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Abstract

Stimulation with rhythmic light flicker (photic driving) plays an important role in the diagnosis of schizophrenia, mood
disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency
(entrainment) is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the
mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a
modified Jansen and Rit neural mass model (NMM) of a cortical circuit is used. This mean field model has been designed to
strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon
observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can
already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire
parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power
spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can
give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model
was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of
brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception
and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further
experiments for improving the entrainment effect.
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Introduction

Electrophysiological measurements such as magneto- and electro-

encephalography (M/EEG), local field potentials (LFP) or single unit

recordings contain rich information on brain function, which may

be related to specific cognitive processes, to general brain states, or

to certain pathological conditions. For example, it is known that

stimulation by repetitive light flashes entrains the intrinsic alpha

EEG rhythm (i.e., frequency entrainment). Neurons in the human

visual cortex synchronize their firing to the frequency of flickering

light (at rates of about 5 to 30 Hz), causing the EEG alpha

frequency to change toward the stimulation frequency [1,2,3].

Clinically, this resonance effect is called photic driving. The effect

of photic stimulation of the human EEG was first studied in the

1930s and 40s [4]. As early as 1947, photic driving was reported in

three cases as a potential cause for epileptic activity in patients [5].

A review of the clinical routine can be found in Niedermeyer et al.

[4]. The occurrence of this effect is often interpreted as an

indicator for the functional flexibility of the cortex and thus as a

sign of healthiness. Today, photic driving is widely used as an

activation method in clinical practice, for instance, in epilepsy,

migraine, schizophrenia or depression [6,7,8]. Note, however, that

only 50 to 80% of healthy volunteers show a response in the alpha

range of EEG [9,10].

Basic properties of the alpha rhythm during photic driving

have been investigated by electroencephalographic methods

[11,12,13,14]. A closer examination of electroencephalographic

photic driving effects was given by Herrmann [2]. In that

investigation, a flicker stimulus from 1 to 100 Hz in 1-Hz steps

was presented. Miranda de Sa and Infantosi [10] stimulated at 4,

5, 6, 8, 10, and 12 Hz and showed that stimulation close to the

alpha peak was much more effective. The quantification of photic

driving from EEG as well as MEG recordings was carried out for

the first time by Kalitzin and Parra [15,16]. They estimated the

phase clustering index of harmonically related frequency compo-

nents in the EEG and MEG of normal controls and epileptic

patients during light stimulations with 10, 15 and 20 Hz.

Topographic effects of encephalographic photic driving in the

case of children and adolescents were described by Lazarev et al.

[9,17], for patients with migraine by de Tommaso et al.[18], and

for patients with schizophrenia by Jin et al. [19].

In order to gain further insight into mechanisms underlying

such brain resonance effects and their relevance to brain function

and pathology, as well as to make predictions concerning the

stimulation parameters, generative models can be used. Such

models are called biologically plausible if their state variables and

parameters are biophysically meaningful. By fitting the model

parameters to measurements, one can test hypotheses on the
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implementation of brain function. To ensure that this inversion is

mathematically tractable and at the same time physically

meaningful, the model must strike a balance between mathemat-

ical simplicity and biological realism. One class of models designed

to meet these criteria is referred to as neural mass models (NMMs)

(e.g., [20,21,22,23,24,25,26]). NMMs describe neural function at a

mesoscopic level [27,28], in contrast to single neuron models such

as simple integrate-and-fire models [29] and the more elaborate

Hodgkin and Huxley type of models (e.g., [30,31]). NMMs

quantify the mean firing rates and mean postsynaptic potentials

(PSPs) of neuronal populations, the neural masses (NMs). Although,

at the microscopic level, single neurons are considered the primary

computational units of the brain’s architecture [32,33], it is also

widely accepted that relevant information processing underlying

brain function in both healthy and diseased states can be carried

out by ensembles of interacting neurons at the mesoscopic level

(e.g., [27,28,34,35,36,37,38]). In other words, NMMs describe

brain activity on a scale that is highly relevant to brain function

[39,40,41]. Moreover, when EEG or MEG data are used, NMMs

have also the advantage that they predict exactly what is measured

by these modalities, namely coherent activity in entire populations

of neurons.

However, this type of modeling also involves a number of

simplifications that may lead to limitations. First of all, it is based

on a simplified notion of the function of a neuron, namely the

firing rate model: The neuron convolves the rate of incoming

spikes with an alpha-shaped function and thereby generates a

change in membrane potential (PSP), and produces an output

spike rate that is a non-linear (e.g., sigmoid) function of the

membrane potential. These are the most important aspects of

neuronal function. However, in the brain, things are usually more

complicated. For examples, , modeling is made difficult due to

feedback influence of action potentials on the dendritic membrane

potentials (back propagation) [42], specific intrinsic firing patterns

(e.g., bursting) [43] and dendritic hierarchies [44]. It remains to be

investigated if and to what extent such physiological details affect

the properties of NMs at the mesoscopic level. A second

simplification that leads to limitations is that spike time dependent

effects will be missed since the model relies on firing rates rather

than on actual spikes. Third, as the distributions of the neural

states are simply described by their means, the impact of higher

statistical moments is ignored. In order to capture the variability

within a NM, one may use the Fokker-Planck formalism

[45,46,47]. Finally, NMMs approximate the spatial scale of

neuronal populations to be point-like [22,23,24,28], ignoring the

domain of spatial dynamics. In that line, the approach can be

generalized, leading to neural field models [20,25,26,27,28,48,49],

which take into account the spatial extent of neural circuitry by

dealing with aggregated activities in the vicinity of a given location.

This puts field theories somewhere between neural mass theories

and discrete neuronal networks, allowing them to address, for

instance, distance-dependent delays. A quantitative analysis of

neural field models can be found in Atay and Hutt [50,51], for

example.

In this work, we use a particular local network of NMs first

described by Jansen and Rit [23,52], based on earlier works of

Lopes da Silva et al. [24,53] and Zetterberg et al. [54]. This NMM

comprises an elementary circuit of three interconnected NMs (i.e.,

pyramidal cells and excitatory and inhibitory interneurons) meant

to account for a cortical area, such as the primary visual cortex in

our photic driving experiment. Although local neuronal circuits

can be very complex [55] and may be modeled using more than

three NMs (e.g., [56]), the circuit used here is the most reduced

representation of the features that are relevant for the temporal

dynamics, that is, positive and negative feedback loops. The

Jansen and Rit structure has been shown to account for both

oscillatory [57] and seizure-like EEG recordings [58,59]. Its

dynamic behavior, in terms of stabilities and bifurcations, was first

characterized by Grimbert and Faugeras [60] and, more generally,

by Touboul [61] and Spiegler et al. [62]. Several such NMMs can

be combined to describe networks of coupled cortical areas and

account for more complex transient and oscillatory behaviors

[23,57,59,63,64,65]. The Bayesian inversion of such network

NMMs given M/EEG data (referred to as dynamic causal modeling

(DCM) [64,66]) has been successfully used for the analysis of

event-related [64,67,68] and steady-state responses [69].

To date, the dynamics of this system has been systematically

investigated only under the assumption of constant extrinsic input

levels, thereby allowing the system to settle in a stable state (e.g.,

fixed point or limit cycle) [60,61,62]. However, in a photic driving

experiment, one has to consider rhythmic input. Moreover, the

model’s response to such input is also of great importance in many

other settings, since, in the brain, such local neural circuits are

embedded in global brain networks and may experience high

amplitude time-varying input from other parts of the brain.

Because neuronal ensembles tend to oscillate intrinsically, such

input is very often periodic, as evidenced by the widespread

occurrence of rhythmic activity in both extracranial and

intracranial recordings [70].

In this paper, we use a continuous-time periodic function as

model input approximating a periodic train of pulses. In this

continuous function, each single pulse is similar (but not equal) to

the single event used by Jansen and Rit for eliciting visual evoked

potentials [23,52], or used in dynamic causal modeling (e.g.,

[63,66]). We systematically vary both amplitude (intensity) and

frequency of the stimulation within the effective ranges provided

by Spiegler et al. [62]. We find the frequency entrainment effect

spreading over broader stimulus frequencies for higher stimulus

intensities, while away from the entrainment ranges, we find

complex behavior, including periodic, quasi-periodic, and chaotic

dynamics. The latter behavior, in particular, provides continuous

spectra. Networks of such chaotic NMMs (incorporating network

variability, for example, by different characteristic constants of

time and potential) can be used to describe colored noise sources

that produce continuous portions in the spectra, such as 1/f-

characteristics, that are commonly observed in M/EEG or LFP

data [71]. Finally, we fit the output of the periodically forced

NMM to data from the photic driving experiment in terms of the

largest Lyapunov exponent and frequency detuning. The largest

Lyapunov exponent measures the exponential separation or

Author Summary

Neuroscience aims to understand the enormously complex
function of the normal and diseased brain. This, in turn, is
the key to explaining human behavior and to developing
novel diagnostic and therapeutic procedures. We develop
and use models of mean activity in a single brain area,
which provide a balance between tractability and plausi-
bility. We use such a model to explain the resonance
phenomenon in a photic driving experiment, which is
routinely applied in the diagnosis of various diseases
including epilepsy, migraine, schizophrenia and depres-
sion. Based on the model, we make predictions on the
outcome of similar resonance experiments with periodic
stimulation of the patients or participants. Our results are
important for researchers and clinicians analyzing brain or
behavioral data following periodic input.
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convergence of nearby trajectories. It thereby quantifies the

predictability or, at the other extreme, the chaoticity of the

behavior of the system and has been demonstrated to be an

important marker for pathologically altered brain dynamics,

especially in epilepsy [72,73,74]. In this way, we show that the

NMM is a suitable model for the dynamics of brain resonance

phenomena at the cortical level and demonstrate that useful

predictions concerning the parameter choice of entrainment

experiments can be derived.

To our knowledge, this is the first study to investigate a photic

driving experiment using a NMM. We demonstrate that with this

NMM, one can explain effects of complex behavior in such an

experiment. The results also indicate that a relatively simple model

of a local neural circuit is capable of producing surprisingly

complex and diverse phenomena, which are observable in brain

data and relevant to the explanation of brain function.

Results

In our previous work on the extended Jansen and Rit neural

mass model (NMM) for a cortical area [62], we found a self-

sustained oscillation due to a stable limit cycle with a certain

intrinsic frequency for constant input. Forcing such a limit cycle

with periodic input to the NMM causes accelerations and/or

decelerations of the oscillation, depending on the timing. If their

cumulative effect is non-zero, entrainment occurs. For more

details on the precise mechanism of entrainment effects, see

[75,76].

Indeed, we observe frequency entrainment, that is, the cortical

area responds with the stimulus frequency instead of the intrinsic

frequency, thus forming a plateau in the frequency-detuning

curves (see colored ranges in Figure 1). The detuning curve shows

intrinsic behavior that is characterized by a typical repetitive s-

shape. With increasing frequency, this s-shape becomes more

pronounced. For the model with the stimulus amplitude that fits

the experimental data best, this s-shape pattern of the detuning-

curve is frequently interrupted near the stimulus hitting the

intrinsic frequency 0.5#g/gint#1.5 by complex behavior such as

chaos (see below, as well as Figure 1 and Figure 2). Apart from the

interruption of the repetitive s-shape pattern by irregularities

around the intrinsic frequency gint, the general trend of frequency

detuning seems to be shifted towards the intrinsic frequency gint by

the response frequencies gresp, which explains the experimental

data (see B in Figure 2). Moreover, stimulating near the intrinsic

frequency the response matches the stimulation frequency and

entrainment occurs (see Figure 1 and Figure 2).

Outside the entrainment ranges, more complex dynamics,

including periodic, quasi-periodic and chaotic behavior, are

observed (see Figure 3). Periodic and quasi-periodic behavior are

associated with discrete power spectra with frequency peaks gi that

are commensurable (i.e., gki gi = 0 for some non-zero integers ki)

for the periodic state and incommensurable (i.e., gki gi?0 for any

set of non-zero integers ki) for the quasi-periodic case. Chaotic

behavior is indicated by non-closed bounded trajectories in state

space, broadband continuous spectra and positive Lyapunov

exponents (see Figure 4). Here, chaotic regimes arise by traversing

a homoclinic Shil’nikov bifurcation (see Figure 13 in [62]) for non-

rational ratios between the frequencies of the stimulation and the

intrinsic model kinetics. This route to chaos [77] has also been

identified in more theoretical neural models (e.g., [78,79]). Arnol’d

tongues or mode-locking structures (i.e., entrainment regions in

the parameter space [76]) are apparent in Figure 4 as a result of

negative largest Lyapunov exponents. At low amplitudes, we

observe several distinct ranges of such mode locking, which seem

to merge or overlap at higher amplitudes. Note that chaotic

‘‘islands’’ occur at incommensurable ratios between stimulation

frequencies and intrinsic limit cycles and interrupt frequency

locking. For example, at a stimulus amplitude of f = 0.8, entrain-

ment occurs for stimulus frequencies between 0,g#0.06075,

0.06831#g#0.07403 and 0.09474#g#0.1206 interrupted by

chaotic regimes between 0.004835#g#0.03464. At a stimulus

amplitude of f = 2.4, entrainment occurs for stimulus frequencies

between 0,g#0.1447, 0.1545#g#0.1608 and g.0.1749 inter-

rupted by chaotic regimes between 0.0365#g#0.04397, 0.05237#

g#0.06818 and 0.08906#g#0.09547. Note that these entrainment

ranges are rough estimates due to the finite sampling of the

parameter space and due to the occurring ‘‘islands’’ of chaos. The

chaotic regimes that are present in the parameter space feature a

single positive largest Lyapunov exponent that is equal to the

entropy of the attracting set (see Figure 4).

By studying the Lyapunov spectra, configurations are discov-

ered where the system has two zero Lyapunov exponents and

evolves on a two-dimensional invariant torus, indicating quasi- and

bi-periodicity (see Figure 5). In general, the model is dissipative

(i.e., the sum of Lyapunov exponents is negative) and does not

exhibit hyperchaos, which is a higher form of chaos with at least

two directions of hyperbolic instability on the attractor [80] (see

Materials and Methods for further explanation), as seen from the

observation that the second largest Lyapunov exponent is non-

positive and the Kaplan-Yorke dimension (see Materials and

Methods) never reaches or exceeds the value of two (see Figure 6).

This means that the dynamics are low dimensional, not only for

the periodic, but also for the chaotic regimes, as compared to the

dimensionality of the system (which is six plus one dimension for

the force). In general, the maximum Kaplan-Yorke dimension is a

non-integer because of the complex geometry of the attractor. The

periodic forcing seems to work mostly in the direction of

entrainment, and although there are occasional ‘‘islands’’ of

chaotic regimes, the regular forcing does not let the dynamics

become exceedingly chaotic.

Figure 1. Frequency entrainment effects in a periodically
forced neural mass model of a cortical area. A frequency-
detuning curve refers to the ratio of stimulus to characteristic mean
response frequency plotted against the ratio of stimulus to intrinsic
frequency, for the normalized stimulus amplitude of 1.5. The
entrainment ranges around the intrinsic frequency and its subharmo-
nics are shown in red and in blue/green. Such an entrainment around
the intrinsic frequency can be found in photic driving experiments (e.g.,
[81]).
doi:10.1371/journal.pcbi.1002298.g001

Modeling Brain Resonance Phenomena

PLoS Computational Biology | www.ploscompbiol.org 3 December 2011 | Volume 7 | Issue 12 | e1002298



Furthermore, we find that the model is indeed able to explain

frequency entrainment that is observable during a photic driving

experiment (see also [1,2,81]). Note that Figure 5 in Schwab et al.

[81] contains an error in the labeling of the y-axes. Each graph in

this figure correctly plots the ratio of stimulus to response

frequency (y-axis) against the ratio of stimulus to alpha frequency

(x-axis). In this case, a horizontal line indicates an entrainment

effect, while absence of entrainment would result in a diagonal

line. We estimated the largest Lyapunov exponents from the data

(see Methods section). In order to probe the stability of this

estimate, we repeated it with the same data after adding various

levels of Gaussian noise. The pattern of the Lyapunov exponents

as function of stimulus frequency appears to be quite stable except

for very low signal-to-noise-ratios SNR#3 dB (see supplementary

Figure S1). We compare our model outcome with these

experimental Lyapunov exponents (see the section Experimental

data in the Materials and Methods section and Figure 7 for the

experimental paradigm) and find a particular stimulus amplitude

for which, for all ten subjects, the model predicts Lyaponov

exponents that are in close agreement with those estimated from

the experimental data (Figure 8 and Table 1), with the amplitude

being close to f = 3.6692 for all ten subjects. In seven of the

subjects, the correlation between model prediction and measure-

ment over stimulus frequencies was significant (p,0.05, corrected).

A bootstrap test yielded a probability of error (significance) for the

mean over subjects of 6.2% (see also Figure 8 (B) and Table 1). For

three subjects (numbers 3, 6 and 7), the individual fit was not

significant (see Table 1). Interestingly, this is reflected in the means

and the standard deviations of the shift-and-scale parameters u and

v (see the section Comparison in the Materials and Methods

section and supplementary Figure S2). For the corresponding

model configuration, we present a compact representation in

Figure 9 and describe the system states qualitatively in Table 2. In

the range of stimulus frequency g between 0 and 0.0534, the

system performs limit cycles and appears to undergo a cascade of

period-adding bifurcations [82] with descending stimulus frequen-

cy. This local bifurcation consists of saddle-node bifurcations in

which a (n+1)-periodic orbit arises out of a n-periodic orbit for n M
N1 [83,84]. For stimulus frequencies g above 0.0534, ranges of

chaotic, periodic and quasi-periodic behavior occur. Due to the

high dimensionality of the system, an instructive presentation in

the form of a video is available, comprising orbits (PSPs), time

series, and power spectra (see Video S1).

Discussion

In this study, we analyzed the behavior of the periodically

forced extended Jansen and Rit neural mass model (NMM) as a

function of amplitude and frequency of the stimulus within

biologically plausible ranges. The system investigated exhibits

interesting and complex dynamics, including chaos. As an

important result, the model was able to account for the EEG

dynamics of a photic driving experiment. Photic driving paradigms

are of great importance in clinical practice [6,7,8]. In this type of

experiment, the dominant brain rhythm during rest, the alpha

rhythm (around 10 Hz), is entrained by a periodic visual stimulus.

Relation to previous results
It should be pointed out that many aspects of our results are in

close agreement with previous studies of other types of periodically

driven oscillators (see, for example, [75,76,85]). Frequency

entrainment effects have been described in, for example, the

Rössler system [86], the Oregonator model [87] describing

chemical oscillators such as the Belousov-Zhabotinsky reaction

(e.g., [88]), the Duffing oscillator describing mechanical pendu-

lums with flexible elements [89,90], the van der Pol oscillator

modeling electrical triode circuits [91], the Lorenz system

describing turbulent convection in hydrodynamics [92,93], and

the Hodgkin-Huxley model of a neuron [94]. Overlapping or

merging mode-locking regions in the parameter space were also

discovered in a periodically driven van der Pol oscillator [95].

While reverse periodic-adding cascades appear to be the route to

chaos in this study of a periodically forced Jansen and Rit model,

in a number of previously investigated systems, cascades of period-

doubling led to chaos, for example, in the Duffing oscillator

[89,90,96], the Lorenz system [93,97], the Rössler system [98], the

Brusselator [99] and the Oregonator [87]. In the van der Pol

oscillator, both routes – period-adding [83,100] and period-

doubling cascades – occur [91,101]. On the other hand, our

results concerning the route to chaos are in line with findings in a

periodically stimulated excitable neural relaxation oscillator [27]

and a simple model of the Belousov-Zhabotinsky reaction [102].

Figure 2. Entrainment effect found in the experimental data and model. For the experiment, the mean over subjects is shown as white lines
and the region between the 5% and 95% quantiles is covered by red areas. For the model (black dots), the amplitude configuration that best fits the
largest Lyapunov exponents of the experiments is used (see Comparison section in Materials and Methods). The entrainment effect is shown for A
the stimulus frequency range of the model and B the stimulus range used in the experiments (green area in A).
doi:10.1371/journal.pcbi.1002298.g002

Modeling Brain Resonance Phenomena
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Crevier and Meister [103] describe retinal (electroretinogram, ERG)

and cortical responses (LFP and visual evoked potential, VEP) to

periodic flashes of light in salamander and humans. They also

found complex behavior such as frequency entrainment in

experimental data as well as in their model. In contrast to our

findings, they found a cascade of period-doubling bifurcations (in

both data and model) that leads to chaotic regimes in their model.

Finally, quasi-periodic solutions have also been reported for

various systems, such as the van der Pol oscillator [91,101], the

Oregonator [87], the Rössler system [98] and the Hodgkin-Huxley

model [94,104].

Modeling the dynamics in photic driving data
We applied the concept of a periodically forced oscillator to

model brain resonance effects. In the brain, such periodic input

might stem from rhythmic stimulation of the brain, such as in the

Figure 3. Complex behavior occurring in the periodically forced neural mass model of a single area. Orbits, time series, and power
spectra (columns) are shown for three configurations (rows) displaying (top-down) periodic (normalized input amplitude; normalized input
frequency: 3.6301; 9.33?1022), quasi-periodic (1.5; 7.59?1022) and chaotic behavior (3.6301; 7.05?1022). The orbits are in the state space of normalized
postsynaptic potentials of pyramidal cells caused by both interneurons (x30) as well as at both excitatory and inhibitory interneurons caused by
pyramidal cells (x31 and x32). The red circle represents the stable limit cycle (i.e., harmonic oscillation) arising from Andronov-Hopf bifurcations
performed by the unperturbed system. The time series and the power spectra are shown for the normalized postsynaptic potentials of pyramidal
cells (which are related to M/EEG). Periodic behavior is characterized by a closed orbit (limit cycle) and a discrete power spectrum with peaks at
commensurable frequencies. Quasi-periodic behavior is characterized by trajectories forming an invariant n-dimensional torus and discrete power
spectra with peaks at incommensurable frequencies. Chaotic behavior is indicated by a strange attractor, that is, a bounded attracting set in which all
trajectories are unstable and nearby trajectories diverge locally from each other exponentially, and a broadband power spectrum.
doi:10.1371/journal.pcbi.1002298.g003
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photic driving paradigm, or from the output of other oscillating

brain areas. Such coupling between (oscillating) processes inside and

outside the brain has been discussed as important for the processing

of information (e.g., [105,106,107,108,109]). We described the

dominant intrinsic brain rhythm using the NMM performing a self-

sustained oscillation, generated by an Andronov-Hopf bifurcation

[62]. Generally, resonance phenomena such as frequency entrain-

ment in photic driving experiments can be explained by the concept

of a periodically forced oscillator. Applying periodic input to an

oscillatory system will change the current phase of the oscillation

and frequency entrainment (i.e., phase locking) occurs if the sum of

phase changes is nonzero over time [75] (see Results for more

details). It is expected that the dynamics of the system depend on

timing, that is, the ratio between stimulus and intrinsic frequencies,

as well as the intensity of stimulation. While the general trend of the

frequency-detuning curves is similar for our model and experimen-

tal data, there are numerous deviations (see Figure 2). These might

be explained by the simplicity of the model. In the brain, many

neuronal circuits are likely to be concurrently active and deviating

behavior might be canceled out.

In our simulations, we found that the dynamics of the

periodically forced extended Jansen and Rit NMM feature a rich

mosaic of complex behavior (Figure 3). From the parameter space

analysis presented in Figure 4, it can be seen that both flicker

intensity and frequency are critical parameters. As expected based

on theory [75,76], the state space analysis reveals that the system is

entrained by the stimulus frequency (see Figure 1) where the

entrainment regions (i.e., plateaus in the frequency-detuning

curve) around the intrinsic frequency become wider with

increasing stimulus intensity (results not shown). Also, stimulus

Figure 4. Largest Lyapunov exponent in parameter space. The map shows the largest Lyapunov exponent l1 as a function of stimulus
amplitude and frequency, indicating the sensitivity of the periodically forced neural mass model to initial conditions. Positive exponents (magenta to
black) reflect diverging trajectories irrespective of how close they are, and thus chaos in the system. They also measure the entropy of an attracting
set for all cases because the maximum number of positive Lyapunov exponents for any parameter configuration is one. Zero exponents (white)
indicate neutral stability, and negative exponents (cyan to yellow) reflect frequency locking. Arnol’d tongue structures (i.e., resonance zones) are
indicated by negative largest Lyapunov exponents due to the phase locking between system kinetics and the stimulus. The red arrow indicates the
amplitude for which the experimental data fits best (see Figure 8 and Comparison section in Materials and Methods). Several parameter regions with
scattered, presumably fractal patterns of chaotic regime are shown at a finer resolution of normalized stimulus amplitude and frequency.
doi:10.1371/journal.pcbi.1002298.g004
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frequencies below the intrinsic frequency lead to decelerations of

the intrinsic rhythm of the modeled cortex and vice versa. This

phenomenon is reflected by the ratio of stimulus to response

frequencies g/gresp above and below the diagonal in Figure 1 for

stimulus frequencies below or above the intrinsic frequency (i.e.,

g/gint,1 and g/gint.1), respectively.

In regions of the parameter space without entrainment,

complicated interaction between stimulus and intrinsic kinetics

leads to periodic, quasi-periodic, and chaotic behavior, as indexed

by the largest Lyapunov exponents and the Kaplan-Yorke

dimension. Areas with different dynamic behavior form fractal

structures in parameter space (Figure 4 to Figure 6) so that

rhythmic and chaotic brain states are found virtually next to each

other and even small parameter changes can give rise to a switch

from one to another. For these parameter configurations, different

forms of the extrinsic periodic input would affect the specific

pattern of chaotic regimes in the parameter space, but not the

qualitative behavior if the parameter of the stimulus shape d
ranges between 109 and 130, as was found by additional

simulations with different stimulus shape parameters (results not

shown). On this account, the shape of the extrinsic input is an

important model parameter for investigating the occurrence of

complex regimes that needs to be investigated in the future.

It should, however, be pointed out that this result has been

obtained from a purely deterministic model without any added or

modulating noise. If noise is added to the input, this would cause

jitter in its amplitude and frequency, and thereby impose a blur on

the pattern depicted in Figure 4. However, the gross patterns are

expected to survive; that is, areas with a high density of ‘‘chaotic’’

configurations (e.g., around 6 Hz and amplitudes between 4 and

5 mV) will feature a lower degree of predictability than areas

without any configurations with positive largest Lyapunov

exponents (e.g., around 11 Hz, same amplitude range). Strikingly,

this is corroborated by the fact that the characteristic patterns of

unpredictability generated by the model were also found with

reasonable accuracy in the noisy experimental data (Figure 8). We

identified a particular stimulus amplitude, where, for all subjects,

the Lyapunov exponents are in close agreement between

experiment and model (Figure 8 and Table 1). We found that

the profile of the characteristic Lyapunov spectra for the stimulus

amplitude that best fits the data is preserved when noise is added

to the input for a signal-to-noise-ratio (SNR) up to 10 dB (for more

details, see Model in the Materials and Methods section). The

intensity that best fits our experimental data is located in the upper

portion of the effective range for exciting inhibitory interneurons.

Since the largest Lyapunov exponent reflects fundamental

properties of the current dynamic regime of a system (as

evidenced, for example, by its sensitivity to pathological states of

the brain, such as epilepsy, see [72,73,74]), the fact that our model

predicts its dependence on the most important stimulus parameter

(frequency) corroborates the validity of the model.

Consequently, we predict that a decrease in stimulus intensity in

photic driving experiments would shrink and an increase would

broaden the ranges of frequency entrainment (i.e., the plateaus in

the frequency-detuning curve). Our model also predicts that

saturation effects become important starting with approximately

1.3 times the currently applied stimulus intensity and for intensities

close to zero. A stimulus increase between 1 and 1.3 times the

current intensity could lead to an improved entrainment effect

(i.e., broadened range). Such broadening of the entrainment range

is particularly important because in clinical practice, the individual

alpha frequency is usually unknown. It is important to know how

great an increase in the stimulus intensity still improves the

entrainment effect and hence makes the photic driving more

reliable.

Although the effect of photic driving has long been known, and

standard examination in neurology includes intermittent photic

stimulation in patients with suspected photosensitive epilepsy, the

exact pathomechanism is not well understood. It is known that the

photoparoxysmal response (PPR) is inheritable. In terms of electro-

physiology, photosensitive epilepsy seems to be associated with

changes in oscillatory activity. For example, Parra et al. [16] found

Figure 5. Occurrence of quasi-periodic behavior forming a two-
torus surface in state space. Two-dimensional tori are indicated by
two zero Lyapunov exponents (shown in black dots) in the parameter
space of stimulus amplitude and frequency. The red arrow indicates the
amplitude for which the experimental data fits best (see Figure 8 and
Comparison section in Materials and Methods). The parameter regions
of chaotic patterns that were selected for recomputing at a finer
resolution (see Figure 4 and Figure 6) appear here mostly as white
areas.
doi:10.1371/journal.pcbi.1002298.g005

Figure 6. Kaplan-Yorke dimension of the periodically forced
neural mass model in parameter space. The Kaplan-Yorke
dimension DKY given by Equations (8) and (9) never goes above 1.7,
thus hyperchaos does not exist in the model. The red arrow indicates
the amplitude for which the experimental data fits best (see Figure 8
and Comparison section in Materials and Methods). Several parameter
regions with scattered, presumably fractal, patterns of chaotic regime
were selected for recomputing at a finer resolution of normalized
stimulus amplitude and frequency.
doi:10.1371/journal.pcbi.1002298.g006
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enhanced gamma band synchrony and hypothesize that ‘‘ … some

sort of recruitment or dynamic capture of neurons into larger

assemblies appears to precede the epileptic chain reaction (ictal

cascade) that ends in a paroxysmal oscillation, the PPR.’’ Likewise,

Visani et al. [110] confirmed the potential importance of gamma

band activity and found alpha band activity relevant to the PPR.

Using transcranial magnetic stimulation, Siniatchkin et al. [111]

found evidence that an increased excitability of the occipital but

not the motor cortex might be associated with the PPR. The above

studies indicate that a model including more than one area might

be needed to further elucidate the pathomechanism of the PPR.

Our model can be extended to give such experimental predictions

or explanations for experimental findings. However, concrete

simulations with, for instance, increased excitability in the occipital

cortex and regular excitability in a second region are beyond the

scope of this paper.

In short, we show that our model is capable of accounting for

major aspects of the photic driving paradigm. This sets the scene

for future work that will explore the predictions of the model in

health and disease in more detail based on additional experimental

data. Furthermore, a systematic exploration of the parameter

space of the model with respect to brain resonance is needed. All

this requires substantial efforts and is beyond the scope of the

current proof-of-principle paper.

A principal limitation of our study is the modeling of the

thalamus as independent signal generator, neglecting the cortico-

thalamic feedback loop. However, we tested a model of the

thalamus according to Robinson et al. [112] and found that, at

least for the parameters of the cortical model used in this work, the

simple signal generator approach yields a good approximation.

Future work will include measurements and explicit modeling of

the thalamo-cortical loops.

Chaos in the brain?
Another issue which must be discussed is whether and to what

extent our results support the idea of chaotic dynamics in the

brain. The model investigated here describes complex, partially

chaotic, dynamics at the mesoscopic spatial scale, which captures

mass action of neural ensembles [28]. Chaotic dynamic regimes

have been shown before in mesoscopic models of the cortex

[113,114] and of the olfactory bulb (e.g., [115]). Concerning the

brain, there is evidence for chaotic behavior at different

hierarchical levels, from single neurons to entire neural ensembles

[116]. A suitable means to experimentally access neural activity at

the mesoscopic level is provided by M/EEG, which records the

summed activity of 105 to 109, mainly cortical, neurons [40,41].

M/EEG data describe high-dimensional, noisy, nonlinear, and

non-autonomous processes [117], which render it difficult to

distinguish between stochastic and complex deterministic processes

like deterministic chaos. Accordingly, although there is some

evidence for chaos in such data (e.g., in epilepsy), the issue remains

controversial (for a discussion, see [118] and the references cited

therein). However, irrespective of whether the complexity of M/

EEG fulfils the exact mathematical criteria of deterministic chaos,

the parsimonious NMM, as shown here, helps to better describe

the dynamics of such data and the underlying brain processes.

Apart from brain rhythms in characteristic frequency bands

(e.g., the alpha rhythm), complex behavior with noise-like

characteristics causes the continuous spectral components in these

data. This can be interpreted as filtered noise (e.g., stochastic

sensory input) or described by nonlinear deterministic processes.

We have shown that periodically driven NMMs may explain the

continuous spectral components of M/EEG without having to

consider noisy input processes. Other NMM studies often apply a

stochastic input process with the effect that the spectra are more

Figure 7. Experimental design of the flicker stimulation study. The LEDs were powered for half of each period. The raise and decay time for
the LEDs was measured to be 100 ms.
doi:10.1371/journal.pcbi.1002298.g007
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realistically widened around an intrinsic frequency of interest (e.g.,

alpha band) (e.g., [23,57,58,65]). It is, however, an advantage, if

these continuous spectral components can be modeled and

controlled as intrinsic phenomena of the neural circuits, because

there is evidence that broad spectral components are also

modulated by cognitive processes and hence their generative

processes play a role in information processing (e.g.,

[119,120,121]). This is corroborated by the postulated prominent

role of chaos in information processing (see, for example,

[115,116]).

Furthermore, the complex behavior of the NMM for certain

parameter sets or ranges could be used to explain ordered

Figure 8. Comparison of model and data from a photic driving experiment. The largest normalized Lyapunov exponents calculated from
the model show very good agreement with those obtained from experimental time series. The largest Lyapunov exponents for the average over all
subjects and for the nearest neighbors of the model with the stimulus amplitude f that fits best (f = 3.6301) are plotted against the ratio of stimulus
to intrinsic alpha frequency in (A). The largest Lyapunov exponents for the average over all subjects are normalized to the same range as for the
model. The green area covers the standard deviation of the largest normalized Lyapunov exponents over all subjects. The comparison based on the
minimization of the average of the minimum relative error (i.e., distance/maximum distance) between the normalized largest Lyapunov exponents of
the model (comprising the four nearest neighbors) and of the experiment over stimulus frequencies is calculated for all stimulus amplitudes of the
model. The mean error e of model and average over subjects is shown in (B), where the red area covers the 5% and 95% quantiles. For the significant
amplitude range, the quantiles are drawn in green. Significant amplitudes are consistent over subjects as shown in Table 1. For more details, see
Comparison section in Materials and Methods.
doi:10.1371/journal.pcbi.1002298.g008

Modeling Brain Resonance Phenomena

PLoS Computational Biology | www.ploscompbiol.org 9 December 2011 | Volume 7 | Issue 12 | e1002298



sequences of dynamic regimes and multi-stability in M/EEG data

by producing a temporal hierarchy [62]. Such ordered sequences

have been observed in, for example, perception (e.g., mono- and

binocular rivalry [122], Necker-cube illusion), stages of sleep

[123,124], changes in attention or vigilance, learning and training

such as odor recognition [125,126], progression of disease such as

epilepsy [127,128,129,130], and effects of medication. State

transitions or multi-stabilities appear since the brain is subjected

to multiple high-dimensional stimuli from both exogenous (e.g.,

vision or haptic) and endogenous processes (e.g., endocrine or

circulatory system), and is highly dependent to the current on the

current individual state (e.g., vigilance, sleep or attention). For

example, one can interpret the quasi-periodic behavior in Figure 3

as multi-stability. However, the orbits are sensitive to noise, albeit

in terms of fine structure and the associated sequences, rather than

the overall structure.

One way to achieve ordered sequences of dynamic regimes that

are sufficiently robust against noise is to adequately change the

state space through parameter changes that are slower than the

state dynamics producing a temporal hierarchy [62]. For example,

one could incorporate a second model with kinetics slower than

the NMM (e.g., representing metabolic processes or the neuroen-

docrine system) that controls a subset of the NMM parameters

(e.g., couplings in terms of synaptic plasticity). In this way, the

dynamic behavior of the NMM may change qualitatively through

passing bifurcations and thus sequences of the complex regimes

will be occur. A fine example of this approach is provided by

Steyn-Ross et al. [131], who modeled the succession of slow wave

and REM sleep phases in humans using a mean field model. The

parameters of the model were controlled by the states of a low-

kinetics model describing the levels of acetylcholine and somno-

gens (such as adenosine).

Note that the directions of parameter changes play an important

role in parameter ranges of the system where a hysteresis occurs

(see, for example, in [62] Figure 2 and Figures 4 to 6: branch type-

I A and B, and type-II AB to CC). This previous study [62]

provides a catalogue of regimes that is potentially helpful to

prevent the system from hysteretic behavior or, quite the reverse,

to perform hysteresis.

The present study is the first to find complex types of behavior

like entrainment, chaos, and periodic and quasi-periodic motion in

a periodically forced Jansen and Rit NMM for a single cortical

area for biologically plausible parameter ranges without consid-

ering noise processes. Such dynamics are observable in brain data

and relevant to the explanation of brain function. We demonstrate

that with the NMM, one can explain brain resonance phenomena

like frequency entrainment in a clinically relevant photic driving

experiment. It should be pointed out that, at this stage, the aim of

our model has not been to directly improve the diagnostics of

mental illnesses, but rather to allow deeper understanding of the

mechanisms underlying a diagnostic tool and thereby pave the

way for future new treatments and diagnosis techniques. As a

logical next step, the model should be applied to pathological cases

in order to specify what disease-specific inferences can be made.

Simplifying assumptions in the model
As any model, our model features a number of simplifications

with respect to reality. The mean-field model studied embodies

structural (e.g., local neural circuitry) as well as functional

approximations (e.g., mean postsynaptic potential (PSP), mean

firing rates and its conversions) of neural circuits to describe brain

dynamics at the mesoscopic and the macroscopic levels, which are

accessible, for instance, to LFP and M/EEG. Simplifications

appear at all levels of modeling: the description of single cell

behaviors, the modeling of neural masses (NMs) based on a single

cell description (i.e., firing rate neuron), the description of the local

neural circuitry and the description of networks of brain areas.

Figure 9. Bifurcation diagram for normalized stimulus ampli-
tude f = 3.6301. The vertical axis is the normalized postsynaptic
potential x32 on pyramidal cells caused by inhibitory interneurons, that
is, the coordinate of the intersection points (black dots) of trajectories
with the Poincaré hyperplane after neglecting initial transients. The
horizontal axis is the normalized stimulus frequency. The regimes are
color-coded and indicated by the horizontal line. Periodic regimes (red)
exist, for instance, for frequencies ranging from 0 to 5.34?1022. In this
range, the system appears to undergo a period-adding bifurcation
cascade by decreasing the normalized stimulus frequency. Chaotic
(blue) and quasi-periodic regimes (green) occur, for example, for
frequencies ranging from 5.3?1022 to 6.23?1022 (scattered dots) and
between 17.21?1022 and 18.72?1022. The classification can be also
taken from Table 2.
doi:10.1371/journal.pcbi.1002298.g009

Table 1. Single subject comparison of largest Lyapunov
exponents.

Participant
Normalized
amplitude f

Mean
errors e in %

Significance
(p,.05)

1 3.67 19 yes

2 3.67 22 yes

3 2.89 30 no

4 3.67 17 yes

5 3.67 16 yes

6 3.47 22 no

7 2.34 26 no

8 3.67 23 yes

9 3.67 20 yes

10 3.67 22 yes

Mean 3.6301 13 yes

Medial 3.6301 13 yes

Single subject comparisons fit the model at normalized stimulus amplitude
around of approximately f = 3.67 with mean errors e over all normalized
stimulus amplitudes around 20%. The amplitudes that best fit the data are
significant for the mean and median as well as for seven out of the ten subjects.
The calculation is described in the Comparison section in Materials and
Methods.
doi:10.1371/journal.pcbi.1002298.t001
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On the single cell level, we consider the firing rate instead of

individual action potentials. Moreover, only two types of synaptic

kinetics are modeled, which leads to two types of neurons that

either excite or inhibit other neurons. In the brain, there is a great

diversity of electrophysiological neuron types that differ in their

specific input and output operations [43].

On the population level, the distribution of states (i.e., PSPs and

firing rates) is described by their means, while variances and

higher-order statistics are left out of consideration.

The local neural circuitry of the cortex is characterized by a

wealth of distinguishable populations and their interconnections

(see, for example, [55]). In the model structure used here, this is

simplified by simply considering pyramidal cells and two feedback

loops established by inhibitory and excitatory interneurons.

Finally, in this work, we deal with a cortical area mean-field

model, without considering projections to the rest of the brain. In

particular, the thalamus, which might play a role here, is modeled

only in terms of its output.

Moreover, since the retina is fully illuminated by the flicker that

drives much of the visual cortex (see Materials and Methods for

further explanation), we consider the entire primary visual cortex

as a single source using a simple NMM for a single cortical area.

Of course, the primary visual cortex is much more complicated

than a single Jansen and Rit circuit, not to speak of its

incorporation in brain-wide networks. Hence, our model can only

represent a subset of the dynamics of the entire system.

Nonetheless, our results show that the model can account for

the main phenomena in the photic driving paradigm. However,

one must be aware that the future availability of new or more

detailed data might necessitate an extension of the model.

Link to extended brain networks
In this study, we show that a simple local cortical area model is

already capable of performing relevant complex dynamics,

particularly in response to periodic inhibitory feed-forward

stimulations. Based on the fact that such a local cortical circuitry

of neural populations is embedded in large-scale networks that can

span the whole brain and also include subcortical structures such

as the thalamus, the question arises to what extent network

interactions might contribute to the complexity of brain signals

such as M/EEG.

The present work might also contribute to the understanding of

large-scale networks. In particular, the present results can be

applied to inhibitory feed-forward interactions in networks

between two local area models, where one model periodically

performs spikes that drive the other model. The frequency

entrainment or locking phenomena we found here can thus be

interpreted as an effect of network interactions, which might have

an impact on functional or effective brain connectivity measures

such as the phase correlation (e.g., [109,132]) or the Granger

causality (e.g., [133,134]).

From the modeling perspective, one can obtain a dynamic

regime of a local cortical area such as quasi-periodic behavior

within a network by frequency locking through feed-forward

inhibition from another local area by considering the following

steps: (i) tuning the driving cortical area so that it performs (spiky)

rhythms, (ii) selecting the dynamic regime depending on stimulus

amplitude and frequency (see Figure 4 to Figure 6), (iii) adjusting

the characteristic time constant of the driver to tune the frequency

of the driver to the required stimulus frequency, and (iv) selecting

the characteristic potential and/or the coupling parameter so that

amplitude of the driver fits. The parameters for the driving cortical

area can be taken from the catalogue of regimes presented in our

previous work [62]. Moreover, in order to best reproduce a

specific phenomenon, for instance in M/EEG data, this catalogue

helps to balance the complexity of a network, in particular,

whether a single area model is sufficient or not. The effective

extrinsic input ranges of a cortical area model [62] can be used to

determine the coupling parameters between areas in order to

prevent a network or individual cortical areas from saturating.

The use of these approaches to control or set up a network

depends on the complexity of the graph. For instance, several

bidirectional connections or feedback loops usually make a setting

more difficult. In such complex graphs, one can expect more

complicated behavior than for a single local area model, such as

hyperchaos or phase locking of several (chaotic) regimes. However,

one might to have to perform a separate analysis for the network.

Materials and Methods

Model
A generative model for brain measurements such as M/EEG

can be specified by two separate systems: the state system f

explaining the usually hidden neuronal states x (e.g., the mean

postsynaptic potentials (PSPs) of neuronal populations that

potentially generate M/EEG), and the observer system g relating

the neuronal states to the measurements z:

L L=Ltð Þx~f x,p,sxð Þ, ð1Þ

and

z~g x,szð Þ, ð2Þ

where L(h/ht) is a temporal differentiation operator, p denotes the

extrinsic inputs, and sx and sz parameterize state and observer

system, respectively. For the state system f, we use a neural mass

model (NMM) of a cortical area. For the observer system g, we use

a simple linear relationship, as we simply consider one area (i.e.,

source), because the retina is fully illuminated during the photic-

driving experiment that presumably drives much of primary visual

cortex in parallel, and therefore no elaborate forward modeling is

Table 2. Dynamic regimes occurring for normalized stimulus amplitude f = 3.6301.

Orbit Limit cycle Two-torus Strange attractor

Occurrence in frequency range (?1022) .0 to 18.72 17.21 to 18.72 5.34 to 6.23; 7 to 7.18; 7.52 to 8.04; 8.92 to 9.29; 10.33
to 11; 11.96 to 17.21

A limit cycle appearing as periodic oscillations is a closed orbit in state space. An invariant torus indicates quasi-periodic oscillations that manifest themselves in the
power spectra with peaks at incommensurate frequencies. A strange attractor is a bounded attracting set in which all trajectories are unstable and nearby trajectories
locally diverge from each other exponentially, as evidenced by a positive Lyapunov exponent, as well as a broadband power spectrum.
doi:10.1371/journal.pcbi.1002298.t002
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needed. The state system will be explained in more detail in the

following paragraphs.

The NMM of Jansen and Rit [23,52] describes a local network

representing a cortical area. This basic circuit, consisting of three

interacting neural masses (NMs), namely pyramidal cells (PCs: NM

3) with feedback loops mediated by excitatory and inhibitory

interneurons (EINs and IINs: NMs 1 and 2), has been described in

a number of previous studies (e.g., [23,44,52,53,57,58,59]).

Note that the feedback loops may also be modeled dynamically

(see, for example, [26,48,112] when also considering propagation

delays, see, for example, [135,136,137]). However, here we

assume connections within a single area, resulting in transmission

times which are shorter than the characteristic (dendritic) time

constant t = 10 ms. Therefore, it is sufficient to describe the

feedback connection by a gain constant.

With this NMM, the mean neuronal states can be described by

a system of six nonlinearly coupled first-order ordinary differential

equations:

pyramidal cells (3) to (excitatory and inhibitory) interneurons (1

and 2, combined to 0)

_xx03(k)~y03(k), _yy03(k)~O x31(k)zx32(k)zð

x3T(k)Þ{2y03(k){x03(k),
ð3Þ

excitatory interneurons (1) to pyramidal cells (3)

_xx31(k)~y31(k), _yy31(k)~a31O a13x03(k)zð

x1T(k)Þ{2y31(k){x31(k),
ð4Þ

inhibitory interneurons (2) to pyramidal cells (3)

_xx32(k)~y32(k), _yy32(k)~a32O a23x03(k)zð

x2T(k)Þ{2by32(k){b2x32(k),
ð5Þ

where the state vector x = (x03, x31, x32, y30, y31, y32)T contains the

normalized mean PSPs xba and currents yba at NM b caused by NM

a. The extrinsic afferents T projected to NM b are denoted by xbT.

The average synaptic gains or the average numbers of synaptic

contacts established between the two NMs a and b are represented

by the constants aba. Furthermore, b is the ratio of excitatory to

inhibitory dendritic time constant b = te/ti and, in the formulas (3)

to (5), the dot indicates the derivatives with respect to the

normalized time k = t/t, where t is the characteristic time scale.

The transfer function O(xb) that converts the normalized mean

PSP xb =Sa xba (i.e., the normalized potential at the axonal hillock)

to the normalized mean firing rate is taken to have a sigmoidal

shape O(xb) = 1/(1+c exp(2xb)), where c represents the distribution

of firing thresholds within a NM. The normalized and generalized

Equations (3) to (5) correspond to the Jansen and Rit model [23]

with the characteristic time constant t = te, the coupling

parameter aba = 2e0 r cba He,i t2/te,i, the sigmoid parameter

c = exp(u0 r), and the states xba(k) = rbuba(tk), with the following

parameters: maximum firing rate 2e0, the slope of the sigmoid r,

the mean number of synaptic contacts cba, and the excitatory and

inhibitory synaptic gains He,i (for more details, see [23,62]). Note

that we use normalized parameters and variables in the rest of this

paper without further indicating this.

In this work, we explore the dynamics of the single-area model

as a function of amplitude and frequency of a periodic input. This

input consist of brief pulses similar to ones used by Jansen and Rit

for eliciting visual evoked potentials [23,52], or used in dynamic

causal modeling (e.g., [63,66]). These pulses are meant to

represent the impulse response of the visual pathway, which has

been investigated experimentally by a number of researchers (see

[52], and the references cited therein) and described analytically

by Watson and Nachmias [138].

In the following, we will specify the parameter space to be

investigated. The system described by Equations (3) to (5) has nine

parameters, namely couplings aba with ba = {13, 23, 31, 32},

kinetic ratio b, sigmoid parameter c, and extrinsic inputs xbT with

b = {1, 2, 3}.

Jansen and Rit [23] proposed a specific parameter set for the

NMM of a cortical area, based on a thorough discussion of the

literature. The normalization of time and potentials by Jansen’s

excitatory dendritic time constant and sigmoid slope (t = 10 ms

and r = 0.56 mV21, respectively) leads to the following dimen-

sionless parameters in our model: couplings a13 = 12.285,

a23 = a13/4, a31 = 4a13/5, a32 = 211a13/13, kinetic ratio b = 0.5

and sigmoid parameter c = 28.7892. The extrinsic inputs on the

three NMs are taken to be constant for EINs x1T = 0 and PCs

x3T = 3.36, and time-variant for IINs in the form of periodic pulses

x2T = f exp(22d cos2(h)), with the angle h

_hh~pg, ð6Þ

specified by stimulus amplitude f and stimulus frequency g (d
controls the shape and is set to d = 110). Such a peaky waveform

has been found in the lateral geniculate nucleus of the thalamus in

response to square visual stimuli [139]. Interestingly, a very similar

waveform can be generated using a NMM of the thalamus, as

proposed by Robinson et al. [112], which takes into account the

intra-thalamic and thalamo-cortical feedback loops (e.g.,[140]). In

this model, a strong inhibitory influence of the reticular nucleus on

the thalamic relay cells during the relaying of external sensory

stimulation, such as an on/off waveform of flickering lights,

sharpens the cortical input to render it pulse-like. The time-variant

input to the IINs may represent thalamic feed-forward input. This

type of disynaptic feed-forward inhibition has been described as

crucial for bottom-up processing in the somatosensory (e.g.,

[141,142]), auditory (e.g., [143]), and visual (e.g., [144,145])

systems of rodents. Moreover, the literature provides evidence that

feed-forward inhibition (e.g., from layer IV IINs driven by

thalamus) dominates excitation (from thalamus) (e.g., [144,146]).

Also, our previous model analysis of the Jansen and Rit circuit

reveals the importance of input on IINs for controlling cortical

behavior [62].

In the absence of stimulation (i.e., x2T = 0), the system

intrinsically performs limit cycle oscillations arising from Andro-

nov-Hopf bifurcations, appearing as harmonic oscillations with a

frequency of approximately gintr = 0.108 (see bifurcation diagram

and phase portraits, Figure 2 and Figure 3 in [62]). Applying the

characteristic dendritic time constant t = 10 ms as defined above,

this corresponds to the parameter set proposed by Jansen and Rit

[23] and an actual oscillation frequency of f = 10.8 Hz, and can be

used to describe alpha rhythms in brain signals. This characteristic

time constant is used in all results reported in this work. Note,

however, that varying the characteristic time constant t only scales

the neuronal states x(k) in time t = t k and thus the frequency

f = t21 g while the states x, the form of time signals and the

underlying mechanisms such as bifurcations remain unaffected.

Hence, the frequency depends on the choice of the characteristic

time constant t and thus the normalization embraces all cases of t.

In order to study the system with periodic stimulation around the
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intrinsic frequency (gintr = 0.108), the stimulus frequency g is taken

to range from 0 to 0.19. The stimulus frequency is nonlinearly

sampled ensuring (g Dk)21MN1 with the sampling interval Dk, so

that the pulses are well sampled. The stimulus amplitude f is

linearly sampled from 0 to 4.1 to cover the effective range of

excitatory inputs on IINs within the limit cycle which exists when

extrinsic input on IINs is constant (see Figure 8 in [62]). Since the

specification of the effective extrinsic input ranges is based on an

analysis of the invariant transfer function (sigmoid function) [62],

these ranges are valid for any type of input, no matter whether it is

constant or time-variant.

In summary, for analysis, we consider a system of seven first-

order ordinary differential equations (Equations (3) to (6)) des-

cribing the (neuronal) states x* = (x03, x31, x32, y30, y31, y32, h)T

specified by two parameters p = (f, g)T.

We study the differential equations (3) to (6) numerically using

the fourth-fifth order Runge-Kutta method over k = 30?103 in

time (which equals 5 minutes for tJR = 10 ms, according to Jansen

and Rit [23]) with a relative tolerance of 10211, and then linearly

sampled with an interval Dk = 1022 for further analysis. From the

last 6?103 samples (last minute if tJR = 10 ms), the histograms of

each state were computed using the optimal number of bins [147].

Using the state equations, we also compute the characteristic mean

frequency of each attractor [85]. Characteristic mean frequency is

the time average of a trajectory over the angle velocity at points

along an n-dimensional curvature forming an attractor in state

space. To study the complex behavior, we computed the power

density spectra of the time series (last 6?103 samples) using the fast

Fourier transform, especially for the time series of the PSPs of the

PCs, which are reflected in M/EEG.

We also compute the characteristic Lyapunov spectra, that is,

all six Lyapunov exponents l1.l2 ….l6 directly from the

differential equations (3) to (6), using the Fortran algorithm by

Chen et al. [148], integrated for k = 1073,742.00 using a constant

sample interval Dk = 1023. Chen et al. [148] used a constant

time-step fourth-order Adams-Bashforth integration method and

a QR-reorthoginalization that also preserves orthogonality for

higher-dimensional systems. The time interval is sufficiently long

to stably estimate the characteristic Lyapunov spectra (er-

ror,1026). The Lyapunov spectrum gives a quantitative measure

of the sensitivity of the states of the system dependent on the

initial conditions, or, more precisely, the average rate of

divergence or convergence of two neighboring trajectories in

the state space. Furthermore, the whole Lyapunov spectrum

enables statements of hyperchaos.

Hyperchaos is a higher form of chaos with at least two rather

than one directions of hyperbolic instability on the attractor [80]

indicated by two or more positive Lyapunov exponents and by a

Kaplan-Yorke dimension larger than two. Such a hyperchaotic

attractor appears as a ‘folded-towel’ structure through a

continuous stretching and folding in, at least, two independent

directions of the state space [149]. Such behavior was first

reported by Rössler in 1979 [80]. Generally, a system that

performs hyperchaos must be of at least four dimensions.

Due to the computational effort required, only the largest

exponent or a few of the largest ones are calculated in most of the

existing literature. Here, we compute the whole characteristic

Lyapunov spectra running on a massive parallel cluster system of

the advanced computing unit at the Computer Center, Ilmenau

University of Technology. We also select several regions from the

parameter space with scattered, presumably fractal, patterns of

chaotic regimes (i.e., positive largest Lyapunov exponents) for

recomputing at a finer stimulus amplitude and frequency

resolution (see Figure 4 through Figure 6).

We probe the stability of the characteristic Lyapunov spectra by

adding a stochastic term to the stimulus x2T. Although the

Gaussian noise process that we used is not autocorrelated and

could lead to errors due to the constant integration step size of the

Adam-Bashforth method, the estimation of the characteristic

Lyapunov spectra (for the stimulus amplitude that fits the

experimental data best) is stable up to a signal-to-noise-ratio

(SNR) of 10 dB, especially for the 1:1 entrainment region (i.e.,

g<gint). However, the stochastic term changes the characteristic

Lyapunov spectra specifically, for instance, at stimulus frequencies

g around 2/3 of the intrinsic frequency gint. For this stimulus

frequency range (0.5817,g/gint,0.7632), the profile is qualita-

tively preserved for mild noise with a SNR up to 17 dB. We

determined the SNR as the ratio of the variances of the

deterministic and stochastic portions of the stimulus. The variance

of the deterministic terms s2(x2T) (i.e., periodic pulses) is given as

follows

s2 xT2ð Þ~f2 exp {2dð Þ: I0 2dð Þ{I2
0 dð Þ

� �
, ð7Þ

where I0 is the modified Bessel function of the first kind, d is the

shape parameter and f is the amplitude of the stimulus xT2.

The knowledge of the whole spectrum enables us to derive the

Kaplan-Yorke dimension [150] given by

DKY~kz

Pk
i~1 li

lkz1j j , ð8Þ

where k is such that

Xk

i~1
li§0, and

Xkz1

i~1
liv0: ð9Þ

The Kaplan-Yorke dimension measures the upper bound of the

Hausdorff dimension and is similar to the information dimension

(entropy) or correlation dimension of an attractor. The Hausdorff

dimension quantifies the complexity of the geometry of the

attractor. For example, the Hausdorff dimension of a point is zero,

of a line is one, of a plane is two, but irregular sets, such as fractals

or the attractors found in this work, can feature non-integer

Hausdorff dimensions. We divide the state space by classifying the

behavior of the system qualitatively. To that end, we specify a

Poincaré map P by choosing a suitable hyperplane transverse to

the limit cycle of the unperturbed system. A Poincaré map P

considers the intersections of a trajectory existing in the d-

dimensional state space with a hyperplane of dimension d21. The

resulting discrete series of intersection points allow the character-

ization of the dynamics near periodic solutions. Finally, to study

the relationship between system perturbation and system response

in terms of synchronization and frequency entrainment, we

compute the frequency-detuning curves [76]; that is, the difference

of the response frequency (characteristic frequency or largest peak

in the spectrum) and the stimulus frequency plotted against the

stimulus frequency.

Experimental data
Experimental data were obtained by performing a photic

driving experiment that was adapted to the individual alpha

frequency of the subjects. Data were previously published by

Schwab et al. [81]. The aim of this former study was the

quantification of frequency entrainment in the alpha rhythms that

was most effective in the region around individual alpha and half
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alpha. Ten healthy participants (22 to 40 years of age, 5 male; 5

female) were stimulated by an intermittent flickering light, while

EEG (32 channels, enhanced 10-20 system with a 10-10 system

over the occipital region, Compumedics Neuroscan, El Paso,

USA) was recorded. EEG was sampled at 1000 Hz and hardware-

filtered between 0.1 Hz and 300 Hz. An initial resting condition of

60 seconds was recorded to define the individual alpha rhythm of

each participant. The individual alpha frequency measured

ranged from 9.5 Hz to 11.8 Hz. After this period, flicker

stimulations were conducted for 15 fixed frequencies with an

alpha ratio (stimulus/individual alpha frequency) ranging from 0.4

to 1.6 in each participant (randomized order of presentation). The

flicker stimuli were generated by two LEDs outside the

measurement chamber and were delivered via optical fibers to

about 9 cm in front of the closed eyes of the subjects in order to

ensure relatively stable luminance over subjects and a fully

illuminated retina. The closed eyelid diffuses the flickering light

from the optical fiber (with its viewing angle) so that the whole

retina is illuminated (e.g., [151,152]). Each stimulation frequency

was presented in a sequence of 20 trains. A single train contained

40 flashes and was followed by a resting period (4 s). The complete

experimental design is summarized in Figure 7.

One EEG channel located in the occipital region (O1) was

examined per participant. Data were filtered and down-sampled to

200 Hz. For each participant, periods of 62.5 s (n = 12500 data

points) were analyzed for the 15 flicker frequencies presented (the

shortest available data length of the individual flicker blocks F1

through F15 is 62.5 s over all participants investigated).

The estimation of the largest Lyapunov exponent was based on

the approach of Wolf et al. [153]. An embedding dimension of 16,

a time delay of 9 (<50 ms) and an evolving time of 5 (<25 ms) was

used for the investigation of flicker stimulations. Embedding

parameters were defined according to Atay and Altintas [154].

Comparison
Our periodically driven deterministic model exhibits chaos or

otherwise complex behavior in certain parameter ranges (see

Figure 4). A chaotic regime can be considered as a source of noise.

Empirical data as from the photic driving experiment (see

Experimental data) generally represent a highly noisy (nonlinear)

signal. The sources of this noise are diverse and range from technical

noise (e.g., Johnson-Nyquist noise of sensors, 50/60 Hz powerline

interferences), via non-brain biological noise (such as transpiration,

muscle activities of the heart or eye movements), and unrelated

brain activity, to the chaotic behavior of the actual stimulus

processing. Thus, mapping experimental data to any biologically

motivated model with reasonable accuracy is an extremely

challenging task. In particular, comparing identified system

variables from model and data with respect to their absolute values

needs to be done delicately. Consequently, we chose to compare the

Lyapunov exponents as scalar measures of the variations of the

regimes of the system with respect to a well-defined ‘‘external’’

parameter, here the stimulus frequency (available for both model

and experiment). In contrast to the experimental design, our model

has the stimulus amplitude f as a parameter in addition to the

stimulus frequency g. For this reason, we searched for the stimulus

amplitude where the model best fits the data.

The calculated 15 largest Lyapunov exponents from our

experimental data are all positive due to the background noise.

For our model, this is the case only if chaos arises (see Figure 4).

The absolute values of the Lyaponov exponents can therefore not

be compared directly. If, however, we assume that the unpredict-

ability of the experimental data is partially due to background

noise (which does not depend on the stimulus frequency) and

partially due to the intrinsic dynamics of the modeled system, it

makes sense to compare the pattern of dependency of the

Lyapunov exponent from the stimulus frequency instead. For this

reason, we compared the largest Lyapunov exponents as

computed from the model to the largest Lyapunov exponent

computed from the data, normalized to the same range as the

model-based exponent (29.6972?1022#l1, Model#29.4435?1025),

by a shift-and-scale transformation u+v?l1. For the means and

standard deviations of u and v, please refer to supplementary Figure

S2. Interestingly, the three subjects for whom the individual fits were

not significant (number 3, 6 and 7; see Results section) are clearly

noticeable here in terms of means and standard deviations of u and

v. The offset of the experimental Lyaponov exponents u can be

regarded as a multiplicative process R of divergence S1(k), because

|S1(k)|<R1Nexp(v k?l1) with R1 = exp(u). Background activity and

more general unspecified processes may be included in R.

Since the ratio between the sampling rates on the frequency axis

is 4.6 between the model (69 samples) and the experimental data

(15 samples), we compare an experimental data point with the four

nearest neighbors in the model. The comparison and detection of

the model configuration that fits the experimental data best

comprise seven steps: (i) select the four nearest neighbors along the

stimulus frequency axis of a amplitude configuration of our model

to a query point in the experiment (i.e., the response to an

experimentally applied ratio of stimulus to intrinsic alpha

frequency), (ii) calculate the Euclidean distances in the plane

spanned by frequency and largest normalized Lyapunov exponent

between each of the nearest neighbors and the experimental data

point (this way an agreement between model and data Lyaponov

exponents is weighted according to the agreement between the

frequencies they belong to), (iii) determine the maximum

Euclidean distance between the nearest neighbors and the

experimental data point, where the largest normalized Lyapunov

exponent of a nearest neighbor is set to the lower (min(l1, Model) =

29.6972?1022) or to the upper bound (max(l1, Model) =

29.4435?1025) of the model-based largest Lyapunov exponent if

the query point in the experiment is greater than 24.8533?1022

(i.e., min(l1, Model)/2+max(l1, Model)/2) or not, respectively, (iv)

calculate the relative error as the ratio of the distance of a nearest

neighbor to its maximum distance, (v) detect the nearest neighbor

with the minimum relative error for each experimental data point

and average these errors over all 15 data points (for the different

experimental frequencies), (vi) repeat steps (i) to (iv) for each

amplitude of the model stimulation, and (vii) find the model

configuration with the stimulus amplitude that fits the data best by

detecting the minimum of the averaged minimum relative errors

(i.e., mean error e in graph B of Figure 8).

In order to test the significance of the comparison results, we (i)

compute Pearson’s (linear) correlation coefficient for each stimulus

amplitude f as well as for each subject (and also for the average

over subjects) between the largest normalized Lyapunov exponents

of model and data as function of the ratios of stimulus to intrinsic

alpha frequency, and (ii) test its significance by applying a

Student’s t-test. Due to the multiple comparisons of the 106

amplitudes and each four nearest neighbors, we used the

Bonferroni correction for the significance level p = 0.05 corrected

by p9 = p/(4?106).

Moreover, in order to further substantiate our findings, we

performed a bootstrap test. We randomized the sequence of

experimental Lyapunov exponents along the frequency axis so that

their distribution remained the same but any putative frequency-

dependence was destroyed. Then we applied our fit method and

recorded the fit error. We repeated this 5000 times and obtained

an estimate of the error distribution. Counting the occurrences of

Modeling Brain Resonance Phenomena

PLoS Computational Biology | www.ploscompbiol.org 14 December 2011 | Volume 7 | Issue 12 | e1002298



errors that are below the one obtained with the true sequence of

frequencies, we obtained an estimate of the probability that such

an error could have been achieved by chance.

Supporting Information

Figure S1 Largest Lyapunov exponents of the empirical
data under the presence of noise. The exponents are

characterized by mean (white lines) and standard deviation (red

area) over subjects with: A no noise and noise; B SNR = 13 dB; C
SNR = 10 dB; D SNR = 7 dB; E SNR = 3 dB; and F SNR = 0 dB.

(EPS)

Figure S2 Means and standard deviations of shifting
and scaling parameters u and v for all ten subjects.
(EPS)

Video S1 Impact of stimulus frequency for normalized
stimulus amplitude f = 3.6301. The large diagram in the

middle shows the attractor as a function of the postsynaptic

potentials of the three neural masses: the normalized potential that

inhibitory interneurons (IINs) cause on pyramidal cells (PCs), the

normalized potential that excitatory interneurons (EINs) cause on

PCs, and the normalized potential that PCs cause on both

interneurons (INs). The small diagrams in the upper left- and

right-hand corner show the corresponding time series and the

spectra (amplitude and time is normalized) respectively. The

heading provides information about the current normalized

stimulus frequency that increases with time. The video shows

the unperturbed system for the first six seconds with the limit cycle

(large diagram) producing a sinusoidal rhythm (left diagram) that

appears as a narrow peak at g = 0.108 in the spectrum (right

diagram). All three curves (all in red) remain visible for the rest of

the video for comparison. The three curves corresponding to a

current perturbation are shown in green.

(AVI)
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71. Buzsáki G, Draguhn A (2004) Neuronal Oscillations in Cortical Networks.
Science 304: 1926–1929.

72. Daneshyari M, Kamkar LL (2010) Epileptic EEG: A Comprehensive Study of

Nonlinear Behavior. Advances in Computational Biology. Berlin: Springer-
Verlag Berlin. pp 677–683.

73. Ghosh-Dastidar S, Adeli H (2009) Chaos in the Brain: Novel Methodologies for

Epilepsy Diagnosis and Seizure Detection. In: Skiadas CH, Dimotikalis I,
Skiadas C, eds. , Singapore: World Scientific Publ Co Pte Ltd. pp 138–148.

74. Raiesdana S, Golpayegani S, Firoozabadi SMP, Habibabadi JM (2009) On the

discrimination of patho-physiological states in epilepsy by means of dynamical
measures. Comput Biol Med 39: 1073–1082.

75. Buchli J, Righetti L, Ijspeert AJ (2006) Engineering entrainment and

adaptation in limit cycle systems - From biological inspiration to applications
in robotics. Biol Cybern 95: 645–664.

76. Pikovsky A, Rosenblum M, Kurths J (2003) Synchronization: a universal
concept in nonlinear sciences. Cambridge: Cambridge University Press. 432 p.

77. Shil’nikov LP (1969) On a new type of bifurcation in multidimensional

dynamical systems. Sov Math Dokl 10: 1368–1371.

78. Beer RD (1995) On the Dynamics of Small Continuous-Time Recurrent

Neural Networks. Adapt Behav 3: 469–509.

79. van Veen L, Liley DT (2006) Chaos via Shilnikov’s saddle-node bifurcation in a
theory of the electroencephalogram. Phys Rev Lett 97: 208101.
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