Osteoporose

Untersuchung der Verteilung osteodensitometrischer Diagnosen und deren Interpretation bei ambulanten und stationären Patienten am Rudolf-Elle-Krankenhaus Eisenberg

Dissertation

Zur Erlangung des akademischen Grades doctor medicinae (Dr. med.)

vorgelegt dem Rat der Medizinischen Fakultät der Friedrich-Schiller-Universität Jena

von Thomas Joch
geboren am 26.10.1984 in Bergen (Rügen)
Gutachter
1. Univ.-Prof. Dr. med. Georg Matziolis, Waldkrankenhaus “Rudolf Elle”, Eisenberg
2. PD Dr. med. Gabriele Lehmann, Universitätsklinikum Jena
3. Univ.-Prof. Dr.med. Uwe Lange, Kerckhoff-Klinik, Bad Nauheim

Tag der öffentlichen Verteidigung: 05. Mai 2015
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>AP</td>
<td>Alkalische Phosphatase</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BSG</td>
<td>Blutsenkungsgeschwindigkeit</td>
</tr>
<tr>
<td>BWS</td>
<td>Brustwirbelsäule</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>DEGAM</td>
<td>Deutsche Gesellschaft für Allgemeinmedizin</td>
</tr>
<tr>
<td>DALY</td>
<td>disability-adjusted life years (lost)</td>
</tr>
<tr>
<td>DVO</td>
<td>Dachverband Osteologie</td>
</tr>
<tr>
<td>DXA</td>
<td>Dual-X-Ray-Absorptiometrie</td>
</tr>
<tr>
<td>EKG</td>
<td>Elektrokardiogramm</td>
</tr>
<tr>
<td>GGT</td>
<td>Gamma-Glutamyl-Transferase</td>
</tr>
<tr>
<td>IE</td>
<td>Internationale Einheiten</td>
</tr>
<tr>
<td>J.</td>
<td>Jahre</td>
</tr>
<tr>
<td>LWS</td>
<td>Lendenwirbelsäule</td>
</tr>
<tr>
<td>LWK</td>
<td>Lendenwirbelkörper</td>
</tr>
<tr>
<td>pHPT</td>
<td>primärer Hyperparathyreoidismus</td>
</tr>
<tr>
<td>QUS</td>
<td>quantitativer Ultraschall</td>
</tr>
<tr>
<td>TSH</td>
<td>Thyroidea stimulierendes Hormon</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>W in Abbildungen</td>
<td>weiblich</td>
</tr>
<tr>
<td>M in Abbildungen</td>
<td>männlich</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Abkürzungsverzeichnis ... 3
W in Abbildungen weiblich .. 3
M in Abbildungen männlich ... 3
Inhaltsverzeichnis .. 4
Zusammenfassung .. 6
1. Einleitung .. 8
 1.1 Osteoporose - Definition und Bedeutung .. 8
 1.2 Epidemiologie .. 9
 1.3 Risikofaktoren ... 11
 1.4 Diagnostik .. 14
 1.5 Leitlinien in ihrer Entwicklung ... 16
 1.5.1 DVO-Leitlinien 2003 ... 16
 1.5.2 DVO-Leitlinien 2006 ... 24
 1.5.3 DVO-Leitlinie 2009 zur Prophylaxe, Diagnostik und Therapie der Osteoporose bei Erwachsenen (DVO 2009) ... 28
 1.5.4 Zusammenfassung .. 31
2. Zielstellung .. 33
3. Material und Methoden .. 34
 3.1 Patienten ... 34
 3.2 Knochendichtemessung ... 35
 3.3 Auswertung nach Leitlinien-Perioden .. 36
 3.4 Datenauswertung und Statistik .. 37
4. Ergebnisse .. 38
 4.1 Untersuchung nach Geschlecht, Alter und Diagnose ... 38
 4.2. Untersuchung der Frakturhäufigkeit ... 43
 4.3 Untersuchung nach Lokalisation des diagnosebestimmenden T-Scores 45
 4.4 Betrachtung des T-Scores ... 47
 4.5 Untersuchung nach Beobachtungsperioden ... 53
 4.6 Untersuchung der theoretischen Therapieindikation nach den DVO-Leitlinien 2003 und 2006 .. 58
5. Diskussion .. 61
 5.1 Geschlecht, Alter und Diagnosen ... 61
 5.2 Frakturen .. 63
 5.3 Lokalisation des diagnosebestimmenden T-Scores ... 68
 5.4 Betrachtung des T-Score .. 69
 5.5 Vergleich nach Beobachtungsperioden .. 70
Zusammenfassung

Die Osteoporose ist eine systemische Skeletterkrankung des höheren Lebensalters, die durch eine niedrige Knochenmasse und eine mikroarchitektonische Verschlechterung des Knochengewebes charakterisiert ist, mit einem konsekutiven Anstieg der Knochenfragilität und der Neigung zu Frakturen (NIH Consensus Development Panel on Osteoporosis 2001).

Es zeigte sich eine für Frauen und Männer vergleichbare Häufigkeit der osteodensitometrischen Diagnosen Osteopenie (47,36% und 45,74%) und Osteoporose (28,33% und 24,56%). Die Frakturhäufigkeit betrug insgesamt 14,6%, bei den Frauen 15,2% und bei den Männern 11,8%. Die Untersuchung nach Altersgruppen ergab eine steigende Osteoporose- und Frakturhäufigkeit mit dem Alter, besonders deutlich ab dem 50. Lebensjahr, dieser Anstieg fiel bei den Frauen wesentlich stärker aus als bei den Männern. Im Geschlechtsvergleich wurden bis zur Altersgruppe von 50-59 Jahren bei Männern ein höherer Anteil osteoporotischer Knochendichtemesswerte erhoben, in den höheren Altersgruppen bei den Frauen. Ebenso war die Frakturhäufigkeit im Alter unter 50 Jahren bei den Männern höher, ab
60 Jahren bei den Frauen. Im Alter von 50-59 Jahren war die Frakturrate bei beiden Geschlechtern gleich.

Die senile Osteoporose war zahlenmäßig am stärksten vertreten, setzte sich zu 90% aus Frauen zusammen und wies mit 69,2% den höchsten Frakturanteil auf. Am zweithäufigsten war die postmenopausale Osteoporose, gefolgt von der idiopathischen Osteoporose. Die sekundäre Osteoporose wurde nur selten diagnostiziert (1,6%).

Zusammenfassend konnte an einem großen Patientenkollektiv über einer langen Untersuchungszeitraum die Auswirkungen des Erscheinens der ersten und der beiden folgenden Osteoporose-Leitlinien des DVO gezeigt werden mit einer verbesserten diagnostischen Treffsicherheit bei der Auswahl der untersuchten Patienten und einem zunehmendem Anteil positiver Therapieempfehlungen für eine spezifische Osteoporosetherapie, insbesondere für betroffene Männer.
1. Einleitung

1.1 Osteoporose - Definition und Bedeutung
Eine Osteoporose, die haupt- und ursächlich durch andere Krankheiten bedingt ist, wird als sekundäre Osteoporose bezeichnet.

In den letzten 15 Jahren haben Fortschritte in der Diagnostik und in der Entwicklung neuer Medikamente dazu geführt, dass die Osteoporose als ernst zu nehmende, aber vermeidbare bzw. behandelbare Volkskrankheit wahrgenommen wird. Trotz dieser enormen Fortschritte in Diagnostik, Leitlinienentwicklung und Therapie ist die Osteoporose aber immer noch in Europa und insbesondere in Deutschland eine unterdiagnostizierte und untertherapierte Krankheit. So werden in Deutschland nur etwa 10–15% der Patienten mit manifester Osteoporose sowohl im ambulanten wie im stationären Bereich leitliniengerecht behandelt (Bartl und Gradinger 2009). Dabei zeigten schon einfache Interventionen, wie beispielsweise der Hinweis auf die empfohlene Osteoporosediagnostik und Therapie nach erlittener hüftgelenksnaher

1.2 Epidemiologie

Die Bone Evaluation Study hat im Jahr 2009 für Deutschland anhand von Krankenkassenroutinedaten eine Prävalenz der Osteoporose in Deutschland bei über 50-Jährigen von 14% insgesamt ermittelt, bei Frauen 24% und bei Männern 6%. Die Prävalenz stieg mit dem Alter an, sie betrug bei Frauen zwischen 50 und 64 Jahren 17%, zwischen 65 und 74 Jahren 32% und über 75 Jahren 48%. Die entsprechenden Prävalenzen bei Männern lagen bei 4%, 8% und 15%.

Europaweit kommt es jährlich zu 2,7 Millionen osteoporosebedingten Frakturen mit direkten Kosten von ca. 36 Milliarden Euro (Kanis und Johnell 2005). Die Anzahl von Schenkelhalsfrakturen bei postmenopausalen Frauen in Deutschland wird auf über
100 000 pro Jahr geschätzt mit Folgekosten von über 5 Milliarden Euro (Haeussler et al. 2007).

Etwa ein Prozent aller Todesfälle wird durch Hüftfrakturen verursacht, vergleichbar mit der Anzahl an Todesfällen durch Brustkrebs. 90% aller Oberschenkelhals- und Wirbelkörperfrakturen und 70% aller distalen Radiusfrakturen sind osteoporosebedingt (Bartl et al. 2003).

Das Verbesserungspotential mittels leitliniengerechter Therapie wird auf eine Halbierung der Frakturzahlen geschätzt mit Kosteneinsparung von etwa drei Milliarden Euro jährlich, dies bei Jahrestherapiekosten von 500 Euro pro Patientin (Bartl und Gradinger 2009).

1.3 Risikofaktoren

Weitere Risikofaktoren werden in der DVO-Leitlinie 2009 aufgeführt:
Vorbestehende (osteoporosetypische) Frakturen sind ein starker Risikofaktor für weitere Frakturen, weiter Sturzgefährdung, die Einnahme sturzbegünstigender Medikamente, Immobilität, Untergewicht, Vitamin-D-Mangel, Calciummangel, Vitamin-B12-Mangel, Folsäuremangel, Hyperhomocysteinämie, Nikotinkonsum, Hyperthyreose, chronisch entzündlichen Erkrankungen, allen voran die rheumatoide

Anamnestische und klinische Risikofaktoren für osteoporotische Frakturen

<table>
<thead>
<tr>
<th>Risikofaktoren</th>
<th>Frauen <50</th>
<th>50-60</th>
<th>60-70</th>
<th>70-80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singuläre Wirbelkörperfraktur 2.-3. Grades (d.h. 25-40% bzw. >40% Höhenminderung)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple Wirbelkörperfrakturen 1.-3. Grades</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orale Glukokortikoide ≥7,5 mg Prednisolonäquivalent ≥3 Monate*</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cushing-Syndrom*</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subklinischer Hyperkortisolismus*</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primärer Hyperparathyreoidismus (pHPT)*</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singuläre Wirbelkörperfraktur 1. Grades (d.h. 20-25% Höhenminderung)</td>
<td>**</td>
<td>**</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Orale Glukokortikoide <7,5 mg Prednisolonäquivalent ≥3 Monate</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Therapie mit Glitazone bei Frauen*</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wachstumshormonmangel bei Hypophyseninsuffizienz</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nichtvertebrale Fraktur(en) nach dem 50. Lebensjahr</td>
<td>**</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Therapie mit Aromatasehemmern*</td>
<td>**</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Antiandrogene Therapie*</td>
<td>**</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rheumatoide Arthritis</td>
<td>**</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Proximale Femurfraktur eines Elternteils</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Untergewicht (BMI <20 kg/m²)*</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Nikotinkonsum*</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Multiple Stürze*</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Immobilität*</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Epilepsie / Antiepileptika*</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Zustand nach B-II-Operation oder Gastrektomie</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus Typ 1</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>TSH-Werte <0,3 mU/l*</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 1: Risikofaktoren für Osteoporose nach DVO-Leitlinie 2009. Erläuterungen siehe Text

(*) wenn Risiko aktuell bestehend oder vor weniger als 12-24 Monaten beendet, **
Einzelfallentscheidung bezüglich Basisdiagnostik und weiterer Therapie (siehe Langfassung DVO Leitlinie 2009)
1.4 Diagnostik

Die Osteoporosediagnostik beginnt wie bei allen Erkrankungen mit Anamnese und körperlicher Untersuchung.

In der körperlichen Untersuchung sollte besonderes Augenmerk auf Hinweise für Wirbelkörperfrakturen, wie z.B. Tannenbaumphänomen und Hyperkyphose, gelegt werden. Ein entsprechender Verdacht auf Wirbelkörperfrakturen ist radiologisch abzuklären.

Koordination, Muskelkraft und Sturzgefährdung sollten abgeschätzt und können mittels „Timed-up-and-go-Test“ und „Chair-rising-Test“ quantifiziert werden. Gegebenenfalls kann ein geriatrisches Assessment erfolgen.

Ergeben sich Hinweise auf eine Osteoporose oder liegt in Zusammenschau der Risikofaktoren das 10-Jahres-Frakturrisiko über 20%, sollte eine weiterführende Diagnostik mittels Knochendichtemessung erfolgen. Das DXA-Verfahren an der Lendenwirbelsäule (LWK 1-4) und dem Femur ist dabei am besten evaluiert und die Methode der ersten Wahl (DVO Leitlinie Osteoporose 2009).

Weitere Ausführungen zur empfohlenen Diagnostik sind in der Zusammenfassung der DVO-Leitlinie 2009 aufgeführt (s. Seite 29ff).
<table>
<thead>
<tr>
<th>Laborparameter</th>
<th>Wichtige damit verbundene Fragestellungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum-Kalzium</td>
<td>↑ Primärer Hyperparathyreoidismus oder andere Ursachen einer Hyperkalzämie, ↓ z.B. sekundärer Hyperparathyreoidismus, Malabsorption</td>
</tr>
<tr>
<td>Serum-Phosphat</td>
<td>↑ Niereninsuffizienz Stadium IV, ↑ sekundärer renaler Hyperparathyreoidismus, ↓ Malabsorption</td>
</tr>
<tr>
<td>Alkalische Phosphatase (Serum)</td>
<td>↑ Osteomalazie</td>
</tr>
<tr>
<td>Gamma-GT</td>
<td>Zur Differentialdiagnose einer hepatisch bedingten AP-Erhöhung</td>
</tr>
<tr>
<td>Kreatinin-Clearance</td>
<td>↓ renale Osteopathie</td>
</tr>
<tr>
<td>BSG /C-reaktives Protein</td>
<td>↑ Differentialdiagnose entzündlicher Ursachen von Wirbelkörperdeformitäten</td>
</tr>
<tr>
<td>Blutbild</td>
<td>Hinweise auf entzündliche und maligne Erkrankungen</td>
</tr>
<tr>
<td>Serum-Eiweißelektrophorese</td>
<td>Hinweise für multiples Myelom</td>
</tr>
<tr>
<td>TSH</td>
<td>< 0,3 mU/L endogen oder durch L-Thyroxin-Medikation bedingt als Risikofaktor für Frakturen</td>
</tr>
<tr>
<td>Ggf. Testosteron bei Männern</td>
<td>Testosteronmangel</td>
</tr>
<tr>
<td>Ggf. 25-Hydroxy-Vitamin D3 in Einzelfällen</td>
<td>Vitamin D Mangel</td>
</tr>
<tr>
<td>Ggf. Knochenresorptionsparameter in Einzelfällen</td>
<td>hoher Knochenumbau als Frakturrisiko</td>
</tr>
</tbody>
</table>

Tabelle 2: Empfohlene Laborparameter bei Osteoporose nach DVO-Leitlinie 2009, Erläuterungen siehe Text (↑ erhöht, ↓ erniedrigt)
1.5 Leitlinien in ihrer Entwicklung

Der Dachverband Osteologie (DVO) als Zusammenschluss aller osteologischen Fachgesellschaften in Deutschland, Österreich und der Schweiz wurde im Jahr 1999 gegründet, mit dem Ziel der Weiterentwicklung des Fachgebietes Osteologie und Sicherstellung der allgemeinen Verfügbarkeit bestmöglicher Prävention und Therapie osteologischer Erkrankungen.

In diesem Sinne wurden Leitlinien zur Prävention, Diagnostik und Therapie der Osteoporose erarbeitet und in regelmäßigen Abständen aktualisiert.

1.5.1 DVO-Leitlinien 2003

2003 wurden die ersten S3-Leitlinien zur Diagnostik, Prävention und Behandlung der Osteoporose veröffentlicht, und zwar jeweils eine Leitlinie zur Osteoporose bei postmenopausalen Frauen, zur Osteoporose des älteren Menschen und zur Glukokortikoid-induzierten Osteoporose.

1.5.1.1 DVO-Leitlinie Osteoporose bei postmenopausalen Frauen 2003 (DVO 2003a)

Die Leitlinie zur Osteoporose bei postmenopausalen Frauen nennt verschiedene Risikofaktoren, die das Auftreten einer Osteoporose begünstigen und unterteilt diese in starke Risikofaktoren mit einer Erhöhung des Frakturrisikos um mindestens das doppelte und als moderate Risikofaktoren mit einer Risikoerhöhung zwischen eins und zwei (s. Tabelle 3). Als protektive Faktoren werden Tee-Konsum und Einnahme von Thiazid-Diuretika genannt, wobei die Datenlage dazu nicht eindeutig war.

Verneint wird die Vorhersage des Frakturrisikos allein auf Grundlage klinischer Risikofaktoren und ebenso die ausreichend sichere Vorhersage des Frakturrisikos mit Hilfe einer Kombination von Risikofaktoren als Screeninginstrument.
Starke Risikofaktoren

- zunehmendes Alter (> 70 Jahre im Vergleich zu > 50)
- Rassenzugehörigkeit (kaukasisch=weiß oder asiatisch im Vergleich zu schwarz)
- skelettäre Messparameter (Verdopplung des Risikos je Absinken um eine SD):
 - planare Zwei-Energien-Röntgen-Absorptiometrie (Dual-X-Ray-Absorptiometry=DXA)
 - quantitativer Ultraschall (QUS) des Knochens
 - Knochenumbauparameter in Serum und Urin als Ausdruck der Knochenumbauaktivität
- klinische Risikofaktoren mit Korrelation zur Knochendichte:
 - niedriges Körpergewicht (Body mass index (BMI) < 20 kg/m²)
 - Gewichtsverlust >10%
 - extreme körperliche Inaktivität
 - positive Frakturananamnese (Fraktur ohne adäquates Trauma seit Eintritt der Menopause);
- klinische Risikofaktoren mit Zusammenhang zu osteoporotischen Wirbelfrakturen:
 - Abnahme der Körpergröße > 4 cm (im Vergleich zum letzten Messwert im Erwachsenenalter);
 - akute stark auftretende Rückenschmerzen;
 - hohes Sturzrisiko (mindestens 2 Stürze in den letzten 6 Monaten, s. Leitlinie)

moderate Risikofaktoren (RR zwischen 1 und 2)

- weibliches Geschlecht
- Rauchen (aktuell)
- geringe oder fehlende Sonnenlichtexposition
- positive Familienanamnese (Oberschenkelhalsfraktur bei Verwandten 1. Grades nach dem 50. Lebensjahr)
- chirurgische Menopause; vorzeitige natürliche Menopause (< 45 J.); späte Menarche (> 15J.); niedrige endogene Östrogen-Expositionszeit (< 30 J.)
- Stillen (nie)
- calciumarme Ernährung (keine Milch; keine oder wenig Milchprodukte; < 500-850 mg Calcium pro Tag je nach Alter und Geschlecht)

Tabelle 3: Risikofaktoren nach DVO-Leitlinie 2003 zur Osteoporose der postmenopausalen Frau
Insgesamt wurde der größte Wert auf die röntgenabsorptiometrisch (DXA) gemessene Knochendichte gelegt mit Zunahme des Frakturrisikos um das Zwei- bis Dreifache je Abnahme der Knochendichte um eine Standardabweichung mit der stärksten Vorhersagekraft bezüglich des Frakturrisikos am gemessenen Skelettabschnitt. Die DXA liefert bei geringer Strahlenbelastung einen validierten Surrogatparameter zur Knochenbeschaffenheit mit guter Messpräzision. Aber auch allein auf Grundlage der Knochendichte ist keine Beurteilung des Frakturrisikos möglich, bedingt durch eine Spezifität von ca. 80% und Sensitivität von lediglich 30%.

Für die weiterführende Osteoporoseabklärung schlägt die Leitlinie eine Hochrisiko-Strategie mit fünf klinischen Ausgangssituationen vor:
- Postmenopausale Patientinnen mit V.a. osteoporotische periphere Fraktur
- Postmenopausale Patientinnen mit sehr niedrigem Körpergewicht (BMI< 20) oder ungewollter Gewichtsabnahme > 10%
- Postmenopausale Patientinnen mit hohem Sturzrisiko
- Postmenopausale Patientinnen mit akuten Rückenschmerzen oder Abnahme der Körpergröße > 4cm → V.a. osteoporotische Wirbelkörperfraktur
- Postmenopausale Patientinnen mit Risikofaktoren für sekundäre Osteoporose

Zur Erfassung entzündlicher, maligner oder hämatologischer Erkrankungen wird die Abnahme eines Basislabors empfohlen, bestehend aus BSG/CRP, Blutbild, Calcium, Phosphat, AP, GGT, Kreatinin, basales TSH, Eiweißimmunelektrophorese). Primäre Formen der Osteoporose führen nicht zu Veränderungen der genannten Laborparameter.

In allen anderen Fällen sollte zuerst eine Knochendichtemessung erfolgen und im Anschluss bei grenzwertigem Ergebnis ein Nativröntgen der BWS und LWS erfolgen, weil sich daraus bei Vorliegen von Frakturen therapeutische Konsequenzen ergeben. Die Knochendichtemessung selbst sollte mittels DXA erfolgen, bei postmenopausalen Frauen zunächst an der LWS, bei normalem oder grenzwertigem Befund zusätzlich am Femur.

Zur Primärprophylaxe wird eine Supplementierung mit Calcium für postmenopausale Frauen empfohlen, die weniger als 1500mg Calcium mit der Nahrung aufnehmen. Für Frauen über 65 Jahren mit Einschränkungen der Mobilität oder im Pflegeheim wird eine Supplementierung mit täglich 1200mg Calcium und 800 IE Vitamin D3 empfohlen. Eine postmenopausale Hormontherapie bei Frauen mit Osteoporose sollte nur unter strenger Nutzen-Risiko-Abwägung erfolgen, zur Primärprophylaxe wird sie nicht empfohlen.

Therapeutische Konsequenzen im Sinne einer spezifischen Osteoporosetherapie ergeben sich bei einem T-Score kleiner -2 und radiologisch gesicherten Wirbelkörperfrakturen. Bei Wirbelkörperfrakturen und einem T-Score zwischen -1 und -2 sollten andere Ursachen wie zum Beispiel lokal lytische Prozesse bedacht und ausgeschlossen und ggf. die Rücksprache mit dem Fachspezialisten gesucht werden. Der Nutzen einer spezifischen medikamentösen Osteoporosetherapie sei aufgrund

1.5.1.2 DVO-Leitlinie Osteoporose des älteren Menschen 2003 (DVO 2003b)

Auch diese Leitlinie empfiehlt für die Diagnostik die Identifikation von Hochrisikopatienten und definiert dafür drei klinische Situationen:

- Ältere Frauen mit nicht-traumatischer Wirbelkörperfraktur
- Ältere Frau mit starken Risikofaktoren (inklusive peripherer Frakturen)
- Immobilisierte oder schwer pflegebedürftige Frauen mit und ohne Fraktur

Die Diagnostik dient der Abschätzung des Fraktur- und Sturzrisikos und dem Erkennen von Ursachen für sekundäre Osteoporoseformen und umfasst Anamnese, klinische Untersuchung, Basislabor. Dabei sind auch folgende Risikofaktoren abzuklären:

Starke Risikofaktoren für Frakturen:

- Frakturannahmewesen (akut oder seit der Menopause ohne größeres Trauma)
- Abnahme der Körpergröße > 4 cm seit dem 25. Lebensjahr oder >2cm seit letzter Messung (V.a. Wirbelkörperfraktur)
- Niedriges Körpergewicht (BMI <20) oder unabsichtliche Gewichtsabnahme >10% in jüngster Zeit
- Mehr als ein Sturz in den letzten 6 Monaten, der nicht extrinsisch bedingt ist

Eine Knochendichtemessung mittels DXA soll bei Vorliegen eines starken Risikofaktors oder bei Verdacht auf eine Wirbelkörperfraktur durchgeführt werden. Die Messung wird abweichend zur Leitlinie für postmenopausale Frauen initial für den

Ein konventionelles Röntgen der BWS und LWS sollte zur Abklärung des klinischen Verdachts auf eine Wirbelkörperfraktur und zur Risikobeurteilung bei Knochendichtemesswerten zwischen -1 und -2,5 Standardabweichungen erfolgen. Bei einem T-Score kleiner -2,5 sollte das Röntgen nur bei konkreter klinischer Indikation oder bei Relevanz für eine Therapieentscheidung durchgeführt werden.

Das empfohlene Basislabor ist identisch zur Leitlinie Osteoporose bei postmenopausalen Frauen.

Eine Anpassung der Medikation mit strenger Indikationsstellung für Orthostasefördernde und andere die Sturzgefahr erhöhende Medikamente, Optimierung des häuslichen Umfelds und der Hilfsmittelversorgung soll die Sturzgefahr weiter verringern. Hüftprotektoren können die Häufigkeit von Schenkelhalsfrakturen bis zu 60% reduzieren, scheitern aber oft an Akzeptanzproblemen seitens der Patienten. Für diese sturzvermeidenden Maßnahmen ist eine Reduktion der Frakturhäufigkeit belegt. Besonderer Wert liegt auf ausreichender Bewegung mit positiven Einflüssen auf die

Die Basistherapie mit Vitamin (400-800IE/d) und Calcium (1-1,5g/d) wird generell für ältere Frauen empfohlen, die Datenlage zeigt für diese Therapie eine Reduktion von hüftgelenksnahen Frakturen von 30% bei Pflegeheimbewohnern. Eine spezifische Osteoporosetherapie sollte erfolgen bei älteren Frauen mit osteoporotischer Wirbelkörperfraktur und einem T-Score unter -2 und bei älteren Frauen mit starken Risikofaktoren und einen T-Score unter -2,5. Immobilisierte und schwer pflegebedürftige Patientinnen sollten mit hochdosierter Calcium- und Vitamin D-Substitution, sturzsenkenden Interventionen und Hüftprotektoren behandelt werden.

1.5.1.3 DVO-Leitlinie Glukokortikoid-induzierte Osteoporose 2003 (DVO 2003c)

Die Leitlinie unterscheidet zwei Patientengruppen:
Zum Einen „lnzidente Patienten“, die erstmals oder nach wenigstens einjähriger Pause eine Steroidtherapie mit wenigstens 7,5 mg/d Prednisolonäquivalent für
voraussichtlich über sechs Monate erhalten und Patienten mit neu aufgetretenen osteoporotischen Frakturen, zum anderen „Prävalente Patienten“, die bereits seit über sechs Monaten mindestens 7,5 mg/d Prednisolonäquivalent erhalten oder im letzten Jahr eine entsprechende Therapie erhalten haben und vor dem Beginn einer neuen Therapie stehen.

Zusätzlich zur Steroidtherapie fließen in die Risikobeurteilung folgende Risikofaktoren ein:

Starke Risikofaktoren:
- Vorbestehende Bagatellfrakturen
- Abnahme der Körpergröße > 4 cm seit dem jungen Erwachsenenalter oder > 2 cm seit letzter Messung
- BMI < 20 oder Gewichtsabnahme von > 10%
- hohes Sturzrisiko
- Alter > 70 Jahre
- stark eingeschränkte Mobilität

Moderate Risikofaktoren:
- weibliches Geschlecht
- verkürzte reproduktive Phase der Frau, unabhängig von der Ursache

Tabelle 3: Risikofaktoren bei Glukokortikoid-induzierter Osteoporose nach DVO-Leitlinie 2003

Nach Anamnese, Untersuchung und dem Basislabor, welches den Empfehlungen der anderen beiden Leitlinien 2003 entspricht, sollte bei Auffälligkeiten gegebenenfalls eine weitere Differentialdiagnostik erfolgen.

Anderenfalls wird zu einer die Steroidtherapie begleitenden Supplementierung von Vitamin D und Calcium und Beratung zu modifizierbaren Risikofaktoren geraten, wie zum Beispiel Nikotinkarenz, Vermeiden schädlicher Alkoholmengen, ausreichender Bewegung, Sturzprophylaxe und calciumreicher Ernährung.

Die Knochendichtemessung mittels DXA wird für Patienten unter 75 Jahren an LWS und Femur („total hip“), ab 75 Jahren nur am Femur empfohlen. Das weitere Vorgehen je nach T-Score unterscheidet sich für inzidente und prävalente Patienten.

Inzidente Patienten und solche mit osteoporotischen Frakturen sollen bei einem T-Score über -1 eine Wiederholungsmessung nach 6-12 Monaten erhalten.
Inzidente Patienten mit einem T-Score zwischen -1 und -1,5 in der Erstmessung sollen ein Röntgen der BWS und LWS erhalten, bei unauffälligem Befund schließt sich eine Wiederholungsmessung nach 6-12 Monaten an, bei Nachweis von osteoporotischen Frakturen besteht die Indikation zur spezifischen Osteoporosetherapie.

Bei inzidenten Patienten mit einem T-Score von -1,5 oder niedriger in der Erstmessung und bei prävalenten Patienten mit einem T-Score von -2,5 oder niedriger besteht die Indikation zur spezifischen Osteoporosetherapie, fakultativ sollte bei klinischer Indikation ein Röntgen der BWS und LWS erfolgen.

Bei prävalenten Patienten mit einem T-Score zwischen -1 und -2,5 soll ein Röntgen der LWS und BWS erfolgen, zeigen sich Frakturen, besteht die Indikation zur spezifischen Osteoporosetherapie, bei unauffälligem Befund soll eine Wiederholungsosteodensitometrie mittels DXA nach 12-24 Monaten erfolgen. Diese wird auch bei prävalenten Patienten mit einem T-Score über -1 in der Erstmessung empfohlen.

Beträgt der T-Score in der Wiederholungsmessung -2,5 oder weniger ist die Indikation zur spezifischen Osteoporosetherapie gegeben, anderenfalls sollte nach 12-24 Monaten eine weitere Wiederholungsmessung erfolgen. Bei erniedrigter Knochendichte müssen vor dem Beginn einer spezifischen Osteoporosetherapie weitere Erkrankungen, wie z.B. Osteomalazie, Myelom und renale Osteopathie ausgeschlossen werden.

1.5.2 DVO-Leitlinien 2006
Die S3-Leitlinie zur Osteoporose der DVO aus dem Jahr 2006 gibt Empfehlungen zur Prophylaxe, Diagnostik und Therapie der Osteoporose bei Frauen ab der Menopause und Männern ab dem 60. Lebensjahr. Im Unterschied zu den DVO-Leitlinien 2003 werden die postmenopausale Osteoporose und die Osteoporose im Alter gemeinsam dargestellt, dies erscheint praktikabel aufgrund vieler diagnostischer und therapeutischer Gemeinsamkeiten. Erstmals wird auch detaillierter auf die
Osteoporose des Mannes eingegangen, wobei die Datenlage diesbezüglich immer noch schlechter ist als bei Frauen.

Die Glukokortikoid-induzierte Osteoporose wird in einer eigenen Leitlinie behandelt.

1.5.2.1 DVO-Leitlinie 2006 zur Prophylaxe, Diagnostik und Therapie der Osteoporose bei Frauen ab der Menopause, bei Männern ab dem 60. Lebensjahr (DVO 2006b)

Die wesentlichste Neuerung im Vergleich zu 2003 ist die Festlegung einer Interventionsschwelle für eine spezifische medikamentöse Therapie ab einer Zehnjahreswahrscheinlichkeit für das Auftreten von osteoporotischen Hüft- und Wirbelkörperfrakturen von 30%.

<table>
<thead>
<tr>
<th>Risiko</th>
<th>Relatives Risiko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht (Mann)</td>
<td>0,5</td>
</tr>
<tr>
<td>Alter (pro Dekade)</td>
<td>2</td>
</tr>
<tr>
<td>Wirbelkörperfraktur</td>
<td>3</td>
</tr>
<tr>
<td>Periphere Bagatellfrakturen</td>
<td>1,5-2</td>
</tr>
<tr>
<td>Ein Elternteil mit Schenkelhalsfraktur</td>
<td>1,5-2</td>
</tr>
<tr>
<td>Untergewicht</td>
<td>1,5-2</td>
</tr>
<tr>
<td>Nikotinabusus</td>
<td>1,5-2</td>
</tr>
<tr>
<td>Immobilität</td>
<td>1,5-2</td>
</tr>
<tr>
<td>Rezidivierende Sturzereignisse</td>
<td>1,5-2</td>
</tr>
</tbody>
</table>

Tabelle 4: Risikofaktoren nach DVO-Leitlinie 2006

Die Basisdiagnostik wird empfohlen für 50-60-jährige Frauen und 60-70-jährige Männer mit osteoporotischer Wirbelkörperfraktur, als Einzelfallentscheidung je nach klinischem Gesamtkontext auch mit peripherer Bagatellfraktur.

Für 60-70-jährige Frauen und 70-80-jährige Männer wird eine Basisdiagnostik empfohlen bei Vorliegen osteoporotischer Wirbelkörperfrakturen, peripheren
Bagatellfrakturen oder Vorliegen der folgenden Risikofaktoren: proximale Femurfraktur eines Elternteils, Immobilität, Nikotinkonsum, multiple Stürze, Untergewicht.

Bei Frauen über 70 Jahren und Männern über 80 Jahren ist allein das Alter ausreichend für die Indikation zur Basisdiagnostik bei gegebener therapeutischer Konsequenz.

In die Basisdiagnostik werden der „chair-rising-test“ und der „timed-up-and-go-test“ neu aufgenommen.

Ebenso wird eine spezifische Therapie ab einem 10-Jahresrisiko für Frakturen über 30% empfohlen, wenn der T-Wert bei -2 oder niedriger liegt. Ein entsprechendes Risiko liegt bei folgenden Befundkonstellationen vor (s. Tab. 5):

<table>
<thead>
<tr>
<th>Lebensalter in Jahren</th>
<th>Frauen</th>
<th>Männer</th>
<th>T-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-60</td>
<td>60-70</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>60-65</td>
<td>70-75</td>
<td>-3,5</td>
<td></td>
</tr>
<tr>
<td>65-70</td>
<td>75-80</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>70-75</td>
<td>80-85</td>
<td>-2,5</td>
<td></td>
</tr>
<tr>
<td>>75</td>
<td>>85</td>
<td>-2</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5: Schwellenwert T-Score nach DVO-Leitlinie 2006, Erläuterungen s. Text

Diese Aufstellung berücksichtigt nur Alter, Geschlecht und die Knochendichte. Bei Vorliegen mindestens eines Risikofaktors (proximale Femurfraktur eines Elternteils, periphere Bagatellfraktur, Nikotinkonsum, multiple Stürze, Immobilität) liegt das Gesamtrisiko circa 1,5-2 mal höher, sodass die Therapieschwelle schon bei maximal um einen T-Wert höheren DXA-Messwerten erreicht wird. In Abhängigkeit von der klinischen Gesamtsituation (Multimorbidität, Patientenwunsch) können auch um bis zu einem T-Wert tiefere Therapieschwellen vereinbart werden.

1.5.2.2 DVO-Leitlinie 2006 Glukokortikoid-induzierte Osteoporose 2006 (DVO 2006a)

Da das Frakturrisiko zum Teil auch durch die entzündliche Aktivität der Grundkrankheit bedingt wird, ist eine suffiziente Kontrolle der Krankheitsaktivität mit der niedrigsten möglichen Glukokortikoiddosis anzustreben, gegebenenfalls unter Einsatz von Immunsuppressiva.

Eine Osteoporosediagnostik nach dem üblichen Standard (Anamnese, Untersuchung, DXA, Röntgen bei Frakturverdacht) wird empfohlen bei einer über drei Monate oder länger geplanten Glukokortikoidtherapie wegen oben genannter Erkrankungen auch
bereits ab Tagesdosen von unter 2,5 mg/d Prednisolonäquivalent und bei bereits aufgetretenen osteoporotischen Frakturen. Weitere Faktoren, wie hohe Krankheitsaktivität, niedriges Körpergewicht oder starke Gewichtsabnahme, hohes Alter, verkürzte Östrogenexpositionszeit bei Frauen, Immobilität und Sturzrisiko müssen bei der Abschätzung des individuellen Frakturrisikos berücksichtigt werden.

Zur Osteoporoseprophylaxe wird parallel zur Glukokortikoidtherapie die Supplementierung mit 1-1,5g Calcium und 400-1200 IE Vitamin D3 pro Tag empfohlen, bei Knochendichtemesswerte unter einem T-Wert von -1,5 oder bei bereits manifester osteoporotischer Fraktur eine spezifische medikamentöse Osteoporosetherapie.

DXA-Kontrollen sollten bei initial nicht therapiebedürftigen Patienten nach frühestens 6 bis 12 Monaten erfolgen.

Eine spezifische Osteoporosetherapie sollte erfolgen bei einem T-Wert unter -1,5 und einer Steroidtherapie über 3 Monaten oder bereits prävalenter osteoporotischer Fraktur.

1.5.3 DVO-Leitlinie 2009 zur Prophylaxe, Diagnostik und Therapie der Osteoporose bei Erwachsenen (DVO 2009)

Die Empfehlungen zur allgemeinen Frakturprophylaxe entsprechen im Wesentlichen denen früherer Leitlinien. Weitere Hinweise finden sich in einer eigens erstellten DVO-Leitlinie zur Physiotherapie und Bewegungstherapie bei Osteoporose.

Behebbarkeit jedoch nicht für die Berechnung des 10-Jahres-Frakturrisikos berücksichtigt.

Ebenso wird eine erhöhte Serumkonzentration von Homocystein als Risikofaktor erwähnt und die ausreichende diätetische Zufuhr von Vitamin B12 und Folsäure zur Senkung empfohlen, eine eigenständige prognostische oder therapeutische Relevanz ist jedoch nicht belegt.

Das hochsensitive C-reactive Peptid (hsCrP) als empfindlicher Marker für entzündliche Erkrankungen wird ebenfalls als unabhängiger Risikofaktor für niedrigtraumatische Frakturen aufgezählt, der Zusatznutzen für eine Frakturprognose ist jedoch noch nicht ausreichend belegt, sodass eine Routinemessung nicht empfohlen wird.

Bei der Aufzählung der sturz- und osteoporosefördernden Medikamente kommen neu zu den vorangehenden Leitlinien Glitazone bei Frauen und Protonenpumpeninhibitoren in Langzeittherapie hinzu.

Zur Prophylaxe bzw. Basistherapie wird eine Gesamtzufuhr von 1g Calcium pro Tag als ausreichend angesehen, bei Supplementierung sollte darauf geachtet werden,
dass die Gesamtzufuhr 1,5 g/d nicht übersteigt wegen Hinweisen auf ein erhöhtes kardiovaskuläres Risiko.

Die Basisdiagnostik wird ab einem 10-Jahresrisiko für Frakturen von 20% empfohlen, dieses wird erreicht in Abhängigkeit von Geschlecht, Alter und Risikofaktoren (s. Tab. 1 auf Seite 11)

Die Therapieindikation wird gestellt bei einem 10-Jahresrisiko für Frakturen über 30% und erniedrigten T-Werten unter -2 an LWS, Gesamtfemur oder Schenkelhals. Dies wird erreicht bei folgenden Konstellationen:

1) Vorliegen von mindestens einer osteoporotischen Wirbelkörperfraktur zweiten und dritten Grades oder multiplen osteoporotischen Wirbelkörperfrakturen ersten bis dritten Grades und gleichzeitigem T-Wert von -2 oder niedriger

2) In Abhängigkeit von Geschlecht, Alter und Knochendichte mittels DXA (s. Tab. 6)

<table>
<thead>
<tr>
<th>Lebensalter in Jahren</th>
<th>Mann</th>
<th>Frau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2,5</td>
<td>-2 bis -2,5</td>
</tr>
<tr>
<td>50-60</td>
<td>60-70</td>
<td>Nein</td>
</tr>
<tr>
<td>60-65</td>
<td>70-75</td>
<td>Nein</td>
</tr>
<tr>
<td>65-70</td>
<td>75-80</td>
<td>Nein</td>
</tr>
<tr>
<td>70-75</td>
<td>80-85</td>
<td>Nein</td>
</tr>
<tr>
<td>>75</td>
<td>>85</td>
<td>Ja</td>
</tr>
</tbody>
</table>

Tabelle 6: Therapieschwellen nach DVO-Leitlinie 2009, Erläuterungen siehe Text
Die Therapiegrenze kann dabei um 0,5 T-Werte angehoben werden bei Vorliegen von einem, um 1,0 T-Werte bei Vorliegen von zwei oder mehr der folgenden Risikofaktoren bis maximal zu einem T-Wert von -2:

- periphere Fraktur nach dem 50. Lebensjahr
- TSH < 0,3 mU/l (falls nicht behebbar)
- singuläre Wirbelkörperfraktur 1. Grades
- Diabetes mellitus Typ 1
- proximale Femurfraktur eines Elternteils
- rheumatoide Arthritis
- multiple Stürze
- Billroth II-Operation / Gastrektomie
- Immobilität
- Epilepsie
- Nikotinkonsum
- Hypogonadismus (Serumtestosteron <200 ng/dl)
- antiandrogene Therapie
- subklinischer Hyperkortisolismus
- primärer Hyperparathyreoidismus (konservativ behandelt)
- Aromatasehemmertherapie
- Wachstumshormonmangel bei Hypophyseninsuffizienz
- Deutlicher Knochendichteverlust (≥5%) am Gesamtfemur über 2 Jahre (B)

3) Bei oraler Glukokortikoidtherapie über 3 Monate mit Tagesdosen über 7,5 mg Prednisolonäquivalent und T-Wert unter -1,5 unabhängig vom Lebensalter.

Bei oraler Glukokortikoidtherapie über 3 Monate mit Tagesdosen unter 7,5 mg Prednisolonäquivalent erfolgt eine Anhebung der Therapiegrenze um 1,0 T-Werte, bei Vorliegen eines Risikofaktor um 1,5 T-Werte und bei Vorliegen von zwei oder mehr Risikofaktoren um 2,0 T-Werte bis maximal -2,0.

1.5.4 Zusammenfassung
Über die verschiedenen aufeinander folgenden DVO-Leitlinien wurde der Fokus, der initial 2003 nur bei postmenopausalen und älteren Frauen lag, auch auf Männer erweitert.

2. Zielstellung

Ziel der vorliegenden Arbeit ist die Charakterisierung des Patientenguts, das in den Jahren 1999 bis 2012 aufgrund des klinischen Verdachts auf das Vorliegen einer Osteoporose eine Knochendichtemessung erhielt, und die Interpretation der erhobenen osteodensitometrischen Diagnosen in Hinblick auf epidemiologische Aspekte.

Dadurch sollen Subpopulationen mit besonderem Risiko für die Ausbildung einer Osteoporose identifiziert und die diagnostische Versorgungsrealität an einer großen orthopädischen Klinik dargestellt werden.

Während des Beobachtungszeitraums erschienen die erste Leitlinie des DVO zur Osteoporose und zwei weitere, die zunehmenden Wert auf Berücksichtigung des Frakturrisikos unter Einbeziehung von Risikofaktoren als Grundlage für diagnostische und therapeutische Entscheidungen legten.

Es sollten die Auswirkungen der sich ändernden Empfehlungen auf die Zusammensetzung des Patientenspektrums und die erhobenen Messwerte erfasst werden, um Aussagen zur Treffsicherheit und Implementierung der diagnostischen Empfehlungen und Risikoabschätzung zu treffen und die jeweilige potentielle Therapiebedürftigkeit zu betrachten.
3. Material und Methoden

3.1 Patienten

Es wurde jeweils nur die erste Knochendichtemessung berücksichtigt. Die ausgewerteten Angaben wurden der fortlaufenden Dokumentation entnommen. Erfasst wurden Alter und Geschlecht, Knochendichte und T-Score an LWS und/oder Femur, Zeitpunkt der DXA-Messung und Frakturanamnese. Es wurde hinsichtlich der Frakturen ausschließlich die osteoporotische Fraktur ausgewertet, da zwischen Wirbelkörperfrakturen und peripheren Frakturen in der Dokumentation nicht einheitlich unterschieden und ebenso die Anzahl der Frakturen nicht erfasst wurde.

Das Patientengut setzte sich aus 8769 Frauen und 2068 Männern zusammen. Das mittlere Alter des Kollektivs betrug 65,817 Jahre (Median 67 Jahre), die Frauen waren im Mittel 66,438 Jahre alt (Median 68 Jahre), die Männer im Mittel 63,187 Jahre (Median 65 Jahre). Die Frauen dieser Stichprobe waren signifikant älter (p=0.000).

Die Altersverteilung zeigte einen mäßigen Anstieg ab einem Lebensalter von 40 Jahren, erreichte ein Maximum bei ca. 70 Jahren und fiel dann zum höheren Lebensalter hin steiler ab (s. Abb. 2 und 3).

Abbildung 2: Altersverteilung Gesamtkollektiv, Erläuterungen s. Text

Abbildung 3: Altersverteilung in 10-Jahresgruppen, Erläuterungen s. Text

3.2 Knochendichtemessung
Die Knochendichtemessung erfolgte mittels Dual-Röntgen-Absorptiometrie (engl. Dual-energy X-ray absorptiometry, DXA/DEXA) mit dem Gerät Hologic QDR 4500W (Hologic, Inc., 35 Crosby Drive Bedford, MA, USA) an der Lendenwirbelsäule (L1-L4) und am Schenkelhals.
Bei deutlichen Abweichungen der Knochendichte eines Wirbelkörpers, z.B. aufgrund von Sinterung, degenerativen Veränderungen oder Arteriosklerose, wurde dieser aus der Gesamtmessung herausgenommen.
Die osteodensitometrische Definition der Osteoporose war erfüllt im Fall von Messwerten unter der zweieinhalbfachen Standardabweichung (T-Score ≤ -2,5) an LWS oder Femur im Vergleich zu einem Normkollektiv, eine Osteopenie als T-Score zwischen -1 und -2,5 (DVO-Leitlinie 2009).
Nach diesen Kriterien wurden im Gesamtkollektiv bei 2746 (25,3%) Patienten ein Normalbefund, bei 5099 (47,1%) Patienten eine Osteopenie und bei 2992 (27,6%) Patienten ein T-Score im Sinne einer Osteoporose festgestellt (s. Tab. 7).
Die Osteoporose wurde entsprechend Alter, Geschlecht und Risikofaktoren weiter in die Unterdiagnosen idiopathische Osteoporose, postmenopausale Osteoporose, senile Osteoporose und sekundäre Osteoporose unterteilt.
Mit dem Auftreten von osteoporosetypischen Frakturen wurde die Diagnose als manifeste Osteoporose bzw. als Osteopenie mit Fraktur bezeichnet. 1580 Patienten, also 14,6% des Gesamtkollektivs, wiesen Frakturen auf.

3.3 Auswertung nach Leitlinien-Perioden

Es wurde nach Unterschieden in der Häufigkeit, Geschlechts- und Altersverteilung der Osteoporose und von Frakturen gesucht sowie die Behandlungsbedürftigkeit im Sinne einer spezifischen Osteoporosetherapie nach den verschiedenen Leitlinien betrachtet.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter (Jahre):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>65,82</td>
<td>66,44</td>
<td>63,19</td>
<td>64,77</td>
<td>65,79</td>
<td>67,30</td>
<td>66,65</td>
</tr>
<tr>
<td>Median</td>
<td>67</td>
<td>68</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td>Normalbefund</td>
<td>2746</td>
<td>2132</td>
<td>614</td>
<td>1168</td>
<td>634</td>
<td>543</td>
<td>401</td>
</tr>
<tr>
<td></td>
<td>(25,3%)</td>
<td>(24,3%)</td>
<td>(29,7%)</td>
<td>(27%)</td>
<td>(23,7%)</td>
<td>(24,9%)</td>
<td>(24,2%)</td>
</tr>
<tr>
<td>Osteopenie</td>
<td>5099</td>
<td>4153</td>
<td>946</td>
<td>1986</td>
<td>1270</td>
<td>1029</td>
<td>814</td>
</tr>
<tr>
<td></td>
<td>(47,1%)</td>
<td>(47,4%)</td>
<td>(45,7%)</td>
<td>(46%)</td>
<td>(47,4%)</td>
<td>(47,2%)</td>
<td>(49,1%)</td>
</tr>
<tr>
<td>Osteoporose</td>
<td>2992</td>
<td>2484</td>
<td>508</td>
<td>1167</td>
<td>774</td>
<td>609</td>
<td>442</td>
</tr>
<tr>
<td></td>
<td>(27,6%)</td>
<td>(28,3%)</td>
<td>(24,6%)</td>
<td>(27%)</td>
<td>(28,9%)</td>
<td>(27,9%)</td>
<td>(26,7%)</td>
</tr>
<tr>
<td>Frakturhäufigkeit</td>
<td>1580</td>
<td>1335</td>
<td>245</td>
<td>443</td>
<td>450</td>
<td>421</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>(14,6%)</td>
<td>(15,2%)</td>
<td>(11,8%)</td>
<td>(10,3%)</td>
<td>(16,8%)</td>
<td>(19,3%)</td>
<td>(16,1%)</td>
</tr>
</tbody>
</table>

Tabelle 7: Charakterisierung Patientenkollektiv, Erläuterungen siehe Text

3.4 Datenauswertung und Statistik

Die Datenauswertung erfolgte mit Microsoft Excel 365 und SPSS 14 (IBM, NY, USA).

Statistische Unterschiede unterhalb eines Signifikanzniveaus von p<0,05 wurden als signifikant bewertet.
4. Ergebnisse

4.1 Untersuchung nach Geschlecht, Alter und Diagnose

Das Gesamtkollektiv bestand aus 10837 Patienten und setzte sich zusammen aus 8769 Frauen (80,9%; Mittleres Alter 66,44 Jahre; Median 67 Jahre) und 2068 Männern (19,1%; Mittleres Alter 63,187 Jahre; Median 65 Jahre) (s. Abb. 4). Die Frauen waren signifikant älter (p<0.001).

Abbildung 4: Geschlechterverteilung Gesamtkollektiv, Erläuterungen s. Text

Abbildung 5: Geschlechterverteilung nach Altersgruppen, Erläuterungen s. Text
Abbildung 6: Geschlechterverteilung nach Altersgruppen (unten absolute Patientenzahlen), Erläuterungen s. Text

Von diesem Gesamtkollektiv wurde nach den operationalen Kriterien der WHO nach dem DXA-Knochendichtemesswert bei 2746 (25,3%) Patienten ein Normalbefund, bei 5099 (47,1%) Patienten eine Osteopenie und bei 2992 (27,6%) Patienten eine Osteoporose festgestellt (s. Abb. 7).
Bei der Unterscheidung nach Geschlecht ergab sich für 24,3% der Frauen und 29,7% der Männer ein Normalbefund, eine Osteopenie für 47,34% der Frauen und 45,8% der Männer, eine Osteoporose für 28,3% der Frauen und 24,6% der Männer. Somit lag eine statistisch signifikante Häufung pathologischer Knochendichtemesswerte bei den Frauen vor (p<0,001) (s. Abb. 8).

Abbildung 7: Diagnosenverteilung Gesamtkollektiv, Erläuterungen s. Text
Die senile Osteoporose war die häufigste Unterdiagnose, gefolgt von der postmenopausalen, der idiopathischen und der am seltensten diagnostizierten sekundären Osteoporose (s. Abb. 9).

Die Betrachtung nach Alter und Geschlecht zeigte ein häufigeres Vorkommen pathologischer Knochendichtemesswerte bei Männern der Altersgruppen von 20 bis 49 Jahren im Sinne einer Osteopenie und Osteoporose im Vergleich zu den Frauen. In der Altersgruppe von 50-59 Jahren war der Anteil von Normalbefunden mit 31,28% bei den Frauen und 31,31% bei den Männern gleich, bei Männern lag jedoch der Anteil der Osteoporose mit 26,87% signifikant höher als bei den Frauen mit 19,36% (p<0,05).
In der Altersgruppe von 60-69 Jahren und den folgenden kehrte sich dieses Verhältnis um, mit einem bei Frauen durchgehend signifikant höheren Anteil von pathologischen Knochendichtewerten im Allgemeinen und Osteoporose im Speziellen (p<0,05) (s. Abb. 10).

Bei Frauen unter 50 Jahren wurde in 48,5% eine normale Knochendichte festgestellt, in 41,9% eine Osteopenie und in 9,6% ein Osteoporose, bei Frauen über 50 Jahren lag der Anteil an Normalbefunden bei 22,3%, eine Osteopenie wurde bei 47,8% und eine Osteoporose bei 29,9% festgestellt.

Abbildung 10: Diagnose nach Altersgruppe und Geschlecht, Erläuterungen s. Text

Die Betrachtung der Geschlechterverteilung der Unterdiagnosen ergab bei der idiopathischen Osteoporose einen Männeranteil von 92,51%, von der postmenopausalen Osteoporose waren definitionsgemäß nur Frauen betroffen. Bei der senilen Osteoporose lag der Männeranteil bei 9,76% und von der sekundären Osteoporose waren zu 30,18% Männer betroffen (s. Abb. 11).
Abbildung 11: Geschlechterverteilung Unterdiagnosen, Erläuterungen s. Text

Die Betrachtung der Altersverteilung der Unterdiagnosen zeigte einen relativ stabilen Anteil der idiopathischen Osteoporose von 8,33%, 11,29% und 10,14% in den Altersgruppen von 20-49 Jahren, in den beiden folgenden Altersgruppen bis 69 Jahren nimmt der Anteil rasch ab auf 5,36% und 3,71%.

Die postmenopausale Osteoporose stellte in der Altersgruppe von 40-49 Jahren einen Anteil von 2,5%, dieser stieg in den beiden folgenden Altersgruppen auf 13,9 und 19,62%.

Ab dem Alter von 70 Jahren wurde eine neu diagnostizierte Osteoporose als senil klassifiziert, der Anteil dieser Unterdiagnose stieg von 30,57% bei den 70-79-Jährigen auf 44,76% bei den 80-89-Jährigen und 64,29% bei den über 90-Jährigen.

Die sekundäre Osteoporose stellte bei den 20-29-Jährigen einen Anteil von 19,44%, bei den 30-39-Jährigen von 4,3% und fiel dann in den folgenden Altersgruppen auf 2,24%, 1,77%, 1,4%, 1,42% und 0,6% (s. Abb. 12). Die Unterschiede in der Verteilung der Unterdiagnosen waren zwischen allen benachbarten Altersgruppen signifikant (p<0,05).
4.2. Untersuchung der Frakturhäufigkeit

Bei 14,6% der Patienten wurden osteoporotische Frakturen erfasst. Frauen litten mit 15,2% ca. 30% signifikant häufiger an Frakturen als Männer mit 11,8% (p<0,001) (s. Abb. 13).

Abbildung 12: Unterdiagnosen nach Altersgruppen, Erläuterungen s. Text

Abbildung 13: Frakturen nach Geschlecht (0=keine Fraktur, 1=Fraktur), Erläuterungen s. Text

Unterhalb von 50 Jahren gab es zwischen den Altersgruppen keine signifikanten Unterschiede in der Frakturhäufigkeit, sie lag bei 0% bei den 20-29-Jährigen, 3,76% bei den 30-39-Jährigen und 5,01% bei den 40-49-Jährigen.

Ab einem Patientenalter von 50 Jahren nahm sie mit steigender Altersgruppe in immer größерem Ausmaß signifikant zu (p jeweils <0,001). Der Frakturanteil lag bei den 50 bis 59 Jährigen bei 5,47%, bei den 60 bis 69-Jährigen bei 9,19%, bei den 70 bis 79-
Jährigen bei 21,03%. Bei den 80 bis 89-Jährigen lag der Frakturanteil mit 36,36% über einem Drittel, bei den über 90-Jährigen mit 60,71% fast bei zwei Dritteln (s. Abb. 14).

Abbildung 14: Frakturen nach Altersgruppen, Erläuterungen s. Text

Nach Alter und Geschlecht aufgeschlüsselt zeigte sich eine signifikant höhere Frakturrate bei Männern ab der Altersgruppe von 30-39 Jahren bis zur Altersgruppe von 50-59 Jahren (p<0,05). In der folgenden Altersgruppe von 60-69 Jahren war der Frakturanteil mit 9,19% bei Frauen und 9,21% bei Männern gleich (p=0,986). In den folgenden Altersgruppen war die Frakturrate bei den Frauen signifikant höher als bei den Männern (s. Abb. 15) (p<0,001).

Abbildung 15: Frakturen nach Altersgruppen und Geschlecht, Erläuterungen s. Text

Bei Osteoporose lagen mit 49,9% bei der Hälfte der Patienten Frakturen vor, bei Osteopenie bei 1,7%, bei Patienten mit Normalbefund wurden keine Frakturen
angegeben. Die Betrachtung der Frakturhäufigkeit nach Unterdiagnosen zeigte den höchsten Anteil an Frakturen bei der senilen Osteoporose mit 69,13%, bei der idiopathischen Osteoporose lag der Frakturanteil mit 38,6% über dem der postmenopausalen Osteoporose mit 29,9%. Bei den Patienten mit sekundärer Osteoporose betrug der Anteil mit Frakturen 0,6% (s. Abb. 16).

Die Unterschiede waren zwischen allen Gruppen hochsignifikant (p<0,001), mit Ausnahme des Vergleichs zwischen Osteopenie und sekundärer Osteoporose (p=0,260).

Abbildung 16: Frakturen nach Unterdiagnosen, Erläuterungen s. Text

4.3 Untersuchung nach Lokalisation des diagnosebestimmenden T-Scores

Für die osteodensitometrischen Diagnosen Osteopenie und Osteoporose wurde die Lokalisation des diagnosebestimmenden Knochendichtemesswertes erfasst und ausgewertet.

In 41,9% der Fälle waren nur die LWS und in 39% LWS und Femur gleichzeitig betroffen, zu 19,1% nur das Femur. Somit war der T-Score der LWS in 80,9% der Fälle maßgebend für die Diagnose Osteoporose, das Femur in 58,1% (s. Abb. 17).

Nach den Geschlechtern aufgeschlüsselt, war bei Männern die LWS mit 46% signifikant häufiger allein betroffen, LWS und Femur zusammen in 36%, das Femur allein in 18%. Bei den Frauen ergaben sich ähnliche Zahlen wie in der Gesamtbetrachtung: die LWS allein wies in 40,94% osteoporotische T-Scores auf, LWS und Femur in 39,73%, das Femur allein in 19,33% (p<0,001).
Die LWS wies also bei beiden Geschlechtern in über 80% der Osteoporosefälle (Frauen 80,67%, Männer 81,99%) T-Scores kleiner -2,5 auf und war somit diagnosebestimmend, das Femur in knapp 60% (Frauen 59,06%, Männer 53,69%) (s. Abb. 18).

Abbildung 17: Lokalisation des diagnosebestimmenden T-Scores im Gesamtkollektiv, Erläuterungen s. Text

Abbildung 18: Lokalisation des diagnosebestimmenden T-Scores nach Geschlecht, Erläuterungen s. Text

Die mit 21,1% höchste Frakturhäufigkeit lag bei alleinigem Befall der LWS vor und war signifikant höher (p<0,05) als bei alleinigem Befall des Femur mit 18,65% und simultanem Befall von Femur und LWS mit 18,19%.

Bei der Betrachtung der Lokalisation des diagnosebestimmenden T-Scores ergaben sich über die Beobachtungsperioden keine signifikanten Unterschiede (p>0,05)(s. Abb. 19). Auch bei Aufteilung nach Geschlecht ergaben sich keine relevanten Änderungen (nicht dargestellt).
4.4 Betrachtung des T-Scores

In der Summe und über alle Diagnosen und Altersgruppen betrachtet, lag der durchschnittliche T-Score der Frauen mit -1,8 signifikant niedriger als bei den Männern mit -1,63 (p<0,001).

Innerhalb der Hauptdiagnosen Normalbefund, Osteopenie und Osteoporose unterschieden sich die T-Scores zwischen den Geschlechtern jedoch nicht signifikant (p>0,05) (s. Abb. 20 und 21).

Auch innerhalb der Unterdiagnosen gab es keine signifikanten Unterschiede des T-Scores zwischen den Geschlechtern.
Abbildung 21: Durchschnittlicher T-Score nach Geschlecht und Diagnose, Erläuterungen s. Text

Abbildung 22: Durchschnittlicher T-Score nach Altersgruppe, Erläuterungen s. Text

Bis zur Altersgruppe 50-59 Jahre hatten Männer einen niedrigeren T-Score als Frauen, ab der Altersgruppe ab 60 Jahren kehrte sich dies um. Diese Unterschiede waren in allen Gruppen signifikant (p<0,05), bis auf die Gruppe der 20—29 Jährigen (p=0,579) bei geringer Patientenzahl und der Gruppe der 50-59 Jährigen (p=0,058), in der sich das Verhältnis umkehrte (s. Abb. 23).
Abbildung 23: Durchschnittlicher T-Score nach Altersgruppe und Geschlecht, Erläuterungen s. Text

Bei Normalbefund gab es keine signifikanten Unterschiede beim T-Score über alle Lebensalter.

Innerhalb der Diagnose Osteopenie gab es zwischen benachbarten Altersgruppen keine signifikanten Unterschiede.

In den Beobachtungsperioden zeigte sich durchgehend ein niedrigerer T-Score bei den Frauen im Vergleich zu den Männern, dieser Unterschied war jedoch abnehmend und nur in den ersten beiden Beobachtungsperioden signifikant (p<0,05) (s. Abb. 24).

Abbildung 24: Durchschnittlicher T-Score nach Periode und Geschlecht, Erläuterungen s. Text

Abbildung 25: Durchschnittlicher T- Score nach Diagnosen und Perioden, Erläuterungen s. Text

Bei Betrachtung der Lokalisation des diagnosebestimmenden Scores ergab sich ein signifikant höherer T-Score, wenn nur die LWS oder nur das Femur pathologische Messwerte im Sinne der Diagnose aufwiesen (p<0,05). Zwischen dem durchschnittlichen T-Score am Femur und an der LWS gab es bei der Osteoporose keinen signifikanten Unterschied (s. Abb. 26).

Bei Osteopenie war außerdem der T-Score bei alleinigem Befall der LWS signifikant niedriger als bei alleinigem Befall des Femur (p<0,05).
Bei beiden Geschlechtern ergab sich eine ähnliche Verteilung des T-Scores in Abhängigkeit von der Lokalisation. Signifikante Unterschiede zwischen Männern und Frauen ergaben sich nur bei gleichzeitigem Befall von LWS und Femur mit einem niedrigeren durchschnittlichen T-Score von -2,43 bei den Frauen und -2,32 bei den Männern (p<0,01) (s. Abb. 27). Bei alleinigem Befall der LWS ergaben sich T-Scores von durchschnittlich -2,34 (Frauen) und -2,36 (Männer). Bei ausschließlichem Befall des Femurs ergaben sich etwas höhere T-Scores von -2,03 bei Frauen und -1,92 bei Männern (p>0,05) (s. Abb. 28).

Abbildung 26: Durchschnittlicher T-Score nach Diagnosen und Lokalisation, Erläuterungen s. Text

Abbildung 27: Durchschnittlicher T-Score nach Geschlecht und Lokalisation, Erläuterungen s. Text
Abbildung 28: Durchschnittlicher T-Score nach Diagnose, Geschlecht und Lokalisation, Erläuterungen s. Text

Bei Osteopenie ergaben sich definitionsgemäß höhere T-Scores an allen Messorten. Innerhalb der Osteoporoseuntergruppen zeigte sich eine ähnliche Verteilung mit niedrigerem T-Score bei gleichzeitigem Befall von LWS und Femur. Signifikante Unterschiede ergaben sich zwischen den Osteoporose-Unterdiagnosen nur für den alleinigen Befall der LWS zwischen der idiopathischen (T\(-3,11\)) und postmenopausalen Osteoporose (T\(-2,98\)) sowie zwischen der postmenopausalen (T\(-2,98\)) und der senilen Osteoporose (T\(-3,09\)) (p<0,01) (s. Abb. 29).

Bei manifester Osteoporose und bei Osteopenie mit Fraktur ließ sich ein signifikant niedrigerer T-Score feststellen als bei Patienten ohne Fraktur (p<0,001) (s. Abb. 30).
Abbildung 29: Durchschnittlicher T-Score nach Lokalisation und Unterdiagnosen, Erläuterungen s. Text

Abbildung 30: Durchschnittlicher T-Score nach Diagnosen und Fraktur (0/blau = ohne Fraktur, 1/rot = mit Fraktur), Erläuterungen s. Text

4.5 Untersuchung nach Beobachtungsperioden

Die erhobenen Daten wurden je nach Erhebungsdatum vier Zeiträumen zugeordnet, die jeweils zum Jahresbeginn nach Erscheinung einer neuen DVO-Leitlinie begannen bzw. endeten. Diese Festlegung erfolgte aus der Annahme, dass für die Verbreitung und Implementierung einer Leitlinie im praktischen und klinischen Alltag etwa ein halbes Jahr nötig ist.

In der ersten Beobachtungsperiode von 1999 bis 2003 war der Anteil von Männern mit 20,7% signifikant höher (p jeweils <0,05) als in allen anderen Beobachtungsperioden mit jeweils ca. 18%, zwischen den folgenden Beobachtungsperioden ergaben sich keine signifikanten Unterschiede (s. Abb. 31).
Abbildung 31: Geschlechtsverteilung nach Periode, Erläuterungen s. Text

In den ersten drei Beobachtungsperioden stieg der Altersdurchschnitt von 64,77 Jahren auf 65,79 und 67,30 Jahre hochsignifikant an (p<0,01). Zur letzten Beobachtungsperiode ab 2010 fiel der Altersdurchschnitt auf 66,65 Jahre, dieser Abfall war jedoch nicht signifikant (p=0,151) (s. Abb. 32).

Die zunehmende Zahl älterer PatientInnen schlug sich auch in der Altersgruppenverteilung in den Beobachtungsperioden nieder. Es zeigte sich ein steigender Anteil der über 70-Jährigen. Die Unterschiede in der Verteilung der Altersgruppen waren zwischen allen benachbarten Beobachtungsperioden signifikant (p<0,05) (s. Abb. 33).

Abbildung 32: Altersdurchschnitt nach Periode, Erläuterungen s. Text
Über die Beobachtungsperioden veränderte sich auch die Verteilung der Diagnosen. Der Anteil der osteodensitometrischen Normalbefunde nahm von 27,03% in der Periode 1999-2003 auf ca. 24% in den folgenden Perioden ab. Der Anteil der Diagnose Osteopenie stieg von 45,96% auf 49,12%. Die Häufigkeit der Diagnose Osteoporose stieg von 1999 zu 2004 von 27,01% auf 28,9% und betrug in den beiden folgenden Beobachtungsperioden 27,92% und 26,67%. Dabei war nur der Unterschied von der ersten zur zweiten Periode statistisch signifikant (p<0,05) (s. Abb. 34).

Bei Betrachtung der Unterdiagnosen fiel ein Rückgang der Diagnose idiopathische Osteoporose von 3,56% in der Periode 1999 auf 3,21%, 2,71% und 2,11% in den
folgenden drei Perioden auf. Die Häufigkeit der senilen Osteoporose stieg stetig von 13,19% auf 14,12%, 14,99% und 15,15% im gleichen Zeitraum.

Die postmenopausale Osteoporose stellte in der ersten Periode einen Anteil von 8,35%, dieser stieg zur zweiten an auf 10,34% und fiel in den folgenden Perioden wieder auf 9,12% und 8,21%.

Die Diagnose sekundäre Osteoporose wurde nur sehr selten gestellt, der Anteil lag in allen Perioden zwischen 1,1% und 1,9%.

Auch in der Verteilung der Unterdiagnosen war nur der Unterschied von der ersten zur zweiten Periode statistisch signifikant (p<0,05) (s. Abb. 35).

Abbildung 35: Unterdiagnosen nach Periode, Erläuterungen s. Text

In den ersten drei Perioden zeigte sich ein kontinuierlich zunehmender Frakturanteil von 10,25% (1999-2002) auf 16,8% (2004-2006) und 19,3% (2007-2009), zur letzten Beobachtungsperiode 2010-2012 fiel der Anteil wieder auf 16,05% (s.Abb. 36). Die Unterschiede waren zwischen allen benachbarten Perioden statistisch signifikant (p<0,05). In der Unterteilung nach Geschlecht zeigte sich bei den Männern ein stetig steigender Frakturanteil von 7,15% in der ersten auf 16,84% in der vierten Beobachtungsperiode, dabei war nur der Anstieg von der ersten zur zweiten Beobachtungsperiode statistisch signifikant (p=0,001). Bei den Frauen stieg der Frakturanteil von 11,06% auf 17,38% und 20,07% und fiel zur letzten Periode auf 15,88%, dabei war der Anstieg von der ersten zur zweiten und der Abfall von der dritten zur vierten Periode statistisch signifikant (p<0,05) (s.Abb.37).
Abbildung 36: Frakturen nach Periode (0 = keine Fraktur, 1 = mit Fraktur), Erläuterungen s. Text

Abbildung 37: Frakturen nach Geschlecht und Periode (0 = keine Fraktur, 1 = mit Fraktur), Erläuterungen s. Text

Abbildung 38: Frakturen nach Altersgruppen und Perioden 20-59 Jahre (0 = keine Fraktur, 1 = mit Fraktur, Erläuterungen s. Text)

Abbildung 39: Frakturen nach Altersgruppen und Perioden 60- >90 Jahre (0 = keine Fraktur, 1 = mit Fraktur, Erläuterungen s. Text)

4.6 Untersuchung der theoretischen Therapieindikation nach den DVO-Leitlinien 2003 und 2006

Der Anteil der theoretischen Therapieindikation nach den Leitlinien 2003 lag in den vier Beobachtungsperioden bei 23,05%, 26,06%, 26,13% und 24,38%, nach den Leitlinien 2006 bei 29,88%, 33,12%, 32,14% und 30,96%. Damit wäre nach der DVO-Leitlinie 2006 im Vergleich zur DVO-Leitlinie 2003 in der ersten Beobachtungsperiode 29,6%, in der zweiten 27%, der dritten 22% und in der vierten 27% häufiger die Indikation zur spezifischen Osteoporosetherapie gestellt worden (p jeweils <0,001). Dabei lag die Anzahl der zu therapiierenden Patienten nach der DVO-Leitlinie 2003 immer niedriger als die Häufigkeit der osteodensitometrischen Diagnose Osteoporose, nach der DVO-Leitlinie 2006 lag sie darüber. Der Anteil der positiven Therapieempfehlungen stieg nach jeweils beiden Leitlinien zwischen der ersten und der zweiten Beobachtungsperiode um jeweils ca. drei Prozent signifikant an (p<0,05), in den folgenden Perioden fanden sich keine signifikanten Unterschiede (s. Abb. 40).

Die Betrachtung nach Geschlecht zeigte einen signifikant höheren Anteil positiver Therapieempfehlungen nach den DVO-Leitlinien 2006 bei beiden Geschlechtern in jeder einzelnen Beobachtungsperiode (p<0,001), der Unterschied fällt jedoch bei den Männern wesentlich höher aus: Während nach den DVO-Leitlinien 2003 Männer nur in 7,01% der Fälle eine spezifische Osteoporosetherapie erhalten hätten, so waren es nach den DVO-Leitlinien 2006 mit 25,29% mehr als dreimal so viele, bei den Frauen
betrugen die entsprechenden Anteile 28,77% und 32,72% (bezogen auf das Gesamtkollektiv).

Bezogen auf die Beobachtungsperioden zeigte sich ein signifikanter Anstieg positiver Therapieempfehlungen nach beiden Leitlinien für die Frauen von der ersten zur zweiten Beobachtungsperiode (p<0,05), sonst zeigten sich zwischen den Beobachtungsperioden keine signifikanten Unterschiede (s. Abb. 41 und 42).

Abbildung 41: Therapieempfehlungen nach DVO-Leitlinie 2003 nach Geschlecht und Beobachtungsperioden (0=keine Therapie, 1=spezifische Osteoporosetherapie empfohlen); Erläuterungen siehe Text

Abbildung 42: Therapieempfehlungen nach DVO-Leitlinie 2006 nach Geschlecht und Beobachtungsperioden (0=keine Therapie, 1=spezifische Osteoporosetherapie empfohlen); Erläuterungen siehe Text
5. Diskussion

5.1 Geschlecht, Alter und Diagnosen

Das untersuchte Kollektiv setzte sich aus 81% Frauen und 19% Männern zusammen. Ab einem Patientenalter von 50 Jahren stiegen die Patientenzahlen an und erreichten ein Maximum bei 69 Jahren, mit dem Alter nahm auch der Anteil der Frauen zu. Der Altersdurchschnitt lag bei den Frauen höher als bei den Männern.

Dies spiegelt in Anbetracht der höheren Prävalenz der Osteoporose bei postmenopausalen Frauen und älteren Menschen (Riggs et al. 1998, Bartl und Gradinger 2009) den diagnostischen Fokus auf diese Patientengruppen wider. In der Tat wurde von uns bei Frauen signifikant häufiger (75,7%) als bei Männern (70,3%) eine pathologische Knochendichte festgestellt, ebenso mit steigendem Lebensalter.

Insgesamt lag bei beiden Geschlechtern eine vergleichbare Verteilung der Hauptdiagnosen vor, mit 24% Normalbefunden bei Frauen und 30% bei Männern, 47% bzw. 46% Osteopenie und 28% bzw. 25% Osteoporose. Es gab jedoch eine statistisch signifikante Häufung pathologischer Knochendichtemesswerte im Sinne einer Osteopenie und Osteoporose bei den Frauen.

Bei den untersuchten Männern lag der Anteil an Osteoporose Betroffener bis zum Alter von 59 Jahren bei ca. 30% und damit über dem der Frauen, fiel dann im höheren Alter aber bis auf Werte von 22% ab. Währenddessen zeigte sich bei den Frauen ab 50 Jahren, also etwa mit dem Eintreten der Menopause, ein stetig steigender Anteil an Osteoporose. Damit waren bemerkenswerterweise Männer bis zum Alter von 59 Jahren in höherem Maße als Frauen von erniedrigten Knochendichtemesswerten im Sinne einer Osteoporose betroffen. In den höheren Altersgruppen ab einem Alter von 60 Jahren kehrte sich dieses Verhältnis um, bedingt durch die steigende Häufigkeit der postmenopausalen Osteoporose und der senilen Osteoporose, von der im untersuchten Kollektiv zu 90% Frauen betroffen waren.

Besonders auffällig war in der Altersgruppe von 20-29 Jahren eine hohe Osteoporoserate von 26% bei den Frauen und 29% bei den Männern, welche die der folgenden Altersgruppe übertraf. Bei (prämenopausalen) Frauen unter 50 Jahren lag der Anteil von Osteoporose und Osteopenie mit 9,6% und 41,9% deutlich niedriger als bei (postmenopausalen) Frauen ab 50 Jahren mit 29,9% und 47,8%. Bei den Männern betrugen die Anteile von Osteoporose und Osteopenie 29,5% und 44,5% unter 50
Jahren, darüber 23,8% und 45,9%, hier zeigte sich also keine ausgeprägte Altersabhängigkeit. Einschränkend muss erwähnt werden, dass nur 9% der untersuchten Patienten unter 50 Jahre alt waren. Nur 57 Patienten (0,5%) hatten ein Lebensalter von 90 Jahren oder höher erreicht.

Die senile Osteoporose war die zahlenmäßig häufigste Unterdiagnose, gefolgt von der postmenopausalen und der idiopathischen Osteoporose. Die sekundäre Osteoporose wurde insgesamt nur selten und vor allem bei jungen Patienten unter 40 Jahren diagnostiziert. Bei der idiopathischen Osteoporose zeigte sich ein überwiegender Männeranteil von 92,5%, von allen anderen Osteoporoseformen waren hauptsächlich Frauen betroffen, definitionsgemäß im Falle der postmenopausalen mit 100%, aber besonders auch von der senilen Osteoporose mit 90% Frauenanteil.

In dieser Untersuchung wurden nur Patienten erfasst, die aufgrund des klinischen Verdachts einer systemischen Knochenerkrankung einer Knochendichtemessung zugeführt wurden. Demzufolge lag der Anteil von an Osteoporose Erkrankten höher als in anderen epidemiologischen Studien, die andere Grundgesamtheiten auf Bevölkerungsebene untersuchten (siehe unten). Das vorliegende Patientengut bestand zu 19,1% aus Männern. Diese waren zwar signifikant seltener von Osteoporose betroffen, jedoch war die Osteoporoserate in der Größenordnung prinzipiell vergleichbar mit der der Frauen und deutlich höher als in anderen bevölkerungsbasierten Studien, die im Folgenden beschrieben werden.

In der Bone Evaluation Study betrug die Prävalenz der Osteoporose bei über 50 Jährigen 14% im Gesamtkollektiv bzw. 24% bei Frauen und 6% bei Männern (Hadji et al. 2013). Nach Altersgruppen aufgeschlüsselt, betrug die Osteoporoseprävalenz bei Frauen 17% in der Gruppe von 50–64 Jahren, 32% im Alter von 65–75 Jahren und 48% ab 75 Jahren. Die entsprechenden Werte für Männer betrugen 4%, 8% und 15%.

Osteoporoseprävalenz von 6% bei Männern und 21% bei Frauen im Alter von 50 bis 80 Jahren. Auch hier zeigte sich ein Anstieg der Prävalenz von 6,3% im Alter von 50-54 Jahren auf 47,2% im Alter von 80-84 Jahren bei Frauen und entsprechend von 2,5% auf 16,6% bei Männern (Kanis et al. 2004).

5.2 Frakturen

Bei 14,6% der Patienten wurden osteoporotisch bedingte Frakturen erfasst. Die Prävalenz osteoporotischer Frakturen war im Gesamtkollektiv bei den Frauen (15,2%) höher als bei den Männern (11,8%).

Die Patientenzahl in den Altersgruppen von 20 bis 39 Jahren war mit insgesamt 222 Patienten, das entspricht 2% des Gesamtkollektivs, über einen Zeitraum von 12 Jahren gering, dennoch zeigt der relevante Anteil von pathologischen

In der Untergruppe der senilen Osteoporose, die einen Frauenanteil von über 90% aufwies, lag die Frakturrate mit über zwei Dritteln am höchsten, dies entspricht der Alters- und Geschlechtsverteilung der Häufigkeit osteoporotischer Frakturen in dieser Untersuchung. An zweiter und dritter Stelle lagen die idiopathische Osteoporose mit einem Männeranteil von 92% und die postmenopausale Osteoporose. Bemerkenswerterweise wurden bei Patienten mit sekundärer Osteoporose kaum Frakturen (1 Fall = 0,59%) erfasst.

Im Gegensatz dazu wird in der Literatur die sekundäre Osteoporose für 5% aller Osteoporosefälle und 20% aller osteoporotischen Frakturen verantwortlich gemacht (Lange und Mueller-Ladner 2007). Eine mögliche Erklärung für die seltene Diagnose einer sekundären Osteoporose in der vorliegenden Untersuchung und die ausgesprochen niedrige Frakturhäufigkeit in dieser Patientengruppe könnte das Vorhandensein einer universitären rheumatologischen und Osteoporose-Ambulanz in mittelbarer räumlicher Nähe und die bevorzugte Einbindung schwerer Fälle dort sein.

Auch bei der Betrachtung der Frakturhäufigkeit im untersuchten Kollektiv ist der Selektionseffekt durch die Zuweiser unter dem Verdacht auf das Vorliegen einer Osteoporose zu berücksichtigen. Außerdem dürfte eine Rolle gespielt haben, dass bis zum 10.05.2013 die Kostenübernahme der Knochendichtemessung durch die gesetzlichen Krankenkassen nur nach stattgehabter inadäquater Fraktur erfolgte (Bundesministerium für Gesundheit 2013) und andernfalls die DXA-Messung selbst zu bezahlen war.

Im vorliegenden, durch die Zuweisung zur Knochendichtemessung vorselektionierten, Patientengut lag die Frakturhäufigkeit natürlich wesentlich höher als in Studien auf Bevölkerungsebene, die im Folgenden beschrieben werden.

Besonders auffällig war die mit 9-13% hohe Frakturhäufigkeit von Männern zwischen 30 und 59 Jahren, die in den höheren Altersgruppen bis 23 % stieg. In der Altersgruppe von 60-69 Jahren war die Frakturhäufigkeit bei Männern und Frauen gleich. Bei den
Frauen stieg die Frakturhäufigkeit ab einem Alter von 70 Jahren steil auf Werte von 22% bei den 70-79-Jährigen, 38% bei den 80-89-Jährigen und 68% bei den über 90-Jährigen und war damit in diesen Altersgruppen stets höher als die der Männer.

In der Literatur wurden auf Bevölkerungsebene in Schweden 10-Jahreswahrscheinlichkeiten für osteoporotische Frakturen von 2,6% bei Männern und 3,8% bei Frauen im Alter von 45-49 Jahren bis hin zu 13,1% und 27% im Alter von 85-89 Jahren angegeben. In höherem Alter fiel die Frakturwahrscheinlichkeit etwas ab. Es zeigte sich eine zunehmende Differenz zwischen den Geschlechtern ab dem Alter von 50 Jahren (s. Abb. 43) (Kanis et al. 2000).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Forearm Men</th>
<th>Forearm Women</th>
<th>Hip Men</th>
<th>Hip Women</th>
<th>Spine Men</th>
<th>Spine Women</th>
<th>Proximal humerus Men</th>
<th>Proximal humerus Women</th>
<th>Any of these Men</th>
<th>Any of these Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>1.2</td>
<td>2.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.8</td>
<td>0.6</td>
<td>0.5</td>
<td>0.8</td>
<td>2.6</td>
<td>3.8</td>
</tr>
<tr>
<td>50</td>
<td>1.2</td>
<td>3.9</td>
<td>0.8</td>
<td>0.6</td>
<td>1.1</td>
<td>1.2</td>
<td>0.5</td>
<td>1.2</td>
<td>3.3</td>
<td>6.0</td>
</tr>
<tr>
<td>55</td>
<td>1.3</td>
<td>4.7</td>
<td>0.8</td>
<td>1.2</td>
<td>1.4</td>
<td>1.7</td>
<td>0.4</td>
<td>1.4</td>
<td>3.9</td>
<td>7.8</td>
</tr>
<tr>
<td>60</td>
<td>1.7</td>
<td>5.6</td>
<td>1.2</td>
<td>2.3</td>
<td>1.7</td>
<td>2.7</td>
<td>0.7</td>
<td>2.3</td>
<td>4.9</td>
<td>10.6</td>
</tr>
<tr>
<td>65</td>
<td>1.5</td>
<td>6.5</td>
<td>2.1</td>
<td>3.9</td>
<td>2.1</td>
<td>4.3</td>
<td>1.3</td>
<td>3.4</td>
<td>5.9</td>
<td>14.3</td>
</tr>
<tr>
<td>70</td>
<td>0.9</td>
<td>7.2</td>
<td>3.4</td>
<td>7.3</td>
<td>3.1</td>
<td>5.9</td>
<td>1.5</td>
<td>4.4</td>
<td>7.6</td>
<td>18.9</td>
</tr>
<tr>
<td>75</td>
<td>1.2</td>
<td>7.6</td>
<td>5.9</td>
<td>11.7</td>
<td>3.8</td>
<td>6.5</td>
<td>1.5</td>
<td>5.0</td>
<td>10.4</td>
<td>22.9</td>
</tr>
<tr>
<td>80</td>
<td>1.4</td>
<td>7.3</td>
<td>7.6</td>
<td>15.5</td>
<td>4.4</td>
<td>6.9</td>
<td>1.9</td>
<td>3.6</td>
<td>13.1</td>
<td>26.5</td>
</tr>
<tr>
<td>85</td>
<td>1.1</td>
<td>6.0</td>
<td>7.1</td>
<td>16.1</td>
<td>4.0</td>
<td>6.8</td>
<td>2.3</td>
<td>6.3</td>
<td>13.1</td>
<td>27.0</td>
</tr>
<tr>
<td>90</td>
<td>0.8</td>
<td>4.3</td>
<td>6.2</td>
<td>12.4</td>
<td>1.4</td>
<td>5.0</td>
<td>2.1</td>
<td>5.8</td>
<td>10.3</td>
<td>21.4</td>
</tr>
<tr>
<td>95</td>
<td>1.3</td>
<td>2.8</td>
<td>5.2</td>
<td>8.0</td>
<td>0.1</td>
<td>2.6</td>
<td>1.3</td>
<td>3.9</td>
<td>8.3</td>
<td>13.9</td>
</tr>
</tbody>
</table>

Abbildung 43: 10-Jahreswahrscheinlichkeit osteoporotischer Frakturen in der Bevölkerung von Malmö (Kanis et al. 2000)

Untersuchungen in Großbritannien an Personen ab 50 Jahren ergaben Lebenswahrscheinlichkeiten für osteoporotische Frakturen von 53,2% für Frauen und 20,7% für Männer im Alter von jeweils 50 Jahren. Das 10-Jahres-Risiko stieg bei den Frauen von 9,8% im Alter von 50 bis auf 21,7% im Alter von 80 Jahren. Bei den Männern blieb es relativ stabil zwischen 5,7% und 8% (Holroyd et al. 2008).

Die oben genannten Studien, die osteoporotische Frakturen untersuchten und dabei Menschen ab einem Lebensalter von 45 oder 50 Jahren betrachteten, stellten in jedem Alter ein höheres Frakturrisiko bei Frauen fest. Unsere Ergebnisse stehen dazu im Gegensatz und sind am ehesten durch den Selektionseffekt der Zuweisung bedingt.

Melton et al. untersuchten die 1-Jahresfrakturinzidenz 1990 in Olmsted County, Minnesota, unabhängig von der Genese der Fraktur. Sie fanden eine höhere Frakturhäufigkeit bei Männern im Vergleich zu den Frauen im Alter von 35 bis 44 Jahren, im höheren Lebensalter war das Verhältnis umgekehrt (Melton et al. 1999). Das fanden wir bestätigt. Bei den Frauen war die Frakturhäufigkeit mit steigendem Lebensalter stetig zunehmend, bei den Männern war sie im Alter von 44-49 Jahren am

Männer haben, verglichen mit Frauen, eine um 10-15% höhere peak bone mass und aufgrund einer durchschnittlich größeren Körperhöhe eine bessere Knochengeometrie, die höheren Belastungen standhält. Dennoch treten bis zum Alter von ca. 50 Jahren bei Männern häufiger Frakturen auf, zumeist traumatisch bedingt (s. Abb. 43) (Court-Brown und Caesar 2006). Mögliche Erklärungen für das häufigere Auftreten von Frakturen in relativ jungen Jahren mag eine erhöhte Risikobereitschaft von Männern sein mit konsekutiv häufigeren Unfällen.

Auch in unserer Untersuchung traten im Alter unter 50 Jahren bei Männern mehr Frakturen als bei Frauen auf. In der Dokumentation wurden erlittene Frakturen unabhängig von deren Genese erfasst, so dass diesbezüglich keine detaillierten Aussagen getroffen werden konnten. Die Zuweisung zur Knochendichtemessung lässt jedoch den Verdacht auf das Vorliegen einer osteologischen Grunderkrankung vermuten.

zunehmende Sturzgefährdung und Immobilität (s. Abb. 44 und 45) (Melton et al. 1999, Court-Brown und Caesar 2006).

Dies erklärt die in der Postmenopause steil zunehmende Frakturinzidenz bei Frauen, welche die der Männer übertrifft, dabei geht die Schere zwischen der Frakturinzidenz beider Geschlechter mit steigendem Alter weiter auseinander. Diese Verteilung wurde auch in der vorliegenden Untersuchung gefunden.

Abbildung 44: Frakturinzidenz pro 1000 Personenjahre nach Alter in Edinburgh im Jahr 2000 (Court-Brown und Caesar 2006)

Abbildung 45: Frakturinzidenz pro 100.000 Personenjahre in Olmsted County, Minnesota, im Jahr 1990 (Melton et al. 1999)
5.3 Lokalisation des diagnosebestimmenden T-Scores
Pathologische Knochendichtemesswerte, die zur Diagnose Osteopenie oder Osteoporose führten, wurden häufiger an der LWS (80%) als am Femur (58,1%) gemessen, in 39% waren beide Messorte betroffen. Bei den Männern war etwas häufiger die LWS allein betroffen, bei den Frauen wurden häufiger an LWS und Femur simultan pathologische DXA-Werte registriert, die LWS war dabei insgesamt jedoch annähernd genauso oft betroffen wie bei den Männern, das Femur entsprechend häufiger. Diese Verteilung blieb über die Beobachtungsperioden stabil (keine signifikanten Änderungen, p<0,05).

Bemerkenswerterweise lag die mit 21,1% signifikant höchste Frakturhäufigkeit bei alleinigem Befall der LWS vor, bei alleinigem Befall des Femur betrug sie 18,65% und bei simultanem Befall von Femur und LWS 18,19%. Betrachtet man den T-Score nach Lokalisation innerhalb der Diagnosegruppe Osteoporose, ergibt sich ein signifikant niedrigerer Wert für den simultanen Befall von LWS und Femur. Vor diesem Hintergrund ist die hohe Frakturrate bei alleinigem Befall der LWS noch auffälliger. Dieser Befund könnte für einen hohen Anteil von Wirbelkörperfrakturen sprechen, was sich jedoch leider aufgrund der Art der Frakturerfassung nicht nachvollziehen lässt.

Die SOF-Studie stellte Unterschiede im Frakturrisiko und der Verteilung osteoporotischer Frakturen bei Frauen fest, wenn nur die LWS oder das Femur allein im Sinne diskordanter Knochendichtemesswerte einen pathologischen T-Score aufwies. Dabei war eine Osteoporose des Femurs mit einem dreifach höheren Risiko für proximale Femurfrakturen, 1,6-fach erhöhtem Risiko für andere periphere Frakturen, 2,2-fach für klinische und 1,5-fach erhöhtem Risiko für morphometrische Wirbelkörperfrakturen assoziiert. Frauen mit einer isolierten Osteoporose der LWS hatten ein 2,8-fach erhöhtes Risiko für morphometrische Wirbelkörperfrakturen, ein
1,4-fach höheres Risiko für klinische Wirbelkörperfrakturen und ein 1,6-fach höheres Risiko für andere periphere Frakturen, das Risiko für proximale Femurfrakturen war nur 1,2-fach erhöht und nicht unabhängig von der Knochendichte am Femur (Fink et al. 2008). Studien ergaben für die Frakturvorhersage anhand der Knochendichte am Schenkelhals und der Lendenwirbelsäule keinen Unterschied zwischen Männern und Frauen (Johnell et al. 2005, Langsetmo et al. 2010).
Eine Knochendichtemessung erscheint also sowohl für das Femur als auch die LWS sinnvoll, da bei Beschränkung auf einen Messort die Frakturhäufigkeit unterschätzt werden kann. Auch wenn dieser Zusammenhang in den eigenen Untersuchungen nicht erfasst wurde, ist er somit für zukünftige Auswertungen von Bedeutung.

5.4 Betrachtung des T-Score
Der T-Score lag bei Frauen im Schnitt niedriger als bei den Männern. Innerhalb der Diagnosen und Unterdiagnosen ergaben sich jedoch keine Unterschiede mehr nach dem Geschlecht, so dass dieser Befund auf die unterschiedliche Häufigkeit der Osteoporose bei Männern und Frauen zurückzuführen ist. Der Unterschied nahm über die Beobachtungsperioden ab und war ab 2007 nicht mehr signifikant (p>0,05).
Bis zur Altersgruppe von 50-59 Jahren lag der T-Score bei Männern niedriger, ab 60 Jahren bei den Frauen. Diese Umkehr des Geschlechterverhältnisses mit dem Alter konnte schon bei der Häufigkeit der Osteoporose und der Frakturhäufigkeit beobachtet werden, war jedoch bei letzterer um zehn Jahre zum höheren Alter hin verschoben. Das Absinken des T-Scores und die konsekutiv häufigere Diagnose einer Osteoporose ging also der Häufung von Frakturen voraus. Der Korrelationskoefizient nach Spearman zwischen T-Score und Frakturhäufigkeit betrug $R=-0,521$ ($p<0,001$), damit gab es einen mäßig starken Zusammenhang für eine steigende Frakturhäufigkeit bei sinkendem T-Score.

Die wahrscheinlichen Gründe für diese Beobachtungen wurden bereits bei der Betrachtung der Osteoporose- und Frakturhäufigkeit diskutiert.

Der T-Score war sowohl bei Frauen als auch bei Männern signifikant niedriger ($p<0,05$), wenn an LWS allein oder LWS und Femur gleichzeitig pathologische DXA-Werte vorlagen. Dabei war der T-Score bei Frauen nochmals signifikant niedriger als bei Männern. Es zeigte sich also, dass bei stark erniedrigtem T-Score an einem Messort mit höherer Wahrscheinlichkeit auch andere Skelettareale eine pathologische Knochendichte aufweisen, was wiederum den Charakter der Osteoporose als systemische Knochenerkrankung unterstreicht.

Innerhalb der Osteoporose-Untergruppen ergab sich eine ähnliche Verteilung. Signifikante Unterschiede ergaben sich zwischen den Osteoporose-Unterdiagnosen nur für den alleinigen Befall der LWS zwischen der postmenopausalen Osteoporose mit höherem T-Score und sowohl der idiopathischen als auch der senilen Osteoporose mit niedrigerem T-Score. Dies entspricht dem selteneren Auftreten von Frakturen bei der postmenopausalen Osteoporose im Vergleich zur senilen und idiopathischen Osteoporose und unterstreicht damit die Bedeutung des Frakturrisikos bei diesen Unterdiagnosen.

Im Falle bereits erlittener Frakturen war der T-Score sowohl bei Osteopenie als auch bei Osteoporose niedriger als bei leerer Frakturanamnese, was den Zusammenhang zwischen Knochendichte und Frakturrisiko bekräftigt.

5.5 Vergleich nach Beobachtungsperioden
Das Geschlechterverhältnis der untersuchten Patienten änderte sich von der ersten Beobachtungsperiode von 20,7% zu einem signifikant niedrigeren Anteil von untersuchten Männern von ca. 18% ab der zweiten Beobachtungsperiode (p<0,05), was dem Zeitraum nach Erscheinen der ersten DVO-Leitlinie entspricht.

Die Untersuchung der Frakturhäufigkeit in den Altersgruppen in Abhängigkeit von den Beobachtungsperioden ergab für die drei Altersgruppen von 60-89 Jahren einen signifikanten Anstieg von der ersten zur zweiten Beobachtungsperiode. Vor allem bei den über 70-Jährigen fiel eine über die ersten drei Beobachtungsperioden steigende Frakturhäufigkeit auf. Dies lässt sich durchaus als Effekt der ersten veröffentlichten DVO-Leitlinie werten.

In diesen Veränderungen im untersuchten Patientenkollektiv zeigt sich wieder der diagnostische Fokus auf die postmenopausale Frau der ersten DVO-Leitlinien 2003, die stärkere Einbeziehung älterer Menschen und die zunehmende Berücksichtigung
klinischer Risikofaktoren, vor allem bereits erlittener Frakturen, mit Blick auf das tatsächliche Frakturrisiko in den folgenden DVO-Leitlinien.

5.6 Theoretische Therapieindikation

Zwischen der ersten und zweiten Beobachtungsperiode zeigte sich ein signifikanter Anstieg hinsichtlich positiver Therapieinidikationen nach beiden Leitlinien, was als Zeichen für eine höhere diagnostische Treffsicherheit mit daraus abgeleiteter
therapeutischer Konsequenz mit der Veröffentlichung der ersten DVO-Leitlinie zu interpretieren ist. Überraschenderweise war dieser Anstieg in der Subanalyse nach Geschlecht nur für die Frauen signifikant. Trotz eines ab der zweiten Beobachtungsperiode geringeren Männeranteils im gesamten Patientenkollektiv, wurde eine bessere Vorauswahl der Knochendichtemessung zugeführt mit häufigerer Indikationsstellung zur Frakturprophylaxe.

Unsere Ergebnisse entsprechen denen einer kanadischen Studie, welche die Risikobeurteilung auf Basis der Knochendichte mit dem geschätzten Frakturrisiko auf Grundlage einer zusätzlichen Einbeziehung von Risikofaktoren untersuchte, welche vor allem für ältere Frauen eine höhere Behandlungsbedürftigkeit nach der letztgenannten Methode ergab (Richards et al. 2007).
6. Schlussfolgerungen

In der vorliegenden Untersuchung konnte die Alters- und Geschlechtspräferenz der Osteoporose als Erkrankung der postmenopausalen Frau und des alten Menschen bestätigt werden. Bei drei Vierteln der untersuchten Patienten wurde eine pathologische Knochendichte im Sinne einer Osteopenie oder Osteoporose festgestellt, was einer guten Treffsicherheit im Sinne der Indikationsstellung zur Knochendichtemessung durch die Zuteiler entspricht. Dabei lag die Häufigkeit pathologischer Knochendichtemesswerte bei den untersuchten Männern vergleichbar hoch wie bei den Frauen, sodass auch in diesem Fall von einer guten Aufmerksamkeit für die Osteoporose des Mannes ausgegangen werden kann.

Die Untersuchung nach dem T-Score und den betroffenen Skelettregionen ergab ein häufigeres Vorliegen pathologischer Knochendichtewerte an der LWS als am Femur und signifikant niedrigere Werte bei gleichzeitigem Befall beider Areale oder bereits manifester Osteoporose. Vor dem Hintergrund der klinischen Bedeutung und den Folgekosten hüftgelenksnaher Frakturen und der Gefahr der Unterschätzung des Frakturrisikos ist daher eine DXA-Messung beider Areale zu empfehlen.

Über die lange Auswertungszeit erschienen in drei Etappen jeweils aktualisierte Leitlinien zur Diagnostik, Prävention und Therapie der Osteoporose des Dachverbandes Osteologie (DVO). In Anlehnung an deren Erscheinungstermin wurden entsprechende Beobachtungsperioden definiert und untersucht. Dabei zeigte sich im untersuchten Patientengut ein signifikanter Anstieg der Osteoporose- und Frakturhäufigkeit nach Erscheinen der ersten Leitlinie und über die ersten drei Beobachtungsperioden ein steigender Altersdurchschnitt mit Verschiebung des

Die der Untersuchung zugrunde liegenden Daten wurden fortlaufend erfasst und retrospektiv ausgewertet, dabei erfolgte leider keine durchgehende Erfassung klinischer Risikofaktoren, ebenso wurden der Ort und die Anzahl osteoporotischer Frakturen nicht erfasst. Es wurde jeweils nur die erste Knochendichtemessung im Untersuchungszentrum berücksichtigt, eine Verlaufsbeobachtung erfolgte nicht. Das Patientengut wurde unter dem Verdacht auf das Vorliegen einer systemischen Knochenerkrankung zur Knochendichtemessung zugewiesen und entspricht somit nicht einer repräsentativen Bevölkerungsstichprobe, kann jedoch als beispielhaft für das Patientengut eines Knochendichtemesszentrums im ländlichen Raum dienen.

Weitere Untersuchungen sollten die konsequente Erfassung klinischer Risikofaktoren umfassen, die in den DVO-Leitlinien eine stetig steigende Bedeutung erfahren haben, insbesondere in der aktuellen aus diesem Jahr (aktuell im Juli 2014 nur als Entwurf vorliegend), sowie eine detaillierte Frakturerfassung und Verlaufsbeobachtungen auch vor dem Hintergrund einer eventuell erfolgten Basistherapie oder spezifischen Osteoporosetherapie.

7. Literatur- und Quellenverzeichnis

DVO. 2006b. Leitlinie Osteoporose bei Frauen ab der Menopause und Männern ab dem 60. Lebensjahr http://www.dv-osteologie.org/ Zugriff am 10.07.2014:

Hadji P, Claus V, Ziller V, Intorcia M, Kostev K, Steinle T. 2012. GRAND: the German retrospective cohort analysis on compliance and persistence and the

Anhang

Danksagung

Ich bedanke mich herzlichst bei meinem Doktorvater und Betreuer Herrn Prof. Dr. med. Andreas Roth für die immer verfügbare und geduldige Unterstützung, hilfreichen Hinweise, konstruktive Kritik und Motivation, wenn nötig. Ebenso danke ich Prof. Dr. med. Georg Matziolis.

Weiter danke ich Frau Elke Mark für die fortlaufende Erfassung und Dokumentation der Patientendaten und die Einblicke in den Ablauf der Knochendichtemessung und Auswertung und Dr. Ing. Frank Layher für die Beratung in statistischen Methoden.

Besonderer Dank gilt meiner Frau und meinen Kindern, die mich immer wieder aufgemuntert haben und oft eine willkommene Ablenkung boten.

Ehrenwörtliche Erklärung

Hiermit erkläre ich, dass mir die Promotionsordnung der Medizinischen Fakultät der Friedrich-Schiller-Universität bekannt ist, ich die Dissertation selbst angefertigt habe und alle von mir benutzten Hilfsmittel, persönlichen Mitteilungen und Quellen in meiner Arbeit angegeben sind, mich folgende Personen bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts unterstützt haben:

die Hilfe eines Promotionsberaters nicht in Anspruch genommen wurde und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen,

dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder andere wissenschaftliche Prüfung eingereicht habe und
dass ich die gleiche, eine in wesentlichen Teilen ähnliche oder eine andere Abhandlung nicht bei einer anderen Hochschule als Dissertation eingereicht habe.

Ort, Datum

Unterschrift des Verfassers