kontinuierlich durch $B_z = B_{||} = 0$ gefahren und die transmittierte Intensität aufgezeichnet. Die Abhängigkeit der Amplitude A und Breite W der Resonanzen von der Larmorfrequenz des transversalen Feldes $\omega_x = \gamma B_x$ können nach [46] modelliert werden als

$$A(\omega_x) = A_0 \left[1 - \frac{\gamma_1 \gamma_2}{(\omega_x + \delta \omega_x)^2 + \delta \omega_y^2 + \gamma_1 \gamma_2} \right]$$ (4.2)

und

$$W(\omega_x) = \sqrt{\frac{\gamma_2}{\gamma_1} (\omega_x + \delta \omega_x)^2 + \gamma_2^2 + \frac{\gamma_2}{\gamma_1} \delta \omega_y^2}.$$ (4.3)

Hierbei bezeichnen $\delta \omega_x$ sowie $\delta \omega_y$ unbekannte möglicherweise auftretende transversale Komponenten des Restfeldes in der Schirmtonne. Um Korrelationen der Fit-Parameter γ_1 und γ_2 zu vermeiden werden Gleichungen 4.2 und 4.3 neu parametriert:

$$A_{\text{fit}}(\omega_x) = P1 \left[1 - \frac{P2}{(\omega_x + P3)^2 + P4^2} \right]$$ (4.4)

und

$$W_{\text{fit}}(\omega_x) = \sqrt{P5(\omega_x + P6)^2 + P7^2},$$ (4.5)

wobei aus den Fitresultaten für $P2 = \gamma_1 \gamma_2$ und $P5 = \frac{\gamma_2}{\gamma_1}$ anschließend die Bestimmung der Relaxationsraten erfolgt. Wie auch bei der ODMR-Methode sind die so ermittelten Relaxationsraten abhängig von der verwendeten Laserleistung. Um die intrinsischen Raten γ_{10} und γ_{20} zu erhalten, werden die Raten für verschiedene kleine Werte der Laserleistung gemessen und anschließend mit einem Fit zu verschwindender Laserleistung extrapoliert. Die Abhängigkeit der Raten ist nur in e-

4.4 Experimenteller Aufbau

Die Abbildung 4.1 zeigt schematisch den verwendeten Versuchsaufbau. Der Pumplaser wird aktiv auf den Übergang \(F = 4 \leftrightarrow F' = 3 \) der jeweiligen Zelle stabilisiert. Da

![Abbildung 4.1: Versuchsaufbau zur Messung der intrinsischen Relaxationsraten mittels ODMR (in grün) und GZHE (in gelb). Das Licht des Lasers wird durch ein temperaturstabilisiertes Fabry-Perot-Interferometer (FPI) frequenzstabilisiert und durch Polarisator (LP) und \(\lambda/4 \)-Plättchen zirkular polarisiert. Die Signale der Referenzschwingung des Oszillators (OSZ) bei \(\omega_1 \) (für ODMR) bzw. die durchgeführte Gleichspannung am Ausgang des DAC (bei GZHE) werden verstärkt. Das transmittierte Licht wird durch eine Photodiode detektiert und von einem Transimpedanzwandler verstärkt (I/U). Für ODMR wird phasenempfindlich detektiert (Lock-In), während das ggf. tiefpassgefilterte (TP) GZHE-Signal vom ADC digitalisiert wird. Nicht gezeigt sind die in Kapitel 3 besprochenen allgemeinen Komponenten wie Heizlaser, Spulen für die statischen Felder \(B_0 \) und \(B_\perp \) sowie die das Zell-Array und die Spulen umgebende Schirmtonne.](image-url)
Diese Linie sich mit steigender Puffergasmenge verschiebt, wird dazu ein aktiv temperaturstabilisiertes Fabry-Perot-Interferometer (Toptica FPI100) eingesetzt. Diesen in festem Abstand auftretende Transmissionspeaks können bequem verschoben werden, indem am Piezosteller hinter einem der beiden Spiegel des Resonators eine Gleichspannung angelegt wird. Auf diese Weise kann einer der FPI-Peaks genau mit dem Absorptionspeak der Zelle in Deckung gebracht und die Laserfrequenz auf diesem stabilisiert werden. Thermische Drifts des FPIs führen zu Verschiebungen, welche deutlich kleiner als die Linienbreite des Hyperfeinübergangs ausfallen.

Die bei GZHE für die longitudinalen und transversalen Magnetfelder B_\parallel und B_\perp nötigen Spulenströme werden durch verstärkte Spannungen eines automatisch gesteuerten Digital-Analog-Wandlers (DAC) des Signal Recovery 7280 über einem 1 kΩ-Vorwiderstand bereitgestellt. Die kleinen Spulen auf den die Vorder- und Rückseite der Zelle einschließenden Leiterplatten liefern das B_1-Feld für ODMR. Durch das große System von Helmholtzspulen wird das Magnetfeld $B_0 = 5 \mu T$ im Winkel von 45° zur Lichtausbreitungsrichtung für ODMR bereitgestellt.

Die Signale werden anschließend entweder direkt digitalisiert (für GZHE) oder phasenempfindlich detektiert durch den Lock-In-Verstärker ausgelesen (für ODMR). Zur Verbesserung des Signal-Rausch-Verhältnisses kommt bei GZHE-Messungen mit sehr kleiner Laserleistung und oder Zelltemperatur zusätzlich ein Tiefpassfilter (SRS SIM965) zum Einsatz (Grenzfrequenz 90 Hz).

4.5 Ergebnisse der Relaxationsratenmessung

Die Abbildungen 4.2 und 4.3 zeigen exemplarisch das Vorgehen zur Bestimmung von γ_{20} mittels ODMR. Das Phasensignal wird für verschiedene (kleine) Laserleistungen gemessen und gemäß Gleichung 4.1 gefittet. Diese Werte werden in Abhängigkeit von der Laserleistung aufgetragen und lineare Regression durchgeführt, um zur intrinsischen Rate γ_{20} bei verschwindender Laserleistung ($R_{OP} = 0$) zu extrapolieren. Das Vorgehen bei GZHE ist beispielhaft in den Abbildungen 4.4 bis 4.7 dargestellt. Die aus den LHE-Resonanzen durch automatisierte Fits gewonnenen Werte für Amplitude A und Resonanzbreite W werden über dem transversalen Magnetfeld aufgetragen und mit Gleichungen 4.4 und 4.5 angepasst. Die daraus resultierenden Parameter P_2 und P_5 (siehe Abbildung 4.6) führen zu den Relaxationsraten γ_1 und γ_2 (wie in Abbildung 4.7). Die Resultate der Messungen aller sechs untersuchten Zell-Arrays zeigen die Abbildungen 4.8 und 4.9 in Abhängigkeit von der Temperatur für ODMR und GZHE. Die Relaxationsrate ist bei ODMR bei niedrigen Temperaturen am kleinsten und steigt, bedingt durch den Beitrag der Spin-Austausch-Relaxation, mit der Zelltemperatur stark an. Die Messdaten wurden an
Abbildung 4.2: Ausgewählte ODMR-Phasensignale gemessen bei $\eta = 0,0082$ amg und $T = 50,2^\circ$C (Zellarray 1) für verschiedene Laserleistungen und mit den zugehöri-
gigen Fits gemäß Gleichung 4.1.

Abbildung 4.3: Resultate der ODMR-Methode für γ_2 aus Phasenfits (wie in Abbil-
dung 4.2) für Zellarray 6 mit $\eta = 0,41452$ amg für verschiedene Zelltemperaturen T und lineare Fits zur Extrapolation auf das intrinsische γ_{20} bei verschwindender Laserleistung.
Abbildung 4.4: LHE-Resonanzkurven im detektierten Photostrom bei Durchfahren des longitudinalen Magnetfeldes durch Null für verschiedene Werte des transversalen Feldes. Gezeigt ist die Messung der Zellarray 2 ($\eta = 0,106$ amg) bei Temperatur 70,1°C und einer Laserleistung von 74 μW.

Abbildung 4.5: Amplituden (schwarze Quadrate) und Breiten (blaue Dreiecke) der LHE-Resonanzkurven wie durch automatisierte Lorentz-Fits an Daten aus Abbildung 4.4 ermittelt. Die Resultate dienen als Basis für Kurvenanpassungen (Linien) gemäß der Gleichungen 4.4 und 4.5, aus welchen die benötigten Fitparameter P_2 und P_5 resultieren.

Abbildung 4.7: Aus den LHE-Parametern in Abbildung 4.6 ermittelte Relaxationsraten γ_1 (schwarze Quadrate) und γ_2 (rote Kreise) zusammen mit phänomenologischen Fits durch Polynome zweiter Ordnung (Linien).
Gleichung 2.31 angepasst, wobei alle Parameter des Modells fixiert waren und nur eine Variation durch eine experimentelle Unsicherheit bei der Temperaturmessung \(T \rightarrow T + \Delta T \) zugelassen wurde. \(\Delta T \) betrug bis zu 5°C. Die Messdaten werden sehr gut reproduziert, vor allem wenn man die größere Anzahl der aus der Literatur entnommenen experimentell bestimmten Parameter bedenkt.

Die GZHE-Messdaten zeigen dagegen eine sehr schwache Temperaturabhängigkeit, was mit dem Verschwinden des Spin-Austausch-Beitrags (zum SERF-Mechanismus siehe Abschnitt 2.9.3) begründet werden kann. Da die GZHE-Resonanzen in sehr kleinen Feldern aufgenommen werden, in welchen die Spin-Austausch-Relaxation näherungsweise unterdrückt ist, wird das Modell mit \(R_{SE} = 0 \) angenommen dargestellt. Die experimentell simultan bestimmten Raten \(\gamma_{10} \) und \(\gamma_{20} \) sind nur leicht verschieden, was mit der intuitiven Vorstellung verträglich ist, dass diese Raten bei Abwesenheit von jeglichen Licht- und Magnetfeldern aufgrund der fehlenden Vorzugsachse gleich sein müssen (vgl. Gleichungen 2.30 und 2.31).

Abbildung 4.10 stellt die bestimmte intrinsische transversale Relaxationsrate \(\gamma_{20} \) in Abhängigkeit von der Puffergasmenge \(\eta \) dar, wieder zusammen mit der Gesamtrate nach Gleichung 2.31 und den Einzelraten für Wandstöße (Gleichung 2.18), Puffergasstöße (Gleichung 2.19) und Spin-Austausch-Stöße (Gleichung 2.20). Die Datenqualität der GZHE-Messungen ist denen der ODMR-Resultate unterlegen, obwohl beiden Methoden vergleichbare Messzeiten zugestanden wurden. Die größere Streuung der GZHE-Daten könnte zunächst durch die experimentell beobachtete erhöhte Empfindlichkeit der Hanle-Messungen gegenüber Laserfrequenzdrifts erklärt werden. Dies steht in Verbindung mit der deutlich stärker nichtlinearen Abhängigkeit der GZHE-Resultate von der Laserleistung (vgl. Abbildung 4.3 und 4.7). Durch Laserfrequenzverschiebungen, die durch Wandern über das Absorptionsprofil zu Verschiebung der effektiv wirkenden Laserleistung führen, sind bei GZHE also größere Verfälschungen zu erwarten. Detailliertere Untersuchungen wurden hier aufgrund der damals nicht vorhandenen Möglichkeiten die Laserfrequenz noch genauer zu stabilisieren nicht unternommen. Abgesehen davon ist verglichen mit linearer Regression (ODMR) bei einem nichtlinearen Fit der Abhängigkeit von der Laserleistung (GZHE) die Extrapolation zu Null schwieriger und mit einem größeren statistischen Fehler behaftet. Durch die zahlreichen Zwischenschritte bei der Auswertung der GZHE-Daten erhöht sich ebenfalls die statistische Unsicherheit. Diese Nachteile von GZHE stehen dem weniger aufwendigen experimentellen Aufbau verglichen mit der phasenempfindlichen Detektion bei ODMR entgegen.

Die ermittelte Abhängigkeit der intrinsischen transversalen Linienbreite von der Puffergasmenge \(\eta \) zeigt Abbildung 4.10 für beide Methoden jeweils bei einer niedrigen, mittleren und hohen Zelltemperatur \(T \) zusamm en mit den modellierten Raten. Die Resultate mit ODMR zeigen gute Übereinstimmung mit dem Modell. Bei niedriger
Abbildung 4.8: Ermittelte intrinsische Relaxationsraten für ODMR (a und b) in Abhängigkeit von der Zelltemperatur. Linien repräsentieren Fits an die Daten gemäß Gleichung 2.31 mit $R_{OP} = 0$. Fehlerbalken zeigen die aus der Kurvenanpassung resultierenden zufälligen Fehler.
Abbildung 4.9: Ermittelte intrinsische Relaxationsraten für GZHE (a und b) in Abhängigkeit von der Zelltemperatur. Linien repräsentieren Fits an die Daten gemäß Gleichungen 2.30 bzw. 2.31, wobei $R_{OP} = 0$ und zusätzlich $R_{SE} = 0$ gesetzt wurde. Fehlerbalken zeigen die aus der Kurvenanpassung resultierenden zufälligen Fehler.
Abbildung 4.10: Ermittelte intrinsische transversale Relaxationsrate in Abhängigkeit von der Puffergasdichte für niedrige (a), mittlere (b) und hohe (c) Zelltemperatur beider Methoden, ODMR (volle Symbole) und GZHE (offene Symbole), im Vergleich. Die Linien entsprechen Gleichungen 2.18, 2.19, 2.20 bzw. 2.31.
Temperatur (Abbildung 4.10a) bestätigt sich, dass die minimale intrinsische Linienbreite mit unserer Zellgeometrie im Bereich von $\eta \approx 0,2 \text{ang}$ erzielt wird, wenn sich Wandstöße und Puffergasstöße die Waage halten. Bei höheren Zelltemperaturen dominiert zusehends die Spin-Austausch-Relaxation die ODMR-Ergebnisse, während die GZHE-Messungen dadurch nicht limitiert sind. Diese Tatsache könnte man im Prinzip dazu nutzen, mittels GZHE eine schnelle (ungefähre) Messung der durch Wand- und Puffergasstöße gegebenen intrinsischen Rate der Zelle bei jeder beliebigen Zelltemperatur durchzuführen. Dies könnte für Schnelltests von neuartigen Zellwandbeschichtungen oder Puffergaskompositionen hilfreich sein.

Während die GZHE-Messungen bei kleinen η gut mit dem Modell übereinstimmen, liegen sie für größere η unterhalb der durch Puffergasstöße erwarteten Relaxationsrate. Dafür ist keine plausible physikalische Begründung bekannt, vielmehr versagt hier durch die mit steigendem η zusehends überlappenden Hyperfeinübergänge der D1-Linie die für Gleichungen 4.2 und 4.3 vorausgesetzte Modellvorstellung eines isoliert gepumpten Hyperfeinübergangs.
Kapitel 5

Dichtematrix-Simulationen

5.1 Motivation

Die Bloch-Gleichungen, wie in Abschnitt 2.7 diskutiert, beschreiben die Entwicklung einer makroskopischen Magnetisierung unter der Wirkung eines externen Magnetfeldes und beeinflusst durch (gleichförmige) Relaxationsprozesse, welche durch die beiden Polarisationslebensdauern T_1 und T_2 bzw. die entsprechenden Relaxationsraten γ_1 und γ_2 erfasst werden. Das Modell kann phänomenologisch die Entstehung der magnetischen Resonanz beschreiben, wenn ein oszillierendes Magnetfeld (B_1) im System wirkt. Unter der Annahme der Drehwellennäherung (engl. rotating wave approximation (RWA)) können im Limit kleiner Stärke des Wechselfeldes ($\Omega_1 \ll \omega_L$) die zu erwartenden Lock-In-Signale hergeleitet werden [64, 94]. Der Formalismus ist beschränkt auf ein System von zwei gekoppelten Hyperfeinzuständen. Es ist damit gut geeignet zur Beschreibung der Signale der magnetischen Resonanz in Vakuumzellen, bei denen die Hyperfeinstruktur komplett aufgelöst ist und nur ein einziger Hyperfeinübergang gepumpt wird. Nicht möglich ist die vollständige Beschreibung der Dynamik des Pumpens innerhalb von Mehrniveau-Systemen (wie dem hier betrachteten puffergasüberlappten Cs-D$_1$-System) oder die vollständige Erfassung des dynamischen Spin-Austauschs als nichtlinearen Prozess (was in hier betrachteten “heiß“ Dampfzellen durch die dominierende Spin-Austausch-Relaxation wichtig ist). Um diese für das Phänomen des Light-Narrowing (siehe Kapitel 6) zentralen Effekte abbilden zu können, ist also eine über die phänomenologischen Bloch-Gleichungen hinausgehende Modellierung nötig.

Die beiden oben beschriebenen Phänomene sowie weitere Erscheinungen wie der nichtlineare Zeeman-Effekt oder die Lichtverschiebung (siehe Abschnitt 6.8.2) können in einer sehr allgemeinen Form der Wechselwirkung von Atomen mit externen Feldern im Dichtematrix-Formalismus simuliert und berechnet werden [110, 111]. Im Gegensatz zum Ansatz mit den Bloch-Gleichungen ist es durch dessen Kom-
plexität unter Umständen jedoch schwieriger in vereinfachten Fällen algebraische Abhängigkeiten und Modelle abzuleiten und damit physikalische Zusammenhänge zu verstehen. Aus der Dichtematrix-Simulation resultieren Lock-In-Signale wie experimentell gemessene Daten, die auch so ausgewertet und interpretiert werden.

5.2 Dichtematrix-Formalismus

Die Dichtematrix ρ beschreibt für ein Ensemble gleichartiger Atome mit welcher Wahrscheinlichkeit sich ein einzelnes herausgegriffenes Atom in einem bestimmten Zustand befindet. Dabei werden die n betrachteten Zustände des Atoms in einer $n \times n$-Dichtematrix erfasst. Die Diagonalelemente von ρ repräsentieren die Populationen der einzelnen Zustände, während die nicht-diagonalen Elemente Kopplung der jeweiligen beiden Zustände beschreiben. Die Zeintwicklung der Dichtematrix ist durch die (von Neumann) Liouville-Gleichung

$$\frac{d}{dt} \rho = \frac{1}{i\hbar} [H, \rho] - \frac{1}{2} \{\rho, \hat{\Gamma}\} + \hat{\Lambda}$$

(5.1)
gegeben [34]. Hierbei beschreibt der Hamiltonian H das ungestörte Atom sowie dessen Wechselwirkung mit elektrischen und magnetischen Feldern, die Relaxationsmatrix $\hat{\Gamma}$ die Wirkung der Relaxationsprozesse und $\hat{\Lambda}$ die Repopulationsprozesse. Die eckige Klammer bezeichnet den quantenmechanischen Kommutator, die geschweifte Klammer den Antikommutator.

5.3 Simulation eines einfachen Systems zweier Hyperfeinniveaus

Zur Veranschaulichung des Dichtematrix-Formalismus soll im Folgenden ein einfaches System detailliert abgehandelt werden, um diese Ergebnisse dann auf das experimentell interessante komplexere System der Cäsium-D$_1$-Linie erweitern zu können.
Gegeben sei ein Grundzustand mit atomarem Gesamtdrehimpuls \(F = 1 \), sowie ein angeregter Zustand mit \(F' = 0 \) mit der Energie \(\omega_{12} (\hbar = 1) \) und der Zerfallsrate \(\Gamma \). Relaxationsprozesse innerhalb des Grundzustandes werden zunächst vernachlässigt. Insgesamt besitzt das System also vier Zustände \(|F, m_F\rangle \): \(|1, +1\rangle, |1, 0\rangle, |1, -1\rangle, |0, 0\rangle \). Das Leveldiagramm des Systems zeigt Abbildung 5.1 und entspricht dem Hamiltonian in Gleichung 5.2.

\[
F' = 0 \quad m_{F'} = 0 \\
F = 1 \quad m_{F} = -1 \quad m_{F} = 0 \quad m_{F} = +1
\]

Abbildung 5.1: Leveldiagramm und Hamiltonian eines Systems zweier Hyperfeinniveaus. Ohne äußere Felder sind die drei Unterzustände \(m_{F} \) des Grundzustandes entartet.

\[
H = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \omega_{12}
\end{pmatrix}
\]

(5.2)

Die das System repräsentierende \(4 \times 4 \) Dichtematrix lautet:

\[
\rho = \begin{pmatrix}
\rho_{(1,1),(1,1)} & \rho_{(1,1),(1,0)} & \rho_{(1,1),(1,1)} & \rho_{(1,1),(0,0)} \\
\rho_{(1,0),(1,1)} & \rho_{(1,0),(1,0)} & \rho_{(1,0),(1,1)} & \rho_{(1,0),(0,0)} \\
\rho_{(1,1),(1,1)} & \rho_{(1,1),(1,0)} & \rho_{(1,1),(1,1)} & \rho_{(1,1),(0,0)} \\
\rho_{(0,0),(1,1)} & \rho_{(0,0),(1,0)} & \rho_{(0,0),(1,1)} & \rho_{(0,0),(0,0)}
\end{pmatrix}
\]

(5.3)

\subsection{Zeeman-Effekt und Larmor-Präzession}

Als ersten Schritt kann man sich die Wirkung eines Magnetfeldes vergegenwärtigen, welches in Richtung der Quantisierungsachse (hier immer \(\vec{z} \)) des Systems anlegt und die entsprechen Larmorfrequenz mit \((\omega_{Lz}) \) bezeichnet wird. Das Resultat zeigt Abbildung 5.2. Die magnetischen Unterzustände des Grundzustandes werden durch

\[
F' = 0 \quad m_{F'} = 0 \\
F = 1 \quad m_{F} = -1 \quad m_{F} = 0 \quad m_{F} = +1
\]

Abbildung 5.2: Leveldiagramm und Hamiltonian eines Systems mit statischem Magnetfeld \((\omega_{Lz}) \) in Richtung der Quantisierungsachse. Die Entartung der drei Unterzustände \(m_{F} \) des Grundzustandes wird durch den Zeeman-Effekt aufgehoben.

\[
H = \begin{pmatrix}
\omega_{Lz} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -\omega_{Lz} & 0 \\
0 & 0 & 0 & \omega_{12}
\end{pmatrix}
\]

(5.4)

den Zeeman-Effekt aufgespalten und zwar um eine zum Betrag des Magnetfeldes
bzw. dessen Larmorfrequenz proportionale Energie. Die Zeitentwicklung eines solchen Systems gemäß Hamiltonian 5.4 und ohne Grundzustandsrelaxation zeigt die Abbildung 5.3, wobei das System hier zu Beginn polarisiert sei, zum Beispiel die Population vollständig in einem äußeren Zeeman-Niveau des Grundzustandes stecke, also \(\rho_{(1,1),(1,1)} = 1, \rho_{(1,0),(1,0)} = 0, \rho_{(1,-1),(1,-1)} = 0 \). Ohne Relaxationsmechanismen ist das System unter Zeitentwicklung konstant, es gibt keine von Null verschiedenen Kopplungsterme zwischen den Zuständen.

Das ändert sich, wenn man das Magnetfeld eine zur Quantisierungsachse senkrechte Komponente (hier \(\omega_{Lx} \)) aufweist. Der sich ergebende Hamiltonian 5.5 koppelt, wie in Abbildung 5.4 dargestellt, die benachbarten \(m_F \)-Niveaus des Grundzustandes miteinander. In der Zeitentwicklung resultiert nun eine periodische Modulation der Besetzung der \(m_F \)-Niveaus mit Larmorfrequenz des gesamten angelegten Magnetfeldes (siehe Abbildung 5.5). Diese wird als Larmorpräzession bezeichnet. Die periodische Änderung der Dichtematrixelemente äußert sich auch in einer Modulation der optischen Eigenschaften des Ensembles (zu Observablen siehe Abschnitt 5.3.5).

Abbildung 5.3: Zeitenentwicklung eines vollständig polarisierten Zustandes in einem longitudinalen Magnetfeld. Die Besetzungsverteilung bleibt konstant.

Abbildung 5.4: Leveldiagramm und Hamiltonian eines Systems mit statischem Magnetfeld unter einem Winkel von 45° zur Richtung der Quantisierungsachse. Es tritt Larmorpräzession auf, die die Besetzungverteilung des Grundzustandes periodisch moduliert (rote Pfeile).
5.3.2 Optisches Pumpen

Um die Atome zu polarisieren, pumpt man diese optisch (vgl. Abschnitt 2.4), man strahlt auf den Energieabstand des angeregten Zustandes resonant abgestimmtes, zirkular-polarisiertes Licht der Frequenz \(\omega_0 = \omega_{12} \) ein. Dieses Lichtfeld koppelt gemäß der Auswahlregel \(\Delta m_F = +1 \) nur das Grundzustandsniveau \(|−1, 1⟩ \) mit dem angeregten Niveau \(|2, 0⟩ \), für Übergänge aus den anderen Niveaus fehlen die zur Auswahlregel passenden angeregten Zustände. Entsprechend tauchen im Hamiltonian 5.6 Kopplungsterme \(-\Omega_R^2/\sqrt{3}\) zwischen \(|−1, 1⟩ \) und \(|2, 0⟩ \) auf, wobei \(\Omega_R \) die Rabifrequenz des Lichtfeldes bezeichnet, welche proportional zu dessen Feldstärke \(E \), also zur Quadratwurzel der Lichtintensität \(I \) ist. Wie das das System mit wirkendem Laserfeld aus einem vollständig polarisierten Startzustand (wie in Abbildung 5.5) heraus entwickelt, zeigt Abbildung 5.7. Da das Ensemble schon zu Beginn vollständig polarisiert ist, wirkt hier das optische Pumpen eher als ein zusätzlicher Relaxationsmechanismus, da durch das Pumpen in den angeregten Zustand und den sehr schnellen Zerfall zurück die kohärente Präzession gestört wird.

Im Experiment startet man jedoch stets mit einem vollständig unpolarisierten Grund-
Abbildung 5.7: Zeitentwicklung eines vollständig polarisierten Zustandes in einem Magnetfeld unter 45° unter gleichzeitigem Pumpen eines zirkular-polarisierten Lichtfeldes. Es stellt sich ein neues Ungleichgewicht der Besetzungsverteilung ein, die Larmorpräzession ist durch den optischen Pumpzyklus gestört. Die Besetzung des angeregten Zustandes ist vernachlässigbar klein, da hier die Pumprate Ω_R viel kleiner als die Zerfallsrate Γ gewählt wurde: $\Omega_R/\Gamma = 10^{-3}$. Die Larmorfrequenz wurde sehr klein gegen die Pumprate gewählt ($\omega_L/\Omega_R \approx 10^{-3}$) um beide Effekte in der Grafik auflösen zu können.

der Atome des Ensembles in ihrer Phase zu synchronisieren wird ein zusätzliches kleines, bei der Larmorfrequenz oszillierendes Magnetfeld B_1 benötigt.

5.3.3 B_1-Feld

Legt man ein mit ω_1 oszillierendes Magnetfeld der Rabifrequenz Ω_1 in \vec{z}-Richtung an, ergibt sich das in Abbildung 5.9 dargestellte Leveldiagramm und der Hamiltonian in Gleichung 5.7. Die Zeitentwicklung (Abbildung 5.10) zeigt nun neben der sich durch

\[
F' = 0 \quad m_{F'} = 0
\]

\[
F = 1 \quad m_F = -1 \quad m_F = 0 \quad m_F = +1
\]

\[
H = \begin{pmatrix}
\omega_{Lz} + \Omega_1 \cos(\omega_1 t) & \frac{\omega_{Lz}}{\sqrt{2}} & 0 & 0 \\
\frac{\omega_{Lz}}{\sqrt{2}} & 0 & \frac{\omega_{Lz}}{\sqrt{2}} & 0 \\
0 & \frac{\omega_{Lz}}{\sqrt{2}} & -\omega_{Lx} - \Omega_1 \cos(\omega_1 t) & -\frac{\Omega_R}{2\sqrt{3}} \\
0 & 0 & -\frac{\Omega_R}{2\sqrt{3}} & \omega_{12}
\end{pmatrix}
\]

(5.7)

Abbildung 5.9: Leveldiagramm und Hamiltonian des Systems mit einem zusätzlichen B_1-Feld, welches phasensynchrone Präzession anregt (orange Pfeile).

das optische Pumpen aufbauenden Grundzustandspolarisation auch die Modulation der Dichtematrixelemente durch die nun mit synchronisierter Phase stattfindende Larmorpräzession. Dies führt zu einer makroskopischen Modulation der optischen Eigenschaften des Ensembles und damit zu detektierbaren Messsignalen.

5.3.4 Relaxation und Repopulation

Für ein realistisches System fehlt noch die Wirkung der Relaxation und Repopulation, wodurch das System zurück in Richtung des unpolarisierten Zustandes bzw. des thermischen Gleichgewichts getrieben wird. Beschrieben wird dies durch die Relaxationsmatrix \(\hat{\Gamma} \) (Gleichung 5.8) und die Repopulationsmatrix \(\hat{\Lambda} \) (Gleichung 5.9) die in Gleichung 5.1 eingesetzt werden.

\[
\hat{\Gamma} = \begin{pmatrix}
\gamma_{uf} & 0 & 0 & 0 \\
0 & \gamma_{uf} & 0 & 0 \\
0 & 0 & \gamma_{uf} & 0 \\
0 & 0 & 0 & \gamma_{uf}+\Gamma \\
\end{pmatrix}
\]

Hier werden gleichförmig auf alle Populationen wirkende Relaxationsprozesse (z.B. Wandstöße) der Rate \(\gamma_{uf} \) angenommen. Die Besetzung des angeregten Zustandes zerfällt mit der (in Praxis sehr viel höheren) Rate \(\Gamma \). Die Population des angeregten Zustandes relaxiert komplett in den Grundzustand. Dabei kann man je nach experimenteller Situation Relaxation gemäß der Auswahlregeln für spontane Emission eines Photons oder auch eine vollständig depolarisierte Relaxation (siehe Abschnitt 2.5) annehmen. Für das hier betrachtete einfache System mit nur einem angeregten Zustand resultieren beide Annahmen in der selben Repopulationsmatrix

\[
\hat{\Lambda} = \frac{1}{3}(\gamma_{uf} + \Gamma \rho(0,0),(0,0)) \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

Im Experiment liegen die Parameter im Bereich \(\gamma_{uf}/2\pi \approx 50 \text{ Hz} \) bis \(1 \text{ kHz} \) für die hier verwendeten Zell-Arrays (vgl. Kapitel 4). \(\Gamma \) liegt als inverse Lebensdauer des angeregten Zustandes für spontane Emission ohne Puffergaswirkung bei \(\Gamma/2\pi = 4,5 \text{ MHz} \) [49] und steigt mit durch wachsende Puffergasmenge zunehmender Verbreiterung der optischen Linien bis in den Bereich einiger GHz an. Im Falle der durch Puffergasstöße (vor allem mit Edelgasen hohen Drucks) komplett depolarisierten Relaxation liegt \(\Gamma/2\pi \) im Bereich einiger 10 GHz.

5.3.5 Observable und Lock-In-Signal

Um ein Messsignal wie im Experiment zu simulieren, definiert man im Programm zunächst die passende Observable. In unseren Experimenten beobachten wir immer
die transmittierte Intensität eines zirkular polarisierten Lasers. In diesem Beispiel sei man also an der Absorption des zum optischen Pumpen verwendeten Lichtfeldes (Frequenz $\omega_0 = \omega_{12}$, zirkular polarisiert) interessiert. Die dazu passende Observable lautet

$$\mathcal{O}(t) = 2\pi \sqrt{\frac{1}{\omega_{12}}} \text{Im}(\rho_{(1,-1),(0,0)}(t)) \quad (5.10)$$

Die Absorption ist proportional zu dem Imaginärteil des einen Kopplungselementes $\rho_{(1,-1),(0,0)}$ der Dichtematrix, an welches das Lichtfeld wie schon beim optischen Pumpen ankoppeln kann. Den Imaginärteil der Matrixelemente kann man sich intuitiv als Dämpfungsterm vergegenwärtigen. Diese Observable 5.10 wird durch einen Lock-In-Verstärker in Abhängigkeit von der Verstimmung $\delta = \omega_1 - \omega_L$ phasenempfindlich detektiert, indem die Referenzfrequenz des Lock-Ins ω_1 im Bereich der Larmorfrequenz ω_L durchgefahren wird. Das Lock-In-Signal wird generiert, indem man Punkt für Punkt über das Produkt aus (zeitabhängiger) Observable und Referenzschwingung bei gegebener Referenzfrequenz ω_1 über eine Modulationsperiode $T_{\text{mod}} = \frac{2\pi}{\omega_1}$ integriert:

$$P_X = \frac{1}{T_{\text{mod}}} \int_{t-T_{\text{mod}}}^{t} \sin(\omega_1 \xi) \mathcal{O}(\xi) d\xi \quad (5.11)$$

$$P_Y = \frac{1}{T_{\text{mod}}} \int_{t-T_{\text{mod}}}^{t} \cos(\omega_1 \xi) \mathcal{O}(\xi) d\xi \quad (5.12)$$

Die so erhaltenen simulierten Signale können wie die experimentell gewonnenen durch Kurvenanpassung ausgewertet und analysiert werden. Abbildung 5.11 zeigt das Resultat einer Simulation, bei welcher ω_1 um ω_L punktweise variiert wurde. Trägt man entsprechend über δ auf, können die Signalkomponenten mit folgenden lorentzartigen Funktionen angepasst werden:

$$P_{X\text{fit}} = -\frac{A_X \gamma_{X\text{fit}}}{\delta^2 + \gamma_{X\text{fit}}^2} \quad (5.13)$$

$$P_{Y\text{fit}} = \frac{A_Y \delta}{\delta^2 + \gamma_{Y\text{fit}}^2}$$

Ein Vergleich mit den Gleichungen 2.10 ergibt (mit den dort gemachten Näherungen)

$$A_X = A_Y = P_0 \Omega_1 \sin(2\theta) \quad (5.14)$$

und

$$\gamma_{X\text{fit}} = \gamma_{Y\text{fit}} = \sqrt{\Omega_1^2 \gamma_2^2 + \gamma_2^2} \quad (5.15)$$
Abbildung 5.11: In Abhängigkeit von $\delta = \omega_1 - \omega_L$ simulierte Messsignale (Punkte) und gemäß den Gleichungen 5.13 angepasste Kurven (Linien).

Für kleines B_1-Feld ($\Omega^2_1 \ll \gamma_2 \gamma_1$) ist $\gamma_{X\text{fit}} = \gamma_2$ und φ_{fit} erlaubt die Bestimmung von γ_2:

$$\varphi_{\text{fit}} = \arctan \left(\frac{P_{Y\text{fit}}}{P_{X\text{fit}}} \right) = -\arctan \left(\frac{\delta}{\gamma_{X\text{fit}}} \right) = -\arctan \left(\frac{\delta}{\gamma_2} \right). \quad (5.16)$$

5.4 Modell des Cäsium-\(D_1\)-Systems

Das im vorhergehenden Abschnitt behandelte System hat bereits eine ähnliche Struktur wie die Cs-\(D_1\)-Linie, auf welcher in dieser Arbeit optische Magnetometrie betrieben wird. Um das im nächsten Kapitel 6 behandelte LN-Magnetometer vollständig abzubilden, wird das System erweitert. Ausgehend von Abbildung 2.5 wird das System der \(D_1\)-Linie von Cäsium ($I = \frac{7}{2}$) wie folgt modelliert:

- Grundzustand und angeregter Feinstrukturzustand bestehen aus jeweils zwei Hyperfeinzuständen $F = 3$ und $F = 4$, welche wiederum jeweils $2F + 1$ magnetische Sublevel m_F besitzen. Das System besteht also aus 32 Einzelzuständen.

- Durch die zur Unterdrückung der Wandstöße (siehe Abschnitt 2.9) nötigen Puffergasmenge in der Zelle verbreitern und überlappen die vier erlaubten optischen Hyperfeinübergänge der \(D_1\)-Linie. Die Hyperfeinaufspaltung des Grundzustandes (9,19 GHz) ist größer als die des angeregten Zustandes (1,17 GHz), man kann in guter Näherung den angeregten Zustand als vollständig überlappt annehmen, während die Grundzustandsaufspaltung komplett aufgelöst ist. Es reicht daher aus, statt vier nur zwei Lichtfelder zu definieren, die im System wirken: Das zirkular polarisierte Ausleselicht koppelt $F = 4 \leftrightarrow F' = 3, 4$ mit
der Frequenz ω_4 und Rabifrequenz Ω_4, das ebenfalls zirkular polarisierte Repumplicht koppelt $F = 3 \leftrightarrow F' = 3, 4$ mit der Frequenz ω_3 und Rabifrequenz Ω_3.

- In die angeregten Niveaus gepumpte Atome relaxieren gemäß der Auswahlregeln für spontane Emission zurück in den Grundzustand mit einer Rate Γ. Die Simulation erfasst dies durch die Repopulationsmatrix $\hat{\Lambda} = \text{Tr}(\rho F^m_{m'} F^m'_F)$ mit

\[
F^m_{m' m''} = 2\Gamma (-1)^{1-m_1-m_2} \sum_q \begin{pmatrix} 1/2 & 1 & 1/2 \\ -m_1 & q & -m_2' \\ -m_2 & q & -m_1' \end{pmatrix} \begin{pmatrix} 1/2 & 1 & 1/2 \\ -m_2 & q & -m_1' \end{pmatrix} (5.17)
\]

dem Operator für spontane Emission ausgedrückt in 3j-Symbolen und für $J = J' = 1/2$, wobei die gestrichenen Größen Quantenzahlen des angeregten und ungestrichene Größen Quantenzahlen des Grundzustandes darstellen [114].

- Ein statisches Magnetfeld kann in einem beliebigen Winkel θ zur Ausbreitungsrichtung des Lichts $\vec{k} = \vec{z}$ angelegt werden und sorgt für die Zeeman-Aufspaltung der m_F-Niveaus zueinander. Die transversale Komponente (entsprechend ω_{Lx}) führt zur Larmorpräzession im Grundzustand.

- Ein mit der Frequenz ω_1 in der Nähe der Larmorfrequency ω_{L} oszillierendes Magnetfeld der Stärke Ω_1 regt Übergänge zwischen benachbarten m_F-Niveaus im Grundzustand an.

- Durch den um Faktor drei kleineren gyromagnetischen Faktor des angeregten Zustandes ist dessen Larmorfrequency immer weit verstimmt von der des Grundzustandes. Die Wirkung des oszillierenden Feldes auf den angeregten Zustand kann also vernachlässigt werden ($\Omega_1 = 0$ im angeregten Zustand).

- Die optische Linienbreite des angeregten Zustands ist viel größer als dessen Zeemanaufspaltung in hier interessierenden Magnetfeldern. Die Zeeman-Aufspaltung des angeregten Zustandes hat also auch keinen Einfluß auf die Dynamik des optischen Pumpens und kann vernachlässigt werden ($\omega_L = 0$ im angeregten Zustand).

- Um Rechenzeit zu sparen, werden alle Hyperfeinkohärenzen (Kopplung von Zuständen verschiedener Hyperfeinlevel innerhalb eines Feinzustandes) vernachlässigt, da wir nur an den Zeeman-Kohärenzen interessiert sind.

- Insgesamt verringert sich dadurch die Zahl der gekoppelten zu lösenden Gleichungen für das Cäsium-System von 1024 (32 x 32) auf 658.
• Die Spin-Austausch-Wechselwirkung koppelt die Grundzustandsniveaus mit-einander. Im angeregten Zustandes kann diese aufgrund dessen kurzer Lebens-
dauer vernachlässigt werden (und hätte abgesehen davon auch wegen \(L = 1 \) eine andere Form). Die Relaxationsmatrix \(\hat{\Gamma}_{SE} \) aus Gleichung 2.23 wird für
alle Populationen und Kohärenzen des Grundzustandes rechts zu Gleichung
5.1 addiert.

• Zusätzlich dazu relaxieren alle Populationen gleichförmig mit einer Rate \(\gamma_{uf} \)
und alle angeregten Zustände zusätzlich mit der Rate \(\Gamma \).

Das beschriebene System ist übersichtlich in Abbildung 5.12 zusammengefasst.

Abbildung 5.12: Das Cs-D_{1}-System wie modelliert. Atome, angeregt durch zirkular
polarisiertes Licht der Rabifrequenz \(\Omega_{4} \) und \(\Omega_{3} \), relaxieren mit Rate \(\Gamma \) zurück in
den Grundzustand. Im Grundzustand werden die Atome gemischt durch Larmor-
Präzession, die durch das resonante magnetische Wechselfeld der Stärke \(\Omega_{1} \) getrieben
wird, durch den Spin-Austausch-Mechanismus (SE) und durch gleichförmige Relax-
ationsprozesse (nicht gezeigt). Der Übersichtlichkeit halber sind nicht alle Pump-
übergänge eingezeichnet und die erlaubten Zerfallskanäle nur exemplarisch für einen
angeregten Zustand gezeigt.
Kapitel 6

Das Light-Narrowing-Regime

6.1 Gliederung des Kapitels

6.2 Abgrenzung des LN-Regimes

Im Gegensatz zu SERF-Magnetometern (siehe Abschnitt 2.9.3), die nur in nahezu verschwindendem Magnetfeld betrieben werden können, ist der Effekt des Light-Narrowing auch in deutlich größeren Feldern und bis in den mT-Bereich zu beobachten. Der Effekt beruht - wie oben beschrieben - auf der Konzentration der Alkaliatome innerhalb eines Hyperfeinzustandes (normalerweise des oberen $F = I + 1/2$) und insbesondere in dessen magnetischem Unterzustand mit größtmöglichen Spin $m_F = F = 4$.

6.3 Optimierung der Empfindlichkeit

Die Optimierung des wichtigsten Parameters eines Magnetometers - dessen magnetometrische Empfindlichkeit - erfordert die Optimierung aller Betriebsparameter, die mit diesem Wert direkt oder indirekt verknüpft sind und im späteren Einsatz beeinflusst werden können. Da man, wenn man an einen Einsatz außerhalb geschirmter Umgebung (im Erdmagnetfeld) denkt, mit einem Magnetfeld der Größenordnung von $50 \mu T$ rechnen muss, wird dieser Parameter (wie auch die Zelldimensionen) für alle weiteren Untersuchungen als gegeben angesehen. Zur Optimierung der Empfindlichkeit wird vorab der Winkel zwischen Ausbreitungsrichtung des Laserlichts und des statischen Magnetfeldes zu $\theta = 45^\circ$ gewählt, bei welchem gemäß der Gleichungen 2.10 die größten Signale zu erwarten sind. In späteren Abschnitten werden Effekte in Abhängigkeit der Verkippung des Sensors bzw. des Magnetfeldes untersucht und der Winkel θ variiert.

Der für die Empfindlichkeit des OPMs entscheidende Parameter ist der Anstieg des Y-Signals (siehe Abschnitt 2.8). Diese setzt sich aus Größe und Breite des detektierten Magnetresonanzsignals zusammen. Wie in den vorangegangenen Kapiteln diskutiert, treten zusammengefasst folgende Abhängigkeiten auf:

1. Erhöhung der Pumplaserleistung bzw. Pumprate (P_L bzw. γ_p) führt zur
 - Erhöhung der Signalgröße durch Erhöhung des sich aufbauenden Polarisationsgrades der Atome (bis hin zur Sättigung),
 - Leistungsverbreiterung (power broadening) der magnetischen Resonanz,
 - Erhöhung des Schrottrausch-Limits $\sqrt{2eI_{dc}}$ durch Erhöhung des detektierten Photostromes I_{dc}.

2. Erhöhung der Amplitude (Rabifrequenz Ω_1) des B_1-Feldes resultiert in
 - einem größeren Magnetresonanzsignal durch stärkeres Treiben der Kohärenzen zwischen benachbarten Zeeman-Niveaus,
 - Leistungsverbreiterung (rf-field broadening) des Magnetresonanzsignals.

3. Erhöhung der Zelltemperatur T bedeutet
 - Erhöhung der Alkali-Teilchendichte n in der Zelle und damit größere nutzbare Atomzahl N in der Gasphase,
 - durch zunehmende Absorption des Pumplichtes eine Verringerung des detektierten transmittierten Anteils,
 - Verbreiterung des Magnetresonanzsignals durch Zunahme der Spin-Austausch-Relaxation.
4. Erhöhung der PuffergASFdichte η

- verringert die Magnetresonanzbreite durch Verkleinerung der Wandstoßrate bis hin zu einem Optimum,
- über das Optimum hinaus vergrößern Puffergasstöße die Magnetresonanzbreite wieder.
- bewirkt eine Verbreiterung und Überlappung der optischen Hyperfeinübergänge der D_1-Linie, beeinflusst die Effektivität des optischen Pumpens und verändert den Absorptionskoeffizienten der Zelle für das Laserlicht.

Den für die experimentelle Optimierung der schrotrausch-begrenzten Empfindlichkeit bezüglich des allgemeinen Setups (beschrieben in Kapitel 3) adaptierten Aufbau zeigt die Abbildung 6.1.

Abbildung 6.1: Aufbau für Optimierung der schrotrausch-begrenzten Empfindlichkeit. Das statische Magnetfeld $B_0 = 50 \mu T$ steht unter einem Winkel von $\theta = 45^\circ$ zum durch Polarisator (LP) und $\lambda / 4$-Plättchen zirkular polarisierten Pumplicht. Parallel zur Laserrichtung oszilliert das B_1-Feld mit der Frequenz ω_1. Das durch die Messzelle transmittierte, modulierte Licht wird von einer Photodiode (PD) detektiert, durch einen Transimpedanzwandler (I/U) verstärkt und das resultierende Spannungssignal phasenempfindlich vom Lock-In detektiert. Nicht gezeigt sind allgemeine Komponenten wie Heizlaser, Helmholtzspulen und Schirmtonne (siehe dazu Kapitel 3).

6.4 Gewöhnlicher M_x-Betriebsmodus

Die Implementation eines M_x-Magnetometers nutzt den in Abschnitt 2.4 beschriebenen Dunkelzustand-Mechanismus aus. Betrachtet man die vier einzelnen Hyperfeinübergänge der D_1-Linie, so stellt man fest, dass sich beim zirkular polarisierten Pumpen aus den Zuständen mit $F = 3$ kein Dunkelzustand in diesen bildet, beim Pumpen aus $F = 4$ jedoch für den Übergang $F = 4 \leftrightarrow F' = 4$ einer und für
die Linie $F = 4 \leftrightarrow F' = 3$ sogar zwei Dunkelzustände entstehen (vgl. Abbildung 2.3). Dadurch und der großen relativen Übergangsstärke wegen (vgl. Abbildung 2.2) ist beim optischen Pumpen resonant zu diesem letztgenannten Übergang im Vergleich zu den anderen drei Hyperfeinlinien die größte Polarisation zu erzielen und bei gleicher Pumpleistung die Signalgröße der magnetischen Resonanz maximal. Aus diesem Grund wurden und werden optische Magnetometer mit Dampfzellen, die eine optische (Cs-D$_1$)-Absorptionslinie mit komplett aufgelöster Hyperfeinstruktur aufweisen, stets auf diesem Übergang betrieben wie zum Beispiel in [94, 124, 97].

Die Abhängigkeit der schrotrausch-begrenzten Empfindlichkeit B_{sn} von Pumplaserleistung und B_1-Amplitude kann durch zweidimensionale Parametervariationen, welche automatisiert ablaufen können, in der jeweiligen Konfiguration gemessen werden. Einen typischen Parameterscan zeigt Abbildung 6.2. Die auf diese Weise bestimmten

Abbildung 6.2: Konturplot eines Parameterscans von Pumplaserleistung P_L und Amplitude des B_1-Feldes zur Optimierung der schrotrausch-begrenzten Empfindlichkeit B_{sn} im gewöhnlichen Regime, beispielhaft gezeigt für das Zell-Array mit $\eta = 0,236$ amg bei $T = 74,4^\circ$C. Messpunkte sind schwarz dargestellt.

Arbeitspunkte mit der optimalen Empfindlichkeit B_{sn} wurden nun in Abhängigkeit von Zelltemperatur T und Stickstoffdichte η experimentell bestimmt. Die Resultate dieser Messkampagne fasst der Graph 6.3 zusammen. Bei kleinen Stickstoffdichten ist die bestgemessene Empfindlichkeit deutlich kleiner als für die Zellen mit hohem η. Dies erklärt sich durch die mit η zunehmende Unterdrückung der Stöße der Atome mit der Zellwand (siehe Abschnitt 2.9.2). Bei kleinen Zelltemperatu-

... ist die Teilchendichte der Atome zu niedrig, die magnetischen Resonanzsignale entsprechend klein. Sind die Wandstöße durch eine ausreichende Stickstoffdichte unterdrückt, spielt η kleine Rolle mehr. Bei höheren Stickstoffdichten und Zelltemperaturen wird die magnetische Resonanzbreite und die erzielbare Empfindlichkeit (siehe Gleichung 2.25) durch den Spin-Austausch-Mechanismus festgelegt. Dies erklärt, dass dann die Zellen ihre optimale Empfindlichkeit ($B_{sn} = 160 \mu T/\sqrt{\text{Hz}}$) bei ähnlichen Zelltemperaturen (ca. 100°C) zeigen. Für größere Temperaturen limitiert die zunehmende Absorption die Größe des transmittierten Signals.

6.5 LN-M_x-Betriebsmodus

Bei der Untersuchung des M_x-Modus mit einer Zelle, deren Hyperfeinaufspaltung des Grundzustandes durch Puffergasverbreiterung der optischen Linien teilweise überlappt, stellte sich heraus, dass bei Verstimmung der Laserfrequenz weg von der gewöhnlich genutzten Linie ausgehend von $F = 4$ hin zu den Hyperfeinübergängen aus $F = 3$ eine Steigerung der Empfindlichkeit auftritt, wenn gleichzeitig die Pumperspul-Leistung stark erhöht wird. Dabei war sowohl ein deutlicher Anstieg der Signalgröße wie auch eine Verkleinerung der Breite des magnetischen Resonanzsignals zu beobachten [47].
Das Puffergas in der Zelle führt durch Stöße mit den Alkaliatomen einerseits dazu, dass diese seltener mit der Zellwand kollidieren, andererseits aber auch durch die Verkürzung der Lebensdauer der angeregten Alkali-Zustände zu einer Verschiebung und Verbreiterung der optischen Absorptionslinien (siehe Abschnitt 2.3). Dies wird beispielhaft in Abbildung 6.4 veranschaulicht. Mit steigender Puffergasdichte η

Abbildung 6.4: Absorptionsspektrum der Cs-D_1-Linie für eine Zelle ohne Puffergas (schwarz), mit niedriger (Zell-Array 1, 0,0082 amg, grün), mittlerer (Zell-Array 2, 0,0601 amg, rot) und hoher Puffergasdichte (Zell-Array 4, 0,236 amg, blau). Die Frequenzachse ist bezogen auf den Energieabstand der Hyperfeinübergangs $F = 4 \leftrightarrow F' = 3$ im Vakuum, die Absorption ist jeweils normiert aufgetragen. Mit zunehmender Stickstoffdichte verschieben und verbreitern sich die Hyperfeinlinien.

Abbildung 6.5: Überlappende Hyperfeinübergänge der D$_1$-Linie des Zell-Arrays 4 mit $\eta = 0.236$ amg bei $T = 100^\circ$C. Schwarze, gestrichelte Linien kennzeichnen die Frequenz des Pumplasers in LN-M_x-Betriebsmodus auf $F = 3$ (rechts) im Vergleich zum gewöhnlichem M_x-Betriebsmodus auf $F = 4$ (links).

Durch die in $F = 3$ fehlenden Atome kann das Atomensemble deutlich stärker polarisiert werden. Entsprechend kleiner fällt der Absorptionskoeffizient in dieser Konfiguration aus. Die Zelle kann bei höheren Zelltemperaturen betrieben werden als im gewöhnlichen Regime. Durch die dann höhere nutzbare Teilchenzahl wird das magnetische Resonanzsignal weiter vergrößert.

Neben diesen beiden Effekten die zu größeren Signalen Anlass geben, wird gleichzeitig die Resonanzbreite verkleinert und dadurch ebenfalls die Empfindlichkeit verbessert. Die Verkleinerung der Linienbreite beruht auf der Unterdrückung der Spin-Austausch-Relaxation und wird eingehend in Abschnitt 6.7 untersucht.
In gleicher Weise wie im gewöhnlichen Regime wurde im LN-Regime zunächst eine Messkampagne zur Optimierung der schrotrausch-begrenzten Empfindlichkeit durchgeführt. Dazu wurde die Abhängigkeit von B_{sn}, der B_1-Amplitude, der Stickstoffdichte η und der Zelltemperatur T systematisch vermessen. Die Laserfrequenz wurde jeweils auf $F = 3 \leftrightarrow F' = 3, 4$ abgestimmt, also zwischen beide (überlappt) Hyperfeinübergänge aus dem unteren Grundzustand. Einen typischen Parameterscan bezüglich Laserleistung und B_1-Amplitude zeigt die Abbildung 6.6 exemplarisch für ein Wertepaar von $\eta = 0,236$ amg und $T = 94,0^\circ{\text{C}}$. Aufgrund der zur Entleerung von $F = 3$ hohen benötigten Laserleistung kam der

Abbildung 6.6: Parameterscan von Pump laserleistung P_L und Amplitude des B_1-Feldes zur Optimierung der schrotrausch-begrenzten Empfindlichkeit B_{sn} im LN-Regime, beispielhaft gezeigt für das Zell-Array 4 mit $\eta = 0,236$ amg bei $T = 94,0^\circ{\text{C}}$.

Trapezverstärker zum Einsatz, welcher das eingekoppelte DFB-Laserlicht unter Behaltung seiner spektralen Eigenschaften um ein bis zwei Größenordnungen nachverstärkt. Die Abhängigkeit der Empfindlichkeit B_{sn} von der Laserleistung ist hier weniger stark, da die Kopplung zu $F = 4$ geringer als im gewöhnlichen Regime ist. Die Resultate in Abhängigkeit von Stickstoffdichte η und Zelltemperatur T zeigt die Abbildung 6.7. Die besten gemessenen schrotrausch-begrenzten Empfindlichkeiten liegen bei $40 \frac{fT}{\sqrt{Hz}}$ und werden bei Zelltemperaturen von ca. $T = 120^\circ{\text{C}}$ erzielt. Interessanterweise wird dieser Wert fast unabhängig von η erreicht. Lediglich das Zell-Array mit der niedrigsten Stickstoffdichte zeigt ein B_{sn}, welches nur im Bereich des Resultats des gewöhnlichen Regimes liegt. In dieser Zelle ist die Hyperfeinauf-
Abbildung 6.7: Messungen der optimierten schrotrausch-begrenzten Empfindlichkeit im LN-Regime in Abhängigkeit von der Zelltemperatur T für die Zell-Arrays mit verschiedenen Stickstoffdichten η (siehe 3.1). Jeder Messpunkt zeigt das Ergebnis der Optimierung von B_{sn} hinsichtlich von P_L und B_1.

6.6 Rauschmessungen im LN-Regime

Die Optimierung der schrotrausch-begrenzten Empfindlichkeit B_{sn} wie im vorangegangenen Abschnitt gezeigt, stellt den ersten wichtigen Schritt dar. Daran anschließend muss jedoch geklärt werden, wie nah man sich diesem theoretischen Limit mit dem tatsächlichen Sensorräuschen, welches auch von anderen Rauschquellen be-
seinflusst wird, nähern kann. Dazu sollten - wenn möglich - in der bezüglich der
schrotrausch-begrenzten Empfindlichkeit optimierten Konfiguration Rauschmessun-
gen durchgeführt werden.

6.6.1 Methodik

Für die in diesem Abschnitt vorgestellten Resultate werden zwei Magnetometer-
Kanäle benötigt. Den eingerichteten Aufbau zeigt die Abbildung 6.8. Es werden
zwei Messzellen des Zell-Arrays 4 mit $\eta = 0.236 \text{ amg}$ verwendet (siehe Tabelle 3.1).

Abbildung 6.8: Zweikanaliger Aufbau für die Rauschmessungen und die Untersu-
chung der Richtungsabhängigkeit. Die Laserleistung wird zusätzlich durch einen
(optionalen) Trapezverstärker (TA) erhöht und vor dem Strahlteiler (ST) linear
polarisiert und die Strahlen durch einen Spiegel (SP) parallel geführt. In beiden
Kanälen wird das Licht durch eine Kombination aus linearem Polarisator (LP) und
$\lambda/4$-Plättchen mit gleicher Helizität zirkular polarisiert. Anschließend durchstrahlt
das Licht zwei Zellen des geheizten Zellarrays (ZA), welche durch separate
B_1-Spulen auf Leiterplatinen unabhängig voneinander betrieben werden können. Das transmit-
tierte Licht wird von Photodioden (PDs) in entsprechende Photoströme gewandelt,
welcher nachfolgend durch Transimpedanzwandler (I/U) in Spannungen umgesetzt
und von digitalen Lock-In-Einheiten detektiert wird. Nicht gezeigt sind allgemeine,
in Kapitel 3 beschriebene Komponenten wie Schirmtonne und Heizlaser-Aufbau.

Zur Rauschmessung des Sensors wird üblicherweise das P_Y-Signal des Lock-Ins ver-
wendet. Am Ausgang des Lock-Ins Signal Recovery 7280 steht dieses nach Digital-
Analog-Wandlung auch als proportionales Spannungssignal zur Verfügung. Dieses
Spannungssignal kann bei $\delta = 0$ mit einem Spektrumanalysator aufgezeichnet, des-
sen Fourierspektrum berechnet und so ein Rauschspektrum gemessen werden. Auf-
grund einer technischen Begrenzung des Dynamikumfanges der DAC-Wandler des
Signal Recovery 7280 wurden die im Folgenden gezeigten Rauschmessungen jedoch
auf andere Weise gewonnen: Das OPM-Spannungssignal am Ausgang der Transimpe-
danzwandler wurde mit einem Zurich Instruments HF2LI analysiert. Dieser erlaubt
die sehr schnelle digitale Aufzeichnung des Y-Signals bei Samplefrequenzen weit
oberhalb der OPM-Sensorbandbreite. Diese Zeitreihen werden anschließend über ei-
ne MATLAB-Routine\(^1\) [125] per FFT in ein Fourierspektrum konvertiert. Aus drei Messreihen (kurz mit hoher Samplingrate, mittellang mit mittlerer Samplingrate und lang mit niedriger Samplingrate) können so Rauschspektren gewonnen werden.

6.6.2 Resultate

Die optimalen Werte der schrotrausch-begrenzten Empfindlichkeit \(B_{\text{sn}} \) wurden bei sehr hohen Pumpplaserleistungen gemessen. Dazu war der zusätzliche Einsatz des Trapezverstärkers nötig. Leider verstärkt der Trapezverstärker (Sacher Tapered Amplifier) nicht nur (wie es optimal wäre) das Rauschen des Pumpplasers mit, sondern trägt selbst ein zusätzliches Rauschen ein. Dies wird vermutlich durch das Rauschen der Stromquellen zum Betrieb des Verstärkerchips hervorgerufen. Das Intensitätsrauschen des Lichtes des verwendeten DFB-Lasers, welches bei der Detektion durch die Photodiode in ein Stromrauschen gewandelt wird, liegt bei \(I_{\text{dc}} = 0,25 \) mA und bei \(\nu = 1 \) kHz einen Faktor sechs über dem zu erwartenden Niveau des Schrotorauschens \(I_{\text{sn}} = \sqrt{2eI_{\text{dc}}} \) (Gleichung 2.15). Dagegen liegt das Niveau des Intensitätsrauschens des nachverstärkten Pumplichts mehr als einen Faktor 35 über dem durch das Schrotorauschen des detektierten Photostromes zu erwartenden Level. Eine solch dominante technische Rauschquelle macht es unmöglich sich dem Schrotorauschniveau zu nähern. Aus diesem Grund kann der Trapezverstärker vorerst nicht bei Messungen des tatsächlichen Rauschens eingesetzt werden und es muss die alleinige Verwendung des Pumpplasers erfolgen. Dessen Pumpleistung reicht allerdings nicht aus, den optimalen Arbeitspunkt des LN-Regimes zu erreichen. Die Zelle wird deshalb bei etwas niedrigerer als der optimalen Temperatur betrieben. Bei maximaler Leistung des Pumpplasers wird bei \(T = 111\,\text{°C} \), \(B_1 = 195,3 \) nT (rms) und \(P_L = 1,5 \) mW ein Wert von \(B_{\text{sn}} = 68 \frac{\text{fT}}{\sqrt{\text{Hz}}} \) in Kanal 1 und \(B_{\text{sn}} = 65 \frac{\text{fT}}{\sqrt{\text{Hz}}} \) in Kanal 2 erreicht. Das Ergebnis der Rauschmessung eines Kanals in diesem Arbeitspunkt ist in Abbildung 6.9 in schwarz dargestellt. Im Bereich von Frequenzen > 100 Hz liegt das Niveau bei \(B_n = 200 \frac{\text{fT}}{\sqrt{\text{Hz}}} \) und damit einen Faktor drei über \(B_{\text{sn}} \). Zwischen 20 und 100 Hz treten starke Störungen auf, die ihre Ursache in Vibrationen des Aufbaus und des Hauses haben. Die diskreten Störnadeln bei 50 Hz, 100 Hz und höheren Harmonischen resultieren aus der Ankopplung des Aufbaus ans Stromnetz. Da das Schrot-Rausch-Limit bei dieser Messung nicht erreicht wird, müssen technische und/oder externe Rauschquellen die Messung dominieren. Deswegen werden im nächsten Schritt Kompensationsmethoden durch die Kombination zweier Messzellen des Zellarrays studiert: Die erste untersuchte Konfiguration ist die radiometrische Messung (vgl. Abbildung 6.10 (a)). Dazu wurden die \(P_Y \)-Signale beider

\(^1\)Dankeschön dafür an Andreas Chwala.
Abbildung 6.9: Messungen des tatsächlichen Rauschens im LN-Regime. Schwarz: Einzelkanal, grün: Gradiometer (a), rot: B_1-Subtraktionsmethode (b). Die stufenar-tigen Übergänge bei 350 Hz und 1,5 kHz entstehen durch die Kombination der drei verschiedenen gemessenen Zeitreihen.

Kanäle durch getrennte digitale Lock-Ins detektiert und entsprechend zeitsynchron aufgezeichnet. Nach der Messung wurden beide Messreihen voneinander subtrahiert und das Fourierspektrum der Differenz berechnet. Die grüne Linie in Abbildung 6.9 zeigt das Resultat der gradiometrischen Messung. Da jetzt zwei Zellen gepumpt und ausgelesen werden, wird die doppelte Menge an Photonen detektiert. Man erwartet deswegen ein Schrottrauschniveau von $$B_{sn} = \sqrt{2} \cdot 67 \cdot \frac{FT}{\sqrt{Hz}} = 94 \cdot \frac{FT}{\sqrt{Hz}}.$$ Hier liegt das tatsächliche weiße Rauschen einen Faktor drei über diesem Limit. Bei Frequenzen $> 20 \text{ Hz}$ bleibt das Rauschen des Gradiometers unterhalb dem des Einzelkanals. Dies zeigt, dass in diesem Frequenzbereich das Rauschen des Einzelkanals durch magnetische Störungen entfernter Quellen dominiert wird, welche in gradiometrischer Messung verschwinden. Erst unterhalb von ca. 1 Hz beginnt das Rauschen des Gradiometers $1/f$-artig anzusteigen, wobei in diesem Bereich die Güte des Ab-gleichs beider Kanäle zueinander entscheidend ist. Auch kommen hier Intensitäts- und Polarisationsschwankungen des Pumplaserlichtes in Frage. Die sehr große Nadel bei 80 Hz entspricht der Differenz $1/2\pi(\omega_{1-1} - \omega_{1-2})$ der Frequenzen der B_1-Felder beider Kanäle.

In der zweiten untersuchten Konfiguration, welche in [123] genauer beschrieben und hier als B_1-Subtraktionsmethode bezeichnet wird, werden die Photospannungen zweier Kanäle, welcher bei gleicher B_1-Feld-Frequenz ω_1 betrieben werden, vonein-
Abbildung 6.10: Ausleseschema für die Rauschmessungen in Abbildung 6.9. Das Gradiometer (a) wird aus zwei unabhängig gemessenen Kanälen durch Differenzbildung der \(P_Y \)-Signale nach Demodulation gebildet. Die \(B_1 \)-Subtraktionsmethode (b) beruht auf der Differenzbildung der Photospannungen zweier mit \(B_1 \)-Feldern gleicher Frequenz, aber um 180° verschobener Phase modulierter Zellen [123]. Für die Messung eines Einzelkanals wird der subtrahierte Kanal in Konfiguration (a) oder (b) nicht angeschlossen.

ander abgezogen (vgl. Abbildung 6.10 (b)). Dies würde ohne weitere Maßnahmen dazu führen, dass nicht nur der Gleichspannungsanteil des Signals, sondern auch die Modulation bei \(\omega_1 \), also das interessierende Messsignal verschwinden würde. Deshalb wählt man die Phasen der Oszillation beider \(B_1 \)-Wechselfelder um 180° verschoben zueinander. Nach der Differenzbildung resultiert dann ein doppelt so großes Messsignal ohne Gleichspannungsanteil. Die rote Kurve in Abbildung 6.9 zeigt das Ergebnis der Rauschmessung in \(B_1 \)-Subtraktionskonfiguration. Es wird hier wieder im Vergleich zum Einzelkanal die doppelte Menge an Photonen detektiert, aus der Subtraktion der Signale resultiert aber gleichzeitig eine Verdoppelung des Anstiegs des \(P_Y \)-Signals. Das schrotrausch-begrenzte Limit ergibt sich deshalb als \(B_{sn} = \frac{1}{\sqrt{2}} \cdot 67 \frac{fs}{\sqrt{Hz}} = 47 \frac{fs}{\sqrt{Hz}} \). Für Frequenzen > 300 Hz liegt das tatsächliche Rauschniveau nur einen Faktor 1,3 darüber. Durch die Differenzbildung der Photospannungen werden technische Rauschquellen, welche auf den Photostrom beide Kanäle in gleicher Weise wirken eliminiert. Dies betrifft zum Beispiel technisches Intensitätsrauschen bzw. Schwankungen des Polarisationszustandes des Laserlichtes. Durch die Aufteilung des Lichtes erst nach dem Durchgang durch einen linearen Polarisor werden Polarisationschwankungen in Schwankungen der Gesamtintensität gewandelt, welche anschließend jedoch in sehr guter Näherung in gleichen Anteilen aufgespalten wird. Dadurch betreffen Schwankungen in Polarisation und Intensität des Pumplichtes immer beide Kanäle in gleicher Weise und können durch die \(B_1 \)-Subtraktionsmethode eliminiert bzw. stark reduziert werden. Man kann aus dem
Vergleich der Messungen des Einzelkanals und der B_1-Subtraktionsmethode schließen, dass das weiße Rauschniveau (Frequenzen $> 100 \text{ Hz}$) des Einzelkanals durch das technische Rauschen des Laserlichtes limitiert wird. Die Resultate der B_1-Subtraktionsmethode stoßen in Bereiche vor, in denen auch das Rauschen der Ausleeselektronik, welches in den beiden Kanälen unkorreliert zueinander entsteht, merklich wird und die Messung limitiert: Dem jeweils in den Kanälen detektierten Photoströmen von 0,25 mA bzw. 0,23 mA entspricht gemäß Gleichung 2.15 ein (weißes) Schrotrauschen von $9,0 \frac{\text{pA}}{\sqrt{\text{Hz}}}$ bzw. $8,6 \frac{\text{pA}}{\sqrt{\text{Hz}}}$. Messungen des Rauschens der Detektionselektronik in Differenzmessung zweier Kanäle lieferte bei Beleuchtung der Photodioden mit einer Intensität die jeweils zu $I_{dc} = 0,25 \text{ mA}$ führte einen Wert von $I_{\text{diff}} = 15 \frac{\text{pA}}{\sqrt{\text{Hz}}}$ bei einer Messfrequenz von 10 kHz.

Dies entspricht für den Einzelkanal also einem Rauschelevel der Elektronik von $I_{\text{sens}} = \frac{1}{\sqrt{2}} I_{\text{diff}} = 10,6 \frac{\text{pA}}{\sqrt{\text{Hz}}}$ und ist damit vergleichbar groß wie das erwartete Schrotrausch-Limit des Messsignals I_{sn}. Wegen der Unabhängigkeit der Rauschquellen gilt

$$I_{\text{ges}} = \sqrt{I_{\text{sn}}^2 + I_{\text{sens}}^2} = 13,9 \frac{\text{pA}}{\sqrt{\text{Hz}}}.$$ \hspace{1cm} (6.1)

Dieser Wert liegt einen Faktor 1,5 oberhalb von I_{sn} und erklärt, warum bei der magnetischen Rauschmessung das Schrotrausch-Limit B_{sn} nicht erreicht werden konnte.

Jedoch demonstriert die Rauschmodell bei B_1-Subtraktion, dass die überlegene schrotrausch-begrenzte Empfindlichkeit des LN-Regimes gegenüber des gewöhnlichen Betriebsmodus auch in einem überlegenen “tatsächlichen” Rauschen resultiert.

Weiterhin kann man aus dem niedrigen Level des weißen Rauschens folgern, dass die Begrenzung des Rauschniveaus des Einzelkanals und des Gradometers durch Rauschquellen verursacht wird, die in gleicher Weise auf beide Kanäle wirken. Dafür kommt sehr wahrscheinlich das Intensitätsrauschen der Pumplichts in Frage. Das niedrige Niveau wird auch innerhalb der Bandbreite des OPMs (ca. 1,3 kHz in diesem Arbeitspunkt) erreicht. Dies lässt darauf schließen, dass oberhalb von $> 300 \text{ Hz}$ das Rauschen nicht durch magnetische Einflüsse begrenzt wird. Lediglich bei niedrigen Frequenzen ($< 20 \text{ Hz}$) ist der Aufbau durch magnetische Störungen limitiert, welche nur durch die gradiometrische, nicht aber durch die B_1-Subtraktionsmethode reduziert werden können.

Für beide Subtraktionsmethoden zeigt sich wie im Einzelkanal das Störgebiet zwischen 20 und 70 Hz. Daraus kann geschlossen werden, dass die als Ursache angenommenen Vibrationen nicht den gemeinsamen Lichtweg betreffen (vom Laser über Ein- und Auskoppeln in die Faser bis zum Strahlteiler), sondern von Vibrationen beider Kanäle gegeneinander (also vom Aufbau in der Schirmtonne) stammen müssen.

Um die Verbesserungen beider Subtraktionsmethoden gleichzeitig nutzen zu kön-

6.7 Nachweis der Reduktion der Spin-Austausch-Relaxation

In den vorangegangenen Abschnitten wurde das LN-Regime mit einem auf das Zentrum der Absorptionslinien aus $F = 3$ abgestimmtem Laser in einer Zelle mit hoher Puffergasmenge untersucht, bei der dadurch die Hyperfeinübergänge der D_1-Linie überlappt waren. Es wurde festgestellt, dass dabei neben der Vergrößerung des Signals ebenfalls die Linienbreite der magnetischen Resonanz gegenüber der im gewöhnlichen Betriebsmodus beobachteten reduziert ist. Um zu zeigen, dass dies nicht nur durch eine Verkleinerung der Laserleistungsverbreiterung wegen geringerer Kopplung des Lasers an $F = 4$, sondern vielmehr durch die Unterdrückung der Spin-Austausch-Relaxation bewirkt wird, sollte (wie zuvor in Abschnitt 2.9.4 diskutiert) die verwendete Laserleistung zu Null extrapoliert werden, um die intrinsische Relaxationsrate zu bestimmen. Dies erweist sich mit dem bis jetzt verwendeten Aufbau allerdings als nicht praktikabel: Durch die Verringerung der Laserleistung wird nicht nur die Leistungsverbreiterung der magnetischen Resonanz reduziert, sondern gleichzeitig geschieht auch die Entvölkerung des $F = 3$ zusehens weniger effektiv. Durch die sich dadurch än-
ndernde Besetzungsumverteilung des Grundzustandes ändert (bzw. vergrößert) sich auch die Spin-Austausch-Rate und damit ebenfalls die magnetische Resonanzbreite (vgl. Abschnitt 2.9.3).

Um diese beiden Prozesse von einander zu separieren und die Unterdrückung der Spin-Austausch-Relaxation direkt nachzuweisen, wird deshalb nach der im Folgenden beschriebene Methodik vorgegangen.

6.7.1 Methodik

Den adaptierten Versuchsaufbau zeigt Abbildung 6.11. Der zuvor beschriebene Aufbau wird folgendermaßen modifiziert:

- Statt eines Lasers hoher Intensität werden nun zwei getrennt voneinander in Frequenz und Leistung einstellbare Laser verwendet.
- Statt des Zell-Arrays 4 mit hoher Puffergasmenge (0,236 amg) wird nun Zell-Array 2 mit mittlerer (0,0601 amg) Stickstoffdichte eingesetzt.
- Die Hyperfeinaufspaltung des Grundzustandes ist bei diesem Zell-Array nahezu vollständig aufgelöst, während die Hyperfeinaufspaltung des angeregten Zustandes nicht aufgelöst ist (vgl. Abbildung 6.4).
- Dies erlaubt es, wie in der Simulation (Abschnitt 5.4) angenommen, mit einem Laser (dem Ausleselicht) die Zustände $F = 4 \leftrightarrow F' = 3, 4$ und mit dem anderen Laser (Repumplicht) die Zustände $F = 3 \leftrightarrow F' = 3, 4$ separat voneinander zu koppeln.

Auf die so beschriebene Weise kann die intrinsische Relaxationsrate \(\gamma_{20} \) innerhalb von \(F = 4 \) in Abhängigkeit von der Laserleistung \(P_L(F = 3) \) bestimmt werden: Während das Repumplicht mit konstant (großer) Leistung für eine Entleerung des unteren Grundzustandes \(F = 3 \) sorgt, wird bei verschiedenen Messungen unterschiedlicher (kleiner) Leistung des Ausleselichtes auf der \(F = 4 \)-Linie \(\gamma_2 \) bestimmmt und zu \(\gamma_{20} = \gamma_2(P_L(F = 4) = 0) \) extrapoliert. So kann die Leistungsverbreiterung der in den \(F = 4 \)-Zuständen detektierten magnetischen Resonanz eliminiert und der pure Einfluß des Repumplichts auf die Spin-Austausch-Relaxation extrahiert werden.

Die entsprechende Simulation wurde wie in Abschnitt 5.4 beschrieben implementiert. Die gleichförmige Relaxationsrate wird für alle Simulationen festgelegt auf \(\gamma_{uf} = 75 \text{ Hz} \), in guter Übereinstimmung mit der für diese Zelle im interessierenden Temperaturbereich nahezu konstanten, als \(\frac{1}{2\pi}(R_{WD} + R_{PG} + R_{SD}) \) abgeschätzten Gesamtrate der gleichförmigen Relaxationsprozesse.

6.7.2 Resultate

Messungen zur Bestimmung von \(\gamma_{20} \) in Abhängigkeit von der Leistung des Repumplichtes zeigt Abbildung 6.12. Es offenbart sich eine Abnahme der intrinsischen Relaxationsrate \(\gamma_{20} \) und damit der Breite der magnetischen Resonanz mit steigender Repumpleistung gegenüber dem Fall ohne Repumplicht, welcher dem gewöhnlichen \(M_x \)-Betriebsmodus entspricht. Bei hohen Zelltemperaturen wird die Relaxationsrate um einen Faktor drei reduziert.

Die entsprechenden Resultate der Simulation gemäß Abschnitt 5.4 zeigt Abbildung 6.13. Die Simulation reproduziert sehr gut die gemessenen Werte der intrinsischen Relaxationsrate \(\gamma_{20} \) ohne und mit optimierter Leistung des Repumplichtes. Die Verknüpfung der experimentellen und der simulierten x-Achse ist nicht trivial, da hier die Intensität des Repumplichtes \(I_3 \) nicht direkt proportional zum Quadrat der Ra-
Abbildung 6.12: Durch Messungen bestimmte Werte der intrinsischen Relaxationsrate γ_{20} für verschiedene Zelltemperaturen des Zell-Arrays 2 ($\eta = 0.0601 \text{ amg}$) in Abhängigkeit von der Leistung des Repumplichts. Jeder Datenpunkt ist Ergebnis einer Extrapolation mehrerer Messungen bei verschiedenen kleinen Leistungen des Ausleselichts zu $\gamma_{20} = \gamma_2(P_L(F = 4) = 0)$ durch einen polynomiellen Fit 2. Ordnung. Das Magnetfeld von 50 μT steht unter einem Winkel von $\theta = 45^\circ$ zum Ausleselicht. Linien dienen als Führung für das Auge.

bifrequenz Ω_3 für einzelnes Atom in der Zelle ist. Bei den experimentellen Daten nimmt Ω_3 pro Atom stark mit der Zelltemperatur ab, weil die Teilchendichte bzw. die optische Dichte der Zelle dabei stark ansteigt. Weiterhin ist der Absorptionskoeffizient abhängig von der aktuellen Spinpolarisation der Atome, welche wiederum selbst in Abhängigkeit von der Intensität des Repumplichtes aufgebaut wird.

Die berechnete Abhängigkeit der intrinsischen Linienbreite von der Repumpleistung und dem Winkel θ zeigt Grafik 6.14 für $B_0 = 50 \mu$T und $T = 120^\circ$C. Es zeigt sich, dass selbst bei sehr großen Winkeln θ eine beachtliche Reduktion der Relaxationsrate auftritt. Die Repumpleistung, die zur Minimierung der Linienbreite benötigt wird sinkt mit kleiner werdendem Winkel θ, da bei immer weiterer Kippung des Magnetfeldes in Richtung des Grenzfalles Faraday-Geometrie ($\theta = 0^\circ$) der Mechanismus des Pumpens in den Dunkelzustand $m_F = F = 4$ zunehmend besser funktioniert.

Die Abbildung 6.15 zeigt die Abhängigkeit der intrinsischen Relaxationrate γ_{20} vom Winkel θ zwischen Magnetfeld und Ausbreitungsrichtung des Ausleselichts für hohe Leistung des Repumplichtes bei verschiedenen Zelltemperaturen. Man beobachtet sowohl in den experimentellen wie auch den simulierten Daten, dass Verkleinerung der Relaxationsrate stark von θ abhängt, die Linienbreite jedoch immer kleiner ist als für den Fall ohne Repumplicht ($\Omega_3 = 0$, gestrichelte Linien in Abbildung
Abbildung 6.13: Simulierte Werte der intrinsischen Relaxationsrate γ_{20} in Abhängigkeit von der Rabifrequenz des Repumplichts Ω_3 bezogen auf die Relaxationsrate des angeregten Zustandes Γ (auf logarithmischer Skala). Auch hier ist $B_0 = 50 \mu T$ unter einem Winkel von $\theta = 45^\circ$. Linien dienen als Führung für das Auge.

Abbildung 6.14: Simulation der Abhängigkeit der intrinsischen Relaxationsrate γ_{20} von der Leistung des Repumplichts und des Winkels θ bei 120°C. Für jeden Datenpunkt wurde die Leistung des Ausleselichts zu Null extrapoliert. Linien dienen der Führung des Auges.
Abbildung 6.15: An Zell-Array 2 gemessene (Punkte) und simulierte (Linien) Daten der intrinsischen Relaxationsrate γ_{20} in Abhängigkeit vom Winkel θ zwischen dem Magnetfeld mit $B_0 = 50 \mu$T und der Ausbreitungsrichtung des Ausleselichts für verschiedene Zelltemperaturen. Die durchgezogenen Linien zeigen die Simulation mit ($\Omega_3/\Gamma = 0$, vgl. Abbildung 6.14) und die gestrichelten Linien ohne ($\Omega_3 = 0$) eingeschaltetes Repumplicht.

Für kleiner werdenden Winkel θ wird die Linienbreite immer weiter reduziert, sodass im vollständig parallelen Fall ($\theta = 0^\circ$), der Faraday-Geometrie, die Spin-Austausch-Relaxation vollständig unterdrückt wäre. Für $\theta = 90^\circ$ ist die Relaxationsrate maximal, da bei komplett orthogonal zum Licht stehendem Magnetfeld der Mechanismus des Dunkelzustandes, welcher auf einer zum Licht parallelen Magnetfeldkomponente beruht, ausgeschaltet ist. Dennoch wird selbst bei dem größten Winkel θ eine Verkleinerung der intrinsischen Relaxationsrate um fast einen Faktor zwei beobachtet. Während in der Simulation immer $\Omega_3/\Gamma = 0,2$ angenommen wurde, ist bei den Messungen die verwendete Repumpleistung durch die mit ihr zunehmende Leistungsverbreiterung der magnetischen Resonanz in $F = 4$ limitiert. Die Repumpleistung wurde im Experiment so gewählt, dass die intrinsische Linienbreite bei $\theta = 45^\circ$ minimiert wird. Dies kann erklären warum einige experimentell bestimmten Datenpunkte, vor allem bei hohen Zelltemperaturen, bei denen auch höhere Repumpleistung verwendet wurde, über der berechneten intrinsische Linienbreite liegt. Interessanterweise liegen für große Winkel θ und hohe Zelltemperatur einige gemessene Werte allerdings unter der bestanzunehmenden simulierten Erwartung. Ein zusätzlich wirkender SERF-Effekt kann ausgeschlossen werden, da die Spin-Austausch-Rate von $R_{SE}/2\pi = 5,6$ kHz sehr viel kleiner als die Larmorfrequenz
bei 50 µT von $\omega L/2\pi = 175.0 \text{kHz}$ ist. Die Erweiterung um ein vollständiges Modell des Absorptionsverhaltens der Zelle, vor allem über deren Tiefe und bei großen Winkeln θ, bei denen der Mechanismus der Dunkelzustände stark beeinträchtigt ist, könnte diesen Effekt genauer beleuchten.

Man kann die Frage stellen, durch welche Konfiguration genau die Spin-Austausch-Relaxation in mittelgroßen Feldern unterdrückt wird. Vereinfacht könnte man annehmen, dass schon die vollständige Entleerung des unteren Hyperfeinniveaus $F = I - 1/2$ zur Unterdrückung eines sehr großen Teils der Relaxation durch Spin-Austausch ausreicht, da dadurch depolarisierende und dephasierende Kollisionen von in den jeweiligen Hyperfeinleveln entgegengesetzt präzedierenden Atomen ausgeschlossen werden [126].

Um diese Annahme genauer zu beleuchten, wird nun das Cäsium-System zusätzlich für den Fall untersucht, dass die Atome gleichverteilt aus dem angeregten Zustand relaxieren. Dies ist der Fall, wenn die angeregten Zustände zum Beispiel in Zellen mit sehr großen Puffergasdichten ($\eta > 1 \text{ amg}$) durch Stöße mit den Puffergasteilchen komplett gemischt werden (engl. collisional mixing). In der Simulation wird also an Stelle von Repopulationsmatrix 5.17 jetzt

$$\hat{\Lambda} = \frac{1}{16} \left(\gamma_{uf} + \Gamma \sum_{i=1}^{32} \rho_{(i,i)} \right) \begin{pmatrix} 1_{16,16} & 0_{16,16} \\ 0_{16,16} & 0_{16,16} \end{pmatrix}$$

(6.2)

implementiert, wodurch alle 16 Grundzustände gleichverteilt wiederbevölkert werden ($1_{16,16}$ symbolisiert die 16×16 Einheitsmatrix, $0_{16,16}$ die 16×16 Nullmatrix). Die Summe in Gleichung 6.2 läuft über alle Populationen der angeregten Zustände. Während zuvor effektiv Spin der Photonen des Repumplichtes an die Atome im Grundzustand weitergegeben wurde und sowohl eine Entleerung der Zustände in $F = 3$ als auch eine Polarisation innerhalb der Zustände von $F = 4$ aufgebaut wurde, werden jetzt lediglich die Zustände in $F = 3$ entleert und $F = 4$ gleichverteilt besetzt. Es wird nur Besetzung, aber keine Polarisation transferiert.

Die Abbildung 6.16 zeigt die berechneten intrinsischen Relaxationsraten γ_{20} in beiden verschiedenen Fällen der Relaxation aus dem angeregten Zustand (gemischt und ungemischt) in Abhängigkeit vom Winkel θ. Es zeigt sich, dass die Verkleinerung der Relaxation tatsächlich auch bei reinem Besetzungstransfer auftritt, jedoch in kleinerem Ausmaß, da sich die Atome durch Spin-Austausch-Stöße innerhalb von $F = 4$ beliebig umverteilen können.

Um die Besetzungsverteilungen in Abbildung 6.16 quantitativ zu analysieren, kann man ein Maß für den Anteil der Population gemäß

$$P_F = \sum_{m_F} \rho_{(m_F,m_F)}$$

(6.3)
und den Grad der Polarisation gemäß

\[\mathcal{O}_F = \frac{1}{F} \sum_{m_F} m_F \rho(m_F, m_F). \]

(6.4)

in einem Hyperfeinniveau mit Drehimpuls \(F \) definieren, wobei die \(\rho(m_F, m_F) \) die Diagonalelemente der Dichtematrix, also die Populationen der \(m_F \)-Zustände bezeichnen (vgl. Gleichung 2.3). Die Tabelle 6.1 vergleicht die beiden Größen für die beiden verschiedenen Fälle für kleinen und großen Winkel \(\theta \). Obwohl in beiden Fällen nahezu alle Atome in \(F = 4 \) konzentriert werden, ist der Verkleinerung der Linienbreite (gemessen durch \(NR \)) im ungemischten Fall größer. Während bei \(\theta = 10^\circ \) eine hohe Orientierung und ein sehr großes \(NR = 7,74 \) (Resonanzenbreite mit Repumper ist
Tabelle 6.1: Vergleich von Population P_F und Grad der Orientierung O_F der Hyperfeinniveaus des Grundzustandes bei kleinem und großen Winkel θ für den ungemischten Fall (wie in unseren Experimenten) und einen komplett gemischten angeregten Zustand (wie bei sehr hohen Puffergasdichten). In beiden Fällen wurde mit einer hohen Repumpleistung $\Omega_3/\Gamma = 0.2$ gerechnet und die Rabifrequenz des Ausleselichts sehr klein gewählt ($\Omega_4/\Gamma = 10^{-4}$). Die Größe NR (engl. narrowing ratio) gibt das Verhältnis der Linienbreite ohne und mit Repumplicht an.

<table>
<thead>
<tr>
<th></th>
<th>$\theta = 10^\circ$</th>
<th>$\theta = 80^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UNGEMISCHT GEMISCHT</td>
<td>UNGEMISCHT GEMISCHT</td>
</tr>
<tr>
<td>P_4</td>
<td>0,9998 0,9987</td>
<td>0,9986 0,9987</td>
</tr>
<tr>
<td>P_3</td>
<td>$1,91 \cdot 10^{-4}$ 0,0013</td>
<td>0,0014 0,0013</td>
</tr>
<tr>
<td>O_4</td>
<td>$0,8646$ $-2,61 \cdot 10^{-4}$</td>
<td>0,0211 $-8,02 \cdot 10^{-6}$</td>
</tr>
<tr>
<td>O_3</td>
<td>$9,99 \cdot 10^{-5}$ $-3,24 \cdot 10^{-4}$</td>
<td>$2,54 \cdot 10^{-5}$ $-3,21 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>NR</td>
<td>7,74 1,49</td>
<td>1,69 0,91</td>
</tr>
</tbody>
</table>

0,13 der Resonanzbreite ohne Repumper) erreicht wird, ist nichtsdestotrotz auch bei $\theta = 80^\circ$ eine nicht vernachlässigbare Reduktion der magnetischen Resonanzbreite auf 0,59 der Breite ohne Repumper zu beobachten, während der Grad der Orientierung lediglich 2% beträgt.

Zusammengefasst kann man sagen, dass es, um die Spin-Austausch-Relaxation merklich zu unterdrücken, nicht ausreicht lediglich den unteren Grundzustand $F = 3$ zu entleeren. Wenngleich es zu einem messbaren Effekt kommt, resultiert erst bei dem Transfer der Atome in höhere m_F-Level von $F = 4$ eine stark ausgeprägte Verkleinerung der Linienbreite, da dann die Möglichkeiten der Atome sich unter Spinerhaltung umzuverteilen stark reduziert sind.

Im Spezialfall der Faraday-Geometrie ($\vec{B}_0 \parallel \vec{k}$) werden alle Atome in den gestreckten Zustand $m_F = F$ gepumpt, selbst wenn der angeregte Zustand komplett gemischt wird, da in dieser Konfiguration keine Larmorprézession auftritt, die die Atome in $F = 4$ umverteilt. Deshalb ist der hier beschriebene Effekt in Zellen mit sehr hohen Puffergasmengen auf die Verwendung der Faraday-Geometrie angewiesen, während er in hier eingesetzten Zellen mit geringeren Puffergasmengen zu Verbesserung der Empfindlichkeit eines M_x-Magnetometers mit Winkeln θ verschieden von Null eingesetzt werden kann. Abgesehen davon ist gegenüber der Hyperfeinstruktur selektives optisches Pumpen in Hochdruckzellen nicht möglich, da die Spektrallinien durch Puffergasverbreiterung für gewöhnlich nicht mehr aufgelöst sind.
6.8 Richtungsabhängigkeit der Magnetfeldmessung

Im Gegensatz zu vielen anderen Magnetfeldsensoren ist ein OPM vom Prinzip her ein skalarer Sensor, der den Betrag des Magnetfeldvektors gemäß Gleichung 1.1 unabhängig von dessen Lage im Raum misst. Allerdings ist dies nur mit einigen Einschränkungen richtig.

6.8.1 Nichtlinearer Zeeman-Effekt

Die lineare Gleichung 1.1 resultiert als Näherung aus der allgemein gültigen Breit-Rabi-Gleichung 2.4, welche die Effekte des von Null verschiedenen Kernspins \(I \) der Alkaliatome berücksichtigt, wodurch aufgrund der auftretenden Kopplung zwischen magnetischem Moment des Atomkerns und dem des Außenelektrons die Hyperfeinstrukturaufspaltung entsteht. Im allgemeinen Fall ist die Abhängigkeit der Energie der \(m_F \)-Level von einem äußeren Magnetfeld \(B_0 \) nichtlinear. Die Nichtlinearität nimmt mit der Größe des Magnetfeldes zu.

Um die Abweichungen in Magnetfeldern im Größenbereich des Erdmagnetfeldes zu berücksichtigen, reicht es aus neben den linearen Termen nur die nächsthöhere (quadratische) Ordnung zu berücksichtigen. Deshalb spricht man auch vom quadratischen Zeeman-Effekt. Er führt zur Aufhebung der Entartung der Übergangsfrequenzen zwischen den einzelnen benachbarten \(m_F \)-Niveaus, anders gesagt zu einer Aufspaltung der Larmorfrequenzen der Zeeman-Übergänge. Das Breit-Rabi-Diagramm für Cäsium in großen Magnetfeldern zeigt Abbildung 6.17. Durch die Aufspaltung der Larmorfrequenzen der einzelnen Zeeman-Übergänge, die in mittelgroßen Feldern (bei der Stärke einiger \(\mu \)T) kleiner als die magnetische Resonanzzbreite ist, ergibt

Abbildung 6.18: Entstehung des Richtungsfehlers durch den nichtlinearen Zeeman-effekt im oberen Hyperfeinniveau des Grundzustandes \(F = 4 \) von Cäsium in \(B_0 = 50 \mu \text{T} \) (adaptiert von [36]). Die Aufspaltung der Larmorfrequenzen der einzelnen Zeeman-Übergänge \(\tilde{m}_F = 1/2(m_F + m'_{F}) \) mit unterschiedlichen Übergangsstärken (hervorgerufen durch unterschiedliche Besetzungszahlen der \(m_F \)-Niveaus wegen des zirkular polarisierten Pumpens) führt zur Verschiebung des Maximums der Einhüllenden und damit zur Verschiebung des Magnetresonanzsignals des OPMs. Der Effekt ist antisymmetrisch in der Helizität \(\sigma^\pm \) des Pumplichtes.

sich das magnetische Resonanzsignal als Einhüllende der zueinander verschobenen einzelnen Zeeman-Resonanzen (siehe Abbildung 6.18). Das Ungleichgewicht der Besetzung der \(m_F \)-Niveaus führt zu unterschiedlich starken Resonanzsignalen der jeweiligen Zeeman-Resonanzen \(\tilde{m}_F = 1/2(m_F + m'_{F}) \) zwischen zwei benachbarten Zeeman-Zuständen \(|m_F - m'_{F}| = 1 \). Der Einhüllende wird dadurch eine Asymme-
trie aufgeprägt, die die Mittenfrequenz hin zu den stärker beitragenden Zeeman-Übergängen verschiebt. Welche Zeeman-Übergänge wie stark bevölkert sind und damit auch wie stark diese beitragen, hängt unter anderem vom Winkel θ zwischen Magnetfeld und Spinausrichtung \vec{s} des Pumplichtes ab. Der Grad der Asymmetrie ist damit verknüpft mit θ, man erhält eine Abhängigkeit der Mittenfrequenz des Magnetresonanzsignals von der Orientierung des OPMs zum Magnetfeld. Wie in Abbildung 6.18 angedeutet, ist der Effekt antisymmetrisch in der Helizität des Pumplichtes σ^{\pm}, wodurch sich Möglichkeiten zu dessen Beseitigung ergeben, welche später diskutiert werden sollen.

6.8.2 Lichtverschiebung

Das Bestrahlen eines Atoms mit zu einer seiner Spektrallinien quasiresonantem Licht führt zur Verschiebung der atomaren Energieniveaus durch den vom (oszillierenden) Lichtfeld induzierten (AC-)Stark-Effekt [127, 128]. Dieser ist abhängig von Spinvektor der Lichtphotonen \vec{s} und von der Verstimmung $\delta_{LS} = \omega_0 - \omega_{\text{Laser}}$ der Lichtfrequenz ω_{Laser} vom atomaren Übergang der Frequenz ω_0. Der AC-Stark-Effekt verschwindet bei vollständiger Resonanz $\delta_{LS} = 0$ und für unpolarisiertes oder linear polarisiertes Licht ($\vec{s} = 0$), während er bei zirkularer Polarisation maximal ist. Die Abhängigkeit von der Verstimmung δ_{LS} vom Linienzentrum entspricht einem dispersiven Profil $\Delta(\delta_{LS}, \Gamma)$ dessen Breite proportional zu der Lebensdauer des angeregten Zustandes Γ ist. Zur Beschreibung der Lichtverschiebung wurde ein effektiver Operator

$$\mathcal{E} = \mathcal{E}_0 + h A \vec{I} \cdot \vec{J} - \vec{\mu} \cdot \vec{B}_{LS} + \mathcal{E}_2$$

eingeführt, der dem ungestörten Hamiltonian des Grundzustandes angefügt wird [129, 130]. Dabei beschreibt der erste Term die identische Verschiebung aller Grundzustandsniveaus, der zweite Term die Verschiebung der beiden Hyperfeingrundzustände zueinander, der dritte Term die Verschiebung der Zeeman-Niveaus zueinander und ist damit der relevante für die M_x-Magnetometrie. Die tensorielle Verschiebung \mathcal{E}_2 kann zunächst vernachlässigt werden. Die Zeeman-Lichtverschiebung ΔE_{LS} kann man auf eine Form

$$\Delta E_{LS} = g_s \mu_B \vec{s} \cdot \vec{B}_{LS}$$

bringen, wobei

$$\vec{B}_{LS} \propto \Phi \Delta(\delta_{LS}, \Gamma) \vec{s}$$

als ein virtuelles Magnetfeld parallel zum Spinvektor der Photonen vorstellbar ist [131]. Die bestrahnten Atome reagieren darauf wie auf ein äußeres Magnetfeld und
präzedieren um das effektive Gesamtfeld
\[\vec{B} = \vec{B}_0 + \vec{B}_{LS}. \] (6.8)

Ändert sich die Richtung des äußeren Feldes, zum Beispiel weil der Sensor im richtungsfesten Magnetfeld \(\vec{B}_0 \) gekippt wird, ändert sich gemäß Gleichung 6.8 der Betrag des gemessenen Magnetfeldes \(|\vec{B}| \). Wie in Abbildung 6.19 dargestellt, führt dies zu einem richtungsabhängigen, systematischen Messfehler des Magnetometers, vorausgesetzt das verwendete Licht ist zirkular polarisiert und wird nicht resonant eingestrahlt.

Abbildung 6.19: Verschiebung des vom Sensor gemessenen Magnetfeldbetrages \(|\vec{B}| \) bei Richtungsänderung des äußeren Magnetfeldes \(\vec{B}_0 \) bezüglich der Ausbreitungsvektors des zirkular polarisierten Lichtes \(\vec{k} \), welches bei Verstimmung das virtuelle Magnetfeld \(\vec{B}_{LS} \) hervorruft (Längen nicht maßstäblich).

6.8.3 Unterdrückung des Richtungsfehlers

Beide vorgestellte Effekte, sowohl Zeeman-Lichtverschiebung als auch der Richtungsfehler durch den nichtlinearen Zeeman-Effekt, sind antisymmetrisch bezüglich der Helizität des verwendeten Pumplichtes. Zur Eliminierung der Richtungsfehler des Magnetometers liegt es daher nahe, zwei möglichst identische Zellen mit entgegengesetzt zirkular polarisiertem Licht \(\sigma^\pm \) zu pumpen und deren Messwerte \(\vec{B}_\pm = \vec{B}_0 + \vec{B}_{LS} \) zu mitteln, wie es in Abbildung 6.20 skizziert ist. Mit diesem Ansatz wurde bereits erfolgreich die Verringerung des Richtungsfehlers demonstriert [132]. Für den korrigierten Messwert

\[B = \frac{1}{2} \left(\vec{B}_+ + \vec{B}_- \right) = \frac{1}{2} \left(\sqrt{(B_x + B_{LS})^2 + B_y^2} + \sqrt{(B_x - B_{LS})^2 + B_y^2} \right) \] (6.9)

ist der Richtungsfehler stark verringert. Die Vektoraddition für den Spezialfall \(\vec{B}_0 \parallel \vec{k} \) ergibt mit

\[B = \frac{1}{2} \left((B_0 + B_{LS}) + (B_0 - B_{LS}) \right) = B_0 \] (6.10)

die perfekte Kompensation der Lichtverschiebung. Im Fall \(\vec{B}_0 \perp \vec{k} \) erhält man die größte Abweichung zu

\[
B = \frac{1}{2} \left(\sqrt{B_0^2 + B_{LS}^2} + \sqrt{B_0^2 + B_{LS}^2} \right) = \sqrt{B_0^2 + B_{LS}^2}.
\]

Diesen Spezialfällen entsprechen die toten Zonen des \(M_x \)-Magnetometers, in der Praxis liegt der Fehler also zwischen diesen beiden Werten. Für einen für das LN-Magnetometer typischen Aufbau ist \(B_{LS} \approx 200 \, \text{nT} \) viel kleiner als \(B_0 \approx 50 \, \mu \text{T} \), sodass man Gleichung 6.11 entwickeln kann zu

\[
B = B_0 \left(1 + \frac{B_{LS}^2}{2B_0^2} - \ldots \right)
\]

und erhält für die maximale Abweichung nach Kompensation mit obigen typischen Werten \(\frac{B}{B_0} - 1 = 8 \cdot 10^{-6} \), damit eine systematische Verschiebung von typisch bis zu \(\Delta B = B - B_0 = 0,4 \, \text{nT} \) in der Messung des Absolutbetrages für \(B_0 = 50 \, \mu \text{T} \).

6.8.4 Methodik

Der Versuchsaufbau gleicht dem in Abschnitt 6.6.1 vorgestellten Zweikanal-Setup, mit Ausnahme der Helizität der zirkularen Polarisations des Pumptlichtes: Während diese zuvor möglichst identisch in Polarisationsgrad und Helizität sein mussten, soll nun die Helizität der Kanäle zueinander invertiert sein, sodass sich im Idealfall die in Abbildung 6.20 skizzierte Situation ergibt. Um möglichst identische Beträge von \(B_{LS} \) in beiden Zellen zu generieren, müssen Polarisationsgrad und Intensität des Pumptlichtes sehr genau abgeglichen werden.

Der Sensorkopf ist zunächst unbeweglich aufgebaut. Um den Winkel des Magnetfeldes bezüglich des Sensors zu kippen, war es also nötig, das durch die Helmholtzspulen in der Schirmtonne angelegte Magnetfeld \(\vec{B}_0 \) selbst zu drehen. Dieses Vorgehen hatte mehrere Konsequenzen:

Es zeigte sich jedoch, dass auch der Magnetfeldgradient zwischen beiden OPM-Zellen stark richtungsabhängig ist. Während ein konstanter Magnetfeldgradient zwischen beiden Zellen kein Problem für die Messung darstellt, da dieser ebenso gemittelt wird, ist ein mit dem Magnetfeldwinkel in seiner Richtung schwankender Gradient nicht zu kompensieren. Diese Verfälschung wurde umgangen, indem schließlich nur eine einzige Zelle zum Messen verwendet wurde. Diese konnte abwechselnd mit σ^+ und σ^--Licht gepumpt werden, indem zwei voreingestellte $\lambda/4$-Platten auf einem mechanisch verstellbaren Schiebetisch in und aus dem Strahlengang gefahren wurden. In beiden Fällen betrug der Grad der zirkularen Polarisierung (Achsenverhältnis der Polarisationsellipse) $\approx 0,98$, der Betrag der Lichtverschiebung wurde möglichst identisch eingestellt, indem jeweils die Pumpleistung entsprechend sorgfältig eingestellt wurde. Im Experiment war dies bei nahezu identischen detektierten Photostromen der Fall.

6.8.5 Resultate

Die mit Zell-Array 4 ($\eta = 0,236\text{ amg}$) gewonnenen Messwerte für beide entgegengesetzt zirkular polarisierten Konfigurationen sowie den Mittelwert beider Messungen zeigt die Abbildung 6.21. Es ist die Differenz der LN-Messung zur Referenzmessung (siehe oben) dargestellt. Die starke Abhängigkeit der Larmorfrequenz vom Abstellwinkel des Magnetfeldes, hervorgerufen durch die Lichtverschiebung, kann durch Mittelwertbildung von σ^- und σ^+ drastisch reduziert werden. Einen vergrößerten
Abbildung 6.21: Gemessene Differenz der Larmorfrequenzen von LN- und Referenzmessung in Abhängigkeit von Winkel $90^\circ - \theta$ (180°: antiparallel, 90°: orthogonal, 0° parallel). Dargestellt ist neben den beiden entgegengesetzt zirkular polarisierten Konfigurationen (rote Quadrate σ^-, schwarze Kreise σ^+) auch der aus diesen gebildete Mittelwert (blaue Dreiecke).

Abgesehen davon kann eine Asymmetrie in den gemittelten Resultaten allerdings am wahrscheinlichsten durch Unzulänglichkeiten im Charakterisierungssetup wie zum Beispiel Drifts der Spulenströme erklärt werden.

6.8.6 Verbesserung der Messmethode

Kapitel 7

Zusammenfassung und Ausblick

Es wurden umfangreiche experimentelle Untersuchungen zur Optimierung der magnetometrischen Sensitivität des OPMs im neuen Regime durchgeführt und mit dem bisher bekannten, gewöhnlichen Betriebsmodus des M_z-Magnetometers verglichen. Die schrotrausch-begrenzte Empfindlichkeit des Sensors mit einem Zellvolumen von 50 mm3 verbesserte sich von 160 $\frac{fT}{\sqrt{Hz}}$ im gewöhnlichen M_z-Regime auf 40 $\frac{fT}{\sqrt{Hz}}$ im Light-Narrowing-Modus.

Die Abhängigkeiten von den auf die Empfindlichkeit Einfluß nehmenden Betriebsparametern des Magnetometers, wie der Laserleistung, B_1-Feldamplitude, Zelltemperatur und Puffergasdichte wurden systematisch vermessen. Die Verbesserung der Empfindlichkeit wurde dabei nicht nur für den theoretisch angenommenen Fall des schrotrausch-begrenzten Rauschens, sondern durch Rauschkompensationsmethoden auch im tatsächlichen Sensorrauschen demonstriert.

Diese Verbesserung im neuen LN-Regime gegenüber dem gewöhnlichen Betriebsmodus resultiert einerseits aus der Vergrößerung des magnetischen Resonanzsignals durch Nutzung fast aller Atome des Ensembles für die Signalgeneration und andererseits - vermöge der Reduktion der Leistungsverbreiterung durch das Laserlicht und der Unterdrückung der Spin-Austausch-Relaxation - aus der Verkleinerung der Resonanzbreite.

Im Zuge der Inbetriebnahme des Prototyps muss sich zunächst zeigen, wie gut das OPM-System außerhalb der geschirmten Umgebungen arbeiten kann. Neben der an-

Der große Vorteil der DAVLL-Methode ist es, ohne eine zusätzliche Modulation der Laserparameter ein dispersives Fehlersignal zu generieren, welches direkt zur Stabilisierung des Lasers verwendet werden kann. Es kommt daher ohne aufwendige
elektronische Auswertung wie Lock-In-Detektion aus und soll deshalb im geplanten OPM-System zum Einsatz kommen.

DAVLL-Prinzip

1Die resultierende Verschiebung der Zeeman-Niveaus ist auf der gleichen Skala wie die Breite der optischen Spektrallinie des Atoms.
DAVLL-Aufbau

Im Experiment zerlegt man das zunächst linear polarisierte Licht, nachdem es durch die Zelle transmittiert und je nach Verstimmung des Lichts vom Absorptionsmaximum leicht elliptisch polarisiert wurde, in seine zirkularen Komponenten mit einem $\lambda/4$-Plättchen, welches unter 45° zu einer Achse eines nachfolgenden Wollastons-Prismas ausgerichtet ist. Dieses teilt das Licht in seine orthogonal zueinander stehenden linear polarisierten Komponenten, welche mit zwei identischen Photodioden detektiert werden. Nach Wandlung der registrierten Photoströme in proportionale Spannungen (per Transimpedanzwandler) kann das Differenzsignal gebildet und über einen PID-Regler direkt zur Nachregelung der Laserparameter verwendet werden.

Abbildung A.2: Schematischer Versuchsaufbau des DAVLL. Das linear polarisierte (LP) Laserlicht durchstrahlt die mit Widerständen (rot) geheizte und temperaturkontrollierte (TKE) Zelle (rosa) im durch Ringpermanentmagneten (RPM) hervorgebrachten longitudinalen Magnetfeld innerhalb des Schirmbechers (SB) und wird anschließend durch $\lambda/4$-Plättchen und Wollaston-Prisma (WP) aufgeteilt, separat detektiert und das Differenzsignal aufgenommen.
Abbildung A.3: Fertig umgesetzter DAVLL-Aufbau mit Polarisator (LP), Schirmbecher (SB) mit geheizter Zelle, $\lambda/4$-Plättchen, Wollaston-Prisma (WP) und Photodetektoren (PDs) von *Supracon* [136].

DAVLL-Temperaturkontrollelektronik

Die benötigte Frequenzstabilität des DAVLL-Setups wurde auf den Bereich weniger MHz abgeschätzt. Dazu ist es nötig, die Zelltemperatur sehr genau zu stabilisieren, sowie die Lichtintensität konstant zu halten, da Schwankungen beider Größen zu Verschiebungen des Nulldurchgangs des DAVLL-Signals führen.

Tabelle A.1: Implementierte Beschaltung des *WTC3243* ausgelegt für Thermistor mit $R_{\text{Thermistor}}(100^\circ$C) \approx 2 kΩ und $R_{\text{Heiz}} = 100$ Ω

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>RA</th>
<th>RB</th>
<th>RP</th>
<th>RI</th>
<th>RBias</th>
<th>RG</th>
</tr>
</thead>
<tbody>
<tr>
<td>21,6 kΩ</td>
<td>0.. 5,0 kΩ</td>
<td>390 Ω</td>
<td>1,5 kΩ</td>
<td>1,9 kΩ</td>
<td>1,0 kΩ</td>
<td>4,0 kΩ</td>
<td>30,0 kΩ</td>
<td>∞</td>
</tr>
</tbody>
</table>
Abbildung A.4: Schaltplan des DAVLL-Temperaturkontrollelektronik (TKE).

Messungen zur Frequenzstabilität

Zur Messung der Frequenzstabilität des DAVLLs muss dieses mit einer genaue-
ren Referenz verglichen werden. Dazu eignet sich die COSY-Einheit zur doppler-
freien Sättigungsabsorptionsspektroskopie. Mit dieser Einheit wurde der Laser fre-
quenzstabilisiert und Abweichungen des DAVLL-Signals vom Nulldurchgang über
die Zeit protokolliert. Den erweiterten Aufbau zeigt die Abbildung A.6. Die Sta-
bilität des dopplerfreien COSY-Systems ist deutlich höher als die zu erwartende
des DAVLL-Systems, man misst über die Differenzfrequenz also die Stabilität des
DAVLL-Systems. Das Ergebnis von Langzeitmessungen mit und ohne Stabilisierung
der Laserleistung zeigt Abbildung A.7. Die erzielte Stabilität ist ausreichend für das
geplante OPM-System. Weiter optimiert werden kann die Stabilität über die Wahl
geeigneterer Ringmagneten, die den Anstieg des DAVLL-Fehlersignals maximieren
sowie durch eine bessere thermische Abkopplung der Zelle von der Umgebung durch
Montage mit weiter reduzierten Wärmebrücken und durch Verwendung von ther-
misch besser kontaktierbaren rechteckigen Heizwiderständen.

Anhang B

Technologie der Zellherstellung

Vor dem vollständigen und hermetischen Verschluss muss sichergestellt sein, dass das aktive Medium - also reines Cäsium - und mögliche Puffergase in die Zellstruktur gefüllt werden. Da elementares Cäsium in normaler Atmosphäre sehr heftig oxidiert, wird Cäsiumazid (CsN_3), eine Verbindung von Cs und Stickstoff verwendet, welche an Atmosphäre chemisch stabil ist. Nach Einfüllen von CsN_3 und dem Verschluß der Kavität wird die Verbindung durch Photolyse (Bestrahlung mit einem Excimer-Laser bei $\lambda = 248\,\text{nm}$) aufgespalten und es entsteht das für das OPM nutzbare elementare Cäsium sowie zusätzlich gasförmiger Stickstoff N_2, der vorteilhaft als Puffergas genutzt werden kann:

$$2\text{CsN}_3 \xrightarrow{\text{UV}} 2\text{Cs} + 3\text{N}_2 \quad \text{(B.1)}$$

<table>
<thead>
<tr>
<th>Schritt 1</th>
<th>Schritt 2</th>
<th>Schritt 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silizium-Wafer</td>
<td>Strukturieren der Kavitäten</td>
<td>Bonden der rückseitigen Glasplatte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pipettieren der CsN$_3$-Lösung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trocknung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bonden des Deckglases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UV-Photolyse des CsN$_3$</td>
</tr>
</tbody>
</table>

Abbildung B.1: Ablaufschema der mikrosystemtechnischen Herstellung der Cäsium-Zellen.
Abbildung B.2: Verschiedene in unserer Gruppe realisierte Zelldesigns: Die ersten Versuche wurden mit Zellen aus dünnen Silizium-Wafern ($h = 500 \, \mu m$, $l = b = 4,5 \, mm$) durchgeführt (a). Dünne Zellen weisen zwar eine erhöhte Wandstoßrate auf, bieten jedoch die Perspektive zum Beispiel eine große Zellfläche ortsaufgelöst auszulesen und so mit dem Sensor das Magnetfeld über der Fläche zu kartieren (b). Hier werden große Messzelle und zwei kleine Zellen zur Referenzierung durch ein gemeinsames Reservoir (mit dunklem Fleck) gespeist. Für ein erhöhtes aktives Volumen wurden in dickeren Wafern Zellen angelegt ($h = 4 \, mm$, Durchmesser $4 \, mm$). Dabei können die Zellen thermisch separiert (c) oder als Array mit gemeinsamem, zentralem Reservoir und nahezu identischen Eigenschaften (d) entworfen werden.
Literatur

115

<table>
<thead>
<tr>
<th>Abbildungsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Elektronisches Termschema der D-Linie von ^{133}Cs</td>
</tr>
<tr>
<td>2.2 Absorptionsspektrum der Cs-D1-Linie einer Vakuumzelle und relative Übergangsstärken $A{F\leftrightarrow F'}$ der Hyperfeinübergänge</td>
</tr>
<tr>
<td>2.3 Optisches Pumpen auf dem Hyperfeinübergang $F = 4 \leftrightarrow F' = 3$ der D$_1$-Linie des Cäsiumatoms</td>
</tr>
<tr>
<td>2.4 Schematische Besetzungsverteilung des Grundzustandes von Cs im thermischen Gleichgewicht und nach optischem Pumpen</td>
</tr>
<tr>
<td>2.5 Leveldiagramm der D$_1$-Linie von ^{133}Cs in einem kleinen äußeren Magnetfeld</td>
</tr>
<tr>
<td>2.6 Lock-In-Signale P_X, P_Y und φ in Abhängigkeit von $\delta = \omega_1 - \omega_L$</td>
</tr>
<tr>
<td>2.7 Definition des Anstiegs des P_Y-Signals im Nulldurchgang $\delta = 0$</td>
</tr>
<tr>
<td>2.8 Berechnete transversale Relaxationsrate γ_2 durch Wand- und Puffergasstöße in zylindrischer Zelle für verschiedene Puffergase</td>
</tr>
<tr>
<td>3.1 Zellarray mit vier Messzellen und zentralem Cs-Reservoir in seiner Keramik-Halterung</td>
</tr>
<tr>
<td>3.2 Geöffnete Schirmtonne mit Helmholtzspulen-System</td>
</tr>
<tr>
<td>3.3 Oberfläche des OPM-Messprogramms</td>
</tr>
<tr>
<td>4.1 Versuchsaufbau zur Messung der intrinsischen Relaxationsraten mittels ODMR und GZHE</td>
</tr>
<tr>
<td>4.2 Ausgewählte ODMR-Phasensignale mit den zugehörigen Fits</td>
</tr>
<tr>
<td>4.3 Resultate der ODMR-Methode für γ_2 aus Phasenfits und lineare Fits zur Extrapolation auf das intrinsische γ_{20}</td>
</tr>
<tr>
<td>4.4 LHE-Resonanzkurven bei Durchfahren des longitudinalen Magnetfeldes durch Null für verschiedene Werte des transversalen Feldes</td>
</tr>
<tr>
<td>4.5 Amplituden und Breiten der LHE-Resonanzkurven wie durch automatisierte Lorentz-Fits an die Daten ermittelt</td>
</tr>
<tr>
<td>4.6 Die LHE-Fitparameter P_2 und P_5 wie aus Anpassung gewonnen in Abhängigkeit von der Laserleistung</td>
</tr>
</tbody>
</table>
4.7 Aus den LHE-Parametern ermittelte Relaxationsraten γ_1 und γ_2 zusammen mit phänomenologischen Fits .. 45
4.8 Ermittelte intrinsische Relaxationsraten für ODMR in Abhängigkeit von der Zelltemperatur .. 47
4.9 Ermittelte intrinsische Relaxationsraten für GZHE in Abhängigkeit von der Zelltemperatur .. 48
4.10 Ermittelte intrinsische transversale Relaxationsrate für niedrige (a), mittlere (b) und hohe (c) Zelltemperatur beider Methoden (ODMR und GZHE) in Abhängigkeit von der Puffergasdichte 49
5.1 Levelbild und Hamiltonian eines Systems zweier Hyperfeinniveaus ohne äußere Felder .. 53
5.2 Levelbild und Hamiltonian eines Systems mit statischem Magnetfeld (ω_{Lz}) in Richtung der Quantisierungsachse 53
5.3 Zeitentwicklung eines vollständig polarisierten Zustandes in einem longitudinalen Magnetfeld ... 54
5.4 Levelbild und Hamiltonian eines Systems mit statischem Magnetfeld unter einem Winkel von 45° zur Richtung der Quantisierungsachse .. 54
5.5 Zeitentwicklung eines vollständig polarisierten Zustandes in einem Magnetfeld unter 45° zur Quantisierungsachse 55
5.6 Levelbild und Hamiltonian eines Systems mit Larmorpräzession im Grundzustand und gepumpt durch ein resonantes zirkular-polarisiertes Lichtfeld .. 55
5.7 Zeitentwicklung eines vollständig polarisierten Zustandes in einem Magnetfeld unter 45° unter gleichzeitigem Pumpen eines zirkular-polarisierten Lichtfeldes .. 56
5.8 Zeitentwicklung eines vollständig unpolarisierten Zustandes in einem Magnetfeld unter 45° unter gleichzeitigem Pumpen eines zirkular-polarisierten Lichtfeldes .. 56
5.9 Levelbild und Hamiltonian des Systems mit einem zusätzlichen B_1-Feld ... 57
5.10 Zeitentwicklung eines Systems gepumpt durch ein resonantes zirkular-polarisiertes Lichtfeld unter Wirkung eines mit der Larmorfrequenz oszillierenden Magnetfeldes B_1 ... 57
5.11 In Abhängigkeit von $\delta = \omega_1 - \omega_L$ simulierte Messsignale und entsprechend angepasste Kurven 60
5.12 Das komplette Cs-D$_1$-System wie modelliert 62
6.1 Aufbau für Optimierung der schrotrausch-begrenzten Empfindlichkeit 66
6.2 Konturplot eines Parameterscans von Pumplaserleistung und Amplitude des B_1-Feldes zur Optimierung der schrotrausch-begrenzten Empfindlichkeit im gewöhnlichen Regime 67
6.3 Messungen der optimierten schrotrausch-begrenzten Empfindlichkeit im gewöhnlichen Regime in Abhängigkeit von der Zelltemperatur geometrisch identischer Zellen mit verschiedenen Stickstoffdichten 68
6.4 Absorptionsspektrum der Cs-D1-Linie für Zellen ohne Puffergas, mit niedriger, mittlerer und hoher Puffergasdichte 69
6.5 Überlappende Hyperfeinübergänge der D1-Linie des Zell-Arrays 4 mit $\eta = 0,236$ amg bei $T = 100^\circ$C .. 70
6.6 Parameterscan von Pumplaserleistung und Amplitude des B_1-Feldes zur Optimierung der schrotrausch-begrenzten Empfindlichkeit im LN-Regime .. 71
6.7 Messungen der optimierten schrotrausch-begrenzten Empfindlichkeit im LN-Regime in Abhängigkeit von der Zelltemperatur für die Zell-Arrays mit verschiedenen Stickstoffdichten 72
6.8 Zweikanaliger Aufbau für die Rauschmessungen und die Untersuchung der Richtungsabhängigkeit ... 73
6.9 Messungen des tatsächlichen Rauschens im LN-Regime 75
6.10 Ausleseschema für die Rauschmessungen im LN-Regime 76
6.11 Versuchsaufbau zur Bestimmung der intrinsischen Relaxationsrate γ_{20} im LN-Regime ... 79
6.12 Durch Messungen bestimmte Werte der intrinsischen Relaxationsrate γ_{20} für verschiedene Zelltemperaturen des Zell-Arrays 2 ($\eta = 0,0601$ amg) in Abhängigkeit von der Leistung des Repumplichts 81
6.13 Simulierte Werte der intrinsischen Relaxationsrate γ_{20} in Abhängigkeit von der Rabifrequenz des Repumplichts Ω_3 bezogen auf die Relaxationsrate des angeregten Zustandes Γ ... 82
6.14 Simulation der Abhängigkeit der intrinsischen Relaxationsrate γ_{20} von der Leistung des Repumplichts und des Winkels θ bei 120°C 82
6.15 An Zellarray 2 gemessene und simulierte Daten der intrinsischen Relaxationsrate γ_{20} in Abhängigkeit vom Winkel θ zwischen dem Magnetfeld $B_0 = 50 \mu$T und der Ausbreitungsrichtung des Ausleselichts für verschiedene Zelltemperaturen .. 83
6.16 Vergleich der berechneten intrinsischen Relaxationsraten bei $T = 120^\circ$C in beiden verschiedenen Fällen der Relaxation aus dem angeregten Zustand .. 85
6.17 Breit-Rabi-Diagramm des Grundzustandes von Cäsium in sehr großen Magnetfeldern ... 88
6.18 Entstehung des Richtungsfehlers durch den nichtlinearen Zeemanef-
fekt im oberen Hyperfeinniveau des Grundzustandes $F = 4$ von Cá-
sium in $B_0 = 50 \mu T$... 88
6.19 Verschiebung des vom Sensor gemessenen Magnetfeldbetrages $|\vec{B}|$ bei
Richtungsänderung des äußeren Magnetfeldes \vec{B}_0 bezüglich der Aus-
breitungsvektors des zirkular polarisierten Lichtes \vec{k} 90
6.20 Idee der Kompensation der Lichtverschiebung durch Mittelung zweier
entgegengesetzt zirkular gepumpter Zellen 91
6.21 Gemessene Differenz der Larmorfrequenzen von LN- und Referenz-
messung in Abhängigkeit von Winkel $90^\circ - \theta$ 93
6.22 Vergrößerter Ausschnitt des Mittelwertes aus Abbildung 6.21 94

A.1 Optische Absorptionslinien im starken longitudinalen Magnetfeld der
zirkular polarisierten Lichtkomponenten und das resultierende disper-
sive Differenzsignal ... 99
A.2 Schematischer Versuchsaufbau des DAVLL 100
A.3 Fertig umgesetzter DAVLL-Aufbau ... 101
A.4 Schaltplan des DAVLL-Temperaturkontrolelektronik (TKE) 102
A.5 DAVLL-Temperaturkontrolelektronik (TKE) 102
A.6 Aufbau zur Messung der Frequenzstabilität des DAVLL 103
A.7 Langzeitmessung der Differenzfrequenz zwischen COSY-stabilisier-
tem Laser und DAVLL-System ... 103

B.1 Ablaufschema der mikrosystemtechnischen Herstellung der Cäsium-
Zellen ... 105
B.2 Verschiedene in unserer Gruppe realierte Zelldesigns 106
Tabellenverzeichnis

2.1 Verbreiterung und Verschiebung der Cs-D$_1$-Linie in verschiedenen Puffergasen .. 12
2.2 Depolarisationsquerschnitt und reduzierte Masse von Cäsium in verschiedenen Puffergasen .. 24
3.1 Puffergasdichten bzw. -drücke der in dieser Arbeit verwendeten Cäsium-Array-Zellen .. 33
6.1 Vergleich von Population P_F und Grad der Orientierung O_F der Hyperfeinniveaus des Grundzustandes bei kleinem und großen Winkel θ für den ungemischten Fall und einen komplett gemischten angeregten Zustand ... 86
A.1 Implementierte Beschaltung des $WTC3243$.. 101
Verzeichnis der Formelzeichen

\(A \) Amplitude der Hanle-Resonanzen
\(A_{F \leftrightarrow F'} \) relative Übergangsstärke des Hyperfeinüberganges \(F \leftrightarrow F' \)
\(A_W \) innere Wandfläche der Zelle
\(A_X, A_Y \) Fitkonstanten der Resonanzamplituden
\(\alpha \) Winkel zwischen Repump- und Ausleselicht
\(\vec{B}, \vec{B}_0 \) magnetische Induktion eines äußeren Magnetfeldes
\(\vec{B}_1 \) magnetisches Wechselfeld
\(\vec{B}_{LS} \) effektives virtuelles Magnetfeld aufgrund der Lichtverschiebung
\(B_{pn} \) Magnetfeldempfindlichkeit aufgrund des Spin-Projektionsrauschens
\(B_{sn} \) schrotrausch-begrenzte Magnetfeldempfindlichkeit
\(B_L \) bezüglich \(\vec{k} \) transversales Magnetfeld
\(B_l \) bezüglich \(\vec{k} \) longitudinales Magnetfeld
\(\vec{B}_+ \) bzw. \(\vec{B}_- \) Messwerte des Magnetfeldes für \(\sigma^+ \)- bzw. \(\sigma^- \)-Licht
\(\Delta B \) Gradient des Magnetfeldes \(B \)
\(c \) Vakuum-Lichtgeschwindigkeit
\(d \) Durchmesser der zylinderförmigen Zelle
\(\vec{D} \) Drehmoment
\(D_{0,\text{Cs-PG}} \) Diffusionskonstante von Cäsium im Puffergas PG
\(\delta \) Verstimmung \(\delta = \omega_1 - \omega_L \)
\(\delta_{LS} \) Verstimmung der Lichtfrequenz von der betrachteten Spektrallinie
\(e \) Elementarladung
\(E \) Energie
\(\varepsilon \) Proportionalitätskonstante zwischen \(R_{\text{OF}} \) und \(I_{\text{Laser}} \)
\(\eta \) Teilchendichte in Amagat (Vielfache der Loschmidt-Konstante)
\(\mathcal{E} \) Operator der Lichtverschiebung
\(\mathcal{E}_0 \) skalarer Teil der Lichtverschiebung
\(\mathcal{E}_2 \) Tensor-Lichtverschiebung
\(\Delta E_{\text{LS}} \) Energieverschiebung durch die Zeeman-Lichtverschiebung
\(F \) Dreihimpulsquantenzahl des Gesamtdrehimpulses des Valenzelektrons des Alkaliatoms durch Hyperfeinwechselwirkung
\(F_{m_1 m_2}^{m_1' m_2'} \) Operator für spontane Emission
\(\Delta f \) Bandbreite der Messung
\(\gamma \) gyromagnetisches Verhältnis
\(g_X \) Landé-Faktor eines Zustandes mit Gesamtspin \(X \)
\(\gamma_1 \) longitudinale Relaxationsrate
\(\gamma_2 \) transversale Relaxationsrate
\(\gamma_{10} \) intrinsische longitudinale Relaxationsrate
\(\gamma_{20} \) intrinsische transversale Relaxationsrate
\(\gamma_P \) Pumprate
\(\gamma_{\text{fit}} \) Breite der Lorentz-Kurve des Fits
\(\Gamma \) Zerfallsrate des angeregten Zustandes
\(\hat{\Gamma} \) Relaxationsmatrix
\(\hat{\Gamma}_{\text{SE}} \) Spin-Austausch-Operator
\(\gamma_{\text{uf}} \) Rate der gleichförmig wirkenden Relaxationsmechanismen
\(h \) Höhe der zylinderförmigen Zelle
\(H \) Hamiltonian des Atoms
\(\hbar \) reduziertes Plancksches Wirkungsquantum
\(I \) Kernspinquantenzahl (Cs: \(I = \frac{7}{2} \))
\(I_3 \) Intensität des Repumplichtes
\(I_{\text{dc}} \) Gleichanteil des detektierten Photostromes
\(I_{\text{Laser}} \) Intensität des Laserlichtes
\(I_{\text{sens}} \) Stromrauschen der Detektionselektronik
\(I_{\text{sn}} \) Schrottrauschen des Photostromes
\(J \) Quantenzahl des Gesamtdrehimpulses des Valenzelektrons des Atoms ohne Hyperfeinwechselwirkung
\(\vec{k} \) Einheitsvektor in Ausbreitungsrichtung des Pumplichtes
\(k_B \) Boltzmann-Konstante
L Bahndrehimpulsquantenzahl

λ Wellenlänge

$\hat{\Lambda}$ Repopulationsmatrix

m Atommasse

m_{F} magnetischer Unterzustand eines Zustandes mit Spin F

m_{Cs} Atommasse von Cäsium

m_{PG} Masse der Puffergasteilchen

M reduzierte Masse

m_{e} Masse des Elektrons

\bar{M} Magnetisierung

μ_{B} Bohrsches Magneton

μ_{I} Kernmagneton

$\vec{\mu}_{X}$ magnetisches Moment zum Drehimpuls X

n Teilchendichte der Alkaliatome

n_{0} Loschmidt-Konstante ($n_{0} = 2,686 \cdot 10^{25} \text{ m}^{-3}$)

n_{PG} Teilchendichte des Puffergases

N Anzahl der Alkaliatome

ν Frequenz

$\Delta \nu$ magnetische/optische Linienbreite

$\Delta \nu_{b}$ Linienverbreiterung der Spektrallinien durch Puffergaswirkung

$\Delta \nu_{nat}$ natürliche Breite der Spektrallinien

$\Delta \nu_{s}$ Linienverschiebung der Spektrallinien durch Puffergaswirkung

ξ Integrationsvariable

$\mathcal{O}(t)$ zeitabhängige Observable

\mathcal{O}_{F} Grad der Orientierung des Hyperfeinniveaus mit Drehimpuls F

\vec{P} (Vektor-)Polarisation

$p_{m_{F}}$ Population im magnetischen Unterzustand m_{F}

p_{0} Druck bei Normalbedingungen ($p_{0} = 101,325 \text{ kPa}$)

P_{0} Gleichgewichtspolarisation

$P_{1} \ldots P_{6}$ Fitparameter bei Auswertung der GZHE-Resonanzen

P_{L} Laserleistung

P_{X}, P_{Y} In-Phase- bzw. Quadratur-Komponente des Lock-In-Signals
\[\frac{dP_Y}{dv} \] Anstieg des \(P_Y \)-Signals

\(P_F \) Anteil der Population des Hyperfeinniveaus mit Drehimpuls \(F \)

\(\varphi \) Phasensignal des Lock-In

\(q \) Faktor, der Repolarisation des Elektronenspins durch einen polarisierten Kernspin berücksichtigt (engl. nuclear slowing down factor)

\(\frac{1}{q_{SE}} \) Spin-Austausch-Verbreiterungsfaktor (engl. spin-exchange broadening factor)

\(R_{OP} \) Relaxationsrate durch optisches Pumpen

\(R_{PG} \) Relaxationsrate durch Puffergasstöße

\(R_{SE} \) Spin-Austausch-Rate

\(R_{SD} \) Relaxationsrate durch Spin-Zerstörungs-Stöße

\(R_W \) Relaxationsrate durch Wandstöße in einer Vakuum-Zelle

\(R_{WD} \) Relaxationsrate durch Wandstöße in einer Puffergaszelle

\(\rho \) Dichtematrix

\(\vec{s} \) Spinvektor der Photonen des Laserlichtes

\(SP \) Sättigungsparameter eines optischen Übergangs

\(S \) Spinquantenzahl

\(\vec{S} \) Spin-Operator des Valenzelektrons

\(\sigma_{Cs-PG} \) Wirkungsquerschnitt für Puffergas-Stöße

\(\sigma_{SE} \) Wirkungsquerschnitt für Spin-Austausch-Stöße

\(\sigma_{SD} \) Wirkungsquerschnitt für Spin-Zerstörungs-Stöße

\(\sigma_i \) Pauli-Matrizen der Komponenten des Spin-Operators \(\vec{S} = \frac{1}{2} \vec{\sigma} \)

\(\sigma(X) \) Standardabweichung einer Messgröße \(X \)

\(\sigma^\pm \) links- bzw. rechtshändig zirkular polarisiertes Licht

\(t \) Zeit

\(T \) Temperatur

\(\Delta T \) Temperaturunsicherheit

\(T_0 \) Temperatur bei Normalbedingungen (\(T_0 = 273,15 \) K)

\(T_1 \) longitudinale Relaxationszeit

\(T_2 \) transversale Relaxationszeit

\(T_{mod} \) Modulationsperiode des \(B_1 \)-Feldes

\(\theta \) Winkel zwischen Laserausbreitungsrichtung \(\vec{k} \) und Magnetfeld \(\vec{B} \)
\(\tau \) Lebensdauer eines angeregten Zustandes
\(\tau_{\text{nat}} \) natürliche Lebensdauer eines angeregten Zustandes
\(v \) thermische Geschwindigkeit der Atome
\(\bar{v} \) mittlere thermische Geschwindigkeit der Alkaliatome
\(\bar{v}_{\text{Cs}} = \sqrt{2} \bar{v} \) relative mittlere thermische Geschwindigkeit der Cäsium-Atome
\(V \) Zellvolumen
\(W \) Breite der Hanle-Resonanzen
\(\omega_0 \) Energieabstand des angeregten Niveaus vom Grundzustand
\(\omega_1 \) Modulationsfrequenz des magnetischen Wechselfeldes \(B_1 \)
\(\Delta \omega_1 \) Verbreiterung der magnetischen Resonanz durch das \(B_1 \)-Feld
\(\omega_{12} \) Frequenz der Photonen des Laserfeldes
\(\omega_3 \) Frequenz des Repumplichtes
\(\omega_4 \) Frequenz des Ausleselichtes
\(\omega_L \) Larmorfrequenz
\(\omega_{\text{Laser}} \) Frequenz des Laserlichtes
\(\omega_{\text{HFS}} \) Hyperfeinaufspaltung des Grundzustandes
\(\delta \omega_x, \delta \omega_y \) Larmorfrequenz transversaler Magnetfeldkomponenten
\(\Delta \omega_{\text{Grad}} \) Verbreiterung der magnetischen Resonanz durch Gradienten
\(\Omega_1 \) Rabifrequenz des magnetischen Wechselfeldes \(B_1 \)
\(\Omega_3 \) Rabifrequenz des Repumplichtes
\(\Omega_4 \) Rabifrequenz des Ausleselichtes
\(\Omega_R \) Rabifrequenz des Laserfeldes
Verzeichnis der Abkürzungen

IPHT Leibniz-Institut für Photonische Technologien e.V.

OPM optisch gepumptes Magnetometer (engl. *optically pumped magnetometer*)

SQUID supraleitende Quanteninterferenzeinheit (engl. *superconducting quantum interference device*)

NMR Kernspinresonanzmethode (engl. *nuclear magnetic resonance*)

ESR Elektronenspinresonanz (engl. *electron spin resonance*)

MKG Magnetokardiographie

MEG Magnetoenzephalographie

MRT Magnetresonanztomographie

SERF Methode zur Eliminierung der Spin-Austausch-Relaxation (engl. *spin-exchange relaxation-free*)

LN Methode zur Unterdrückung der Spin-Austausch-Relaxation (engl. *light narrowing*)

DFB Laser mit verteilter Rückkopplung (engl. *distributed feedback laser*)

ODMR optisch detektierte magnetische Resonanz

GZHE Grundzustands-Hanle-Effekt

LHE longitudinaler (Grundzustands-)Hanle-Effekt

RWA Drehwellennäherung (engl. *rotating wave approximation*)

DAC Digital-Analog-Konverter

ADC Analog-Digital-Konverter

FPI Fabry-Perot-Interferometer

TP Tiefpass

AM Amplitudenmodulator

PD Photodiode bzw. Photodetektoeineheit

PID Proportional-Integral-Differential-Regler
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>TKE</td>
<td>Temperatur-Kontroll-Elektronik des DAVLL</td>
</tr>
<tr>
<td>RPM</td>
<td>Ringpermanentmagneten</td>
</tr>
<tr>
<td>OSZI</td>
<td>Oszilloskop</td>
</tr>
<tr>
<td>WP</td>
<td>Wollaston-Prisma</td>
</tr>
<tr>
<td>SB</td>
<td>Schirmbecher</td>
</tr>
<tr>
<td>OSZ</td>
<td>Oszillator</td>
</tr>
<tr>
<td>I/U</td>
<td>Transimpedanzwandler</td>
</tr>
<tr>
<td>ZA</td>
<td>Zell-Array</td>
</tr>
<tr>
<td>SP</td>
<td>Spiegel</td>
</tr>
<tr>
<td>ST</td>
<td>Strahlteiler</td>
</tr>
<tr>
<td>TA</td>
<td>Trapezverstärker (engl. tapered amplifier)</td>
</tr>
<tr>
<td>FFT</td>
<td>schnelle Fourier-Transformation (engl. fast Fourier transform)</td>
</tr>
<tr>
<td>DAVLL</td>
<td>Methode zur Laserfrequenzstabilisierung (engl. dichroic atomic vapor laser lock)</td>
</tr>
</tbody>
</table>
Danksagung

Nicht weniger danken möchte ich Prof. Jens Haueisen und Prof. Frank Schmidl für ihre Bereitschaft zur Begutachtung der Dissertation.

Ein besonderer Dank gilt meinem Mentor Dr. Volkmar Schultze sowohl für die enge wissenschaftliche Betreuung, aber auch das Vertrauen und die Freiheiten die er mir beim Durchführen der Experimente und der Arbeit an den Simulationen ließ. Er ermöglichte es mich und meine Forschung weiterzuentwickeln und die Ergebnisse angemessen zu präsentieren. Auch zur Diskussion von Problemen fand man stets ein offenes Ohr. Für sein promptes und sorgfältiges Korrekturlesen aller Manuskripte und die hilfreichen Kommentare kann ich mich nur bedanken.

Dr. Rob IJsselsteijn möchte ich dancken für seine ständige Hilfsbereitschaft, die ich nicht selten in Anspruch genommen habe, sei es bei den Experimenten oder bei manchem Verständnisproblem, für seine Hinweise nach dem kritischen Lesen meiner Manuskripte und für die angenehme Atmosphäre in unserem Büro.

I want to give many thanks to Dr. Szymon Pustelny who introduced me into density-matrix simulations and took plenty of his time for discussions that were very useful for my work.
Ich danke Prof. Stephan Fritzsche für seine Hilfe bei der korrekten Formulierung des Spinoperators des Cäsiumatoms und sein Interesse an meiner Arbeit.

Meinem Kollegen Stefan Woetzel danke ich für die Herstellung der miniaturisierten Cäsium-Zellen, die Unterstützung bei Messungen, die interessanten nicht nur fachlichen Gespräche und dafür, die Doktorandenzeit gemeinsam verlebt haben zu können.

Die maßgeschneiderten Experimente und die Eigenentwicklung von so mancher Messtechnik wäre ohne die Arbeit der mechanischen Werkstatt und die Hilfe der Elektroniker nicht möglich gewesen. Insbesondere danke ich hierfür Michael Wiedemann und Ralf Stöpel aus der IPHT-Werkstatt und dem Elektroniker unserer Gruppe Frank Bauer.

Allen Mitarbeitern unserer Abteilung Quantendetektion und der neu etablierten Forschergruppe Magnetometrie unter der Leitung von Dr. Ronny Stolz sei für die Hilfsbereitschaft und das gute Arbeitsklima gedankt.

Ich konnte und kann ich immer auf meine Ruderer vom USV und meine Thüringer Bergziegen zählen, wenn es darum geht einen nicht nur sportlichen Ausgleich zur Büro- und Laborarbeit zu schaffen. Danke Jungs und Mädels!

Schließlich und aus tiefstem Herzen danke ich meiner ganzen Familie, insbesondere meinen Eltern und meiner Schwester, die mich, wenn immer nötig, unterstützen und für mich da sind.
Ehrenwörtliche Erklärung

Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig, ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel und Literatur angefertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Bei der Auswahl und Auswertung des Materials haben mir die nachstehend aufgeführten Personen in der jeweils beschriebenen Weise unentgeltlich geholfen:

1. Dr. Volkmar Schultze und Dr. Rob IJsselsteijn gaben Impulse für meine Arbeiten und durch Diskussionen Unterstützung bei der Auswertung experimenteller Daten.
2. Stefan Woetzel fertigte die in der Arbeit verwendeten Cäsium-Zellen an.
3. Dr. Szymon Pustelny unterstützte mich bei der Implementierung der Dichtematrix-Simulation.
4. Prof. Stephan Fritzsche lieferte die korrekte Formulierung des Spinoperators \vec{S} für die Simulation.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Die geltende Promotionsordnung der Physikalisch-Astronomischen Fakultät ist mir bekannt.

Ich versichere ehrenwörtlich, dass ich nach bestem Wissen die reine Wahrheit gesagt und nichts verschwiegen habe.

Unterschrift d. Verfassers
Curriculum vitae

Persönliche Daten

Name, Vorname: Scholtes, Theo
Geburtsdatum: 23. Dezember 1986
Geburtsort: Saalfeld/Saale
Staatsangehörigkeit: deutsch
E-Mail: tscholtes@gmx.de

Ausbildung

Juni 2005 Abitur

10/2005 – 09/2010 Studium der Physik an der Friedrich-Schiller-Universität Jena

03/2008 – 04/2008 Studienarbeit in der Medical Physics Group des Uniklinikums Jena mit dem Thema “Simulation von Spinensembles” bei Dr. Karl-Heinz Herrmann und Prof. Dr. Jürgen Reichenbach

30.09.2010 Diplom in Physik

seit 01.11.2010 Doktorand am IPHT in der Abteilung Quantendetektion

04/2011 – 03/2012 Assistent im Physikalischen Grundpraktikum der Friedrich-Schiller-Universität Jena

Theo Scholtes
Referierte Publikationen

Nicht referierte Publikationen

Posterbeiträge

Vorträge

