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1 Introduction

“[T]he scientific gold standard is prediction. It is perfectly acceptable to propose
a theory that fits existing experimental data and then to use the data to calibrate
the parameters of the model. But, before using the theory in applied work, the
vital next step is to state the proposed domain of application of the theory, and
to make specific predictions that can be tested with data that wasn’t used either
in formulating the theory or in calibrating its parameters” (Binmore and Shaked,
2010).

My thesis contains four articles. Each article investigates the predictive accuracy of one or
more behavioral game theory models for different games. Section 2 is based on a joint publi-
cation with Johannes Leder and Kinneret Teodorescu (Hariskos et al., 2011). The article is on
learning models for predicting decisions from experience in forty market entry games. Each
market entry game is a normal form game in which four individuals interact repeatedly over
fifty trials. In each trial, each individual can either enter a risky market or stay out; her payoff
depends on her own choice, the choices of the other three individuals (the more enter the lower
is her payoff from entering the market) and the outcome of a binary gamble that is either high
or low. The participants of the experiment do not know the payoff rule but receive after each
trial complete individual feedback about their obtained payoff and their forgone payoff.

This prediction set of market entry games involves strategic and environmental uncertainty,
complete feedback and minimizes the role of other factors besides experience that affect be-
havior in repeated games (e.g. framing, fairness, reciprocation and reputation); it was used
for testing the predictive power of twenty-five different learning models that were submitted
to the market entry prediction competition organized by Erev et al. (2010). The organiz-
ers of the competition provided moreover an estimation set of another forty market entry
games and six baseline models that could be extended by the researchers that participated
in the competition. The baseline models included reinforcement learning (Roth and Erev,
1995; Erev and Roth, 1998), normalized reinforcement learning (Erev et al., 1999), stochas-
tic fictitious play (Goeree and Holt, 1999; Cheung and Friedman, 1997; Cooper et al., 1997;
Fudenberg and Levine, 1998), normalized fictitious play (Ert and Erev, 2007), experience
weighted attraction (Camerer and Ho, 1999) and the inertia, sampling and weighting model
(Nevo and Erev, 2012).

We submitted three models to the market entry competition. All three models are based on the
inertia, sampling and weighting (I-SAW) model. The I-SAW model assumes a fixed tendency
to explore, a reliance on small experience samples, and strong inertia when the recent payoffs
are not surprising. It is explicitly designed to capture eight well known behavioral tendencies

1



1 Introduction

from previous investigations of market entry games and individual decisions from experience
that were replicated for the estimation set of market entry games (see Erev et al., 2010, and
the literature cited therein): (1) the payoff variability effect, (2) high sensitivity to forgone
payoffs, (3) excess entry, (4) underweighting of rare events, (5) surprise-triggers-change, (6)
the very recent effect, (7) strong inertia and (8) individual differences.

Our models introduce four new assumptions: (A) a higher tendency for exploration at the
beginning that decreases over time; (B) surprise as a factor influencing the weight of a trial in
the sampling procedure; (C) the exclusion of unreliable experiences gained in early trials; and
(D) the revision of a reasonable alternative that led to a very low payoff in the previous trial.
We estimate the relative effect of each assumption and carry out a robustness test in order
to clarify the usefulness of each assumption. Our main results can be summarized as follows:
assumption A improves the predictions and appears to be robust, even beyond market entry
games; assumption B improves the predictions and is in line with the von-Restorff-Effect and
with animal research on the disruptive effect of surprising events on memory recall; assumption
C improves the predictions and could be a result of “doubt about experiences in very early
trials” or from memory limitation; whereas assumption D does not find supportive evidence.

In Section 3 I investigate and extend the predictions of the social preference model of
Fehr and Schmidt (1999) for the public goods game. The public goods game is a normal
form game in which two or more individuals interact. Each individual owns the same endow-
ment and decides how much of it to contribute to the public good. The sum of contributions
to the public good are multiplied by a factor greater one representing the positive externalities
of the public good and are divided evenly among all individuals.

Although it is collectively best for everyone to contribute her complete endowment to the public
good it is a dominant strategy for money-maximizing individuals not to contribute to the public
good, i.e., free-riding is the unique Nash equilibrium (Nash, 1951). The result of free-riding
is that nobody benefits from the positive externalities of the public good. This prediction is
not very useful for predicting behavior of subjects in one-shot public goods experiments as, on
average, about half of the endowment is contributed; with most subjects contributing either
nothing or their complete endowment to the public good (Ledyard, 1995).

Fehr and Schmidt (1999) improve the Nash equilibrium prediction by assuming that individ-
uals do care not only about their own income but also dislike unequal income distributions.
They prove for the public goods game the existence of cooperation equilibria where all inequal-
ity averse individuals contribute symmetrically, i.e., the same amount of money, if the number
of free riders is not too high.

Behind this background I show by means of a numerical example that cooperation equilibria
exist where inequality averse individuals contribute different positive amounts of money to
the public good (asymmetric cooperation). Thereby I demonstrate that the combination of
the Nash equilibrium concept with the social preference model of inequality aversion predicts
more heterogeneity in behavior for the public goods game than was thought previously.

Section 4 is joint work with Konstantinos Katsikopoulos and Gerd Gigerenzer. The article is
on bargaining models for predicting decisions in one-shot ultimatum bargaining games. In a
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one-shot ultimatum bargaining experiment two subjects are paired anonymously together. The
roles of the proposer and the responder are assigned randomly to the subjects, and the subjects
play the ultimatum game only once. First, the proposer makes a proposal to the responder in
which she determines how to divide a fixed amount of money provided by the experimenter.
Then, the responder can either accept or reject the proposal. In case of acceptance, the
proposal is implemented. However, if she rejects, both players get nothing.

In the subgame perfect equilibrium (Selten, 1965, 1973) of the ultimatum game, a money-
maximizing responder accepts any positive amount of money, which is anticipated by a money-
maximizing proposer, who therefore offers the smallest positive amount of money. However,
contrary to the predictions of subgame perfect equilibrium, most participants split equally and
reject low offers in ultimatum bargaining experiments (Güth et al., 1982; Camerer, 2003).

One explanation for the deviations between subgame perfect equilibrium predictions and ob-
servations made in ultimatum bargaining experiments is that people have other-regarding
preferences that cannot be controlled by the experimenter. (Fehr and Schmidt, 1999;
Bolton and Ockenfels, 2000; De Bruyn and Bolton, 2008). An alternative explanation for the
deviations is that the framing of the ultimatum game triggers the use of simple decision rules
that have evolved in real-life bargaining situations in which people know each other, bargain
repeatedly and have the opportunity to change bargaining partners. In such an environment
a decision rule to reject low offers or to split equally can be evolutionary stable. Thus, the
initial play of inexperienced subjects in ultimatum bargaining experiments does not need to
be close to the subgame perfect equilibrium (Gale et al., 1995).

While the proponents of the first explanation model the behavior of participants in one-
shot games as if they (stochastically) optimize an other-regarding utility function, the pro-
ponents of the second explanation question that inexperienced subjects optimize anything at
all (Gigerenzer, 2004; Binmore, 2007). Against this background, we construct a quantitative
heuristic mix model in which the individuals base their decisions on simple rules of thumb. We
then compare how well the heuristics model fits the outcomes of a two-person ultimatum game
(Güth et al., 2003). In the next step, we compare the heuristic mix model to three inequality
aversion models with respect to their predictive power for a three-person ultimatum game
(Güth et al., 2007).1

The main results of our study are that (1) the heuristic mix fits the outcomes observed in
the ultimatum bargaining experiment no worse than the inequality aversion models and that
(2) the heuristic mix makes better out-of-sample predictions for the three-person ultimatum
game.

Section 5 is based on joint work with Robert Böhm, Pantelis Pipergias Analytis and Kon-
stantinos Katsikopoulos. The article is on equilibrium models and strategy mix models for
predicting behavior in a broad set of one hundred and twenty extensive form games. Each
game in the prediction set is a one-shot extensive form game of complete information with

1 In the three-person ultimatum game the proposer allocates the monetary cake among three participants.
The responder can either accept or reject the proposed allocation, and the so-called dummy (the third
participant) has to accept the final allocation.

3



1 Introduction

two individuals: a first mover and a second mover. The first mover can either choose a payoff
distribution or let the second mover choose between two alternative payoff distributions.

The prediction set involves ten classes of games with different properties that are labeled
safe shot, near dictator, common interest, costly help, trust, rational punish, costly punish,
strategic dummy, free help and free punish; it was used for testing the predictive power of
thirty-eight first mover models and thirty-nine second mover models that were submitted to
the prediction competition for simple extensive form games. The competition was organized
by (Ert et al., 2011) and was divided into two sub-competitions: one was on predicting the
behavior of the first mover and the other one on predicting the behavior of the second mover.

The organizers of the competition provided an estimation set of another one hundred and
twenty different extensive form games. They used the estimation set for fitting five baseline
models for each sub-competition: the classic subgame perfect equilibrium (Selten, 1965, 1973),
three stochastic variants of popular social preference models that they called inequality aversion
(Fehr and Schmidt, 1999), equity reciprocity competition model (Bolton and Ockenfels, 2000;
De Bruyn and Bolton, 2008), Charness and Rabin model (Charness and Rabin, 2002) and a
new strategy mix model that consists of seven strategies (Ert et al., 2011). The surprising
result was that the seven strategies model outperformed the popular social preference models.

Researchers that participated in the competition could use the baseline models together with
the data of the estimation experiment for the development of their own models. After all
models were submitted, the data of a prediction experiment were published. Based on this
prediction set of games, all submitted models were ranked according to their mean predictive
error and the ranking was published on the competition homepage.2

We submitted two models to the first mover competition and two models to the second mover
competition. The first mover models were based on the discretized truncated subjective quan-
tal response equilibrium model considered by Rogers et al. (2009). In both models we assume
a slightly different heterogeneity in skill (i.e. preference responsiveness) and introduce hetero-
geneity in preferences (selfish versus other-regarding) and heterogeneity in preference beliefs
(self-centered versus pessimistic). The heterogeneity in preferences is similar to the one as-
sumed by Fehr and Schmidt (1999) and the heterogeneity in preference beliefs is inspired by
the self-centered beliefs assumed in the seven strategies model and a very pessimistic strategy
therein.

One second mover model is a stochastic social preference model. Compared to the social pref-
erence models that were used as baseline models, we assume a specification of social preferences
that does not take the payoffs of a game directly into account. Instead the utility of a payoff
distribution depends on whether it has certain characteristics relative to the other payoff distri-
bution. The other second mover model is a lexicograpic strategy mix model that is based on a
fast and frugal heuristic in the adaptive toolbox of bounded rationality (Gigerenzer and Selten,
2001): it is called take-the-best (Gigerenzer and Goldstein, 1996).

In our article we investigate four research questions: (1) Is it possible to achieve better fitting

2 See https://sites.google.com/site/extformpredcomp/competition-results-and.
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and prediction results by specifying and estimating different equilibrium models that were used
by Ert et al. (2011)? Our results show that the gap between the seven strategies model and the
equilibrium models in fitting the data of the estimation experiment is smaller than expected;
however the seven strategies model still predicts the data of the prediction experiment better.
(2) How good are the predictions of our submitted models in comparison to the baseline
models? Our results show that our second mover models predict the choice behavior in the
prediction set of games better than each baseline model and that our first mover models are
only outperformed by the seven strategies model. (3) How reliable are the predictions results
of the competition? We check how reliable the prediction results of the competition are by
comparing them to predictions results of two different cross validations. Our results show
that the ranking of the models may change in the cross validations if the prediction results
in the competition are close and that only groups of models with similar results that differ
considerably between groups do not change ranks. (4) How can we achieve better predictions
by combining predictions of different models? Our results show that simple averaging of
predictions of good models yields better predictions than each individual model and that
optimal predictions are only obtained if predictions of semi-good models that are not highly
correlated to the predictions of the good models are included.
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2 Decisions from Experience in Market Entry
Games

2.1 Introduction

We submitted three models to the market entry competition 2010 (see Section 2.2). All
three models are based on the inertia, sampling and weighting model which we explain in
Section 2.3. The models introduced four new assumptions. In the first model an adjustment
process was introduced through which the tendency for exploration was higher at the beginning
and decreased over time in the exploration stage. Another new assumption was that surprise
as a factor influencing the weight of a trial in the sampling procedure was added. In the
second model we added the possibility of an exclusion of unreliable experiences gained in the
early trials of a game and the possibility of a revision of a reasonable alternative which was
responsible for a very bad outcome in the previous trial. Three of the four added assumptions
were combined in the third model. In Section 2.4 we describe the four additional assumptions
we examined throughout the three models that we present in Section 2.5. Because each of
our models contains at least two new assumptions, we estimated the relative effect of each
assumption on the estimation and prediction scores and carried out a test of robustness in
Section 2.6. In this way, we were able to clarify the usefulness of each added assumption. In
Section 2.7 we summarize the analysis results and the theoretical conclusions.

2.2 Market Entry Prediction Competition

Erev et al. (2010) organized the market entry prediction competition with the motivation
to improve our knowledge about the effect of experience on choice behavior in strategically
and environmentally uncertain situations. The focus of the competition was on predicting
decisions from experience in a broad set of repeated market entry games with a wide class
of quantitative learning models. The participants that played the market entry games did
not know the payoff rule (incentive structure) but were provided with feedback after each
trial. This experimental design minimized the effect of other factors beside experience on the
behavior of the participants (e.g. framing, fairness, reciprocation and reputation).

Validation Procedure The organizers Erev et al. (2010) provided experimental data on an
estimation set of 40 market entry games (that are listed in Table 1) and some baseline
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2 Decisions from Experience in Market Entry Games

models that were implemented in computer programs and fitted to the data of the esti-
mation experiment.1 The baseline models included reinforcement learning (Roth and Erev,
1995; Erev and Roth, 1998), normalized reinforcement learning (Erev et al., 1999), stochas-
tic fictitious play (Goeree and Holt, 1999; Cheung and Friedman, 1997; Cooper et al., 1997;
Fudenberg and Levine, 1998), normalized fictitious play (Ert and Erev, 2007), experience
weighted attraction (Camerer and Ho, 1999) and the inertia, sampling and weighting model
(Nevo and Erev, 2012). The baseline models served as a benchmark and could be used to-
gether with the data of the estimation experiment for the development of own models. After
all models were submitted, the data of a prediction experiment were published. The predic-
tion experiment contained another 40 different games that are listed in Table 2. Based on this
prediction set of games, all submitted models were ranked according to validation criterion of
the competition and the ranking was published on the competition homepage.2

Structure of the Basic Market Entry Game Each market entry game Γ is played by n = 4
individuals repeatedly for R = 50 trials. All individuals have the same action space A =
{enter, not enter}. The risky action enter corresponds to “entering a risky market” and the
safe action not enter corresponds to “staying out”. The payoffs in trial t depend on the
outcome of a binary gamble Gt, the number of entrants Et and two game parameters k and
S. Gt is equal to the high outcome H with probability p ∈ [0, 1] and equal to the low outcome
L otherwise. The payoff each individual i at trial t is equal to

Vi,t =

{

10 − k · Et + Gt if enter

‖Gt/S‖ with p = .5; − ‖Gt/S‖ otherwise if not enter;

and depends on her own choice, the choices of the other individuals −i (strategic uncertainty;
the more other individuals enter the lower is her payoff) and on the rounded value ‖·‖ of a
ratio between a binary gamble Gt and a game parameter S (environmental uncertainty).3

Game Selection Algorithm Each market entry game Γ is characterized by different randomly
determined parameters values (k, p, H, L, S). Game parameter k is drawn uniformly from
{2, 3, ..., 7} and game parameter S is drawn uniformly from {2, 3, ..., 6}. The high outcome H
of the binary gamble Gt depends on a randomly generated number h drawn uniformly from
{1, 2, ..., 10} and a randomly generated number rh drawn uniformly from the interval [0, 1]. If
rh < 0.5 then H = h; otherwise H = 10 · h. The low outcome L of the binary gamble Gt

1 The computer programs can be downloaded from the prediction competition homepage: https://sites.

google.com/site/gpredcomp/7-baseline-models.
2 See https://sites.google.com/site/gpredcomp/8-competition-results-and-winners.
3 The participants of the estimation experiment and the participants of the prediction experiment did not know

the exact payoff rule but received feedback after each trial. The feedback included their obtained payoff
and their forgone payoff. The forgone payoff is the payoff that they would have received if they had chosen
differently. Notice that the obtained payoff of entrants 10 − k · Et + Gt is larger than the forgone payoff of
non-entrants 10−k ·(Et +1)+Gt. For a detailed description of the experimental method and instructions see
Erev et al. (2010). The raw data of both experiments can be downloaded from the competition homepage
under the following link: https://sites.google.com/site/gpredcomp/raw-data.
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2.3 Inertia, Sampling and Weighting Model

depends on a randomly generated number l drawn uniformly form the set {−10, −9, ..., −1}
and a randomly generated number rl drawn uniformly from the interval [0, 1]. If rl < 0.5 then
L = l; otherwise H = 10 · l. Probability p is equal to −L/(H − L) rounded to the second
decimal place.

Validation Criterion The competition focuses on the prediction of six statistics that are
presented on the right-hand side of Table 2. The six statistics are the entry rate, the mean
payoff (efficiency) and the alternation rate of each block of 25 trials (B1 denotes the first
block and B2 the second one). The predictive power of each model is validated by means of
a normalized mean squared error criterion. For each statistic the deviation score of a model
is computed by (i) taking the squared deviation between the prediction of a model and the
observation in each of the 40 games, (ii) by taking the mean squared deviation over the 40
games and (iii) by normalizing the mean squared deviation by the estimated error variance
of the statistic (see Table 2). The validation criterion is the final score of a model that is
calculated by taking the mean of the six normalized mean squared deviations (MSD; the
lower the better). The estimation score MSDest measures how well a model fits the data of
the estimation set games and the prediction score MSDpre measures how well a model predicts
the data of the prediction set of games.

2.3 Inertia, Sampling and Weighting Model

Both, the estimation experiment and the prediction experiment are modeled as a series of
m = 40 market entry games that are played by artificial individuals. A market entry game
Γ ∈ {1, ..., m} is characterized by different random values for its five parameters (k, p, H, L, S).
The I-SAW model (Nevo and Erev, 2012) generates for each market entry game Γ a group of
N = 4 individuals that play repeatedly for R = 50 trials. Each individual i is characterized
by five traits whose values differ between individuals and are distributed uniformly with ǫi ∼
U [0, .24], πi ∼ U [0, .6], ωi ∼ U [0, .8], ρi ∼ U [0, .2], and µi ∼ U{1, 2, 3}. All individuals have
the same action space A = {enter, not enter} and each individual i has to choose in each round
t ∈ T = {1, ..., R} an action ai,t ∈ A without knowing how the other individuals will decide.

The decision process of each individual i is divided into three stages: exploration, inertia,
and exploitation. Exploration implies to enter the market with probability penter = 0.66 or
otherwise not to enter. The probability for an individual to explore is given by

pexplore
i =

{

1 if t = 1

ǫi if t > 1.

If an individual does not explore, then she enters the second stage. Inertia implies to repeat
the last action ai,t = ai,t−1 with probability
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pinertia
i = πSurpriset−1

i ∈ [πi, 1], with Surpriset−1 ∈ [0, 1].

All individuals that have neither entered the exploration stage nor have decided in the inertia
stage to repeat their last action, make their decision in the exploitation stage. In this stage
each individual chooses the action ai,t ∈ A with the highest estimated subjective value (ESV).

Given the set of payoffs for all past cases X(ai,past case) = {x(ai,1), ..., x(ai,t−1)} and the number
of sample experiences or sample cases µi ∼ U{1, 2, 3}, the ESV of action ai,t for an individual
i is given by the sum of two terms: the average payoff from all past cases weighted by ωi ∼
U [0, .8] and the average payoff from her set of sample cases {sample case1, ..., sample caseµi}
weighted by (1 − ωi), i.e.,

ESV (ai,t) = ωi

∑t−1
k=1 x(ai,k)

t − 1
+ (1 − ωi)

∑µi

l=1 x(ai,sample casel)

µi

where the sampling procedure for any sample case l is given by sample casel = t − 1 with
probability ρi and otherwise sample casel ∼ U{1, ..., t − 1}.

2.4 Additional Assumptions

2.4.1 The Adjustment of Exploration over Time

In the I-SAW model, the probability to explore pexplore
i equals ǫi if t > 1. The trait ǫi differs

between individuals, but is constant within an individual throughout all trials of a game.
However, it seems reasonable to assume that when faced with an unfamiliar environment,
subjects will display higher explorative behavior at the beginning than after gaining some
experience. As indicated by machine learning models, the change of exploration can be linear
(Crook and Hayes, 2003; De Croon et al., 2005; Loch and Singh, 1998) or discontinuous by
involving a switching point (Lee et al., 2011) . Moreover, research on repeated choice, shows
that people repeat their choices, i.e. develop routines, when they repeat similar decisions
(Betsch et al., 2001). A routine is described as a preference for a specific solution to a known
problem. Thus, we introduced a higher exploration level at the beginning and a decrease of
exploration with increasing numbers of trials. The decrease is modeled in four steps:

pexplore
i =



























1 if t = 1

6 · ǫi/t if 2 ≤ t ≤ 5

ǫi if 6 ≤ t ≤ 30

.9 · ǫi if t ≥ 31.

In the first trial the probability of individual i to explore pexplore
i is 1. From trial two to trial six
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pexplore
i decreases with each trial and is equal to ǫi in trial six. In the trials six to 30, pexplore

i is

depending solely on the individual tendency for exploration ǫi. In trial 31 to trial 50, pexplore
i is

even lower than the individual tendency to explore, because we assumed that subjects would
have adjusted to the context and choices should be even more less prone to randomness than
in the trials before. Thus, the individual tendency to explore pexplore

i is not only a function of
the trait ǫi of individual i but also a function of the level of experience. It therefore captures
additionally the adjustment process to a new environment.

2.4.2 The Recalling of Surprising Experiences

In the I-SAW model, when sampling (past) experiences, the most recent trial has a higher
probability to be included in the sample due to the recency effect. All other past trials
have the same probability to be sampled. However, studies concerning the von-Restorff-Effect
(Von Restorff, 1933a) suggest that not all past experiences are equally likely to be included in
the sample of experiences. It was found that stimulus items that are distinct from the general
item pool are more apt to be recalled (Green, 1956; Hunt and Lamb, 2001; Von Restorff,
1933b). Furthermore early research on animal learning and the disruptive effect of surprising
events on memory recall, found that surprising events lead to a lower rate of recall of events
subsequent to the surprising one (Tulving, 1969). Therefore, we propose the influence of
surprise on the sampling process in the exploitation stage. If the surprise term of a given trial
Surpriset−1 exceeds a threshold of .85 (according to fitted data), the probability to sample this
trial for the calculation of the ESV is increased. To take the underweighting of rare events
in decisions from experience (Barron and Erev, 2003; Hertwig et al., 2004) into consideration
we limited this property to the last very surprising trial. Since the recency effect is assumed
to vary across individuals, as indicated by trait ρi in the I-SAW model, we chose to use this
parameter in order to depict surprise about a trial for the sampling process. Therefore, the
last very surprising trial, has a higher probability to be sampled, and its probability to be
sampled depends on the individual tendency to recall the most recent trial is equal to ρi.

2.4.3 The Exclusion of Very Early Trials from the Sample of Experiences

As previously noted, besides the most recent trial the sampling procedure of the I-SAW model
assigns the same probability to be recalled to all other past trials. However, in the first trials
of a new game, strategic uncertainty and uncertainty about the payoff rule is likely to be
higher. Thus, early choices are more prone to randomness. This led us to the assumption,
that later in the game, the participants should be more likely to question the reliability of
the information gained through the very early trials of the game. In order to include this
“doubt about experiences in very early trials” we introduced the following modification: Early
experiences or cases are revised and can be excluded from the sample even if they are drawn
at first during the sampling process. Revision implies that the individual repeats the sampling
procedure for a given sample experience or sample case l if sample casel < 9 once, repeats it a
second time if sample casel < 7, and again if sample casel < 5, and again if sample casel < 3.
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This stepwise revision of her sampling decisions implies that an earlier sample casel is excluded
more likely from her set of sample cases.

2.4.4 The Influence of a Very Bad Experience in the Previous Trial

Imagine action ai,t = not enter has the higher ESV in trial t, but in the previous trial this
choice led to a very bad experience. In the I-SAW model the individual would have chosen
simply the action with the higher ESV which is “not enter” which does not capture the affective
reaction caused by negative experiences. However decisions are not only influenced by prob-
ability, but also by affective information (Loewenstein et al., 2001; Rottenstreich and Hsee,
2001; Glöckner and Hochman, 2011). Thus, we introduced the assumption that the individual
revises her choice, although it has a higher ESV, if she made a very bad experience with it in
the previous trial. This means that individual i revises her action if one of the two following
sets of conditions is true:

First, if it is jointly true that x(ai,t−1 = not enter < 0, x(ai,t−1 = enter > 0 and 3 · ai,t−1 =
not enter > −x(ai,t−1 = enter). Second, if it is jointly true that x(ai,t−1 = not enter > 0,
x(ai,t−1 = enter > 0 and 3 · ai,t−1 = not enter < x(ai,t−1 = enter).

Revision implies to choose ai,t = enter with probability λi ∼ U [0, 0.5] (a trait) and otherwise
the action with the higher ESV which is ai,t = not enter. Note that the revision process is
analogous if action ai,t = enter has the higher ESV in trial t.

2.5 Description of Our Models and Their Performance in the

Competition

2.5.1 Teodorescu et al. (2010)

The model of Teodorescu, Hariskos and Leder (2010) introduces two changes in the I-SAW
model: First, the tendency for exploration is higher at the beginning and decreases over
time in the exploration stage (2.4.1). Second, the last surprising trial is included with higher
probability in the sampling of past cases in the exploitation stage (2.4.2). One of the main
advantages of these suggested changes to the I-SAW model is that although it takes into
account the changes of exploration over time and the effect of surprise on memory processes,
it does not add any other traits than the ones estimated by the original I-SAW model.4

2.5.2 Hariskos et al. (2010)

The model of Hariskos, Leder and Teodorescu (2010) introduces two changes to the exploitation
stage of the I-SAW model: First, very early trials are excluded with higher probability from

4 The SAS code that was submitted to the competition is attached in Appendix 3.
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the sample of experiences (2.4.3). Second, the affective reaction caused by negative experiences
was addressed (2.4.4).5

2.5.3 Leder et al. (2010)

After simulating the first two models, we created a third model that includes a decreasing
tendency to explore with increasing numbers of trials (2.4.1), the doubt about the reliability
of experiences in very early trials (2.4.2), and the revision of a reasonable alternative given
an associated very bad experience in the previous trial (2.4.4). We kept all parameters other
than a slight change in the function determining the tendency to explore as depicted below6:

pexplore
i =



























1 if t = 1

9 · ǫi/t if 2 ≤ t ≤ 9

.95 · ǫi if 10 ≤ t ≤ 30

.90 · ǫi if t ≥ 31.

2.5.4 The Models’s Performance

Table 2.1 summarizes the performance of our models relative to the I-SAW model, once for
the data of the estimation set (MSDest) and once for the data of the prediction set (MSDpre).

Table 2.1
The Performance of Our Models Relative to the Baseline Model

Section Model MSDest ∆est MSDpre ∆pre

2.3 I-SAW 1.38 1.17
2.5.1 Teodorescu et al. 1.35 -2.12% 1.16 -1.27%
2.5.2 Hariskos et al. 1.15 -16.33% 1.22 3.81%
2.5.3 Leder et al. 1.15 -16.07% 1.19 1.56%

All three models yield a better fit for the data from the estimation set than the I-SAW model.
The fit of the first model (2.5.1) was slightly better than the I-SAW model and he fit of the
other two models (2.5.2 and 2.5.3) were by far better. However, only the first model predicted
the prediction data set better than the I-SAW model. In the following Section we will focus
on this issue.

5 The MATLAB code that was submitted to the competition is attached in Appendix 1.
6 The MATLAB code that was submitted to the competition is attached in Appendix 2.
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2.6 The Predictive Power of the Additional Assumptions

Since we added more than one assumption to the I-SAW model in each of our models, we
cannot state the relative effect of each assumption individually. For this reason, we calculated
the MSD scores after the competition by adding only one assumption to the I-SAW model
(10,000 simulations) and summarized the relative effect of each assumption. The relative effect
for the estimation score and prediction score is depicted in Table 2.2.

Table 2.2
The Relative Effect of Each Assumption on the Estimation and Prediction Score

Section Assumption MSDest ∆est MSDpre ∆pre

2.3 I-SAW 1.38 1.17
2.4.1 Exploration Over Time 1.35 -2.28% 1.17 -0.09%
2.4.2 Surprising Experiences 1.35 -2.20% 1.16 -1.12%
2.4.3 Very Early Trials 1.28 -7.31% 1.14 -3.18%
2.4.4 Bad Experience 1.23 -10.78% 1.25 6.27%

As depicted, each of our additional assumptions improved the estimation score. The first
three assumptions (2.4.1, 2.4.2, and 2.4.3) also improved the prediction score. Whereas the
fourth assumption (2.4.4), while leading to the largest improvement for the estimation set,
impaired the prediction score, this clearly indicates over-fitting. Thus, we can conclude that
the additional fourth assumption is responsible for the poor predictive performance of our
second and third models. In order to examine whether the very small improvement that
resulted from adding the first assumption (3.1) was not obtained by chance, we conducted an
additional analysis.

One simple prediction of the decreasing exploration assumption is that in problems in which
the best reply is relatively stable across trials, best reply behaviors are expected to become
more common as time advances. On the other hand, constant exploration rate, as assumed by
the original I-SAW model, predicts that in these cases, the frequency of best reply behaviors
will remain constant over all trials. Problems 3 and 8 satisfy the relatively stable best reply
requirement, since in these problems about 95% of the experiences yielded better payoffs for
entering than staying out (obtained greater than forgone payoffs for entering and vice versa
for staying out). Table 2.3 shows the percentages of best reply behaviors to previous trials for
the first 12 trials:

Table 2.3
Best Reply Behavior to Previous Trials for Trial 1-12

Trial 2 4 6 8 10 12
Best Replies 75.0% 73.3% 86.7% 86.7% 91.7% 90%
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2.7 Summary

The frequency of best reply behaviors increases with increasing numbers of trials, a result
that cannot be explained by the original stable exploration assumption of the I-SAW model.
Rather, these results can be captured by the assumption that the tendency to explore is higher
in the first trials and decreases throughout the trials. Further support to the robustness of
the decreasing exploration assumption can be found in the results of the following problem
presented by Erev and Haruvy (forthcoming). In an experiment using what the authors call
the clicking paradigm, subjects were asked to choose repeatedly between unlabeled keys on
the computer screen. Pressing on one of the keys always resulted in a payoff of eight points
and the other always resulted in a payoff of nine. As in the market entry game, after each trial
subjects received information about the forgone payoff, in addition to their obtained payoff.
The surprising result was that the proportion of choosing the clearly better option increased
gradually during the first 10 trials before reaching 90%-100% in later trials (see Figure 4 in
Nevo and Erev (2012)). Therefore, it seems that decreasing exploration over time is a robust
phenomenon, even when collecting information actively is not needed and is counterproductive.

2.7 Summary

We examined four additional assumptions to the I-SAW model. The first assumption implies
that the tendency for exploration is higher at the beginning and decreases over time in the
exploration stage. Although it improved the predictions only slightly, we showed that this
assumption appears to be robust, even beyond market entry games. The second assumption
suggests that the last surprising trial needs to be included with higher probability in the
sampling of past cases in the exploitation stage. This minor change consistently improved
the predictions slightly, and is in line with the von-Restorff-Effect as well as with animal
research on the disruptive effect of surprising events on memory recall. In the third additional
assumption, we proposed that very early trials are excluded with higher probability from the
sample of experiences. We suggested that this can be a result of “doubt about experiences
in very early trials”, though one can argue that it might result also from memory limitation.
It is important to note, that this additional assumption yields a high relative effect in the
prediction and the estimation set, thus, we believe that future research should address its
importance and its underling processes. The fourth assumption implies the revision of a
reasonable alternative given an associated very bad experience in the previous trial. However,
we did not find evidence to support this assumption; therefore, we concluded that the large
improvement of the predictions for the estimated data set was the result of over fitting. We
believe that the first three assumptions presented here address robust learning processes and
are not only specific for market entry games. Future research is needed to determine the
robustness and limitations of the above additional assumptions.
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3 Inequality Aversion and Asymmetric
Cooperation in Public Goods Games

3.1 Introduction

Everyone enjoys the benefits of public goods like national defense or knowledge. However,
if a good is public, then by definition its consumption by one individual does not preclude
its consumption by another individual. As a result, if one individual contributes to a public
good, then all individuals will benefit irrespective of whether they contributed to the public
good or not. Those incentives favor free-riding, a behavior in which one saves money by
not contributing to the public good while hoping to enjoy the benefits created by those who
contributed. However, if everyone thinks the same way, the public good will not be provided
in the first place and therefore nobody is going to enjoy its benefits (Collel et al., 1995).

The public goods game is an abstract model of this real-life dilemma. It is a normal form
game where two or more individuals interact in the following way: Each individual owns the
same endowment and decides how much of it to contribute to the public good. The sum of
contributions to the public good are multiplied by a factor greater one representing the positive
externalities of the public good and are then divided evenly among all individuals. Although
it is collectively best for everyone to contribute her complete endowment to the public good it
is a dominant strategy for money-maximizing individuals not to contribute to the public good,
i.e., free-riding is the unique Nash equilibrium (Nash, 1951). And thus, the result of free-riding
is that nobody benefits from the positive externalities of the public good. However, in one-shot
public goods experiments participants behave differently. They contribute, on average, about
half of their endowment (Ledyard, 1995).

Behind this background, Fehr and Schmidt (1999) show that cooperation in a public goods
game can be rationalized as a Nash equilibrium strategy if enough individuals are sufficiently
inequality averse. In particular they prove the existence of cooperation equilibria in which
one set of sufficiently inequality averse individuals (conditional cooperators) choose the same
positive contribution level (symmetric cooperation) while another set of not sufficiently in-
equality averse individuals contribute nothing to the public good (free-riding). In this article
we will extend their analysis by providing a simple numerical example that draws the atten-
tion to unknown equilibria in which the set of conditional cooperators contributes different
positive amounts to the public good (asymmetric cooperation). For a more general analysis of
asymmetric cooperation equilibria in N-player public good games see Hariskos and Königstein
(2015).
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3 Inequality Aversion and Asymmetric Cooperation in Public Goods Games

The numerical example will be introduced in Section 3.2 after a formal treatment of the public
goods game and the inequality aversion model of Fehr and Schmidt (1999). To keep things
as simple as possible we will consider a public goods game with three different contribution
levels – nothing, one euro, and two euros – and three sets of individuals: individuals with
low inequality aversion that are always free riding and conditional cooperators with medium
inequality aversion or high inequality aversion that contribute under certain conditions positive
amounts of money to the public good.

After that we will use proposition 4 of Fehr and Schmidt (1999, p. 839) to derive the known
equilibria for our numerical example (Section 3.3). Those are the defection equilibrium in which
everyone is free riding and two symmetric cooperation equilibria in which each conditional co-
operator with either medium or high inequality aversion contributes the same positive amount
(either one euro or two euros) to the public good while each low inequality averse individual
is free riding.

In Section 3.4 we will extend our analysis of the numerical example by showing that there is
an additional asymmetric cooperation equilibrium. In this equilibrium only the low inequal-
ity averse individual is free riding while each conditional cooperator with medium inequality
aversion contributes a positive amount that is lower than the amount contributed by each high
inequality averse conditional cooperator. We conclude in Section 3.5.

3.2 Numerical Example

Public Goods Game In the public goods game n ≥ 2 individuals decide simultaneously and
privately how much to contribute to a public good G. Each individual i ∈ {1, ..., n} owns the
same endowment e, chooses a contribution level ci ∈ [0, e], and receives a monetary income
mi = e − ci + r · G where the marginal return from the public good G ≡ ∑n

j=1 cj equals

r ∈ ( 1
n

, 1).

Inequity Aversion The utility function of an inequality averse individual i for the public
goods game is given by

ui = e − ci + r · G − αi

n − 1

∑

i6=j

max {ci − cj , 0} − βi

n − 1

∑

i6=j

max {cj − ci, 0} .

Her own income mi is represented by the first three terms of her utility function. The next
term captures her utility loss from disadvantageous income inequality (envy loss) and the last
one her utility loss from advantageous income inequality (guilt loss).

The degree of aversion against an income difference to her advantage is captured by the guilt
parameter βi ∈ [0, 1). Due to the non-negativity restriction she cannot gain utility from
advantageous income inequality, and because of the restriction to values below one she does
not burn money in order to reduce advantageous income inequality.
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3.3 Symmetric Cooperation

The degree of aversion against an income difference to her disadvantage is given by the envy
parameter αi ≥ βi. Due to this parameter restriction she cannot suffer more from an advan-
tageous income inequality in comparison to an equivalent disadvantageous income inequality.

Numerical Example Consider a public goods game with n = 8 individuals and a marginal
return per capita of r = 13

14 . Each individual i has the same endowment of e = 2 and can
pick one out of three different contribution levels, i.e., ci ∈ {0, 1, 2}. The individuals have the
same envy parameter αi = 1 but different guilt parameters. There is nl = 1 individual with a
guilt parameter of βi = 0 (low inequality aversion), there are nm = 2 individuals with a guilt
parameter of βi = 0.45 (middle inequality aversion), and there are nh = 5 individuals with a
guilt parameter of βi = 0.9 (high inequality aversion) with n = nl + nm + nh.

3.3 Symmetric Cooperation

The proposition of Fehr and Schmidt (1999, 839) for the public goods game consists of three
parts. Part (a) states that it is a dominant strategy for an individual i to choose the lowest
contribution level ci = 0 if his guilt parameter is not sufficiently high, i.e., if βi < 1−r. Applied
to our numerical example, it means that only the individual with low inequality aversion
has a dominant strategy. Part (b) of the proposition states that there is a unique defection
equilibrium with ci = 0 for all i ∈ {1, 2, ..., n} if k/(n − 1) > r/2 with k ∈ {0, 1, ..., n} denoting
the number of individuals with a dominant strategy. Since in our numerical example k = 1,
n = 8 and r = 13

14 we cannot conclude that there is a unique defection equilibrium. Thus we
have to check part (c) of the proposition stating that other equilibria with positive contribution
levels exist if k/(n − 1) < (r + βi − 1)/(αi + βi) for each individual i that does not have a
dominant strategy. In these (cooperation) equilibria the individuals with a dominant strategy
contribute nothing to the public good while all other individuals choose the same contribution
level ci = c̄ ∈ {0, 1, 2}. In our numerical the last part of the proposition holds for both
medium and high inequality averse individuals. Therefore if nl = 1, nm = 2, nh = 5, then three
equilibria exist: a defection equilibrium c∗ = (c∗

l = 0, c∗
m = 0, c∗

h = 0) as well as two symmetric
cooperation equilibria c∗ = (c∗

l = 0, c∗
m = 1, c∗

h = 1) and c∗ = (c∗
l = 0, c∗

m = 2, c∗
h = 2).

The simplicity of the numerical example makes it possible to confirm the above predictions by
checking for each individual if the equilibrium payoff is higher than the two possible deviation
payoffs. We will apply this deviation analysis to the three equilibria we derived so far as well
as to the three equilibria that we are going to derive in the next section.

The results of the deviation analysis for the defection equilibrium are summarized in Table 3.1.
In the defection equilibrium it is a best response for each individual to free ride if all other
individuals are free-riding. A deviation to above either by one euro or by two euro does not
increase the utility for each preference type l, m, h. Thus defection, i.e., c∗ = (c∗

l = 0, c∗
m =

0, c∗
h = 0) with nl = 1, nm = 2, nh = 5, is a Nash equilibrium.
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3 Inequality Aversion and Asymmetric Cooperation in Public Goods Games

Table 3.1
Deviation Analysis for the Defection Equilibrium

(αi, βi) ci = 0 ci = 1 ci = 2

(1, 0) ui(c
∗
l ) = 2 ui(c

∗
l + 1) = 0.93 ui(c

∗
l + 2) = −0.14

(1, 0.45) ui(c
∗
m) = 2 ui(c

∗
m + 1) = 0.93 ui(c

∗
m + 2) = −0.14

(1, 0.9) ui(c
∗
h) = 2 ui(c

∗
h + 1) = 0.93 ui(c

∗
h + 2) = −0.14

The table displays for the public goods game with e = 2, n = 8 and r = 13

14
the

following information: the utility payoff for each preference type l, m, h for the
equilibrium profile c∗ = (c∗

l = 0, c∗

m = 0, c∗

h = 0) with nl = 1, nm = 2, nh = 5
and the utility payoff for each possible unilateral deviation from the equilibrium
payoff ∆ ∈ {1, 2} for l, m, h.

Given Table 3.2, it is a best response for the free rider l to contribute nothing given the
conditional cooperators m and h contribute one euro to the public good. Furthermore, it is a
best response for each conditional cooperator to contribute one euro given all other conditional
cooperators contribute one euro while the free rider contributes nothing. Thus symmetric
cooperation, i.e., c∗ = (c∗

l = 0, c∗
m = 1, c∗

h = 1) with nl = 1, nm = 2, nh = 5, is a Nash
equilibrium.

Table 3.2
Deviation Analysis for the Symmetric Cooperation Equilibrium I

(αi, βi) ci = 0 ci = 1 ci = 2

(1, 0) ui(c
∗
l ) = 8.5 ui(c

∗
l + 1) = 8.43 ui(c

∗
l + 2) = 7.36

(1, 0.45) ui(c
∗
m − 1) = 7.19 ui(c

∗
m) = 7.36 ui(c

∗
m + 1) = 6.29

(1, 0.9) ui(c
∗
h − 1) = 6.8 ui(c

∗
h) = 7.36 ui(c

∗
h + 1) = 6.29

The table displays for the public goods game with e = 2, n = 8 and r = 13

14

the following information: the utility payoff for each preference type l, m, h for the
equilibrium profile c∗ = (c∗

l = 0, c∗

m = 1, c∗

h = 1) with nl = 1, nm = 2, nh = 5 and
the utility payoff for each possible unilateral deviation from the equilibrium payoff
∆ ∈ {1, 2} for l and ∆ ∈ {−1, 1} for m, h.

Finally, we can infer from Table 3.3 that there is a second symmetric cooperation equilibrium
in which the conditional cooperators contribute two euros to the public good, i.e., c∗ = (c∗

l =
0, c∗

m = 2, c∗
h = 2) with nl = 1, nm = 2, nh = 5.
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3.4 Asymmetric Cooperation

Table 3.3
Deviation Analysis for the Symmetric Cooperation Equilibrium II

(αi, βi) ci = 0 ci = 1 ci = 2

(1, 0) ui(c
∗
l ) = 15 ui(c

∗
l + 1) = 14.93 ui(c

∗
l + 2) = 14.86

(1, 0.45) ui(c
∗
m − 2) = 12.37 ui(c

∗
m − 1) = 12.54 ui(c

∗
m) = 12.71

(1, 0.9) ui(c
∗
h − 2) = 11.60 ui(c

∗
h − 1) = 12.16 ui(c

∗
h) = 12.71

The table displays for the public goods game with e = 2, n = 8 and r = 13

14
the following

information: the utility payoff for each preference type l, m, h for the equilibrium profile
c∗ = (c∗

l = 0, c∗

m = 2, c∗

h = 2) with nl = 1, nm = 2, nh = 5 and the utility payoff
for each possible unilateral deviation from the equilibrium payoff ∆ ∈ {1, 2} for l and
∆ ∈ {−2, −1} for m, h.

So far we identified three equilibria of the public goods game: one defection equilibrium and
two symmetric cooperation equilibria. Next we will show by means of the deviation analysis
used so far that more equilibria exist.

3.4 Asymmetric Cooperation

In this section we will show that there is an asymmetric cooperation equilibrium in which
conditional cooperators contribute positive amounts with middle inequality aversion (pref-
erence type m) contributing less than conditional cooperators with high inequality aversion
(preference type h), i.e., given nl = 1, nm = 2, nh = 5, there is an equilibrium candidate
c∗ = (c∗

l = 0, c∗
m = 1, c∗

h = 2).

Table 3.4 summarizes the result of the deviation analysis for the asymmetric cooperation equi-
librium in which the free rider l contributes nothing, each conditional cooperator m contributes
one euro and each conditional cooperator h contributes two euros. Since no individual has an
incentive to deviate unilaterally, asymmetric cooperation, i.e., c∗ = (c∗

l = 0, c∗
m = 1, c∗

h = 2)
with nl = 1, nm = 2, nh = 5, is a Nash equilibrium.

Table 3.4
Deviation Analysis for the Asymmetric Cooperation Equilibrium I

(αi, βi) ci = 0 ci = 1 ci = 2

(1, 0) ui(c
∗
l ) = 13.14 ui(c

∗
l + 1) = 13.07 ui(c

∗
l + 2) = 12.71

(1, 0.45) ui(c
∗
m − 1) = 11.51 ui(c

∗
m) = 11.68 ui(c

∗
m + 1) = 11.64

(1, 0.9) ui(c
∗
h − 2) = 10 ui(c

∗
h − 1) = 10.56 ui(c

∗
h) = 10.57

The table displays for the public goods game with e = 2, n = 8 and r = 13

14
the following

information: the utility payoff for each preference type l, m, h for the equilibrium profile
c∗ = (c∗

l = 0, c∗

m = 1, c∗

h = 2) with nl = 1, nm = 2, nh = 5 and the utility payoff for each
possible unilateral deviation from the equilibrium payoff ∆ ∈ {1, 2} for l, ∆ ∈ {−1, 1}
for m and ∆ ∈ {−2, −1} for h.
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3 Inequality Aversion and Asymmetric Cooperation in Public Goods Games

3.5 Summary

An important result of standard economic theory is that cooperation in a public goods game
cannot be rationalized as a Nash equilibrium if individuals care only about their own in-
come. However, what we typically observe in one-shot public goods experiments is that par-
ticipants behave differently. They contribute, on average, about half of their endowment
(Ledyard, 1995). By introducing inequality aversion as an additional motive of decision mak-
ing Fehr and Schmidt (1999) show that cooperation among sufficiently inequality averse in-
dividuals (conditional cooperators) is rational if there are not too many free riders. In those
cooperation equilibria all conditional cooperators choose the same contribution level.

Behind this background, we provided a simple example which shows that the set of possi-
ble cooperation equilibria that follows from their inequality aversion theory may also include
asymmetric cooperation equilibria in which conditional cooperators with lower inequality aver-
sion contribute less than conditional cooperators with higher inequality aversion. Thus, the
equilibrium analysis of the public goods game is much more complicated than expected if one
allows for different degrees of inequality aversion. For future research it remains therefore to be
shown under which general conditions asymmetric cooperation emerges in the N-player public
good game (Hariskos and Königstein, 2015) and if asymmetric cooperation can be observed in
the laboratory.
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4 Heuristics and Ultimatum Bargaining Games

4.1 Introduction

In a one-shot ultimatum bargaining experiment two subjects are paired anonymously together,
the roles of the proposer and the responder are assigned randomly to the subjects, and the
subjects play the ultimatum game only once. The proposer makes first a proposal to the
responder. The proposal determines how to divide a fixed amount of money provided by
the experimenter. The responder can then either accept or reject the proposal. In case of
acceptance, the proposal is implemented. However, if she rejects, both players get nothing.
In the subgame perfect equilibrium (Selten, 1965, 1973) of the ultimatum game, a selfish
responder accepts any positive amount of money. This is anticipated by a selfish proposer who
offers therefore the smallest positive amount of money. However, in ultimatum bargaining
experiments most participants split equally and reject low offers (Güth et al., 1982; Camerer,
2003).

One explanation for the deviations from subgame perfect equilibrium is that people have other-
regarding preferences that cannot be controlled by the experimenter. The other-regarding
preference models that we consider assume that individuals care about their own income and
dislike inequality (Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000; De Bruyn and Bolton,
2008). An alternative explanation for the deviations is that the framing of the ultimatum game
triggers the use of simple decision rules that have evolved in real-life bargaining situations in
which people know each other, bargain repeatedly and have the opportunity to change bar-
gaining partners. In such an environment a decision rule to reject low offers or to split equally
can be evolutionary stable. Thus, the initial play of inexperienced subjects in ultimatum bar-
gaining experiments does not need to be close to the subgame perfect equilibrium (Gale et al.,
1995).

While the proponents of the first explanation model the behavior of participants in one-shot
games as if they would (stochastically) optimize an other-regarding utility function, the pro-
ponents of the second explanation question if inexperienced subjects optimize anything at
all. They agree that social preference models are indeed more useful for fitting data than the
subgame perfect equilibrium with selfish preferences, but disagree about their usefulness for
predicting behavior and outcomes in other one-shot games (Gigerenzer, 2004; Binmore, 2007).

So far, nobody tested the predictive power of a quantitative rule-based model compared to
a set of well established utility-based models for ultimatum bargaining games. Therefore
we construct a heuristic mix model in which individuals base their decision on simple rules
of thumb. Then, we compare how well the heuristic mix fits the outcomes of a two-person
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4 Heuristics and Ultimatum Bargaining Games

ultimatum experiment (Güth et al., 2003) in comparison to three inequality aversion models.
Next, we assess the performance of the estimated models in predicting the outcomes of a three-
person ultimatum experiment (Güth et al., 2007).1 The main results of our study are that
(1) the heuristic mix fits the outcomes of the two-person game no worse than the inequality
aversion models and (2) and that it predicts the outcomes of the three-person game better.

In Section 4.2 we explain the heuristic mix that contains seven lexicographic strategies. We
estimate the model with the individual data of the two-person ultimatum game and derive
out-of-sample predictions for the three-person ultimatum game. In Section 4.3 we consider
four utility-based models, the classic subgame perfect equilibrium with selfish preferences and
three inequality aversion models. Finally, we discuss the main results and and conclude in
Section 4.4.

4.2 Mix of Heuristics

Psychology and Economics have been coming steadily closer since the emergence of experimen-
tal and behavioral economics in the 1960 and the 1970s (Camerer and Ho, 1999). Conducting
controlled experiments has become a handy tool that can be used to test the predictions of
economic theories. The quick growth of experimental and behavioral traditions in economics
has made individual data largely available within the discipline and has casted doubts on
the rational maximizer model which until then has served as the economic stereotype of in-
dividual behavior. On the individual level the theories that were called to replace the profit
maximizing agent maintained the basic idea that behavior could be represented by a utility
function which was sensitive not only to profits but also to other variables such as equality
(Berg and Gigerenzer, 2010).

Economics is well-known as being a science of aggregates. Thus, refining the models of in-
dividual behavior will hopefully lead to better models on the aggregate level. The power of
utility function inspired models that dominate behavioral economics at the moment lies on
their parametric flexibility which allows them to succinctly summarize data from individuals
that follow very different behavioral rules. While these methods achieve relatively high be-
havioral fits they have the disadvantage of dissimulating what happens at the individual level
and do not shed light at the decision process of the participants. Modelers disregard individ-
uals differences that may exist in the decision processes of subjects in their experiments and
attempt to fit the observed behavior to an overarching all-embracing model.

An alternative modeling approach that can be employed to bridge the conceptual void be-
tween the individual and the aggregate level is to employ models which consist several simple
strategies. There are plenty of examples in which individual behavior has been shown to fol-
low simple heuristic rules (Gigerenzer and Goldstein, 1996; Goldstein and Gigerenzer, 2002;
Brandstätter et al., 2006). The heuristic mix models incorporate a number of simple rule of

1 In the three-person ultimatum game the proposer allocates the monetary cake among three subjects including
herself, the responder can either accept or reject the proposed allocation, and the third subject (the so called
dummy) has nothing to say.
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4.2 Mix of Heuristics

thumb strategies, which are derived directly from observations at the individual level, as the
independent variables of the aggregate statistical model.

The modeler can then proceed by using a combination of optimization or extensive search
methods and comparative model testing at the individual level to find a mix of strategies for
which on the one hand the model performs well in predicting new data while on the other hand
the correspondence between the observed individual behavior and the aggregate behavior is
maintained. Thus the solution of the aggregate level should closely map the observed behavior
on the individual level and vice versa. The heuristic mix presented in this Section is a first
attempt to apply this alternative modeling approach to the context of ultimatum bargaining
games.

Ultimatum Game In the ultimatum game that we consider, N = 2 individuals bargain about
how to divide a monetary cake c = 1000 (Güth et al., 2003). The game is played in the strategy
vector mode, i.e., each individual i decides first as a proposer P and then as a responder R.
As a proposer she selects her demand dP ∈ {100, 200, ..., 900} that determines her offer to
the other responder o−R = c − dP . As a responder she has to select a response alternative
a ∈ {accept, reject} for each possible offer oR ∈ {100, 200, ..., 900} that is determined by the
demand of the other proposer oR = c − d−P . Next, the roles of proposer P and responder R
are assigned randomly and the game is played according to the following rules: If R accepted
proposal (d−P , oR), it is implemented; if R rejected, both get nothing, i.e., (d−P , oR) = (0, 0).

Lexicographic Strategy There is an infinite population of individuals i ∈ {P, R} that use
the same lexicographic strategy:

1. Each individual i identifies the characteristic that is most important for her and selects
the alternative that is best on this characteristic.

2. In the case of ties, she compares the tied alternatives on the next most important char-
acteristic, and so on.

3. If there is no characteristic left in her set of characteristics, she chooses one of the tied
alternatives randomly.

Like other formal models of fast and frugal heuristics in the adaptive toolbox of bounded
rationality (Gigerenzer and Selten, 2001) the lexicographic strategy has three buildings blocks:
(a) a simple search rule that specifies to consider characteristics step-by-step in the order of
their importance; (b) a simple stopping rule that specifies to stop search if there are no ties
or no characteristic left to consider; and (c) a simple decision rule that specifies – after search
is stopped – to choose the best alternative on the last characteristic if there are no ties or to
choose otherwise one of the tied alternatives randomly.
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4 Heuristics and Ultimatum Bargaining Games

Proposer Sets of Characteristics There are three possible proposer sets of characteristics.
Each proposer set is defined by

cP
k =















{dP = c/N = o−R} if k = 1

{dP > c/N, min(dP − o−R)} if k = 2

{o−R > 0, max(dP )} if k = 3.

A proposer with cP
1 considers only one characteristic. She selects the proposal that allocates c

equally among N individuals. If there are tied proposals, she chooses one of the tied proposals
randomly.

A proposer with cP
2 may consider two characteristics. She selects the proposal where she gets

more than c/N and ignores the other characteristic. If there are tied proposals, she selects the
tied proposal that minimizes the differences between her demand and what she offers to the
responder. If there are still tied proposals, she chooses one of the tied proposals randomly.

A proposer with cP
3 may consider two characteristics. She selects the proposal where the

responder gets something positive and ignores the other characteristic. If there are ties, she
selects the tied proposal that maximizes her demand. If there are still ties, she chooses one of
the tied proposals randomly.

Responder Sets of Characteristics There are three possible responder sets of characteristics.
Each responder set is defined by

cR
l =















{oR ≥ o−R, min(d−P )} if l = 1

{oR ≥ o−R − c/10, min(d−P )} if l = 2

{max(oR)} if l = 3.

For each proposal, a responder with cR
1 may consider two characteristics. If the first charac-

teristic implies no ties, she selects the alternative where she gets at least what she offered and
ignores the other characteristic. If there are ties on the first characteristic and no ties on the
second one, she selects the alternative that minimizes the demand of the proposer. If there
are still ties after considering the second characteristic, she chooses one of tied alternatives
randomly.

A responder with cR
2 may consider two characteristics. If the first characteristic implies no

ties, she selects the alternative where she gets at least what she offered minus c/10 and ignores
the other characteristic. If there are ties on the first characteristic and no ties on the second
one, she selects the alternative that minimizes the demand of the proposer. If there are still
ties after considering the second characteristic, she chooses one of tied alternatives randomly.

A responder with cR
3 considers only one characteristic. If the first alternative implies no ties,

she selects the alternative that maximizes her payoff; otherwise she chooses one of the tied
alternatives randomly.
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4.2 Mix of Heuristics

Distribution over Types We assume that the population consists of seven types. Each type
t ∈ {A, B, ..., G} is defined by her proposer set of characteristics cP

k and her responder set of
characteristics cR

k . The behavior of each type is given by her demand dt and her minimum
acceptance threshold mt. The distribution over types f depends on the distribution over
proposer sets fP and the distribution over responder sets fR. Table 4.1 presents the seven
types, their behavior and the distribution over the seven types.

Table 4.1
Types, Behavior of Types, and Distribution over Types

t cP
1 cP

2 cP
3

cR
1 A D -

cR
2 B E -

cR
3 C F G

(dt, mt) cP
1 cP

2 cP
3

cR
1 (500,500) (600,400) -

cR
2 (500,400) (600,300) -

cR
3 (500,100) (600,100) (900,100)

ft fP
1 fP

2 fP
3

fR
1 fA fD -

fR
2 fB fE -

fR
3 fC fF fG

The heuristic used by G is equivalent to the subgame perfect equilibrium strategy used by a
selfish individual (Selten, 1965, 1973). The other six strategies abstract behavioral tenden-
cies that were proposed as explanations for observed deviations from the subgame perfect
equilibrium strategy in ultimatum bargaining experiments (see below).

Proposer Decision Table 4.2 presents the lexicographic decision process of each type for the
proposer decision .

Table 4.2
Ultimatum Game (UG): Type-Dependent Decision

Process for Proposer Decision

(dP , o−R) A ∨ B ∨ C D ∨ E ∨ F G

(900, 100) 0 1,0 1,1
(800, 200) 0 1,0 1,0
(700, 300) 0 1,0 1,0
(600, 400) 0 1,1 1,0
(500, 500) 1 0 1,0
(400, 600) 0 0 1,0
(300, 700) 0 0 1,0
(200, 800) 0 0 1,0
(100, 900) 0 0 1,0

The absence of a characteristic is indicated by a value of 0 and
its presence by a value of 1. If a type considers more than one
characteristic, then their values are separated by a comma.

The most important characteristic for A, B and C is that the responder gets the same share of
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4 Heuristics and Ultimatum Bargaining Games

the monetary cake. Therefore they select proposal (500, 500) that is best on this characteristic.
Their choice behavior depends on proposer set cP

1 that abstracts the behavioral tendency of
people to use a simple rule called equality heuristic if there is an equal split among several
alternatives. There is empirical support for the use of the equality heuristic in mini ultimatum
games (Güth et al., 2001) and real-life allocation problems, e.g., the allocation of parental
resources among children (Hertwig et al., 2002) or the allocation of monetary resources among
investment options (Benartzi and Thaler, 2001).

The most important characteristic for D, E and F is that they get more than the c/N . Since
there is more than one proposal that is best on this characteristic, they check the second most
important characteristic that specifies to select the proposal that minimizes the difference
between their demand and their offer. Therefore they select proposal (600, 400) that is the
only one of the tied proposals that is best on this characteristic. Their choice behavior depends
on proposer set cP

2 that abstracts the behavioral tendency to offer more in the ultimatum game
than in the dictator game (Forsythe et al., 1994) or the impunity game (Bolton and Zwick,
1995). In the latter games the proposer has not to fear rejection of low offers since the responder
has to accept any proposal in the dictator game while in the impunity game her rejection is
only symbolic and has no effect on the outcomes.

As mentioned above, the strategy applied by G is equivalent to the subgame perfect equilibrium
strategy. The most important characteristic for her is that the responder gets something
positive. This characteristic is common to all proposals, therefore she consults the second
most important characteristic that specifies to select the proposal that maximizes her demand.
Thus, she selects proposal (900, 100) that is the only one of the tied proposals that is best on
this characteristic.

Responder Decision Table 4.3 presents the decision process of each type for the responder
decisions (see next page).

A and D accept the proposals where they get at least what they offered (based on the first
characteristic) and reject the other ones (based on the second characteristic). Their choice
behavior depends on their proposer set and responder set cR

1 . The latter is akin to the mirror
heuristic that was used by Hertwig et al. (2012) for explaining the behavior of responders in
mini-ultimatum games and abstracts the behavioral tendency to adopt one’s own behavior as
a benchmark in a situation with heterogeneous norms (López-Pérez, 2008).

B and E accept the proposals where they get at least what they offered minus fraction c/10
(based on the first characteristic) and reject the other ones (based on the second characteristic).
Their choice behavior depends on their proposer set and responder set cR

2 . The latter abstracts
the behavioral tendency to reject low offers due to angry feelings (Pillutla and Murnighan,
1996).

G, C and F accept any proposal based on the first characteristic in their responder set which
abstracts the basic interest of income-maximization.
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4.2 Mix of Heuristics

Table 4.3
Ultimatum Game: Decision Process for Responder Decisions

a → (d−P , oR) A B ∨ D E C ∨ F ∨ G

accept → (900, 100) 0,0 0,0 0,0 1
reject → (0, 0) 0,1 0,1 0,1 0

accept → (800, 200) 0,0 0,0 0,0 1
reject → (0, 0) 0,1 0,1 0,1 0

accept → (700, 300) 0,0 0,0 1 1
reject → (0, 0) 0,1 0,1 0 0

accept → (600, 400) 0,0 1 1 1
reject → (0, 0) 0,1 0 0 0

accept → (500, 500) 1 1 1 1
reject → (0, 0) 0 0 0 0

accept → (400, 600) 1 1 1 1
reject → (0, 0) 0 0 0 0

accept → (300, 700) 1 1 1 1
reject → (0, 0) 0 0 0 0

accept → (200, 800) 1 1 1 1
reject → (0, 0) 0 0 0 0

accept → (100, 900) 1 1 1 1
reject → (0, 0) 0 0 0 0

The absence of a characteristic is indicated by a value of 0 and its presence
by a value of 1. If a type considers more than one characteristic, then their
values are separated by a comma.

Predictions for the Ultimatum Game For each proposal, the predicted probability to be
selected is given by

pP (dP ) =



























fP
1 if dP = 500

fP
2 if dP = 600

fP
3 if dP = 900

0 otherwise.

For each proposal, the predicted probability to be accepted is given by
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4 Heuristics and Ultimatum Bargaining Games

pR(oR) =



























fC + fF + fG if oR ≤ 200

1 − fA − fB − fD if oR = 300

1 − fA if oR = 400

1 otherwise.

Estimated Distribution over Types The distribution over types depends on the joint distri-
bution over proposer and responder sets of characteristics. The estimated distribution over
proposer sets of characteristics is given by fP = (0.56 0.30 0.14). The estimated distribution
over responder sets of characteristics is given by

fR(t) =

{

(0 0 1) if t = G

(1/3 1/3 1/3) otherwise.

We estimated the free parameters of the model based on observed numbers of individual
choices that are consistent with the predictions of the model. The data were provided by
Güth et al. (2003) who conducted the two-person ultimatum game that we consider in the
German newspaper Berliner Zeitung. The researchers received 1035 complete decision forms.
Table 4.4 presents the individual observations of 931 subjects that have a minimum acceptance
offer (MAO).

Table 4.4
Observed Joint Behavior

MAO
Demand

900 800 700 600 500 400 300 200 100

900 1 0 0 0 0 0 0 0 1
800 0 0 0 0 2 0 0 0 0
700 1 0 0 0 0 0 0 0 0
600 3 0 0 1 1 1 0 0 0
500 7 3 3 9 114 4 0 0 1
400 5 0 8 84 111 6 0 0 0
300 3 4 22 52 66 6 1 0 0
200 4 11 14 16 19 0 1 0 0
100 86 21 41 55 134 5 1 0 3

Source. Güth et al. (2003)
The underlined numbers of observations are consistent to the predictions

of the heuristics model.

The estimated distribution over proposer sets fP is equal to the distribution (359
n

191
n

86
n

) over
the observed behavior of n = 636 subjects that behaved consistently to the predictions of the
model. n3 = 86 subjects demand 900 for themselves and have a minimum acceptance threshold
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4.2 Mix of Heuristics

of 100 which implies fR(t = G) = (0 0 1). Since the distribution of ( 198
n−n3

163
n−n3

189
n−n3

) over the
observed behavior of subjects that demand 500 or 600 for themselves and behave consistently to
the predictions of the model is not significantly different from equal distribution (χ2(2) = 3.6,
p = 0.16), we assume a distribution over responder sets that is equal to fR(t 6= G) = (1

3
1
3

1
3).

Predictions vs Observations The observed and predicted offer or acceptance probabilities
for each proposal of the ultimatum game are depicted in Figure 4.1.

Figure 4.1
Probability for Each Proposal to be Offered or Accepted in the Ultimatum Game,

Observations vs Predictions of the Heuristic Mix

Source. Güth et al. (2003).

The heuristic mix predicts an average offer of 42% of the monetary cake and an average
acceptance rate of 87%. The corresponding observations are 41% and 81%. The sum of
absolute differences between actual and predicted probabilities are (i) for proposals to be
offered SADP = 0.33, (ii) for proposals to be accepted SADR = 0.49 and (iii) for outcomes
to be observed SADP ×R = 0.35. The correlations between actual and predicted probabilities
are (i) for proposals to be offered RP = 0.98, (ii) for proposals to be accepted RR = 0.99 and
(iii) for outcomes to be observed RP ×R = 0.99.

Three-Person Ultimatum Game The three-person ultimatum that we consider contains
N = 3 individuals who bargain about how to divide a monetary cake c = 1200 (Güth et al.,
2007). The game is played in the strategy vector mode, i.e., each individual i decides
first as a proposer P and then as a responder R. As a proposer she selects her de-
mand dP ∈ {0, 200, 400, 600, 800, 1000} and her offer to the other responder o−R ∈ O =
{100, 200, 300, 400, 500, 600}. Both determine the remainder r = c − dP − o−R that is allo-
cated to the dummy D, with r ∈ O. As a responder she has to select a response alternative
a ∈ {accept, reject} for each possible proposal (d−P , oR, r) that is determined by the demand
of the other proposer d−P and offer oR that is allocated to her. Next, the roles of proposer P ,
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4 Heuristics and Ultimatum Bargaining Games

responder R and dummy D are assigned randomly and the game is played according to the
following rules: If R accepted proposal (d−P , oR, r), it is implemented; if R rejected, all three
go away empty handed, i.e., (d−P , oR, r) = (0, 0, 0).

Demand and Minimum Acceptance Offer Table 4.5 presents for each type t ∈ {A, B, ..., G}
her demand dt and her minimum acceptance threshold mt.

Table 4.5
Three-Person Ultimatum Game: Type-Dependent

Demand and Minimum Acceptance Offer

(dt, mt) cP
1 cP

2 cP
3

cR
1 (400,400) (600,500) -

cR
2 (400,300) (600,400) -

cR
3 (400,100) (600,100) (1000,100)

The lexicographic decision process of each type is presented for the proposer decision in Table 3
and for the responder decision in Table 4 (see Appendix refC).

Predictions for the Three-Person Ultimatum Game For each proposal, the predicted prob-
ability to be selected is given by

pP (dP , o−R) =



























fP
1 if (dP , o−R) = (400, 400)

fP
2 if (dP , o−R) = (600, 500)

fP
3 if (dP , o−R) = (1000, 100)

0 otherwise.

For each proposal, the predicted probability to be accepted is given by

pR(oR) =



























fC + fF + fG if oR ≤ 200

1 − fA − fD − fE if oR = 300

1 − fD if oR = 400

1 otherwise.

Predictions vs Observations The observed and predicted offer or acceptance probabilities for
each proposal of the three-person ultimatum game are depicted in Figure 4.2. The heuristic mix
predicts an average offer of 32% of the monetary cake and an average acceptance rate of 87%.
The corresponding observations are 33% and 79%. The sum of absolute differences between
actual and predicted probabilities are (i) for proposals to be offered SADP = 0.39, (ii) for
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Figure 4.2
Probability for Each Proposal to be Offered or Accepted in the Three-Person Ultimatum

Game, Observations vs Predictions of the Heuristic Mix

Source. Güth et al. (2007).

proposals to be accepted SADR = 3.65 and (iii) for outcomes to be observed SADP ×R = 0.58.
The correlations between actual and predicted probabilities are (i) for proposals to be offered
RP = 0.96, (ii) for proposals to be accepted RR = 0.94 and (iii) for outcomes to be observed
RP ×R = 0.92.

4.3 Equilibrium Models

4.3.1 Subgame Perfect Equilibrium

Subgame perfect equilibrium (SPE) is a refinement of Nash equilibrium (Nash, 1951) that was
introduced by Selten (1965, 1973). In the SPE model each individual i maximizes her expected
utility (A1 ), her preferences are represented by utility function ui (A2 ) that depends only on
her income xi (A3 ), assumptions A1–A3 are common knowledge (A4 ) and she uses backward
induction to solve the game (A5 ).
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4 Heuristics and Ultimatum Bargaining Games

Predictions Given A1-A4, the proposer faces an equilibrium selection problem because for
each minimum acceptance offer of the responder, there is a Nash equilibrium (oP , m−R = oP )
in which the proposer offers the minimum acceptance offer of the responder. However, if the
proposer uses backward induction to solve the ultimatum game, she eliminates Nash equilibria
that depend on non-credible threats. Given A1-A5, a threat to reject positive offers of a
responder who is only interested in her own income is not credible because it implies that she
would leave money on the table. Thus, eight of the nine Nash equilibria of the ultimatum game
with m−R > 100 depend on non-credible threats, i.e., the only SPE is (oP , m−R) = (100, 100).
The same reasoning applies to the three-person ultimatum game: A selfish responder would
never leave money on the table and accepts therefore any positive offer. A selfish proposer
anticipates this behavior and makes therefore the lowest positive offer. Consequently, the
unique SPE of the three-person ultimatum game is ((dP , oP ), m−R) = ((1000, 100), 100).

Observations vs Predictions The observed and predicted offer or acceptance probabilities
for each proposal of the ultimatum game are depicted in Figure 4.3. The SPE model predicts

Figure 4.3
Probability for Each Proposal to be Offered or Accepted in the Ultimatum Game,

Observations vs Predictions of the SPE Model

Source. Güth et al. (2003).

an average offer of 10% of the monetary cake and an average acceptance rate of 100%. The
corresponding observations are 41% and 81%. The sum of absolute differences between actual
and predicted probabilities are (i) for proposals to be offered SADP = 1.78, (ii) for proposals
to be accepted SADR = 2.22 and (iii) for outcomes to be observed SADP ×R = 1.92.

The observed and predicted offer or acceptance probabilities for each proposal of the three-
person ultimatum game are depicted in Figure 4.4. The SPE model predicts an average offer
of 8% of the monetary cake and an average acceptance rate of 100%. The corresponding
observations are 33% and 79%. The sum of absolute differences between actual and predicted
probabilities are (i) for proposals to be offered SADP = 1.83, (ii) for proposals to be accepted
SADR = 8.44 and (iii) for outcomes to be observed SADP ×R = 1.96.
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Figure 4.4
Probability for Each Proposal to be Offered or Accepted in the Three-Person Ultimatum

Game, Observations vs Predictions of the SPE Model

Source. Güth et al. (2007).

4.3.2 Subgame Perfect Equilibrium with Fehr-Schmidt Preferences

Fehr and Schmidt (1999) propose an alternative model for bargaining behavior in ultimatum
games that relaxes two assumptions of the traditional SPE model. In their behavioral model
the individuals do not care only about their own income (A3 ) but also dislike unequal income
distributions. Moreover, they do not have identical preferences (A2 ) but differ in their degree
of inequality aversion.

Inequality Aversion An inequality averse individual i still cares about her own income xi but
is also altruistic towards each other individual j with a lower income (xj < xi) or feels envy if
she has a lower income (xi < xj). The utility function of an inequality averse individual i is
given by

ui(x) = xi − αi

N − 1

∑

i6=j

max {xj − xi, 0} − βi

N − 1

∑

i6=j

max {xi − xj, 0} . (4.1)
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The first term captures her utility from own income, the second term her utility loss from
disadvantageous income inequality, and third term her utility loss from advantageous income
inequality. The degree of aversion against advantageous inequality is given by βi ∈ [0, 1).
The non-negativity restriction implies that i cannot gain utility from advantageous inequality
and the restriction to values below one implies that she does not burn money to reduce
advantageous inequality. The degree of aversion to disadvantageous inequality is measured
by αi ≥ βi. The parameter restriction means that the individual cannot suffer more from an
advantageous inequality in comparison to an equivalent disadvantageous inequality.

Heterogeneity in Preferences In their model, Fehr and Schmidt (1999) assume a distribu-
tion over four types of individuals. Each type t is characterized by a combination of (αt, βt)
values. The parametrization of their model is given in Table 4.6.

Table 4.6
Distribution of Preferences in the Fehr-Schmidt SPE Model

Type t Share s αt βt

A 0.3 0 0
B 0.3 0.5 0.25
C 0.3 1.0 0.60
D 0.1 4.0 0.60

An individual of type A is selfish and cares only about her own income. B, C and D care
about their own income but also about the equality of the income distribution with D being
more inequality averse than C; and C being more inequality averse than B.

Figure 4.5
Probability for Each Proposal to be Offered or Accepted in the Ultimatum Game,

Observations vs Predictions of the Fehr-Schmidt SPE Model

Source. Güth et al. (2003).
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Figure 4.6
Probability for Each Proposal to be Offered or Accepted in the Three-Person Ultimatum

Game, Observations vs Predictions of the Fehr-Schmidt SPE Model

Source. Güth et al. (2007).

Predictions The Fehr-Schmidt model predicts that there is a unique equilibrium of the ulti-
matum game in which (i) A accepts at least 100 and offers 400, (ii) B accepts at least 300 and
offers 500, (iii) C accepts at least 400 and offers 500 and (iv) D accepts at least and offers 500.
In the unique equilibrium of the three-person ultimatum game each type offers the (600, 500)
proposal while A rejects no proposal, B rejects proposals with oP = 100, C rejects proposals
with oP ≤ 200 and proposal (800, 300), and D rejects proposals oP ≤ 400 except the equal
split of (400, 400).

Observations vs Predictions The observed and predicted offer or acceptance probabilities
for each proposal of the ultimatum game are depicted in Figure 4.5. The model predicts
an average offer of 47% of the monetary cake and an average acceptance rate of 97%. The
corresponding observations are 41% and 81%. The sum of absolute differences between actual
and predicted probabilities are (i) for proposals to be offered SADP = 0.55, (ii) for proposals
to be accepted SADR = 0.63 and (iii) for outcomes to be observed SADP ×R = 0.60. The
correlations between actual and predicted probabilities are (i) for proposals to be offered
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4 Heuristics and Ultimatum Bargaining Games

RP = 0.97, (ii) for proposals to be accepted RR = 0.99 and (iii) for outcomes to be observed
RP ×R = 0.98.

The observed and predicted offer or acceptance probabilities for each proposal of the three-
person ultimatum game are depicted in Figure 4.6.The model predicts an average offer of 42%
of the monetary cake and an average acceptance rate of 100%. The corresponding observations
are 33% and 79%. The sum of absolute differences between actual and predicted probabilities
are (i) for proposals to be offered SADP = 1.68, (ii) for proposals to be accepted SADR = 4.34
and (iii) for outcomes to be observed SADP ×R = 1.80. The correlations between actual and
predicted probabilities are (i) for proposals to be offered RP = 0.19, (ii) for proposals to be
accepted RR = 0.87 and (iii) for outcomes to be observed RP ×R = 0.14.

4.3.3 Quantal Response Equilibrium with Fehr-Schmidt Preferences

De Bruyn and Bolton (2008) propose a model for repeated bargaining games that combines
a variant of equity, reciprocity, and competition (ERC) preferences (Eq. 4.4) with a quantal
response equilibrium (QRE, McKelvey and Palfrey, 1998). They fit their model to ultimatum
game data and assess how well it performs in predicting behavior in other bargaining games
in comparison to an alternative specification in which they use Fehr-Schmidt preferences (Eq.
4.1). The Fehr-Schmidt QRE model that we present in this Section is an adaptation of the
latter model to one-shot games in which learning is not possible. It relaxes three assumptions
of the traditional SPE model: First, the individuals do not care only about their own income
(A3 ) but also dislike unequal income distributions. Second, the individuals maximize their
expected utility (A1 ) but they do it stochastically which leads to deviations from optimal play
that are interpreted as mistakes. Third, the proposer does not use backward induction (A5 )
to solve the game.

Predictions For each proposal xk = (x1, ..., xN ) with k ∈ {1, ..., K}, the probability that
responder R accepts proposal xk is given by

pR(xk) =
eλRuR(xk)

eλRuR(⊘) + euR(xk)
=

eλRuR(xk)

1 + eλRuR(xk)
. (4.2)

By definition, pR(xk) ∈ [0, 1] for all xk. R’s utility from accepting proposal xk equals uR(xk)
while her utility from rejecting is uR(⊘) = 0 – since the monetary cake shrinks to c = 0. The
coefficient of certitude λR ∈ [0, ∞] indicates the choice consistency of R. The larger λR, the
higher is the probability that R chooses the action that maximizes her utility. This implies
that if λR = 0, R acts randomly and that if λR = ∞, R maximizes always her utility.

The probability that proposer P offers proposal xk is given by

pP (xk) =
eλP E(uP (xk))

∑K
j=1 eλP E(uP (xj))

=
eλP pR(xk)uP (xk)

∑K
j=1 eλP pR(xj)uP (xj)

. (4.3)
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By definition, pP (xk) ∈ [0, 1] for all xk and
∑

pP (xk) = 1. Since P knows each accep-
tance probability pR(xk), her expected utility E(uP (xk)) of proposing xk to R is equal to
pR(xk)u(xk).

We fit the Fehr-Schmidt QRE model to the ultimatum game data provided by Güth et al.
(2003) with maximum likelihood estimation. The log-likelihood of the model is −1993 and its
parameter estimates (and standard deviations) are αP = αR = 0.6414 (0.0528), βP = βR = αP ,
λP = 0.0069 (0.0005) and λR = 0.0045 (0.0003).2 The predictions for the ultimatum game
with N = 2 or N = 3 can be computed by inserting the parameter estimates into Eq. 4.1,
Eq. 4.2 and Eq. 4.3.

Observations vs Predictions The observed and predicted offer or acceptance probabilities
for each proposal of the ultimatum game are depicted in Figure 4.7.

Figure 4.7
Probability for Each Proposal to be Offered or Accepted in the Ultimatum Game,

Observations vs Predictions of the Fehr-Schmidt QRE Model

Source. Güth et al. (2003).

The model predicts an average offer of 45% of the monetary cake and an average acceptance
rate of 78%. The corresponding observations are 41% and 81%. The sum of absolute differences
between actual and predicted probabilities are (i) for proposals to be offered SADP = 0.29, (ii)
for proposals to be accepted SADR = 0.63 and (iii) for outcomes to be observed SADP ×R =
0.35. The correlations between actual and predicted probabilities are (i) for proposals to be
offered RP = 0.96, (ii) for proposals to be accepted RR = 0.99 and (iii) for outcomes to be
observed RP ×R = 0.97.

The observed and predicted offer or acceptance probabilities for each proposal of the three-
person ultimatum game are depicted in Figure 4.8. The model predicts an average offer of 32%

2 We restricted the values of the inequality aversion parameters to αi ≥ βi. Notice that the results of the
unconstrained maximum likelihood estimation with a log-likelihood of −1993, αP = αR = 0.6335 (0.0649),
βP = 0.6497 (0.0667), λP = 0.0069 (0.0005) and λR = 0.0045 (0.0003) are very close.
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Figure 4.8
Probability for Each Proposal to be Offered or Accepted in the Three-Person Ultimatum

Game, Observations vs Predictions of the Fehr-Schmidt QRE Model

Source. Güth et al. (2007).

of the monetary cake and an average acceptance rate of 73%. The corresponding observations
are 33% and 79%. The sum of absolute differences between actual and predicted probabilities
are (i) for proposals to be offered SADP = 1.05, (ii) for proposals to be accepted SADR = 2.63
and (iii) for outcomes to be observed SADP ×R = 1.06. The correlations between actual and
predicted probabilities are (i) for proposals to be offered RP = 0.63, (ii) for proposals to be
accepted RR = 0.91 and (iii) for outcomes to be observed RP ×R = 0.63.

4.3.4 Quantal Response Equilibrium with ERC Preferences

The equity, reciprocity and competition (ERC) QRE model is an adaption of the
De Bruyn and Bolton (2008) for repeated bargaining games to the context of one-shot games.
Compared to the FS QRE model, the ERC QRE model differs in the specification of inequality
aversion, i.e., the individuals care about their own income and dislike to get less than the equal
share of 1/N .
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Inequality Aversion The ERC preferences of each individual i ∈ {P, R} are given by

ui(σi) =











c

(

σi − αi

2

(

σi − 1
N

)2
)

if σi < 1
N

cσi otherwise.
(4.4)

The utility function is based on the functional forms proposed by Bolton (1991) and
Bolton and Ockenfels (2000) and it depends on the size of the cake c, the received relative
share σi ∈ [0, 1], and αi which measures the utility loss from any disadvantageous deviation
from the equal split.

Predictions We fit the ERC QRE model to the ultimatum game data provided by Güth et al.
(2003) with maximum likelihood estimation. The log-likelihood of the model is −2231 and
its parameter estimates (and standard deviations) are αP = αR = 11.4214 (0.9355), λP =
0.0051 (0.0003) and λR = 0.0039 (0.0002). The predictions for the ultimatum game with
N = 2 or N = 3 can be computed by inserting the parameter estimates into Eq. 4.4, Eq. 4.2
and Eq. 4.3.

Observations vs Predictions The observed and predicted offer or acceptance probabilities
for each proposal of the ultimatum game are depicted in Figure 4.9.

Figure 4.9
Probability for Each Proposal to be Offered or Accepted in the Ultimatum Game,

Observations vs Predictions of the ERC QRE Model

Source. Güth et al. (2003).

The model predicts an average offer of 42% of the monetary cake and an average acceptance
rate of 73%. The corresponding observations are 41% and 81%. The sum of absolute differences
between actual and predicted probabilities are (i) for proposals to be offered SADP = 0.68, (ii)
for proposals to be accepted SADR = 0.76 and (iii) for outcomes to be observed SADP ×R =
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0.73. The correlations between actual and predicted probabilities are (i) for proposals to be
offered RP = 0.72, (ii) for proposals to be accepted RR = 0.97 and (iii) for outcomes to be
observed RP ×R = 0.77.

The observed and predicted offer or acceptance probabilities for each proposal of the three-
person ultimatum game are depicted in Figure 4.10.

Figure 4.10
Probability for Each Proposal to be Offered or Accepted in the Three-Person Ultimatum

Game, Observations vs Predictions of the ERC QRE Model

Source. Güth et al. (2007).

The model predicts an average offer of 29% of the monetary cake and an average acceptance
rate of 72%. The corresponding observations are 33% and 79%. The sum of absolute differences
between actual and predicted probabilities are (i) for proposals to be offered SADP = 1.18, (ii)
for proposals to be accepted SADR = 2.97 and (iii) for outcomes to be observed SADP ×R =
1.24. The correlations between actual and predicted probabilities are (i) for proposals to be
offered RP = 0.16, (ii) for proposals to be accepted RR = 0.85 and (iii) for outcomes to be
observed RP ×R = 0.20.
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4.4 Summary

The behavioral assumptions that are made in each of the target models (the heuristic mix or
one of the inequality aversion models) introduce additional free parameters with the aim of
increasing the fit to the observed behavior and outcomes in ultimatum bargaining experiments.
The result is that each target model fits each dependent variable (the offer behavior of the
proposers, the acceptance behavior of the responders and the outcomes of the ultimatum
game) better than the traditional SPE model. In the Fehr-Schmidt SPE model 30% of the
population care only about their own income. The other 70% of the population consist of
three additional types of inequality averse individuals with two additional inequality aversion
parameters that differ over types. In both QRE models the individuals do not care only about
their own income but additionally also about inequality. Moreover, they make mistakes in
the sense of not choosing always the option that maximizes their expected utility and the
likelihood of making a mistake differs depending on the role that they play in the ultimatum
game. Lastly, six strategies of the heuristic mix model are explicitly designed to capture
behavioral tendencies that deviate from the subgame perfect equilibrium strategy.

Within-Sample Fit Table 4.7 summarizes the relative improvement in within-sample fits
achieved by the target models in comparison to the SPE model.

Table 4.7
Relative Fit Index (RFI) of Each Target Model for Each Dependent Variable of the

Ultimatum Game

Target Model Behavior of Proposers Behavior of Responders Outcomes

Heuristics Mix 0.81 0.78 0.82
Fehr-Schmidt SPE 0.69 0.72 0.69
Fehr-Schmidt QRE 0.84 0.72 0.82
ERC QRE 0.62 0.66 0.62

The RFI of a target model and a dependent variable is given by (SAD of SPE Model −
SAD of Target Model)/SAD of SPE Model with the sum of absolute differences between predictions
and observations (SAD) as criterion of fit. The RFI can take values between 1 and −∞. A RFI of
1 means that the SAD of the target models equals 0 or that the SAD of the target model is 100%
lower than the SAD of the SPE model. A RFI of 0 means that the SAD of the target model equals
the SAD of the SPE model.

While each target model has a higher within-sample fit than the SPE, the relative improve-
ments differ across models and dependent variable. Overall, the heuristic mix and the Fehr-
Schmidt QRE fit the offer behavior, acceptance behavior and the outcomes of the ultimatum
game best. While the heuristic mix performs best and the Fehr-Schmidt QRE model second-
best in fitting the acceptance behavior of the responders, they change ranks in fitting the offer
behavior of the proposers. The outcomes of the ultimatum game that depend on both offers
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and acceptances are fitted by both models equally well.3

Result 1 The heuristic mix model is no worse in fitting the outcomes of the two-person
ultimatum experiment than any of the inequality aversion models.

Out-of-Sample Fit The relative out-of-sample fits depicted in Table 4.8 are lower than the
within-sample fits but the predictions of all target models are still better than the ones of the
SPE model.

Table 4.8
Relative Fit Index (RFI) of Each Target Model for Each Dependent Variable of the

Three-Person Ultimatum Game

Target Model Behavior of Proposers Behavior of Responders Outcomes

Heuristic Mix 0.79 0.57 0.70
Fehr-Schmidt SPE 0.08 0.49 0.08
Fehr-Schmidt QRE 0.43 0.69 0.46
ERC QRE 0.36 0.65 0.37

The heuristic mix predicts the behavior of the proposers best, followed by Fehr-Schmidt QRE,
ERC QRE and Fehr-Schmidt SPE. The behavior is predicted best by the QRE models, followed
by the heuristics mix and the Fehr-Schmidt SPE. The outcomes of the three-person ultimatum
that depend on both proposer and responder behavior are predicted best by heuristic mix
followed by Fehr-Schmidt QRE, ERC QRE and Fehr-Schmidt SPE.4

Result 2 The heuristic mix model better in predicting the outcomes of the three-person ulti-
matum experiment than any of the inequality aversion models.

The good performance of the heuristic mix in outcome prediction is due to its more accurate
proposer predictions. It predicts that the three most frequently chosen proposals are chosen
with positive probability and ignores the remaining 15 proposals. While the proposer predic-
tion of the Fehr-Schmidt SPE model is too narrow (everyone chooses the (600, 500) split) the
proposer predictions of the QRE models are too vague.

Our study focuses on prediction rather than fitting. Furthermore, we study beside the equi-
librium models widely used in behavioral economics a heuristic mix type of model. The main
result of the study is that a heuristics mix model can predict better than equilibrium mod-
els. Thus, we take a first step to bridge the conceptual void between the individual and the
aggregate level. For future research it would be useful to investigate the applicability of our
heuristics mix model to other one-shot games and the incorporation of trial-and-error learning
for games that are played repeatedly.

3 The ultimatum game has 18 outcomes since each of the nine proposal can either be accepted or rejected.
4 The three-person ultimatum game 36 outcomes since each of the eighteen proposals can either be accepted

or rejected.
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5.1 Introduction

In the last decades experimental studies of one-shot extensive form games of complete informa-
tion with two players (e.g., on the dictator game (Forsythe et al., 1994), the ultimatum game
(Güth et al., 1982), the trust game (Berg et al., 1995) and gift exchange game (Fehr et al.,
1998)) revealed that people apparently behave less selfishly and less sophisticated than one
would expect based on the predictions of subgame perfect equilibrium (Selten, 1965, 1973)
in which expected utility maximizers care only about their own payoff and may eliminate
unreasonable Nash equilibria (Nash, 1951) by applying backward induction.

Several distinct explanations for the observed deviations from subgame perfect equilib-
rium were offered. The most important ones are altruism (Andreoni, 1990), envy (Bolton,
1991), inequity or inequality aversion (Loewenstein et al., 1989; Fehr and Schmidt, 1999;
Bolton and Ockenfels, 2000), reciprocity (Rabin, 1993; Falk and Fischbacher, 2006), joint pay-
off maximization (Messick and McClintock, 1968), competitiveness (Messick and McClintock,
1968), level-k reasoning (Stahl and Wilson, 1995; Nagel, 1995) and quantal responses
(McKelvey and Palfrey, 1998).

Recent research focused on the inclusion of one or more of these behavioral tendencies into
quantitative behavioral models. It was demonstrated for a narrow set of games that these
models fit and predict the behavior of participants better than subgame perfect equilib-
rium (e.g., Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000; Charness and Rabin, 2002;
De Bruyn and Bolton, 2008). However, there is still little research on two questions: (1) Which
quantitative model is the best abstraction for predicting behavior in a broad set of extensive
form games? (2) What is the relative importance of each behavioral tendency for predicting
behavior in a broad set of extensive form games?

Ert et al. (2011) addressed both questions by organizing a competition on predicting behavior
in a broad set of simple extensive form games of complete information. The validation proce-
dure of the competition splits the data into an estimation set of games and a prediction set of
games. Each set contains 120 extensive form games with two individuals: a first mover and a
second mover. The game space involves ten classes of games with different properties. Each
model is formulated and trained on the estimation set and the predictive power of each model
is validated on the prediction set.

The competition was divided into two sub-competitions: one is on predicting the behavior of
the first mover and the other one is on predicting the behavior of the second mover. Ert et al.
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(2011) used the estimation set for fitting five baseline models for each sub-competition: the
classic subgame perfect equilibrium (Selten, 1965, 1973), three stochastic variants of popular
social preference models that they called inequality aversion (Fehr and Schmidt, 1999), eq-
uity reciprocity competition model (Bolton and Ockenfels, 2000; De Bruyn and Bolton, 2008),
Charness and Rabin model (Charness and Rabin, 2002) and a new strategy mix model that
consists of seven strategies (Ert et al., 2011). The surprising result was that the seven strate-
gies model outperformed the popular social preference models.

Researchers could participated in one or both sub-competitions. They were allowed to use the
baseline models together with the data of the estimation experiment for the development of
their own models. After all models were submitted, the data of a prediction experiment were
published. Based on this prediction set of games, all submitted models were ranked according
to their mean predictive error and the ranking was published on the competition homepage.1

We submitted two models to the first mover competition and two models to the second mover
competition. The first mover models were based on the discretized truncated subjective quan-
tal response equilibrium model considered by Rogers et al. (2009). In both models we assume
a slightly different heterogeneity in skill (i.e. preference responsiveness) and introduce hetero-
geneity in preferences (selfish versus other-regarding) and heterogeneity in preference beliefs
(self-centered versus pessimistic). The heterogeneity in preferences is similar to the one as-
sumed by Fehr and Schmidt (1999) and the heterogeneity in preference beliefs is inspired by
the self-centered beliefs assumed in the seven strategies model and a very pessimistic strategy
therein.

One second mover model is a stochastic social preference model. Compared to the social pref-
erence models that were used as baseline models, we assume a specification of social preferences
that does not take the payoffs of a game directly into account. Instead the utility of a payoff
distribution depends on whether it has certain characteristics relative to the other payoff dis-
tribution. The other second mover model is a strategy mix model that is based on a fast and
frugal heuristic in the adaptive toolbox of bounded rationality (Gigerenzer and Selten, 2001):
it is called take-the-best (Gigerenzer and Goldstein, 1996).

In our article we investigate four research questions: (1) Is it possible to achieve better fitting
and prediction results by specifying and estimating different equilibrium models that were used
by Ert et al. (2011)? Our results show that the gap between the seven strategies model and the
equilibrium models in fitting the data of the estimation experiment is smaller than expected;
however the seven strategies model still predicts the data of the prediction experiment better.
(2) How good are the predictions of our submitted models in comparison to the baseline
models? Our results show that our second mover models predict the choice behavior in the
prediction set of games better than each baseline model and that our first mover models are
only outperformed by the seven strategies model. (3) How reliable are the predictions results
of the competition? We check how reliable the prediction results of the competition are by
comparing them to predictions results of two different cross validations. Our results show
that the ranking of the models may change in the cross validations if the prediction results

1 See https://sites.google.com/site/extformpredcomp/competition-results-and.
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in the competition are close and that only groups of models with similar results that differ
considerably between groups do not change ranks. (4) How can we achieve better predictions
by combining predictions of different models? Our results show that simple averaging of
predictions of good models yields better predictions than each individual model and that
optimal predictions are only obtained if predictions of semi-good models that are not highly
correlated to the predictions of the good models are included.

Section 5.2 explains in greater detail structure and content of the prediction competition. In
Section 5.3 we consider six baseline models that are based on the recent literature on predicting
behavior in games.

Table 5.1
Baseline Models

Section Mnemonic Name of Model

5.3.1 SPE Subgame Perfect Equilibrium
5.3.2 QRE Quantal Response Equilibrium
5.3.3 FS-QRE Fehr-Schmidt Quantal Response Equilibrium
5.3.4 BO-QRE Bolton-Ockenfels Quantal Response Equilibrium
5.3.5 CR-QRE Charness-Rabin Quantal Response Equilibrium
5.3.6 7S Seven Strategies

Each baseline model in Table 5.1 contains a second mover model and a first mover model. We
fit the free parameters of the 2 × 6 models to the data of the estimation experiment, predict
the data of the prediction experiment and report within sample and out-of-sample fits. In
Section 5.4 we describe the four models that we submitted to the prediction competition.

Table 5.2
Own Models

Section Mnemonic Name of Model

5.4.1 SUM Stochastic Utility Maximizer
5.4.2 TTB Take-The-Best

5.4.3 SQRE Subjective Quantal Response Equilibrium
5.4.4 SVO-SQRE SQRE with Social Value Orientation

The first two models of Table 5.2 were submitted to the second mover competition and the
other two models to the first mover competition. We explain how we fitted the free parameters
of each model and report within sample and out-of-sample fits. In Section 5.5 we rank and
compare the predictive power of our models to the predictive power of the baseline models,
check if the ranking is reliable and show that averaging good predictions yields better but not
optimal predictions. In Section 5.6 we summarize the main results of our study and answer
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the two research questions that were raised by the competition organizers.

5.2 Prediction Competition

Validation Procedure The organizers of the prediction competition Ert et al. (2011) pro-
vided experimental data on an estimation set of 120 games (that are listed in Table 6) and
five baseline models that were implemented in computer programs and fitted to the data of
the estimation experiment.2 The baseline models served as a benchmark and could be used
together with the data of the estimation experiment for the development of own models. After
all models were submitted, the data of a prediction experiment were published. The prediction
experiment contained another 120 different games that are listed in Table 7. Based on this
prediction set of games, all submitted models were ranked according to their mean predictive
error (validation criterion) and the ranking was published on the competition homepage.3

Structure of the Games Each of the 2 × 120 games involves two individuals that act se-
quentially (see Figure 5.1). The first mover F can choose either alternative out or alternative
in. Alternative out implies the implementation of payoff distribution (xo

F , xo
S). Alternative

in implies that the second mover S can choose between alternative left that yields payoff
distribution (xl

F , xl
S) or alternative right that yields payoff distribution (xr

F , xr
S).

Figure 5.1
Structure of the Basic Extensive Form Game

inout

xo
F , xo

S

F

right

xr
F , xr

S

left

xl
F , xl

S

S

Source. Ert et al. (2011)

Depending on the values of the six payoffs xa
I ∈ {−8, −7, ..., 8} with I ∈ {F, S} and a ∈ {o, l, r},

a particular game involves selfish, altruistic, or neutral actions by the first mover and allows
for reciprocation, punishment, or reward of the first mover’s choice by the second mover (see
Table 5.3).

Game Space Classification The 2 × 120 games were sampled by a quasi random sampling
algorithm (see Appendix in Ert et al., 2011). Table 5.3 classifies the game space into ten

2 The computer programs can be downloaded from the prediction competition homepage: https://sites.

google.com/site/extformpredcomp/baseline-models.
3 See https://sites.google.com/site/extformpredcomp/competition-results-and.
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classes of games and denotes the proportions for each class that are implied by the algorithm.

Table 5.3
Classification of Games

Class Properties Sharea

Safe Shot Choosing in yields highest payoff for F 38.0%
Near Dictator Highest payoff of F does not depend on the choice of S 32.0%
Common Interest One alternative yields the highest payoff for F and S 19.0%
Costly Help Improving the other payoff is costly for the helper 7.4%
Trust Game Choosing in improves payoff of S but not if S reciprocates 6.5%
Rational Punish Punishing in choice of F yields highest payoff for S 5.3%
Costly Punish Punishing in choice of F is costly for S 4.0%
Strategic Dummy S cannot affect payoffs 3.5%
Free Help Improving the other payoff is not costly 2.8%
Free Punish S can punish in choice of F with no cost 1.2%

Source. Ert et al. (2011)
a The sum of shares is greater than 100% since some games fall into more than one class.

Sub-Competitions The competition was divided into two independent but related sub-
competitions. One sub-competition was on predicting the behavior of the first mover and
the other sub-competition was on predicting the behavior of the second mover. The researches
could submit different models to each sub-competition or one model that predicts the behavior
in both sub-competitions. Both sub-competitions were based on the same estimation set and
the same prediction set of games. Table 6 contains the experimental data of the estimation
set of games on which the baseline models and the submitted models were fitted and Table 7
contains the experimental data of the prediction set of games on which the submitted models
were ranked based on their mean predictive error. For each game Γ ∈ {1, 2, ..., 120} of the
prediction set, a first mover model had to predict the observed in choice probability pi

Γ ∈ [0, 1]
while a second mover model had to predict the observed right choice probability pr

Γ ∈ [0, 1].4

Validation Criterion The validation criterion of the competition was the mean of the squared
deviations (MSD) of the observed choice probabilities of the games in the predictions set and
the corresponding choice probabilities that are predicted by a model. The mean predictive
error of a first mover model is given by

MSDF
pre =

120
∑

Γ=1

1

120
· (pi

Γ − p̂i
Γ)2,

4 Each choice probability is based on 16 individual observations. The raw data and the instructions can be
downloaded from the prediction competition homepage (see section raw data and section method): https://

sites.google.com/site/extformpredcomp/.
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with p̂i
Γ ∈ [0, 1] denoting the in choice probability that is predicted by a first mover model for

game Γ.

The mean predictive error of a second mover model is given by

MSDS
pre =

120
∑

Γ=1

1

120
· (pr

Γ − p̂r
Γ)2,

with p̂r
Γ ∈ [0, 1] denoting the right choice probability that is predicted by a second mover

model for game Γ.

5.3 Baseline Models

Table 5.4 summarizes for each baseline model that we consider in this Section the fitting result
(within-sample fit) and the prediction result (out-of-sample fit).

Table 5.4
Fitting versus Predicting: Performance of Baseline Models

Section Model MSDF
est MSDF

pre MSDS
est MSDS

pre

5.3.1 SPE 0.0545 0.0532 0.0105 0.0071
5.3.2 QRE 0.0170 0.0141 0.0092 0.0057
5.3.3 FS-QRE 0.0118 0.0140 0.0082 0.0056
5.3.4 BO-QRE 0.0141 0.0172 0.0073 0.0056
5.3.5 CR-QRE 0.0112 0.0143 0.0042 0.0067
5.3.6 7S 0.0119 0.0083 0.0029 0.0043

The QRE models5 and the seven strategies model relax one or more assumptions of the
traditional SPE model (Selten, 1965, 1973). The first QRE model (McKelvey and Palfrey,
1998) introduces choice errors and permits therefore deviations from optimal play but keeps
the assumption that individuals have monetary preferences.6 The other three QRE models
introduce additionally different specifications of social preferences (Fehr and Schmidt, 1999;
Bolton and Ockenfels, 2000; Charness and Rabin, 2002) that permit deviations from selfish

5 Strictly speaking, each QRE model that we consider is a so called logit agent quantal response equilibrium
(AQRE). Logit AQRE is a parametric specification of AQRE in which the choice probabilities of the indi-
viduals are defined by logit response functions. AQRE applies QRE to the agent normal form of extensive
form games and QRE is a statistical generalization of Nash equilibrium (Nash, 1951) in which individuals
stochastically best respond (McKelvey and Palfrey, 1995). Since logit AQRE is a subclass of QRE, we use
the shorter terminus QRE.

6 SPE is a refinement of Nash equilibrium (Nash, 1951) that assumes additionally that individuals use backward
induction. Notice that QRE models do not assume backward induction since assuming that individuals
stochastically best respond implies that a unique equilibrium is selected (McKelvey and Palfrey, 1995, 1998).
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behavior. Lastly, one of the strategies in the seven strategies model (Ert et al., 2011) is a
prescription of the SPE model.

Some of the baseline models that are listed in Table 5.4 differ from the ones that the orga-
nizers of the competition used as baseline models and implemented in computer programs.
In particular, we reformulated the social preference QRE models and achieved thereby better
within-sample fits than the ones reported by Ert et al. (2011) (see Appendix 13 and Table 5
for more information). In our study, the seven strategies model that performed best in fit-
ting the behavior of both individuals in the study of Ert et al. (2011) has still the highest
within-sample fit of all second mover models but no more the highest within-sample fit of all
first mover models. However, the seven strategies model still outperforms all other models in
predicting the behavior of the second mover and the behavior of the first mover.7

For seperating the effect of choice errors from the effect of social preferences in fitting and
predicting the choice behavior of the first mover and the second mover, we estimated addi-
tionally a QRE model with monetary preferences. A comparison of the QRE models listed in
Table 5.4 reveals that in any case, an introduction of social preferences increases the within-
sample fit but not the out-of-sample fit. In the case of the Bolton-Ockenfels QRE (first mover)
and in the case of Charness-Rabin QRE (second mover) social preferences even decrease the
out-of-sample fit.

The remainder of this Section introduces and describes each baseline model that contains a
second mover model and a first mover model. Since the latter may include the former, we
start first with the description of the second mover model and present the parameter estimates
that minimisze the second mover MSD of the estimation set of games

MSDS
est =

120
∑

Γ=1

1

120
· (pr

Γ − p̂r
Γ)2.

Then, we describe the first mover model that may include the second mover model (but not
its parameter estimates8) and list then the parameter estimates that minimize the first mover
MSD of the estimation set of games

MSDF
est =

120
∑

Γ=1

1

120
· (pi

Γ − p̂i
Γ)2.9

7 Ert et al. (2011) do not report prediction MSD scores for their baseline models. However, since none of the
baseline models except the seven strategies was within the best 15 predictors in both competitions, we can
infer that the seven strategies model had the best out-of-sample fit.

8 Notice that the parameter estimates that determine the behavior of the second mover in a first mover model
may be different from the parameter estimates that determine the behavior of the second mover in the
second mover model.

9 Notice that we do not use from now on the game index Γ to denote a choice probability in a game for saving
some notation.
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5.3.1 Subgame Perfect Equilibrium

Subgame perfect equilibrium (SPE) is a refinement of Nash equilibrium (Nash, 1951) that
was introduced by Selten (1965, 1973) in order to eliminate unreasonable Nash equilibria in
extensive form games of complete information.10 In the subgame perfect equilibrium it is
common knowledge that the first mover and the second mover maximize their own expected
utility, that their preferences are defined by a utility function that depends only on their
own payoff and that the first mover applies backward induction and may therefore eliminate
unreasonable Nash equilibria.

SPE Second Mover Model Second mover S is a utility maximizer who cares only about her
payoff. Her utility from choosing alternative a ∈ {l, r} is equal to

ua
S = xa

S (5.1)

and she chooses right with probability

p̂r =















0 if ul
S > ur

S

1 if ul
S < ur

S

0.5 if ul
S = ur

S .

(5.2)

The mean of squared deviations for the estimation set and for the prediction set are

MSDS
est = 0.0105 MSDS

pre = 0.0071.

SPE First Mover Model First mover F is an expected utility maximizer who cares only
about her payoff and who has consistent beliefs about the second mover. His utility from
alternative a ∈ {o, l, r} is equal to

ua
F = xa

F . (5.3)

F knows the utility function of second mover S (Equation 5.1) and thus her actual choice
probability p̂r (Equation 5.2). This implies that his expected utility Eui

F from choosing in is
equal to (1 − p̂r) · ul

F + p̂r · ur
F . F chooses in with probability

p̂i =















0 if uo
F > Eui

F

1 if uo
F < Eui

F

0.5 if uo
F = Eui

F .

10 Unreasonable Nash equilibria depend on non-credible threats (see Section 4.3.1).
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The mean of squared deviations for the estimation set and for the prediction set are

MSDF
est = 0.0545 MSDF

pre = 0.0532.11

5.3.2 Quantal Response Equilibrium

Quantal response equilibrium (QRE) is a solution concept that was introduced for nor-
mal form games by McKelvey and Palfrey (1995) and applied to extensive form games by
McKelvey and Palfrey (1998). It is a combination of Nash equilibrium (Nash, 1951) and the
stochastic utility model of Luce (1959). In comparison to subgame perfect equilibrium in
which individuals always maximize their expected utility, in a quantal response equilibrium
they do it stochastically which leads to deviations from optimal play that are interpreted as
choice errors. How large the deviations from optimal play are depends on how responsive the
individuals are to their preferences.

QRE Second Mover Model Second mover S is a stochastic utility maximizer who cares
only about her payoff. Her utility function is defined by Equation 5.1. Given her preference
responsiveness λS ∈ [0, ∞], she chooses alternative right with probability

p̂r =
eλS ·ur

S

eλS ·ul
S + eλS ·ur

S

. (5.4)

Choice probability p̂r ∈ [0, 1] depends on two factors: First, on the second mover’s preference
responsiveness λS; and second, on the differences between the utility scores ul

S and ur
S . For a

given preference responsiveness, the likelihood that S acts in accordance with her preferences
is higher, the greater the differences between the utility scores are; and for given utility scores,
the likelihood that S acts in accordance with her preferences is higher, the greater the her
preference responsiveness is. This implies two extreme cases in which S either decides randomly
if λS = 0 or chooses always the alternative that maximizes her utility if λS = ∞. Notice that
in the latter case the predictions of the QRE second mover model are equal to the predictions
of the SPE second mover model (see Section 5.3.1).

The parameter estimate that minimizes the mean of squared deviations of the estimation set
is

λS = 2.073

and the mean of squared deviations for the estimation set and for the prediction set of the
estimated model are

MSDS
est = 0.0092 MSDS

pre = 0.0057.

11 The MATLAB code that was used to compute the mean squared deviations of both models is attached with
detailed comments in Appendix 16.1.
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QRE First Mover Model First mover F is a stochastic expected utility maximizer who
cares only about her payoff and who has consistent beliefs about the second mover. His
utility function is defined by Equation 5.3. F knows the utility function of second mover
S (Equation 5.1), her preference responsiveness λS , and thus the actual choice probability
p̂r (Equation 5.4). This implies that Eui

F = (1 − p̂r) · ul
F + p̂r · ur

F . Given his preference
responsiveness λF ∈ [0, ∞], he chooses in with probability

p̂i =
eλF ·Eui

F

eλF ·uo
F + eλF ·Eui

F

. (5.5)

The in choice probability p̂i ∈ [0, 1] depends on λF , uo
F , Eui

F and the relationships are analo-
gous to the ones explained for Equation 5.4. Notice however that it is in particular true that
the predictions of the SPE first mover model (see Section 5.3.1) are equal to the predictions
of the QRE first mover model if λF = ∞ and λS = ∞.

The parameter estimates that minimize the mean of squared deviations of the estimation set
are

λS = 0.6950 λF = 0.6823

and the mean of squared deviations for the estimation set and for the prediction set of the
estimated model are

MSDF
est = 0.0170 MSDF

pre = 0.0141.12

5.3.3 Quantal Response Equilibrium with Fehr-Schmidt Preferences

In the Fehr-Schmidt QRE model we combine the quantal response equilibrium (that we con-
sider in Section 5.3.2) with the social preference specification of Fehr and Schmidt (1999). The
latter permits deviations from selfish behavior by assuming that individuals do not care only
about their own payoff but also dislike unequal income distributions and the former permits
deviations from optimal play.

FS-QRE Second Mover Model Second mover S is a stochastic utility maximizer who cares
about her payoff and is inequality averse. Given her degree of aversion to disadvantageous
inequality αS and her degree of aversion to advantageous inequality βS with βS ∈ [0, 1) and
αS ≥ βS , her utility from choosing alternative a ∈ {l, r} is equal to

ua
S = xa

S − αS · max(0, xa
F − xa

S) − βS · max(0, xa
S − xa

F ). (5.6)

The first term of her utility function captures the utility from her payoff, the second term
represents the utility loss from disadvantageous payoff inequality and the third term is the
utility loss from advantageous payoff inequality. The degree of aversion against advantageous
inequality is given by βS ∈ [0, 1). The non-negativity restriction implies that the second mover

12 The MATLAB code that was used to estimate the free parameters of both models and to compute the mean
squared deviations is attached with detailed comments in Appendix 16.4.
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cannot gain utility from advantageous inequality and the restriction to values below one implies
that she does not burn money to reduce advantageous inequality. The degree of aversion to
disadvantageous inequality is measured by αS ≥ βS . The parameter restriction means that
the second mover cannot suffer more from an advantageous inequality in comparison to an
equivalent disadvantageous inequality. Given her preference responsiveness λS ∈ [0, ∞], S
chooses alternative right with probability p̂r (Equation 5.4).

The parameter estimates that minimize the mean of squared deviations of the estimation set
are

λS = 2.299 αS = 0.0353 βS = αS

and the mean of squared deviations for the estimation set and for the prediction set of the
estimated model are

MSDS
est = 0.0082 MSDS

pre = 0.0056.13

FS-QRE First Mover Model First mover F is a stochastic expected utility maximizer who
has consistent beliefs about the second mover S and who is inequality averse and cares about
his payoff. Given his degree of aversion to disadvantageous inequality αF and his degree
of aversion to advantageous inequality βF with βF ∈ [0, 1) and αF ≥ βF , his utility from
alternative a ∈ {o, l, r} is equal to

ua
F = xa

F − αF · max(0, xa
S − xa

F ) − βF · max(0, xa
F − xa

S). (5.7)

F knows the utility function of S (Equation 5.1) including αS and βS , her preference re-
sponsiveness λS, and thus the actual choice probability p̂r (Equation 5.4). This implies that
Eui

F = (1 − p̂r) · ul
F + p̂r · ur

F . Given his preference responsiveness λF ∈ [0, ∞], F chooses in
with probability p̂i (Equation 5.5).

The parameter estimates that minimize the mean of squared deviations of the estimation set
are

λS = 0.8295 αS = 0.1494 βS = 0.1073 λF = 0.8142 αF = 0.0483 βF = αF

and the mean of squared deviations for the estimation set and for the prediction set of the
estimated model are

MSDF
est = 0.0118 MSDF

pre = 0.0140.14

13 The second mover model was estimated by restricting the values of βS to the values of αS . The reason
for this restriction is that the estimates of an unconstrained estimation of the model (λS = 3.317, αS = 0,
βS = 0.0787) imply a higher value for βS than for αS which violates parameter restriction αS ≥ βS . The
unconstrained estimation of the model yields a lower MSD of 0.0046 for the estimation set (in comparison
to 0.0082) but a higher MSD of 0.0062 for the prediction set (in comparison to 0.0056). This indicates that
the parameter restriction αS ≥ βS made by Fehr and Schmidt (1999) prevented overfitting the data of the
estimation set.

14 The first mover model was estimated by restricting the values of βF to the values of αF . The reason for this
restriction is that the estimates of an unconstrained estimation of the model (λS = 0.8726, αS = 0.1344,
βS = 0.0824, λF = 0.8567, αF = 0.0145, βF = 0.0808) imply a higher value for βF than for αF which
violates parameter restriction αF ≥ βF . Notice however that the performance of the unconstrained model
(MSDest = 0.0112, MSDpre = 0.0143) in fitting and predicting is similar to the one of the constrained
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5.3.4 Quantal Response Equilibrium with Bolton-Ockenfels Preferences

In the Bolton-Ockenfels QRE model we combine the quantal response equilibrium (that
we consider in Section 5.3.2) with a specification of social preferences that was defined by
Bolton and Ockenfels (2000). The latter permits deviations from selfish behavior by assuming
that individuals do not care only about their own payoff but also dislike to get less or more
than the equal split. The former permits deviations from optimal play.

BO-QRE Second Mover Model Second mover S is a stochastic utility maximizer who cares
about her payoff and how far her payoff is away from the equal split. Given her degree
of aversion to deviations from the equal split bS ≥ 0, her utility from choosing alternative
a ∈ {l, r} equals

ua
S = cσS − bS

2
c

(

σS − 1

2

)2

. (5.8)

The first term captures the utility from her payoff with σS denoting the proportion of the
monetary cake c that she receives. The second term represents her utility loss from a deviation
from the equal split. The greater the deviation from the equal split is, the higher is her utility
loss. Her degree of aversion bS ≥ 0 measures the importance of a deviation from the equal split.
Since the payoffs in the games that we consider can be negative, the form of the utility function
requires a positive transformation of payoffs to exclude negative payoffs. The transformed
payoffs are given by x̃a

S = xa
S + m and x̃a

F = xa
F + m with m = |min(xo

F , xl
F , xr

F , xo
S , xl

S , xr
S)|.

The monetary cake is given by c = x̃a
S + x̃a

F + ǫ with ǫ being a very small positive number that
is added to the monetary cake to avoid division by 0. The proportion of the monetary cake

that S receives is defined by σS =
x̃a

S

c
.15 Given her preference responsiveness λS ∈ [0, ∞], S

chooses alternative right with probability p̂r (Equation 5.4). The parameter estimates that
minimize the mean of squared deviations of the estimation set are

λS = 2.361 bS = 0.3779

and the mean of squared deviations for the estimation set and for the prediction set of the
estimated model are

MSDS
est = 0.0073 MSDS

pre = 0.0056.

BO-QRE First Mover Model First mover F is a stochastic expected utility maximizer who
has consistent beliefs about the second mover and who cares about his payoff and how far his
payoff is away from the equal split. Given his degree of aversion to deviations from the equal

split bF ≥ 0 and the proportion of the monetary cake that he receives σF =
x̃a

F

c
, his utility

model. The MATLAB code that was used to estimate the free parameters of both models and to com-
pute the mean squared deviations is attached with detailed comments in Appendix 16.5. The code of the
unconstrained estimation is attached in Appendix 16.7.

15 Ert et al. (2011) conducted a similar payoff transformation with the only difference that ǫ = 1 which is less
accurate than assuming a very small positive ǫ that approaches 0.
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from alternative a ∈ {o, l, r} is defined by

ua
F = cσF − bF

2
c

(

σF − 1

2

)2

. (5.9)

F knows the utility function of the second mover S (Equation 5.8) including bS, her preference
responsiveness λS and and thus the actual choice probability p̂r (Equation 5.4). This implies
that Eui

F = (1 − p̂r) · ul
F + p̂r · ur

F . Given his preference responsiveness λF ∈ [0, ∞], he chooses
in with probability p̂i (Equation 5.5). The parameter estimates that minimize the mean of
squared deviations of the estimation set are

λS = 0.7783 bS = 0.9214 λF = 0.7730 bF = 0.5413

and the mean of squared deviations for the estimation set and for the prediction set of the
estimated model are

MSDF
est = 0.0141 MSDF

pre = 0.0172.16 .

5.3.5 Quantal Response Equilibrium with Charness-Rabin Preferences

In the Charness-Rabin QRE model we combine the quantal response equilibrium (that we
consider in Section 5.3.2) with a specification of social preferences that was formulated by
Charness and Rabin (2002). Compared to the other two specifications of social preferences
(that we considered in Sections 5.3.3 and 5.3.4), the individuals may not only be concerned
with reducing inequality, but also with increasing social welfare. Moreover the second mover
may also be motivated by reciprocity.

CR-QRE Second Mover Model Second mover S is a stochastic utility maximizer who cares
about her payoff and may also care about the payoff of first mover F and whether he misbe-
haved or not. Her utility from choosing alternative a ∈ {l, r} is defined by

ua
S = (1 − ρSr − σSs − θSq) · xa

S + (ρSr + σSs + θSq) · xa
F , (5.10)

where r = 1 if she is better off (xa
S > xa

F ) and r = 0 otherwise; s = 1 if she is worse
off (xa

S < xa
F ) and s = 0 otherwise; q = −1 if the first mover F misbehaved and q = 0

otherwise. A misbehavior is present if F chooses in although out yields a higher joint payoff
and a higher payoff for S. The utility of S from alternative a is a weighted sum of her payoff
and the payoff of the first mover. The weight S places on the payoff of F may depend on
whether F has a higher or lower payoff and on whether F misbehaved or not. The reciprocity
parameter θS takes a misbehavior of the first mover into account and parameters ρS and σS

allow for different types of social preferences. Inequality aversion (Fehr and Schmidt, 1999;
Bolton and Ockenfels, 2000) corresponds to 1 > ρS > 0 > σS , i.e., S cares about her own

16 The MATLAB code that was used to estimate the free parameters of both models and to compute the mean
squared deviations is attached with detailed comments in Appendix 16.9
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payoff and is inequality averse which implies that she wishes to lower the payoff of F when
she is worse off (s = 1). Social welfare preferences (Andreoni and Miller, 2002) correspond
to 1 > ρS > σS > 0, i.e., S prefers a higher payoff for herself and a higher payoff for F but
favors herself when she is worse off (s = 1). Given her preference responsiveness λS ∈ [0, ∞],
S chooses alternative right with probability p̂r (Equation 5.4). The parameter estimates that
minimize the MSD of the estimation set are

λS = 3.437 ρS = 0.0758 σS = 0.0232 θS = 0.

The estimates imply that the second mover has social welfare preferences and does not care
about a misbehavior of the first mover. The mean of squared deviations for the estimation set
and for the prediction set of the estimated model are

MSDS
est = 0.0042 MSDS

pre = 0.0067.

CR-QRE First Mover Model The first mover is a stochastic expected utility maximizer who
cares about his payoff, the payoff of the second mover and who has consistent beliefs about
the second mover. The utility of first mover F from alternative a ∈ {o, l, r} is defined by

ua
F = xa

F · (1 − ρF · s − σF · r) + xa
S · (ρF · s + σF · r) .

F knows the utility function of second mover S (Equation 5.10) including ρS , τS and θS, her
preference responsiveness λS, and therefore her choice probability p̂r (Equation 5.4). This
implies that Eui

F = (1 − p̂r) · ul
F + p̂r · ur

F . Given his preference responsiveness λF ∈ [0, ∞],
F chooses in with probability p̂i (Equation 5.5). The parameter estimates that minimize the
mean of squared deviations of the estimation set are

λS = 0.8746 ρS = 0.0819 σS = −0.134 θS = 0.0016 λF = 0.8585 ρF = 0.0815 σF = −0.0143.

The estimates imply that both individuals are inequality averse and that the second mover
cares (a little) about the misbehavior of the first mover. The mean of squared deviations for
the estimation set and for the prediction set of the estimated model are

MSDF
est = 0.0112 MSDF

pre = 0.0143.17

5.3.6 Seven Strategies

Each strategy of the seven strategies (7S) model of Ert et al. (2011) is an effort to maximize a
certain target value and may reflect a belief of the first mover about the rule the second mover
applies. The rules and beliefs that are implied by each strategy are summarized in Table 5.5.

17 The MATLAB code that was used to estimate the free parameters of both models and to compute the mean
squared deviations is attached with detailed comments in Appendix 16.11.
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Table 5.5
Rules and Beliefs Implied by Each of the Seven Strategies

Strategy Rule Belief

Ratio Maximize own payoff Other individual uses the same rule
JointMx Maximize joint payoff Other individual uses the same rule
MxW eak Maximize minimum payoff Other individual uses the same rule
MnDiff Minimize payoff difference Other individual uses the same rule
MaxMin Maximize own minimum payoff -
Level − 1 Maximize own payoff Other individual acts randomly
NiceR Maximize own payoff; if you are

-indifferent, maximize other payoff

7S Second Mover Model There is an infinite population of second movers and each second
mover S uses one of the seven strategies considered above. Since strategies Maxmin and
Level − 1 are perfectly correlated with strategy Ratio (see Ert et al., 2011), the population of
second movers can be characterized by a probability distribution β over five strategies.

Fraction βR of the population uses strategy Ratio and chooses alternative right with proba-
bility

p̂r
R =















0 if xl
S > xr

S

1 if xl
S < xr

S

0.5 otherwise.

Fraction βN uses strategy NiceR and chooses alternative right with probability

p̂r
N =















0 if xl
S > xr

S ∨ (xl
S = xr

S ∧ xl
F > xr

F )

1 if xl
S < xr

S ∨ (xl
S = xr

S ∧ xl
F < xr

F )

0.5 otherwise.

Fraction βJ uses strategy JointMx and chooses alternative right with probability

p̂r
J =















0 if xl
S + xl

F > xr
S + xr

F

1 if xl
S + xl

F < xr
S + xr

F

0.5 otherwise.

Fraction βW uses strategy MxW eak and chooses alternative right with probability

p̂r
W =















0 if min(xl
S , xl

F ) > min(xr
S , xr

F )

1 if min(xl
S , xl

F ) < min(xr
S , xr

F )

0.5 otherwise.
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Fraction βD = 1 − βR + βN + βJ + βW uses strategy MnDiff and chooses alternative right
with probability

p̂r
D =















0 if |xl
S − xl

F | < |xr
S − xr

F |
1 if |xl

S − xl
F | > |xr

S − xr
F |

0.5 otherwise.

Thus, the probability to observe a right choice that is predicted by the second mover model
is given by

p̂r = βR · p̂r
R + βN · p̂r

N + βJ · p̂r
J + βW · p̂r

W + βD · p̂r
D.

The probability distribution over the six strategies β is estimated by means of a regression
analysis with no intercept and the restriction that the sum of the weights is equal to 1. The
parameter estimates are

βR = 0.5038 βN = 0.3565 βJ = 0.0581 βW = 0.0445 βD = 0.0371

and the mean of squared deviations for the estimation set and for the prediction set of the
estimated model are

MSDS
est = 0.0029 MSDS

pre = 0.0043.

7S First Mover Model There is an infinite population of first movers and each first mover
F uses one of six strategies. Since strategy NiceR cannot be applied to the strategic choice
problem of F (see Ert et al., 2011), the population of first movers can be characterized by a
probability distribution α over six strategies.

Fraction αR of the population uses strategy Ratio and chooses alternative in with probability

p̂i
R =















0 if xo
F > (1 − p̂r

R) · xl
F + p̂r

R · xr
F

1 if xo
F < (1 − p̂r

R) · xl
F + p̂r

R · xr
F

0.5 otherwise.

Fraction αL uses strategy Level − 1 and chooses alternative in with probability

p̂i
L =















0 if xo
F > 1/2 · xl

F + 1/2 · xr
F

1 if xo
F < 1/2 · xl

F + 1/2 · xr
F

0.5 otherwise.

Fraction αM uses strategy MaxMin and chooses alternative in with probability

p̂i
M =















0 if xo
F > min(xl

F , xr
F )

1 if xo
F < min(xl

F , xr
F )

0.5 otherwise.
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Fraction αJ uses strategy JointMx and chooses alternative in with probability

p̂i
J =















0 if xo
F + xo

S > max(xl
F + xl

S , xr
F + xr

S)

1 if xo
F + xo

S < max(xl
F + xl

S , xr
F + xr

S)

0.5 otherwise.

Fraction αW uses strategy MxW eak and chooses alternative in with probability

p̂i
W =















0 if min(xo
F , xo

S) > max(min(xl
F , xl

S), min(xr
F , xr

S))

1 if min(xo
F , xo

S) < max(min(xl
F , xl

S), min(xr
F , xr

S))

0.5 otherwise.

Fraction αD = 1 − αR + αL + αM + αJ + αW uses strategy MnDiff and chooses alternative
in with probability

p̂i
D =















0 if |xo
F − xo

S | < min(|xl
F − xl

S|, |xr
F − xr

S |)
1 if |xo

F − xo
S | > min(|xl

F − xl
S|, |xr

F − xr
S |)

0.5 otherwise.

The probability to observe an in choice that is predicted by the first mover model is given by

p̂i = αR · p̂i
R + αL · p̂i

L + αM · p̂i
M + αJ · p̂i

J + αW · p̂i
W + αD · p̂i

D.

The probability distribution over the six strategies α is estimated by means of a regression
analysis with no intercept and the restriction that the sum of the weights are equal to 1. The
parameter estimates are

αR = 0.4348 αL = 0.1950 αM = 0.2005 αJ = 0.0665 αW = 0.0619 αD = 0.0414

and the mean of squared deviations for the estimation set and for the prediction set of the
estimated model are

MSDF
est = 0.0119 MSDF

pre = 0.0083.18

5.4 Own Models

The first two models of this Section were submitted to the sub-competition for predicting the
behavior of the second mover and the other two models of this Section were submitted to the

18 The MATLAB code that was used to estimate the free parameters of both models and to compute the mean
squared deviations is attached with detailed comments in Appendix 16.13. Notice that the code specifies
the model as it is described by Ert et al. (2011). The code that is published on the competition home-
page (https://sites.google.com/site/extformpredcomp/baseline-models/seven-strategies-matlab)
deviates in some parts which are outlined in Appendix 16.14 and Appendix 16.15.
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sub-competition for predicting the behavior of the first mover.

5.4.1 Stochastic Utility Maximizer

Second mover S is a stochastic utility maximizer who cares about own welfare, social welfare
and equality. The utility of second mover S from choosing right is given by

ur
S = o · wo + s · ws + e · we. (5.11)

Weight wo ∈ [0, 1] measures how much S cares about own welfare and indicator

o =















0 if xl
S > xr

S

1 if xl
S < xr

S

0.5 otherwise

indicates which alternative a ∈ {l, r} maximizes her own payoff. Weight ws ∈ [0, 1] measures
how much S cares about social welfare and indicator

s =















0 if xl
S + xl

F > xr
S + xr

F

1 if xl
S + xl

F < xr
S + xr

F

0.5 otherwise

indicates which alternative a ∈ {l, r} maximizes the joint payoff. Weight we ∈ [0, 1] measures
how much S cares about own welfare and equality (self-biased equality). Indicator

e =















0 if xl
S − |xl

S − xl
F | > xr

S − |xr
S − xr

F |
1 if xl

S − |xl
S − xl

F | < xr
S − |xr

S − xr
F |

0.5 otherwise.

indicates which alternative a ∈ {l, r} maximizes the difference of her own payoff and the
absolute difference between her own payoff and the other payoff. The sum of weights wo +
ws + we is equal to 1 and the utility of S from alternative left is given by ul

S = 1 − ur
S with

ur
S ∈ [0, 1]. This implies that

• ur
S = 1 and ul

S = 0 when only right maximizes own welfare, social welfare and self-biased
equality, i.e., o = s = e = 1;

• ur
S = ul

S = 0.5 when both alternatives maximize own welfare, social welfare and equality,
i.e., o = s = e = 0.5;

• ur
S = 0 and ul

S = 1 when only left maximizes own welfare, social welfare and self-biased
equality, i.e., o = s = e = 0.

Our specification of social preference does not take directly the payoffs of a game into account;
compared to ones of the QRE models that we consider in Sections 5.3.3, 5.3.4 and 5.3.5. Instead
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the utility of a payoff distribution depends on whether it has certain characteristics relative to
the other payoff distribution. However the characteristics themselves depend directly on the
payoff distribution. We estimated the model under the assumption that S weights differently
depending on whether one alternative a ∈ {l, r} yields a higher own payoff (o 6= 0.5) or not
(o = 0.5). If o 6= 0.5, then ws = we = α, i.e., she cares about social welfare as much as she
cares about self-biased equality when one alternative yields a higher own payoff. If o = 0.5,
then ws = α+β and we = α, i.e., she cares more about social welfare than about equality when
both alternatives yield the same own payoff. Given her preference responsiveness λS ∈ [0, ∞],
S chooses alternative right with probability p̂r (Equation 5.4).19

The parameter estimates that minimize the mean of squared deviations of the estimation set
are

λS = 3.8880 α = 0.1551 β = 0.1068

and the implied distribution over weights (wo ws we) is equal to (0.6898 0.1551 0.1551) if
o 6= 0.5 and equal to (0.5830 0.2619 0.1551) if o = 0.5. The mean of squared deviations for
the estimation set and for the prediction set of the estimated model are

MSDS
est = 0.0016 MSDS

pre = 0.0038.20

5.4.2 Take-The-Best

Take-the-best (TTB) is one of several other formal models of fast and frugal heuristics in the
adaptive toolbox of bounded rationality (Gigerenzer and Selten, 2001). Fast and frugal heuris-
tics are based on satisficing rather than optimizing and on bounded rationality rather then un-
bounded rationality (Simon, 1956). Take-the-best was proposed by Gigerenzer and Goldstein
(1996) as a process model of how people infer which of two alternatives has a higher value
on an unknown criterion. An example of such an inference problem is to answer the question
which of two cities has more inhabitants without knowing the correct answer. Although take-
the-best is mainly used for inference problems, it is akin to models of heuristics for preferences
(Tversky, 1972; Payne et al., 1993) and can be therefore applied to preference problems, e.g.,
in consumer preference research (Dieckmann et al., 2009).

In our preference model, we use one important property of take-the-best, the underlying lex-
icographic process that searches sequentially through cues in a given order until the first
discriminating cue is found and the individual makes the decision based on this cue. In the
take-the-best preference model, the order of the cues reflects the importance of each cue for

19 The stochastic utility maximizer model uses the same choice rule as the QRE second mover model. This is
the reason why we estimate a preference responsiveness parameter λS. It was not labelled as a QRE model
because it only applies to the second mover and does not involve belief formation.

20 The MATLAB code that was used to estimate the free parameters of the model and to compute the mean
squared deviations is attached with detailed comments in Appendix 16.16. The model can be estimated
with less constrains on the distributions over weights. Notice that the implied distributions over weights of
the unconstrained estimation ((0.6898 0.1628 0.1474) if o 6= 0.5 and (0.5802 0.2631 0.1567) if o = 0.5) are
very similar and do not change the MSD scores (see Appendix 16.18).
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the individual. A cue indicates the presence of an aspect of a payoff distribution (higher own
payoff, higher joint payoff, etc.). If a cue value is 1 the aspect specified by a cue is present; if
a cue value is 0 the specified aspect is absent. A cue is discriminating if the cue value of one
alternative is 1 while the cue value of the other alternative is 0.

Like other fast and frugal heuristics the take-the-best preference model has three building
blocks (Gigerenzer et al., 1999):

1. a search rule that specifies to examine cues sequentially and to compare at each step the
cue values between alternatives;

2. a stopping rule that specifies to stop search if a cue is discriminating; and

3. a decision rule that specifies to choose the alternative with the positive cue value if a cue
is discriminating.

In contrast, the (stochastically) optimizing individuals in the social preference models that
we consider in Sections 5.3.3–5.3.5 compute a utility score for each alternative by weighing
and adding all aspects specified in their utility function (e.g. own payoff, inequality, social
welfare, reciprocity, and so on), then they compare the alternatives based on their utility score
and choose the alternative with the highest utility score. The satisfying individuals in the
take-the-best preference model however consider only one aspect at a time and do not weigh
and add all aspects at the same time. They do not base their decision on utilities but on the
first aspect that discriminates, thereby ignoring all other aspects.

TTB Second Mover Model There is an infinite population of second movers that make
their choice between left and right based on n aspects. For each alternative a ∈ {l, r}, a cue
ca

k ∈ {0, 1} indicates the presence of an aspect k ∈ {1, 2, ..., n} if ca
i = 1 or the absence of an

aspect k if ca
i = 0. This implies that each alternative a can be characterized by a cue profile

c = {ca
1 , ca

2, ..., ca
n}.

Each second mover S uses the heuristic take-the-best for choosing between left and right, she
has a subset of cues cS ⊆ c that lists the order of the cues S takes into account. The order
of cues reflects how important a cue for S is. Take-the-best specifies that S makes a choice
if the first cue discriminates between left and right. If the first cue does not discriminate, S
makes a choice if the second cue discriminates, and so on. If none of the cues in her cue set
cS discriminates, S chooses randomly.

We assume three possible cues c = {ca
1 , ca

2, ca
3}:

• Cue ca
1 indicates the presence or absence of aspect highest own payoff, i.e., ca

1 = 1 if
xa

S > x−a
S and otherwise ca

1 = 0 (−a denotes the other alternative).

• Cue ca
2 indicates the presence or absence of aspect highest joint payoff, i.e., ca

2 = 1 if
xa

S + xa
F > x−a

S + x−a
F and otherwise ca

2 = 0.

• Cue ca
3 indicates the presence or absence of aspect highest difference of own payoff and

absolute difference of own and other payoff, i.e., ca
3 = 1 if xa

S−|xa
S−xa

F | > x−a
S −|x−a

S −x−a
F |

and otherwise ca
3 = 0.
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There are five types of second movers S ∈ {A, B, C, D, E} that have different sets of cues cS .
Moreover there is a small probability that each second mover S makes a choice error ǫ ∈ [0, 1]
in the sense that she chooses an unintended alternative if a cue is discriminating. The choice
errors that we assume are akin to the trembles assumed by Selten (1975) in his trembling hand
perfect equilibrium.

Share sA of the population consists of type A second movers that make their choice based on
one single cue ca

1. They choose alternative right with probability

p̂r
A =















0 + ǫ if cl
1 = 1 ∧ cr

1 = 0

1 − ǫ if cl
1 = 0 ∧ cr

1 = 1

0.5 otherwise.

Share sB of the population consists of type B second movers that make their choice based on
one single cue ca

2. They choose alternative right with probability

p̂r
B =















0 + ǫ if cl
2 = 1 ∧ cr

2 = 0

1 − ǫ if cl
2 = 0 ∧ cr

2 = 1

0.5 otherwise.

Share sC of the population consists of type C second movers that make their choice based on
one single cue ca

3. They choose alternative right with probability

p̂r
C =















0 + ǫ if cl
3 = 1 ∧ cr

3 = 0

1 − ǫ if cl
3 = 0 ∧ cr

3 = 1

0.5 otherwise.

Share sD of the population consists of type D second movers that make their choice based on
cue set cD = {ca

1 , ca
2}. They choose alternative right with probability

p̂r
D =















0 + ǫ if cl
1 = 1 ∧ cr

1 = 0

1 − ǫ if cl
1 = 0 ∧ cr

1 = 1

p̂r
B otherwise.

Share sE = 1−sA −sB −sC −sD of the population consists of type E second movers that make
their choice based on cue set cE = {ca

1, ca
3}. They choose alternative right with probability

p̂r
E =















0 + ǫ if cl
1 = 1 ∧ cr

1 = 0

1 − ǫ if cl
1 = 0 ∧ cr

1 = 1

p̂r
C otherwise.

Thus, the probability to observe a right choice that is predicted by the second mover TTB
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model is given by

p̂r = sA · p̂r
A + sB · p̂r

B + sC · p̂r
C + sD · p̂r

D + sE · p̂r
E .

The parameter estimates that minimize the mean of squared deviations of the estimation set
are

sA = 0.2986 sB = 0.0707 sC = 0.0637 sD = 0.3845 sE = 0.1825 ǫ = 0.0167

and the mean of squared deviations for the estimation set and for the prediction set of the
estimated model are

MSDS
est = 0.0018 MSDS

pre = 0.0038.21

5.4.3 Subjective Quantal Response Equilibrium I

In a subjective quantal response equilibrium (Rogers et al., 2009), compared to the QRE
considered in Sections 5.3.2 to 5.3.5, the beliefs about the choice probabilities of others may
not be consistent with the actual choice probabilities. Although a subjective quantal response
equilibrium (SQRE) permits subjective beliefs, it is still an equilibrium model in which choice
probabilities are conditional on types common knowledge. We think that this property of
SQRE is especially useful for predicting behavior of inexperienced subjects since they do not
have the possibility for trial and error learning which would enable their beliefs to adjust to
the actual choice probabilities (Binmore, 1992; Rogers et al., 2009).22

We consider three types of heterogeneity in our SQRE first mover model. Heterogeneity
in preferences, heterogeneity in skill (i.e. preference responsiveness), and heterogeneity in
preference beliefs.

• Each first mover has either a high skill or a low skill and a one-step-below belief about
the skill of the second movers, i.e., a high skill first mover believes that all second movers
have a low skill while a low skill first mover believes that all second movers have no skill.
This type of heterogeneity in skills and skill beliefs is based on the one assumed in the
discretized truncated subjective quantal response equilibrium considered by Rogers et al.
(2009). We differ only in the assumption that high skill individuals believe that there
are only others with low skill and no others with no skill.

• Each first mover is either selfish or inequality averse. This type of heterogeneity in prefer-
ences is similar to the one assumed in the inequality aversion model of Fehr and Schmidt
(1999). However, since we want to predict the behavior of inexperienced subjects,
we use a SQRE framework that permits choice errors and subjective beliefs while
Fehr and Schmidt (1999) use a subgame perfect equilibrium framework in which individ-
uals do not make choice errors and have consistent beliefs which may be more appropriate

21 The MATLAB code that was used to estimate the free parameters of the model and to compute the mean
squared deviations is attached with detailed comments in Appendix 16.20.

22 With actual choice probabilities we refer to model predictions and not to the empirically observed choice
probabilities.
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for predicting the behavior of experienced subjects.

• Lastly, each first mover has either a self-centered belief or a pessimistic belief about the
preferences of others. Each self-centered first mover believes that he plays against a
second mover who has the same preference structure23 and each pessimistic first mover
believes that he plays against a “bad guy” who wants to minimize his expected utility.24

SQRE First Mover Model There is an infinite population of first movers with different
characteristics. Each first mover F is a stochastic expected utility maximizer who has either a
high skill or a low skill (and in both cases a one-step-below belief about the skill of the second
movers) who has either selfish preferences or inequality averse preferences and who has either
a self-centered belief or a pessimist belief about the preferences of the second movers.

• High Skill and Low Skill Given his level of sophistication k ∈ {1, 2}, the skill of
each first mover is defined by λF = k · γ with γ ∈ [0, ∞] and his one-step-below belief
about the skill of the second movers is defined by λB

S = (k −1) ·γ. High skill first movers
have a level of sophistication of k = 2 while low skill first movers have a lower level of
sophistication of k = 1. The strategic hierarchy that we consider is similar to the one
studied by Nagel (1995) in the context of beauty contest games where k-step individuals
think that the other individuals do k − 1 steps of reasoning as well as to the one of the
limited-step types of Stahl and Wilson (1995).

• Selfishness and Inequality Aversion The preferences of a selfish first mover are
represented by a standard utility function that is defined in Equation 5.3 and the pref-
erences of an inequality averse first mover are represented by the utility function of
Fehr and Schmidt (1999) that is defined in Equation 5.7, with the only difference that
in our model βF can be greater than αF .

• Self-Centered Beliefs and Pessimistic Beliefs A self-centered first mover believes
that the second mover S has the same preference structure. This implies that a self-
centered and selfish first mover believes that the utility function of S is defined by
Equation 5.1 and that a self-centered and inequality averse first mover believes that the
utility function of S is defined by Equation 5.6, with the only difference that in our model
βS can be greater than αS . A pessimistic first mover F stochastically maximizes his
expected utility under the belief that the second mover is a “bad guy” who stochastically
minimizes the utility of F (or, which is equivalent, who maximizes the negative of the
utility of F ).

23 McKelvey et al. (2000) consider a SQRE where players differ in their skill and believe self-centered that all
other individuals have the same skill as they have. We transfer this logic to the context of preferences. Our
motivation for this assumption is based on the false consensus effect (Ross et al., 1977; Marks and Miller,
1987) according to which people have the tendency to believe that their own preferences among other things
are shared by others. Notice moreover that the 7S first mover model (see Section 5.3.6) also assumes
self-centered beliefs.

24 In other words: the first movers play a stochastic version of strategy MaxMin (see Section 5.3.6) with
utilities. MaxMin is a strategy which maximizes one’s own minimum payoff. In our case the first mover
does something similar: he stochastically maximizes his own expected utility (not payoff) under the belief
that the second mover minimizes stochastically his utility, i.e., the utility of the first mover.
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This implies 2 x 2 x 2 = 8 different types of first movers. The probability distribution f over
types Ft with t ∈ {1, 2, ..., 8} depends on the share of selfish first movers s1 ∈ [0, 1] and on the
share of inequality averse first movers 1 − s1, on the share of high skill first movers s2 ∈ [0, 1]
and on the share of low skill first movers 1 − s2 and on the share of self-centered first movers
s3 ∈ [0, 1] and on the share of pessimistic first movers 1 − s3.

The characteristics of each type Ft are summarized in Table 5.6.

Table 5.6
Characteristics of Each Type Ft

Possible Characteristics F1 F2 F3 F4 F5 F6 F7 F8

s1 are selfish
√ √ √ √

1 − s1 are inequality-averse
√ √ √ √

s2 have high skill
√ √ √ √

1 − s2 have low skill
√ √ √ √

s3 are self-centered
√ √ √ √

1 − s3 are pessimistic
√ √ √ √

The probability distribution f over first mover types Ft is given in Table 5.7.

Table 5.7
Distribution over Types of First Movers

t ft λFt λBt

S uFt uBt

S

1 s1s2s3 2γ γ

Eq. 5.3

Eq. 5.1
2 s1s2(1 − s3) 2γ γ −uFt

3 s1(1 − s2)s3 γ 0 Eq. 5.1
4 s1(1 − s2)(1 − s3) γ 0 −uFt

5 (1 − s1)s2s3 2γ γ

Eq. 5.7

Eq. 5.6
6 (1 − s1)s2(1 − s3) 2γ γ −uFt

7 (1 − s1)(1 − s2)s3 γ 0 Eq. 5.6
8 (1 − s1)(1 − s2)(1 − s3) γ 0 −uFt

The preferences of each inequality averse first mover Ft with t ∈
{5, 6, 7, 8} are determined by αF and βF . The preference belief of each
self-centered and inequality-averse first mover Ft with t ∈ {5, 7} is de-
termined by αB

S and βB
S .
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Each type Ft chooses in with probability p̂i
t that is defined by Equation 5.5. The SQRE first

mover model predicts a probability to observe an in choice of

p̂i =
8

∑

t=1

ft · p̂i
t.

The model has eight free parameters: Parameters s1, s2 and s3 determine the distribution
f over types Ft. Parameter γ determines the skill of each type Ft with t = {1, 2, ..., 8},
parameters αF and βF determine the preferences of each inequality averse first mover Ft with
t = {5, 6, 7, 8} and parameters αB

S and βB
S determine the preference belief of each self-centered

and inequality averse first mover Ft with t = {5, 7}.

Based on an unconstrained estimation of the model25 and subsequent cross validations, we
decided to fix the preference parameters in the following way: αF = 0 and βF = αB

S = βB
S = δ.

This implies that each inequality averse first mover cares only about advantageous inequality
and not about disadvantageous inequality. If he is moreover self-centered, he believes that all
second movers care about both types of inequality; namely to the same degree as he cares
about advantageous inequality.

For the constrained SQRE model that we submitted to the competition, the parameter esti-
mates that minimize the mean of squared deviations estimation set are

γ = 1.3170 δ = 0.2174 s1 = 0.5131 s2 = 0.7029 s3 = 0.8793

and the mean of squared deviations for the estimation set and for the prediction set of the
estimated model are

MSDF
est = 0.0050 MSDF

pre = 0.0094.26

5.4.4 Subjective Quantal Response Equilibrium II

In this Section we extend the subjective quantal response equilibrium (SQRE) model that
we consider in Section 5.4.3 so that it captures a concept of social psychology that is called
social value orientation (SVO). Social value orientation is understood as a person’s preference
about how to allocate resources between the self and the other person. It describes individ-
ual differences in how much the others’ welfare in relation to the own welfare is weighted
(Messick and McClintock, 1968; Kelley and Thibaut, 1978). Typically, it is distinguished be-
tween two types of people: proselfs and prosocials (Van Lange, 1999; Van Lange et al., 2007;
Murphy et al., 2011). Proselfs are motivated to merely maximize their own outcome. Thus,
they have no or even a negative other-regarding preference. In contrast, prosocials want to

25 The parameter estimates of the unconstrained estimation are γ = 1.283, αF = 0.019, βF = 0.1969, αB
S =

0.2268, βB
S = 0.2497, s1 = 0.4852, s2 = 0.7093, s3 = 0.8761 with MSDF

est = 0.0049, MSDF
pre = 0.0093.

26 The MATLAB code that was used to estimate the free parameters of the submitted model and to compute
the mean squared deviations is attached with detailed comments in Appendix 16.22. The code for the
unconstrained estimation is attached in Appendix 16.24.
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maximize both persons’ outcomes as well as to minimize the difference between persons’ out-
comes. Thus, they value both efficiency and equality in outcomes. Notice that both prosocials
and inequality-averse people according to Fehr and Schmidt (1999) value equality in outcomes,
whereas only prosocials value additionally efficiency in outcomes. We capture this additional
element in the utility function of prosocials by adding a concern for efficiency to the utility
function of the inequality-averse types that we consider in Section 5.4.3.

SVO-SQRE First Mover Model The preferences of a proself first mover are represented by
a standard utility function that is defined in Equation 5.3 and a self-centered proself first
mover believes that the utility function of the second mover is defined by Equation 5.1. The
preferences of a prosocial first mover are represented by a utility function that is given by

ua
F = xa

F − αF · max(0, xa
S − xa

F ) − βF · max(0, xa
F − xa

S) + ωF · (xa
F + xa

S), (5.12)

with βF ∈ [0, 1), αF ≥ βF and efficiency parameter ωF ≥ 0. A self-centered prosocial first
mover believes that the utility function of the second mover is defined by

ua
S = xa

S − αS · max(0, xa
F − xa

S) − βS · max(0, xa
S − xa

F ) + ωS · (xa
F + xa

S), (5.13)

with βS ∈ [0, 1), αS ≥ βF and efficiency parameter ωS ≥ 0. The assumed specification of
social preferences extends the utility function of Fehr and Schmidt (1999) by a fourth term
that captures the utility of a prosocial first mover from social welfare (i.e. efficiency).

There are 2 x 2 x 2 = 8 different types of first movers. The probability distribution over types
t ∈ {1, 2, ..., 8} of first movers Ft depends on the share of proselfs s1 ∈ [0, 1] and the share
of prosocials 1 − s1, on the share of high skill first movers s2 ∈ [0, 1] and the share of low
skill first movers 1 − s2 and on the share of self-centered first movers s3 ∈ [0, 1] and the share
of pessimistic first movers 1 − s3. Table 5.7 presents the probability distribution f over first
mover types Ft. Each type Ft chooses in with probability p̂i

t that is defined by Equation 5.5.
The SVO-SQRE first mover model predicts a probability to observe an in choice of

p̂i =
8

∑

t=1

ft · p̂i
t.

The model has ten free parameters: Parameters s1, s2 and s3 determine the distribution f over
types Ft. Parameter γ determines the skill of each type Ft with t = {1, 2, ..., 8}, parameters αF ,
βF and ωF determine the preferences of each prosocial first mover Ft with t = {5, 6, 7, 8} and
parameters αB

S , βB
S and ωB

S determine the preference belief of each self-centered and prosocial
first mover Ft with t = {5, 7}.
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Table 5.8
Distribution over Types of First Movers

t ft λFt λBt

S uFt uBt

S

1 s1s2s3 2γ γ

Eq. 5.3

Eq. 5.1
2 s1s2(1 − s3) 2γ γ −uFt

3 s1(1 − s2)s3 γ 0 Eq. 5.1
4 s1(1 − s2)(1 − s3) γ 0 −uFt

5 (1 − s1)s2s3 2γ γ

Eq. 5.12

Eq. 5.13
6 (1 − s1)s2(1 − s3) 2γ γ −uFt

7 (1 − s1)(1 − s2)s3 γ 0 Eq. 5.13
8 (1 − s1)(1 − s2)(1 − s3) γ 0 −uFt

The preferences of each prosocial first mover Ft with t ∈ {5, 6, 7, 8} are
determined by his degrees of inequality aversion αF , βF and his efficiency
parameter ωF . The preference belief of each self-centered prosocial first
mover Ft with t ∈ {5, 7} is determined by αB

S , βB
S and ωB

S .

Based on an unconstrained estimation of the model27 and subsequent cross validations, we
decided to fix the preference parameters in the following way: αF = βF = ωF = βB

S = ωB
S = δ

and αBt

S = δ + ǫ. This means that each prosocial first mover weighs all other regarding
components with δ. If he is moreover self-centered, he believes that all second movers weigh
also advantageous inequality or social welfare with δ and disadvantageous inequality with δ+ǫ,
i.e., he believes that they care more about disadvantageous inequality than he does.

For the constrained SVO-SQRE first mover model that we submitted to the competition, the
parameter estimates that minimize the mean of squared deviations estimation set are

γ = 1.1940 δ = 0.1859 ǫ = 0.3442 s1 = 0.5703 s2 = 0.7036 s3 = 0.8704

and the mean of squared deviations for the estimation set and for the prediction set of the
estimated model are

MSDF
est = 0.0051 MSDF

pre = 0.0090.28

27 The parameter estimates of the unconstrained estimation are γ = 1.239, αF = 0.2726, βF = 0.2726, ωF =
0.1869, αBt

S = 0.5998, βBt

S = 0.1746, ωBt

S = 0.2296, s1 = 0.5835, s2 = 0.6991, s3 = 0.8628 with MSDF
est =

0.0047, MSDF
pre = 0.0091.

28 The MATLAB code that was used to estimate the free parameters of the submitted model and to compute
the mean squared deviations is attached with detailed comments in Appendix 16.26. The code for the
unconstrained estimation is attached in Appendix 16.28.
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5.5 Discussion and Results

5.5.1 Comparison of Models

In Table 5.9 we compare the fitting and prediction performance of all models.

Table 5.9
Fitting versus Predicting: Performance of All Models

Section Model MSDF
est MSDF

pre MSDS
est MSDS

pre

5.3.1 SPE 0.0545 0.0532 0.0105 0.0071
5.3.2 QRE 0.0170 0.0141 0.0092 0.0057
5.3.3 FS-QRE 0.0118 0.0140 0.0082 0.0056
5.3.4 BO-QRE 0.0141 0.0172 0.0073 0.0056
5.3.5 CR-QRE 0.0112 0.0143 0.0042 0.0067
5.3.6 7S 0.0119 0.0083 0.0029 0.0043

5.4.1 SUM - - 0.0016 0.0038
5.4.2 TTB - - 0.0018 0.0038
5.4.3 SQRE 0.0050 0.0094 - -
5.4.4 SVO-SQRE 0.0051 0.0090 - -

The second mover results show that choice errors increase the out-of-sample fit (S.1) but social
preferences do not (S.2); and that the three models with the highest out-of-sample fit are 7S,
SUM and TTB (S.3–S.5).

Result S.1 The observed deviations from (stochastic) own payoff maximization
(cf. SPE and QRE) are larger in the games of the estimation set than in the games
of the prediction set. The introduction of choice errors (cf. QRE) increases both
the within-sample fit and the out-of-sample fit (compared to SPE).

Result S.2 Introducing social preferences additionally to choice errors (cf. FS-
QRE, BO-QRE and CR-QRE) increases the within-sample fit but not the out-
of-sample fit (compared to QRE). Charness-Rabin preferences even decrease the
out-of-sample fit.

Result S.3 Conceptualizing SPE as a simple strategy and adding other strategies
with different target values (nice rational play, joint payoff maximization, maxi-
mization of the payoff of the weaker player and minimization of payoff differences;
cf. 7S) increases the within-sample fit and the out-of-sample fit (compared to all
other baseline models).

Result S.4 A combination of choice errors and a social preference specification
that takes into account own welfare maximization, social welfare maximization and
self-biased equality maximization (cf. SUM) increases the within-sample fit and
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the out-of-sample fit (compared to 7S).

Result S.5 The introduction of a lexicographic decision process, individual het-
erogeneity in the order of decision-relevant aspects (own welfare, social welfare and
equality) and a small choice error (cf. TTB) increases the within-sample fit and
the out-of-sample fit (compared to 7S).

The first mover results show that choice errors increase the out-of-sample fit (F.1) but social
preferences do not (F.2); and that the three models with the highest out-of-sample fit are 7S,
SQRE and SVO-SQRE (F.3-F.5).

Result F.1 The observed deviations from (stochastic) own payoff maximization
and consistent beliefs (cf. SPE and QRE) are larger in the games of the estimation
set than in the games of the prediction set. The introduction of choice errors (cf.
QRE) increases both the within-sample fit and the out-of-sample fit (compared to
SPE) and the increase in accuracy in both statistics is greater compared to the
second mover.

Result F.2 Like in the second mover case, combining choice errors with social
preferences increases the within-sample fit but not the out-of-sample fit (compared
to QRE). Bolton-Ockenfels preferences even decrease the out-of-sample fit.

Result F.3 Assuming a mix of simple strategies with different target values and
subjective beliefs (own payoff maximization and self-centered belief (SCB), own
payoff maximization and level-1 reasoning, own minimum payoff maximization,
joint payoff maximization and SCB, maximization of the payoff of the weaker
player and SCB and minimization of payoff differences and SCB) increases the
within-sample fit (compared to QRE) and the out-of-sample fit (compared to all
other models).

Result F.4 Assuming heterogeneity in skills (more versus less choice errors), sub-
jective one-step below beliefs about the skills of others (others make more choice
errors), heterogeneity in preferences (selfishness or inequality aversion) and hetero-
geneity in subjective beliefs about the preferences of others (self-centered versus
pessimistic; cf. SQRE) increases the within-sample fit (compared to all baselines
models) and the out-of sample fit (compared to all baseline models but 7S).

Result F.5 Assuming heterogeneity in skills combined with subjective one-step
below beliefs, heterogeneity in preferences (proselfs versus prosocials) and het-
erogeneity in subjective preference beliefs (cf. SVO-SQRE) increases the within-
sample fit (compared to all baselines models) and the out-of sample fit (compared
to all baseline models but 7S).
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5.5.2 Reliability of Competition Results

Training a model and evaluating its predictive performance on the same data may imply results
that are overoptimistic (Larson, 1931). The validation procedure of the competition addresses
this problem by using part of data (the estimation set) for training each model and the other
part (prediction set) for validation.

Nevertheless, one could still be concerned about the reliability of the competition validation
results that we consider in Section 5.5.1 and ask questions of the following type: What would
have happened if the same games were split differently, or if other games were used for training
and validating the models?

We address these types of questions by conducting more than one data split with the given data
sets. Each data split yields a new validation result for each model. The mean of the obtained
validation results yields a cross validation result (Stone, 1974; Geisser, 1975; Arlot and Celisse,
2010). In particular, we apply two different leave-one-out cross validations (LOOCV I and
LOOCV II) to the data and compare the obtained cross validation results to the validation
results of the competition procedure.

Validation Procedures Table 5.10 contrasts the cross validation procedures to the competi-
tion procedure.

Table 5.10
Comparison of Validation Procedures

Validation Procedure Competition LOOCV I LOOCV II

Number of Splits 1 120 120
Size of Training Set 120 239 119
Composition of Training Set est est ∧ pre pre
Size of Validation Set 120 1 1
Composition of Validation Set pre pre pre

What we do in the competition procedure is to use the estimation set est for training each
model. Then we compute for each model the squared deviations for the 120 games of the
prediction set pre and take the mean to obtain a validation result.

In contrast, the LOOCV procedure I works as follows: We compute for each model the squared
deviation for the first game of pre after using all games of est and remaining games 2 to 120
of pre for training the models. Then we compute for each model the squared deviation for the
second game of pre after using all games of est and remaining games 1 and 3 to 120 of pre for
training the models. We repeat this leave-one-out procedure with the third game of pre, forth
game of pre, and so on. Then, we obtain for each model a cross validation result by taking the
mean of the obtained 120 squared deviations. The LOOCV procedure II works analogously
but there we use only pre for training the models.
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All three validation procedures have in common that they predict the same 120 games of
pre, i.e., none of the validation sets contains games that may be used for formulating the
models. However, there is enough variation within the validation procedures for addressing
the reliability question that we pose. The competition procedure splits the data only once
and predicts therefore the 120 games of pre at once. The LOOCV procedures conduct 120
data splits, reestimate the models each time and predict only one game of pre at the time;
the latter also differ in the size (239 vs 119) and the composition (est and pre vs pre) of the
training set.29

First Mover Models Table 5.11 presents the out-of-sample fit of each first mover model for
each validation procedure.

Table 5.11
Out-of-Sample Fit of First Mover Models For Each Validation

Procedure

Section MSDF
pre Competition LOOCV I LOOCV II

5.3.1 SPE 0.0532 0.0532 0.0532
5.3.2 QRE 0.0141 0.0137 0.0139
5.3.3 FS-QRE 0.0140 0.0121 0.0123
5.3.4 BO-QRE 0.0172 0.0146 0.0144
5.3.5 CR-QRE 0.0143 0.0121 0.0118
5.3.6 7S 0.0083 0.0085 0.0090

5.4.3 SQRE 0.0094 0.0082 0.0086
5.4.4 SVO-SQRE 0.0090 0.0088 0.0079

A comparison of the out-of-sample fits shows that the ranking of a first mover model may
depend on the validation procedure if its out-of-sample fit in the competition procedure is
close to other models (F.6) and otherwise not, i.e., SPE is always worse than each QRE; and
each QRE is always worse than 7S or each SQRE (F.7).

Result F.6 If the out-of-sample fits are very close in the competition procedure,
the models change ranks in the cross validations. The social preference QRE models
perform better in both cross validations and the ranking of the best three models
changes depending on the validation procedure in the following way:

• 7S > SVO-SQRE > SQRE (Competition)

• SQRE > 7S > SVO-SQRE (LOOCV I)

• SVO-SQRE > SQRE > 7S (LOOCV II)

Result F.7 If the out-of-sample fits are far away in the competition procedure,

29 The MATLAB code that was used to conduct both LOOCV is attached in Appendix 16.30.
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the models do not change ranks, i.e., in each validation procedure SPE is worse
than each QRE; and each QRE is worse than 7S and each SQRE.

Second Mover Models In Table 5.12 we present the out-of-sample fit of each second mover
model for each validation procedure.

Table 5.12
Out-of-Sample Fit of Second Mover Models For Each

Validation Procedure

Section MSDS
pre Competition LOOCV I LOOCV II

5.3.1 SPE 0.0071 0.0071 0.0071
5.3.2 QRE 0.0057 0.0057 0.0058
5.3.3 FS-QRE 0.0056 0.0056 0.0058
5.3.4 BO-QRE 0.0056 0.0055 0.0056
5.3.5 CR-QRE 0.0067 0.0051 0.0056
5.3.6 7S 0.0043 0.0042 0.0044

5.4.1 SUM 0.0038 0.0038 0.0040
5.4.2 TTB 0.0038 0.0040 0.0047

A comparison of the out-of-sample fits confirms the results that we obtain for the first mover
models. In particular, it is for each validation procedure true that SPE is worse than each
QRE; and that each QRE is worse than 7S, SUM or TTB.

Result S.6 The ranks of the models in the cross validations change if their out-of-
sample fits are very close in the competition procedure; although the out-of-sample
fits of most second mover models do not change considerably. In particular, the
CR-QRE model performs a lot better in both cross validations and the ranking of
the best three models depends in the following way on the validation procedure:

• SUM = TTB > 7S (Competition)

• SUM > TTB > 7S (LOOCV I)

• SUM > 7S > TTB (LOOCV II)

Result S.7 If the out-of-sample fits are far away in the competition procedure,
the models do not change ranks in the cross validations. In particular, SPE is
always worse than each QRE; and each QRE is always worse than 7S, SUM or
TTB.
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5.5.3 Averaging Good Predictions Yields Better Predictions

In Section 5.5.2 three first mover models (7S, SQRE, SVO SQRE) and three second mover
models (7S, SUM, TTB) perform best between different validation procedures. Inspired by
the idea of forecast combination, we show in this Section that averaging predictions of good
models yields better (but not optimal) predictions.

Forecast combination (Bates and Granger, 1969) is widely used in econometrics for improving
forecast accuracy (Clemen, 1989; Hendry and Clements, 2004). It is still controversial how
to pick the forecast weights (Hansen, 2008); but simple averaging (equal weights) works rea-
sonably well (Stock and Watson, 2004). Since our main concern is not about showing how to
average properly but about improving predictive accuracy by averaging, we use equal weights
to keep things simple.

Simple Averaging We consider n = 8 models for each individual i ∈ {F, S}. This implies
that a model set Mj with j ∈ {1, 2, ..., m} can include k ∈ {1, 2, ..., n} models. The number of
possible model sets is given by

m =
n

∑

k=1

n!

k!(n − k)!
.

Given n = 8, m = 255.

We use a simple averaging method that weighs the prediction vectors of a model set equally.
Each model l ∈ {1, ..., n} generates a vector of predictions pl. Thus, the prediction vector of
each model set Mj is given by the average of the prediction vectors

pj =
k

∑

l=1

1

k
pl.

We evaluate for each splitting procedure the performance of the best three models in compari-
son to the best individual model within a procedure, the optimal model set within a procedure
and the optimal model set between procedures. The model set of the best three models contains
the three models that performed best individually between the three validation procedures.
The model set that is optimal within a procedure has the lowest mean predictive error for a
given validation procedure (relative to the other m − 1 model sets). The model set that is op-
timal between procedures has the lowest average of the three within procedure mean predictive
errors (relative to the other m − 1 model sets).30

First Mover Models Table 5.13 presents the results for the first mover models. The results
show that averaging good predictions yields better but not optimal predictions.

Result F.8 The set of the best three models (7S, SQRE, SVO-SQRE) outperforms

30 The MATLAB code that was used to conduct both averaging of predictions is attached in Appendix 16.31.
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the best performing model of each splitting procedure; however it is not the optimal
model set within a procedure and between procedures.

Result F.9 The optimal model set between procedures contains a model (CR-
QRE) that is not one of the best three models; within a procedure the optimal
model set is either smaller or contains models (CR-QRE or FS-QRE) that are not
under the best three models.

Table 5.13
First Mover Models: Simple Prediction Averaging

MSDF
pre Competition LOOCV-I LOOCV-II

Best Model .00831 .00822 .00793

Best Three Models .00724 .00714 .00744

Optimal Within A Procedure .00685 .00676 .00637

Optimal Between Procedures .00717 .00697 .00637

V SDF
pre Competition LOOCV-I LOOCV-II

Best Model .000207 .000230 .000198
Best Three Models .000164 .000157 .000175
Optimal Within A Procedure .000146 .000150 .000148
Optimal Between Procedures .000153 .000157 .000148

V SDF
pre denotes the variance of the predictive errors of a first mover model set.

Each first mover model set MF
j is indicated by a superscript j with MF

1 ={7S},
MF

2 ={SQRE}, MF
3 ={SVO-SQRE}, MF

4 ={7S, SQRE, SVO-SQRE}, MF
5 ={7S, SVO-

SQRE}, MF
6 ={FS-QRE, 7S, SQRE} and MF

7 ={CR-QRE, 7S, SVO-SQRE}.

Both results can be explained by considering that the predictions of the best three models (set
MF

4 ) have a similar mean predictive error (see Table 5.11) but are not perfectly correlated
(see Table 8). The basic mechanism that is exploited works as follows: If two models with the
same mean predictive error are not perfectly correlated in their predictions than one model
performs better in some games and the other model performs better in other games. Averaging
predictions that are equally good between games but differ in their goodness within each game
decreases thus the variance and the mean predictive error.

However, set MF
4 contains only the models with the lowest mean predictive error but not the

ones with the lowest correlation of predictions. Since the mean predictive error of the average
predictions depends on both, MF

4 must not be the optimal set which is actually the case within
each procedure and between procedures. In particular, the optimal sets MF

5 , MF
6 and MF

7

contain only one of two SQRE models that have highly correlated predictions and may contain
a social preference QRE model that compensates its higher mean predictive error with a lower
correlation to the predictions of each other model in the set.
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Second Mover Models Table 5.14 presents the results for the second mover models. The
second mover results replicate the first mover results and show again that averaging good
predictions yields better but not optimal predictions.

Result S.8 The set of the best three models (7S, SUM, TTB) is not worse than
the best model of each validation procedure; however it is not the optimal model
set within each procedure and between procedures. Result S.9 The optimal
model set between procedures contains a model (QRE) that is not one of the best
three models; within a procedure each optimal model set is bigger and contains
models (QRE or CR-QRE) that are not under the best three models.

Table 5.14
Second Mover Models: Simple Prediction Averaging

MSDS
pre Competition LOOCV-I LOOCV-II

Best Model .00381 .00381 .00401

Best Three Models .00372 .00382 .00412

Optimal Within A Procedure .00333 .00343 .00364

Optimal Between Procedures .00335 .00345 .00375

V SDS
pre Competition LOOCV-I LOOCV-II

Best Model .000111 .000111 .000128
Best Three Models .000101 .000101 .000123
Optimal Within A Procedure .000075 .000081 .000100
Optimal Between Procedure .000073 .000079 .000106

V SDS
pre denotes the variance of the predictive errors of a second mover model set.

Each second mover model set MS
j is indicated by a superscript j with M1 ={SUM},

M2 ={7S, SUM, TTB}, M3 ={QRE, 7S, SUM, TTB}, M4 ={CR-QRE, 7S, SUM,
TTB} and M5 ={QRE, 7S, SUM}. Notice that TTB is beside SUM the best model in
the competition procedure with a variance of 0.000113.

Both second mover results replicate the first mover results and depend on the same mecha-
nism.31 The bottom line for both cases is that it seems to be a good starting point to select
a set of good models and average their predictions for making more accurate and less volatile
predictions. However, one can do better by adding a semi-good model that compensates its
higher mean predictive error with lower correlations to the predictions of the other models.

31 The correlation matrix and the predictive error matrix for the second mover models are given in Tables 10
and 11.
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5.6 Summary

Ert et al. (2011) designed both choice prediction competitions with the aim to answer two
unresolved questions: Which quantitative model is the best for predicting behavior in a broad
set of extensive form games? And, what is the relative importance of each behavioral tendency
captured in a model? They fitted for each sub-competition three social preference models and
a strategy mix model (seven strategies). The social preference models consider the behavioral
tendencies by means of social utility functions and stochastic choice functions; whereas the
seven strategies model assumes the use of simple strategies. The surprising result of their
study was that the seven strategies model outperformed the popular social preference models
in fitting the choice behavior in both sub-competitions. This preliminary result indicated
that the strategy mix model might also predict better. Against this background our study
contributes four new insights.

(1) We determined – based on the validation procedure of the competition – within-sample fits
and out-of-sample fits for quantal response equilibrium models that differ from the ones used
by Ert et al. (2011). The models achieved better within-sample fits than the seven strategies
model but not better out-of-sample fits.

(2) We determined – based on the validation procedure of the competition — the within-
sample fit and the out-of-sample fit of each model that we submitted to the competition. The
submitted second mover models have higher within-sample and out-of-sample fits than the
seven strategies model. Thus we conclude that one can predict better with an alternative
strategy mix model (take-the-best) as well as a stochastic preference model (stochastic util-
ity maximizer). The first mover subjective quantal response equilibrium models have higher
within-sample fits but not higher out-of-sample fits than the seven strategies model; however
the out-of-sample fits of our submitted models are still higher than the ones of the quantal
response equilibrium models. Thus we conclude that one can achieve better predictions with
subjective quantal response equilibrium models compared to quantal response equilibrium
models but not better predictions compared to the seven strategies model.

(3) We assessed the reliability of the results of the competition validation procedure by com-
paring them to out-of-sample fits of two cross validation procedures. The main new insight is
that only groups of models with substantially different out-of-sample fits in the competition
procedure do not change ranks in the cross validations. The choice behavior of second movers
is predicted by subgame perfect equilibrium always worse than by each quantal response
equilibrium and each quantal equilibrium model predicts always worse than seven strategies,
take-the-best and stochastic utility maximizer. The choice behavior of the first movers is pre-
dicted by sub game perfect equilibrium always worse than each quantal response equilibrium
and each quantal response equilibrium model predicts always worse than seven strategies and
each subjective quantal response equilibrium.

(4) We determined the out-of-sample fit of averaged predictions of each possible model set
with the validation procedure of the competition and the two cross validation procedures. The
set of the best three models yields better predictions than any single model. The goodness of
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the averaged predictions depend thereby on the goodness of the predictions of each model and
the correlation to the predictions of the other models in the set. The main new insights are
that averaging predictions of good models yields better and less volatile predictions; moreover
models with low prediction correlations do not need to have the highest predictive power to
be useful for making better predictions.

Table 5.15
Behavioral Tendencies Modeled by Best Second Mover Models

Explanation for observed behavior 7S SUM TTB

Interest in own welfare
√ √ √

Interest in social welfare
√ √ √

Higher interest in social welfare if costless
√ √ √

Interest in equality
√ √ √

Higher interest in equality if costless
√ √

Tendency to make choice errors
√ √

Interest in helping the weaker individual
√

The best three second mover models are seven strategies, stochastic utility maximizer and
take-the-best (7S, SUM, TTB). As depicted in Table 5.15 some behavioral tendencies are
modeled by all three models while others are not.

Table 5.16
Behavioral Tendencies Modeled by Best First Mover Models

Explanation for observed behavior 7S SQRE SVO-SQRE

Interest in own welfare
√ √ √

Interest in equality
√ √ √

Pessimistic beliefs
√ √ √

Self-centered beliefs
√ √ √

Level-1 reasoning
√ √ √

Level-2 reasoning
√ √

Choice errors
√ √

Interest in social welfare
√ √

Interest in helping the weaker individual
√

Each model considers an interest in own welfare, social welfare and equality as well as a
higher interest in social welfare if both alternatives yield the same own payoff. 7S includes
additionally an interest in helping the weaker individual. SUM and TTB include instead a
tendency to make choice errors and a higher interest in equality if both alternatives yield the
same own payoff. Although the latter ones capture the same behavioral tendencies they do it
very differently: SUM assumes an average decision-maker who weighs each aspect of the payoff
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distribution, while TTB assumes a mix of types that use the same lexicographic heuristic but
take different aspects of the payoff distribution into account.

The best three first mover models are seven strategies and both subjective quantal response
equilibrium models (7S, SQRE, SVO-SQRE). Table 5.16 summarizes the behavioral tendencies
that are modeled.

Each model contains an interest in own welfare and equality, pessimistic and self-centered be-
liefs as well as level-1 reasoning. SQRE and SVO-SQRE include additionally level-2 reasoning
and choice errors. 7S and SVO-SQRE include an interest in social welfare and 7S includes
furthermore an interest in helping the weaker individual.

Our study shows that subjective quantal response equilibrium models and strategy mix models
make the most useful predictions. Moreover we show that better and less volatile predictions
can be achieved by simple prediction averaging. Our most surprising result is that the goodness
of averaged predictions can even be increased if “weaker” but less correlated predictions of
standard equilibrium models are considered. We hope that our study indicates the value of
each behavioral model and we look forward to future research on this topic.
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Appendix A

1 hariskos.m

The MATLAB program hariskos.m computes the MSD of the estimation set for the Hariskos
et al. model (see Section 2.5.2).

%%%PART 1: INPUT %%%

load(’ent_est_par.dat’); data = ent_est_par;

nt = 40; %%% NUMBER OF PROBLEMS %%%

x = data(1:nt,[1 2 3 4 5 6]); %%% PROBLEM K PH H L S

%%% PART 2: PREDICTIONS %%%

his=zeros(4,2,50); tot=zeros(2); gm=zeros(4,2);

dec=zeros(4,50); lsurp=zeros(4); asurp=zeros(4);

ipie=zeros(4); ieps=zeros(4); iro=zeros(4);

iwgm=zeros(4); icas=zeros(4); ilamda=zeros(4);

sent=zeros(40,2); %mean entry rates in the simulation;

spay=zeros(40,2); %mean efficiencies in the simulation;

salt=zeros(40,2); %mean alteration rates in the simulation;

%%% PARAMETERS %%%

initial=0.66; ro=0.2; wgm=0.8; kappa=3; eps=0.24; pie=0.6;

lamda=0.5; %%% NEW PARAMETER

nsim=10000; %%% NUMBER OF SIMULATIONS %%%

for ss=1:nsim %%% START SIMULATION %%%

for prob=1:nt %%% START PROBLEM %%%

k=x(prob,2); block=1;

for player=1:4 %%%PLAYER TRAITS %%%

ipie(player)=rand*pie; ieps(player)=rand*eps; iro(player)=rand*ro;

iwgm(player)=rand*wgm; icas(player)=round(.5+rand*kappa);

%%% NEW TRAIT: CAPTURES SENSITIVITY TO THE MOST RECENT & POSITIVE ... %%%

%%% FORGONE PAYOFF IF IT IS MUCH LARGER THAN THE OBTAINED PAYOFF %%%

ilamda(player)=rand*lamda;

end

for t=1:50; %%% TRIALS%%%

for player=1:4; %%% PLAYER DECISIONS %%%

explor=0; inertia=0; exploit=0;

if t==1 %%% STAGE 1: EXPLORATION %%%

explor=1;

if rand<initial; dec(player,t)=2;

else dec(player,t)=1;

end

end
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if t>1 && rand<ieps(player); explor=1;

if rand<initial; dec(player,t)=2;

else dec(player,t)=1;

end

end %%% END EXPLORATION %%%

if explor==0 %%% STAGE 2: INERTIA %%%

rsurp=lsurp(player)/(asurp(player)+lsurp(player));

if rand<ipie(player)^rsurp; inertia=1; dec(player,t)=dec(player,t-1);

end

end %%% END INERTIA %%%

if inertia==0 && explor==0 %%% STAGE 3: EXPLOITATION %%%

exploit=1; tot(1)=0; tot(2)=0;

ncas=icas(player); %%% NUMBER OF CASES = INDIVIDUAL CASES %%%

for i=1:ncas %%% SAMPLING %%%

if rand<iro(player); Case=t-1;

else Case=round(0.5+(t-1)*rand);

end

%%% ***REFINEMENT NUMBER ONE*** %%%

%%% REVISION OF EARLY CASES %%%

%%% UNRELIABLE CASES FROM THE FIRST TRIALS ARE MORE

%%% LIKELY TO BE EXCLUDED FROM THE SAMPLE %%%

if Case<9

if rand<iro(player); Case=t-1;

else Case=round(0.5+(t-1)*rand);

end

end

if Case<7

if rand<iro(player); Case=t-1;

else Case=round(0.5+(t-1)*rand);

end

end

if Case<5

if rand<iro(player); Case=t-1;

else Case=round(0.5+(t-1)*rand);

end

end

if Case<3

if rand<iro(player); Case=t-1;

else Case=round(0.5+(t-1)*rand);

end

end

%%% ***END OF REFINEMENT NUMBER ONE*** %%%

draw=his(player,1,Case); %%% WEIGHTING %%%

smem=(1-iwgm(player))*draw+iwgm(player)*gm(player,1); tot(1)=tot(1)+smem;

draw=his(player,2,Case);

smem=(1-iwgm(player))*draw+iwgm(player)*gm(player,2); tot(2)=tot(2)+smem;

end

if tot(1)>tot(2) %%% WEIGHTED & SAMPLE-BASED CHOICE %%%

dec(player,t)=1;
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else

dec(player,t)=2; %%%minor modification; if tie, then enter (no coin toss)

end

%%% ***REFINEMENT NUMBER TWO*** %%%

%%% REVISION OF WEIGHTED & SAMPLE-BASED CHOICE

%%% THE PLAYERS CONSIDER ONLY POSITIVE(!) & MORE RECENT(!) FORGONE PAYOFFS

%%%

%%% SCENARIO 1A: NEGATIVE(!) AND MUCH SMALLER OBTAINED PAYOFF

%%% FROM STAYING OUT(!) IN THE LAST TRIAL

%%% DO I REALLY WANT TO STAY OUT AGAIN?

if his(player,1,t-1) < 0 && his(player,2,t-1) > 0

if 3*his(player,1,t-1) > -his(player,2,t-1) && dec(player,t)==1

if rand<ilamda(player)

dec(player,t)=2;

end

end

end

%%% SCENARIO 2A: NEGATIVE(!) AND MUCH SMALLER OBTAINED PAYOFF

%%% FROM ENTERING(!) IN THE LAST TRIAL

%%% DO I REALLY WANT TO ENTER AGAIN?

if his(player,1,t-1) > 0 && his(player,2,t-1) < 0

if 3*his(player,2,t-1) > -his(player,1,t-1) && dec(player,t)==2

if rand<ilamda(player)

dec(player,t)=1;

end

end

end

%%% SCENARIO 1B: POSITIVE(!) BUT MUCH SMALLER OBTAINED PAYOFF

%%% FROM STAYING OUT(!) IN THE LAST TRIAL

%%% DO I REALLY WANT TO STAY OUT AGAIN?

if his(player,1,t-1) > 0 && his(player,2,t-1) > 0 && ...

his(player,1,t-1)<his(player,2,t-1)

if 3*his(player,1,t-1) < his(player,2,t-1) && dec(player,t)==1

if rand<ilamda(player)

dec(player,t)=2;

end

end

end

%%% SCENARIO 2B: POSITIVE(!) BUT MUCH SMALLER OBTAINED PAYOFF

%%% FROM ENTERING(!) IN THE LAST TRIAL

%%% DO I REALLY WANT TO ENTER AGAIN?

if his(player,1,t-1) > 0 && his(player,2,t-1) > 0 && ...

his(player,1,t-1)>his(player,2,t-1)

if 3*his(player,2,t-1) < his(player,1,t-1) && dec(player,t)==2

if rand<ilamda(player)

dec(player,t)=1;

end

end

end %%% ***END REFINEMENT NUMBER TWO*** %%%
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end %%% END EXPLOITATION %%%

end %%% END PLAYER DECISIONS %%%

%%% STATISTICS %%%

ent=sum(dec(1:4,t))-4;

sent(prob,block)=sent(prob,block) + ent/(4*nsim*25);

if ent>0; spay(prob,block)=spay(prob,block) + ent*(10-k*ent)/(4*nsim*25);

end

if t>1

for player=1:4; altt=0;

if dec(player,t) ~= dec(player,t-1); altt=1;

end

if block==1; salt(prob,block)=salt(prob,block) + altt/(4*nsim*24);

else salt(prob,block)=salt(prob,block) + altt/(4*nsim*25);

end

end

end

%%% PAYOFFS %%%

ph=x(prob, 3); h=x(prob, 4); l=x(prob, 5); sf=x(prob, 6); state=h;

if rand>ph; state=l;

end

sft=sf;

if rand<0.5; sft=-sf;

end

%%% PLAYERS’ SURPRIZE AND GRAND MEAN %%%

for player=1:4; his(player,1,t)=round(state/sft);

if dec(player,t)==1; his(player,2,t)=state+10-k*(ent+1);

else his(player,2,t)=state+10-k*(ent);

end

%%% SURPRIZE %%%

if t==1

lsurp(player)=(abs(his(player,2,t)-gm(player,2)) + ...

abs(his(player,1,t)-gm(player,1)))/2; asurp(player)=0.00001;

end

if t>1

lsurp(player)= (abs(his(player,2,t)-gm(player,2)) + ...

abs(his(player,1,t)-gm(player,1)) + ...

abs(his(player,1,t)-his(player,1,t-1)) + ...

abs(his(player,2,t)-his(player,2,t-1)))/4;

asurp(player)=asurp(player)*(1-1/50)+lsurp(player)*(1/50);

end

%%% UPDATING GRAND MEAN %%%

gm(player,1)=(1-1/t)*gm(player,1)+(1/t)*his(player,1,t);

gm(player,2)=(1-1/t)*gm(player,2)+(1/t)*his(player,2,t);

end %%% END PLAYERS’ SURPRIZE AND GRAND MEAN %%%

if t/25==round(t/25)

block=block+1;

end

end %%%END TRIALS %%%

end %%% END PROBLEM %%%
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end %%% END SIMULATION %%%

%%% PART 3: THE OUTPUT %%%

load(’ent_est_results.dat’); data1 = ent_est_results;

% prob, k, ph, h, l, sf, ent1, ent2, pay1, pay2, alt1, alt2;

res = data1(1:nt,[1 2 3 4 5 6 7 8 9 10 11 12]);

x1=data1(1:nt, [1 2 3 4 5 6]);

ent1=data1(:,7); ent2=data1(:,8);

pay1=data1(:,9); pay2=data1(:,10);

alt1=data1(:,11); alt2=data1(:,12);

gent1=ent1-sent(:,1); gent2=ent2-sent(:,2);

gpay1=pay1-spay(:,1); gpay2=pay2-spay(:,2);

galt1=alt1-salt(:,1); galt2=alt2-salt(:,2);

msdent1=(gent1.^2)/0.0016490; msdent2=(gent2.^2)/0.0014957;

msdpay1=(gpay1.^2)/0.1371033; msdpay2=(gpay2.^2)/0.1188298;

msdalt1=(galt1.^2)/0.0011904; msdalt2=(galt2.^2)/0.0014519;

msd=(msdent1 +msdent2+msdpay1+msdpay2 + msdalt1+msdalt2)/6;

%%% Output

SimulatedData=horzcat(x1, sent, spay, salt, msd)

AverageMSD=mean(msd)

2 leder.m

The MATLAB program leder.m computes the MSD of the estimation set for the Leder et al.
model (see Section 2.5.3).

%%% PART 1: INPUT %%%

load(’ent_est_par.dat’); data = ent_est_par;

nt = 40; %%% NUMBER OF PROBLEMS %%%

x = data(1:nt,[1 2 3 4 5 6]); %%% PROBLEM K PH H L S

%%% PART 2: PREDICTION %%%

his=zeros(4,2,50); tot=zeros(2); gm=zeros(4,2);

dec=zeros(4,50); lsurp=zeros(4); asurp=zeros(4);

ipie=zeros(4); ieps=zeros(4); iro=zeros(4);

iwgm=zeros(4); icas=zeros(4); ilamda=zeros(4);

sent=zeros(40,2); %mean entry rates in the simulation;

spay=zeros(40,2); %mean efficiencies in the simulation;

salt=zeros(40,2); %mean alteration rates in the simulation;

%%% PARAMETERS %%%

initial=0.66; ro=0.2; wgm=0.8; kappa=3; eps=0.24; pie=0.6;

lamda=0.5; %%% NEW PARAMETER

nsim=10000; %%% NUMBER OF SIMULATIONS %%%

for ss=1:nsim %%% START SIMULATION %%%

for prob=1:nt %%% START PROBLEM %%%

k=x(prob,2); block=1;

for player=1:4 %%%PLAYER TRAITS %%%

ipie(player)=rand*pie; ieps(player)=rand*eps; iro(player)=rand*ro;

iwgm(player)=rand*wgm; icas(player)=round(.5+rand*kappa);
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%%% NEW TRAIT: CAPTURES SENSITIVITY TO THE MOST RECENT & POSITIVE ... %%%

%%% FORGONE PAYOFF IF IT IS MUCH LARGER THAN THE OBTAINED PAYOFF %%%

ilamda(player)=rand*lamda;

end

for t=1:50; %%% TRIALS%%%

for player=1:4; %%% PLAYER DECISIONS %%%

explor=0; inertia=0; exploit=0;

if t==1 %%% STAGE 1: EXPLORATION %%%

explor=1;

if rand<initial; dec(player,t)=2;

else dec(player,t)=1;

end

end

%%% ***REFINEMENT NUMBER ONE*** %%%

if t>1 && t<10

pexp=9/t*ieps(player);

end

if t>9 && t<31

pexp=0.95*ieps(player);

end

if t>30

pexp=0.9*ieps(player);

end

%%% ***END OF REFINEMENT NUMBER ONE*** %%%

if t>1 && rand<pexp; explor=1;

if rand<initial; dec(player,t)=2;

else dec(player,t)=1;

end

end %%% END EXPLORATION %%%

if explor==0 %%% STAGE 2: INERTIA %%%

rsurp=lsurp(player)/(asurp(player)+lsurp(player));

if rand<ipie(player)^rsurp; inertia=1; dec(player,t)=dec(player,t-1);

end

end %%% END INERTIA %%%

if inertia==0 && explor==0 %%% STAGE 3: EXPLOITATION %%%

exploit=1; tot(1)=0; tot(2)=0;

ncas=icas(player); %%% NUMBER OF CASES = INDIVIDUAL CASES %%%

for i=1:ncas %%% SAMPLING %%%

if rand<iro(player); Case=t-1;

else Case=round(0.5+(t-1)*rand);

end

%%% ***REFINEMENT NUMBER TWO*** %%%

%%% REVISION OF EARLY CASES %%%

%%% UNRELIABLE CASES FROM THE FIRST TRIALS ARE MORE

%%% LIKELY TO BE EXCLUDED FROM THE SAMPLE %%%

if Case<9

if rand<iro(player); Case=t-1;

else Case=round(0.5+(t-1)*rand);

end
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end

if Case<7

if rand<iro(player); Case=t-1;

else Case=round(0.5+(t-1)*rand);

end

end

if Case<5

if rand<iro(player); Case=t-1;

else Case=round(0.5+(t-1)*rand);

end

end

if Case<3

if rand<iro(player); Case=t-1;

else Case=round(0.5+(t-1)*rand);

end

end

%%% ***END OF REFINEMENT NUMBER TWO*** %%%

draw=his(player,1,Case); %%% WEIGHTING %%%

smem=(1-iwgm(player))*draw+iwgm(player)*gm(player,1); tot(1)=tot(1)+smem;

draw=his(player,2,Case);

smem=(1-iwgm(player))*draw+iwgm(player)*gm(player,2); tot(2)=tot(2)+smem;

end

if tot(1)>tot(2) %%% WEIGHTED & SAMPLE-BASED CHOICE %%%

dec(player,t)=1;

else

dec(player,t)=2; %%%minor modification; if tie, then enter (no coin toss)

end

%%% ***REFINEMENT NUMBER THREE*** %%%

%%% REVISION OF WEIGHTED & SAMPLE-BASED CHOICE

%%% THE PLAYERS CONSIDER ONLY POSITIVE(!) & MORE RECENT(!) FORGONE PAYOFFS

%%%

%%% SCENARIO 1A: NEGATIVE(!) AND MUCH SMALLER OBTAINED PAYOFF

%%% FROM STAYING OUT(!) IN THE LAST TRIAL

%%% DO I REALLY WANT TO STAY OUT AGAIN?

if his(player,1,t-1) < 0 && his(player,2,t-1) > 0

if 3*his(player,1,t-1) > -his(player,2,t-1) && dec(player,t)==1

if rand<ilamda(player)

dec(player,t)=2;

end

end

end

%%% SCENARIO 2A: NEGATIVE(!) AND MUCH SMALLER OBTAINED PAYOFF

%%% FROM ENTERING(!) IN THE LAST TRIAL

%%% DO I REALLY WANT TO ENTER AGAIN?

if his(player,1,t-1) > 0 && his(player,2,t-1) < 0

if 3*his(player,2,t-1) > -his(player,1,t-1) && dec(player,t)==2

if rand<ilamda(player)

dec(player,t)=1;

end
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end

end

%%% SCENARIO 1B: POSITIVE(!) BUT MUCH SMALLER OBTAINED PAYOFF

%%% FROM STAYING OUT(!) IN THE LAST TRIAL

%%% DO I REALLY WANT TO STAY OUT AGAIN?

if his(player,1,t-1) > 0 && his(player,2,t-1) > 0 &&...

his(player,1,t-1)<his(player,2,t-1)

if 3*his(player,1,t-1) < his(player,2,t-1) && dec(player,t)==1

if rand<ilamda(player)

dec(player,t)=2;

end

end

end

%%% SCENARIO 2B: POSITIVE(!) BUT MUCH SMALLER OBTAINED PAYOFF

%%% FROM ENTERING(!) IN THE LAST TRIAL

%%% DO I REALLY WANT TO ENTER AGAIN?

if his(player,1,t-1) > 0 && his(player,2,t-1) > 0 && ...

his(player,1,t-1)>his(player,2,t-1)

if 3*his(player,2,t-1) < his(player,1,t-1) && dec(player,t)==2

if rand<ilamda(player)

dec(player,t)=1;

end

end

end %%% ***END REFINEMENT NUMBER THREE*** %%%

end %%% END EXPLOITATION %%%

end %%% END PLAYER DECISIONS %%%

%%% STATISTICS %%%

ent=sum(dec(1:4,t))-4;

sent(prob,block)=sent(prob,block) + ent/(4*nsim*25);

if ent>0; spay(prob,block)=spay(prob,block) + ent*(10-k*ent)/(4*nsim*25);

end

if t>1

for player=1:4; altt=0;

if dec(player,t) ~= dec(player,t-1); altt=1;

end

if block==1; salt(prob,block)=salt(prob,block) + altt/(4*nsim*24);

else salt(prob,block)=salt(prob,block) + altt/(4*nsim*25);

end

end

end

%%% PAYOFFS %%%

ph=x(prob, 3); h=x(prob, 4); l=x(prob, 5); sf=x(prob, 6); state=h;

if rand>ph; state=l;

end

sft=sf;

if rand<0.5; sft=-sf;

end

%%% PLAYERS’ SURPRIZE AND GRAND MEAN %%%

for player=1:4; his(player,1,t)=round(state/sft);
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if dec(player,t)==1; his(player,2,t)=state+10-k*(ent+1);

else his(player,2,t)=state+10-k*(ent);

end

%%% SURPRIZE %%%

if t==1

lsurp(player)=(abs(his(player,2,t)-gm(player,2)) + ...

abs(his(player,1,t)-gm(player,1)))/2; asurp(player)=0.00001;

end

if t>1

lsurp(player)= (abs(his(player,2,t)-gm(player,2)) + ...

abs(his(player,1,t)-gm(player,1)) + ...

abs(his(player,1,t)-his(player,1,t-1)) + ...

abs(his(player,2,t)-his(player,2,t-1)))/4;

asurp(player)=asurp(player)*(1-1/50)+lsurp(player)*(1/50);

end

%%% UPDATING GRAND MEAN %%%

gm(player,1)=(1-1/t)*gm(player,1)+(1/t)*his(player,1,t);

gm(player,2)=(1-1/t)*gm(player,2)+(1/t)*his(player,2,t);

end %%% END PLAYERS’ SURPRIZE AND GRAND MEAN %%%

if t/25==round(t/25)

block=block+1;

end

end %%%END TRIALS %%%

end %%% END PROBLEM %%%

end %%% END SIMULATION %%%

%%% PART 3: THE OUTPUT %%%

load(’ent_est_results.dat’); data1 = ent_est_results;

% prob, k, ph, h, l, sf, ent1, ent2, pay1, pay2, alt1, alt2;

res = data1(1:nt,[1 2 3 4 5 6 7 8 9 10 11 12]);

x1=data1(1:nt, [1 2 3 4 5 6]);

ent1=data1(:,7); ent2=data1(:,8);

pay1=data1(:,9); pay2=data1(:,10);

alt1=data1(:,11); alt2=data1(:,12);

gent1=ent1-sent(:,1); gent2=ent2-sent(:,2);

gpay1=pay1-spay(:,1); gpay2=pay2-spay(:,2);

galt1=alt1-salt(:,1); galt2=alt2-salt(:,2);

msdent1=(gent1.^2)/0.0016490; msdent2=(gent2.^2)/0.0014957;

msdpay1=(gpay1.^2)/0.1371033; msdpay2=(gpay2.^2)/0.1188298;

msdalt1=(galt1.^2)/0.0011904; msdalt2=(galt2.^2)/0.0014519;

msd=(msdent1 +msdent2+msdpay1+msdpay2 + msdalt1+msdalt2)/6;

%%% Output

SimulatedData=horzcat(x1, sent, spay, salt, msd)

AverageMSD=mean(msd)
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3 teodorescu.sas

The SAS program teodorescu.sas computes the MSD of the estimation set for the Teodorescu
et al. model (see Section 2.5.1).

**************************Part 1: Input***************************************;

**** This part should appear without any change in all the SAS submissions;

options linesize=78 pagesize=999;

libname out ’’;

data a; infile ’c:\ent_est_par.dat’;

input problem k ph h l sf;

****************************Part 2: The derivation of the prediction**********;

************simulation of the I-SAW model**************;

********The parameters*******************;

data a; set a;

initial=.66;

do ro=.1;

do wgm= .4;

do kapa=1.5;

do eps=.12;

do pie=.3;

output;

end; end; end; end; end;

data a; set a;

nsim=2000;

array sampsurp{4} sampsurp1-sampsurp4;

array his{4,2,50} his1-his400;

array tot{2} tot1-tot2;

array gm{4,2} gm1-gm8;

array dec{4} dec1-dec4;

array lagdec{4} ldec1-ldec4;

array lsurp{4} lsurp1-lsurp4;

array asurp{4} asurp1-asurp4;

array ipie{4} ipie1-ipie4;

array ieps{4} ieps1-ieps4;

array iro{4} iro1-iro4;

array iwgm{4} iwgm1-iwgm4;

array icas{4} icas1-icas4;

**Stored statistics;

ARRAY sent{2} sent1-sent2; *mean entry rates in the simulation;

ARRAY spay{2} spay1-spay2; *mean efficiencies in the simulation;

array salt{2} salt1-salt2; *mean alteration rates in the simulation;

***new sim****************************;

do ss=1 to nsim;

do player=1 to 4;

ipie{player}=ranuni(0)*2*pie;

ieps{player}=ranuni(0)*2*eps;

iro{player}=ranuni(0)*2*ro;

iwgm{player}=ranuni(0)*2*wgm;

icas{player}=round(.5+ranuni(0)*2*kapa);

sampsurp{player}=0;

do st=1 to 2; gm{player,st}=0;

do tt=1 to 50; his{player,st,tt}=.; end;
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end;**st;

end; *of player;

block=1;

******* the 100 trials ******************************;

do t=1 to 50;

do player=1 to 4;

********************decisions **************************;

lagdec{player}=dec{player};

explor=0; inertia=0; exploit=0;

*****exploration******;

if t=1 then pexp=1;

if t>1 and t<6 then pexp=(6*ieps{player})/t;

if t>5 and t<31 then pexp= ieps{player};

if t>30 then pexp=0.9*ieps{player};

if ranuni(0)<pexp then do;

explor=1;

dec{player}=1; if ranuni(0)<initial then dec{player}=2; ** exploration;

end;

******inertia******************************;

if explor=0 then do;

rsurp=lsurp{player}/(asurp{player}+lsurp{player});

pinertia=ipie{player}**(rsurp);

if ranuni(0)<pinertia then do; inertia=1; dec{player}=lagdec{player}; end;

end;

if rsurp>0.85 then sampsurp{player}=t;

***exploit************************************ ;

if inertia=0 and explor=0 then do;

exploit=1;

ncas=icas{player};**** sample size***;

do st=1 to 2; tot{st}=0; end;;

do i=1 to ncas; **sampling**;

case=round(.5+(t-1)*ranuni(0));

if ranuni(0)<iro{player} then case=t-1;

else if sampsurp{player}^=0 then do;

if ranuni(0)<iro{player} then case=sampsurp{player};

end;

do st=1 to 2;

draw=his{player,st,case};

smem=(1-iwgm{player})*draw+iwgm{player}*gm{player,st};

tot{st}=sum(tot{st},smem);

end;

end;

dec{player}=1; if tot2>tot1 then dec{player}=2;

if tot1=tot2 then dec{player}=1+round(ranuni(0));**choice;

end; **of exploit;

end; **of pl;

***statistics***;

ent=sum(of dec1-dec4)-4;

sent{block}=sum(0,sent{block},ent/(4*nsim*25));

if ent>0 then spay{block}=sum(spay{block},ent*(10-k*(ent))/(4*nsim*25));

if t>1 then do player=1 to 4; altt=0;

if dec{player} ne lagdec{player} then altt=1;

if block=1 then salt{block} =sum(salt{block},altt/(4*nsim*24));
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if block=2 then salt{block} =sum(salt{block},altt/(4*nsim*25));

end;

**PAYOFFS***;

state=h; if ranuni(0)>ph then state=l;

sft=sf; if ranuni(0)<.5 then sft=-sf;

do player=1 to 4;

his{player,1,t}=round(state/sft);

if dec{player}=1 then his{player,2,t}=state+10-k*(ent+1);

if dec{player}=2 then his{player,2,t}=state+10-k*(ent);

**surprize;

if t=1 then lsurp{player}=mean(abs(his{player,2,t}-gm{player,2}),

abs(his{player,1,t}-gm{player,1}));

if t>1 then lsurp{player}=mean(abs(his{player,2,t}-gm{player,2}),

abs(his{player,1,t}-gm{player,1}),

abs(his{player,1,t}-his{player,1,t-1}),abs(his{player,2,t}-his{player,2,t-1}));

if t=1 then do; asurp{player}=.00001; end;

if t>1 then asurp{player}=asurp{player}*(1-1/(50))+lsurp{player}*(1/(50));

***updating grand mean******;

do st=1 to 2;

gm{player,st}=(1-1/(t))*gm{player,st}+(1/(t))*his{player,st,t};

end;

end; ***of player;

IF (T)/(25)=ROUND((T)/(25)) THEN do;

block=block+1;

end;

end; **of trials***;

end; **of sim***;

**********************Part 3: The output ********************************************;

******** This part should appear without any change in all the SAS submissions*******;

data out.model_est; set a;

data c; infile ’c:\ent_est_results.dat’;

input problem k ph h l sf ent1 ent2 pay1 pay2 alt1 alt2;

data test; merge out.model_est c;

by problem k ph h l;

data test; set test;

msdent1=((ent1-sent1)**2)/0.0016490;

msdent2=((ent2-sent2)**2)/0.0014957;

msdpay1=((pay1-spay1)**2)/0.1371033;

msdpay2=((pay2-spay2)**2)/0.1188298;

msdalt1=((alt1-salt1)**2)/0.0011904;

msdalt2=((alt2-salt2)**2)/0.0014519;

msd=(msdent1 +msdent2+msdpay1+msdpay2 + msdalt1+msdalt2)/6;

proc sort; by ro wgm kapa eps pie;

proc means noprint;

by ro wgm kapa eps pie;

var msdent1 msdent2 msdpay1 msdpay2 msdalt1 msdalt2 msd;

output out=o mean=msdent1 msdent2 msdpay1 msdpay2 msdalt1 msdalt2 msd;

proc print;

var msdent1 msdent2 msdpay1 msdpay2 msdalt1 msdalt2 msd;

by ro wgm kapa eps pie;

proc means data=test noprint;

by ro wgm kapa eps pie;

var msd;
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output out=o mean=msd;

proc sort; by msd;

proc print;

run;
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4 Experimental Data

Table 1
Estimation Set: Entry Rates, Efficiency and Alternation Rates

Game Entry Rate Efficiency Alternation Rate

Γest k p H L S B1 B2 B1 B2 B1 B2

1 2 0.04 70 -3 5 0.71 0.80 2.77 2.66 0.16 0.16
2 2 0.23 30 -9 4 0.55 0.62 2.64 2.75 0.25 0.23
3 2 0.67 1 -2 3 0.88 0.94 2.39 2.24 0.10 0.04
4 2 0.73 30 -80 4 0.71 0.64 2.58 2.57 0.28 0.27
5 2 0.80 20 -80 5 0.66 0.67 2.50 2.67 0.29 0.27
6 2 0.83 4 -20 3 0.73 0.82 2.45 2.50 0.24 0.18
7 2 0.94 6 -90 5 0.86 0.87 2.34 2.38 0.13 0.11
8 2 0.95 1 -20 5 0.86 0.91 2.48 2.31 0.12 0.08
9 2 0.96 4 -90 3 0.87 0.90 2.36 2.34 0.14 0.08
10 3 0.10 70 -8 4 0.42 0.48 1.22 1.11 0.29 0.25
11 3 0.90 9 -80 4 0.80 0.73 -0.33 0.29 0.18 0.25
12 3 0.91 7 -70 6 0.76 0.83 0.10 -0.41 0.19 0.12
13 4 0.06 60 -4 2 0.42 0.41 0.52 0.84 0.22 0.15
14 4 0.20 40 -10 4 0.48 0.46 -0.34 0.04 0.31 0.31
15 4 0.31 20 -9 4 0.49 0.44 -0.07 0.30 0.34 0.38
16 4 0.60 4 -6 2 0.56 0.58 -0.27 -0.26 0.22 0.26
17 4 0.60 40 -60 3 0.58 0.55 -0.96 -0.20 0.28 0.25
18 4 0.73 3 -8 2 0.57 0.55 -0.29 0.09 0.24 0.20
19 4 0.80 20 -80 2 0.64 0.63 -1.30 -1.21 0.28 0.27
20 4 0.90 1 -9 6 0.53 0.48 0.12 0.63 0.21 0.16
21 4 0.96 3 -70 3 0.65 0.62 -0.84 -0.38 0.23 0.18
22 5 0.02 80 -2 3 0.36 0.31 0.24 0.64 0.17 0.17
23 5 0.07 90 -7 3 0.39 0.24 -0.81 0.34 0.19 0.13
24 5 0.53 80 -90 5 0.65 0.58 -3.41 -2.44 0.27 0.36
25 5 0.80 1 -4 2 0.45 0.42 -0.31 0.11 0.20 0.18
26 5 0.88 4 -30 3 0.52 0.49 -0.95 -0.57 0.22 0.21
27 5 0.93 5 -70 4 0.57 0.57 -1.63 -1.43 0.27 0.20
28 6 0.10 90 -10 5 0.26 0.27 -0.13 0.07 0.22 0.19
29 6 0.19 30 -7 3 0.39 0.32 -1.35 -0.45 0.27 0.26
30 6 0.29 50 -20 3 0.47 0.48 -2.74 -2.43 0.38 0.36
31 6 0.46 7 -6 6 0.38 0.34 -0.90 -0.38 0.23 0.24
32 6 0.57 6 -8 4 0.44 0.39 -1.56 -0.59 0.26 0.27
33 6 0.82 20 -90 3 0.63 0.55 -5.33 -3.14 0.26 0.21
34 6 0.88 8 -60 4 0.57 0.50 -3.30 -1.96 0.16 0.19
35 7 0.06 90 -6 4 0.31 0.35 -1.40 -1.43 0.29 0.21
36 7 0.21 30 -8 3 0.39 0.31 -2.20 -1.04 0.30 0.23
37 7 0.50 80 -80 5 0.51 0.55 -4.18 -4.78 0.34 0.32
38 7 0.69 9 -20 5 0.46 0.34 -2.62 -0.88 0.25 0.23
39 7 0.81 7 -30 2 0.41 0.34 -2.25 -0.93 0.22 0.21
40 7 0.91 1 -10 2 0.34 0.27 -0.71 -0.30 0.19 0.17

Mean 0.56 0.56 -0.39 0.04 0.27 0.23
Estimated Error Variance .0016 .0015 .1370 .1188 .0018 .0015

Source. Erev et al. (2010)
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Table 2
Predictions Set: Entry Rates, Efficiency and Alternation Rates

Game Entry Rate Efficiency Alternation Rate

Γpre k p H L S B1 B2 B1 B2 B1 B2

1 2 0.04 70 -3 3 0.69 0.78 2.85 2.75 0.17 0.15
2 2 0.18 9 -2 3 0.81 0.82 2.48 2.57 0.19 0.21
3 2 0.20 40 -10 2 0.53 0.50 2.62 2.51 0.29 0.28
4 2 0.33 6 -3 6 0.75 0.81 2.75 2.57 0.16 0.14
5 2 0.40 3 -2 5 0.90 0.95 2.29 2.18 0.13 0.08
6 2 0.95 2 -40 3 0.87 0.93 2.24 2.23 0.11 0.06
7 2 0.97 2 -60 5 0.88 0.93 2.33 2.28 0.11 0.04
8 3 0.03 90 -3 3 0.47 0.53 1.43 1.50 0.28 0.26
9 3 0.10 9 -1 2 0.65 0.70 1.06 0.88 0.17 0.16
10 3 0.33 2 -1 5 0.69 0.69 0.70 0.81 0.26 0.20
11 3 0.36 90 -50 3 0.40 0.37 1.27 1.26 0.28 0.30
12 3 0.47 10 -9 2 0.56 0.57 1.26 1.39 0.30 0.26
13 3 0.50 7 -7 5 0.63 0.61 1.01 1.08 0.26 0.25
14 4 0.07 40 -3 3 0.42 0.45 0.74 0.59 0.28 0.21
15 4 0.44 9 -7 2 0.54 0.54 -0.35 -0.12 0.33 0.36
16 4 0.46 7 -6 5 0.56 0.50 -0.51 0.39 0.27 0.26
17 4 0.47 10 -9 5 0.45 0.51 0.37 0.15 0.35 0.34
18 4 0.53 7 -8 6 0.53 0.54 0.01 -0.14 0.27 0.28
19 4 0.82 9 -40 2 0.71 0.65 -1.98 -1.14 0.25 0.26
20 4 0.86 10 -60 2 0.72 0.69 -2.08 -1.72 0.25 0.23
21 4 0.88 8 -60 4 0.77 0.76 -2.72 -2.69 0.24 0.21
22 5 0.29 5 -2 6 0.40 0.37 -0.10 0.25 0.23 0.26
23 5 0.33 80 -40 5 0.42 0.41 -0.92 -1.16 0.33 0.32
24 5 0.36 90 -50 6 0.46 0.36 -1.30 -0.54 0.34 0.31
25 5 0.42 7 -5 6 0.45 0.46 -0.41 -0.39 0.23 0.22
26 5 0.60 2 -3 2 0.39 0.37 0.10 0.22 0.28 0.21
27 5 0.67 4 -8 3 0.50 0.44 -1.04 -0.41 0.26 0.24
28 5 0.91 8 -80 6 0.57 0.56 -1.75 -1.49 0.20 0.22
29 6 0.08 60 -5 5 0.27 0.30 -0.11 -0.04 0.20 0.18
30 6 0.12 50 -7 6 0.41 0.30 -1.40 -0.21 0.27 0.22
31 6 0.40 60 -40 5 0.50 0.46 -3.03 -2.45 0.35 0.36
32 6 0.56 70 -90 2 0.58 0.57 -4.49 -3.98 0.37 0.30
33 6 0.63 6 -10 5 0.39 0.40 -0.84 -0.87 0.31 0.27
34 7 0.20 80 -20 5 0.39 0.34 -3.14 -1.90 0.24 0.23
35 7 0.30 70 -30 5 0.43 0.48 -2.72 -3.47 0.32 0.32
36 7 0.33 20 -10 6 0.40 0.39 -2.59 -1.92 0.32 0.33
37 7 0.44 5 -4 6 0.36 0.30 -1.03 -0.20 0.23 0.16
38 7 0.50 80 -80 3 0.52 0.49 -4.86 -3.63 0.36 0.36
39 7 0.88 1 -7 5 0.33 0.28 -1.01 -0.14 0.24 0.19
40 7 0.98 2 -80 4 0.34 0.32 -0.88 -0.36 0.24 0.24

Mean 0.54 0.54 -0.34 -0.08 0.26 0.24
Estimated Error Variance .0016 .0018 .2302 .1733 .0020 .0022

Source. https://sites.google.com/site/gpredcomp/study-results/competition-study
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No additional material provided.
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5 Three-Person Ultimatum Game: Heuristic Decision Process

Table 3 presents for the proposer decision the decision process of each type.

Table 3
Three-Person UG: Type-Dependent Decision Process for

Proposer Decision

(dP , o−R, r) A ∨ B ∨ C D ∨ E ∨ F G

(1000, 100, 100) 0 1,0 1,1
(800, 300, 100) 0 1,0 1,0
(800, 200, 200) 0 1,0 1,0
(800, 100, 300) 0 1,0 1,0
(600, 500, 100) 0 1,1 1,0
(600, 400, 200) 0 1,0 1,0
(600, 300, 300) 0 1,0 1,0
(600, 200, 400) 0 1,0 1,0
(600, 100, 500) 0 1,0 1,0
(400, 600, 200) 0 0 1,0
(400, 500, 300) 0 0 1,0
(400, 400, 400) 1 0 1,0
(400, 300, 500) 0 0 1,0
(400, 200, 600) 0 0 1,0
(200, 600, 400) 0 0 1,0
(200, 500, 500) 0 0 1,0
(200, 400, 600) 0 0 1,0
(000, 600, 600) 0 0 1,0

The absence of a characteristic is indicated by a value of 0 and its pres-
ence by a value of 1. If a type considers more than one characteristic,
then their values are separated by a comma.

Table 4 presents for the responder decisions the decision process of each type.
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Table 4
Three-Person UG: Decision Process for Responder Decisions

a → (d
−P , oR, r) D A ∨ E B C ∨ F ∨ G

accept → (1000, 100, 100) 0,0 0,0 0,0 1
reject → (0, 0, 0) 0,1 0,1 0,1 0

accept → (800, 300, 100) 0,0 0,0 1 1
reject → (0, 0, 0) 0,1 0,1 0 0

accept → (800, 200, 200) 0,0 0,0 0,0 1
reject → (0, 0, 0) 0,1 0,1 0,1 0

accept → (800, 100, 300) 0,0 0,0 0,0 1
reject → (0, 0, 0) 0,1 0,1 0,1 0

accept → (600, 500, 100) 1 1 1 1
reject → (0, 0, 0) 0 0 0 0

accept → (600, 400, 200) 0,0 1 1 1
reject → (0, 0, 0) 0,1 0 0 0

accept → (600, 300, 300) 0,0 0,0 1 1
reject → (0, 0, 0) 0,1 0,1 0 0

accept → (600, 200, 400) 0,0 0,0 0,0 1
reject → (0, 0, 0) 0,1 0,1 0,1 0

accept → (600, 100, 500) 0,0 0,0 0,0 1
reject → (0, 0, 0) 0,1 0,1 0,1 0

accept → (400, 600, 200) 1 1 1 1
reject → (0, 0, 0) 0 0 0 0

accept → (400, 500, 300) 1 1 1 1
reject → (0, 0, 0) 0 0 0 0

accept → (400, 400, 400) 0,0 1 1 1
reject → (0, 0, 0) 0,1 0 0 0

accept → (400, 300, 500) 0,0 0,0 1 1
reject → (0, 0, 0) 0,1 0,1 0 0

accept → (400, 200, 600) 0,0 0,0 0,0 1
reject → (0, 0, 0) 0,1 0,1 0,1 0

accept → (200, 600, 400) 1 1 1 1
reject → (0, 0, 0) 0 0 0 0

accept → (200, 500, 500) 1 1 1 1
reject → (0, 0, 0) 0 0 0 0

accept → (200, 400, 600) 0,0 1 1 1
reject → (0, 0, 0) 0,1 0 0 0

accept → (0, 600, 600) 1 1 1 1
reject → (0, 0, 0) 0 0 0 0

The absence of a characteristic is indicated by a value of 0 and its presence by a value of 1. If a
type considers more than one characteristic, then their values are separated by a comma.
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6 Within-Sample Predictions: Ultimatum Game

c=1000; %monetary cake

x=[900 800 700 600 500 400 300 200 100; % possible demands

100 200 300 400 500 600 700 800 900 ]; % possible offers

off=[113 39 94 232 518 28 5 0 6]; % actual offers

acc=[361 422 590 820 1015 976 958 939 938]; % actual acceptances

p_obs=[off/sum(off); acc/sum(off)];

6.1 Heuristic Mix

%joint behavior that can be explained by ...

n=[ 114 %fairness + mirror (o_i=500,m_i=500)

111 %fairness + anger (o_i=500,m_i=400)

134 %fairness + money (o_i=500,m_i=100)

84 %fear + mirror (o_i=400,m_i=400)

52 %fear + anger (o_i=400,m_i=300)

55 %fear + money (o_i=400,m_i=100)

86]; %money (o_i=100,m_i=100)

%distribution over proposer criteria

fairness=sum(n(1:3))/sum(n);

fear=sum(n(4:6))/sum(n);

money=n(7)/sum(n);

%chi-square test for equality of responder criteria distribution

od=[n(1)+n(4) n(2)+n(5) n(3)+n(6)]; %observed distribution

ed=[1/3 1/3 1/3 ]; %qual distribution

X2=sum((od-ed).^2./ed); %chi-square

df=length(od)-1; %degrees of freedom

pv=1-chi2cdf(sum(X2),df); %p-value

%predicted offer probabilities

p_fft(1,:)=[money 0 0 fear fairness 0 0 0 0];

%predicted acceptance probabilities

p_fft(2,:)=[money+1/3*fear+1/3*fairness;

money+1/3*fear+1/3*fairness;

money+2/3*fear+1/3*fairness;

money+fear+2/3*fairness;

money+fear+fairness;

money+fear+fairness;

money+fear+fairness;

money+fear+fairness;

money+fear+fairness]’;

6.2 Subgame Perfect Equilibrium

uRA=x(2,:); %acceptance utilities

p_spe(2,:)=uRA>0; %predicted acceptance probabilities

EuP=x(1,:).*p_spe(2,:); %expected utilities
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p_spe(1,:)=(EuP==max(EuP(1,:))); %predicted offer probabilities

6.3 Fehr-Schmidt Subgame Perfect Equilibrium

%distribution over preferences

dp=[0.3 0.0 0.00; %type A

0.3 0.5 0.25; %type B

0.3 1.0 0.60; %type C

0.1 4.0 0.60]; %type D

uRA=repmat(x(2,:),4,1)... %acceptance utilities

-repmat(dp(:,2),1,9).*repmat(max(x(1,:)-x(2,:),0),4,1)...

-repmat(dp(:,3),1,9).*repmat(max(x(2,:)-x(1,:),0),4,1);

p_fsspe(2,:)=sum(repmat(dp(:,1),1,9).*(uRA>0)); %pred. acceptance prob.

EuP=(repmat(x(1,:),4,1)... %expected offer utilities

-repmat(dp(:,2),1,9).*repmat(max(x(2,:)-x(1,:),0),4,1)...

-repmat(dp(:,3),1,9).*repmat(max(x(1,:)-x(2,:),0),4,1))...

.*repmat(p_fsspe(2,:),4,1);

maxEuP=[repmat(max(EuP(1,:)),1,9); %maximum expected utilities of each type

repmat(max(EuP(2,:)),1,9);

repmat(max(EuP(3,:)),1,9);

repmat(max(EuP(4,:)),1,9)];

p_fsspe(1,:)=sum((EuP==maxEuP).*repmat(dp(:,1),1,9)); %pred. offer prob.

6.4 Fehr-Schmidt Quantal Response Equilibrium

start = [.1;.01;.01]; %start values for alpha = beta, lambda_P, lambda_R

%maximize negative logl by minimizing positive logl (beta <=alpha)

[parameter, logl, exitflag, output, gradient, hessian] = fminunc...

(@fs_logl,start,optimset(’Display’,’off’, ’LargeScale’,’off’),x,off,acc);

%save estimation results

FS_LOGL=logl; % log likelilood

FS_PE=parameter’; %estimates

inv_hessian=inv(hessian);

FS_SD=sqrt(inv_hessian([1 5 9])); %standard deviations

%label estimates

alpha=parameter(1); beta=parameter(1);

lambdaP=parameter(2); lambdaR=parameter(3);

for k=1:length(x) %responder

utility_accept(k)=x(2,k)... % acceptance utilities

-alpha*max(x(1,k)-x(2,k),0)...

-beta*max(x(2,k)-x(1,k),0);

nominator(k)=exp(lambdaR*utility_accept(k));

denominator(k)=1+exp(lambdaR*utility_accept(k));

FSQRE_AP(k)=nominator(k)/denominator(k); % acceptance probabilities

end;

for k=1:length(x) %proposer

utility_offer(k)=x(1,k)... % offer utilities
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-alpha*max(x(2,k)-x(1,k),0)...

-beta*max(x(1,k)-x(2,k),0);

nominator(k)=exp(lambdaP*FSQRE_AP(k)*utility_offer(k));

end;

for k=1:length(x)

FSQRE_OP(k)=nominator(k)/sum(nominator); % offer probabilities

end;

%distribution over predicted offer and acceptance probabilities

p_fsqre=[FSQRE_OP; FSQRE_AP];

%%maximum likelihood estimation (unrestricted)

start = [.1; .1;.01;.01]; %start values for alpha, beta, lambda_P, lambda_R

%maximize negative logl by minimizing positive logl

[parameter, fval, exitflag, output, gradient, hessian] = fminunc...

(@fs_logl,start,optimset(’Display’,’off’, ’LargeScale’,’off’),x,off,acc);

%save estimation results

FS_LOGL_unc=logl; % log likelilood

FS_PE_unc=parameter’; %estimates

inv_hessian=inv(hessian);

FS_SD_unc=sqrt(inv_hessian([1 6 11 16])); %standard deviations

6.5 ERC Quantal Response Equilibrium

start = [.1;.02;.02]; %start values for alpha = beta, lambda_P, lambda_R

%maximize negative logl by minimizing positive logl

[parameter, logl, exitflag, output, gradient, hessian] = fminunc...

(@erc_logl,start,optimset(’Display’,’off’, ’LargeScale’,’off’),c,x,off,acc);

% save estimation results

ERC_LOGL=logl; % log likelilood

ERC_PE=parameter’; %estimates

inv_hessian=inv(hessian);

ERC_SD=sqrt(inv_hessian([1 5 9])); %standard deviations

%label estimates

alpha=parameter(1); lambdaP=parameter(2); lambdaR=parameter(3);

for k=1:length(x) %responder

sigma=x(2,k)/c;

if sigma<1/2 % acceptance utilities

utility_accept(k)=c*(sigma-alpha/2*(sigma-1/2)^2);

elseif sigma>=1/2

utility_accept(k) = c*sigma;

end;

nominator(k)=exp(lambdaR*utility_accept(k));

denominator(k)=1+exp(lambdaR*utility_accept(k));

ERCQRE_AP(k)=nominator(k)/denominator(k); %acceptance probabilities

end;

for k=1:length(x) %proposer

sigma=x(1,k)/c;

if sigma<1/2 % offer utilities

utility_offer(k)=c*(sigma-alpha/2*(sigma-1/2)^2);
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elseif sigma>=1/2

utility_offer(k) = c*sigma;

end;

nominator(k)=exp(lambdaP*ERCQRE_AP(k)*utility_offer(k));

end;

for k=1:length(x) % offer probabilities

ERCQRE_OP(k)=nominator(k)/sum(nominator);

end;

%distribution over predicted offer and acceptance probabilities

p_ercqre=[ERCQRE_OP; ERCQRE_AP];

7 Out-of-Sample Predictions: Three Person Ultimatum Game

c1=1200; %monetary cake

x1(1,:)=[10 8 8 8 6 6 6 6 6 4 4 4 4 4 2 2 2 0]*100; %possible demands

x1(2,:)=[ 1 3 2 1 5 4 3 2 1 6 5 4 3 2 6 5 4 6]*100; % " offers

x1(3,:)=[1 1 2 3 1 2 3 4 5 2 3 4 5 6 4 5 6 6]*100; % " remainders

off1=[ 402 161 11 0 776 313 54 3 4 ...%actual offers

168 184 2764 4 3 9 8 3 1];

acc1=[1069 1595 1273 1074 3102 2830 2031 1294 1098 ...% " acceptances

3828 3983 4719 2018 1384 4006 4105 3123 4023];

% we use one observation less that was misclassified by Güth 2007, however

% the outcomes do not change because of the high total number of observations

p_obs1=[off1/sum(off1);acc1/sum(off1)]; % observed offer and acceptance prob.

7.1 Heuristic Mix

%minimum acceptance offer (mao)

% 100 100 100 300 400 400 500

mao=[money fear/3 fairness/3 fairness/3 fairness/3 fear/3 fear/3];

%which offer implied by a proposal do i accept depending on my mao?

acc=[ 1 1 1 0 0 0 0; % 100 is the offer of proposal k=1

1 1 1 1 0 0 0; % 300

1 1 1 0 0 0 0; % 200

1 1 1 0 0 0 0; % 100

1 1 1 1 1 1 1; % 500

1 1 1 1 1 1 0; % 400

1 1 1 1 0 0 0; % 300

1 1 1 0 0 0 0; % 200

1 1 1 0 0 0 0; % 100

1 1 1 1 1 1 1; % 600

1 1 1 1 1 1 1; % 500

1 1 1 1 1 1 0; % 400

1 1 1 1 0 0 0; % 300

1 1 1 0 0 0 0; % 200

1 1 1 1 1 1 1; % 600

1 1 1 1 1 1 1; % 500
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1 1 1 1 1 1 0; % 400

1 1 1 1 1 1 1];% 600 is the offer of proporal k=18

p_fft1=[money 0 0 0 fear 0 0 0 0 0 0 fairness 0 0 0 0 0 0;

sum(repmat(mao,18,1).*acc,2)’];%pred. offer & acceptance prob.

7.2 Subgame Perfect Equilibrium

uRA1=x1(2,:); %acceptance utilities

p_spe1(2,:)=uRA1>0; %predicted acceptance probabilities

EuP1=x1(1,:).*p_spe1(2,:); %expected utilities

p_spe1(1,:)=(EuP1==max(EuP1(1,:)));%predicted offer probabilities

7.3 Fehr-Schmidt Subgame Perfect Equilibrium

uRA1=repmat(x1(2,:),4,1)... %acceptance utilities

-1/2*repmat(dp(:,2),1,18).*repmat(max(x1(1,:)-x1(2,:),0),4,1)...

-1/2*repmat(dp(:,2),1,18).*repmat(max(x1(3,:)-x1(2,:),0),4,1)...

-1/2*repmat(dp(:,3),1,18).*repmat(max(x1(2,:)-x1(1,:),0),4,1)...

-1/2*repmat(dp(:,3),1,18).*repmat(max(x1(2,:)-x1(3,:),0),4,1);

p_fsspe1(2,:)=sum(repmat(dp(:,1),1,18).*(uRA1>0)); %pred. acceptance prob.

EuP1=(repmat(x1(1,:),4,1)... %distribution over expected offer utilities

-1/2*repmat(dp(:,2),1,18).*repmat(max(x1(2,:)-x1(1,:),0),4,1)...

-1/2*repmat(dp(:,2),1,18).*repmat(max(x1(3,:)-x1(1,:),0),4,1)...

-1/2*repmat(dp(:,3),1,18).*repmat(max(x1(1,:)-x1(2,:),0),4,1)...

-1/2*repmat(dp(:,3),1,18).*repmat(max(x1(1,:)-x1(3,:),0),4,1))...

.*repmat(p_fsspe1(2,:),4,1);

maxEuP1=[repmat(max(EuP1(1,:)),1,18); %expected utilities of each type

repmat(max(EuP1(2,:)),1,18);

repmat(max(EuP1(3,:)),1,18);

repmat(max(EuP1(4,:)),1,18)];

p_fsspe1(1,:)=sum((EuP1==maxEuP1).*repmat(dp(:,1),1,18)); %pred. offer prob.

7.4 Fehr-Schmidt Quantal Response Equilibrium

alpha=FS_PE(1); beta=FS_PE(1); %parameter estimates

lambdaP=FS_PE(2); lambdaR=FS_PE(3);

for k=1:length(x1) %responder

utility_accept(k)=x1(2,k)... %acceptance utilities

-1/2*alpha*max(x1(1,k)-x1(2,k),0)...

-1/2*alpha*max(x1(3,k)-x1(2,k),0)...

-1/2* beta*max(x1(2,k)-x1(1,k),0)...

-1/2* beta*max(x1(2,k)-x1(3,k),0);

nominator(k)=exp(lambdaR*utility_accept(k));

denominator(k)=1+exp(lambdaR*utility_accept(k));

FSQRE_AP(k)=nominator(k)/denominator(k); %acceptance probabilities

end;

115



Appendix C

for k=1:length(x1)%proposer

utility_offer(k)=x1(1,k)... %offer utilities

-1/2*alpha*max(x1(2,k)-x1(1,k),0)...

-1/2*alpha*max(x1(3,k)-x1(1,k),0)...

-1/2* beta*max(x1(1,k)-x1(2,k),0)...

-1/2* beta*max(x1(1,k)-x1(3,k),0);

nominator(k)=exp(lambdaP*FSQRE_AP(k)*utility_offer(k));

end;

for k=1:length(x1) %offer probabilities

FSQRE_OP(k)=nominator(k)/sum(nominator);

end;

p_fsqre1=[FSQRE_OP; FSQRE_AP];%predicted offer and acceptance probabilities

7.5 ERC Quantal Response Equilibrium

alpha=ERC_PE(1); lambdaP=ERC_PE(2); lambdaR=ERC_PE(3); %parameter estimates

for k=1:length(x1) %responder

sigma=x1(2,k)/c1;

if sigma<1/3 %acceptance utilities

utility_accept(k)=c1*(sigma-alpha/2*(sigma-1/3)^2);

elseif sigma>=1/3

utility_accept(k) = c1*sigma;

end;

nominator(k)=exp(lambdaR*utility_accept(k));

denominator(k)=1+exp(lambdaR*utility_accept(k));

ERCQRE_AP(k)=nominator(k)/denominator(k); %acceptance probabilities

end;

for k=1:length(x1) %proposer

sigma=x1(1,k)/c1;

if sigma<1/3 % offer utilities

utility_offer(k)=c*(sigma-alpha/2*(sigma-1/3)^2);

elseif sigma>=1/3

utility_offer(k) = c1*sigma;

end;

nominator(k)=exp(lambdaP*ERCQRE_AP(k)*utility_offer(k));

end;

for k=1:length(x1) % offer probabilities

ERCQRE_OP(k)=nominator(k)/sum(nominator);

end;

p_ercqre1=[ERCQRE_OP; ERCQRE_AP];%predicted offer and acceptance prob.

8 Statistics: Ultimatum Game

8.1 Average Offer

AVGO=[sum(p_obs(1,:).*x(2,:)/c); % observations
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sum(p_fft(1,:).*x(2,:)/c); % fft

sum(p_spe(1,:).*x(2,:)/c); % spe

sum(p_fsspe(1,:).*x(2,:)/c); % fs spe

sum(p_fsqre(1,:).*x(2,:)/c); % fs qre

sum(p_ercqre(1,:).*x(2,:)/c);];% erc qre

8.2 Average Acceptance Rate

%Outcome probabilities (offer pr * acceptance pr & offer pr * rejection pr)

p_out=[p_obs(1,:) .*p_obs(2,:) p_obs(1,:).*(1-p_obs(2,:));

p_fft(1,:) .*p_fft(2,:) p_fft(1,:).*(1-p_fft(2,:));

p_spe(1,:) .*p_spe(2,:) p_spe(1,:).*(1-p_spe(2,:));

p_fsspe(1,:) .*p_fsspe(2,:) p_fsspe(1,:).*(1-p_fsspe(2,:));

p_fsqre(1,:) .*p_fsqre(2,:) p_fsqre(1,:).*(1-p_fsqre(2,:));

p_ercqre(1,:).*p_ercqre(2,:) p_ercqre(1,:).*(1-p_ercqre(2,:))];

%Average acceptance rate for obs, fft, spe, fs spe, fs qre, erc qre

AVGA=sum(p_out(:,1:9),2);

8.3 Sum of Absolute Differences for Predicted and Observed Probabilities

SAD = [offer probabilities acceptance probabilities outcome probalities]

SAD=[sum(abs(p_obs-p_fft),2)’ sum(abs(p_out(1,:)-p_out(2,:)),2);

sum(abs(p_obs-p_spe),2)’ sum(abs(p_out(1,:)-p_out(3,:)),2);

sum(abs(p_obs-p_fsspe),2)’ sum(abs(p_out(1,:)-p_out(4,:)),2);

sum(abs(p_obs-p_fsqre),2)’ sum(abs(p_out(1,:)-p_out(5,:)),2);

sum(abs(p_obs-p_ercqre),2)’ sum(abs(p_out(1,:)-p_out(6,:)),2)];

8.4 Correlation between Predicted and Observed Probabilities

CORR=[corr(p_obs(1,:)’,p_fft(1,:)’) corr(p_obs(2,:)’,p_fft(2,:)’)...

corr(p_out(1,:)’,p_out(2,:)’); %fft

corr(p_obs(1,:)’,p_fsspe(1,:)’) corr(p_obs(2,:)’,p_fsspe(2,:)’)...

corr(p_out(1,:)’,p_out(4,:)’); % fs spe

corr(p_obs(1,:)’,p_fsqre(1,:)’) corr(p_obs(2,:)’,p_fsqre(2,:)’)...

corr(p_out(1,:)’,p_out(5,:)’); % fs qre

corr(p_obs(1,:)’,p_ercqre(1,:)’) corr(p_obs(2,:)’,p_ercqre(2,:)’)...

corr(p_out(1,:)’,p_out(6,:)’)]; % erc qre

8.5 Relative Fit Index (RFI)

RFI=(repmat(SAD(2,:),4,1)-SAD([1 3 4 5],:))./repmat(SAD(2,:),4,1);
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9 Statistics: Three-Person Ultimatum Game

9.1 Average Offer

AVGO1=[sum(p_obs1(1,:).*x1(2,:)/c1); % observations

sum(p_fft1(1,:).*x1(2,:)/c1); % fft

sum(p_spe1(1,:).*x1(2,:)/c1); % spe

sum(p_fsspe1(1,:).*x1(2,:)/c1); % fs spe

sum(p_fsqre1(1,:).*x1(2,:)/c1); % fs qre

sum(p_ercqre1(1,:).*x1(2,:)/c1);];% erc qre

9.2 Average Acceptance Rate

%Outcome probabilities (offer pr * acceptance pr & offer pr * rejection pr)

p_out1=[p_obs1(1,:) .*p_obs1(2,:) p_obs1(1,:).*(1-p_obs1(2,:));

p_fft1(1,:) .*p_fft1(2,:) p_fft1(1,:).*(1-p_fft1(2,:));

p_spe1(1,:) .*p_spe1(2,:) p_spe1(1,:).*(1-p_spe1(2,:));

p_fsspe1(1,:) .*p_fsspe1(2,:) p_fsspe1(1,:).*(1-p_fsspe1(2,:));

p_fsqre1(1,:) .*p_fsqre1(2,:) p_fsqre1(1,:).*(1-p_fsqre1(2,:));

p_ercqre1(1,:).*p_ercqre1(2,:) p_ercqre1(1,:).*(1-p_ercqre1(2,:))];

%Average acceptance rate for obs, fft, spe, fs spe, fs qre, erc qre

AVGA1=sum(p_out1(:,1:18),2);

9.3 Sum of Absolute Differences for Predicted and Observed Probabilities

SAD = [offer probabilities acceptance probabilities outcome probalities]

SAD1=[sum(abs(p_obs1-p_fft1),2)’ sum(abs(p_out1(1,:)-p_out1(2,:)),2);

sum(abs(p_obs1-p_spe1),2)’ sum(abs(p_out1(1,:)-p_out1(3,:)),2);

sum(abs(p_obs1-p_fsspe1),2)’ sum(abs(p_out1(1,:)-p_out1(4,:)),2);

sum(abs(p_obs1-p_fsqre1),2)’ sum(abs(p_out1(1,:)-p_out1(5,:)),2);

sum(abs(p_obs1-p_ercqre1),2)’ sum(abs(p_out1(1,:)-p_out1(6,:)),2)];

9.4 Correlation between Predicted and Observed Probabilities

CORR1=[corr(p_obs1(1,:)’,p_fft1(1,:)’) corr(p_obs1(2,:)’,p_fft1(2,:)’)...

corr(p_out1(1,:)’,p_out1(2,:)’); %fft

corr(p_obs1(1,:)’,p_fsspe1(1,:)’) corr(p_obs1(2,:)’,p_fsspe1(2,:)’)...

corr(p_out1(1,:)’,p_out1(4,:)’); % fs spe

corr(p_obs1(1,:)’,p_fsqre1(1,:)’) corr(p_obs1(2,:)’,p_fsqre1(2,:)’)...

corr(p_out1(1,:)’,p_out1(5,:)’); % fs qre

corr(p_obs1(1,:)’,p_ercqre1(1,:)’) corr(p_obs1(2,:)’,p_ercqre1(2,:)’)...

corr(p_out1(1,:)’,p_out1(6,:)’)]; % erc qre
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9.5 Relative Fit Index (RFI)

RFI1=(repmat(SAD1(2,:),4,1)-SAD1([1 3 4 5],:))./repmat(SAD1(2,:),4,1);

10 Output

display(’ULTIMATUM GAME - RESULTS’)

display(’ ’)

display(’Offer probabilities for each possible offer o_k of’)

disptable(roundn([p_obs(1,:); p_fft(1,:); p_spe(1,:);...

p_fsspe(1,:); p_fsqre(1,:); p_ercqre(1,:)],-4),...

’100|200|300|400|500|600|700|800|900’, ’obs|fft|spe|fsspe|fsqre|ercqre’)

display(’Acceptance probabilities for each possible offer o_k of’)

disptable(roundn([p_obs(2,:); p_fft(2,:); p_spe(2,:);...

p_fsspe(2,:); p_fsqre(2,:); p_ercqre(2,:)],-4),...

’100|200|300|400|500|600|700|800|900’, ’obs|fft|spe|fsspe|fsqre|ercqre’)

disptable(roundn([AVGO AVGA],-2),’average offer|average acceptance rate’,...

’obs|fft|spe|fsspe|fsqre|ercqre’)

display(’Sum of absolute differences between pred. and obs. prob. for’)

disptable(roundn(SAD,-2),...

’offers|acceptances|outcomes’, ’fft|spe|fsspe|fsqre|ercqre’)

display(’Correlation between predicted and observed probabilities for’)

disptable(roundn(CORR,-2),...

’offers|acceptances|outcomes’, ’fft|fsspe|fsqre|ercqre’)

display(’Relative fit to subgame perfect equilibrium for’)

disptable(roundn(RFI,-2),...

’offers|acceptances|outcomes’, ’fft|fsspe|fsqre|ercqre’)

display(’THREE-PERSON ULTIMATUM GAME - RESULTS’)

display(’ ’)

display(’Offer probabilities for each possible proposal (d_k,o_k) of’)

disptable(roundn([x1(2,:); p_obs1(1,:); p_fft1(1,:); p_spe1(1,:);...

p_fsspe1(1,:); p_fsqre1(1,:); p_ercqre1(1,:)],-4),...

’1000|800|800|800|600|600|600|600|600|400|400|400|400|400|200|200|200|0’,...

’|obs|fft|spe|fsspe|fsqre|ercqre’)

display(’Acceptance probabilities for each possible proposal (d_k,o_k) of’)

disptable(roundn([x1(2,:);p_obs1(2,:); p_fft1(2,:); p_spe1(2,:);...

p_fsspe1(2,:); p_fsqre1(2,:); p_ercqre1(2,:)],-4),...

’1000|800|800|800|600|600|600|600|600|400|400|400|400|400|200|200|200|0’,...

’|obs|fft|spe|fsspe|fsqre|ercqre’)

disptable(roundn([AVGO1 AVGA1],-2),...

’average offer|average acceptance rate’, ’obs|fft|spe|fsspe|fsqre|ercqre’)

display(’Sum of absolute differences between pred. and obs. prob. for’)

disptable(roundn(SAD1,-2),...

’offers|acceptances|outcomes’, ’fft|spe|fsspe|fsqre|ercqre’)

display(’Correlation between predicted and observed probabilities for’)
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disptable(roundn(CORR1,-2),...

’offers|acceptances|outcomes’, ’fft|fsspe|fsqre|ercqre’)

display(’Relative fit to subgame perfect equilibrium for’)

disptable(roundn(RFI1,-2),...

’offers|acceptances|outcomes’, ’fft|fsspe|fsqre|ercqre’)

display(’ESTIMATION RESULTS’)

display(’ ’)

display(’Heuristic’)

display(’Distribution of proposer criteria’)

disptable(roundn([fairness, fear, money],-2),’fairness|fear|money’,’=’)

display(’Equal distribution of (1/3,1/3,1/3) for responder criteria’)

disptable(roundn([X2 df pv],-3),’X2|df|p’,’=’)

display(’Log-likelihood of the quantal response models’)

disptable([-FS_LOGL,-FS_LOGL_unc,-ERC_LOGL],’fs_unc|fs_con|erc’,’=’)

display(’Fehr-Schmidt quantal response equilibrium with alpha>=beta’)

disptable(roundn([FS_PE; FS_SD],-4),...

’alpha=beta|lambda_P|lambda_R’,’parameter estimates|standard deviations’)

display(’Fehr-Schmidt quantal response equilibrium (unrestricted)’)

disptable(roundn([FS_PE_unc; FS_SD_unc],-4),...

’alpha|beta|lambda_P|lambda_R’,’parameter estimates|standard deviations’)

display(’ERC quantal response equilibrium’)

disptable(roundn([ERC_PE; ERC_SD],-4),...

’alpha|lambda_P|lambda_R’,’parameter estimates|standard deviations’)

11 Function fs_logl

%compute log-likelihood for Fehr-Schmidt QRE model

function logl = fs_logl(parameter,x,off,acc)

for k=1:length(parameter) % non--negativity restriction (lower boundary)

if parameter(k)<0

parameter(k)=0;

end

end

if length(parameter)==3 %alpha>=beta

alpha=parameter(1); beta=parameter(1);

lambdaP=parameter(2); lambdaR=parameter(3);

else % unrestricted

alpha=parameter(1); beta=parameter(2);

lambdaP=parameter(3); lambdaR=parameter(4);

end

for k=1:length(x) %responder

utility_accept(k)=x(2,k)... %acceptance utilities

-alpha*max(x(1,k)-x(2,k),0)-beta*max(x(2,k)-x(1,k),0);

nominator(k)=exp(lambdaR*utility_accept(k));

denominator(k)=1+exp(lambdaR*utility_accept(k));

FSQRE_AP(k)=nominator(k)/denominator(k); %acceptance probabilities
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end;

for k=1:length(x) %proposer

utility_offer(k)=x(1,k)... %offer utilities

-alpha*max(x(2,k)-x(1,k),0)-beta*max(x(1,k)-x(2,k),0);

nominator(k)=exp(lambdaP*FSQRE_AP(k)*utility_offer(k));

end;

for k=1:length(x)

FSQRE_OP(k)=nominator(k)/sum(nominator); %offer probabilities

end;

logl=0; %% log-likelihood function

for k=1:length(x)

logl=logl + off(k)*acc(k)/sum(off) * log(FSQRE_OP(k)*FSQRE_AP(k))...

+ off(k)*(sum(off)-acc(k))/sum(off) * log(FSQRE_OP(k)*(1-FSQRE_AP(k)));

end;

logl=-logl;

12 Function erc_logl

%compute log-likelihood for ERC QRE model

function logl = erc_logl(parameter,c,x,off,acc)

alpha=parameter(1); lambdaP=parameter(2); lambdaR=parameter(3);

for k=1:length(x) %responder

sigma=x(2,k)/c;

if sigma<1/2 %acceptance utilities

utility_accept(k)=c*(sigma-alpha/2*(sigma-1/2)^2);

elseif sigma>=1/2

utility_accept(k) = c*sigma;

end;

nominator(k)=exp(lambdaR*utility_accept(k));

denominator(k)=1+exp(lambdaR*utility_accept(k));

ERCQRE_AP(k)=nominator(k)/denominator(k); %acceptance probabilities

end;

for k=1:length(x) %proposer

sigma=x(1,k)/c;

if sigma<1/2 %offer utilities

utility_offer(k)=c*(sigma-alpha/2*(sigma-1/2)^2);

elseif sigma>=1/2

utility_offer(k) = c*sigma;

end;

nominator(k)=exp(lambdaP*ERCQRE_AP(k)*utility_offer(k));

end;

for k=1:length(x) %offer probabilities

ERCQRE_OP(k)=nominator(k)/sum(nominator);

end;

logl=0;%log-likelihood function

for k=1:length(x)

logl=logl + off(k)*acc(k)/sum(off)*log(ERCQRE_OP(k)*ERCQRE_AP(k))...
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+off(k)*(sum(off)-acc(k))/sum(off)*log(ERCQRE_OP(k)*(1-ERCQRE_AP(k)));

end;

logl=-logl;
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13 Fit of Own Baseline Models vs Competition Baseline Models

Table 5 compares the mean squared deviations for F and S of each baseline model that we
consider to the baseline models that were provided by the organizers of the competition.

Table 5
Comparison of Fit: Our Baseline Models versus Competition

Baseline Models

Section Model
Ert et al. (2011) Our Results

MSDF
est MSDS

est MSDF
est MSDS

est

5.3.1 SPE 0.0529 0.0105 0.0545 0.0105
5.3.2 QRE - - 0.0170 0.0092
5.3.3 FS-QRE 0.0307 0.0099 0.0118 0.0082
5.3.4 BO-QRE 0.0367 0.0100 0.0141 0.0073
5.3.5 CR-QRE 0.0292 0.0041 0.0112 0.0042
5.3.6 7S 0.0121 0.0029 0.0119 0.0029

• Both SPE models are identical. The difference in the MSDF
est may be due to a rounding

error. Moreover, we estimated additionally a QRE model without social preferences
that allows us to separate the effect of choice errors in comparison to the effect of social
preferences.

• All social preference models that we consider have better fits (the only exception is the
Charness-Rabin QRE model that performs a little worse in case of S). The reasons for
the differences in MSD scores are due to different assumptions and maybe due to the use
of different estimation procedures. The estimation procedures used by Ert et al. (2011)
are not implemented in the computer programs that are available on the competition
homepage, therefore we cannot infer how they estimated the models.32

• Our estimation procedure is implemented in the MATLAB codes in Appendix 16 and
works as follows: We apply each baseline model first to the second mover and estimate
the parameters that minimize the mean of the 120 squared differences between observed
and predicted right choice probabilities. Then we apply each baseline model to the

32 https://sites.google.com/site/extformpredcomp/baseline-models.
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first mover and estimate the parameters that minimize the mean of the 120 squared
differences between observed and predicted in choice probabilities. This implies that
the parameter estimates for S in the second mover model may be different from the
parameter estimates for S in the first mover model.

• The most important differences in assumptions between our social preference models and
the ones considered by Ert et al. (2011) are: We use average values for the parameter
estimates of the Fehr-Schmidt QRE model (instead of probability distributions) and
maintain the parameter restrictions αF ≥ βF and αS ≥ βS . We use the utility function of
Bolton and Ockenfels (2000) in the Bolton-Ockenfels QRE model instead of the modified
utility function of De Bruyn and Bolton (2008), we do not permit for learning across
games, and we conduct a more accurate payoff transformation (see Section 5.3.4). The
remaining differences can be infered by a comparison of our codes and the codes on the
competition homepage as well as from the description of our models and the description
of the models in Ert et al. (2011).

• Lastly, we consider the seven strategies model as it is described in Ert et al. (2011). The
computer program on the competition homepage that was used to compute the MSD
scores by the organizers specifies a slightly different model which explains the differences
in MSD scores in the case of F . The differences are outlined in the MATLAB code (see
Appendix 16.14 and Appendix 16.15) that we use to compute the estimates and MSD
scores of the seven strategies model as it is specified in Ert et al. (2011).
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Table 6 presents the observed right choice probability pr
Γ ∈ [0, 1] and the observed in choice

probability pi
Γ ∈ [0, 1] for each game Γ ∈ {1, 2, ..., 120} of the estimation set.33

Table 6
Observed Behavior in Each Game of the Estimation Set

Γ xo

F
xo

S
xl

F
xl

S
xr

F
xr

S
pi

Γ
pr

Γ
Γ xo

F
xo

S
xl

F
xl

S
xr

F
xr

S
pi

Γ
pr

Γ

1 -3 -7 -7 5 -3 6 0.20 0.93 61 0 2 -1 6 2 6 0.79 0.82

2 7 -6 5 3 -4 0 0.10 0.07 62 2 -6 3 -2 -4 5 0.07 0.96

3 -7 -4 -5 8 -5 8 1.00 0.47 63 5 3 -3 6 0 8 0.00 1.00

4 -3 -4 -1 4 3 7 1.00 0.97 64 6 -2 1 1 4 -3 0.07 0.04

5 -2 -7 6 5 -2 8 0.83 0.77 65 -7 -4 -4 -5 -6 -5 0.96 0.29

6 -1 4 -7 3 7 0 0.13 0.13 66 -6 -2 1 -4 -4 -4 0.96 0.50

7 -3 -1 1 -7 -4 6 0.13 0.97 67 -3 -1 -5 -3 6 0 0.96 0.96

8 0 2 -5 1 2 1 0.47 0.83 68 -1 4 2 -4 -3 -2 0.18 0.96

9 1 -7 -4 4 3 4 0.40 0.83 69 -4 8 -3 4 1 -4 0.79 0.00

10 -2 5 -4 7 -2 -2 0.07 0.00 70 -6 -6 0 8 -1 -6 1.00 0.00

11 -2 1 5 -7 5 -7 0.93 0.43 71 7 -1 5 4 -5 7 0.04 0.89

12 2 -7 3 3 4 -6 0.93 0.03 72 0 0 7 0 -5 7 0.18 0.96

13 5 -6 0 1 1 -7 0.07 0.07 73 5 -3 2 0 4 5 0.36 1.00

14 -6 2 -2 -4 6 -5 1.00 0.17 74 -3 7 0 -5 -3 -6 0.89 0.07

15 1 -4 1 2 6 5 0.93 0.97 75 -5 3 -6 5 0 1 0.36 0.11

16 0 8 1 -6 -6 3 0.00 1.00 76 7 -7 5 6 -7 -5 0.29 0.00

17 0 0 5 -4 -5 -5 0.33 0.07 77 -3 2 0 -5 -6 7 0.18 1.00

18 3 -4 -2 8 3 -5 0.00 0.00 78 6 -1 -5 6 8 8 0.75 1.00

19 1 -6 4 5 -1 -6 0.80 0.03 79 0 0 -5 5 -1 -6 0.04 0.00

20 0 -3 -4 6 3 3 0.10 0.20 80 -1 -2 6 0 -3 1 0.39 0.89

21 -6 2 0 -7 8 -7 1.00 0.63 81 -6 -5 0 -1 -4 -6 0.96 0.00

22 -5 7 -6 -2 8 -6 0.33 0.17 82 0 8 6 5 8 3 0.96 0.00

23 -3 -5 3 -3 6 -1 0.97 0.97 83 -6 -6 -1 -1 5 -5 0.96 0.00

24 2 -4 -3 5 3 -2 0.00 0.07 84 -4 1 1 -8 8 0 1.00 1.00

25 -7 1 -6 1 0 3 1.00 0.93 85 7 7 -1 -7 8 -1 0.14 1.00

26 -1 4 1 0 5 -2 0.97 0.03 86 -5 1 0 -6 -4 -4 1.00 1.00

27 4 1 -6 1 7 5 0.50 1.00 87 3 -2 2 0 6 3 0.93 1.00

28 5 -7 -5 -7 8 0 0.57 1.00 88 -5 6 -4 0 -4 0 0.79 0.46

29 0 1 -2 5 5 -5 0.10 0.03 89 6 -7 -3 -3 6 -7 0.04 0.00

30 2 -8 7 -1 6 -7 0.97 0.00 90 -4 -4 0 -7 7 -4 1.00 1.00

31 -6 -6 2 -3 1 2 1.00 1.00 91 2 -6 -7 -1 0 -6 0.04 0.00

32 -3 6 2 -4 5 -3 1.00 0.93 92 0 3 5 -2 0 5 0.86 1.00

33 4 0 -8 -8 5 5 0.57 0.97 93 2 4 -7 7 3 -5 0.00 0.00

34 2 2 3 -7 3 -7 0.67 0.43 94 3 -6 3 -6 6 -5 0.82 1.00

35 0 1 6 1 8 -6 1.00 0.03 95 1 3 5 2 -4 3 0.21 0.89

36 -5 3 7 -7 -4 5 1.00 0.97 96 2 6 -3 6 3 -3 0.00 0.04

37 -6 1 -2 -6 1 -3 1.00 0.97 97 0 6 3 -7 6 -2 1.00 1.00

38 2 8 6 1 -7 -7 0.63 0.03 98 4 8 6 3 1 2 0.61 0.07

39 5 7 7 -7 0 4 0.03 1.00 99 -5 7 -2 -1 4 -4 0.96 0.07

40 4 4 7 2 -3 1 0.33 0.03 100 6 -1 -7 -5 5 4 0.25 1.00

41 1 7 3 2 -4 -6 0.63 0.03 101 2 -6 7 -8 6 -6 0.96 0.96

42 4 -3 -3 7 5 7 0.23 0.93 102 -1 -6 -4 -2 -4 -3 0.07 0.04

43 -7 1 6 4 0 -6 1.00 0.00 103 -7 -5 -5 5 -6 -3 0.96 0.00

44 -7 6 -5 2 -4 7 1.00 0.97 104 -5 -4 4 -7 2 2 1.00 0.96

45 -1 7 4 6 -2 5 0.87 0.07 105 8 -5 -6 -5 -3 6 0.00 1.00

46 -4 -2 7 6 -4 3 1.00 0.03 106 4 -1 6 3 0 -2 0.93 0.00

47 7 -7 -6 -6 -4 -6 0.00 0.63 107 4 -3 5 -7 2 -3 0.11 0.96

48 7 -7 1 -5 5 2 0.17 0.97 108 7 -8 4 0 2 2 0.29 0.93

49 5 -2 4 -5 -3 5 0.00 1.00 109 1 -2 6 6 -3 7 0.50 0.75

50 -1 2 0 1 -5 -3 0.50 0.00 110 1 7 0 2 3 2 0.61 0.79

51 2 -7 -1 3 7 -6 0.27 0.00 111 -5 6 4 -4 5 4 1.00 1.00

52 8 1 0 3 2 2 0.00 0.30 112 5 -6 1 -1 6 -1 0.21 0.61

53 -6 2 -7 -2 0 2 0.97 0.97 113 4 -7 2 -4 7 -4 0.57 0.64

54 -1 3 7 1 -2 8 0.37 0.87 114 -4 1 -3 6 6 1 0.96 0.07

55 6 0 -5 4 0 -2 0.00 0.07 115 3 2 -7 -6 5 -3 0.36 0.96

56 0 -2 8 3 7 -7 1.00 0.00 116 1 1 2 -1 2 -1 0.75 0.57

57 3 0 -4 3 -2 -2 0.00 0.17 117 -3 -6 8 0 7 3 1.00 1.00

58 -6 0 -1 -5 -6 -7 0.93 0.07 118 -5 -6 7 7 4 -6 0.96 0.07

59 -6 5 2 0 7 -8 0.97 0.07 119 2 -4 -7 -6 2 -3 0.29 0.93

60 -8 3 6 4 -3 -2 0.93 0.07 120 -2 -7 -3 -6 0 3 0.96 0.93

Source. Ert et al. (2011)

33The text file that contains the data can be downloaded from https://sites.google.com/site/

extformpredcomp/baseline-models/erc/ext_est_res.txt?attredirects=0&d=1.
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Table 6 presents the observed right choice probability pr
Γ ∈ [0, 1] and the observed in choice

probability pi
Γ ∈ [0, 1] for each game Γ ∈ {1, 2, ..., 120} of the prediction set.34

Table 7
Observed Behavior in Each Game of the Prediction Set

Γ xo

F
xo

S
xl

F
xl

S
xr

F
xr

S
pi

Γ
pr

Γ
Γ xo

F
xo

S
xl

F
xl

S
xr

F
xr

S
pi

Γ
pr

Γ

1 -1 1 -4 6 -4 6 0.03 0.52 61 2 -6 6 3 -1 2 0.59 0.15

2 1 7 -5 1 7 -4 0.06 0.09 62 1 -5 -5 5 1 -1 0.07 0.15

3 -4 5 -3 4 -4 5 0.88 0.79 63 3 -1 3 2 1 -4 0.44 0.07

4 -4 2 5 -4 8 5 0.97 1.00 64 5 -2 5 -6 -4 0 0.00 0.96

5 -4 -2 -6 -7 6 -3 0.94 1.00 65 -6 7 -5 -3 0 1 1.00 0.96

6 0 -7 -6 5 -6 6 0.03 0.97 66 5 6 -5 -6 6 0 0.22 0.96

7 -1 -5 -6 6 -6 -3 0.09 0.00 67 1 -6 -6 2 4 -6 0.22 0.07

8 0 3 7 -7 7 -4 0.88 1.00 68 2 4 3 -6 8 5 0.93 0.96

9 7 0 6 4 -1 -7 0.21 0.00 69 1 -4 3 5 -3 1 0.74 0.04

10 0 -6 -5 7 8 -4 0.03 0.06 70 6 -1 -3 4 -2 -7 0.04 0.07

11 8 -3 -4 -3 6 1 0.21 1.00 71 -7 -2 -4 -3 -4 -1 1.00 0.96

12 -6 -2 -7 4 0 -4 0.27 0.00 72 -4 5 -7 -8 -2 2 0.81 1.00

13 2 -7 -3 -6 -8 2 0.06 0.97 73 6 -7 -8 7 -3 3 0.04 0.11

14 6 -1 1 -3 8 0 0.58 0.94 74 8 -3 1 0 -3 -1 0.00 0.15

15 -1 5 4 1 8 -1 0.91 0.03 75 2 -8 0 0 4 -4 0.26 0.04

16 -3 -4 2 1 -5 1 0.67 0.24 76 4 0 4 -8 -1 5 0.00 1.00

17 -7 -6 8 3 -1 3 0.97 0.21 77 8 -8 7 2 4 -8 0.26 0.00

18 2 -3 -1 -8 8 7 0.85 1.00 78 5 0 3 -6 -7 3 0.00 0.93

19 -1 -3 1 -7 -8 -5 0.03 0.85 79 4 -7 -1 -5 -4 7 0.04 1.00

20 -3 2 0 4 -3 -3 0.85 0.00 80 -6 1 -7 6 -1 -4 0.33 0.04

21 0 6 -6 -7 0 7 0.24 1.00 81 -4 -1 -3 -6 8 -7 0.81 0.11

22 -4 -5 -8 -5 5 3 0.79 1.00 82 2 3 0 7 8 5 0.30 0.19

23 -8 3 8 4 -6 -1 0.97 0.00 83 -4 6 -7 6 8 -8 0.22 0.00

24 7 -4 6 0 4 -4 0.27 0.00 84 -7 -4 2 2 8 4 0.96 0.85

25 4 -3 8 6 -1 -4 0.73 0.00 85 -3 1 5 -8 6 -2 0.96 0.96

26 4 1 5 7 -7 4 0.55 0.00 86 7 -8 6 -7 7 6 0.59 1.00

27 4 2 -3 -8 8 -5 0.30 0.94 87 -3 2 -8 1 -8 4 0.00 0.96

28 -2 -3 -3 3 6 -4 0.27 0.06 88 -2 1 -2 -6 7 -5 0.96 0.85

29 -5 2 5 -5 -4 -8 0.94 0.06 89 -4 -3 -1 5 -3 2 0.85 0.00

30 0 2 2 -6 -4 -2 0.03 0.94 90 -6 0 7 1 -1 -8 0.96 0.04

31 6 -3 4 -8 7 -7 0.39 0.94 91 -4 -1 -3 1 -6 3 0.19 0.89

32 1 -1 -4 2 1 3 0.48 1.00 92 -2 -2 7 2 7 -5 0.96 0.04

33 -7 -5 -1 -4 4 2 0.97 1.00 93 -2 -2 8 -6 -5 -4 0.19 0.81

34 -4 3 7 4 3 2 0.97 0.00 94 -7 -6 -7 0 1 -8 0.81 0.00

35 1 -3 6 3 -6 -2 0.64 0.00 95 4 1 -8 2 -6 7 0.04 1.00

36 4 1 8 -4 1 -7 0.58 0.03 96 -8 -8 2 -5 -3 3 0.93 1.00

37 0 0 -1 -7 4 -6 0.55 0.97 97 2 -6 5 -1 1 5 0.26 0.96

38 4 -6 3 -4 -6 7 0.06 0.97 98 3 5 4 -3 -4 -2 0.00 0.85

39 6 4 -1 6 7 -2 0.00 0.00 99 -4 3 -6 -8 -3 5 0.78 0.96

40 1 2 -7 4 -5 2 0.00 0.09 100 -4 -3 -6 5 -6 5 0.04 0.26

41 3 7 2 -5 8 -2 0.61 0.97 101 -4 -1 4 1 3 -6 0.96 0.00

42 -4 4 1 -3 1 -3 0.88 0.42 102 -7 -1 -1 -3 -4 -8 0.93 0.04

43 0 -8 4 2 -8 1 0.58 0.03 103 -2 3 4 -5 -5 -2 0.22 0.96

44 -7 5 5 -5 -8 7 0.30 0.94 104 -7 1 1 -5 -8 7 0.22 0.93

45 8 -3 -3 -5 1 5 0.06 0.97 105 -8 6 5 6 2 -6 0.96 0.04

46 2 6 -2 -8 2 7 0.36 1.00 106 -1 -1 2 -4 -5 -5 0.56 0.19

47 6 -7 3 -7 -2 -1 0.06 1.00 107 7 -5 2 5 3 -1 0.04 0.04

48 5 1 -8 1 6 7 0.52 1.00 108 3 -6 1 -3 1 -3 0.07 0.44

49 3 7 6 6 1 -1 0.79 0.00 109 -3 -3 -2 7 1 -2 1.00 0.04

50 -2 3 5 -2 -3 -2 0.88 0.45 110 0 7 1 -3 -5 4 0.04 0.93

51 -6 -6 -4 7 2 -7 0.94 0.06 111 1 1 -5 5 7 5 0.48 0.56

52 -7 5 -5 2 -1 -2 0.97 0.09 112 -8 -3 0 -7 -6 -1 0.89 0.93

53 -1 -4 -8 2 2 -8 0.09 0.00 113 5 0 -3 1 -1 2 0.04 0.96

54 0 -7 6 6 -6 -1 0.70 0.00 114 4 -1 1 -4 8 5 0.81 0.93

55 -6 -6 1 -5 -2 -3 1.00 0.97 115 -5 -4 -4 6 8 4 0.89 0.26

56 -7 -7 1 5 7 7 1.00 1.00 116 6 -5 -1 -2 8 1 0.56 0.93

57 -2 0 3 -4 2 1 1.00 1.00 117 5 -3 1 -7 6 -7 0.19 0.41

58 -4 -5 2 -1 7 -6 0.97 0.03 118 0 -6 -6 -1 -1 3 0.11 1.00

59 2 -6 1 -8 8 2 0.88 0.97 119 2 -4 -1 -5 3 5 0.67 0.93

60 3 7 -2 0 5 1 0.30 0.91 120 -3 3 6 -7 0 0 0.89 0.78

Source. https://sites.google.com/site/extformpredcomp/competition-results-and

34The text file that contains the data can be downloaded from https://sites.google.com/site/

extformpredcomp/competition-results-and/ext_pred_res.txt?attredirects=0&d=1.
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15 Correlation and Error Matrices

The MATLAB code that was used to conduct the computations is attached in Appendix 16.32.

Table 8
Competition Procedure: Correlation Matrix for First Mover Model

Predictions

Model (1) (2) (3) (4) (5) (6) (7) (8)

(1) SPE 1
(2) QRE .9212 1
(3) FS-QRE .9321 .9848 1
(4) BO-QRE .9315 .9805 .9951 1
(5) CR-QRE .9277 .9816 .9985 .9936 1
(6) 7S .9026 .9507 .9496 .9383 .9482 1
(7) SQRE .8992 .9684 .9741 .9668 .9762 .9787 1
(8) SVO-SQRE .8895 .9627 .9692 .9618 .972 .9779 .9985 1

Correlations of model sets with a lower mean predictive error than the one of the best
singular model are underlined.

Table 9
Competition Procedure: Mean Predictive Error Matrix for Binary First

Mover Model Sets

Model (1) (2) (3) (4) (5) (6) (7) (8)

(1) SPE .0532
(2) QRE .0233 .0141
(3) FS-QRE .0247 .0129 .0140
(4) BO-QRE .0261 .0142 .0152 .0172
(5) CR-QRE .0245 .0128 .0140 .0152 .0143
(6) 7S .0182 .0079 .0076 .0084 .0076 .0083
(7) SQRE .0197 .0093 .0097 .0108 .0100 .0070 .0094
(8) SVO-SQRE .0184 .0087 .0092 .0102 .0095 .0068 .0091 .0090

Model sets with a lower mean predictive error than the one of the best singular model
are underlined.
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Table 10
Competition Procedure: Correlation Matrix for Second Mover Model

Predictions

Model (1) (2) (3) (4) (5) (6) (7) (8)

(1) SPE 1
(2) QRE .9971 1
(3) FS-QRE .9966 .9985 1
(4) BO-QRE .9957 .9972 .9997 1
(5) CR-QRE .9915 .9901 .9915 .9929 1
(6) 7S .9908 .9882 .9883 .9891 .9953 1
(7) SUM .9914 .9894 .9914 .9927 .9962 .9973 1
(8) TTB .9911 .9895 .9915 .9927 .9962 .9974 .9996 1

Correlations of model sets with a lower predictive error than the one of the best
singular model are underlined.

Table 11
Competition Procedure: Mean Predictive Error Matrix for Binary

Second Mover Model Sets

Model (1) (2) (3) (4) (5) (6) (7) (8)

(1) SPE .0071
(2) QRE .0060 .0057
(3) FS-QRE .0060 .0055 .0056
(4) BO-QRE .0058 .0053 .0056 .0056
(5) CR-QRE .0059 .0050 .0052 .0053 .0067
(6) 7S .0044 .0036 .0036 .0036 .0047 .0043
(7) SUM .0042 .0035 .0036 .0037 .0045 .0037 .0038
(8) TTB .0041 .0035 .0037 .0037 .0045 .0038 .0038 .0038

Model sets with a lower mean predictive error than the one of the best singular model
are underlined.

16 MATLAB Codes

16.1 spe.m

The MATLAB program spe.m computes the MSD of the estimation set and the MSD of the
prediction set for the second mover subgame perfect equilibrium (SPE) model and the first
mover SPE model (see Section 5.3.1). The visual output which is shown in the command
window of MATLAB contains for each model the estimation MSD and the prediction MSD.
Please ensure that qre_msd.m (the function that computes the MSD, see Appendix 16.2),
disptable.m (the function that displays the results, see Appendix 16.3), ext_est_res.txt (a
text file that contains the data of the estimation set, see Table 6) and ext_pred_res.txt (a
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text file that contains the data of the prediction set, see Table 7) are in the same folder.
Function qre_msd.m is used as a shortcut for computing the MSD of a particular SPE model
because the predictions of the quantal response equilibrium (QRE) are equal to the ones of
SPE if the responsiveness to preferences λF and λS are infinite (see Section 5.3.2) (in the
MATLAB code they are equal to 80 which is sufficiently high to approximate infinity).

Second Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

model=2; % select second mover model

p=80; % set lambdaS=80

data=load(’ext_est_res.txt’); % load estimation set data

msd_est=qre_msd(p,model,data); % compute msd

Second Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data

msd_pre=qre_msd(p,model,data); % compute msd

Second Mover Model: Visual Output

disptable(roundn([msd_est msd_pre],-4),...

’msd_est|msd_pre’,’SPE_S’)

msd_est msd_pre

SPE_S 0.0105 0.0071

First Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

model=1; % select first mover model

p=[80 80]; % set lambdaS=80 and lambdaF=80

data=load(’ext_est_res.txt’); % load estimation set data

msd_est=qre_msd(p,model,data); % compute msd

First Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load predicition set data

msd_pre=qre_msd(p,model,data); % compute msd
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First Mover Model: Visual Output

disptable(roundn([msd_est msd_pre],-4),...

’msd_est|msd_pre’,’SPE_F’)

% Author: Wasilios Hariskos, November 2012 %

msd_est msd_pre

SPE_F 0.0545 0.0532

16.2 qre_msd.m

Function qre_msd.m computes for a given parameter estimate vector p the MSD of each
quantal response equilibrium (QRE) model (see Section 5.3.2). The input arguments specify
parameter estimate vector p, the model (first mover=1 or second mover=2) and the data
(estimation set or prediction set). The function computes the MSD in three steps: For the
120 games, it stores first the payoff structure and the observed choice probabilities, then it
computes the predicted choice probabilities for the specified model (second mover or first
mover) and lastly it computes the mean of squared deviations (MSD) between observed and
predicted choice probabilities.

function msd = qre_msd(p, model, data )

Experimental Data and Games

xF=data(:,[2 4 6]); % 120x3 payoffs of first mover F for each game

xS=data(:,[3 5 7]); % 120x3 payoffs of second mover S for each game

PI=data(:,8); % 120x1 observed in probabilities for each game

PR=data(:,9); % 120x1 observed right probabilities f.e.g.

Predictions of Second Mover Model

lambdaS=p(1); % responsiveness to preferences of S

uS=xS; % 120x3 utilities for each outcome of each game

pr=exp(lambdaS*uS(:,3))... % 120x1 predicted right probabilities f.e.g.

./(exp(lambdaS*uS(:,3))+exp(lambdaS*uS(:,2)));
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Predictions of First Mover Model

if model==1

lambdaF=p(2); % responsiveness to preferences of F

uFo=xF(:,1); % 120x1 out utilities for each game

euFi=(1-pr).*xF(:,2)+pr.*xF(:,3); % 120x1 expected in utilities f.e.g.

pi=exp(lambdaF*euFi)... % 120x1 predicted in probabilities f.e.g.

./(exp(lambdaS*euFi)+exp(lambdaS*uFo));

end

MSD of Second Mover Model

if model==2

sdpr=(PR-pr).*(PR-pr); % 120x1 sq. dev.: obs. vs pred. right probabilities

msd=mean(sdpr); % mean of 120x1 squared deviations

MSD of First Mover Model

elseif model==1

sdpi=(PI-pi).*(PI-pi); % 120x1 sq. dev.: obs. vs pred. in probabilities

msd=mean(sdpi); % mean of 120x1 squared deviations

end

% Author: Wasilios Hariskos, November 2012 %

16.3 disptable.m

Function disptable.m displays a matrix with labeled columns and labeled rows in the MATLAB
command window.

function disptable(M, col_strings, row_strings, fmt, spaces)

%DISPTABLE Displays a matrix with per-column or per-row labels.

% DISPTABLE(M, COL_STRINGS, ROW_STRINGS)

% Displays matrix or vector M with per-column or per-row labels,

% specified in COL_STRINGS and ROW_STRINGS, respectively. These can be

% cell arrays of strings, or strings delimited by the pipe character (|).

% Either COL_STRINGS or ROW_STRINGS can be ommitted or empty.

% DISPTABLE(M, COL_STRINGS, ROW_STRINGS, FMT, SPACES)

% FMT is an optional format string or number of significant digits, as

% used in NUM2STR. It can also be the string ’int’, as a shorthand to

131



Appendix D

% specify that the values should be displayed as integers.

% SPACES is an optional number of spaces to separate columns, which

% defaults to 1.

% Example:

% disptable(magic(3)*10-30, ’A|B|C’, ’a|b|c’)

% Outputs:

% A B C

% a 50 -20 30

% b 0 20 40

% c 10 60 -10

% Author: João F. Henriques, April 2010

%parse and validate inputs

if nargin < 2, col_strings = []; end

if nargin < 3, row_strings = []; end

if nargin < 4, fmt = 4; end

if nargin < 5, spaces = 2; end

if strcmp(fmt, ’int’),...

fmt = ’%.0f’; end %shorthand for displaying integer values

assert(ndims(M) <= 2,...

’Can only display a vector or two-dimensional matrix.’)

num_rows = size(M,1);

num_cols = size(M,2);

use_col_strings = true;

if ischar(col_strings), %convert "|"-delimited string to

%cell array of strings

col_strings = textscan(col_strings, ’%s’, ’delimiter’,’|’);

col_strings = col_strings{1};

elseif isempty(col_strings), %empty input; have one empty string

%per column for consistency

col_strings = cell(num_cols,1);

use_col_strings = false;

elseif ~iscellstr(col_strings),

error...

(’COL_STRINGS must be a cell array of strings, or a string with "|"’);

end

use_row_strings = true;

if ischar(row_strings), %convert "|"-delimited string to

%cell array of strings

row_strings = textscan(row_strings, ’%s’, ’delimiter’,’|’);

row_strings = row_strings{1};

elseif isempty(row_strings), %empty input; have one empty string

%per row for consistency

row_strings = cell(num_rows,1);
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use_row_strings = false;

elseif ~iscellstr(row_strings),

error...

(’ROW_STRINGS must be a cell array of strings, or a string with "|".’);

end

assert(~use_col_strings || numel(col_strings) == num_cols, ...

’COL_STRINGS must have one string per column of M, or be empty.’)

assert(~use_row_strings || numel(row_strings) == num_rows, ...

’ROW_STRINGS must have one string per column of M, or be empty.’)

assert(isscalar(fmt) || (isvector(fmt) && ischar(fmt)), ...

’Format must be a format string or the # of significant digits (NUM2STR).’)

%format the table for display

col_text = cell(num_cols,1); %the text of each column

%spaces to separate columns

if use_col_strings,

blank_column = repmat(’ ’, num_rows + 1, spaces);

else

blank_column = repmat(’ ’, num_rows, spaces);

end

for col = 1:num_cols,

%convert this column of the matrix to its string representation

str = num2str(M(:,col), fmt);

%add the column header on top and automatically pad, returning a

%character array

if use_col_strings,

str = char(col_strings{col}, str);

end

%right-justify and add blanks to separate from previous column

col_text{col} = [blank_column, strjust(str, ’right’)];

end

%turn the row labels into a character array, with a blank line on top

if use_col_strings,

left_text = char(’’, row_strings{:});

else

left_text = char(row_strings{:});

end

%concatenate horizontally the character arrays and display

disp([left_text, col_text{:}])

disp(’ ’)

end
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16.4 qre.m

The MATLAB program qre.m estimates the second mover quantal response equilibrium (QRE)
model and the first mover QRE model (see Section 5.3.2) and computes the MSD of the
estimation set and the MSD of the prediction set for each model. The visual output which is
shown in the command window of MATLAB contains for each model the estimation MSD, the
prediction MSD and the parameter estimate(s) that minimize(s) the estimation MSD. Please
ensure that qre_msd.m (the function that computes the MSD, see Appendix 16.2), disptable.m
(the function that displays the results, see Appendix 16.3), ext_est_res.txt (a text file that
contains the data of the estimation set, see Table 6) and ext_pred_res.txt (a text file that
contains the data of the prediction set, see Table 7) are in the same folder.

Second Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

model=2; % select second mover model

p0=0; % set initial estimate p0 of lambdaS=0

lb=p0; % set lower bound lb of lambdaS=0

up=[]; % set no upper bound up for lambdaS

% find the parameter estimate p=lambdaS that minimizes the msd of the

% estimation set (msd_est) by using the constrained nonliner multivariable

% function fmincon which calls function qre_msd (that computes the msd)

[p,msd_est]=fmincon(@qre_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’active-set’),model,data);

Second Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data

% compute the msd of the prediction set (msd_pre) based on the parameter

msd_pre=qre_msd(p,model,data); % estimate vector p that minimizes msd_est

Second Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p(1)],-4),...

’msd_est|msd_pre|lambdaS’,’QRE_S’)

msd_est msd_pre lambdaS

QRE_S 0.0092 0.0057 2.073

134



16 MATLAB Codes

First Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

model=1; % select first mover model

p0=[0 0]; % set initial estimate vector p0 = (lambdaS lambdaF) to 0

lb=p0; % set lower bound vector lb equal to p0

up=[]; % set no upper bound vector up for (lambdaS lambdaF)

% find the parameter estimate vector p = (lambdaS lambdaF) that minimizes

% the msd of the estimation set (msd_est) by using function fmincon which

% calls function qre_msd

[p,msd_est]=fmincon(@qre_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’active-set’),model,data);

First Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the

% msd of the prediction set msd_pre (based on the parameter estimate

msd_pre=qre_msd(p,model,data); % vector p that minimizes msd_est)

First Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p(1) p(2)],-4),...

’msd_est|msd_pre|lambdaS|lambdaF’,’QRE_F’)

% Author: Wasilios Hariskos, November 2012 %

msd_est msd_pre lambdaS lambdaF

QRE_F 0.017 0.0141 0.695 0.6823

16.5 qre_fs.m

The MATLAB program qre_fs.m estimates the second mover Fehr-Schmidt quantal response
equilibrium (QRE) model and the first mover Fehr-Schmidt QRE model (see Section 5.3.3) and
computes the MSD of the estimation set and the MSD of the prediction set for each model.
The visual output which is shown in the command window of MATLAB contains for each
model the estimation MSD, the prediction MSD and the parameter estimates that minimize
the estimation MSD. Please ensure that qre_fs_msd.m (the function that computes the MSD,
see Appendix 16.6), disptable.m (the function that displays the results, see Appendix 16.3),
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ext_est_res.txt (a text file that contains the data of the estimation set, see Table 6) and
ext_pred_res.txt (a text file that contains the data of the prediction set, see Table 7) are in
the same folder.

Second Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

model=2; % select second mover model

% The parameter estimate vector of the second mover model is given by

% p = (lambdaS alphaS=betaS). The value of alphaS is constrained to the

% value of betaS since an unconstrained estimation yields a higher value

% for betaS than for alphaS.

p0=[0 0]; % set initial values of p equal to 0

lb=p0; % set lower bounds of p equal to 0

up=[]; % set no upper bound up for p

% find the parameter estimate vector p that minimizes the msd of the

% estimation set (msd_est) by using the constrained nonliner multivariable

% function fmincon which calls function qre_fs_msd (that computes the msd)

[p,msd_est]=fmincon(@qre_fs_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’active-set’),model,data);

Second Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the

% msd of the prediction set msd_pre (based on the parameter estimate vector

msd_pre=qre_fs_msd(p,model,data); % p that minimizes msd_est)

Second Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p(1) p(2) p(2)],-4),...

’msd_est|msd_pre|lambdaS|alphaS|betaS’,’QRE_FS_S’)

msd_est msd_pre lambdaS alphaS betaS

QRE_FS_S 0.0082 0.0056 2.299 0.0353 0.0353

First Mover Model: MSD of the Estimation Set
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clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

model=1; % select first mover model

% The parameter estimate vector of the first mover model is given by

% p = (lambdaS alphaS betaS lambdaF alphaF=betaF). The value of

% alphaF is constrained to the value of betaF since an unconstrained

% estimation yields a higher value for betaF than for alphaF.

p0=[0 0 0 0 0]; % set initial values of p equal to 0

lb=p0; % set lower bounds of p equal to 0

up=[]; % set no upper bound for p

% find the parameter estimate vector p that minimizes the msd of the

% estimation set (msd_est) by using function fmincon and function qre_fs_msd

[p,msd_est]=fmincon(@qre_fs_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’active-set’),model,data);

First Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the

% msd of the prediction set msd_pre (based on the parameter estimate vector

msd_pre=qre_fs_msd(p,model,data); % p that minimizes msd_est)

First Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p(1:5) p(5)],-4),...

’msd_est|msd_pre|lambdaS|alphaS|betaS|lambdaF|alphaF|betaF’,’QRE_FS_F’)

% Author: Wasilios Hariskos, November 2012 %

msd_est msd_pre lambdaS alphaS betaS lambdaF alphaF betaF

QRE_FS_F 0.0118 0.014 0.8295 0.1494 0.1073 0.8142 0.0483 0.0483

16.6 qre_fs_msd.m

Function qre_fs_msd.m computes for a given parameter estimate vector p the MSD of each
Fehr-Schmidt quantal response equilibrium (QRE) model (see Section 5.3.3). The input argu-
ments specify parameter estimate vector p, the model (first mover=1 or second mover=2) and
the data (estimation set or prediction set). The function computes the MSD in three steps:
For the 120 games, it stores first the payoff structure and the observed choice probabilities,
then it computes the predicted choice probabilities for the specified model (second mover or
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first mover) and lastly it computes the mean of squared deviations (MSD) between observed
and predicted choice probabilities.

function msd = qre_fs_msd(p, model, data )

Experimental Data and Games

xF=data(:,[2 4 6]); % 120x3 payoffs of first mover F for each game

xS=data(:,[3 5 7]); % 120x3 payoffs of second mover S for each game

PI=data(:,8); % 120x1 observed in probabilities for each game

PR=data(:,9); % 120x1 observed right probabilities f.e.g.

Predictions for Second Mover

lambdaS=p(1); % responsiveness to preferences of S

alphaS=p(2); % degree of disadvantageous inequality aversion of S

betaS=p(2); % degree of advantageous inequality aversion of S

if model==1 % do not constrain the value of beta_S to ...

betaS=p(3); % the value of beta_S for the first mover model

end

uS=xS... % 120x3 utilities for each outcome of each game

-alphaS*max(0,xF-xS)...

-betaS*max(0,xS-xF);

pr=exp(lambdaS*uS(:,3))...% 120x1 predicted right probabilities f.e.g.

./(exp(lambdaS*uS(:,3))+exp(lambdaS*uS(:,2)));

Predictions for First Mover

if model==1

lambdaF=p(4); % responsiveness to preferences of F

alphaF=p(5); % degree of disadvantageous inequality aversion of F

betaF=p(5); % degree of advantageous inequality aversion of F

uF=xF... % 120x3 utilities for each game

-alphaF*max(0,xS-xF)...

-betaF*max(0,xF-xS);

euFi=(1-pr).*uF(:,2)+pr.*uF(:,3); % 120x1 expected in utilities f.e.g.

pi=exp(lambdaF*euFi)... % 120x1 predicted in probabilities f.e.g.

./(exp(lambdaS*euFi)+exp(lambdaS*uF(:,1)));

end
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MSD of Second Mover Model

if model==2

sdpr=(PR-pr).*(PR-pr); % 120x1 sq. dev.: obs. vs pred. right probabilities

msd=mean(sdpr); % mean of 120x1 squared deviations

MSD of First Mover Model

elseif model==1

sdpi=(PI-pi).*(PI-pi); % 120x1 sq. dev.: obs. vs pred. in probabilities

msd=mean(sdpi); % mean of 120x1 squared deviations

end

% Author: Wasilios Hariskos, November 2012 %

16.7 qre_fs_unc.m

The MATLAB program qre_fs_unc.m estimates the second mover Fehr-Schmidt quantal re-
sponse equilibrium (QRE) model and the first mover Fehr-Schmidt QRE model (see Sec-
tion 5.3.3) and computes the MSD of the estimation set and the MSD of the prediction set for
each model. The visual output which is shown in the command window of MATLAB contains
for each model the estimation MSD, the prediction MSD and the unconstrained parameter
estimates that minimize the estimation MSD. Please ensure that qre_fs_unc_msd.m (the
function that computes the MSD, see Appendix 16.8), disptable.m (the function that displays
the results, see Appendix 16.3), ext_est_res.txt (a text file that contains the data of the
estimation set, see Table 6) and ext_pred_res.txt (a text file that contains the data of the
prediction set, see Table 7) are in the same folder.

Second Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

model=2; % select second mover model

% The parameter estimate vector of the second mover model is given by

% p = (lambdaS alphaS=betaS). The value of alphaS is constrained to the

% value of betaS since an unconstrained estimation yields a higher value

% for betaS than for alphaS.

p0=[0 0]; % set initial values of p equal to 0

lb=p0; % set lower bounds of p equal to 0

up=[]; % set no upper bound up for p
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% find the parameter estimate vector p that minimizes the msd of the

% estimation set (msd_est) by using the constrained nonliner multivariable

% function fmincon which calls function qre_fs_msd (that computes the msd)

[p,msd_est]=fmincon(@qre_fs_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’active-set’),model,data);

Second Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the

% msd of the prediction set msd_pre (based on the parameter estimate vector

msd_pre=qre_fs_msd(p,model,data); % p that minimizes msd_est)

Second Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p(1) p(2) p(2)],-4),...

’msd_est|msd_pre|lambdaS|alphaS|betaS’,’QRE_FS_S’)

msd_est msd_pre lambdaS alphaS betaS

QRE_FS_S 0.0082 0.0056 2.299 0.0353 0.0353

First Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

model=1; % select first mover model

% The parameter estimate vector of the first mover model is given by

% p = (lambdaS alphaS betaS lambdaF alphaF=betaF). The value of

% alphaF is constrained to the value of betaF since an unconstrained

% estimation yields a higher value for betaF than for alphaF.

p0=[0 0 0 0 0]; % set initial values of p equal to 0

lb=p0; % set lower bounds of p equal to 0

up=[]; % set no upper bound for p

% find the parameter estimate vector p that minimizes the msd of the

% estimation set (msd_est) by using function fmincon and function qre_fs_msd

[p,msd_est]=fmincon(@qre_fs_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’active-set’),model,data);
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First Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the

% msd of the prediction set msd_pre (based on the parameter estimate vector

msd_pre=qre_fs_msd(p,model,data); % p that minimizes msd_est)

First Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p(1:5) p(5)],-4),...

’msd_est|msd_pre|lambdaS|alphaS|betaS|lambdaF|alphaF|betaF’,’QRE_FS_F’)

% Author: Wasilios Hariskos, November 2012 %

msd_est msd_pre lambdaS alphaS betaS lambdaF alphaF betaF

QRE_FS_F 0.0118 0.014 0.8295 0.1494 0.1073 0.8142 0.0483 0.0483

16.8 qre_fs_unc_msd.m

Function qre_fs_unc_msd.m computes for a given unconstrained parameter estimate vector p
the MSD of each Fehr-Schmidt quantal response equilibrium (QRE) model (see Section 5.3.3).
The input arguments specify parameter estimate vector p, the model (first mover=1 or second
mover=2) and the data (estimation set or prediction set). The function computes the MSD
in three steps: For the 120 games, it stores first the payoff structure and the observed choice
probabilities, then it computes the predicted choice probabilities for the specified model (second
mover or first mover) and lastly it computes the mean of squared deviations (MSD) between
observed and predicted choice probabilities.

function msd = qre_fs_unc_msd(p, model, data )

Experimental Data and Games

xF=data(:,[2 4 6]); % 120x3 payoffs of first mover F for each game

xS=data(:,[3 5 7]); % 120x3 payoffs of second mover S for each game

PI=data(:,8); % 120x1 observed in probabilities for each game

PR=data(:,9); % 120x1 observed right probabilities f.e.g.
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Predictions for Second Mover

lambdaS=p(1); % responsiveness to preferences of S

alphaS=p(2); % degree of disadvantageous inequality aversion of S

betaS=p(3);% degree of advantageous inequality aversion of S; no constrain!

uS=xS... % 120x3 utilities for each outcome of each game

-alphaS*max(0,xF-xS)...

-betaS*max(0,xS-xF);

pr=exp(lambdaS*uS(:,3))...% 120x1 predicted right probabilities f.e.g.

./(exp(lambdaS*uS(:,3))+exp(lambdaS*uS(:,2)));

Predictions for First Mover

if model==1

lambdaF=p(4); % responsiveness to preferences of F

alphaF=p(5); % degree of disadvantageous inequality aversion of F

betaF=p(6);% degree of advantageous inequality aversion of F; no constrain!

uF=xF... % 120x3 utilities for each game

-alphaF*max(0,xS-xF)...

-betaF*max(0,xF-xS);

euFi=(1-pr).*uF(:,2)+pr.*uF(:,3); % 120x1 expected in utilities f.e.g.

pi=exp(lambdaF*euFi)... % 120x1 predicted in probabilities f.e.g.

./(exp(lambdaS*euFi)+exp(lambdaS*uF(:,1)));

end

MSD of Second Mover Model

if model==2

sdpr=(PR-pr).*(PR-pr); % 120x1 sq. dev.: obs. vs pred. right probabilities

msd=mean(sdpr); % mean of 120x1 squared deviations

MSD of First Mover Model

elseif model==1

sdpi=(PI-pi).*(PI-pi); % 120x1 sq. dev.: obs. vs pred. in probabilities

msd=mean(sdpi); % mean of 120x1 squared deviations

end

% Author: Wasilios Hariskos, November 2012 %

142



16 MATLAB Codes

16.9 qre_bo.m

The MATLAB program qre_bo.m estimates the second mover Bolton-Ockenfels quantal re-
sponse equilibrium (QRE) model and the first mover Bolton-Ockenfels QRE model (see Sec-
tion 5.3.4) and computes the MSD of the estimation set and the MSD of the prediction set for
each model. The visual output which is shown in the command window of MATLAB contains
for each model the estimation MSD, the prediction MSD and the parameter estimates that
minimize the estimation MSD. Please ensure that qre_bo_msd.m (the function that com-
putes the MSD, see Appendix 16.10), disptable.m (the function that displays the results, see
Appendix 16.3), ext_est_res.txt (a text file that contains the data of the estimation set, see
Table 6) and ext_pred_res.txt (a text file that contains the data of the prediction set, see
Table 7) are in the same folder.

Second Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

model=2; % select second mover model

% The parameter estimate vector of the second mover model is given by

% p = (lambdaS bS).

p0=[0 0]; % set initial values of p equal to 0

lb=p0; % set lower bounds of p equal to 0

up=[]; % set no upper bound up for p

% find the parameter estimate vector p that minimizes the msd of the

% estimation set (msd_est) by using the constrained nonliner multivariable

% function fmincon which calls function qre_bo_msd (that computes the msd)

[p,msd_est]=fmincon(@qre_bo_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’active-set’),model,data);

Second Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the

% msd of the prediction set msd_pre (based on the parameter estimate vector

msd_pre=qre_bo_msd(p,model,data); % p that minimizes msd_est)

Second Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p(1) p(2)],-4),...

’msd_est|msd_pre|lambdaS|bS’,’QRE_BO_S’)

msd_est msd_pre lambdaS bS
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QRE_BO_S 0.0073 0.0056 2.361 0.3779

First Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

model=1; % select first mover model

% The parameter estimate vector of the first mover model is given by

% p = (lambdaS bS lambdaF bF).

p0=[0 0 0 0]; % set initial values of p equal to 0

lb=p0; % set lower bounds of p equal to 0

up=[]; % set no upper bound for p

% find the parameter estimate vector p that minimizes the msd of the

% estimation set (msd_est) by using function fmincon and function qre_bo_msd

[p,msd_est]=fmincon(@qre_bo_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’active-set’),model,data);

First Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the

% msd of the prediction set msd_pre (based on the parameter estimate vector

msd_pre=qre_bo_msd(p,model,data); % p that minimizes msd_est)

First Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p(1) p(2) p(3) p(4)],-4),...

’msd_est|msd_pre|lambdaS|bS|lambdaF|bF’,’QRE_BO_F’)

% Author: Wasilios Hariskos, November 2012 %

msd_est msd_pre lambdaS bS lambdaF bF

QRE_BO_F 0.0141 0.0172 0.7783 0.9214 0.773 0.5413

16.10 qre_bo_msd.m

Function qre_bo_msd.m computes for a given parameter estimate vector p the MSD of each
Bolton-Ockenfels quantal response equilibrium (QRE) model (see Section 5.3.4). The input
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arguments specify parameter estimate vector p, the model (first mover=1 or second mover=2)
and the data (estimation set or prediction set). The function computes the MSD in three steps:
For the 120 games, it stores first the payoff structure and the observed choice probabilities,
then it computes the predicted choice probabilities for the specified model (second mover or
first mover) and lastly it computes the mean of squared deviations (MSD) between observed
and predicted choice probabilities.

function msd = qre_bo_msd(p, model, data )

Experimental Data and Games

xF=data(:,[2 4 6]); % 120x3 payoffs of first mover F for each game

xS=data(:,[3 5 7]); % 120x3 payoffs of second mover S for each game

PI=data(:,8); % 120x1 observed in probabilities for each game

PR=data(:,9); % 120x1 observed right probabilities f.e.g.

Payoff Transformation For each game ...

xmin=min([xS xF],[],2); % store 120x1 minimum payoffs,

xF=xF+repmat(abs(xmin),1,3); % add abs. minimum payoff to each payoff of F,

xS=xS+repmat(abs(xmin),1,3); % add abs. minimum payoff to each payoff of S,

c=xF+xS; % compute the cake size c,

epsilon=0.0000000000000001; % define epsilon as a very small number,

c=c+epsilon; % add epsilon to c to avoid division by 0,

sigmaS=xS./c; % compute proportion of c that S receives and

sigmaF=xF./c; % compute proportion of c that F receives.

Predictions for Second Mover

lambdaS=p(1); % responsiveness to preferences of S

bS=p(2); % degree of aversion of S to deviations from equal split

for g=1:120 % 120x3 utilities for each outcome of each game

for k=1:3

uS(g,k)=c(g,k)*sigmaS(g,k) - bS*0.5*c(g,k)*((sigmaS(g,k)-0.5)^2);

end

end

pr=exp(lambdaS*uS(:,3))...% 120x1 predicted right probabilities f.e.g.

./(exp(lambdaS*uS(:,3))+exp(lambdaS*uS(:,2)));
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Predictions for First Mover

if model==1

lambdaF=p(3); % responsiveness to preferences of F

bF=p(4); % degree of aversion of F to deviations from equal split

for g=1:120 % 120x3 utilities for each game

for k=1:3

uF(g,k)=c(g,k)*sigmaF(g,k) - bF*0.5*c(g,k)*((sigmaF(g,k)-0.5)^2);

end

end

euFi=(1-pr).*uF(:,2)+pr.*uF(:,3); % 120x1 expected in utilities f.e.g.

pi=exp(lambdaF*euFi)... % 120x1 predicted in probabilities f.e.g.

./(exp(lambdaS*euFi)+exp(lambdaS*uF(:,1)));

end

MSD of Second Mover Model

if model==2

sdpr=(PR-pr).*(PR-pr); % 120x1 sq. dev.: obs. vs pred. right probabilities

msd=mean(sdpr); % mean of 120x1 squared deviations

MSD of First Mover Model

elseif model==1

sdpi=(PI-pi).*(PI-pi); % 120x1 sq. dev.: obs. vs pred. in probabilities

msd=mean(sdpi); % mean of 120x1 squared deviations

end

% Author: Wasilios Hariskos, November 2012 %

16.11 qre_cr.m

The MATLAB program qre_cr.m estimates the second mover Charness-Rabin quantal re-
sponse equilibrium (QRE) model and the first mover Charness-Rabin QRE model (see Sec-
tion 5.3.5) and computes the MSD of the estimation set and the MSD of the prediction set for
each model. The visual output which is shown in the command window of MATLAB contains
for each model the estimation MSD, the prediction MSD and the parameter estimates that
minimize the estimation MSD. Please ensure that qre_cr_msd.m (the function that computes
the MSD, see Appendix 16.12), disptable.m (the function that displays the results, see Ap-
pendix 16.3), ext_est_res.txt (a text file that contains the data of the estimation set, see
Table 6) and ext_pred_res.txt (a text file that contains the data of the prediction set, see
Table 7) are in the same folder.
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Second Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

model=2; % select second mover model

% The parameter estimate vector of the second mover model is given by

% p = (lambdaS rhoS sigmaS thetaS).

p0=[0 0 0 0]; % set initial values of p equal to 0

lb=[ 0 -1 -1 0]; % set lower bounds of p

up=[80 1 1 1]; % set no upper bound up for p

% find the parameter estimate vector p that minimizes the msd of the

% estimation set (msd_est) by using the constrained nonliner multivariable

% function fmincon which calls function qre_cr_msd (that computes the msd)

[p,msd_est]=fmincon(@qre_cr_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’active-set’),model,data);

Second Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the

% msd of the prediction set msd_pre (based on the parameter estimate vector

msd_pre=qre_cr_msd(p,model,data); % p that minimizes msd_est)

Second Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p(1) p(2) p(3) p(4)],-4),...

’msd_est|msd_pre|lambdaS|rhoS|sigmaS|thetaS’,’QRE_CR_S’)

msd_est msd_pre lambdaS rhoS sigmaS thetaS

QRE_CR_S 0.0042 0.0067 3.437 0.0758 0.0232 0

First Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

model=1; % select first mover model

% The parameter estimate vector of the first mover model is given by

% p = (lambdaS rhoS sigmaS thetaS lambdaF rhoF sigmaF).

p0=[ 0 0 0 0 0 0 0]; % set initial values of p equal to 0

lb=[ 0 -1 -1 0 0 -1 -1]; % set lower bounds of p equal to 0
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up=[80 1 1 1 80 1 1]; % set no upper bound for p

% find the parameter estimate vector p that minimizes the msd of the

% estimation set (msd_est) by using function fmincon and function qre_cr_msd

[p,msd_est]=fmincon(@qre_cr_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’active-set’),model,data);

First Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the

% msd of the prediction set msd_pre (based on the parameter estimate vector

msd_pre=qre_cr_msd(p,model,data); % p that minimizes msd_est)

First Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p(1) p(2) p(3) p(4) p(5) p(6) p(7)],-4),...

’msd_est|msd_pre|lambdaS|rhoS|sigmaS|thetaS|lambda_F|rhoF|sigmaF’,’QRE_CR_F’)

% Author: Wasilios Hariskos, November 2012 %

msd_est msd_pre lambdaS rhoS sigmaS thetaS lambda_F rhoF sigmaF

QRE_CR_F 0.0112 0.0143 0.8746 0.0819 -0.134 0.0016 0.8585 0.0815 -0.0143

16.12 qre_cr_msd.m

Function qre_cr_msd.m computes for a given parameter estimate vector p the MSD of each
Charness-Rabin quantal response equilibrium (QRE) model (see Section 5.3.5). The input
arguments specify parameter estimate vector p, the model (first mover=1 or second mover=2)
and the data (estimation set or prediction set). The function computes the MSD in three steps:
For the 120 games, it stores first the payoff structure and the observed choice probabilities,
then it computes the predicted choice probabilities for the specified model (second mover or
first mover) and lastly it computes the mean of squared deviations (MSD) between observed
and predicted choice probabilities.

function msd = qre_cr_msd(p, model, data )

Experimental Data and Games

xF=data(:,[2 4 6]); % 120x3 payoffs of first mover F for each game

xS=data(:,[3 5 7]); % 120x3 payoffs of second mover S for each game

PI=data(:,8); % 120x1 observed in probabilities for each game

PR=data(:,9); % 120x1 observed right probabilities f.e.g.
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Predictions for Second Mover

lambdaS=p(1); % responsiveness to preferences of S

rhoS=p(2); % weight of other payoff if S is better off

sigmaS=p(3); % weight of other payoff if S is worse off

thetaS=p(4); % weight of other payoff if F misbehaved

q=zeros(120,1); % indicates misbehavior of F

r=zeros(120,3); % indivates for each outcome if S is better off

s=zeros(120,3); % indicates for each outcome if S is worse off

for g=1:120 % check for each game if F misbehaved

if xS(g,1)>max(xS(g,2),xS(g,3)) && ...

xF(g,1)+xS(g,1)>max(xF(g,2)+xS(g,2),xF(g,3)+xS(g,3))

q(g,1)=-1; % if true set value of q to -1

end

for k=1:3

if xS(g,k)>xF(g,k) % check for each outcome of a game if S is better off

r(g,k)=1; % if true set value of r to 1

end

if xS(g,k)<xF(g,k) % check for each outcome of a game if S is worse off

s(g,k)=1; % if true set value of s to 1

end

uS(g,k)=... % compute for each outcome of game the utiliy of S

xS(g,k)*(1-rhoS*r(g,k)-sigmaS*s(g,k)-thetaS*q(g,1)) + ...

xF(g,k)*(rhoS*r(g,k)+sigmaS*s(g,k)+thetaS*q(g,1));

end

end

pr=exp(lambdaS*uS(:,3))...% 120x1 predicted right probabilities f.e.g.

./(exp(lambdaS*uS(:,3))+exp(lambdaS*uS(:,2)));

Predictions for First Mover

if model==1

lambdaF=p(5); % responsiveness to preferences of F

rhoF=p(6); % weight of other payoff if S is worse off

sigmaF=p(7); % weight of other payoff if S is better off

uF=xF.*(1-rhoF*s-sigmaF*r)... % 120x3 utilities for each game

+ xS.*(rhoF*s+sigmaF*r);

euFi=(1-pr).*uF(:,2)+pr.*uF(:,3); % 120x1 expected in utilities f.e.g.

pi=exp(lambdaF*euFi)... % 120x1 predicted in probabilities f.e.g.

./(exp(lambdaS*euFi)+exp(lambdaS*uF(:,1)));

end

MSD of Second Mover Model
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if model==2

sdpr=(PR-pr).*(PR-pr); % 120x1 sq. dev.: obs. vs pred. right probabilities

msd=mean(sdpr); % mean of 120x1 squared deviations

MSD of First Mover Model

elseif model==1

sdpi=(PI-pi).*(PI-pi); % 120x1 sq. dev.: obs. vs pred. in probabilities

msd=mean(sdpi); % mean of 120x1 squared deviations

end

% Author: Wasilios Hariskos, November 2012 %

16.13 seven_strategies.m

The MATLAB program seven_strategies.m estimates the second mover seven strategies (7S)
model and the first mover 7S model (see Section 5.3.6) and computes the MSD of the estimation
set and the MSD of the prediction set for each model. The visual output which is shown in the
command window of MATLAB contains for each model the estimation MSD, the prediction
MSD and the parameter estimates that minimize the estimation MSD. Please ensure that
disptable.m (the function that displays the results, see Appendix 16.3), ext_est_res.txt (a
text file that contains the data of the estimation set, see Table 6), ext_pred_res.txt (a text
file that contains the data of the prediction set, see Table 7), pred_s.m (the function that
computes for each game the predictions of the second mover model, see Appendix 16.14) and
pred_f.m (the function that computes for each game the predictions of first mover model, see
Appendix 16.15) are in the same folder.

Second Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

PR=data(:,9); % 120x1 observed right probabilities f.e.g.

% compute predictions of each strategy and game and store them in a 120x5

% matrix. Use function pred_s.m that uses the data as input and returns for

% each game the predictions of each strategy

p=pred_s(data); % matrix with 5 columns = pR pN pJ pW pD & 120 rows = games

beta=regress(PR,p); % find optimal probability distribution over strategies

% beta=regress(PR,p) returns a 5-by-1 beta vector of coefficient estimates

% for a multilinear regression of the responses in PR on the predictors in

% p; p is an 120-by-5 matrix of 5 predictors (the predictions of the five

150



16 MATLAB Codes

% strategies Ratio, NiceR, JointMx, MxWeak, MnDiff)) at each of 120

% observations (the games); PR is an 120-by-1 vector of observed responses

% (the observed right choice probabilities).

beta=beta’/sum(beta); % beta = (betaR betaN betaJ betaW betaD) is normalized

% so that the sum of the coefficient estimates = 1

pr=sum(p.*repmat(beta,120,1),2); % 120x1 predicted overall right choice

% probabilities for each game

sdpr=(PR-pr).*(PR-pr); % 120x1 sq. dev.: obs. vs pred. right probabilities

msd_est=mean(sdpr); % mean of 120x1 squared deviations

Second Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data

PR=data(:,9); % 120x1 observed right probabilities f.e.g.

%compute predictions of each strategy and game and store them in a 120x5

p=pred_s(data); % matrix with 5 columns = pR pN pJ pW pD & 120 rows = games

% compute predicted probability to observe a right choice for each game

pr=sum(p.*repmat(beta,120,1),2);

sdpr=(PR-pr).*(PR-pr); % 120x1 sq. dev.: obs. vs pred. right probabilities

msd_pre=mean(sdpr); % mean of 120x1 squared deviations

Second Mover Model: Visual Output

disptable(roundn([msd_est msd_pre beta],-4),...

’msd_est|msd_pre|betaR|betaN|betaJ|betaW|betaD’,’7S_S’)

msd_est msd_pre betaR betaN betaJ betaW betaD

7S_S 0.0029 0.0043 0.5038 0.3565 0.0581 0.0445 0.0371

First Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

PI=data(:,8); % 120x1 observed in probabilities for each game

%compute predictions of each strategy and game and store them in a 120x6

p=pred_f(data); % matrix with 6 cols = pR pL pM pJ pW pD & 120 rows = games

alpha=regress(PI,p); % find optimal probability distribution over strategies

alpha=alpha’/sum(alpha); %alpha=(alphaR alphaL alphaM alphaJ alphaW alphaD)

% compute predicted probability to observe an in choice for each game
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pi=sum(p.*repmat(alpha,120,1),2); % 120x1 in choice probabilities

sdpi=(PI-pi).*(PI-pi); % 120x1 sq. dev.: obs. vs pred. in probabilities

msd_est=mean(sdpi); % mean of 120x1 squared deviations

First Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data

PI=data(:,8); % 120x1 observed in probabilities for each game

%compute predictions of each strategy and game and store them in a 120x6

p=pred_f(data); % matrix with 6 cols = pR pL pM pJ pW pD & 120 rows = games

% compute predicted probability to observe an in choice for each game

pi=sum(p.*repmat(alpha,120,1),2); % 120x1 in choice probabilities

sdpi=(PI-pi).*(PI-pi); % 120x1 sq. dev.: obs. vs pred. in probabilities

msd_pre=mean(sdpi); % mean of 120x1 squared deviations

First Mover Model: Visual Output

disptable(roundn([msd_est msd_pre alpha],-4),...

’msd_est|msd_pre|alphaR|alphaL|alphaM|alphaJ|alphaW|alphaD’,’7S_F’)

% Author: Wasilios Hariskos, November 2012 %

msd_est msd_pre alphaR alphaL alphaM alphaJ alphaW alphaD

7S_F 0.0119 0.0083 0.4348 0.195 0.2005 0.0665 0.0619 0.0414

16.14 pred_s.m

Function pred_s.m reads the data of the estimation set or the prediction set as input and
computes for each of the five strategies of the second mover seven strategies model35 the
predicted right choice probability for each of the 120 games. As an output it returns a 120-
by-5 vector p. Notice that the model that was implemented in the code that was posted on
the competition homepage36 deviates from the description of the model in the introductory
paper of Ert et al. (2011). However, this code is based only on the model as it is described by
Ert et al. (2011). In comparison to this code, the one that was published on the competition
homepage specifies that an individual that applies MnDiff chooses left if she is indifferent
between left and right instead of choosing randomly. The part where this code deviates
from the one on the prediction homepage is marked with an * below. Notice moreover that

35Three of the seven strategies yield the same predictions, therefore the seven strategies reduce to five strategies.
36https://sites.google.com/site/extformpredcomp/baseline-models/seven-strategies-matlab.
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the optimal distribution over strategies that is estimated via regression analysis by program
seven_strategies.m (see Appendix 16.13) differs as a consequence too.

function p=pred_s(data)

xF=data(:,[2 4 6]); % 120x3 payoffs of first mover F for each game

xS=data(:,[3 5 7]); % 120x3 payoffs of second mover S for each game

% Right choice probabality vector for stategy ...

pR=zeros(120,1); % Ratio,

pN=zeros(120,1); % NiceR,

pJ=zeros(120,1); % JointMx,

pW=zeros(120,1); % MxWeak,

pD=zeros(120,1); % MnDiff are filled with 120 zeros, one for each game,

% i.e., the default option is to choose left

left=2; % second column of xS contains for each game the payoff of left

right=3; % third column of xS contains for each game the payoff of right

% Check for each game and strategy if right choice probability is 0.5 or 1

for game=1:120

% Ratio

if xS(game,left) < xS(game,right)

pR(game)=1; % right choice

end

if xS(game,left) == xS(game,right)

pR(game)=0.5; % random choice

end

% JointMx

if xS(game,left)+xF(game,left) < xS(game,right)+xF(game,right)

pJ(game)=1; % right choice

end

if xS(game,left)+xF(game,left)==xS(game,right)+xF(game,right)

pJ(game)=0.5; % random choice

end

% NiceR

if xS(game,left) < xS(game,right)

pN(game)=1; % right choice

end

if xS(game,left) == xS(game,right)

pN(game)=pJ(game); % JointMx choice

end

% MxWeak

if min(xS(game,left),xF(game,left)) < min(xS(game,right),xF(game,right))

pW(game)=1; % right choice

end

if min(xS(game,left),xF(game,left))==min(xS(game,right),xF(game,right))
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pW(game)=0.5; % random choice

end

% MnDiff

if abs(xS(game,left)-xF(game,left)) > abs(xS(game,right)-xF(game,right))

pD(game)=1; % right choice

end

if abs(xS(game,left)-xF(game,left))==abs(xS(game,right)-xF(game,right))

pD(game)=0.5; % random choice (* not 0, see comment above)

end

end

p=[pR pN pJ pW pD]; % save prediction of each strategy in a 120x5 matrix

end

% Author: Wasilios Hariskos, November 2012 %

16.15 pred_f.m

Function pred_f.m reads the data of the estimation set or the prediction set as input and
computes for each of the six strategies of the first mover seven strategies model37 the predicted
in choice probability for each of the 120 games. As an output it returns a 120-by-6 vector p.
Notice that the model that was implemented in the code that was posted on the competition
homepage38 deviates from the description of the model in the introductory paper of Ert et al.
(2011). However, this code is based only on the model as it is described by Ert et al. (2011).
In comparison to this code, the one that was published on the competition homepage specifies
that for (1) MnDiff the individual chooses out if she is indifferent between in and out instead
of choosing randomly and that she compares to the maximum and not to the minimum of the
two absolute differences implied by the in choice to the absolute difference implied by the
out choice; (2) for JointMx and Level − 1 that she chooses out if she is indifferent between
in and out instead of choosing randomly; and (3) for MaxMin that she chooses in if she is
indifferent between in an out instead of choosing randomly. The parts where this code deviates
from the one on the prediction homepage are marked with an * below. Notice moreover that
the optimal distribution over strategies that is estimated via regression analysis by program
seven_strategies.m (see Appendix 16.13) differs as a consequence too.

function p=pred_f(data)

xF=data(:,[2 4 6]); % 120x3 payoffs of first mover F for each game

xS=data(:,[3 5 7]); % 120x3 payoffs of second mover S for each game

% Right choice probabality vector for stategy ...

pRS=zeros(120,1); % Ratio Second Mover (necessary for Ratio First Mover),

pR=zeros(120,1); % Ratio First Mover,

37One of the seven strategies cannot be applied to the first mover choice problem, therefore the seven strategies
reduce to six strategies.

38https://sites.google.com/site/extformpredcomp/baseline-models/seven-strategies-matlab.
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pL=zeros(120,1); % Level-1,

pM=zeros(120,1); % MaxMin,

pJ=zeros(120,1); % JointMx,

pW=zeros(120,1); % MxWeak,

pD=zeros(120,1); % MnDiff are filled with 120 zeros, one for each game,

% i.e., the default option is to choose out

out=1; % first column of xS or xF contains for each game the payoff of left

left=2;% second column of xS or xF contains for each game the payoff of left

right=3;% third column of xS or xF contains for each game the payoff of right

% Check for each game and strategy if right choice probability is 0.5 or 1

for game=1:120

% Ratio Second Mover

if xS(game,left) < xS(game,right)

pRS(game)=1; % in choice

end

if xS(game,left) == xS(game,right)

pRS(game)=0.5; % random choice

end

% Ratio First Mover

if xF(game,out) < (1-pRS(game))*xF(game,left)+pRS(game)*xF(game,right)

pR(game)=1; % in choice

end

if xF(game,out) == (1-pRS(game))*xF(game,left)+pRS(game)*xF(game,right)

pR(game)=0.5; % random choice

end

% Level-1

if xF(game,out) < 1/2*xF(game,left)+1/2*xF(game,right)

pL(game)=1; % in choice

end

if xF(game,out) == 1/2*xF(game,left)+1/2*xF(game,right)

pL(game)=.5; % random choice (* not 0, see comment above)

end

% MaxMin

if xF(game,out) < min(xF(game,left),xF(game,right))

pM(game)=1; % in choice

end

if xF(game,out) == min(xF(game,left),xF(game,right))

pM(game)=.5; % random choice (* not 1, see comment above)

end

% JointMx

if xF(game,out)+xS(game,out) <...

max(xF(game,left)+xS(game,left),xF(game,right)+xS(game,right))

pJ(game)=1; % in choice
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end

if xF(game,out)+xS(game,out) ==...

max(xF(game,left)+xS(game,left),xF(game,right)+xS(game,right))

pJ(game)=0.5; % random choice (* not 0, see comment above)

end

% MxWeak

if min(xF(game,out),xS(game,out)) <...

max(min(xF(game,left),xS(game,left)),min(xF(game,right),xS(game,right)))

pW(game)=1; % in choice

end

if min(xF(game,out),xS(game,out)) ==...

max(min(xF(game,left),xS(game,left)),min(xF(game,right),xS(game,right)))

pW(game)=0.5; % random choice

end

% MnDiff

if abs(xF(game,out)-xS(game,out)) >...

min(abs(xF(game,left)-xS(game,left)),abs(xF(game,right)-xS(game,right)))

% (* not max, see comment above)

pD(game)=1; % in choice

end

if abs(xF(game,out)-xS(game,out)) ==...

min(abs(xF(game,left)-xS(game,left)),abs(xF(game,right)-xS(game,right)))

% (* not max, see comment above)

pD(game)=0.5; % random choice (* not 0, see comment above)

end

end

p=[pR pL pM pJ pW pD]; % save prediction of each strategy in a 120x6 matrix

end

% Author: Wasilios Hariskos, November 2012 %

16.16 sum_ose.m

The MATLAB program sum_ose.m estimates the second mover stochastic utility maximizer
(SUM) model with own welfare, social welfare, and equality (OSE) preferences (see Sec-
tion 5.4.1) and computes the MSD of the estimation set and the MSD of the prediction
set. The visual output which is shown in the command window of MATLAB contains the
estimation MSD, the prediction MSD and the parameter estimates that minimize the esti-
mation MSD. Please ensure that sum_ose_msd.m (the function that computes the MSD,
see Appendix 16.17), disptable.m (the function that displays the results, see Appendix 16.3),
ext_est_res.txt (a text file that contains the data of the estimation set, see Table 6) and
ext_pred_res.txt (a text file that contains the data of the prediction set, see Table 7) are in
the same folder.
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Second Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

% The parameter estimate vector of the second mover model is given by

% p = (lambdaS alpha beta).

p0=[0 0 0]; % set initial values of p equal to 0

lb=p0; % set lower bounds of p equal to 0

up=[]; % set no upper bound up for p

% find the parameter estimate vector p that minimizes the msd of the

% estimation set (msd_est) by using the constrained nonliner multivariable

% function fmincon which calls function sum_ose_msd (that computes the msd)

[p,msd_est]=fmincon(@sum_ose_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’active-set’),data);

Second Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the

% msd of the prediction set msd_pre (based on the parameter estimate vector

msd_pre=sum_ose_msd(p,data); % p that minimizes msd_est)

Second Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p(1) p(2) p(3)],-4),...

’msd_est|msd_pre|lambdaS|alpha|beta’,’SUM_OSE_S’)

% Author: Wasilios Hariskos, November 2012 %

msd_est msd_pre lambdaS alpha beta

SUM_OSE_S 0.0016 0.0038 3.888 0.1551 0.1068

16.17 sum_ose_msd.m

Function sum_ose_msd.m computes for a given parameter estimate vector p the MSD of
the second mover stochastic utility maximizer (SUM) model with own welfare, social welfare,
and equality (OSE) preferences (see Section 5.4.1). The input arguments specify parameter
estimate vector p and the data (estimation set or prediction set). The function computes the
MSD in three steps: For the 120 games, it stores first the payoff structure and the observed
choice probabilities, then it computes the predicted choice probabilities and lastly it computes
the mean of squared deviations (MSD) between observed and predicted choice probabilities.
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function msd = sum_ose_msd( p, data )

Experimental Data and Games

xF=data(:,[2 4 6]); % 120x3 payoffs of first mover F for each game

xS=data(:,[3 5 7]); % 120x3 payoffs of second mover S for each game

PR=data(:,9); % 120x1 observed right probabilities f.e.g.

Predictions for Second Mover

n=120; % number of games

left=2; % second column of xF or xS contains the left payoffs of the games

right=3;% third column of xF or xS contains the right payoffs of the games

% OWN WELFARE is maximized by ...

o(1:120,1)=1; % right choice (default)

for game=1:n

if xS(game,left)>xS(game,right) % left choice

o(game,1)=0;

end

if xS(game,left)==xS(game,right)

o(game,1)=0.5; % left and right

end

end

% SOCIAL WELFARE is maximized by ...

s(1:120,1)=1; % right choice (default)

for game=1:n

if xS(game,left)+xF(game,left)>xS(game,right)+xF(game,right)% left choice

s(game,1)=0;

end

if xS(game,left)+xF(game,left)==xS(game,right)+xF(game,right)% left & right

s(game,1)=0.5;

end

end

% EQUALITY (self-centered) is maximized by ...

e(1:120,1)=1; % right choice (default)

for game=1:n

if xS(game,left)- abs(xS(game,left)- xF(game,left))>...

xS(game,right)-abs(xS(game,right)-xF(game,right))% left choice

e(game,1)=0;

end

if xS(game,left)- abs(xS(game,left)- xF(game,left))==...

xS(game,right)-abs(xS(game,right)-xF(game,right))% left and right
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e(game,1)=0.5;

end

end

% Parameters

lambdaS=p(1); % responsiveness to preferences

alpha=p(2); % standard weight of component s and e

beta=p(3); % additional weight of s if o is not discriminating

% Weighting vector if o is discriminating

w(2)=alpha; % weight of social welfare component

w(3)=alpha; % weight of equality (self-centered) component

w(1)=1-w(2)-w(3); % weight of own welfare component

% Utility of option right if o is discriminating (default)

uSr=w(1)*o+w(2)*s+w(3)*e; % 120x3 utilities for each outcome of each game

% Weighting vector if o is not discriminating

w(2)=alpha+beta; % higher weight for social welfare component

w(3)=alpha; % equal weight for equality (self-centered) component

w(1)=1-w(2)-w(3); % lower weight for own welfare component

for game=1:n

if o(game,1)==0.5 % utility of option right if o in not discriminating

uSr(game,1)=w(1)*o(game,1)+w(2)*s(game,1)+w(3)*e(game,1);

end

end

uSl=1-uSr; % utility of option left

pr=exp(lambdaS*uSr)...% 120x1 predicted right probabilities for each game

./(exp(lambdaS*uSr)+exp(lambdaS*uSl));

MSD of Second Mover Model

sdpr=(PR-pr).*(PR-pr); % 120x1 sq. dev.: obs. vs pred. right probabilities

msd=mean(sdpr); % mean of 120x1 squared deviations

end

% Author: Wasilios Hariskos, November 2012 %

16.18 sum_ose_unc.m

The MATLAB program sum_ose_unc.m estimates the second mover stochastic utility max-
imizer (SUM) model with own welfare, social welfare, and equality (OSE) preferences (see
Section 5.4.1) and computes the MSD of the estimation set and the MSD of the prediction
set. The visual output which is shown in the command window of MATLAB contains the
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estimation MSD, the prediction MSD and the parameter estimates that minimize the estima-
tion MSD. Please ensure that sum_ose_unc_msd.m (the function that computes the MSD,
see Appendix 16.19), disptable.m (the function that displays the results, see Appendix 16.3),
ext_est_res.txt (a text file that contains the data of the estimation set, see Table 6) and
ext_pred_res.txt (a text file that contains the data of the prediction set, see Table 7) are in
the same folder.

Second Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

% The parameter estimate vector of the second mover model is given by

% p = (lambdaS alpha beta gamma delta).

p0=[0 0 0 0 0]; % set initial values of p equal to 0

lb=p0; % set lower bounds of p equal to 0

up=[]; % set no upper bound up for p

% find the parameter estimate vector p that minimizes the msd of the

% estimation set (msd_est) by using the constrained nonliner multivariable

% function fmincon which calls function sum_ose_msd (that computes the msd)

[p,msd_est]=fmincon(@sum_ose_unc_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’active-set’),data);

Second Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the

% msd of the prediction set msd_pre (based on the parameter estimate vector

msd_pre=sum_ose_unc_msd(p,data); % p that minimizes msd_est)

Second Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p(1) p(2) p(3) p(4) p(5)],-4),...

’msd_est|msd_pre|lambdaS|alpha|beta|gamma|delta’,’SUM_OSE_S’)

% Author: Wasilios Hariskos, November 2012 %

msd_est msd_pre lambdaS alpha beta gamma delta

SUM_OSE_S 0.0016 0.0038 3.904 0.1628 0.1474 0.2631 0.1567
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16.19 sum_ose_unc_msd.m

Function sum_ose_unc_msd.m computes for a given parameter estimate vector p the MSD of
the second mover stochastic utility maximizer (SUM) model with own welfare, social welfare,
and equality (OSE) preferences (see Section 5.4.1). The input arguments specify parameter
estimate vector p and the data (estimation set or prediction set). The function computes the
MSD in three steps: For the 120 games, it stores first the payoff structure and the observed
choice probabilities, then it computes the predicted choice probabilities and lastly it computes
the mean of squared deviations (MSD) between observed and predicted choice probabilities.

function msd = sum_ose_unc_msd( p, data )

Experimental Data and Games

xF=data(:,[2 4 6]); % 120x3 payoffs of first mover F for each game

xS=data(:,[3 5 7]); % 120x3 payoffs of second mover S for each game

PR=data(:,9); % 120x1 observed right probabilities f.e.g.

Predictions for Second Mover

n=120; % number of games

left=2; % second column of xF or xS contains the left payoffs of the games

right=3;% third column of xF or xS contains the right payoffs of the games

% OWN WELFARE is maximized by ...

o(1:120,1)=1; % right choice (default)

for game=1:n

if xS(game,left)>xS(game,right) % left choice

o(game,1)=0;

end

if xS(game,left)==xS(game,right)

o(game,1)=0.5; % left and right

end

end

% SOCIAL WELFARE is maximized by ...

s(1:120,1)=1; % right choice (default)

for game=1:n

if xS(game,left)+xF(game,left)>xS(game,right)+xF(game,right)% left choice

s(game,1)=0;

end

if xS(game,left)+xF(game,left)==xS(game,right)+xF(game,right)% left & right

s(game,1)=0.5;

end
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end

% EQUALITY (self-centered) is maximized by ...

e(1:120,1)=1; % right choice (default)

for game=1:n

if xS(game,left)- abs(xS(game,left)- xF(game,left))>...

xS(game,right)-abs(xS(game,right)-xF(game,right))% left choice

e(game,1)=0;

end

if xS(game,left)- abs(xS(game,left)- xF(game,left))==...

xS(game,right)-abs(xS(game,right)-xF(game,right))% left and right

e(game,1)=0.5;

end

end

% Parameters

lambdaS=p(1); % responsiveness to preferences

alpha=p(2); % standard weight of s and e

beta=p(3); % additional weight of s if o is not discriminating

gamma=p(4);

delta=p(5);

% Weighting vector if o is discriminating

w(2)=alpha; % weight of social welfare component

w(3)=beta; % weight of equality (self-centered) component

w(1)=1-w(2)-w(3); % weight of own welfare component

% Utility of option right if o is discriminating (default)

uSr=w(1)*o+w(2)*s+w(3)*e; % 120x3 utilities for each outcome of each game

% Weighting vector if o is not discriminating

w(2)=gamma; % weight for social welfare component

w(3)=delta; % weight for equality (self-centered) component

w(1)=1-w(2)-w(3); % lower weight for own welfare component

for game=1:n

if o(game,1)==0.5 % utility of option right if o in not discriminating

uSr(game,1)=w(1)*o(game,1)+w(2)*s(game,1)+w(3)*e(game,1);

end

end

uSl=1-uSr; % utility of option left

pr=exp(lambdaS*uSr)...% 120x1 predicted right probabilities for each game

./(exp(lambdaS*uSr)+exp(lambdaS*uSl));

MSD of Second Mover Model

sdpr=(PR-pr).*(PR-pr); % 120x1 sq. dev.: obs. vs pred. right probabilities

msd=mean(sdpr); % mean of 120x1 squared deviations
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end

% Author: Wasilios Hariskos, November 2012 %

16.20 ttb.m

The MATLAB program ttb.m estimates the second mover take-the-best (TTB) model (see
Section 5.4.2) and computes the MSD of the estimation set and the MSD of the prediction set.
The visual output which is shown in the command window of MATLAB contains the estimation
MSD, the prediction MSD and the parameter estimates that minimize the estimation MSD.
Please ensure that ttb_msd.m (the function that computes the MSD, see Appendix 16.21),
disptable.m (the function that displays the results, see Appendix 16.3), ext_est_res.txt (a
text file that contains the data of the estimation set, see Table 6) and ext_pred_res.txt (a
text file that contains the data of the prediction set, see Table 7) are in the same folder.

Second Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

% The parameter estimate vector of the second mover model is given by

% p = (sA sB sC sD epsilon).

p0=[0 0 0 0 0]; % set initial values of p equal to 0

lb=p0; % set lower bounds of p equal to 0

up=[]; % set no upper bound up for p

% find the parameter estimate vector p that minimizes the msd of the

% estimation set (msd_est) by using the constrained nonliner multivariable

% function fmincon which calls function ttb_msd (that computes the msd)

[p,msd_est]=fmincon(@ttb_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’sqp’),data);

Second Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the

% msd of the prediction set msd_pre (based on the parameter estimate vector

msd_pre=ttb_msd(p,data); % p that minimizes msd_est)

Second Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p(1:4) 1-sum(p(1:4)) p(5)],-4),...

’msd_est|msd_pre|sA|sB|sC|sD|sE|epsilon’,’TTB_S’)

% Author: Wasilios Hariskos, November 2012 %
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msd_est msd_pre sA sB sC sD sE epsilon

TTB_S 0.0018 0.0038 0.2986 0.0707 0.0637 0.3845 0.1825 0.0167

16.21 ttb_msd.m

Function ttb_msd.m computes for a given parameter estimate vector p the MSD of the second
mover take-the-best (TTB) model (see Section 5.4.2). The input arguments specify parameter
estimate vector p and the data (estimation set or prediction set). The function computes the
MSD in three steps: For the 120 games, it stores first the payoff structure and the observed
choice probabilities, then it computes the predicted choice probabilities and lastly it computes
the mean of squared deviations (MSD) between observed and predicted choice probabilities.

function msd = ttb_msd( p, data )

Experimental Data and Games

xF=data(:,[4 6]); % 120x3 payoffs of first mover F for each game

xS=data(:,[5 7]); % 120x3 payoffs of second mover S for each game

PR=data(:,9); % 120x1 observed right probabilities f.e.g.

Predictions for Second Mover

n=120; % number of games

left=1; % first column of xF or xS contains the left payoffs of the games

right=2;% second column of xF or xS contains the right payoffs of the games

% Attribute 1 = highest own payoff

ca1(1:120,2)=0; % cue 1 values of alternatives are 0 (default)

for game=1:n

if xS(game,left)>xS(game,right)

ca1(game,:)=[1 0]; % cue 1 discriminates --> choose left

end

if xS(game,left)<xS(game,right)

ca1(game,:)=[0 1]; % cue 1 discriminates --> choose right

end

end

% Attribute 2 = highest joint payoff

ca2(1:120,2)=0; % cue 2 values of alternatives are 0 (default)

for game=1:n

if xS(game,left)+xF(game,left)>xS(game,right)+xF(game,right)

ca2(game,:)=[1 0]; % cue 2 discriminates --> choose left
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end

if xS(game,left)+xF(game,left)<xS(game,right)+xF(game,right)

ca2(game,:)=[0 1]; % cue 2 discriminates --> choose right

end

end

% Attribute 3 = highest own payoff - absolute payoff difference

ca3(1:120,2)=0; % cue 3 values of alternatives are 0 (default)

for game=1:n

if xS(game,left)- abs(xS(game,left)- xF(game,left))>...

xS(game,right)-abs(xS(game,right)-xF(game,right))

ca3(game,:)=[1 0]; % cue 3 discriminates --> choose left

end

if xS(game,left)- abs(xS(game,left)- xF(game,left))<...

xS(game,right)-abs(xS(game,right)-xF(game,right))

ca3(game,:)=[0 1]; % cue 3 discriminates --> choose right

end

end

% Parameters

sA=p(1); % share of type A second movers

sB=p(2); % share of type B second movers

sC=p(3); % share of type C second movers

sD=p(4); % share of type D second movers

sE=1-sA-sB-sC-sD; % share of type E second movers

epsilon=p(5); % choice error (has the same value for all types & cues)

% Type A: Predicted choice probability right

prA(1:120,1)=0.5; % random choice (default)

for game=1:n

if ca1(game,left)==1 && ca1(game,right)==0

prA(game,1)=0+epsilon; % cue 1 discriminates --> left

end

if ca1(game,left)==0 && ca1(game,right)==1

prA(game,1)=1-epsilon; % cue 1 discriminates --> right

end

end

% Type B: Predicted choice probability rightprA(1:120,1)=0.5;

prB(1:120,1)=0.5;

for game=1:n

if ca2(game,left)==1 && ca2(game,right)==0

prB(game,1)=0+epsilon; % cue 2 discriminates --> left

end

if ca2(game,left)==0 && ca2(game,right)==1

prB(game,1)=1-epsilon; % cue 2 discriminates --> right

end
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end

% Type C: Predicted choice probability right

prC(1:120,1)=0.5;

for game=1:n

if ca3(game,left)==1 && ca3(game,right)==0

prC(game,1)=0+epsilon; % cue 3 discriminates --> left

end

if ca3(game,left)==0 && ca3(game,right)==1

prC(game,1)=1-epsilon; % cue 3 discriminates --> right

end

end

% Type D: Predicted choice probability right

prD(1:120,1)=prA;

for game=1:n

if prA(game,1)==0.5

prD(game,1)=prB(game,1);

end

end

% Type E: Predicted choice probability right

prE(1:120,1)=prA;

for game=1:n

if prA(game,1)==0.5

prE(game,1)=prC(game,1);

end

end% Predicted probability to observe a right choice

pr=sA*prA+sB*prB+sC*prC+sD*prD+sE*prE;

%[prA prB prC prD prE]

MSD of Second Mover Model

sdpr=(PR-pr).*(PR-pr); % 120x1 sq. dev.: obs. vs pred. right probabilities

msd=mean(sdpr); % mean of 120x1 squared deviations

end

% Author: Wasilios Hariskos, November 2012 %

16.22 sqre_sub.m

The MATLAB program sqre_sub.m estimates the first mover subjective quantal response
equilibrium (SQRE) model (see Section 5.4.3) and computes the MSD of the estimation set
and the MSD of the prediction set. The visual output which is shown in the command window
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of MATLAB contains the estimation MSD, the prediction MSD and the parameter estimates
that minimize the estimation MSD. Please ensure that sqre_sub_msd.m (the function that
computes the MSD, see Appendix 16.23), disptable.m (the function that displays the results,
see Appendix 16.3), ext_est_res.txt (a text file that contains the data of the estimation set,
see Table 6) and ext_pred_res.txt (a text file that contains the data of the prediction set, see
Table 7) are in the same folder.

First Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

% The parameter estimate vector of the first mover model is given by

% p = (gamma delta s1 s2 s3).

p0=[0 0 0 0 0]; % set initial values of p equal to 0

lb=p0; % set lower bounds of p equal to 0

up=[]; % set no upper bounds for p

% find the parameter estimate vector p that minimizes the msd of the

% estimation set (msd_est) by using function fmincon and function qre_fs_msd

[p,msd_est]=fmincon(@sqre_sub_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’active-set’),data);

First Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the

% msd of the prediction set msd_pre (based on the parameter estimate vector

msd_pre=sqre_sub_msd(p,data); % p that minimizes msd_est)

First Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p],-4),...

’msd_est|msd_pre|gamma|delta|s1|s2|s3’,’SQRE’)

% Author: Wasilios Hariskos, November 2012 %

msd_est msd_pre gamma delta s1 s2 s3

SQRE 0.005 0.0094 1.319 0.2157 0.5115 0.7029 0.8801
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16.23 sqre_sub_msd.m

Function sqre_sub_msd.m computes for a given parameter estimate vector p the MSD of
the first mover subjective quantal response equilibrium (SQRE) model (see Section 5.4.3. The
input arguments specify parameter estimate vector p and the data (estimation set or prediction
set). The function computes the MSD in three steps: For the 120 games, it stores first the
payoff structure and the observed choice probabilities, then it computes the predicted choice
probabilities and lastly it computes the mean of squared deviations (MSD) between observed
and predicted choice probabilities.

function msd=sqre_sub_msd(p,data)

Experimental Data and Games

xF=data(:,[2 4 6]); % 120x3 payoffs of first mover F for each game

xS=data(:,[3 5 7]); % 120x3 payoffs of second mover S for each game

PI=data(:,8); % 120x1 observed in probabilities for each game

Predictions for First Mover

gamma=p(1); % determines responsiveness to preferences

alphaF=0; alphaS=p(2);% degree to disadvantageous inequality aversion

betaF=p(2); betaS=p(2);% degree of advantageous inequality aversion

s1=p(3); % share of selfish first movers

s2=p(4); % share of highly responsive first movers

s3=p(5); % share of first movers with self-centered beliefs

% TYPE 1

t=1; % selfish + high responsiveness + self-centered belief

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S

uS=xS(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 2

t=2; % selfish + high responsiveness + pessimistic belief

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S
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uS=-xF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 3

t=3; % selfish + low responsiveness + self-centered belief

lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

uS=xS(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 4

t=4; % selfish + low responsiveness + pessimistic belief

lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

uS=-xF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% TYPE 5

t=5; % inequality averse + high lambda + self-centered belief

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S

iaF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS); % utils of F out, left, right

iaS=xS-alphaS*max(0,xF-xS)-betaS*max(0,xS-xF); % utils of S out, left, right

uS=iaS(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=iaF(:,1); % utility out

uF(:,2)=iaF(:,2).*(1-pr(:,t))+iaF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));
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% TYPE 6

t=6; % inequality averse + high lambda + pessimistic belief

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S

iaF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS); % utilities out, left, right

uS=-iaF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=iaF(:,1); % utility out

uF(:,2)=iaF(:,2).*(1-pr(:,t))+iaF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 7

t=7; % inequality averse + low lambda + self-centered belief

lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

iaF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS); % utilities out, left, right

iaS=xS-alphaS*max(0,xF-xS)-betaS*max(0,xS-xF); % utils of S out, left, right

uS=iaS(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=iaF(:,1); % utility out

uF(:,2)=iaF(:,2).*(1-pr(:,t))+iaF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 8

t=8; % inequality averse + low lambda + pessimistic belief

lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

iaF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS); % utilities out, left, right

uS=-iaF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=iaF(:,1); % utility out

uF(:,2)=iaF(:,2).*(1-pr(:,t))+iaF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

pi = s1*s2*s3*p_in(:,1)... % weighted choice probability in

+ s1*s2*(1-s3)*p_in(:,2)...

+ s1*(1-s2)*s3*p_in(:,3)...

+ s1*(1-s2)*(1-s3)*p_in(:,4)...

+ (1-s1)*s2*s3*p_in(:,5)...

+ (1-s1)*s2*(1-s3)*p_in(:,6)...
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+ (1-s1)*(1-s2)*s3*p_in(:,7)...

+ (1-s1)*(1-s2)*(1-s3)*p_in(:,8);

MSD of First Mover Model

sdpi=(PI-pi).*(PI-pi); % 120x1 sq. dev.: obs. vs pred. in probabilities

msd=mean(sdpi); % mean of 120x1 squared deviations

end

% Author: Wasilios Hariskos, November 2012 %

16.24 sqre_unc.m

The MATLAB program sqre_unc.m estimates the first mover subjective quantal response
equilibrium (SQRE) model (see Section 5.4.3) and computes the MSD of the estimation set
and the MSD of the prediction set. The visual output which is shown in the command window
of MATLAB contains the estimation MSD, the prediction MSD and the parameter estimates
that minimize the estimation MSD. Please ensure that sqre_unc_msd.m (the function that
computes the MSD, see Appendix 16.25), disptable.m (the function that displays the results,
see Appendix 16.3), ext_est_res.txt (a text file that contains the data of the estimation set,
see Table 6) and ext_pred_res.txt (a text file that contains the data of the prediction set, see
Table 7) are in the same folder.

First Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

% The parameter estimate vector of the first mover model is given by

% p = (gamma alphaF betaF alphaS betaS s1 s2 s3).

p0=[0 0 0 0 0 0 0 0]; % set initial values of p equal to 0

lb=p0; % set lower bounds of p equal to 0

up=[]; % set no upper bounds for p

% find the parameter estimate vector p that minimizes the msd of the

% estimation set (msd_est) by using function fmincon and function qre_fs_msd

[p,msd_est]=fmincon(@sqre_unc_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’active-set’),data);

First Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the
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% msd of the prediction set msd_pre (based on the parameter estimate vector

msd_pre=sqre_unc_msd(p,data); % p that minimizes msd_est)

First Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p],-4),...

’msd_est|msd_pre|gamma|alphaF|betaF|alphaS|betaS|s1|s2|s3’,’SQRE’)

% Author: Wasilios Hariskos, November 2012 %

msd_est msd_pre gamma alphaF betaF alphaS betaS s1 s2 s3

SQRE 0.0049 0.0093 1.283 0.019 0.1969 0.2268 0.2497 0.4852 0.7093 0.8761

16.25 sqre_unc_msd.m

Function sqre_unc_msd.m computes for a given parameter estimate vector p the MSD of
the first mover subjective quantal response equilibrium (SQRE) model (see Section 5.4.3. The
input arguments specify parameter estimate vector p and the data (estimation set or prediction
set). The function computes the MSD in three steps: For the 120 games, it stores first the
payoff structure and the observed choice probabilities, then it computes the predicted choice
probabilities and lastly it computes the mean of squared deviations (MSD) between observed
and predicted choice probabilities.

function msd=sqre_unc_msd(p,data)

Experimental Data and Games

xF=data(:,[2 4 6]); % 120x3 payoffs of first mover F for each game

xS=data(:,[3 5 7]); % 120x3 payoffs of second mover S for each game

PI=data(:,8); % 120x1 observed in probabilities for each game

Predictions for First Mover

gamma=p(1); % determines responsiveness to preferences

alphaF=p(2); alphaS=p(4);% degree to disadvantageous inequality aversion

betaF=p(3); betaS=p(5);% degree of advantageous inequality aversion

s1=p(6); % share of selfish first movers

s2=p(7); % share of highly responsive first movers

s3=p(8); % share of first movers with self-centered beliefs
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% TYPE 1

t=1; % selfish + high responsiveness + self-centered belief

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S

uS=xS(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 2

t=2; % selfish + high responsiveness + pessimistic belief

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S

uS=-xF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 3

t=3; % selfish + low responsiveness + self-centered belief

lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

uS=xS(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 4

t=4; % selfish + low responsiveness + pessimistic belief

lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

uS=-xF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in
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p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% TYPE 5

t=5; % inequality averse + high lambda + self-centered belief

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S

iaF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS); % utils of F out, left, right

iaS=xS-alphaS*max(0,xF-xS)-betaS*max(0,xS-xF); % utils of S out, left, right

uS=iaS(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=iaF(:,1); % utility out

uF(:,2)=iaF(:,2).*(1-pr(:,t))+iaF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 6

t=6; % inequality averse + high lambda + pessimistic belief

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S

iaF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS); % utilities out, left, right

uS=-iaF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=iaF(:,1); % utility out

uF(:,2)=iaF(:,2).*(1-pr(:,t))+iaF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 7

t=7; % inequality averse + low lambda + self-centered belief

lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

iaF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS); % utilities out, left, right

iaS=xS-alphaS*max(0,xF-xS)-betaS*max(0,xS-xF); % utils of S out, left, right

uS=iaS(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=iaF(:,1); % utility out

uF(:,2)=iaF(:,2).*(1-pr(:,t))+iaF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 8

t=8; % inequality averse + low lambda + pessimistic belief
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lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

iaF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS); % utilities out, left, right

uS=-iaF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=iaF(:,1); % utility out

uF(:,2)=iaF(:,2).*(1-pr(:,t))+iaF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

pi = s1*s2*s3*p_in(:,1)... % weighted choice probability in

+ s1*s2*(1-s3)*p_in(:,2)...

+ s1*(1-s2)*s3*p_in(:,3)...

+ s1*(1-s2)*(1-s3)*p_in(:,4)...

+ (1-s1)*s2*s3*p_in(:,5)...

+ (1-s1)*s2*(1-s3)*p_in(:,6)...

+ (1-s1)*(1-s2)*s3*p_in(:,7)...

+ (1-s1)*(1-s2)*(1-s3)*p_in(:,8);

MSD of First Mover Model

sdpi=(PI-pi).*(PI-pi); % 120x1 sq. dev.: obs. vs pred. in probabilities

msd=mean(sdpi); % mean of 120x1 squared deviations

end

% Author: Wasilios Hariskos, November 2012 %

16.26 sqre_svo_sub.m

The MATLAB program sqre_svo_sub.m estimates the first mover subjective quantal response
equilibrium (SQRE-SVO) model (see Section 5.4.4) and computes the MSD of the estimation
set and the MSD of the prediction set. The visual output which is shown in the command
window of MATLAB contains the estimation MSD, the prediction MSD and the parameter
estimates that minimize the estimation MSD. Please ensure that sqre_svo_sub_msd.m (the
function that computes the MSD, see Appendix 16.27), disptable.m (the function that displays
the results, see Appendix 16.3), ext_est_res.txt (a text file that contains the data of the
estimation set, see Table 6) and ext_pred_res.txt (a text file that contains the data of the
prediction set, see Table 7) are in the same folder.

First Mover Model: MSD of the Estimation Set
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clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

% The parameter estimate vector of the first mover model is given by

% p = (gamma delta epsilon s1 s2 s3).

p0=[0 0 0 0 .55 0]; % initial values of p equal

lb=p0; % set lower bounds of p equal to 0

up=[]; % set no upper bounds for p

% find the parameter estimate vector p that minimizes the msd of the

% estimation set (msd_est) by using function fmincon and function qre_fs_msd

[p,msd_est]=fmincon(@sqre_svo_sub_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’sqp’),data);

First Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the

% msd of the prediction set msd_pre (based on the parameter estimate vector

msd_pre=sqre_svo_sub_msd(p,data); % p that minimizes msd_est)

First Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p],-4),...

’msd_est|msd_pre|gamma|delta|epsilon|s1|s2|s3’...

,’SVO-SQRE-SUB’)

% Author: Wasilios Hariskos, November 2012 %

msd_est msd_pre gamma delta epsilon s1 s2 s3

SVO-SQRE-SUB 0.0051 0.009 1.194 0.1859 0.3442 0.5703 0.7036 0.8704

16.27 sqre_svo_sub_msd.m

Function sqre_svo_sub_msd.m computes for a given parameter estimate vector p the MSD of
the first mover subjective quantal response equilibrium (SQRE-SVO) model (see Section 5.4.4.
The input arguments specify parameter estimate vector p and the data (estimation set or
prediction set). The function computes the MSD in three steps: For the 120 games, it stores
first the payoff structure and the observed choice probabilities, then it computes the predicted
choice probabilities and lastly it computes the mean of squared deviations (MSD) between
observed and predicted choice probabilities.

function msd=sqre_svo_sub_msd(p,data)
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Experimental Data and Games

xF=data(:,[2 4 6]); % 120x3 payoffs of first mover F for each game

xS=data(:,[3 5 7]); % 120x3 payoffs of second mover S for each game

PI=data(:,8); % 120x1 observed in probabilities for each game

Predictions for First Mover

gamma=p(1); % determines responsiveness to preferences

alphaF=p(2);alphaS=p(2)+p(3);% degree to disadvantageous inequality aversion

betaF=p(2); betaS=p(2);% degree of advantageous inequality aversion

omegaF=p(2); omegaS=p(2);% degree of social welfare orientation

s1=p(4); % share of selfish first movers

s2=p(5); % share of highly responsive first movers

s3=p(6); % share of first movers with self-centered beliefs

% TYPE 1

t=1; % selfish + high responsiveness + self-centered belief

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S

uS=xS(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 2

t=2; % selfish + high responsiveness + pessimistic belief

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S

uS=-xF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 3

t=3; % selfish + low responsiveness + self-centered belief

lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

uS=xS(:,2:3); % belief about preferences of S
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pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 4

t=4; % selfish + low responsiveness + pessimistic belief

lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

uS=-xF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% TYPE 5

t=5; % prosocial + high lambda + self-centered belief

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S

svoF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS)...

+omegaF*(xF+xS); % utils of F out, left, right

svoS=xS-alphaS*max(0,xF-xS)-betaS*max(0,xS-xF)...

+omegaS*(xF+xS); % utils of S out, left, right

uS=svoS(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=svoF(:,1); % utility out

uF(:,2)=svoF(:,2).*(1-pr(:,t))+svoF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 6

t=6; % prosocial + high lambda + pessimistic belief

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S

svoF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS)...

+omegaF*(xF+xS); % utils of F out, left, right

uS=-svoF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=svoF(:,1); % utility out
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uF(:,2)=svoF(:,2).*(1-pr(:,t))+svoF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 7

t=7; % prosocial + low lambda + self-centered belief

lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

svoF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS)...

+omegaF*(xF+xS); % utils of F out, left, right

svoS=xS-alphaS*max(0,xF-xS)-betaS*max(0,xS-xF)...

+omegaS*(xF+xS); % utils of S out, left, right

uS=svoS(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=svoF(:,1); % utility out

uF(:,2)=svoF(:,2).*(1-pr(:,t))+svoF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 8

t=8; % prosocial + low lambda + pessimistic belief

lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

svoF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS)...

+omegaF*(xF+xS); % utils of F out, left, right

uS=-svoF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=svoF(:,1); % utility out

uF(:,2)=svoF(:,2).*(1-pr(:,t))+svoF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

pi = s1*s2*s3*p_in(:,1)... % weighted choice probability in

+ s1*s2*(1-s3)*p_in(:,2)...

+ s1*(1-s2)*s3*p_in(:,3)...

+ s1*(1-s2)*(1-s3)*p_in(:,4)...

+ (1-s1)*s2*s3*p_in(:,5)...

+ (1-s1)*s2*(1-s3)*p_in(:,6)...

+ (1-s1)*(1-s2)*s3*p_in(:,7)...

+ (1-s1)*(1-s2)*(1-s3)*p_in(:,8);

MSD of First Mover Model

sdpi=(PI-pi).*(PI-pi); % 120x1 sq. dev.: obs. vs pred. in probabilities
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msd=mean(sdpi); % mean of 120x1 squared deviations

end

% Author: Wasilios Hariskos, November 2012 %

16.28 sqre_svo_unc.m

The MATLAB program sqre_svo_unc.m estimates the first mover subjective quantal response
equilibrium (SQRE-SVO) model (see Section 5.4.4) and computes the MSD of the estimation
set and the MSD of the prediction set. The visual output which is shown in the command
window of MATLAB contains the estimation MSD, the prediction MSD and the parameter
estimates that minimize the estimation MSD. Please ensure that sqre_svo_unc_msd.m (the
function that computes the MSD, see Appendix 16.29), disptable.m (the function that displays
the results, see Appendix 16.3), ext_est_res.txt (a text file that contains the data of the
estimation set, see Table 6) and ext_pred_res.txt (a text file that contains the data of the
prediction set, see Table 7) are in the same folder.

First Mover Model: MSD of the Estimation Set

clear all; % remove items from workspace

data=load(’ext_est_res.txt’); % load estimation set data

% The parameter estimate vector of the first mover model is given by

% p = (gamma alphaF betaF omegaF alphaS betaS omegaS s1 s2 s3).

p0=[0 0 0 0 0 0 0 0 0 0];% set initial values of p equal to 0

lb=p0; % set lower bounds of p equal to 0

up=[]; % set no upper bounds for p

% find the parameter estimate vector p that minimizes the msd of the

% estimation set (msd_est) by using function fmincon and function qre_fs_msd

[p,msd_est]=fmincon(@sqre_svo_unc_msd,p0,[],[],[],[],lb,up,[],optimset(...

’Display’,’off’, ’LargeScale’,’off’,’Algorithm’,’sqp’),data);

First Mover Model: MSD of the Prediction Set

data=load(’ext_pred_res.txt’); % load prediction set data and compute the

% msd of the prediction set msd_pre (based on the parameter estimate vector

msd_pre=sqre_svo_unc_msd(p,data); % p that minimizes msd_est)

First Mover Model: Visual Output

disptable(roundn([msd_est msd_pre p],-4),...
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’msd_est|msd_pre|gamma|alphaF|betaF|omegaF|alphaS|betaS|omegaS|s1|s2|s3’...

,’SVO-SQRE’)

% Author: Wasilios Hariskos, November 2012 %

msd_est msd_pre gamma alphaF betaF omegaF alphaS betaS omegaS s1 s2 s3

SVO-SQRE 0.0048 0.0093 1.187 0.0207 0.2004 0 0.4447 0.1838 0.134 0.491 0.7047 0.8806

16.29 sqre_svo_unc_msd.m

Function sqre_svo_unc_msd.m computes for a given parameter estimate vector p the MSD of
the first mover subjective quantal response equilibrium (SQRE-SVO) model (see Section 5.4.4.
The input arguments specify parameter estimate vector p and the data (estimation set or
prediction set). The function computes the MSD in three steps: For the 120 games, it stores
first the payoff structure and the observed choice probabilities, then it computes the predicted
choice probabilities and lastly it computes the mean of squared deviations (MSD) between
observed and predicted choice probabilities.

function msd=sqre_svo_unc_msd(p,data)

Experimental Data and Games

xF=data(:,[2 4 6]); % 120x3 payoffs of first mover F for each game

xS=data(:,[3 5 7]); % 120x3 payoffs of second mover S for each game

PI=data(:,8); % 120x1 observed in probabilities for each game

Predictions for First Mover

gamma=p(1); % determines responsiveness to preferences

alphaF=p(2); alphaS=p(5);% degree to disadvantageous inequality aversion

betaF=p(3); betaS=p(6);% degree of advantageous inequality aversion

omegaF=p(4); omegaS=p(7);% degree of social welfare orientation

s1=p(8); % share of selfish first movers

s2=p(9); % share of highly responsive first movers

s3=p(10); % share of first movers with self-centered beliefs

% TYPE 1

t=1; % selfish + high responsiveness + self-centered belief

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S
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uS=xS(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 2

t=2; % selfish + high responsiveness + pessimistic belief

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S

uS=-xF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 3

t=3; % selfish + low responsiveness + self-centered belief

lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

uS=xS(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 4

t=4; % selfish + low responsiveness + pessimistic belief

lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

uS=-xF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=xF(:,1); % utility out

uF(:,2)=xF(:,2).*(1-pr(:,t))+xF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% TYPE 5

t=5; % prosocial + high lambda + self-centered belief

182



16 MATLAB Codes

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S

svoF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS)...

+omegaF*(xF+xS); % utils of F out, left, right

svoS=xS-alphaS*max(0,xF-xS)-betaS*max(0,xS-xF)...

+omegaS*(xF+xS); % utils of S out, left, right

uS=svoS(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=svoF(:,1); % utility out

uF(:,2)=svoF(:,2).*(1-pr(:,t))+svoF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 6

t=6; % prosocial + high lambda + pessimistic belief

lambdaF=2*gamma; % own responsiveness

lambdaS=gamma; % truncated belief about responsiveness of S

svoF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS)...

+omegaF*(xF+xS); % utils of F out, left, right

uS=-svoF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=svoF(:,1); % utility out

uF(:,2)=svoF(:,2).*(1-pr(:,t))+svoF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 7

t=7; % prosocial + low lambda + self-centered belief

lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

svoF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS)...

+omegaF*(xF+xS); % utils of F out, left, right

svoS=xS-alphaS*max(0,xF-xS)-betaS*max(0,xS-xF)...

+omegaS*(xF+xS); % utils of S out, left, right

uS=svoS(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=svoF(:,1); % utility out

uF(:,2)=svoF(:,2).*(1-pr(:,t))+svoF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

% TYPE 8

t=8; % prosocial + low lambda + pessimistic belief
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lambdaF=gamma; % own responsiveness

lambdaS=0; % truncated belief about responsiveness of S

svoF=xF-alphaF*max(0,xS-xF)-betaF*max(0,xF-xS)...

+omegaF*(xF+xS); % utils of F out, left, right

uS=-svoF(:,2:3); % belief about preferences of S

pr(:,t)=exp(lambdaS*uS(:,2))./... % belief about choice probability

(exp(lambdaS*uS(:,1))+exp(lambdaS*uS(:,2)));

uF(:,1)=svoF(:,1); % utility out

uF(:,2)=svoF(:,2).*(1-pr(:,t))+svoF(:,3).*pr(:,t); % expected utility in

p_in(:,t)=exp(lambdaF*uF(:,2))./... % choice probability in

(exp(lambdaF*uF(:,1))+exp(lambdaF*uF(:,2)));

pi = s1*s2*s3*p_in(:,1)... % weighted choice probability in

+ s1*s2*(1-s3)*p_in(:,2)...

+ s1*(1-s2)*s3*p_in(:,3)...

+ s1*(1-s2)*(1-s3)*p_in(:,4)...

+ (1-s1)*s2*s3*p_in(:,5)...

+ (1-s1)*s2*(1-s3)*p_in(:,6)...

+ (1-s1)*(1-s2)*s3*p_in(:,7)...

+ (1-s1)*(1-s2)*(1-s3)*p_in(:,8);

MSD of First Mover Model

sdpi=(PI-pi).*(PI-pi); % 120x1 sq. dev.: obs. vs pred. in probabilities

msd=mean(sdpi); % mean of 120x1 squared deviations

end

% Author: Wasilios Hariskos, November 2012 %

16.30 reliability.m

clear all;

est=load(’ext_est_res.txt’); % estimation set of competition

pre=load(’ext_pred_res.txt’);% prediction set of competition

Trainings Sets and Validation Set

for i=1:119

training1(:,:,i)=[est; pre(1:i-1,:); pre(i+1:120,:)]; % LOOCV I

training2(:,:,i)=[pre(1:i-1,:); pre(i+1:120,:)]; % LOOCV II

end
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i=120;

training1(:,:,i)=[est; pre(1:119,:)]; % LOOCV I

training2(:,:,i)=pre(1:119,:); % LOOCV II

validation=pre; % LOOCV I and II

Out-of-Sample Fit LOOCV

for I=1:2 % first mover (I=1) or second mover (I=2)

for i=1:120 % 120 cross validation results

for cv=1:2 % LOOCV I (cv=1) or LOOCV II (cv=2)

if cv==1

training=training1; % training sets of LOOCV I

else

training=training2; % training sets of LOOCV II

end

M=1; % SPE

[sd_pre(i,M,I,cv),]=qre_msd([80 80],I,validation(i,:));

M=2; %QRE

p0=[0 0 0 0 0 0 0]; lb=p0; up=[];

[p,]=fmincon(@qre_msd,p0,[],[],[],[],lb,up,[],optimset(’Display’,’off’,...

’LargeScale’,’off’,’Algorithm’,’sqp’),I,training(:,:,i));

[sd_pre(i,M,I,cv),]=qre_msd(p,I,validation(i,:));

M=3; %FS-QRE

[p,]=fmincon(@qre_fs_msd,p0,[],[],[],[],lb,up,[],optimset(’Display’,...

’off’,’LargeScale’,’off’,’Algorithm’,’sqp’),I,training(:,:,i));

[sd_pre(i,M,I,cv),]=qre_fs_msd(p,I,validation(i,:));

M=4; %BO-QRE

[p,]=fmincon(@qre_bo_msd,p0,[],[],[],[],lb,up,[],optimset(’Display’,...

’off’,’LargeScale’,’off’,’Algorithm’,’sqp’),I,training(:,:,i));

[sd_pre(i,M,I,cv),]=qre_bo_msd(p,I,validation(i,:));

M=5; %CR-QRE

lb=[0 -1 -1 0 0 -1 -1];

[p,]=fmincon(@qre_cr_msd,p0,[],[],[],[],lb,up,[],optimset(’Display’,...

’off’,’LargeScale’,’off’,’Algorithm’,’sqp’),I,training(:,:,i));

[sd_pre(i,M,I,cv),]=qre_cr_msd(p,I,validation(i,:));

lb=p0;

if I==1

M=6; %7S

p=pred_f(training(:,:,i));

PIT=training(:,8,i);

alpha=regress(PIT,p);

alpha=alpha’/sum(alpha);
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p=pred_f(validation(i,:)); pi=sum(p.*repmat(alpha,1,1),2);

sd_pre(i,M,I,cv)=(validation(i,8)-pi).^2;

M=7; %SQRE

[p,]=fmincon(@sqre_sub_msd,p0,[],[],[],[],lb,up,[],optimset(’Display’,...

’off’,’LargeScale’,’off’,’Algorithm’,’sqp’),training(:,:,i));

[sd_pre(i,M,I,cv),]=sqre_sub_msd(p,validation(i,:));

M=8; %SVO-SQRE

[p,]=fmincon(@sqre_svo_sub_msd,p0,[],[],[],[],lb,up,[],optimset(’Display’,...

’off’,’LargeScale’,’off’,’Algorithm’,’sqp’),training(:,:,i));

[sd_pre(i,M,I,cv),]=sqre_svo_sub_msd(p,validation(i,:));

else

M=6; %7S

p=pred_s(training(:,:,i));

PRT=training(:,9,i);

beta=regress(PRT,p);

beta=beta’/sum(beta);

p=pred_s(validation(i,:)); pr=sum(p.*repmat(beta,1,1),2);

sd_pre(i,M,I,cv)=(validation(i,9)-pr).^2;

M=7; %SUM

[p,]=fmincon(@sum_ose_msd,p0,[],[],[],[],lb,up,[],optimset(’Display’,...

’off’,’LargeScale’,’off’,’Algorithm’,’sqp’),training(:,:,i));

[sd_pre(i,M,I,cv),]=sum_ose_msd(p,validation(i,:));

M=8; %TTB

[p,]=fmincon(@ttb_msd,p0,[],[],[],[],lb,up,[],optimset(’Display’,...

’off’,’LargeScale’,’off’,’Algorithm’,’sqp’),training(:,:,i));

[sd_pre(i,M,I,cv),]=ttb_msd(p,validation(i,:));

end

end

end

end

Display Tables

disptable(roundn([mean(sd_pre(:,:,1,1))’ mean(sd_pre(:,:,1,2))’...

mean(sd_pre(:,:,2,1))’ mean(sd_pre(:,:,2,2))’],-4),...

’LOOCV I-F|LOOCV II-F|LOOCV-I-S|LOOCV-II-S’,...

’SPE|QRE|FS-QRE|BO-QRE|CR-QRE|7S|OWN-I|OWN-II’)

LOOCV I-F LOOCV II-F LOOCV-I-S LOOCV-II-S

SPE 0.0532 0.0532 0.0071 0.0071

QRE 0.0137 0.0139 0.0057 0.0058

186



16 MATLAB Codes

FS-QRE 0.0121 0.0123 0.0056 0.0058

BO-QRE 0.0146 0.0144 0.0055 0.0056

CR-QRE 0.0121 0.0118 0.0051 0.0056

7S 0.0085 0.009 0.0042 0.0044

OWN-I 0.0082 0.0086 0.0038 0.004

OWN-II 0.0088 0.0079 0.004 0.0047

16.31 averaging.m

Please run reliability.m and matrices.m first to generate the data that are necessary for the
computations of averaging.m; the output of averaging.m contains the tables in Section 5.5.3
and Appendix 15.

averaging.m

clear all

load reliability.mat sd_pre p_pre

p=p_pre;

load matrices.mat PI PR pi_p pr_p

Model Sets

C = cell(8,1);

for k=1:8 % generates the 255 model sets

C{k,1}=combntns(1:8,k);

end

Predictions for Each Validation Procedure

p_pre(:,:,1,1)=pi_p;

p_pre(:,:,2,1)=p(:,:,1,1);

p_pre(:,:,3,1)=p(:,:,1,2);

p_pre(:,:,1,2)=pr_p;

p_pre(:,:,2,2)=p(:,:,2,1);

p_pre(:,:,3,2)=p(:,:,2,2);

P=[PI PR];
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Results

c=0;

set=zeros(255,8);

for k=1:8

M=C{k,1}’; % set of model sets M={M_1,...,M_j,...,M_m}

for Mj=1:size(M,2) % for each model set M_j

c=c+1; % (counts number of model sets)

set(c,1:size(M(:,Mj),1))=M(:,Mj)’; % save model set

for I=1:2

for i=1:3 % for each splitting procedure

mp(:,c,i,I)=mean(p_pre(:,M(:,Mj),i,I),2); % compute model set predictions

msd(c,i,I)=mean((mp(:,c,i,I)-P(:,I)).^2); % compute model set msd

vsd(c,i,I)=var((mp(:,c,i,I)-P(:,I)).^2); % compute model set vsd

end

end

end

end

for i=1:3 % optimal within procedures (owp)

for I=1:2

index(i,I)=sum((msd(:,i,I)==min(msd(:,i,I))).*(1:255)’); % find set index

owp(i,:,I)=set(index(i,I),:); % save set

msd_owp(i,I)=msd(index(i,I),i,I);% save msd

vsd_owp(i,I)=vsd(index(i,I),i,I);% save vsd

end

end

% optimal between procedures (obp)

mmsd=mean(msd,2);

for I=1:2

oindex(I)=sum((mmsd(:,:,I)==min(mmsd(:,:,I))).*(1:255)’); % find set index

obp(1,:,I)=set(oindex(I),:); % save set

end

for i=1:3

for I=1:2

msd_obp(i,I)=msd(oindex(I),i,I); % save msd

vsd_obp(i,I)=vsd(oindex(I),i,I); % save vsd

end

end

% best three models (btm)

for i=1:3

for I=1:2

mp_btm(:,i,I)=mean(p_pre(:,[6 7 8],i,I),2); % calculate predictions

msd_btm(i,I)=mean((mp_btm(:,i,I)-P(:,I)).^2); % calculate msd
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vsd_btm(i,I)=var((mp_btm(:,i,I)-P(:,I)).^2); % calculate vsd

end

end

% single best model (sbm)

I=1; %first mover

msd_sbm(:,:,I)=[ mean((mean(p_pre(:,6,1,I),2)-P(:,I)).^2)... % msd comp

mean((mean(p_pre(:,7,2,I),2)-P(:,I)).^2)... % msd LOOCV-I

mean((mean(p_pre(:,8,3,I),2)-P(:,I)).^2)]; % msd LOOCV-II

vsd_sbm(:,:,I)=[ var((mean(p_pre(:,6,1,I),2)-P(:,I)).^2)... % vsd comp

var((mean(p_pre(:,7,2,I),2)-P(:,I)).^2)... % vsd LOOCV-I

var((mean(p_pre(:,8,3,I),2)-P(:,I)).^2)]; % vsd LOOCV-II

I=2; % second mover

msd_sbm(:,:,I)=[ mean((mean(p_pre(:,7,1,I),2)-P(:,I)).^2)... % msd comp

mean((mean(p_pre(:,7,2,I),2)-P(:,I)).^2)... % msd LOOCV-I

mean((mean(p_pre(:,7,3,I),2)-P(:,I)).^2)]; % msd LOOCV-II

vsd_sbm(:,:,I)=[ var((mean(p_pre(:,7,1,I),2)-P(:,I)).^2)... % vsd comp

var((mean(p_pre(:,7,2,I),2)-P(:,I)).^2)... % vsd LOOCV-I

var((mean(p_pre(:,7,3,I),2)-P(:,I)).^2)]; % vsd LOOCV-II

Error and Variance

msd_f=[msd_sbm(:,:,1); msd_btm(:,1)’; msd_owp(:,1)’; msd_obp(:,1)’]

vsd_f=[vsd_sbm(:,:,1); vsd_btm(:,1)’; vsd_owp(:,1)’; vsd_obp(:,1)’]

msd_s=[msd_sbm(:,:,2); msd_btm(:,2)’; msd_owp(:,2)’; msd_obp(:,2)’]

vsd_s=[vsd_sbm(:,:,2); vsd_btm(:,2)’; vsd_owp(:,2)’; vsd_obp(:,2)’]

msd_f =

0.0083 0.0082 0.0079

0.0072 0.0071 0.0074

0.0068 0.0067 0.0063

0.0071 0.0069 0.0063

vsd_f =

1.0e-003 *

0.2069 0.2299 0.1979

0.1644 0.1569 0.1747

0.1456 0.1504 0.1474

0.1530 0.1565 0.1474
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msd_s =

0.0038 0.0038 0.0040

0.0037 0.0038 0.0041

0.0033 0.0034 0.0036

0.0033 0.0034 0.0037

vsd_s =

1.0e-003 *

0.1112 0.1112 0.1276

0.1007 0.1005 0.1231

0.0754 0.0814 0.1001

0.0734 0.0790 0.1064

Optimal Model Sets

opt_m_f=[owp(:,1:3,1); obp(:,1:3,1)]

opt_m_s=[owp(:,1:4,2); obp(:,1:4,2)]

variance_ttb=var((mean(p_pre(:,8,1,2),2)-P(:,2)).^2)

opt_m_f =

6 8 0

3 6 7

5 6 8

5 6 8

opt_m_s =

2 6 7 8

2 6 7 8

5 6 7 0

2 6 7 0
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variance_ttb =

1.1349e-004

16.32 matrices.m

clear all

Model Predictions for Competition Procedure

spe; m=1; pr_p(:,m)=pr_pre; pi_p(:,m)=pi_pre;

qre; m=2; pr_p(:,m)=pr_pre; pi_p(:,m)=pi_pre;

qre_fs; m=3; pr_p(:,m)=pr_pre; pi_p(:,m)=pi_pre;

qre_bo; m=4; pr_p(:,m)=pr_pre; pi_p(:,m)=pi_pre;

qre_cr; m=5; pr_p(:,m)=pr_pre; pi_p(:,m)=pi_pre;

seven_strategies; m=6; pr_p(:,m)=pr_pre; pi_p(:,m)=pi_pre;

sqre_sub; m=7; pi_p(:,m)=pi_pre;

sqre_svo_sub; m=8; pi_p(:,m)=pi_pre;

sum_ose; m=7; pr_p(:,m)=pr_pre;

ttb; m=8; pr_p(:,m)=pr_pre;

Correlation Matrix Predictions First Mover (Prediction Set)

corr_p=corr(pi_p)

corr_p =

1.0000 0.9212 0.9321 0.9315 0.9277 0.9026 0.8992 0.8895

0.9212 1.0000 0.9848 0.9805 0.9816 0.9507 0.9684 0.9627

0.9321 0.9848 1.0000 0.9951 0.9985 0.9496 0.9741 0.9692

0.9315 0.9805 0.9951 1.0000 0.9936 0.9383 0.9668 0.9618

0.9277 0.9816 0.9985 0.9936 1.0000 0.9482 0.9762 0.9720

0.9026 0.9507 0.9496 0.9383 0.9482 1.0000 0.9787 0.9779

0.8992 0.9684 0.9741 0.9668 0.9762 0.9787 1.0000 0.9985

0.8895 0.9627 0.9692 0.9618 0.9720 0.9779 0.9985 1.0000
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Appendix D

MSD Matrix Prediction Set First Mover

data=load(’ext_pred_res.txt’); % load prediction set data

PI=data(:,8);

msd_c=zeros(8,8);

for r=1:8

for c=1:8

pi_c(:,r,c)=mean(pi_p(:,[r c]),2);

sdpi_c(:,r,c)=(PI-pi_c(:,r,c)).*(PI-pi_c(:,r,c));

msd_c(r,c)=mean(sdpi_c(:,r,c));

end

end

msd_c_p=msd_c

msd_c_p =

0.0532 0.0233 0.0247 0.0261 0.0245 0.0182 0.0197 0.0184

0.0233 0.0141 0.0129 0.0142 0.0128 0.0079 0.0093 0.0087

0.0247 0.0129 0.0140 0.0152 0.0140 0.0076 0.0097 0.0092

0.0261 0.0142 0.0152 0.0172 0.0152 0.0084 0.0108 0.0102

0.0245 0.0128 0.0140 0.0152 0.0143 0.0076 0.0100 0.0095

0.0182 0.0079 0.0076 0.0084 0.0076 0.0083 0.0070 0.0068

0.0197 0.0093 0.0097 0.0108 0.0100 0.0070 0.0094 0.0091

0.0184 0.0087 0.0092 0.0102 0.0095 0.0068 0.0091 0.0090

Correlation Matrix Predictions First Mover (Prediction Set)

corr_p_S=corr(pr_p)

corr_p_S =

1.0000 0.9971 0.9966 0.9957 0.9915 0.9908 0.9914 0.9911

0.9971 1.0000 0.9985 0.9972 0.9901 0.9882 0.9894 0.9895

0.9966 0.9985 1.0000 0.9997 0.9915 0.9883 0.9914 0.9915

0.9957 0.9972 0.9997 1.0000 0.9929 0.9891 0.9927 0.9927

0.9915 0.9901 0.9915 0.9929 1.0000 0.9953 0.9962 0.9962

0.9908 0.9882 0.9883 0.9891 0.9953 1.0000 0.9973 0.9974

0.9914 0.9894 0.9914 0.9927 0.9962 0.9973 1.0000 0.9996

0.9911 0.9895 0.9915 0.9927 0.9962 0.9974 0.9996 1.0000
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16 MATLAB Codes

MSD Matrix Prediction Set First Mover

data=load(’ext_pred_res.txt’); % load prediction set data

PR=data(:,9);

msd_c=zeros(8,8);

for r=1:8

for c=1:8

pr_c(:,r,c)=mean(pr_p(:,[r c]),2);

sdpr_c(:,r,c)=(PR-pr_c(:,r,c)).*(PR-pr_c(:,r,c));

msd_c(r,c)=mean(sdpr_c(:,r,c));

end

end

msd_c_p_S=msd_c

save matrices.mat

msd_c_p_S =

0.0071 0.0060 0.0060 0.0058 0.0059 0.0044 0.0042 0.0041

0.0060 0.0057 0.0055 0.0053 0.0050 0.0036 0.0035 0.0035

0.0060 0.0055 0.0056 0.0056 0.0052 0.0036 0.0036 0.0037

0.0058 0.0053 0.0056 0.0056 0.0053 0.0036 0.0037 0.0037

0.0059 0.0050 0.0052 0.0053 0.0067 0.0047 0.0045 0.0045

0.0044 0.0036 0.0036 0.0036 0.0047 0.0043 0.0037 0.0038

0.0042 0.0035 0.0036 0.0037 0.0045 0.0037 0.0038 0.0038

0.0041 0.0035 0.0037 0.0037 0.0045 0.0038 0.0038 0.0038
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