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Zusammenfassung

Das Gehirn ist das neuronale Zentrum des menschlichen Körpers und besitzt eine höchst

komplexe Mikrostruktur aus Nervengewebe mit untereinander verknüpften Nervenzellen.

Die Nervenzellen sind, je nach ihren Aufgaben (wie visuelle Wahrnehmung, motorische

Fähigkeiten oder Sprache), in funktionellen Einheiten angeordnet und über ihre Axone

miteinander verbunden. Die Axone bilden dabei ein weit verzweigtes neuronales Netzwerk,

das Nervenzellen funktionell gleicher Areale untereinander verbindet und die Signalübertra-

gung zwischen den verschiedenen funktionellen Einheiten auch über lange Strecken sicher-

stellt.

Die Entwicklung der Magnetresonanztomographie und insbesondere die Entwicklung

der diffusionsgewichteten Bildgebung ermöglichten es, das neuronale Netzwerk des men-

schlichen Gehirns in bisher ungeahnter Weise nicht-invasiv zu studieren um dessen imma-

nente Komplexität zu entschlüsseln. Durch den Einsatz von Traktographieverfahren können

drei-dimensionale Fasertrakte rekonstruiert werden, welche den Verlauf der zugrunde liegen-

den, mikroskopischen Nervenfasern modellieren. Das daraus resultierende, komplexe Net-

zwerk von Faserverbindungen approximiert die strukturelle Organisation des neuronalen

Netzwerks und erlaubt Rückschlüsse über denVerlauf und die Konnektivität der funktionellen,

untereinander verbundenen Areale zu ziehen.

Aufgrund der Komplexität des extrahierten Fasernetzwerks und der Ungeordnetheit der

darin enthaltenen Fasertrakte ist eine zeitaufwendige und vielschichtige Prozessierung der

gewonnenen Daten notwendig, was die Einsetzbarkeit der Traktographie für viele medizinis-

che Anwendungen außerordentlich einschränkt. Um die Anwendungsmöglichkeiten der

Traktographie zu verbessern, werden im Rahmen dieser Dissertation neue Konzepte und

Strategien vorgestellt, die es ermöglichen Fasertrakte mit Hilfe der Clusteranalyse vollau-

tomatisch zu Faserbündeln zusammenzufassen, welche dem Verlauf der zugrunde liegenden

mikrostrukturellen Faserbahnen entsprechen. Hierfür wird mit CATSER (cluster analysis
through smartly extracted representatives) eine neue Methode für die automatische Cluster-

analyse der Fasertrakte vorgestellt. Diese nutzt die intrinsische Redundanz der Daten, um

auch die Analyse großer Datensätze zu ermöglichen. Um die Korrespondenz zwischen den

resultierenden Faserbündel und den zugrunde liegenden mikrostrukturellen Faserbahnen

weiter zu verbessern, können zusätzliche anatomische Informationen eines Atlanten der

weißen Substanz von CATSER berücksichtigt werden. Durch die Nutzung paralleler Rechner-

architekturen, neuer Algorithmen und Ähnlichkeitsmaße kann die Clusteranalyse in einem

vertretbaren Zeitrahmen realisiert werden. Verschiedene Experimente wurden durchgeführt,

um die Eigenschaften des vorgestellten Clusteranalyseverfahrens zu untersuchen und seine

hohe Performanz nachzuweisen.

Die schnelle und zuverlässige Extraktion der Faserbündel mit CATSER eröffnet einer

Vielzahl medizinischer Anwendungen die Nutzung traktographischer Daten. Gruppen-
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basierte Analysemethoden die verwendet werden, um veränderte Diffusion zwischen ver-

schiedenen Gruppen (wie gesunden Probanden vs. Patienten) oder zwischen Untergruppen

von Patienten zu untersuchen, sind dabei prädestiniert, um von den zusätzlichen anato-

mischen Informationen der Faserbündel zu profitieren. Aus diesem Grund präsentiert der

zweite Teil der Dissertation ein neues Verfahren für die quantitative Analyse von Diffusion-

sparameter, welches die Analyse durch Einbeziehung der vorab extrahierten Faserbündel

verbessert. Diese neue Technik ermöglicht die voxelbasierte Untersuchung individueller

Bündel, beschränkt die Analyse dabei allerdings ausschließlich auf Voxel, die zu dem unter-

suchten Faserbündel gehören. Überlappende Bereiche anderer Bündel, die nicht Gegenstand

der Untersuchung sind, werden mit dieser Technik effektiv ausgeblendet. Um die Anwend-

barkeit der vorgestelltenMethoden zu eruieren, wurden die neuen Techniken im Rahmen von

zwei Studien eingesetzt. Bei gesunden Probanden und schizophrenen Patienten wurde die

Diffusion in ausgewählten Faserbündeln der linken und rechten Hemisphäre untersucht und

verschiedene Diffusionsparameter miteinander verglichen. Hierbei konnten beide Studien

Unterschiede in bestimmten Faserbündeln der linken und rechten Hemisphäre nachweisen

und dabei das Potential der vorgestellten Techniken erfolgreich demonstrieren.
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Abstract

The human brain as the neural processing center consists of a highly complex microstructure

that is primarily composed of interconnected nerve cells. While the nerve cells are arranged

in functional units, dedicated to perform certain unique tasks (e.g., visual perception, motor

control or speech), their axons form a complex network that interconnects nerve cells of the

same area and enables long-range signal propagation between different functional units.

With the advent of magnetic resonance imaging and, in particular, the introduction of

diffusion weighted imaging researchers began to study the fiber network of the human brain,

pursuing the goal to unravel its inherent complexity non-invasively. The employment of

tractography facilitated this process and enabled the approximation of the structural orga-

nization of the fiber network with three-dimensional fiber tracts, which opened the unique

opportunity to study the course and the integrity of the microstructure in unprecedented

ways.

For many medical applications, the automatic parcellation of fiber tracts into bundles

that represent the underlying microstructure is of extraordinary importance, but often too

time consuming and too complicated, thus limiting the usability of fiber tractography. In

order to improve the applicability of fiber tractography, this thesis introduces novel concepts

and strategies towards automatic parcellation of fiber tracts by using cluster analysis. With

CATSER (cluster analysis through smartly extracted representatives), a new method for the

automated clustering of fiber tracts is presented that exploits the intrinsic redundancy of the

data to make cluster analysis applicable to large tractography datasets. In order to improve the

grouping of tracts into bundles that represent the underlying microstructure more correctly,

CATSER can be used together with a white matter atlas. By using parallel computing and

random sampling as well as novel similarity measures, the cluster analysis of fiber tracts

can be performed in reasonable time. To study properties of the introduced cluster analysis

framework and to demonstrate its performance in a multiprocessing environment, various

experiments were conducted.

The fast and consistent extraction of fiber bundles with CATSER aids amultitude ofmedical

applications. Group-based analyses methods that are used to study altered diffusion between

groups of subjects (e.g., healthy volunteers vs. patients) or between subgroups of patients

are particularly suited candidates to benefit from the additional anatomical information of

fiber bundles. For this reason, this thesis introduces a novel fiber bundle-driven technique
that takes advantage of fiber bundles to enhance quantitative group-based analyses. This new

technique enables selective, voxel-wise analysis of local diffusivity properties for individual

bundles and restricts the analysis to voxels that belong to the bundle of interest. Contributions
of other regions or bundles that are not part of the analyzed bundle are thereby suppressed.

To investigate the applicability of these new methods, diffusion-associated hemispheric differ-

ences were studied in selected fiber bundles of healthy volunteers and schizophrenic patients.
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Alterations of diffusion-related parameters between corresponding bundles of the left and

right hemisphere were detected in various bundles of both groups. With these two studies the

potential of the novel techniques was successfully demonstrated.
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Chapter 1

Introduction

Brain: An apparatus with which we think
what we think.

— Ambrose Bierce (1842–1914)
The Devil’s Dictionary

1.1 Origin of the brain

The brain as the center of the central nervous system (CNS) is the most complex organ of

the human body. With a highly specialized network of billions of interconnected nerve cells

(i.e., neurons) that transmit electrochemical signals simultaneously, it regulates autonomic

processes and sustains vital body functions. By processing complex sensory inputs, the CNS

is able to adapt to changing environments, coordinate complex behavior and handle cognitive

tasks.

The evolution of the brain into a complex and highly organized structure as we know it

took billions of years and started with the evolution of life itself. One-celled organisms as the

simplest form of life exist autonomously and were presumably the first organisms that have

inhabited the earth. Even though they can adapt to changing environments, reproduce and

extract nutrition to maintain their metabolism, evolution led to a transition from independent

single-celled organisms to agglomerations of independent cells that finally transformed into

multicellular organisms (Alberts et al., 1994; Ratcliff et al., 2012).

This transition to a more complex organism was characterized by collaboration and by

division of labor (Alberts et al., 1994). As cells specialized and cooperated, they formed a new,

individual and more complex organism, which was more than just the sum of its parts. With

the ongoing specialization and increasing cell differentiation, the complexity of the organism

increases, which favored the evolution of elaborate mechanisms for signal propagation. It is

hypothesized that the first neurons with fast electrical signal propagation were controlling

animal locomotion (Jékely, 2011). One of the simplest neural networks can be found in

Cnidaria (Kaiser and Varier, 2011). Even though it possesses only a diffuse two-dimensional

nerve net with minimal centralization, it consists of a set of interconnected neurons that are

the basic building blocks for more complex nervous systems. However, the neural network
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head ganglia

tail gangliadorsal cord

ventral cord

Figure 1.1: Visualization of the nervous system of Caenorhabditis elegans using green fluorescent protein
(modified from Hutter (2008)). Green dots depict neurons while the fine lines show the axonal

connections between the neurons.

of Cnidaria is mostly decentralized and has only limited capabilities. For complex behavior

such as sensory and motor functions, functional specialization is required, which begins with

spatial aggregation of neurons and leads to more complex neural networks, also known as

ganglia (Kaiser and Varier, 2011).

One of the most studied organisms is the transparent worm Caenorhabditis elegans (usually
referred to as C. elegans), whose genome was fully sequenced by Brenner (1974). C. elegans

has a precisely timed development cycle and evolves into a hermaphrodite adult worm that

possesses 959 body cells (Alberts et al., 2008). 302 of these cells are nerve cells, located in

two ganglia at the front and the back that are interconnected by a neural cord and a subset

of smaller ganglia. Since its anatomy has been described in extraordinary detail and the

structure of the nervous system has been thoroughly mapped, including practically all neural

connections (White et al., 1986), it is the perfect model organism to study neural processing,

neural function and neural development. The nervous system of the worm including its

neurons and their connections (i.e., axons) is shown in Figure 1.1. Possessing only 302 neurons

and a simple neural network, C. elegans is capable to perform the most fundamental functions

(movement, nutrition, reproduction, et cetera).

In more advanced organisms, the ganglion has further evolved into a complex network of

highly interconnected neurons with a centralized, hierarchical structure – the brain. Even

though architecture changes and cerebral evolution among species diverges1, the basic struc-

ture and fundamental function of the brain is conserved while the brain itself specializes

and adapts to the environment (Nicholson, 2001; Sarnat and Netsky, 2002). The evolutionary

process of the brain is not only characterized by the immanent centralization and a high

specialization of areas that are dedicated to important functions of the species (e.g., visual

and auditory perception, motor control or speech), but is also accompanied by the synthesis

of a complex network with a high degree of connectivity between neurons of the same area

that are linked to distant areas and form signal pathways in order to enable long-range signal

propagation. The formation of a highly specialized network with billions of interconnected

neurons and distinct processing centers seems to be the key ingredient that gives rise to higher

brain functions.

1For example, neurons in reptiles and birds form clusters while they form layers in mammals.
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1.2 A short history of brain research

With the evolution of the human species and the rise of civilizations, culture and science began

to flourish and knowledge increased. It was in old Egypt, where the Edwin Smith surgical
papyrus, the first written document in recorded history about medicine, referenced the brain

and the nervous system (see Figure 1.2). Even though the text originated around 1700 B.C., it

is only a replica of a much older surgical treatise that dates back even further to about 3000

B.C. (Gross, 1999).

Figure 1.2: First occurrence of the word

(i.e., brain, underlined in red) in the digitized

version of the Edwin Smith surgical papyrus
(modified from the U. S. National Library of

Medicine (2012)).

In ancient Greece, around 400–500 B.C., the

function and the purpose of the brain were not

well understood and various theories existed

where human intellect arises. No theory was uni-

versally accepted but two opinions were preva-

lent and attributed the origin of intellect to ei-

ther brain or heart. While Alcmaeon of Croton

(around 450 B.C.), who seems to be the first prac-

titioner of dissection, proclaimed that the brain

was the site of sensation and cognition, Empedo-

cles of Agrigentum (ca. 490–430 B.C.) thought

that the heart was the central organ of intellect

and that the composition of the blood influences

intelligence (Gross, 1999). Both views had influ-

ential followers. The Hippocratic doctors of an-

cient Greece supported the first hypothesis and

appointed intellect and mental processes to the

brain, while Aristotle considered the brain only

to be a secondary organ that tames the animal

beast by cooling its blood (Findlen, 1998).

In Alexandria of the second century, Herophilus of Chalcedon (335–280 B.C.) and Erasistra-

tus of Ceos (ca. 304–250 B.C.) began the first systematic study of human anatomy, carried out

not only by dissection of human cadavers but also by vivisection of living criminals (Gross,

1999). While Herophilus and Erasistratus followed the idea that the brain is the center of

sensation and cognition, they were particularly interested in studying its function and were

the first to provide detailed and accurate descriptions of the human brain, the ventricular

system and the connectivity of certain nerves (Gross, 1999).

During the time of the Roman Empire, the dissection of the human body was forbidden

by law, which led the Roman physician Galen of Pergamon (129–199) to focus his studies

on animals. In his studies, Galen dissected and vivisected not only animals including pigs,

oxen and elephants, but also primates as he assumed a good resemblance to the human

anatomy (Guerrini, 2003). These animal studies but also his extensive clinical experience

in the gladiator school of Pergamon, enabled him to give an extraordinarily detailed and

accurate description of brain and nerve anatomy, which endured throughout history and

influenced physicians until the Renaissance (Gross, 1999).
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Figure 1.3: Drawing of the brain and the ventricu-

lar system in the transverse plane fromVesalius’s

De humani corporis fabrica (1543). Two distinct
compartments in the brain are clearly delineated

(from Tamraz and Comair (2005)).

Figure 1.4: Drawing of a coronal section through

the brain that shows a body with medullary
streaks (i.e., corpus striatum). The difference be-

tween grey and white matter is particularly well

illustrated in the cerebellum (by Willis (1664),

from Catani andThiebaut de Schotten (2012)).

With the death of Galen and the decline of the Roman Empire in the 5th century, the

progress of medical sciences stopped until the eagerness for knowledge was rejuvenated

with the beginning of the Medical Renaissance, 1000 years later. The re-establishment of

human dissection in 1316 by Mondino dei Luzzi (ca. 1270–1326) and his treatise on anatomical

dissection Anathomia corporis humani (first printed around 1478), renewed the medical

sciences and influenced the work of succeeding anatomists. In the 16th century medicine

and anatomy began to flourish. Andreas Vesalius (1514–1564) published his monumental

seven volume masterpiece De humani corporis fabrica (1543), one of the most enduring and

influential text books in the history of science (Filley, 2001). Besides his contributions to

medicine and human anatomy, he was also the first to recognize two distinct compartments in

the brain. Although Vesalius delineated two neuroarchitectural compartments in his drawings

(see Figure 1.3), he never addressed the separated structures in his writings (Catani and

Thiebaut de Schotten, 2012). Soon after the publication of the fabrica, Archiangelo Piccolomini

(1526–1586) made the first clear distinction between the two neuroanatomical structures that

he termed cerebrum (cerebral cortex or grey matter) andmedulla (white matter) (Filley, 2001).

His observations marked the beginning of the anatomical study of the cerebral cortex and

the white matter (Catani and Thiebaut de Schotten, 2012). Thomas Willis (1621–1675) for

example, made an early attempt to describe the function of white matter and speculated
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that it elaborates sensory signals into perceptions and imaginations that were later stored as

memories in the cortex (Filley, 2001; Gross, 1999). One of Willis’s drawings, a coronal section

through the brain that illustrates the white and the grey matter is shown in Figure 1.4.

The invention of microscopy accelerated the scientific revolution. Marcello Malpighi (1628–

1694), who was the first to use the new technique for the examination of the white matter

architecture, discovered that the roots of the nerve fibers either terminate or originate in

the cortex and that the white medullary substance (as he called it, i.e., white matter) of the

brain can be attributed to a multitude of these connections (Gross, 1999). Based on Malpighi’s

observations, Emanuel Swedenborg (1688–1772) developed a comprehensive theory for the

structural and functional organization of the cortex and the white matter (Gross, 1999). For

example, he correctly assigned sensory and motor functions to the cortex and concluded that

Figure 1.5: Drawing by Ramón y Cajal

(1913) who depicted the regeneration of

a nerve fiber after hemisection.

these functional areas are connected to the body by

nerves that travel through the brainstem along the

spinal cord. He also stated that the functionally in-

dependent units of the brain are connected by fibers

and that the corpus callosum interconnects both hemi-

spheres (Gordh et al., 2007). However, Swedenborg’s

writings were barely noticed and it took scientists over

a century to draw the same conclusions that finally

confirmed Swedenborg’s theories.

With the discovery of the black reaction – a silver

nitrate staining technique for nervous tissue in 1873,

Camillo Golgi (1843–1926) introduced a novel way to

study the architectural organization of the brain. Golgi’s

methodwas later used by SantiagoRamón yCajal (1852 –

1934), who finally revealed the complex microstructure

of brain tissue with its interconnected neurons. An

example of Ramón y Cajal works is shown in Figure 1.5.

After 5000 years of brain research and fundamental

discoveries, the basic structure of the brain and the

nervous system was finally revealed. While the neuron
doctrine constituted the beginning of modern neuro-

science, the functional and structural analysis of ner-

vous tissue just started.

1.3 Motivation

Every living organism uses diffusion as a mechanism to transport and exchange substances.

The human brain as the neural processing center consists of a highly complex cellular mi-

crostructure in which diffusion plays a crucial role for brain function (Nicholson, 2001).

Diffusion is a fundamental process and highly depends on the microstructure and the cellular

organization of the tissue. The brain primarily consists of interconnected nerve cells and can

be divided into two distinct compartments – the grey matter with the bodies of the nerve
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(a) Photograph of a post mortem brain specimen.
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(b) 3D reconstruction of in vivo fiber tracts.

Figure 1.6: A set of whitematter fiber tracts. (a) shows selected tracts of one hemisphere in a postmortem
brain specimen after dissection and special preservation by Williams et al. (1999). (b) shows tracts in a

healthy subjects obtained with diffusion tensor imaging (DTI) and fiber tractography. Fiber tracts are

color-coded according to their spatial orientation with red = left-right, green = anterior-posterior and

blue = inferior-superior.

cells and the white matter where their axonal connections are concentrated. The axons in the

white matter are coherently aligned and are often organized in fiber bundles that interconnect

different functional areas of the brain (see Figure 1.5 for an example of a fiber bundle). With

their dense packing and their axonal membranes, they form highly orientated barriers. While

molecules experience less resistance parallel to the axons, they are hindered perpendicular to

the nerve fibers and diffuse in the direction parallel to the axons. The diffusion in the white

matter becomes directionally dependent and diffusion anisotropy arises.

With the invention ofmagnetic resonance imaging (MRI) by Paul C. Lauterbur (1929–2007)

and Sir Peter Mansfield (1933) in the 1970s and the introduction of diffusion weighted imaging
(DWI) by Le Bihan and Breton (1985) as well as diffusion tensor imaging (DTI) by Basser
et al. (1994), the quantification of diffusion became possible. By using DTI, tomographic,

cross-sectional images can be reconstructed that characterize the diffusion in each imaging

voxel with a second order diffusion tensor. This facilitated the investigation of the unique

structural organization of nervous tissue and diffusion anisotropy in the brain in vivo.
As the resulting voxel-wise diffusivity profiles of the diffusion tensor are potential indicators

for the underlying microstructural axonal pathways in the brain (Leergaard et al., 2010),

tractography techniques (Basser et al., 2000; Conturo et al., 1999; Mori et al., 1999; Parker and

Alexander, 2005; Lazar and Alexander, 2005; Behrens et al., 2007) can be used to approximate

the underlying white matter structures with three-dimensional fiber trajectories (Mori and

van Zijl, 2002; Dauguet et al., 2007). An example for some white matter fibers in an ex vivo
brain specimen and in vivo fiber tracts reconstructed from aDTI dataset of a healthy volunteer

are shown in Figure 1.6. For whole brain tractography, the reconstructed datasets contain a

wealth of information and consist of several thousand up tomore than onemillion streamlines.

Though such datasets approximate the underlying brain structure in high detail, the fiber
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tracts (i.e., streamlines) have no apparent structural organization and are loosely distributed

throughout the brain. It remains thus unclear to which underlying white matter structure

particular fiber tracts belong and if tracts are part of either the same or of distinct structures.

Fiber tracts are often color-coded according to their spatial orientation (see Figure 1.6b).

This coloring is mainly a visual aid that does not help to decipher the structural organization

of the tractography datasets. However, various potentially useful applications would greatly

benefit from disentangling the complex fiber network. Fiber tracts, grouped into meaning-

ful bundles that represent the underlying white matter structures correctly, are useful to

asses structural connectivity between distinct brain regions (Lanyon, 2012) or to determine

structural integrity of distinct white matter pathways.

Correct assignment of fiber bundles would also be helpful for the assessment of tumors and

the delineation of tumorous tissue, as this will aid to determine if white matter bundles have

been infiltrated by the tumor or whether the bundles have merely been dislocated (Stadlbauer

et al., 2007; Nucifora et al., 2007). The incorporation of such fiber bundle specific information

(e.g., course, spatial location, integrity) into treatment planning, neuronavigation as well as

radiation therapy will aid the neurosurgeon and ultimately help the patient.

From the diffusion tensor, various quantitative measures can be extracted that characterize

distinct properties of diffusion. As alterations in the diffusivity are often indicators for struc-

tural changes that are related to either natural or pathological causes (Pandit, 2009), DTI is

well suited to study disorders that are associated with changes in brain diffusivity. Techniques

for quantitative analysis can be applied to assess altered diffusion and to detect statistically

significant differences between two or more groups of subjects (e.g., patients vs. healthy

controls) or between subgroups of patients. Compared to established and predominantly

applied techniques such as voxel-based morphometry – VBM (Ashburner and Friston, 2000)

or tract-based spatial statistics – TBSS (Smith et al., 2006), new fiber bundle-driven techniques
(FDTs) enable the analysis of individual white matter bundles (Fillard et al., 2003; Gong

et al., 2005; O’Donnell et al., 2007). While FDTs are promising for the quantification of group

differences in individual bundles, they suffer from interpolation effects between distinct white

matter structures that result from the normalization and coregistration of different datasets

(Chao et al., 2009).

Resolving the structural organization of tractography datasets is of extraordinary impor-

tance for a number of potentially useful applications but lacks applicability as the grouping of

fiber tracts intomeaningful bundles is difficult. Even though the bundling of fiber tracts can be

performedmanually, this type of processing is prone to errors, remains highly time-consuming

and requires an operator with fundamental neuroanatomical knowledge.

Machine learning methods are auspicious techniques for the automatic extraction of fiber

bundles. Classification, for example, is a supervised machine learning method that uses

predefined prototype classes (e.g., a whitematter parcellation, atlas) to predict themembership

of fiber tracts to a class. With increasing availability of atlases and parcellations (Wakana

et al., 2004; Verhoeven et al., 2010; Zhang et al., 2010) as well as guidelines to accomplish a

reproducible segmentation of the white matter (Wakana et al., 2007), atlas-based classification

has become a convenient tool to define fiber bundles that correspond to specific regions of

the atlas.

9



Chapter 1 Introduction

If an atlas can not be used or is not available, fully automated unsupervised learning

techniques can be applied instead of supervised methods. Fiber clustering belongs to these

unsupervised methods that analyze the similarities between fiber tracts in order to assemble

similar tracts into distinguishable fiber bundles. While classification is only able to define fiber

bundles that correspond to classes in the anatomical atlas, cluster analysis groups tracts into

fiber bundles based on the similarity of distinct features of the tracts. Due to the high variability

of different datasets, a consistent, reproducible and anatomically correct extraction of fiber

bundles across multiple subjects solely based on tract similarity and without anatomical

guidance is difficult to achieve.

One fundamental drawback of clustering is the high computational complexity, which is

immanent to the majority of conventional clustering algorithms (Xu and Wunsch, 2008).

Since fiber tracts are sets of points that constitute complex trajectories in three-dimensional

space, appropriate measures are indispensable to determine the similarity between the fibers.

However, both the costly clustering and the complex similarity measures increase the total

computational load and typically restrict cluster analysis to small datasets that consist of

only a few thousand fiber tracts. Despite the multitude of available methods that has been

proposed for both classification and clustering of fiber tracts (Ding et al., 2003; Brun et al.,

2004; Moberts et al., 2005; Huang et al., 2005; O’Donnell et al., 2006; Zhang et al., 2008;

Maddah et al., 2008; Li et al., 2010; Garyfallidis et al., 2012; Wu et al., 2012; Wang et al., 2013),

fast and consistent clustering for multiple subjects is still challenging. While this hinders the

automatic extraction of bundles, it prevents not only the analysis of the anatomy and the

structural integrity of neural fiber bundles but also severely limits quantitative analysis in

group-based imaging studies.

1.4 Objectives and outline of the thesis

As the applicability of fiber tract clustering is seriously limited with recent methods, the main

objective of this thesis was to develop a cluster analysis framework that enables fast clustering

of large tractography datasets in reasonable time. In order to facilitate the study of alterations

in fiber bundles, the second intent of the present work was to introduce a new technique for

fiber bundle-based quantitative analysis that is applicable in group-based imaging studies. By

using various experiments and initial studies, the thesis demonstrates the practicability of the

presented techniques.

To emphasize the outline and the contributions of this work, the thesis is organized in

five distinct parts. Beginning with part I, an introduction and motivation for the thesis is

presented (chapter 1). Fundamentals and basic concepts that are relevant for this thesis are

presented in chapter 2. This chapter introduces not only the physics of diffusion, but also the

origin of diffusion in tissue and expounds how anisotropic diffusion arises in the white matter

of the brain. The principles ofmagnetic resonance imaging, diffusion weighted imaging and
fiber tractography are described. An overview of existing methods for quantitative analysis in

group-based imaging studies is presented before the chapter closes with a brief introduction

on cluster analysis and parallel computing.
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Part II is dedicated to the cluster analysis of fiber tracts. CATSER (cluster analysis through
smartly extracted representatives), a new cluster analysis algorithm is presented as well as a

method for the integration of anatomical information into the cluster analysis (chapter 3). In

chapter 4, similaritymeasures that are relevant for the thesis are formally defined and reviewed

before important mechanisms for the fast processing of large datasets are described and

technical considerations and details for the implementation of the cluster analysis framework

in a parallel computing environment are unraveled (chapter 5). To show the applicability of

the clustering in a multi-subject study and to demonstrate the computational efficiency of

the clustering framework, various experiments have been conducted that are presented in

chapter 6.

The third part deals with the quantitative analysis of extracted fiber bundles. While a new

method for quantitative analysis of fiber bundles is presented in chapter 7, its application to

group-based analysis is described in chapter 8. To investigate the applicability of the presented

methods, two studies were conducted to explore hemispheric diffusion differences of selected

fiber bundles in healthy volunteers and schizophrenic patients.

In part IV, the presented techniques and results are discussed and a conclusion and an

outlook is given (chapter 9). The thesis closes with part V which contains an appendix with

additional information.
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Chapter 2

Fundamentals

The more you know, the more you realize
you know nothing.

— Socrates (469 B.C.–399 B.C.)

In this chapter, the fundamental principles of Brownian motion and diffusion are reviewed as

well as the origin of diffusion contrast in the brain. After a short introduction tomagnetic
resonance imaging (MRI), diffusion weighted imaging (DWI) and diffusion tensor imaging
(DTI), the basics of fiber tractography and quantitative analysis of DWI data are presented.

To conclude this chapter, essential basics of cluster analysis and similarity measures as well as

parallel computing are reviewed.

The foundations of MRI are only touched briefly as they are not essential to understand the

thesis. For a more detailed, technical introduction to this subject the reader is referred to the

books byHaacke et al. (1999); Levitt (2001) andHendee and Ritenour (2002). A comprehensive

description to the underlying principles of quantum mechanics is given by Cohen-Tannoudji

et al. (2006). Even though the principles of diffusion weighted imaging and diffusion tensor
imaging are partly covered, the interested reader may like to take a closer look into the book

by Jones (2011) that exhaustively covers everything related to diffusion MRI. For further

information on cluster analysis and similarity measures the comprehensive books of Xu and

Wunsch (2008) and Everitt et al. (2011) are advised.

2.1 Brownian motion and diffusion

Diffusion is the translationalmovement of particles that occurs as a result of randommolecular

motion in the absence of bulk motion. If concentration differences exist in a substance, a flow

of particles is observed and particles from areas with high concentration will diffuse to areas

with lower concentration, which will result in a final uniform distribution of the substance.

On a macroscopic scale, the flux of particles J(r, t) can be described with Fick’s first law (Fick,

1855)

J(r, t) = −D∇φ(r), (2.1)
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Chapter 2 Fundamentals

whereD is the diffusion constant and∇φ(r) the gradient of concentration φ(r) at position r

(Crank, 1975). The diffusion constantD is also called diffusivity and determines the mobility

of the diffusing substance.The flux J is a mass flow rate that quantifies the number of particles

that pass through an area in a specific amount of time. Fick’s first law only describes steady-

state diffusion under the assumption that the concentration gradient is constant over time. In

practice, however, the concentration and the concentration gradient change with time and

non-steady-state diffusion occur. In order to describe the change of concentration over time,

additional aspects have to be considered. The law of conservation of mass requires that in a

closed system, the total number of particles has to be maintained. The number of particles

that diffuse into an area must be equal to the sum of particles that flow out of the surrounding

area. This is mathematically expressed by the continuity equation (Ursell, 2011)

∂φ(r, t)

∂t
+∇J(r, t) = 0. (2.2)

Inserting Eq. 2.1 into Eq. 2.2 yields the linear partial differential diffusion equation (Fick’s

second law) that describes the change of the concentration with time:

∂φ(r, t)

∂t
= ∇ (D∇φ(r, t)) . (2.3)

IfD is constant in space, it follows according to Ursell (2011)

∂φ(r, t)

∂t
= D∇2φ(r, t). (2.4)

Even though Fick’s laws were derived for the transportation of particles through a diffusion

gradient, diffusion also occurs in the absence of such a concentration gradient, which is then

called self-diffusion. The underlying physical phenomenon for diffusion was first discovered

by Brown (1828) and is thus called Brownian motion. For studies on pollen, Brown suspended

pollen grains inwater and observed ceaseless, randommotion of the grains using amicroscope

(Ghosh, 2009). Brown was never able to explain his observation and more than half a century

passed before Einstein (1905) derived the mathematical formalism that relates the random

movement of particles to thermal molecular motion and thus explains the Brownian motion

(Perrin, 1909). In essence, particles, irrespective of their current state, exhibit random motion

if they possess thermal energy and the temperature is above absolute zero (0K).Themovement

of the pollen grains can thus be explained by the random motion of water molecules that

constantly collide with the grains. The collisions occur from different directions but are

not able to neutralize each other, resulting in the random movement of the pollen grain.

Consequently, self-diffusion is the translational displacement of particles due to the Brownian

motion.

Fick’s laws are macroscopic descriptions of diffusion that is governed by the Brownian

motion on a microscopic scale. The mathematical formalization of the Brownian motion

enabled its interpretation as a continuous-time stochastic process, in which the probability

densities obey the differential equations (Callaghan, 2011). Let us assume that we have a

specific amount of particlesM that are added as a Dirac function at the origin r = 0 and the
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2.1 Brownian motion and diffusion

initial time point t = 0 (Callaghan, 2011). If the substance is isotropic and the diffusivity is

directionally independent, the solution to the diffusion equation (Eq. 2.4) for three dimensions

is given according to Einstein (1905) and Ursell (2011) as

φ(r, t) =
M

(4πDt)3/2
exp

(
−

r2

4Dt

)
. (2.5)

From Eq. 2.5 it follows that the distribution of the particles is Gaussian and the width of the

distribution grows with time. Let us assume that P(r|r0, t) is the conditional probability that

a particle that was at the initial spatial location r0 at time t = 0 will be at location r after

time t. To obtain the time-dependent probability for the displacement, the diffusion equation

(Eqs. 2.3 and 2.4) is rewritten as (Callaghan, 2011)

∂P(r|r0, t)

∂t
= ∇ (D∇P(r|r0, t)) , (2.6)

∂P(r|r0, t)

∂t
= D∇2P(r|r0, t). (2.7)

The solution for Eq. 2.7 follows from Eq. 2.5 and is the probability distribution (Callaghan,

2011)

P(r|r0, t) =
1

(4πDt)3/2
exp

(
−
|r− r0|

2

4Dt

)
. (2.8)

The mean of this distribution is µ = r0 and the variance σ2 = 2Dt, which is the average

mean-squared displacement for all particles.

Eq. 2.7 is only valid for diffusion in isotropic media (Callaghan, 2011). In anisotropic media,

the diffusion is orientation-dependent and the diffusion properties vary in different directions.

In such media, the diffusing particles have a preferential direction (Crank, 1975) and a single

scalar valueD is inadequate to describe the diffusion process accurately. Instead of using the

scalar diffusion coefficientD, more general models have to be used in order to characterize

the orientation dependency. In anisotropic media, the diffusion can be approximated with a

3× 3 second order, symmetric and positive definite diffusion tensorD

D =

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 . (2.9)

The differential equation (Eq. 2.7) changes to (Callaghan, 2011)

∂P(r|r0, t)

∂t
= ∇ (D∇P(r0|r, t)) , (2.10)
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Chapter 2 Fundamentals

which yields the direction-dependent, conditional probability of translational displacement

for the diffusing particles. By using the diffusion tensor, the probability distribution (Eq. 2.8)

evolves according to Basser et al. (1994)

∂P(r|r0, t)

∂t
=

1√
det (D)(4πt)3

exp

(
−
(|r− r0|

2)TD−1(|r− r0|
2)

4t

)
. (2.11)

Eq. 2.11 describes the evolution of the distribution probability for diffusing particles in

anisotropic media over time. At each time point t, this distribution probability can be repre-

sented with a time-dependent three-dimensional diffusion ellipsoid, whose size, shape and

orientation correspond to important properties of anisotropic Gaussian diffusion (Basser and

Özarslan, 2011).

In order to visualize the mean-squared displacement of the diffusing particles, the symmet-

ric diffusion tensorD can be diagonalized

D = V−1λV, (2.12)

with eigenvectors V and corresponding eigenvalues λ

V =
[
v1 v2 v3

]
=

vx1 vx2 vx3
vy1 vy2 vy3
vz1 vz2 vz3

 and λ =

λ1 0 0

0 λ2 0

0 0 λ3

 . (2.13)

This yields the ellipsoidal representation of the diffusion tensor, where the three eigenvectors

define the principal directions of the diffusion and the corresponding eigenvalues the principal

diffusivities (Basser et al., 1994) (see Figure 2.1a). Generally, eigenvalues and the corresponding

eigenvectors are sorted according to the strength of the diffusion with λ1 > λ2 > λ3. The

dominant direction of diffusion is then indicated by the first eigenvector and the corresponding

eigenvalue. In the special case when diffusion is isotropic, the ellipsoid is spherical (see

Figure 2.1b) and the diffusion tensor reduces to

D = D

1 0 0

0 1 0

0 0 1

 . (2.14)

An example for the diffusion tensor ellipsoid in an anisotropic medium is given in Figure 2.1c.

2.2 Diffusion in the brain

In nature, every living organismuses diffusion as a basicmechanism to transport and exchange

substances. The microstructure of multicellular organisms is composed of different types

of cells with each cell consisting of a membrane that encases the cell and shields its interior

components from the outside (Whitford et al., 2011). The membrane acts as a barrier between

the cell and its surrounding, and mass exchange between intra- and extracellular space occurs
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v







v

v

(a) Ellipsoidal representation of the diffusion

tensor.

(b) Diffusion tensor in

isotropic media.

(c) Diffusion tensor in

anisotropic media.

Figure 2.1: Ellipsoidal representation of a diffusion tensor, defined by its eigenvectorsV and eigenvalues

λ (a). The diffusion tensor is spherical in isotropic media (b), while it is an ellipsoid that unveils the

preferential direction of diffusion in anisotropic media (c).

through active or passive transport mechanisms (e.g., diffusion, osmosis, ion pumps). The

underlying microstructure of an organism is highly complex and the cellular organization

influences diffusion of molecules and particles in the organism. The probability distribution

for the particles is no longer Gaussian due to the different compartments that act as barriers

and hinder diffusion (Le Bihan et al., 2001).The overall mobility of diffusing particles in tissue

is obviously influenced by the distance between obstacles and particles and the observed time

frame of the diffusion process, but also by the configuration of the cellular structures, the

distance between obstacles and the number and shape of the obstacles (Callaghan, 1991).

The human brain as the center of the central nervous system (CNS) consists of a highly

complex cellular microstructure in which diffusion plays a crucial role for brain function

(Nicholson, 2001). The brain itself consists of two principal types of cells – nerve cells and glia

cells that are surrounded by fluid. Even though cells are densely packed in the CNS, 20% of

the volume fraction in the brain belongs to the extracellular space, filled with interstitial fluid
that is in contact with cerebrospinal fluid at the ventricular surfaces (Syková and Nicholson,

2008). In extracellular space, diffusion is the dominant transport mechanism that is not only

responsible for the autoregulation of brain functions, but also for the nutrition of cells that

need oxygen, glucose, proteins and other substances to sustain their metabolism (Nicholson,

2001).

Glia cells are scattered throughout the brain and play an integral role in the CNS.While they

add structural support and stabilize nerve cells, they also maintain the metabolic function of

the brain and regulate synaptic plasticity which is believed to be the basis for learning and

memory (Todd et al., 2006; Bélair et al., 2010).

The neural processing of the brain is predominantly attributed to the interconnected

network of electrically excitable neurons. In its most simplified version, a neuron consists of

the cell body (i.e., soma), the nerve fiber (i.e., axon) and dendrites (see Figure 2.2). The axon

is a long projection of the nerve cell and can branch out into a treelike structure that connects

to multiple other nerve cells in order to simultaneously transmit the electrochemical signals

of the neuron to these other cells. While a neuron can only have one axon, it can possess
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Figure 2.2: Simplified schematic of a neuron, some dendrites and its axon (adapted from Jarosz (2009)

and Beaulieu (2002)).

multiple dendrites that are connected to the axons of other nerve cells in order to receive

their signals. Thus, the key to neural processing are these interconnected neurons that receive

and transmit electrochemical signals from multiple neurons (see Figure 2.3a for an exemplary

image that shows pyramidal neurons that form a network).

The neuron bodies are not randomly distributed in the brain, but are spatially located at

the surface (i.e., cerebral cortex) and in well delineated areas inside the brain (e.g., brain stem)

or the spinal cord. Regions that contain predominantly the bodies of neurons are called grey

matter1. Depending on the region, grey matter consists of multiple layers that have different

cellular compositions and distinct distribution patterns of the neuron bodies.

Even though diffusion in the brain is also at work for extrasynaptic neurotransmission

as a means of intercellular communication, generally known as volume transmission (Zoli

et al., 1998; Fuxe et al., 2012), the primary mechanism for intercellular communication is the

axonal wiring and the transmission of electrochemical signals between the neurons2. The

inner regions of the brain are termed white matter and contain the axons of the neurons,

which guide the electrochemical signals to spatially distinct regions of the brain. An essential

1The term grey matter is attributed to the color of the cell bodies after formalin fixation.

2It was believed that glia cells are not involved in neurotransmission, but Gourine et al. (2010) presented

evidence that they at least modulate neurotransmission and actively contribute to information processing of

the CNS.
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2.2 Diffusion in the brain

distinctive feature of axons is the axonal myelination3. Myelinated axons are insulated with

sheaths of myelin (see Figure 2.2), which increase the nerve conduction velocity and thus the

speed of the electrochemical signals that propagate along the nerve fibers. Inside the axon, it

contains the cytoskeleton as well as microtubules and neurofilaments.

Since neuron bodies do not exist in the white matter but mostly axons, the structural

organization between grey and white matter differs significantly. Even though the number

of neurons and their connections greatly varies among species and the size of the brain,

Drachman (2005) estimated that the neocortex, which is the outer layer of the human brain,

consists of 20 billion neurons (20× 109), each connected to an average of 7000 neurons.

This accumulates to 0.15 quadrillion connections (0.15× 1015) or approximately 1 trillion

connections per cm3 (1× 1012) (Drachman, 2005).

The axons in the white matter interconnect different brain regions. Due to the extensive

number of connections, it is evident the axons are densely packed. However, axons are not

randomly distributed, but coherently aligned throughout the brain and often organized in

fiber bundles (see Figure 2.3b) that form highly oriented barriers for diffusing particles or

molecules. As a result, diffusion is hindered in the direction perpendicular to the nerve fibers

and particles experience less resistance parallel to the axons. As they diffuse in the direction

that is parallel to the axons, the diffusion in the white matter becomes directionally dependent

and anisotropic. Even though it is not yet fully understood whether anisotropy in white

matter originates from intra- or inter-axonal diffusion, it is plausible that both compartments

contribute to the anisotropy (Le Bihan et al., 2001; Takahashi et al., 2002; Beaulieu, 2002;

Assaf and Basser, 2005; Assaf et al., 2008). However, the exact contribution of intra- and

inter-axonal diffusion will depend on the time scale diffusion is observed, the axon diameter

as well as extracellular spacing between axons. As pointed out by Beaulieu (2002), many

experiments support the hypothesis that intact axonal membranes have a strong influence on

diffusion anisotropy especially at short diffusion times (Le Bihan et al., 2001; Takahashi et al.,

2002). Even though myelination is not essential for anisotropic diffusion, experiments also

suggest that the myelin sheaths modulate the degree of anisotropy (Beaulieu, 2002). In order

to assess and characterize intra-axonal diffusion, measurements at longer diffusion times

have to be performed (Assaf and Basser, 2005; Assaf et al., 2008).

Alterations in the diffusivity of particles in white matter are often an indicator for structural

changes that are associated with changes in the volume ratio between intracellular and extra-

cellular space (Le Bihan et al., 2001).These changesmight be due to the reorganization of white

matter during brain development (Löbel, 2007; Giorgio et al., 2008). They can, however, also

be related to pathological conditions that might lead to demyelination, axonal degeneration

or ischemia (Beaulieu, 2002).

3The term white matter has originated from the formaldehyde-based preservation of the brain, in which the

myelin changes its color to white.
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(a) Color-enhanced light microscopy im-

age of pyramidal neurons forming a net-

work in the brain (Clarke, 2012).

(b) Disconnected bundle of nerve fibers, acquired with a

scanning electron microscope (Gschmeissner, 2011). The ax-

ons of the individual nerve fibers are shown in orange and

insulating myelin sheaths in green.

Figure 2.3: Colored images of pyramidal neurons (a) and a disconnected bundle of axons (b).

2.3 Probing diffusion withmagnetic resonance imaging (MRI)

2.3.1 MRI basics

Interactions of elementary nuclear particles (see Figure 2.4) with externally applied magnetic

fields enable MRI to probe the atomic structure of a sample and to obtain tomographic images

in vivo. The fundamental principle of nuclear magnetic resonance (NMR) and MRI (Bloch,

1946; Purcell et al., 1946; Lauterbur, 1973) is based on quantum mechanics and the existence

of a magnetic moment (nuclear spin I) that is immanent to all atomic and subatomic particles

with a spin quantum number other than 0.

When atomic nuclei that possess a magnetic dipole moment µ are exposed to an external

magnetic field B0, µ will precess around B0 with the Larmor frequencyω0:

ω0 = γB0, (2.15)

where γ denotes the gyromagnetic ratio (see Figure 2.5). In principle, only nuclei that possess a

magnetic dipolemomentµ (a non-zero spin) are relevant forMRI. As the hydrogen nucleus 1H

has the largest µ and a high natural abundance in biological systems, it is the most commonly

used nucleus in MRI.
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2.3 Probing diffusion withmagnetic resonance imaging (MRI)

Figure 2.4: Bohrs model of an atomic nucleus

with protons (black) and neutrons (grey) and its

orbiting electrons (yellow) (taken from Ros et al.

(2007)).

I



B



Figure 2.5: An atomic nucleus that possesses a

nuclear spin I and the magnetic dipole moment

µprecesseswith theLarmor frequencyω0 around

the main magnetic field B0 (adapted from Ros

et al. (2007)).

By observing a large number of nuclei that are exposed to the main magnetic field B0,

slightly more spins will align parallel than antiparallel to B0, as the parallel alignment is

energetically more favorable. This gives rise to a longitudinal macroscopic magnetization

M parallel to B0. In order to detect this macroscopic magnetization the thermodynamic

equilibrium has to be disturbed by applying an additional high frequency (HF) magnetic field

B1 that is perpendicular to B0 and oscillates with the Larmor frequencyω0. The application

of the HF field B1 tips the longitudinal magnetizationM towards the transverse (x-y) plane

perpendicular to B0 (see Figure 2.6).

When the HF field B1 ceases, tissue-dependent T1 and T2 relaxation processes take place si-

multaneously, the tippedmagnetizationMwill return into equilibrium and a detectable NMR

x
y

z

M
B

Figure 2.6: The application of an HF

pulse tips the magnetization into the

transverse plane perpendicular to B0.

signal is induced in the receiver coils. The T1 relaxation

(spin-lattice relaxation) is governed by the interactions

between spins and the lattice and describes the pro-

cess in which the longitudinal magnetization regains

equilibrium. In contrast, the T2 relaxation (the spin-

spin relaxation) results from interactions between the

spins themselves, which gives rise to the decay of the

transverse magnetization.

For MR imaging, the location of the signal has to be

encoded in all three spatial directions x, y and z.This is

achieved by applying additional, linear magnetic field

gradients that superimpose the main magnetic field

B0 and introduce a spatially dependent variation of

the magnetic field. The spatial encoding yields the fre-

quency spectrum of the spin density, which can be
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(a) Logarithmically scaled magnitude of

a 2D k-space.

(b) Corresponding spin density after ap-

plying the inverse Fourier transform.

Figure 2.7: Example of a 2D k-space (a) and the corresponding transverse image of the spin density (b)

(taken from Ros et al. (2007)).

described with the k-space formalism (Twieg, 1983). The k-space is a two-dimensional fre-

quency space that is sampled successively according to a predetermined sampling path – the

k-space trajectory. The consecutive sampling of k-space at discrete time points transforms

the continuous MR signal into a discrete signal, thereby determining the spatial resolution

of the final MR image that is reconstructed by applying an inverse Fourier transform to the

fully sampled k-space. An example of a 2D k-space and the corresponding image of the spin

density is given in Figure 2.7.

2.3.2 Diffusion weighted imaging (DWI)

Diffusion weighted imaging (DWI) is an MR imaging technique that measures diffusion

and determines the mean-square displacement of diffusing molecules. In order to quantify

diffusion, Stejskal and Tanner (1965) presented the so called pulsed gradient spin echo (PGSE)
experiment, which is briefly illustrated in Figure 2.8. For this experiment, a 90° HF excitation

pulse is applied to excite the spins and to tip the magnetization into the transverse plane. The

signal is encoded by two diffusion sensitizing gradients that are symmetrically placed around

a 180° refocusing HF pulse which is applied after time period τ starting from the excitation

pulse. After another period of duration τ the signal is fully formed and can be acquired. The

gradients are separated by the time interval ∆.

The application of a spatially varying, linear field gradientg introduces a spatially dependent

modulation of the precession frequency for spins in the main magnetic field B0. As a result,

the Larmor frequencyω0 (see Eq. 2.15) becomes a function of position r (Price, 1997):

ω(r) = ω0 + γgr = γB0 + γgr. (2.16)
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In the general case, gradient g is applied for a certain amount of time and causes the spins to

dephase at different rates. This produces a cumulative phase shift (Price, 1997)

ϕ(t) = γ

t∫
0

g(t ′)r(t ′)dt ′. (2.17)

Even though the gradient amplitude g(t) is in general time-dependent, it is, for simplicity,

further assumed that the amplitude g(t) is constant over time: g = g(t).

Going back to the PGSE experiment (see Figure 2.8), the first gradient g, applied for the

time duration δ, produces the phase shift (Price, 1997)

ϕ1(τ) = γg

t1+δ∫
t1

r(t)dt. (2.18)

The following 180° HF pulse inverts the magnetization, while the second gradient, applied

with identical gradient strength, rephases the spins and produces the phase shift

ϕ2(τ) = −γg

t1+∆+δ∫
t1+∆

r(t)dt. (2.19)

Following Price (1997), the total phase shift is then given by

ϕ(2τ) = ϕ1(τ) +ϕ2(τ)

= γg

(
t1+δ∫
t1

r(t)dt−
t1+∆+δ∫
t1+∆

r(t ′)dt ′

)
.

(2.20)

In the absence of translational diffusion along the gradient direction, the cumulative phase

shift has been completely reversed, the rephasing is complete and the total phase shiftϕ(2τ) is

zero. However, if molecules have diffused along the direction of gradient g during time period

∆, the rephasing will be incomplete (ϕ(2τ) ̸= 0) and signal attenuation will be observed.

Assuming the diffusion is Gaussian, the signal attenuation at position r is given by the

Stejskal-Tanner equation (Stejskal and Tanner, 1965)

S(r) = S0(r) exp (−bD(r)) , (2.21)

where S0 is the signal without diffusion weighting (b = 0) and b, a diffusion weighting factor

as introduced by Le Bihan and Breton (1985)

b = γ2δ2g2

(
∆−

δ

3

)
. (2.22)

Hence, the measured diffusion signal depends on the diffusion coefficientD, the diffusion

time ∆ as well as on the amplitude and duration δ of the diffusion sensitizing gradient.
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Figure 2.8: Schematic illustration of the diffusion weighted PGSE experiment (modified from Leemans

(2006)). The strength of the magnetic field B is indicated by the length of the colored vertical arrows.

During application of gradients g for time duration δ, the strength of the main magnetic field is

modulated and the precession frequencyω becomes spatially depended. After excitation with a 90°

HF pulse and the application of the first gradient during time period τ, spins begin to dephase and

precess at different frequenciesω due to the underlying, spatially varying magnetic field. The resulting

spatially dependent dephasing of spins (illustrated with colored, encircled arrows) results in a loss

of phase coherence and the net magnetizationM decreases. The application of the 180° refocusing

HF pulse in combination with the second gradient g during the second time period τ rephases the

spins. After completion of both τ periods, the signal has finally formed and can be measured. In the

absence of diffusion during the time ∆, no signal attenuation is observed and the cumulative phase

shift has been completely reversed. However, if spins have undergone translational motion along the

gradient direction during the onset of the gradients, rephasing of the spins will be incomplete and

signal attenuation will be finally observed.
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By rearranging Eq. 2.21, the diffusion coefficientD(r) can be estimated from the diffusion

weighted signal S(r) and the unweighted signal S0(r)

D(r) = −b−1 ln

(
S(r)

S0(r)

)
. (2.23)

The computation of the diffusion coefficient with the Stejskal-Tanner equation (Eqs. 2.21–

2.23) assumes unrestricted diffusion that can be modeled with a Gaussian distribution (see

section 2.1). At a microscopic scale, however, diffusion in tissue is highly heterogeneous

due to (micro-) cellular compartments and natural barriers (e.g., molecules, membranes,

white matter fibers tracts). The observed diffusion coefficient is thus not solely guided by self-

diffusion, but influenced by additional microscopic particles and structures. Consequently, the

apparent diffusion coefficient (ADC) depends not only on the underlying diffusion coefficient

of the tissue, but also on experimental parameters, such as diffusion time and voxel size (Le

Bihan et al., 2006). If the diffusion time is sufficiently long, diffusion in tissue will be restricted

and the ADC will be reduced.

2.3.3 Diffusion tensor imaging (DTI)

If the underlying tissue microstructure is isotropic, the diffusion coefficientD(r) (Eq. 2.23)

describes the diffusion properly. However, if the tissue structure is more complex and diffusion

anisotropic, a scalar value is insufficient to characterize the diffusion andmore complexmodels

have to be used instead. In the mid-1990s, diffusion tensor imaging (DTI) was introduced
by Basser et al. (1994), who generalized the Stejskal-Tanner equation (Eq. 2.21) to model

diffusion by a second-order tensor (see section 2.1). The diffusion tensorD(r) at position r

(compare Eq. 2.10) can be estimated by sampling the diffusion signal Sk(r) in six or more

linearly independent gradient directions gk with k = 1, . . . ,N along with the unweighted

signal S0(r). The signal Sk(r) for the k
th gradient direction is given by (Basser et al., 1994;

Leemans, 2006)

Sk(r) = S0(r) exp
(
−bkĝ

T
kD(r)ĝk

)
, (2.24)

where ĝk is the normalized gradient orientation vector

ĝk =
gk

g
(2.25)

and bk the b value for the kth gradient direction

bk = γ2δ2g2
k

(
∆−

δ

3

)
. (2.26)

Under the assumption that the gradient strength is identical for all gradient directions, b

becomes independent from the gradient orientation

g = gk ∀ k ⇒ b = bk ∀ k. (2.27)
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Figure 2.9: Transverse MRI images without diffusion weighting (a) and with diffusion weighting

applied along the three axes with x = left-right, y = anterior-posterior and z = inferior-superior (b)–(d).

In Figure 2.9, images with and without diffusion weighting are presented for a human brain

dataset.

The signals Sk(r) (Eq. 2.24) for all k = 1 . . .N gradient directions can be arranged as a linear

system of equations and solved to estimate the apparent diffusions tensorD(r). Decomposing

the diffusion tensor yields quantitative, scalar parameters that represent distinct features of the

tensor. Changes of single or multiple of these quantities are often an indicator for structural

alterations in the brain, (e.g., reorganization processes, demyelination, axonal damage or

changes in axonal density). Even though a variety of parameters have been proposed to

characterize the diffusion tensorD with a single value, only the most common, rotationally

invariant measures as defined by Basser (1995); Pierpaoli and Basser (1996) and Bahn (1999)

are presented:

• The trace is defined as the sum of the diagonal elements ofD

trace = Dxx +Dyy +Dzz = λ1 + λ2 + λ3. (2.28)

• Themean diffusivity, also known as ADCmean or simply ADC is the average diffusivity

along all three axes:

ADC = ⟨λ⟩ = Trace

3
=

λ1 + λ2 + λ3

3
. (2.29)

• The fractional anisotropy (FA) is a measure that captures the degree of diffusion

anisotropy

FA =

√
3

2

√
(λ1 − ⟨λ⟩)2 + (λ2 − ⟨λ⟩)2 + (λ3 − ⟨λ⟩)2√

λ21 + λ22 + λ23
. (2.30)

The FA takes values between 0 and 1, whilst 0 corresponds to isotropic and 1 to

anisotropic diffusion. In order to visualize the strength and directionality of the dif-
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fusion, the FA can be color-coded with the RGB color-model4. For this purpose, the

principal direction of diffusion (v1) is interpreted as RGB value and weighted with the

FA. The color is then an indication for the principal orientation of diffusion (red =

left-right, green = anterior-posterior and blue = inferior-superior), whilst color intensity

determines the strength of diffusion.

• The axial diffusivity (AD) is the diffusivity along the principal axis

AD = λ1. (2.31)

• The radial diffusivity (RD) describes the diffusivity perpendicular to the principal axis
of diffusion:

RD =
λ2 + λ3

2
. (2.32)

An example for diffusion tensors and the presented tensor-based quantities is presented in

Figure 2.10 for a single slice of an in vivo human brain dataset.

However, the measured diffusion signal is just an approximation of the underlying mi-

crostructure that consists of billion axonal connections per imaging voxel (see section 2.2).

Even though the diffusion tensor is a good approximation when the tissue is homogeneous

and axons are aligned parallel, it is insufficient in heterogeneous tissue, where multiple fiber

compartments give rise to a complex diffusion signal (e.g., crossing, fanning or kissing fibers).

In order to describe the diffusion in the presence of complex fiber architectures accurately

more elaborate methods have to be used. With complex techniques that sample the diffusion

signal in many directions with high b-values (e.g., high angular resolution diffusion imaging
(Tuch, 2004; Descoteaux et al., 2007)), orientation distribution functions (ODFs) can be recon-

structed that characterize the diffusion signal more accurately and are able to resolve regions

with multiple fiber compartments.

2.4 Tractography

Fiber tractography, also referred to as fiber tracking, is an MRI post-processing technique for

the non-invasive reconstruction of the white matter fiber network.TheMRI diffusion signal is

utilized to trace the path of diffusion and to determine fiber trajectories in three-dimensional

space. Figure 2.11 shows an illustration for a single fiber tract that traverses along the principal

direction of diffusion.

In comparison to voxel-based MR imaging modalities, fiber tracking generates a three-

dimensional representation of the underlying microstructure that models the microscopic

axonal connections in the brain. This enables not only a superior visualization of the fiber

network, but offers various novel ways to study the white matter neuroarchitecture in vivo.
While fiber tractography, can be used to reconstruct and investigate the fiber network of the

4RGB is an additive color-model in which varying color components of red, green and blue are added to

produce distinct colors.
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(a) Tensor. (b) ADC. (c) AD.

(d) RD. (e) FA. (f) Color-coded FA.

Figure 2.10: Example for a diffusion tensor image (a) and various contrasts derived from diffusion

tensors (b)–(f). The diffusion ellipsoids (a) and the color-coded FA (f) are colored according to the

principal direction of diffusion with red = left-right, green = anterior-posterior and blue = inferior-

superior.
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Figure 2.11: Illustration of tensor based fiber tractography for one tract. By starting at the seed point

(markedwith a red×), the trajectory of the tract is propagated along the principal direction of diffusion.
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(a) Whole brain tractography. (b) Corticospinal tract (CST).

Figure 2.12: Example for whole brain tractography (a). Each tract in the dataset is colored to encode its

orientation. An example for a single fiber bundle, depicted in yellow, is shown in (b).

entire brain, it also permits targeted tractography in which only selected white matter fiber

bundles are extracted (for an example see Figure 2.12). As pointed out by Jones and Pierpaoli

(2005), tractography can visualize both the structure and the diffusion properties of white

matter pathways simultaneously. It can not only be used to investigate the structural integrity

of white matter or to perform preoperative, neurosurgical planning (Clark and Byrnes, 2011),

but might also be helpful to delineate lesions or tumors in the white matter. Some studies

already showed that tractography is beneficial to assess the structural architecture of white

matter pathways with tumor involvement (Stadlbauer et al., 2007; Nucifora et al., 2007).

Tractography can be performed with a huge variety of tracking algorithms that initiate the

fiber tracking by placing single or multiple seed points in the voxels of the dataset. When the

entire brain is specified as seed region, this is usually referred to as whole brain tractography.

From the seed regions, the fiber tracking is performed voxel-by-voxel until the tracts leave

the tissue, regions become too unreliable (e.g., low FA) or alternative stopping criteria are

satisfied. For the fiber tracking, either deterministic or probabilistic approaches can be used.

Tract p

p

p

p

p p

p
pN-

pN

Figure 2.13: Illustration and formal def-

inition of a fiber tract p with N tract

points. The tract points that define the

tracts are depicted in black while the in-

dividual segments of the tract are shown

in grey.

While deterministic methods propagate the trajectory

of the tract according to the best estimation of the

fiber orientation in the underlying microstructure un-

til the tract terminates (Alexander, 2011), probabilis-

tic approaches take sources of uncertainty for the esti-

mation of the diffusion orientation into account and

utilize probabilistic models and iterative procedures

(e.g.,Markov chainMonte Carlo, bootstrapping) for the
tracking (Parker, 2011).

Irrespective of the tracking technique, the result is a

set of fiber tracts, denoted byD, that have no apparent

structural organization and are not directly associated

to each other. Each single tract p ∈ D is represented

by a set ofN tract points p = {p1, . . . ,pN} that define

29



Chapter 2 Fundamentals

p’s trajectory (see Figure 2.13 for an illustration). For completeness, a fiber bundle is defined

as a collection of fiber tracts that follow a similar anatomical path.

While diffusion MRI provides the unique opportunity to measure diffusion in vivo, the
technique is inherently impaired by a low spatial resolution. Due to physical limitations (e.g.,

inevitably long diffusion times, signal decay) as well as the high number of acquisitions that

are necessary to accurately assess anisotropic diffusion, acquisition time is prolonged and

higher resolutions are prevented. As tractography is based on the relatively low resolution

diffusion signal5, it is confronted with partial volume effects and data imperfections that may

cause incomplete, disrupted or wrongly connected fiber bundles.

Reconstructed fiber tracts are only an approximation of the underlying microscopic axonal

connections. The verification of the correctness of reconstructed fibers is thereby a major

problem, because a gold standard cannot be obtained in human subjects. Even though Lawes

et al. (2008) showed a good correspondence between various bundles from tractography

and post-mortem human brain specimen using blunt dissection, Lawes and Clark (2011)

also emphasized that the bundles under study correspond to regions with a simple anatomy

in which axons run mainly parallel. In white matter regions with a complex underlying

microstructure blunt dissection is prone to errors. Lawes and Clark (2011) also pointed out

that different tracts will be different in the same species, while same tracts will differ among

different species. Results for animal or even phantom studies are therefore of limited use to

prove the correctness of reconstructed fiber bundles in humans.

2.5 Quantitative analysis of diffusion MRI data

Diffusion weighted MRI is an important tool to characterize and study a variety of disorders

that are associated with alterations in brain diffusivity. It is not only relevant for a prompt

diagnosis of acutely occurring disorders (e.g., acute stroke, traumatic brain injuries) but also

for diagnosis, treatment planning and clinical monitoring of slowly manifesting diseases. In

fact, the range of applications for DWI is widespread and not limited to the investigation of

pathological conditions (e.g., psychiatric disorders, neurodegenerative diseases). It is also

used to study natural changes, for example during brain development (Löbel, 2007) and white

matter maturation (Moseley, 2002).

In order to detect subtle alterations in the diffusivity, most studies perform a statistical

analysis for two groups of subjects by relying on quantitativemeasures that are directly derived

from the diffusion tensor (e.g., FA, ADC, RD). Both, the experimental and the control group

consist of a set of subjects, who are selected in compliance with certain criteria (e.g., age,

gender, handedness). The statistical group analysis of the diffusion MRI data is then usually

conducted with one of four major approaches:

• region of interest (ROI)-based methods,

5Nevertheless, it should be noted that a voxel with 1mm3 voxel size still contains approximately 1 billion axonal

connections.
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• voxel-based morphometry (VBM)-styled analysis techniques (Ashburner and Friston,

2000),

• tract-based spatial statistics (TBSS) (Smith et al., 2006) or

• fiber bundle-driven techniques (FDTs).

The most basic, but still very popular methods for group analysis are ROI-based techniques,

where the statistical analysis is performed in manually or semi-automatically delineated

regions of interest. The quantitative values are extracted from the ROIs of each subject, before

the statistical analysis is performed between the two groups. ROI-based methods offer the

advantage that they are widely applicable, irrespective of a disease. As long as the ROIs

can be adequately placed, the analysis can be conducted, even if the regions of interest are
dislocated, for example due to space occupying lesions. However, since this ROI placement

is often performed by hand and individually for each subject, the procedure is highly time

consuming and an operator with profound anatomical knowledge is mandatory to place the

ROIs correctly. The placement of the ROIs is indeed the most critical part of the analysis

and incorrect placement may result in significant errors. In fact, studies showed that the

accuracy and the outcome of the statistical analysis are not only influenced by the underlying

differences between the groups in certain regions but also by the placement of ROIs (Kanaan

et al., 2006; Ozturk et al., 2008). Depending on the investigated region and the experience

of the operator, slight to substantial differences between ROIs and the extracted values are

observed, even if the operator is supposed to repeatedly place ROIs in the same regions of the

same dataset (Ozturk et al., 2008).

In order to superimpose corresponding brain structures of different datasets and account

for inter-subject variability of brain anatomy, the majority of the other approaches (VBM,

TBSS and FDT) rely on image registration that spatially normalizes the datasets of different

subjects. While both linear and nonlinear techniques can be utilized to transform the datasets,

the application of nonlinear normalization techniques enables a more accurate superposition

of corresponding brain structures. Even though various coregistration techniques achieve

good normalization results and high spatial agreement in healthy brains (Klein et al., 2009),

they often have difficulties in handling space-occupying lesions in non-healthy brains. In cases

in which the normalization fails, ROI-based methods have to be used instead. Performing

coregistration causes not only spatial normalization of the brain datasets, but also the interpo-

lation of the quantitative values that are subject to the analysis. This effect is measurable and

more pronounced at the boundaries of brain structures such as grey and white matter or at

the boundaries of white matter bundles (Chao et al., 2009).

Voxel-based morphometry (Ashburner and Friston, 2000) is a fully automated, compu-

tational approach to perform the quantitative analysis voxel-by-voxel for the entire brain.

The individual datasets are spatially normalized and transferred into a common template

space. The tissue is segmented into cerebrospinal fluid, grey and white matter and the data is

spatially smoothed in order to ensure the validity of the subsequent statistical analysis, which

is supported by random field theory to correct for multiple comparisons. Even though VBM

enables fast and user-independent whole brain processing, it is sensitive to misregistration

and segmentation artifacts, which may result in statistically significant differences at tissue
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boundaries. While spatial smoothing is necessary to ensure that the statistical analysis is valid

for VBM, it increases the partial volume effect. The spatial smoothing is also a possible source

of error, because different smoothing parameters can greatly affect the results (Jones et al.,

2005). Since there was a controversial debate on VBM and its advantages and disadvantages,

the interested reader is directed to the dialog between Bookstein (2001) and Ashburner and

Friston (2001).

TBSS was developed by Smith et al. (2006) to solve the problems associated with VBM. Like

VBM, TBSS is also fully automated and performs a spatial normalization at the beginning.

However, in order to circumvent misregistration or segmentation issues, TBSS performs the

quantitative analysis solely on a white matter skeleton that is extracted from the average FA

maps of all subjects. The statistical analysis of TBSS is notably more robust compared to VBM,

but is also restricted to the analysis of white matter structures. Moreover, the analysis is limited

to the FA skeleton, which is only one pixel wide and represents only the most prominent part

of a fiber bundle. Thus, alterations in the periphery of a bundle cannot be detected with TBSS.

A different approach is based on the idea to incorporate fiber tracts into the quantitative

analysis (Fillard et al., 2003; Gong et al., 2005; O’Donnell et al., 2007). Instead of performing

the analysis for the whole brain or the white matter, it is conducted selectively for individual

fiber bundles. Tractography is hereby primarily used to identify voxels that belong to the fiber
bundle of interest. Then, a mean tract is computed for the fiber bundle and the quantitative

values that belong to the fiber bundle are projected onto this mean tract. The statistical

analysis between multiple subjects is finally performed along this mean tract, which results in

a one-dimensional representation of the differences along the trajectory of the bundle. Even

though the results of this type of processing are easy to understand, fiber-based methods have

severe limitations. Due to the use of a mean tract projection and the resulting reduction to

one dimension, the method is limited to the analysis of fiber bundles with a simple tubular

structure. Another important issue concerns the selection of the fiber bundles, which is often

difficult to automate and usually performed manually. In this case, shape and appearance of

the bundle are influenced by the user, which again is prone to errors (Heiervang et al., 2006)

and might lead to bundles that are not necessarily comparable. If bundles are incomplete

or the trajectories deviate from the trajectories of other bundles, this has to be taken into

account. It might even be necessary to exclude such bundles from the analysis.

While most fiber bundle-driven techniques use spatial normalization to align datasets of

different subjects, methods exist that perform the quantitative analysis in the native space

of the datasets. In this case, setting up the correspondence between the bundles of different

subjects is a major problem. Since fiber bundles vary in shape, size, extent and curvature

among subjects, the spatial correspondence has to be set up manually, which is not a trivial

but a cumbersome task (Gong et al., 2005).

2.6 Cluster analysis and similarity measures

Cluster analysis encompasses a set of unsupervisedmachine learning techniques that partition

objects into groups according to the similarity of object specific properties.The roots of cluster

analysis can be traced back as far as to the ancient Greeks when Aristotle attempted to create

32



2.6 Cluster analysis and similarity measures

clustered set of pointsset of points

minimize
distance

maximize
distance

Figure 2.14: Fundamental concept of cluster analysis. The principal goal of cluster analysis is to group a

set of objects (e.g., a set points) into clusters according to their similarity. During the iterative clustering

process, distances between clusters are maximized, while differences between objects of the same

cluster are minimized.

a taxonomy of living objects (Andreopoulos et al., 2009). Later in the 18th century, cluster

analysis was intensively studied by Buffon, Cuvier and Linné (Hansen and Jaumard, 1997), but

it was not before 1960 when an explosion of interest in cluster analysis was noticed (Blashfield

and Aldenderfer, 1978). With the increased availability of modern general purpose computing

systems and capable software packages at the beginning of the 21th century, this interest

continued to increase and led to a rapid growth in publications (Xu and Wunsch, 2008). As a

result, cluster analysis has been widely used in various disciplines as a tool for exploratory data

analysis (e.g., in natural sciences, psychology, medicine, engineering) (Hansen and Jaumard,

1997).

The aim of cluster analysis is to group elements of a dataset into distinct clusters or groups

in which differences between clusters are maximized (high inter-cluster heterogeneity) and

differences between elements of a single cluster are minimized (high intra-cluster homogene-

ity) (see Figure 2.14). For this kind of partitioning, clustering techniques employ similarity

measures that determine the similarity between objects by comparing specific and distin-

guishable properties or features of these objects. The employed features are generally unique

properties of the objects (e.g., length, weight). On the basis of existing features, additional

and meaningful features can be generated using feature extraction (Xu and Wunsch, 2008).

As illustrated in Figure 2.15, the relationship between features and similarity measures can

be formally expressed with the notation of the unified modeling language – UML (Object

Management Group, 2011).

Formally, a function that determines the similarity of two objects p and q from a datasetD

on the basis of features, is called a distance or similarity function d(p,q) if the function is

symmetric, positive semidefinite and reflexive:

symmetric: d(p,q) = d(q,p), (2.33)

positive semidefinite: d(p,q) > 0 ∀ p,q ∈ X, (2.34)

reflexive: d(p,q) = 0 if p = q. (2.35)
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Feature

(feature extraction)

(determining the similarity)

Similarity measure
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Figure 2.15: Depiction of the relationship between features and similarity measures using UML. Similar-

ity measures utilize features to determine the similarity between objects. On basis of existing features,

feature extraction generates additional, meaningful features.

From Eqs. 2.34 and 2.35, it implicitly follows that the distance between two objects decreases

the more similar they are, while it increases in the opposed case. By convention, a distance

function that adheres to Eq. 2.33–2.35 is called a semimetric. If the triangle inequality

d(p,q) 6 d(p, r) + d(r,q) ∀p,q, r ∈ X (2.36)

is also satisfied, it is named ametric (Xu andWunsch, 2008). Even thoughmetrics constitute an

important group of similarity measures, they are mostly utilized to assess the spatial distance

between objects during the cluster analysis (e.g., distance between points in n-dimensional

space). In contrast, non-metric measures are also often used but measure other relations than

the spatial distance between objects6.

Over the years, a multitude of different cluster analysis algorithms have been developed

that are suitable for various problem domains and different types of data. Methods were

presented that rely on partitioning (e.g., k-means (Forgy, 1965)), graph theoretical approaches

(e.g., CLICK (Sharan and Shamir, 2000)), fuzzy logic (e.g., fuzzy c-means (Bezdek, 1981)) or
neural networks (e.g., adaptive resonance theory (Carpenter and Grossberg, 1988)) (see Xu and
Wunsch (2008); Everitt et al. (2011)). However, this thesis primarily focuses on hierarchical
agglomerative clustering. In hierarchical agglomerative clustering, a bottom-up approach is

used to generate the clusters. Initially, every object in the dataset is considered an individual

singular cluster with only one object. During the iterative clustering process, the two most

similar clusters are merged together in each iteration until a predefined stopping criterion is

satisfied. For hierarchical agglomerative clustering, the pairwise similarities between all objects

of a dataset have to be determined. In practice, this is equivalent to the computation of the

similaritymatrixS that holds the similarities between all elements ofD.The pairwise similarity

between two objects xi and xj ofD (with i, j = 1 . . .N) is computedwith the similarity function

d(xi, xj) and represented by a single value in matrix S at the (i, j)th position. IfD consists of

N elements, the similarity matrix has sizeN×N (compare Table 2.1). Due to the symmetry

of d (Eq. 2.33) only the upper matrix has to be computed. From Eq. 2.35 it follows that the

main diagonal elements S(i, i) for i = 1 . . .N remain zero. Hence, only (N2 −N)/2 matrix

elements have to be computed to assess the similarity for all elements inD.

6Various examples for non-metric similarity measures can be found in the publication by Skopal and Bustos

(2011).
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2.7 Parallel computing

2.7.1 General definitions

Traditionally, parallel computing can be defined as the concurrent use of multiple processing

elements to perform computations simultaneously. To differentiate between sequential and

parallel computer architectures Flynn (1972) introduced a general classification scheme, which

is nowadays known as Flynn’s taxonomy. Flynn defined four different classifications (compare

Table 2.2) with respect to the concurrency of instruction and data in the computer architecture:

• Single instruction stream over single data stream (SISD)

Computer with SISD architecture are sequential computers with a single central process-
ing unit (CPU) as the classical Von Neumann architecture (von Neumann, 1945). They

do not exhibit any concurrency.

• Multiple instruction streams over single data stream (MISD)

MISD systems are architectures that consist of multiple instruction streams that operate

on the same single data stream. MISD architectures are rarely used and merely play a

role in redundant systems to achieve fault tolerance.

• Single instruction streams over multiple data streams (SIMD)

SIMD systems consist of multiple processing units that perform the same instruction

on multiple data streams in parallel.

• Multiple instruction streams over multiple data streams (MIMD)

MIMD computers are multiprocessing systems that have multiple independent CPUs

or multi-core CPUs.The processing cores can execute different instructions on different

data streams. These architectures represent the most common architecture for personal

computers nowadays.

Besides the architecture of a system, algorithms can be classified according to their implemen-

tation into sequential and parallel algorithms. A sequential algorithm performs a task strictly

Table 2.1:N×N similarity matrix S for a datasetD withN objects. An element of the matrix at the

(i, j)th position specifies the similarity between the two objects xi and xj computed with a similarity

function d that adheres to the general definition of similarity measures (Eqs. 2.33–2.35).

x1 x2 x3 · · · xN−1 xN

x1 0 d(x1, x2) d(x1, x3) · · · d(x1, xN−1) d(x1, xN)

x2 0 d(x2, x3) · · · d(x2, xN−1) d(x2, xN)

x3 0 · · · d(x3, xN−1) d(x3, xN)
...

. . .
...

...

xN−1 0 d(xN−1, xN)

xN 0
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Table 2.2: Flynn’s taxonomy that differentiates sequential and parallel architectures according to the

concurrency of instructions and data access.

Single data Multiple data

Single

instruction

Single instruction stream over single
data stream (SISD)

Single instruction streams over
multiple data streams (SIMD)

Multiple

instruction

Multiple instruction streams over
single data stream (MISD)

Multiple instruction streams over
multiple data streams (MIMD)

in sequential order, whilst a parallel algorithm employs concurrency to solve a separable task

in parallel. Parallel algorithms are further divided into task and data parallel algorithms.While

task parallel algorithms are based on the notion to parallelize different tasks and process the

tasks independently, data parallelism adheres to the principle to process the data in parallel

using the same instruction for each data element. Hence, task parallel algorithms are ideal for

MIMD architectures while data parallel algorithms strongly benefit from the raw processing

power and simplicity of SIMD architectures.

To analyze the performance of a parallel algorithm, the speedup can be computed. Given

a parallel algorithm, the achievable speedup of the algorithm is determined only by the

execution time Ts of the sequential algorithm and the execution time TP of the parallel

algorithm that employs P processing cores. It is then defined as:

SP = Ts/TP. (2.37)

When the speedup SP equals the number of processing cores P the speedup is called linear

or ideal. If the speedup SP is even higher than the number of processing cores P, it is called

super linear speedup. The sequential program is often identical to the parallel program but

uses only one processing core. However, the sequential program might be different if a more

efficient implementation is available for the single core system.

2.7.2 Tasks, processes and threads

The resources of the system and tasks are usually controlled by the operating system. Modern

multitasking operating systems utilize sophisticated scheduling schemes to perform multitask-

ing and execute tasks simultaneously. Fast task context switches are initiated multiple times

per second to simulate a quasi concurrent execution of the tasks, even if only one processor

is installed in the system (SISD architecture). If more then one processor is available, true

multitasking can be performed. At this point a task denotes either a process or a thread

of execution. A process is the instance of a static computer program, whereas a thread of

execution is a lightweight process and the smallest unit that can be executed by the scheduler.

A thread is created by its parent process and can usually only exist as long as the parent process

endures. Resources are shared between all threads of a process and intra-process communica-

tion between threads is possible. Since a thread is lightweight, the context switches between
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threads of the same process are usually faster than context switches between processes. Thus,

a process is multithreaded if more than one thread exists in the context of the process. If only

threads of a single process are executed in parallel, this is called thread level parallelism.

2.7.3 GPU computing and CUDA

The graphics processing unit (GPU) is a highly specialized device for the manipulation of

computer graphics. Tasks and algorithms that are intended for computer graphics are often

performed by applying identical, atomic operations to each voxel. While all voxel-based opera-

tions are independent, they can easily be parallelized and manufacturer started to incorporate

stream processors (SIMD architecture) into the GPUs to enhance the performance.

In 2006, the compute unified device architecture (CUDA) was presented by Nvidia (NVIDIA
Corporation, Santa Clara, CA, USA) as a general purpose parallel computing architecture that

incorporates highly parallelizable stream processors (NVIDIA, 2010). With the introduction

of CUDA,Nvidia presented the new executionmodel SIMT (single instruction stream, multiple
threads) and a C based framework for the software development with CUDA-enabled GPUs.

As pointed out by NVIDIA (2010) the SIMT architecture is highly similar to the SIMD

architecture and the additional SIMT behavior can be neglected for the purpose of correctness.

For the sake of simplicity, the focus remains therefore on the SIMD architecture. A detailed

differentiation between SIMD and SIMT can be found in the technical report by NVIDIA

(2010).

CUDA-enabledGPUs consist of a set ofmultithreaded streamingmultiprocessors where any

multiprocessor can handle hundreds of threads concurrently (NVIDIA, 2010). Each stream

processor has a single control unit that controls the computation of multiple processing cores

that work in parallel (see Figure 2.16). When data is transferred to the CUDA device and the

program is executed, the data is processed by all available multiprocessors.

SIMD architectures are usually well suited for data parallel problems or problems that

can be vectorized. However, if a task contains branching or divergent execution paths, the

performance degrades and MIMD architectures might be more suited. If a task cannot be

parallelized, SISD or MIMD architectures are preferable since CPUs are generally faster than

single threaded stream processors.
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Figure 2.16: CUDA-enabled GPU architecture (adapted from NVIDIA (2010)). GPUs consist of a set of

multithreaded streaming multiprocessors (MPs), each equipped with a single control unit that controls

the parallel processing computation of multiple processing cores.
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Chapter 3

Cluster analysis of large tractography

datasets

Divide each difficulty into as many parts
as is feasible and necessary to resolve it.

— René Descartes (1596–1650)

Cluster analysis of fiber tracts is limited by the inherent complexity of fiber tracts and by the

large number of tracts that have to be processed. In order to make cluster analysis applicable to

large tractography datasets, this chapter presents a new clustering framework for fiber tracts.

Concepts for the processing of large datasets are described and a method for the integration

of anatomical information into the cluster analysis is presented.

In the previous chapter, the basics of cluster analysis and similarity measures have been

reviewed for generic objects (see section 2.6). This thesis, however, primarily focuses on the

cluster analysis of fiber tracts (see section 2.4). Beginning with this chapter, the term fiber tract

will therefore be used instead of the more generic term object. Nevertheless, the presented

methods are not restricted to fiber tracts and can be used for grouping all kind of objects

(e.g., points, documents). In this chapter, the general definition of similarity functions, as

introduced in section 2.6, is used. For the actual clustering of a dataset, explicit similarity

functions that satisfy the general definition have to be used. A selection of explicit similarity

measures is presented later in chapter 4.

3.1 Introduction

The application of clustering for automated bundling of neural pathways was pioneered by

Shimony et al. (2002) and Ding et al. (2003). While first approaches by Shimony et al. (2002)

where driven by the idea to use fuzzy clustering together with Euclidean distance and shape

similarity measures, Ding et al. (2003) employed conventional hierarchical agglomerative
clustering and a similarity measure that was based on corresponding tract segments.

One fundamental limitation of clustering is the high computational complexity, which

is immanent to the majority of conventional clustering algorithms (Xu and Wunsch, 2008).
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Compared to the classic cluster analysis problem, where the data often consists of single

points in n-dimensional Euclidean space, fiber tracts are far more complex and consist of sets

of points that constitute complex trajectories in 3D space (cmp. section 2.4 Tractography).

Appropriate measures are therefore indispensable to determine the similarity between fibers.

However, both the costly clustering and the necessarily more complex similarity measures

increase the total computational load and typically restrict cluster analysis to small datasets

that consist of only a few thousand fiber tracts.

In recent years, a multitude of methods have been proposed for both classification and

clustering of fiber tracts (Ding et al., 2003; Brun et al., 2004; Moberts et al., 2005; Huang et al.,

2005; O’Donnell et al., 2006; Zhang et al., 2008;Maddah et al., 2008; Li et al., 2010; Garyfallidis

et al., 2012; Wu et al., 2012; Wang et al., 2013). The first clustering approaches solely relied on

similarity measures to group tracts into bundles (e.g., Ding et al. (2003), Moberts et al. (2005)).

Various researchers investigated spectral clustering approaches (Brun et al., 2004; O’Donnell

et al., 2006) and used spectral embedding to map the fibers to three-dimensional Euclidean

space, which resulted in more easy algorithmic handling of the inherent complexity of fiber

tracts (O’Donnell et al., 2006). These first methods primarily focused on clustering of single

subject data and neglected anatomical information. Later on, researchers started to experiment

with the clustering of multiple input datasets and the incorporation of anatomical features into

the clustering. While O’Donnell and Westin (2007), for example, performed multi-subject

clustering to create an atlas that was used to automatically label fiber tracts, Maddah (2008)

developed an expectation-maximization algorithm and used Bayesian modeling to integrate

spatial anatomical information. More recent approaches focused on repeated, simultaneous

clustering of multiple datasets (Visser et al., 2011) and fast voxel clustering of rasterized

tracts (Guevara et al., 2011), but neglected anatomical correspondence of fibers and obtained

clusters. Overall, despite the multitude of available methods that have been proposed for both

classification and clustering of fiber tracts, fast, consistent and anatomically correct clustering

for multiple subjects is still challenging.

To overcome these shortcomings, a new clustering framework is presented that introduces

the novel cluster analysis technique CATSER (cluster analysis through smartly extracted
representatives). While conventional clustering techniques are often limited by long processing

times, CATSER is characterized by low computational complexity and is applicable to large

tractography datasets that contain hundreds of thousands of fiber tracts. In order to reduce

the computation time, the approach relies on random sampling, partitioning of the data and

parallel computing.

In practice, clustering of tracts is rarely optimal. As the outcome of cluster analysis is

influenced by various factors, such as the similarity measure, the clustering parameters and

the data itself, it is challenging to set up the analysis in a way that consistent and reproducible

clustering of different datasets with a good correspondence to anatomical fiber bundles is

achieved. Due to the high variability of different datasets, fiber bundles are often divided into

various parts, or unrelated bundles are falsely merged. It is in fact unlikely that clustering

without anatomical guidance can be used to extract fiber bundles reliably so that the generated

bundles are anatomically correct for all datasets. Hence, consistent, reproducible and correct

extraction of fiber bundles across multiple subjects, which is solely based on tract similarity

and utilizes no anatomical guidance, is difficult to achieve.
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Whole brain tractography
dataset Final clustering

White matter atlas (optional)

High 
performance
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Figure 3.1: Whole brain fiber tractography and fiber tract clustering. Fiber tractography generates

streamlines that approximate the underlying axonal pathways of the white matter architecture (left).

Tracts are color-coded according to their orientation with red = left-right, green = anterior-posterior

and blue = inferior-superior. Clustering methods can then be used to cluster the fiber tracts and to

group similar tracts into fiber bundles or sets of tracts (right). Fiber bundles (right) are displayed in

distinct colors, and tracts that belong to the same bundle are colored identically. By employing a white

matter atlas that consists of several white matter bundles (top middle), automatic extraction can be

improved to retrieve anatomically correct fiber bundles.

Hybrid techniques that combine clustering and parcellation-based (or atlas-based) clas-

sification will thus be instrumental to move the field of automated fiber tract segmentation

forward. For this reason, CATSER is designed to be used in conjunction with a white matter

atlas to achieve a more consistent extraction of fiber bundles (see Figure 3.1). With such a

predefined segmentation of the white matter, cluster analysis is facilitated in partitioning the

tracts according to the predefined regions of the atlas. The additional anatomical information

of the atlas is used to guide the clustering by controlling the formation of the clusters on the

basis of spatial agreement between fiber tracts and atlas classes.

3.2 Cluster analysis through smartly extracted representatives
(CATSER)

3.2.1 Overview

CATSER is based on the CURE (clustering using representatives) algorithm that was initially

proposed byGuha et al. (2001) for clustering huge databases. Both techniques can essentially be

categorized as agglomerative hierarchical clustering methods that use an iterative bottom-up

approach in which the most similar tracts are merged during each iteration (see section 2.6).
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Tractography datasets can consist of hundreds of thousands of tracts that approximate the

axonal pathways in the brain. The number of fiber bundles, however, that are concealed in

such datasets is considerably smaller compared to the overall number of tracts. As the number

of bundles per dataset is estimated to range between 140 and 500 (Moberts et al., 2005; Visser

et al., 2011), it is obvious that each bundle consists of numerous tracts that capture minuscule

details of the bundle. Since the tracts in each bundle are mostly similar, the data itself is

inherently redundant. CURE and CATSER exploit this redundancy. Instead of clustering

the whole dataset as it is the case with conventional clustering methods, they only process a

reduced sample to determine a set of prototype bundles. The remaining tracts of the dataset

that are not part of the initial sample are then assigned to their most similar prototype clusters.

To reduce computation time and to improve the clustering results, CATSER employs ran-

dom sampling, partitioning and outlier elimination. Compared to CURE, CATSER performs

a modified, more outlier-sensitive clustering to overcome some of CURE’s limitations (for

details see the article by Karypis et al. (1999)). To this end, the original algorithmwas modified

to incorporate local outlier factors (LOFs) (Breunig et al., 2000) that provide insight into
the structural organization of the data. A LOF rates each tract to specify the degree how

outlying a tract is with respect to others. The LOFs are used in the cluster analysis to improve

the discrimination between true clusters and tracts that are presumed to be outliers (see

upcoming section 3.2.5).

3.2.2 Basic CATSER workflow

The processing steps of the CATSER clustering algorithm are presented in this section and

are illustrated in Figure 3.2. In order to exploit the redundancy in the data, the whole brain

tractography dataset is randomly divided into two sets of tracts (step 1): the reduced random

sample and the remaining tracts that are not part of the reduced random sample.Theminimum

random sample size can be estimated by employing Chernoff bounds (for details see Guha

et al. (2001); Xu and Wunsch (2008)), for which it is assumed that every discernible cluster

has a minimum size. The minimum reduced random sample size is then computed so that

this sample contains at least a tract fraction of each cluster with high probability. As the size

of the smallest cluster in the dataset is unknown, the necessary estimation of its size limits

the ability to detect smaller clusters if they exist in the dataset.

For various clustering techniques, the computation of similarities between the tracts is

integrated into the clustering itself. As this results in redundant computations and degraded

performance of the algorithm, the computation of similarities is separated from the cluster

analysis. This circumvents not only redundant computations but also enables parallel com-

putation of similarities, which greatly improves the overall performance of the clustering.

Similarities as well as LOFs for the sample are therefore precomputed prior to the clustering

(step 2).

The subsequent agglomerative hierarchical clustering is used to generate a user-defined

number of clusters (details on the clustering process itself are presented in the following

section 3.2.3). The clustering is essentially a two-pass process, divided into a partial precluster-

ing and a final clustering stage. At the beginning of the first stage, each tract is considered

a singular cluster. The partial preclustering is then primarily a coarse grouping of the most
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similar tracts that reduces the number of clusters substantially. A strictly sequential process-

ing of the data during the clustering is therefore not necessary (Guha et al., 2001). Thus, the

reduced random sample (from step 1) is randomly divided into a set of partitions each of

which contains approximately the same number of fiber tracts (step 3). Each partition is

then clustered separately (step 4). In order to speed up the cluster formation during the first

pass, the clustering of the separate partitions can be performed in parallel. During this step,

unwanted merging of different clusters is avoided by setting the number of clusters that are

produced for each partition sufficiently high, and to be at least 2–3 times the user-defined

target number of clusters that should be obtained from the entire dataset1 (see above). After

the first pass, the preclustered data of the partitions are joined together without merging

clusters (step 5).With this set of joined clusters, the final clustering is performed and prototype

clusters are generated (step 6).

During both clustering stages (steps 4 and 6), outlying tracts are identified and removed

from the dataset (see section 3.2.4). Due to the shuffling and separation of the data into

multiple partitions, tracts of a cluster may be scattered across partitions and tracts may be

unintentionally labeled as outliers during the clustering, even if a multitude of similar tracts

are adjacent but assigned to other partitions. To warrant that outlying tracts are true outliers,

tracts previously labeled as outliers are reevaluated and assigned to the nearest prototype

cluster (step 7) if the similarity between tracts and cluster is sufficiently high (for details see

section 3.2.7). In the final step, remaining tracts that are not part of the reduced random

sample (step 1) and have not been appointed to a cluster yet, are assigned to the nearest

prototype cluster (step 8) if the similarity between cluster and tracts is again sufficiently high

(see section 3.2.7).

During the whole clustering process, a hierarchical cluster tree that contains all successive

merging steps is generated. The cluster tree enables not only visualization of individual

clustering steps with dendrograms but also retrospective extraction of bundles or a subset of

bundles.

3.2.3 Formation of clusters

Conceptually, CATSER employs agglomerative hierarchical clustering during both clustering

stages (steps 4 and 6 in Figure 3.2). Starting with a disjoint set ofN clusters C = {C1, . . . ,CN},

the iterative clustering process is performed until the number of clusters is reduced to a

user-defined target valueNT . In each iteration of the clustering, the two most similar clusters

are selected and merged to form a new cluster. For the partial preclustering (step 4),NT is

identical for all partitions.

In order to determine the similarity between two clusters, only a subset of tracts from each

cluster is considered. This subset consists of a set of well distributed tracts that capture the

geometry of the cluster and act as representative tracts. To start the selection of appropriate

representatives tracts, the center of the cluster is determined by locating the cluster medoid.

1This follows the considerations of Guha et al. (2001).
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Figure 3.2: Overview of CATSER. The size of the whole brain tractography dataset is reduced by

extracting a random sample (1). For this reduced random sample, similarity matrices and local outlier
factors (LOFs) are computed, which are subsequently used during the clustering process (2). The

reduced random sample is automatically divided into a user defined number of N independent

partitions (3). A first-pass partial clustering as well as outlier elimination is performed for each

partition (4) before resulting clusters of all partitions are joined together (5). Resulting prototype

clusters are generated during the second pass of the clustering (6). Outliers are then reassigned to

the nearest prototype cluster to obtain the final clustering and a hierarchical cluster tree (7). During

the last step, remaining tracts that were not part of the random sample (1) are finally assigned to the

nearest prototype cluster (8). The last two steps (steps 7 and 8) are only performed for tracts that

are sufficiently similar to a prototype cluster. Other tracts are finally labeled as outliers. To integrate

anatomical information into the cluster analysis, a white matter atlas can be used as input during steps

4 and 6–8 (for details see section 3.3).
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For a cluster C with |C| tracts, the medoid mC is defined as the tract in C whose average

distance or dissimilarity to all tracts in C is minimal:

mC = min
p∈C

(
1

|C|

∑
q∈C

d(p,q)

)
. (3.1)

After the medoid has been identified, representative tracts are determined iteratively and

added to the set of representatives RC. In each iteration, the tract in C that has the maximum

distance to the medoid mC as well as to all other representatives in RC becomes a new

representative rk+1 and is added to RC = {r1, . . . , rk}:

rk+1 = max
p∈C

∑
q∈{RC∪mC}

d(p,q) with RC = {r1, . . . , rk} and p ̸∈ RC. (3.2)

This iterative selection process guarantees that the representatives are well distributed across

the cluster.

The similarity or distances between two clusters C1 and C2 is denoted as d(C1,C2) and

defined to be the distance between the two most similar representatives p, q of C1 and C2.

Denoting the sets of representatives for C1 and C2 as RC1
and RC2

, the formal definition of

d(C1,C2) is given by:

d(C1,C2) = min
p∈RC1 ,q∈RC2

d(p,q). (3.3)

Representatives play an important role for the formation of clusters by acting as an simplifi-

cation that approximates the cluster’s shape and structure. Since only representatives are used

to determine the similarity between clusters, the number of comparisons and the computation

time are dramatically reduced. While carefully selected representatives help to prevent nega-

tive effects of outlying tracts on the clustering results, such as adverse agglomerative behavior

(so called chaining effects, see Xu andWunsch (2008)), they also enable the technique to cope

with clusters of arbitrary shapes. Various conventional clustering techniques (e.g., k-means)
are limited to spherical cluster shapes in the similarity-based domain. By using representatives

to approximate the structural organization of the cluster, the clustering method can handle

arbitrarily shaped clusters correctly (Guha et al., 2001).

3.2.4 Outlier handling

In CATSER outliers are handled quite similar to CURE (Guha et al., 2001). By definition

(see section 2.6), clusters can be regarded as aggregations of similar tracts. If noise is present,

clusters are superimposed by outliers (outlying tracts) which are usually randomly distributed

and scattered throughout the dataset. In contrast to real clusters, they are typically isolated and

do not exhibit the typical agglomerative behavior (Guha et al., 2001). Compared to tracts that

belong to a cluster, the neighborhoods of outlying tracts are generally sparse and distances to

other tracts of the dataset are significantly higher.

These observations are translated into the clustering process. An outlier elimination step

is performed and clusters that grow very slowly and contain only few tracts at the end of
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the clustering are labeled as outliers. If the initial number of clusters is given byNini and the

target number of clusters byNT , Sall = Nini −NT cluster merging steps are performed during

the clustering. The outlier elimination is triggered if Sall × tmerging steps remain, where t is

user-defined and bounded by [0, 1]. During the outlier elimination, the number of tracts per

cluster is evaluated for each cluster. Clusters that consist of less than h tracts (user-defined)

will be removed from the dataset and their tracts will be marked as outliers.

3.2.5 Local outlier factors (LOFs)

Local outlier factors (Breunig et al., 2000) are a density-based approach to obtain a score for

each tract that specifies its outlierness. By employing the precomputed tract-similarities (see

section 3.2.2 and step 2 in Figure 3.2), the density distribution of the tracts is analyzed to

compute the LOFs. First, the k-nearest neighbors (k-NNs, i.e., the kmost similar tracts) are

determined for each tract. The distances to these k-NNs are then utilized to compute the local

tract density for each tract. With the local tract density as well as the local tract densities of its

k-NNs, the LOF of each tract is calculated. Practically, a LOF is an estimate on how outlying

a tract is compared to its kmost similar tracts.

LOFs have the favorable property to specify an outlierness-rating for each tract instead of

using a fixed labeling that indicates whether the tract is either an outlier or not. The sparsity

of the neighborhood is thereby captured with a single LOF value for each tract. Tracts that lie

deep inside of a cluster have a LOF that is approximately 1 or less, whereas the LOF of tracts

increases the more isolated the tracts are. Lower2 and upper bounds of the LOF depend on

the tract-similarities in the dataset. An extensive discussion about the bounds of LOFs and a

more detailed description on how to compute LOFs can be found in the original publication

by Breunig et al. (2000). Examples of LOFs for a set of points and a fiber bundle are presented

in Figure 3.3.

Incorporating LOFs into the cluster analysis of fiber tracts

As LOFs specify a value for each tract that indicates how outlying a tract is compared to

its kmost similar tracts, it is reasonable to incorporate this structural information into the

clustering to support the outlier handling.The outlierness information provided by the LOFs is

used as complementary information besides the similarities to adjust the pairwise similarities

between tracts during the formation of clusters. Here, two scenarios have to be considered.

On the one hand, intra-cluster distances have to be considered. They are primarily related

to the determination of the cluster representatives, which are iteratively selected by finding

those tracts in the cluster that maximize the distance to all other tracts in the cluster. On the

other hand, inter-cluster distances have to be considered as well as they are used to determine

those clusters that will be merged in each iteration of the clustering. In the latter case, the two

clusters that minimize the distance between them have to be found (see Eq. 3.3). These two

scenarios are obviously conflicting.While the distance between tracts should be maximized in

2For LOFs, the (theoretical) greatest lower bound is zero (Breunig et al., 2000).
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(a) LOFs for an artificial set of points.
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(b) LOFs for tracts of the forceps major.

Figure 3.3: Color-coded visualization of local outlier factors (LOFs) for a set of points in 2D (a) and

for tracts of a fiber bundle (b). LOFs were computed to indicate how outlying the points and tracts

are compared to their kmost similar neighbors. For both examples, k was set to 15. Points and tracts

are color-coded with the values of their respective LOFs, where yellow denotes low and red high LOF

values. To highlight the variability of the LOFs, the maximum range of coloring is limited to a LOF of

3 in (a) and a LOF of 2 in (b). The maximum LOF is 5.34 in (a) and 4.48 in (b).

the first scenario, it should beminimized in the second scenario. Consequently, both scenarios

have to be handled differently (see below).

However, irrespective of the actual scenario, a LOF-based correction factor corr(p,q) is

initially defined to adjust the pairwise similarities between two tracts p and q. By denoting

the local outlier factor of p and q with LOF(p) and LOF(q) respectively, corr(p,q) is defined

as follows:

corr(p,q) =

(
LOF(p) + LOF(q)

2

)2

. (3.4)

As long as p, q are not outlying and their LOFs are around 1, corr(p,q) yields ≈ 1. If either

p, q or both are outlying, the LOFs are elevated and the correction factor for p and q will

increase by ((LOF(p) + LOF(q))/2)2.

Adjusting intra-cluster distances

Intra-cluster distances are used to determine the cluster medoid and to select tracts of the

cluster that act as representatives. However, the representative selection algorithm promotes
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Figure 3.4: Influence of LOFs on intra-cluster distances. Given one cluster C and the set of points

{p,q, r, s} ∈ C, the influence of LOFs on the intra-cluster distances between p and the exemplary

points q, r, s is unveiled. In the example, the LOF of p, q is approximately 1 whereas the LOF of r is

slightly increased and the LOF of s is considerably elevated. As large LOFs result in reduced distances

between points (attraction effect), the LOF-corrected distance between p, s is considerably reduced,

while the correction only slightly reduces the distance between p, r. Since p, q are not outlying (LOF

≈ 1), the LOF correction has almost no effect on the distance between p, q.

the selection of outlying tracts as representatives3. As this might cause inferior clustering

results (due to chaining), careful selection of representatives is essential. Intra-cluster distances

are therefore adjusted to prevent outlying tracts from being selected. To assess the similarity

between tracts p and q, the LOF-corrected distance d ′(p,q) is thus used instead of d(p,q):

d ′(p,q) = d(p,q)× 1

corr(p,q)
. (3.5)

The inverse application of the correction factor corr(p,q) (Eq. 3.4) essentially applies a spatially

dependent attraction that pulls tracts with an increased LOF into the cluster. If tracts have

a large LOF, the correction factor corr(p,q) will also be larger and the distance d(p,q) will

decrease. On the contrary, if tracts have a LOF that is ≈ 1, tracts are practically not affected.

Due to this effect, tracts with a large LOF will suffer a penalty and have a reduced distance to

the medoid and to other representatives (see Figure 3.4 for an example with an artificial set of

points in 2D). This decreases the possibility that outlying tracts with a large LOF are selected

as representatives of a cluster.

Adjusting inter-cluster distances

To adjust the distance between two different clusters C1 and C2 (see Eq. 3.3), the distance

d(p,q) between their two most similar representative tracts p, q is weighted with the LOF-

based correction corr(p,q). Eq. 3.3 is thus replaced with the new LOF-adjusted distance

dcorr(C1,C2):

dcorr(C1,C2) = min
p∈RC1 ,q∈RC2

d ′′(p,q), (3.6)

d ′′(p,q) = d(p,q)× corr(p,q). (3.7)

3During the representative selection, tracts are selected that have the largest distance to the cluster medoid

and previously selected representatives of the cluster (see section 3.2.3).
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Figure 3.5: Influence of LOFs on inter-cluster distances. Given clustersC1–C4 and the shortest distances

d(C1,C2), d(C1,C3), d(C3,C4) between the clusters, LOF-related effects on the inter-cluster distances

are emphasized. Depending on the cluster’s surroundings, the LOFs for points in C1 and C2 are ≈ 1,

whereas the LOF for points in the solitary clusters C3, C4 is increased and larger than one. Hence, the

LOF-based correction has almost no effect on the distance between clusters C1, C2. As a reciprocal

relation is used for the computation of inter-cluster distances compared to intra-cluster distances,

the distance between C1 and C3 will increase due to C3’s high LOF. This repulsion effect is even more

pronounced between clusters C3 and C4, because points in both clusters have high LOF values.

This correction affects only the distances between the clusters and influences when and

which clusters are merged. In order to understand the mechanisms behind the correction,

the clustering should be considered as a continuous process in which clusters are not yet

finished but successively formed. If the LOF for the representatives of two distinct clusters is

≈ 1, the distance between the clusters is not altered. By definition, these representatives need

to belong to true clusters and are located inside the clusters (otherwise the LOF would not be

≈ 1). If representatives are located at the boundaries of a cluster (cmp. Figure 3.3), their LOF

is slightly increased. As a result, the clusters will experience minimum repulsion and will be

clustered slightly later due to their increased distances. If either one or both representatives of

the clusters are outliers, they will possess a high LOF. As a result of the LOF-correction, the

distance between the clusters will considerably increase and they will be merged substantially

later (ifmerged at all). An exemplary illustration that depicts the adjustment of the inter-cluster

distances for an artificial set of points in 2D is given in Figure 3.5.

This correction effectively contributes to the employed outlier elimination strategy, which

is based on the assumption that outlying tracts will be far more isolated than other tracts. As

a result of the LOF correction, outlying tracts or clusters will become even more isolated and

will therefore not be clustered at all or only at the very end.

3.2.6 Choosing the number of representatives

An important aspect for the selection of representatives (see section 3.2.3) is the number of

representatives that are used for clustering. In practice, this number is a trade-off between

correct clustering, accurately assessing the cluster shape, achieving computational efficiency

and robustness to noise (see Figure 3.6). If only one representative is used, robustness against
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Figure 3.6: Influence of the number of representatives |RC| on the clustering process for a cluster C.

If only one representative is used (|RC| = 1, right side), the shape and extent of cluster C cannot be

assessed accurately, whereas robustness to noise and computational complexity are positively affected.

In contrast, if all elements of a cluster are selected as representatives (|RC| = |C| with C being the

number of tracts in cluster C, left side), shape and extent of the cluster are assessed accurately, while

susceptibility to noise and computational complexity both increase. In practice, the selection of the

number of representatives is a trade-off between correct clustering, accurately assessing cluster shape,

achieving computational efficiency and robustness to noise. In the illustration, positive effects are

shown in green, whilst negative effects are depicted in red.

noise as well as computational efficiency is achieved but the shape of the cluster cannot be

described accurately, which will result in degraded clustering quality. On the contrary, if

all tracts of the cluster are employed as representatives, the cluster shape will be preserved

accurately but computation time will increase. In addition, potential outliers will also be

included in the list of representatives. This will impair CATSER’s ability to deal with outliers

since CATSER is based on the notion to prevent the selection of outliers as representatives

during the clustering. In order to obtain optimal clustering results, it is therefore necessary to

find a balance between both extreme cases.

Even though Figure 3.6 implies a static correspondence between the number of representa-

tives and cluster size, the clustering itself is a dynamic process, through which clusters evolve

and grow. During the formation of a cluster the number of representatives |RC| is therefore

chosen with respect to the individual size of that particular cluster C. In order to select |RC|,

the cluster formation process is divided into two stages (see Figure 3.7). In the first stage, |RC|

is chosen with respect to the individual size of the cluster and adapted to reflect changes in

cluster size. As the cluster size and the number of representatives increase the computational

efficiency decreases due to the additional calculations that have to be performed for each

additional representative. In order to maintain the computational efficiency, a second stage

with a constant number of representatives is defined. To select the number of representatives,

a monotonically increasing, piecewise-defined function is used that describes these two stages

(see Figure 3.7). The function f(x) computes the number of representative |RC| depending on

of the number of tracts in the cluster x = |C| and the user-defined values s and x1:

|RC| = f(x) =

{
s× x if 1 6 x 6 x1,

s× x1 if x > x1
(3.8)
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Figure 3.7: Determination of the number of cluster representatives. To determine the number of

representatives |RC| for a cluster C a two stage approach is used. As long as the number of tracts |C|

in cluster C is smaller than x1, RC is selected depending on |C| using either a linear or a nonlinear

function (stage 1). If |C| is larger than x1, RC is set to a constant value (stage 2).

with s =]0, 1] and |RC| > 1 for all x. Instead of such a linear function, nonlinear functions

(e.g., monotonically increasing, interpolation functions or square root functions) might also

be employed to achieve a smooth transition between the stages.

3.2.7 Labeling and reassigning tracts

In CURE and CATSER, slowly growing clusters that contain only few tracts at the end of the

clustering are labeled as outliers. Due to the randomized splitting of the data into multiple

partitions during the clustering, tracts may be unintentionally labeled as outliers, even if a

multitude of tracts are spatially located nearby in other partitions. In order to correct for

possibly wrong assignments, outliers are reevaluated. The distances to all extracted clusters

are assessed and outliers are reassigned to the most similar cluster if the similarity between

outlier and cluster is high enough.

By treating the outlying tract o as a singular cluster Co that consists only of tract o, the

similarity d(Co,Ci) to all N regular clusters C = {C1, . . . ,CN} is computed. Let CM be the

most similar cluster from C to Co:

CM = min
Ci∈C

d(Co,Ci), (3.9)
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Figure 3.8: Assignment and reassignment of tracts in CATSER. Given the prototype clusters C1, C2, the

solitary cluster Co and a subset of representatives, the closest cluster to Co is C1 since d(rCo
, rC1

) <

d(rCo
, rC2

). The representatives with the shortest distance are denoted as rCo
and rC1. Co is then (re-)

assigned to the closest cluster C1 only if the distance d(rCo
, rC1

) is smaller than f× dstd(C1), where

dstd(C1) is the standard deviation of the distances between all representatives in C1.

and rCo
, rCM

the two closest representatives of Co and CM respectively. If dstd(CM) is the

standard deviation of the distances between all representatives in CM and the inequality

d(Co,CM) 6 f× dstd(CM) (3.10)

is satisfied, tract o is assigned to CM (see Figure 3.8). Otherwise, the status of o as outlier is

maintained. The factor f can be chosen arbitrarily by the operator (with f > 0) and is used to

regulate how similar tracts need to be in order to permit the reassignment.

Subsequent to the clustering and the reassignment of wrongly labeled tracts, the set of

tracts Cout that were not part of the initial random sample Cin (see section 3.2 and step 1 in

Figure 3.2) have to be processed. Hereby, they are either assigned to the nearest cluster or

labeled as outlier. This processing step is carried out in a similar way as the reassignment

described above. For each tract o ∈ Cout the distance to all regular clusters is computed and

tract o is assigned to the nearest cluster if inequality 3.10 is satisfied. As the computation of

the LOFs for the entire dataset is too time consuming4, it is assumed that the LOF is 1 for

each tract in Cout. The labeling of the tracts can be realized independently, which enables the

separation of the task into mutually independent subtasks. Parallel processing can therefore

be employed to simultaneously process the tracts in Cout and to reduce the computation time.

In order to choose different values for f (see inequality 3.10), the factor fr is used for the

reassignment of outlying tracts and fl for the labeling of remaining tracts.

3.2.8 Parameter selection

The selection of adequate parameters for the clustering is essential to achieve good clustering

results. Important clustering parameters are therefore reviewed and discussed along with

general guidelines for choosing parameters. An exhaustive list of parameters with a description,

4Note that the complete similarity matrix has to be available to compute the LOFs for the entire dataset.
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recommended and default values for each parameter is presented in Table 3.1. Nevertheless,

as every dataset is unique and contains different tracts, adjusting certain parameters might be

necessary.

Cluster generation

For the cluster generationwithCATSERvarious parameters have to be set up (see sections 3.2.2–

3.2.7). Partitions are primarily used to reduce the computation time by splitting a large sample

into smaller parts that are separately clustered. However, if the number of partitions is too

high (Np > 50), it is likely that the partitions contain too few tracts to perform a correct

clustering (Guha et al., 2001). To prevent a negative effect on the clustering, the number of

partitions should be kept sufficiently small (1–10).

Setting the number of representatives is straightforward. The number of representatives of

a cluster has to be lower than the number of tracts in the cluster to guarantee that the represen-

tative selection process works (see section 3.2.6). As the number of representatives affects the

computational load, a low number of representatives (e.g., no more than 40 representatives

for clusters with more than 120 tracts) preserves the computational efficiency and reduces

the processing time. Nevertheless, if the number of representatives is too low to adequately

preserve the shape of the cluster, clustering may be affected.

During the clustering procedure, the outlier elimination parameters t and h influence when

the outlier elimination is performed and up to which size a cluster is regarded an outlier (see

section 3.2.3). If the outlier elimination is performed too early during the clustering, tracts

that belong to clusters will be wrongly removed. If it is performed too late, outliers will be

unintentionally integrated into the clusters.

The outlier elimination during the first stage should be performed at the very end of the

preclustering, where clusters should be labeled as outliers if they contain only 1–2 tracts. The

outlier elimination step of the second stage should be performed earlier and for clusters that

consist of up to 3–7 tracts. Ultimately, however, the optimal choice of outlier elimination

parameters is governed by the amount of noise that is in the dataset. If a large amount of noise

is present, a more stringent outlier elimination is inevitable to achieve adequate clustering

results.

Reassignment and labeling

The multipliers fr and fs are used to regulate how similar tracts have to be in order to be

assigned to a cluster (see section 3.2.7). The smaller the values the more similar the tracts have

to be in order to be assigned to a cluster. The values for fr and fs can be chosen arbitrarily,

but values between 1 and 2 usually work quite well.

However, care should be exercised with the setting of fr, since it governs the reassignment

of tracts that were already marked as outlier. If fr is set to high (fr > 1), true outliers might

be integrated into the clusters and the separation between clusters decreases.
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Table 3.1: Overview of clustering parameters.

Name Description/Role of the parameter
Reasonable

values

Default

values

Nin size of the sample varies –

k number of k-nearest neighbors (LOFs) 10–CN
5 15

NT target number of clusters varies 250

Np number of partitions 1–30 3

x1 adjust the number of representative varies

(40–200)

120

s adjusts the number of representatives (slope of stage 1) 0.1–0.9 0.3

t1 outlier elimination trigger (1st clustering stage) 0.05–0.2 0.1

h1 outlier elimination threshold (1st clustering stage) 1–2 2

t2 outlier elimination trigger (2nd clustering stage) 0.1–0.3 0.2

h2 outlier elimination threshold (2nd clustering stage) 3–7 3

fr multiplier for the reassignment of outlying tracts 1–2 1

fl multiplier for the labeling of unprocessed tracts 1–2 1.5

LOF computation

The LOF of a tract is solely based on the number of k-NNs that will be used to assess the

local tract density. Since the value of k has a direct impact on the LOFs, Breunig et al. (2000)

derived guidelines for reasonable values of k. To achieve a stable solution without statistical

fluctuations, it is sufficient to choose k > 10. Beyond that, k implicitly defines the minimum

cluster size. Consider the smallest cluster C in a dataset with |C| tracts. If k > |C|, the k-NNs

of each tract in cluster C include not only tracts from the cluster C itself but also tracts that

belong to another cluster or tracts that are outliers.

In this case, LOFs will be artificially elevated. In order to prevent an unintentional increase

of the LOFs for small clusters, the value of k should not be larger than the smallest cluster

expected in the dataset: 10 6 k 6 |C|.

3.2.9 Differences to CURE

The original CURE algorithm was initially proposed by Guha et al. (2001) for the clustering of

huge databases. It employs random sampling, partitioning and outlier elimination to enhance

the cluster analysis. During the clustering, CURE computes a centroid and uses a fixed

number of representatives for all clusters. During the formation of clusters, representatives are

5CN is the expected minimum cluster size.
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3.3 Integration of anatomical information into the cluster analysis

shrunken towards the cluster centroid with a fixed value to reduce chaining and to dampen

effects of outliers.

Both a fixed number of representatives as well as a fixed shrink factor for all clusters

have drawbacks (Karypis et al., 1999). As clusters vary in shape and extent, more complex

cluster geometries cannot be described properly by using the same number of representatives

that are sufficient for simple cluster shapes. Shrinking of clusters preserves the shape but

fundamentally changes the extent of the clusters. Depending on other clusters and outliers

that are located in the vicinity of a cluster and its representatives, the optimal magnitude of the

shrinking may differ for different clusters and their representatives. The shrinking is thereby

usually not identical but different for distinct clusters and representatives. Representatives

with none or merely a few outlying tracts in their vicinity only need minimum shrinking,

whereas representatives with many outliers in the neighborhood require a higher shrink

factor.

CURE has been applied to a wide range of applications, but it cannot be used for the cluster

analysis of non-Euclidean similarity measures.This is due to its utilization of concepts that are

solely available in Euclidean metric spaces (e.g., centroids, averaging, shrinking). In contrast

to CURE, CATSER is specifically designed to handle non-Euclidean similarity measures. The

computation of similarities and the cluster analysis is thereby strictly separated, which enables

precomputation of similarities and LOFs.

For the clustering, CATSER uses a LOF-based strategy to select more qualified representa-

tives that are not outlying. This strategy is conceptually related to CURE’s shrinking approach

but uses spatially dependent factors to adjust the distances between tracts of a cluster, hereby

influencing the selection of representatives (see section 3.2.5).

As CATSER is based on the notion to prevent selection of outlying tracts as representatives,

a fixed number of representatives will have a negative effect on outlier elimination and can

therefore not be used6. If the number of representatives is fixed and set as high as the number

of tracts, all tracts will become representatives even if a tract is outlying. In order to circumvent

this behavior, CATSER adjusts the number of representatives individually for each cluster

with respect to the number of tracts in the cluster (see section 3.2.6). This allows the selection

algorithm to reject outlying tracts.

3.3 Integration of anatomical information into the cluster

analysis

In order to incorporate anatomical information into the cluster analysis, a white matter atlas

that contains various fiber bundles can be instrumented. As the clustering is based on the

6If the number of representatives is fixed and the number of tracts in a cluster is smaller than the number

of representatives, each tract in the cluster will become a representative regardless whether the tract is an

adequate representative or not.
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p p

p

w < : attraction w > : repulsion

w = : no effect

q q

q

d(p,q)  w(p,q) d(p,q)  w(p,q)

d(p,q)  w(p,q)

Figure 3.9: Effects of different weighting factors. The weighting factors guide the clustering by modu-

lating the distance between the clusters p and q according to their anatomical correspondence in the

atlas. While a weighting factorw(p,q) = 1 has no effect, a weighting factorw(p,q) < 1 will decrease

the cluster distance (attraction). Contrary, a weighting factorw(p,q) > 1 will increase the distance

between the clusters (repulsion).

principle of merging clusters with the highest similarity, an effective way to influence the

clustering is to modulate the distance d(C1,C2) between the clusters C1 and C2:

d(C1,C2) = d(C1,C2)×w(C1,C2). (3.11)

As those clusters with the shortest distance are merged in each step, the weighting factor

w(C1,C2) has a direct impact on the clustering and how clusters are formed. While values of

w(C1,C2) > 1 will increase the distances and lead to a repulsion, a weightingw(C1,C2) < 1

will result in attraction for C1, C2 (see Figure 3.9). This effect is exploited and the weighting

w(p,q) is determined with respect to the atlas-class membership of the clusters p and q. To

guide the cluster analysis, this weighting is assessed and applied in each successive step of

the clustering as well as in the reassignment and the labeling stage. The steps in which the

atlas has to be employed for the atlas integration are depicted in Figure 3.2 (steps 4 and 6–8),

showing the atlas as optional input in grey dotted boxes.

3.3.1 The white matter atlas

For the cluster analysis a voxel-based white matter atlas, constructed with a semi-automatic

method was applied (see section 6.2 that describes the atlas generation in detail). The atlas

consists of various white matter (WM) structures (i.e., the classes of the atlas) and each WM

structure contains a set of voxels that belong to the structure. Hereby, different regions can

overlap and voxels are allowed to belong to multiple classes of the atlas. In Figure 3.1, a white

matter atlas is shown with a selection of fiber bundles in distinct colors.

3.3.2 Determining the class membership for tracts

In order to determine the weighting factorw(p,q), the atlas-class membership for the indi-

vidual tracts and the clusters (groups of tracts) has to be defined. The class-membership of

single tracts is computed by rasterizing each tract and determining the spatial agreement of

the tract and the classes in the atlas (Figure 3.10).
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3.3 Integration of anatomical information into the cluster analysis

For each atlas classA and each tract t, the spatial agreement s(t,A) is the ratio between the

number of voxelsNI that intersect the class in the atlas and the number of all tract-voxelsN

s(t,A) =
NI

N
. (3.12)

For a cluster C with a set of |C| tracts, the atlas-class membership to class A is computed by

averaging the spatial agreement between all tracts in the cluster and class A:

s(C,A) =
1

|C|

∑
t∈C

s(t,A). (3.13)

3.3.3 Determining the weighting factor for two clusters

During the clustering, the weighting has to be determined and applied in each successive

step. For two clusters C1 and C2, the two classes of the atlas AC1
, AC2

with the highest spatial

Figure 3.10: The figure shows a single fiber tract that traverses through two classes of an atlas. A single

fiber tract (yellow) traverses through the inferior fronto-occipital fasciculus (IFO, in blue) and the

forceps major (Fmaj, in red). The remaining atlas classes that share no spatial volume with the tract

are displayed in grey. The class membership of the tract for the IFO is ≈ 0.73 and for the Fmaj ≈ 0.12.

59



Chapter 3 Cluster analysis of large tractography datasets

agreement s(C1,AC1
), s(C2,AC2

) are identified. For improved readability, the short notation

sC1
and sC2

will be used as abbreviation. Then, one can distinguish between four cases:

• case 1: cluster C1 and C2 have no corresponding class in the atlas,

• case 2: either cluster C1 or cluster C2 has a corresponding class in the atlas (s will be the

spatial agreement for the non-empty class),

• case 3: both cluster C1, C2 correspond to the same class in the atlas,

• case 4: both cluster C1, C2 correspond to different classes in the atlas.

Each case modulates the weighting in a different way:

w(p,q) =


1, AC1

= ∅∧AC2
= ∅ (case 1),

1/
(
1− s

2

)
, AC1

= ∅ ⊕AC2
= ∅ (case 2),√

(1−sC1 )
2+(1−sC2 )

2

2
, AC1

= AC2
(case 3),

1/

√
(1−sC1 )

2+(1−sC2 )
2

2
, AC1

̸= AC2
(case 4).

(3.14)

The four cases are summarized in Table 3.2. For the sake of simplicity, the clusters in the

table are shown as singular clusters with only one single tract. However, as clusters are

merged during the iterative clustering procedure, the cluster will grow in size and can thus be

composed of multiple tracts. In this case, the spatial agreement between the cluster and the

atlas classes is the average of the spatial agreement between all tracts and the atlas class (see

Eqs. 3.12 and 3.13).
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3.3 Integration of anatomical information into the cluster analysis

Table 3.2: The four cases that determine the weighting factor for the atlas guidance are shown. In order

to demonstrate and visualize the four cases, the classes of the atlas that correspond to the left and right

cingulum bundle are shown in pink and cyan along with two tracts that represent two clusters (shown

in red and blue).

case description illustration weighting effect

both tracts have no correspon-
dence in the atlas
(A  = Ø  A =Ø)C C    

both tracts correspond to diffe-
rent classes in the atlas (A   A )C C 

both tracts correspond to the 
same class in the atlas (A  = A )C C 

one tract has a correspondence
in the atlas (A  = Ø  A = Ø)C C   









w(p,q) = 

w(p,q) > 

w(p,q) >> 

none

repulsion

attraction

repulsion

w(p,q) < 
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Chapter 4

Similarity measures for fiber tracts

I paint objects as I think them, not as I see
them.

— Pablo Picasso (1881–1973)

Features and similarity measures are an integral part of cluster analysis and define the criteria

that are used to achieve a distinguishable separation between tracts.While a variety of different

similaritymeasures are integrated into the presented clustering framework, it is not purposeful

to discuss all of them. Instead, only those features and similarity measures that were used for

the experiments and analyses in this thesis are formally defined and reviewed.

For a selection of similarity measures that were used by other authors for clustering fiber

tracts, the interested reader is referred to the publications of Ding et al. (2003); Moberts et al.

(2005); Batchelor et al. (2006); Maddah et al. (2008); Visser et al. (2011) and Garyfallidis et al.

(2012).

4.1 Overview

Cluster analysis of fiber tracts is not only based on the clustering algorithm itself, but also

depends on the features and similarity measures that are employed to estimate the similarity

between tracts. Challenges of cluster analysis of fiber tracts include not only the amount of

tracts that have to be compared during the analysis, but also the high intrinsic complexity of

fibers tracts. As tracts are an ordered sequence of points in 3D space, the trajectories of the

tracts are defined by the sequential arrangement of tract points (cmp. section 2.4). In principle,

the tract points represent the most fundamental feature, and the generation of new, unique

features is therefore predominately (but not exclusively) based on them (cmp. section 2.6,

feature extraction).

Due to the inherent complexity of fiber tracts, it is not trivial to determine the correspon-

dence between tracts. Though various simplistic features can be extracted and employed to

determine tract similarity, they are mostly unable to handle the intrinsic complexity that is
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Chapter 4 Similarity measures for fiber tracts

concealed in the formation of successive points1. As advanced similarity measures are usually

better qualified to handle the profound complexity of fiber tracts2 and to capture their complex

structural organization, this chapter primarily focuses on more advanced similarity measures.

In the following sections, various similarity measures that were used for clustering experi-

ments in this thesis are defined. These include mostly complex similarity measures, such as

theminimum tract distance (MD), the Hausdorff distance (HD), thematched point distance
(MPD) and the combined distance (CD), but also more simple similarity measures (tract
centroid distance (TCD) and tract orientation similarity (TOS)).

4.2 Tract centroid distance measure (TCD)

To determine the similarity of two tracts p, q with respect to the distance between their tract

centroids, the tract centroid distance dTCD(p,q) is defined as the Euclidean distance between

the two centroidsGp andGq:

dTCD(p,q) = ∥Gp −Gq∥ . (4.1)

As the tract points are not necessarily distributed equally, a simple averaging of tract point

coordinates would inadvertently shift the centroid. In order to cope with unequally distributed

points along an arbitrary tract p described by a finite set ofN points, p’s center of gravityGp is

Tract p

p

p

pi
gi

gi+

li+

gN-

g
pi+

pi+
pN-

pN

Figure 4.1: Illustration of a fiber tract p

withN tract points (in black). Two suc-

cessive pointspi andpi+1 define an indi-

vidual segment (in grey). Each segment

si has a segment centroid gi (in green)

and a length li (in blue, only one seg-

ment length is shown).

used to compute the centroid similarity. If two succes-

sive points pi and pi+1 define an individual segment

of p, the centroid and the length for each segment of

p is denoted by gi and li respectively (see Figure 4.1):

gi = pi +
pi+1 − pi

2
, (4.2)

li = ∥pi+1 − pi∥ . (4.3)

The center of gravity for tract p can now be defined as

the length-weighted average of all segment centroids

gi of p. If Lp is p’s overall tract length:

Lp =

N−1∑
i=1

li, (4.4)

1Consider, for example, a similarity measure that assesses only the similarity between tract centroids and

neglects tract orientation. If fiber tracts have similar centroids but are perpendicular to each other, they will

still be partitioned into the same cluster due to the fact that the orientation as an important tract characteristic

has not been considered.

2Nevertheless, it should be noted that the increasing complexity of features and similarity measures also

increases the computational complexity as more operations are involved to determine tract similarity.
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4.3 Tract orientation similarity measure

Gp is given by

Gp =
1

Lp

N−1∑
i=1

gi × li. (4.5)

4.3 Tract orientation similarity measure (TOS)
To assess the similarity between two tracts p, q according to their orientation, the tract
orientation similarity dTOS(p,q) is defined as the angular distance between their orientation

vectorsOp andOq:

dTOS(p,q) = arccos

(
Op •Oq

∥Op∥ × ∥Oq∥

)
. (4.6)

As main orientation vector Op and Oq the endpoint-orientation of the two tracts is used

(Wang et al., 2007):

Op = pN − p1, (4.7)

Oq = qM − q1. (4.8)

4.4 Minimum tract distance (MD)

Theminimum tract distance dMD(p,q) between two arbitrary tracts p, q with a finite set ofN,

M points respectively, is defined as the distance between the two closest points pi, qj of p

and q:

dMD(p,q) = min
pi∈p,qj∈q

∥pi − qj∥ . (4.9)

Even though the MD is computational demanding, it is a simplistic similarity measure that is

of limited use as it neglects the orientation and the course of the tracts.

4.5 Hausdorff distance measure (HD)

A popular similarity measure that determines the distance between two finite sets of points

is the Hausdorff distance (Rucklidge, 1996). Given two tracts p and q with at least two tract

points each, the minimum Euclidean distance between a single tract point pi ∈ p and tract q

is denoted by:

dmin(pi,q) = min
qj∈q

∥pi − qj∥ . (4.10)

The one-sided Hausdorff distance dHD(p,q) is then defined as the maximum of the shortest

distances:

dHD(p,q) = max
pi∈p

dmin(pi,q). (4.11)

Using a shorthand notation, Eqs. 4.10 and 4.11 reduce to

dHD(p,q) = max
pi∈p

min
qj∈q

∥pi − qj∥ . (4.12)
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The one-sided Hausdorff distance is not symmetric (dHD(p,q) ̸= dHD(q,p)) and does not

satisfy the requirements for a similarity measure (see Eq. 2.33 in section 2.6). Hence, instead of

the one-sided Hausdorff distance, the two-sided or bidirectional Hausdorff distance dHD(p,q)

is used. It is defined as the maximum of both one-sidedHausdorff distances dHD(p,q) and

dHD(q,p):

dHD(p,q) = max(dHD(p,q),dHD(q,p)). (4.13)

4.6 Matched point distance (MPD)

While the Hausdorff distance considers all points of the tracts, it neglects their sequential
arrangement. In order to take the course of fiber tracts into account, thematched point distance
(MPD) for two tracts p,q with an arbitrary number of pointsN,M is defined as the average

distance between consecutive, corresponding points of the two tracts3. For the computation

of the MPD, three cases are distinguished according to the number of tract points. A pictorial

illustration for all cases is shown in Figure 4.2. If the number of tract points is equal (N = M),

the MPD is the average distance between the consecutive, corresponding points of both tracts

(see Figure 4.2a). IfN < M, a matched, partial tract q = {q1, . . . ,qN} is defined that has the

same number of tract points as p. Then, the MPD is the sum of the average distance between

the firstN consecutive tract points of p, q (i.e., dMPD(p,q)) and the average distance between

the last point of p and the remaining points of q (see Figure 4.2b). IfN > M, p = {p1, . . . ,pM}

is the matched, partial tract of p with the same number of points as q. The MPD is then

computed in an analogous way as in the previous case withN < M (see Figure 4.2c).

The one sidedmatched point distance dMPD(p,q) can now be formally defined:

dMPD(p,q) =


1

S

∑N
i=1 ∥pi − qi∥ ifN = M,

dMPD(p,q) +
1

S

∑M
i=N+1 ∥pN − qi∥ ifN < M,

dMPD(p,q) +
1

S

∑N
i=M+1 ∥pi − qM∥ ifN > M,

(4.14)

where S is S = max(N,M). To take into account tracts that traverse in opposite di-

rections, the one sided matched point distance d
MPD

(p, r) is computed for p and a tract

r = {qM,qM−1, . . . ,q1}, for which the order of points of q is reversed. Finally, thematched
point distance dMPD(p,q) is defined as the minimum between the two one sided matched
point distances d

MPD
(p,q) and d

MPD
(p, r):

dMPD(p,q) = min(d
MPD

(p,q),d
MPD

(p, r)). (4.15)

4.7 Combined distance measure (CD)
The combined distance (CD) measure is based on the assumption that the spatial location, the

orientation and the shape of the tract are the most important characteristics of fiber tracts.

3The definition of theMPDwas inspired by Visser et al. (2011) who also computed the average distance between

successive points, but only for tracts that have been resampled to consist of an equal number of tract points.
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p

q

p

q

pN-

qM-
qM-

qM

pN-

pN

Tract p

Tract q

(a) 1. case withN = M.

p

q

p

q

p =pk N

qk
qk+

qM- qM

Tract p

q

Tract q

(b) 2. case withN < M.

p

q

p

q

pk

q =qk M

pk+
pN-

pN

Tract p

p

Tract q

(c) 3. case withN > M.

Figure 4.2: Illustration of thematched point distance (MPD). For two tracts p and q withN,M tract

points, the MPD takes into account the distances between tract points and their successive order. If the

number of pointsN,M is equal for both tracts, the MPD is the average distance between consecutive,

corresponding points for the two tracts. This is shown in (a) where the distances that have to be

averaged are shown in green. If the number of tract points is different and N < M (b), a matched

partial tract q is defined for q. The MPD is then the sum of the average distance between the firstN

consecutive, corresponding tract points of p,q (i.e., dMPD(p,q), distances in green) and the average

distance between the last point of p and the remaining points of q (distances in red). IfN > M (c), a

matched partial tract p is defined for p and the MPD is computed analogously as in (b).
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Consequently, the CD uses all these properties to determine the similarity between two tracts

p, q with N, M tract points. To determine the spatial location and the orientation of the

tracts, the tract centroid distance dTCD(p,q) and the tract orientation similarity dTOS(p,q) are

used (see section 4.2 and 4.3). To cope with incomplete tracts4, partial subtracts p ′ and q ′

are extracted (see below). For these subtracts the tract centroid distance dTCD(p ′,q ′) and the

tract shape similarity dTSS(p ′,q ′) (see below) is computed. The one-sided combined distance
measure dCD(p,q) is then defined as the sum of the individual measures5 that are normalized

between 0 and 1:

dCD(p,q) =
1

5

(
dTCD(p,q) + dTOS(p,q) + dTCD(p ′,q ′) + dTSS(p ′,q ′)

)
. (4.16)

To account for tracts that traverse in opposite directions, dCD is also computed for p and the

reversed tract r = {qM,qM−1, . . . ,q1}. The similarity dCD(p,q) between tract p and q is then

defined as the minimum of dCD(p,q) and dCD(p, r):

dCD(p,q) = min (dCD(p,q),dCD(p, r)) . (4.17)

While the computation of the tract centroid distance dTCD(p,q) and the tract orientation
similarity dTOS(p,q) has been already described in section 4.2 and 4.3, the extraction of the

partial subtracts p ′ and q ′ as well as the computation of the partial tract shape similarity

dTSS(p ′,q ′) is described in the following subsections.

a) Partial tract similarity

To cope with incomplete tracts, a partial tract matching and a shape analysis of the matched

tract parts is performed.The shape analysis of the tract parts is based on a method to compare

polygonal lines, developed by Attalla and Siy (2005). By using tract resampling and polygonal

approximation, tracts are divided into segments before unique properties of the segments are

extracted. To assess the similarity between the segments, a segment-based shape descriptor is

defined on the basis of the segment properties.

b) Tract resampling

For the computation of the shape similarity, the trajectory of p and q is approximated

with newly generated tracts p ′, q ′ that consist of equidistant distributed tract points p ′ =

{p ′
1 , . . . ,p

′
N ′} and q ′ = {q ′

1 , . . . ,q
′
M ′}, where p ′

1 = p1, p
′
N ′ = pN, q

′
1 = q1, q

′
M ′ = qM (see

Figure 4.3a). Intermediate points between {p ′
1 , . . . ,p

′
N ′} and {q ′

1 , . . . ,q
′
M ′} are scattered along

the corresponding trajectories of p, q. Since the level of detail can be adapted by modifying

the distance l between the new tract points, polygonal approximation provides flexibility with

respect to specific requirements and constraints. By increasing the distance l between the new

tract points, the raw number of points is reduced and so is the computational complexity.

4Incomplete tracts do not traverse along an entire fiber bundle, but stop prematurely (e.g., in the middle of a

bundle).

5It might be also beneficial to use specific weights to favor or to penalize the individual measures (Güllmar

et al., 2008).
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Figure 4.3: Illustration of sub-stages during the generation of the shape similarity for the combined
distance measure (CD). For the computation of the shape similarity for two tracts p and q withN,M

tract points, the tract resolution of p and q is reduced and the trajectory is approximated with newly

generated tracts p ′, q ′ that consist of equidistantly distributed points (a). For p ′ and q ′ the closest

points p ′
i and q ′

j are identified (see section 4.4) and used to define corresponding partial subtracts p ′,

q ′ (b). Using the tract points of the partial subtract p ′, the partial tract centroidGp ′ is computed and

the tract segments Sp
′
are defined. For each segment S

p ′
a ∈ Sp

′
, unique properties are identified and

employed in subsequent steps to determine the shape similarity dTSS(p ′,q ′) between p ′ and q ′ (c).
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c) Partial tract matching

A matching of p ′ and q ′ is performed to extract the corresponding, partial subtracts p ′ ⊆ p ′

and q ′ ⊆ q ′. For this purpose, the minimum distance dMD(p
′,q ′) between p ′ and q ′ is

computed, and the two tract points p ′
i ∈ p ′, q ′

j ∈ q ′ that minimize this distance are identified

(see section 4.4Minimum tract distance). To extract the corresponding, partial subtracts p ′

and q ′, the matched points p ′
i, q

′
j are employed (see Figure 4.3b). Formally, p ′ and q ′ are

given by:

p ′ = {p ′
min, . . . ,p

′
i, . . . ,p

′
max}, (4.18)

q ′ = {q ′
min, . . . ,q

′
j, . . . ,q

′
max}, (4.19)

with:
p ′
min ∈ {p ′

1 , . . . ,p
′
i} ∧ p ′

max ∈ {p ′
i, . . . ,p

′
N ′},

q ′
min ∈ {q ′

1 , . . . ,q
′
j} ∧ q ′

max ∈ {q ′
j, . . . ,q

′
M ′}.

(4.20)

The four unknown variables (p ′
min,p

′
max,q

′
min,q

′
max) are points of p

′ and q ′. They define the

starting points, the end points and implicitly the lower and upper parts of p ′ and q ′:

{p ′
min, . . . ,p

′
i}︸ ︷︷ ︸

lower part of p ′

{p ′
i, . . . ,p

′
max}︸ ︷︷ ︸

upper part of p ′

,

{q ′
min, . . . ,q

′
j}︸ ︷︷ ︸

lower part of q ′

{q ′
j, . . . ,q

′
max}︸ ︷︷ ︸

upper part of q ′

.
(4.21)

To qualify as starting and end points, the four unknown variables (Eq. 4.20) have to satisfy

the following requirements:

|p ′| = |q ′|, (4.22)

|{p ′
min, . . . ,p

′
i}| = |{q ′

min, . . . ,q
′
j}|, (4.23)

|{p ′
i, . . . ,p

′
max}| = |{q ′

j, . . . ,q
′
max}|, (4.24)

p ′
min = p ′

1 ∨ q ′
min = q ′

1 , (4.25)

p ′
max = p ′

N ′ ∨ q ′
max = q ′

M ′ . (4.26)

This results in two corresponding, partial subtracts p ′, q ′ having an identical number of tract

points (Eq. 4.22), and maximized length (Eqs. 4.25, 4.26). For their lower and upper parts, the

number of tract points is also identical (Eqs. 4.23, 4.24).

d) Extraction of partial tract features

In order to accurately describe the shape of the subtracts, a set of partial tract properties

(shape descriptors) is extracted. For simplification but without loss of generality, it is assumed

that the requirements (Eqs. 4.22–4.26) are fulfilled and p ′
min = p ′

1 , p
′
max = p ′

N ′ , q ′
min = q ′

1 ,

q ′
max = q ′

M ′ . Consequently, the subtracts p ′, q ′ are identical to the tracts p ′, q ′.The individual
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4.7 Combined distance measure

segments of p ′ and q ′ are denoted with Sp ′
, Sq ′

and are in each case defined by two successive

points p ′
a,p

′
a+1 and q ′

b,q
′
b+1:

Sp ′
= {Sp ′

1 , . . . ,Sp ′

N ′−1} with Sp ′
a = {p ′

a,p
′
a+1},

Sq ′
= {Sq ′

1 , . . . ,Sq ′

M ′−1} with Sq ′

b = {q ′
b,q

′
b+1}.

(4.27)

Along with the centroidGp ′ and the tract points of the segments Sp ′
, polygonal primitives are

extracted. For each segment Sp ′
a ∈ Sp ′

, the following primitives are computed (see Figure 4.3c):

• arc length lpa of p bounded by p ′
a and p ′

a+1,

• length lp
′

a of line p ′
ap

′
a+1,

• length vp
′

a of lineGp ′p ′
a,

• angle αp ′
a between lineGp ′p ′

a and line p ′
ap

′
a+1,

• angle βp ′
a between lineGp ′p ′

a and lineGp ′p ′
a+1,

• angle κp ′
a between neighboring segments Sp ′

a and Sp ′

a+1,

• smoothness factormp ′
a = lp

′
a /lpa.

As a result, the sets vp
′
, αp ′

, βp ′
, κp ′

, lp
′
, lp, andmp ′

are obtained and the primitives of every

set are normalized with respect to the maximum value in the set. For subtract q ′ the sets are

defined and computed analogously.

e) Elastic segment matching and partial tract shape & segment orientation similarity
For two segments Sp ′

a and Sq ′

b , the shape similarity ds(p ′
a,q

′
b) is defined as the normalized

sum of the absolute property differences, whilst the segment orientation similarity dκ(p ′
a,q

′
b)

is the absolute difference between κp ′
a and κp ′

b :

ds(S
p ′
a ,Sq ′

b ) = 1

4

(
abs

(
mp ′

a −mq ′

b

)
+ abs

(
vp

′
a − vq

′

b

)
+

abs

(
αp ′
a − αq ′

b

)
+ abs

(
βp ′
a − βq ′

b

) )
,

(4.28)

dκ(S
p ′
a ,Sq ′

b ) = abs

(
κp ′
a − κq ′

b

)
. (4.29)

To compute the shape similarityds(S
p ′
,Sq ′

) and the segment orientation similaritydκ(S
p ′
,Sq ′

)

for all segments of the subtracts q ′ and q ′ elastic segment matching is used.This compensates

a potential mismatch that may occur during the partial tract matching of the resampled tracts

p ′ and q ′.The elastic matching is accomplished by computing the similarity for corresponding
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Chapter 4 Similarity measures for fiber tracts

segments of p ′ and q ′ as well as for the k neighboring segments. For a,b > 1, the shape and
the segment orientation similarity ds, dκ are then defined separately:

ds(S
p ′
,Sq ′

) =
1

|Sp ′
|

|Sp ′
|∑

a=1

a+k

min
b=a−k

(
ds(S

p ′
a ,Sq ′

b )
)
, (4.30)

dκ(S
p ′
,Sq ′

) =
1

|κp ′
|

|κp ′
|∑

a=1

a+k

min
b=a−k

(
dκ(S

p ′
a ,Sq ′

b )
)
. (4.31)

f) Length penalty and tract shape similarity
A segment-wise assessment of tract similarities is only reasonable if an adequate number of

segments is available for the computation of ds(p ′,q ′) and dκ(p ′,q ′) (see Eqs. 4.30–4.31).

If either p ′ or q ′ consists only of a small subset of p ′ (q ′), the few segments Sp ′
(Sq ′

) are

usually not sufficient to accurately determine the segment-wise similarity between p ′ and q ′.

In this case, resulting similarities are often characterized by high agreement rates due to few

similar segments in Sp ′
and Sq ′

, regardless whether the tracts are resembled well or not. To

correct for the adverse effect if the subset P ′
S is too small, a correction-factor Ccorr(p ′,q ′) is

incorporated as a penalty which is based on the ratio of subtract length and the length of the

remaining tract parts.

For tract p ′, let I = p ′ be the part of p ′ that has been matched and J = p ′\p ′ the remainder

ofp ′withoutp ′.The length of I, J is denoted as lI, lJ and the normalized length as lInorm = lI/|I|,

lJnorm = lJ/|J|. The penalty for p ′ is then defined as the ratio between the normalized length of

I, J and is given by Ccorr(p ′) = lInorm/l
J
norm. For q

′, the correction-factor Ccorr(q ′) is defined

analogously. The correction factor for both subtracts p ′, q ′ is then denoted with Ccorr(p ′,q ′)

and given by:

Ccorr(p ′,q ′) =

{
Ccorr(p ′) + Ccorr(q ′) , if Ccorr(p ′) + Ccorr(q ′) > 1,

1, otherwise.
(4.32)

To compensate for few segments, the correction factor Ccorr(p ′,q ′) is applied to the segment-

wise similarity measures ds (Eq. 4.30) and dκ (Eq. 4.31). Finally, this yields the tract shape
similarity dTSS(p ′,q ′):

dTSS(p ′,q ′) = Ccorr(p ′,q ′)×
(
ds(S

p ′
,Sq ′

) + dκ(S
p ′
,Sq ′

)
)
. (4.33)
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5
Chapter 5

Technical aspects and

implementation details

Nothing is particularly hard if you divide
it into small jobs.

— Henry Ford (1863–1947)

The clustering framework was developed to enable fast cluster analysis of large tractography

datasets. With the theoretical background for the clustering algorithm CATSER and various

similarity measures having been described in the previous chapters 3 and 4, this chapters

focuses on particular aspects of the implementation of the clustering framework. A general

overview about the implementation of the framework is provided and concepts for the

utilization of multiple processing cores for parallel computing are described. A detailed

description for the simultaneous processing of similarity measures in a multiprocessing

environment is given. Finally, two distinct algorithms for the computation of the Hausdorff

distance are presented that are used in the forthcoming chapter to assess the potential of

GPU systems for the computation of similarity measures in comparison to conventional CPU

systems.

5.1 General implementation details

To facilitate fast processing of large datasets the framework is implemented in C++ for 64-bit

Linux (x86-64) architectures. Various software packages, such as the Boost C++ Libraries
(Karlsson, 2005), the automatically tuned linear algebra software (ATLAS) and the AMD core
math library (ACML), are employed. In addition to these specialized libraries, the framework

heavily relies on symmetric multiprocessing (SMP) architectures with multiple compute cores

and a shared memory model. By these means multithreading with T threads is employed to

reduce computation time and to accelerate the processing during stages that are computation-

ally demanding (cmp. section 2.7). For a datasetD withN tracts three basic processing stages

exist:

1. Extraction of a random sample of tractsDin ⊆ D with sizeNin.
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Figure 5.1: Overview of the three fundamental stages of the clustering and their sequential and parallel

sub-stages. The figure depicts the way how the data is processed during the clustering stages. It is

illustrated, which parts of the clustering are performed either in serial or in parallel and how data is

distributed across multiple threads.

2. Cluster analysis forDin to obtain a set of prototype clusters C with sizeNC.

3. Assignment of remaining tractsDout = D\Din to C with sizeNout = N−Nin.

Reduction of processing time is accomplished by optimizing and parallelizing computationally

demanding parts of these stages. A general overview of both, the sequential and the parallel

parts in the framework, is presented in Figure 5.1. A more detailed description is given in the

following sections.

5.1.1 Extracting a random sample of tracts (stage 1)

Finding a random sample Din of tracts in dataset D is computationally not demanding

(O(n) time complexity) and can be carried out serially. Nonetheless, care has to be taken

in performing random sampling. Unbiased random sampling is essential to preserve the

distribution of tracts as well as the information about the geometry of the bundles. It also

prevents the introduction of substantial density variations in the dataset, which is especially

important for the calculation of local outlier factors.
Random sampling of Nin tracts from the finite dataset D can be regarded as generating

a random permutation or performing a random shuffle for all tracts inD and selecting the

firstNin tracts in the shuffled set. If the probability for each permutation is equally alike, the

74



5.2 Mechanisms for the computation of similarity measures

random shuffle is unbiased. Since the Fisher-Yates shuffle (Fisher and Yates, 1948; Durstenfeld,

1964) guarantees unbiased results, it is employed for the extraction of the sample.

5.1.2 Performing the clustering (stage 2)

Performing the cluster analysis for the reduced set of tractsDin consists of several sub-stages

– precalculation of the local outlier factors, partitioning of the data, preclustering and final

clustering that resultsNC prototype clusters.

The computationally most expensive operation is the recurrent calculation of pairwise

similarities between all tracts inDin. As the similarities are usedmultiple times throughout the

clustering, computation of the similarities and clustering are separated from each other and

similarities are computed only once in the beginning. Since the entirety of similarities has to be

available, (N2
in−Nin)/2 similarities have to be computed for each similarity measure to obtain

the triangularNin ×Nin similarity matrix S. This, however, does not cover the computational

complexity necessary to compute the pairwise similarity for two tracts. Employing complex

similarity measures (e.g., Hausdorff distance) increases the computational complexity further.

To reduce the computation time, the calculation of the triangular matrix S is outsourced

to multiple threads and performed in parallel. LOFs are then computed by employing the

precalculated similarities.

For the preclustering, the Fisher-Yates shuffle is employed to shuffle the tracts inDin, before

Din is partitioned into NP sets {P1 . . .PNP
} with approximately equal size ≈ Nin/NP. The

partitions are then clustered simultaneously. Thereafter, the final clustering is carried out

serially.

5.1.3 Assigning remaining objects (stage 3)

Since the remaining tracts inDout must be assigned to their most similar prototype clusters

of C, the similarity for each tract p ∈ Dout to all prototype representatives in C has to be

computed. This is realized by employing the same similarity measures as in stage 2 (see

section 3.2.7).

TheNout tracts ofDout are partitioned into T segments of approximately equal size≈ Nout/T .

The segments are assigned to T threads and similarity computations are carried out in parallel.

5.2 Mechanisms for the computation of similarity measures

Themost time-consuming parts of the cluster analysis is the arrangement of tracts into clusters

and the computation of similarities. As the formation of clusters according to their pairwise

similarities (see Figure 5.1, stage 2, steps 3–6) is predominantly a serial task, only minor parts

can be computed in parallel. In contrast, the computation of the pairwise similarities between

different tracts can efficiently be divided into independent subtasks that are highly suitable

for parallel processing1.

1Such problems are often termed embarrassingly parallel problems.
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Consequently, the framework is designed to utilize multiple processing cores of modern

CPU systems. This facilitates the parallel calculation of similarities in order to reduce com-

putation time and to enable fast computation of similarity measures. To prevent redundant

operations, multiple similarity measures can be computed once, which enables sharing of

results from previously computed features and similarities. To cope with the necessity to

integrate additional features and similarity measures into the framework, it is designed to

retain simplicity, expandability and performance. New similarity measures can easily be

implemented without impairing the capability to parallelize computations. As long as newly

integrated similarity measures are in compliance with the framework’s specifications, paral-

lelized processing works immediately.

5.2.1 Multithreaded computation of similarity measures

To warrant that the parallelization works efficiently and independent from specific similarity

measures, the clustering framework is implemented using task parallelism (see section 2.7

Parallel computing). The similarity computations for the tracts are divided into independent

segments and distributed to multiple threads that determine the similarities simultaneously2.

The similarity computations of each segment are processed by a single thread that computes

similarities successively. If multiple similarity measures have to be computed, all similarity

measures are computed for the two actual tracts, before the thread advances to compute the

similarities of the following tracts. With this approach, threads process the data independently

from each other and thread synchronization mechanisms are omitted.

For the computation of similarities two cases are distinguished that are handled slightly

differently: the computation of the triangular similarity matrix for generating prototype

clusters (cmp. section 2.6 and Figure 5.1 stage 2, step 1) and the computation of similarities for

labeling remaining tracts (cmp. section 3.2.7 and Figure 5.1 stage 3, step 1). In practice, the

second case can be interpreted as the computation of similarities between two distinct sets of

tracts P andQ withN,M tracts3. Similarities are divided into T segments of approximately

equal size and processed simultaneously with all T threads in successive order.The concurrent

computation for this case is illustrated in Figure 5.2. In the first case similarities are not

computed between two distinct sets of tracts but between all tracts of a set ofN tracts. Hence,

only the triangular similarity matrix has to be computed. Therefore, the matrix is divided into

a set of segments with an arbitrary number of contiguous lines that have an approximately

equal number of similarity comparisons4. Each segment is then processed by one thread in

successive order. Figure 5.3 depicts the concurrent processing for this case.

2The computation of specific similarity measures is not parallelized. If only the similarity between two single

tracts has to be determined, the processing is performed serially without parallelization.

3P corresponds to the unprocessed tracts andQ to the set of representatives from the prototype clusters.

4As the matrix is triangular the number of similarity comparisons differ from line to line.
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Figure 5.2: Concurrent computation of K similarity measures between two distinct sets of tracts P and

Q. Similarity computations are divided into T segments and processed simultaneously with T threads

in successive order. All similarity measures (d1, . . . , dK) are computed between the two actual tracts

before the subsequent tracts are processed.

Similarity measure d (...)

Similarity measure dK

Similarity measure d (...)

Similarity measure d (...)K

Similarity measure d (...)

Similarity measure d (...)K

tim
e

tim
e

tim
e

0

0

0

t

t

t

(...)

Segment 
processed by thread 

Segment 
processed by thread 

Segment T
processed by thread T

N

N


tracts

tr
ac

ts

Figure 5.3: Concurrent computation of K similarity measures for a set of tracts. For one set ofN tracts,

K symmetric similarity matrices are computed in a similar way as illustrated in Figure 5.2.Thematrix is

divided into T segments of approximately equal size and processed by T threads in parallel. Each thread

computes all similarity measures (d1, . . . , dK) between the two actual tracts before the subsequent

tracts are processed.
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Figure 5.4: Depiction of the extended relationship between features and similarity measures using UML.

In order to enable reuseability, features and similarity measures can utilize results from previously

computed features and similarity measures.

5.2.2 Reusing results of previously computed features and similarity measures

Ifmultiple features and similaritymeasures are employed that rely on identical code, additional

computational overhead is introduced. In order to keep the computation time to a minimum

and preserve computational efficiency, mechanisms are employed to prevent such redundant

computations by reusing results of already computed features and similarity measures. To

promote reuseability, redundant code is executed only once and results are shared between

features and similarity measures. Especially, if identical, computationally intensive operations

are deployed to calculate multiple similarity measures, the reuse of previously generated

results minimizes computational overhead.

In general, similarity measures rely on features to determine the resemblance of fiber tracts.

In the previous definition of features and similarity measures (see section 2.6 and Figure 2.15),

the reuseability of features is implicitly declared for the generation of new features by using

feature extraction. For similarity measures, however, reuseability of other similarity measures

is not defined. By extending the earlier definition (Figure 2.15) to include similarity measures

as well, the reuseability of similarity measures becomes possible. The extended relationship

between features and similarity measures is illustrated in Figure 5.4 using the notation of the

unified modeling language – UML (Object Management Group, 2011). Using this definition

(Figure 5.4), a similaritymeasure can nowutilize not only features but also additional similarity

measures to determine the resemblance between fiber tracts.

In order to highlight the difference between the computation of similarity measures with

and without reuse of results, a practical example is given in Figure 5.5 for two similarity

measures d1 and d2. In Figure 5.5a both similaritymeasures implement and utilize the function

complex operation(. . . ), which performs the same, identical operation. As both similarity

measures are computed separately, complex operation(. . . ) is executed twice and redundant

computations occur. A modified version of the example that employs reuse of results is shown

in Figure 5.5b. In this case, complex operation(. . . ) has been extracted from both similarity

measures (d1, d2) and implemented as a separate standalone similarity measure dcomp. The

computation of complex operation(. . . ) is now delegated to dcomp. Consequently, dcomp is

executed only once and the result is relayed to both similarity measures d1 and d2.
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Similarity measure d₁

Similarity measure d₂

result

result

complex_operation (tract p, tract q)

compute_similarity (tract p, tract q)

complex_operation (tract p, tract q)

compute_similarity (tract p, tract q)

(a) No result reuse.

Similarity measure dcomp

Similarity measure d₂

result

result

compute_similarity (tract p, tract q)

compute_similarity (tract p, tract q)

Similarity measure d₁

result

compute_similarity (tract p, tract q)

(b) Result reuse.

Figure 5.5: Example for the implementation of two similarity measures (d1 and d2) with and without re-

sult reuse. By computing both similarity measures in (a), the identical function complex operation(. . . )

is executed twice, which results in redundant computations. By implementing complex operation(. . . )

as an independent similarity measure dcomp, mechanisms can be used to prevent redundant execution

of identical code (b).

5.2.3 Processing and processing order

To perform the computation of multiple features and similarity measures with reusing results,

it has to be guaranteed that results are computed before they are used by other features and

similarity measures5. A valid processing order has to be established by taking into account

inter-dependencies between features and similarity measures. Given a set of features and

similarity measures without circular dependencies, the order of processing is determined

using the algorithm shown in Figure 5.6. For features and similarity measures separate lists

for the processing order are generated: the feature processing order PF and the similarity

measure processing order PSM.

During the simultaneous computation of the similarities (see Figures 5.2 and 5.3), all features

have to be fully available. Therefore, features are computed in the beginning according to PF

before the parallel processing is initiated. During parallel processing similarity measures are

processed in sequential order as specified by PSM.

5.2.4 Memory management

The computation of similarity measures is not only characterized by high processing times

but also by high memory usage. If multiple similarity measures are utilized and results are

reused, mechanisms have to be established to minimize memory consumption.

5In the previous example (see Figure 5.5b), dcomp has to be computed before its result is accessed by d1 or d2.
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Determining the feature
processing order PF

Determining the similarity measure
processing order PSM

Start

End

Move feature to PF

P  = emptyF

Move similarity measure to PSM

Find similarity measure with no 
dependencies or with fullfilled 

dependencies (dependend similarity 
measures are already in P )SM

Find feature with no dependencies
or feature with fullfilled dependencies
(dependent features are already in P )F

P  = emptySM

Unprocessed
features

left?

Unprocessed
similarity
measure

left?

yes yesno

no

Figure 5.6: Flowchart for determining the feature processing order PF and similaritymeasure processing

order PSM assuming that circular dependencies are not present.

Using the presented approach for parallel computation of similarity measures (see sec-

tion 5.2.1), the similarities between two tracts are thoroughly computed before the thread

advances to the next pair of tracts. At this point, only those similarities have to be stored in

memory that are explicitly requested for the cluster analysis (e.g., by an operator). Intermedi-

ate results that are only used by other similarity measures are no longer required and can be

discarded. To distinguish between these two types of similarity measures, similarity measures

that are explicitly requested by an operator are termed regular similarity measures and simi-

larity measures that are implicitly used by other similarity measures are termed temporary

similarity measures6. In contrast to similarity measures, features are used multiple times and

have to be available throughout the clustering. Features are therefore always categorized as

regular features and computed only once in the beginning. Feature results are then shared

between those similarity measures that request them.

6In the previous example (Figure 5.5b), d1 and d2 are regular similarity measures, while dcomp is a temporary

similarity measure.
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Regular
features and

similarity measures

Internal view (dependencies and processing order)Operator view

Externally requested
similarity measures Temporary

similarity measures

Dependency view Processing order

Similarity measure t₁

Similarity measure d₂

Similarity measure t₁

Similarity measure t₃

Similarity measure t₂

Similarity measure t₃

Similarity measure d₁

Feature f₂

Similarity measure d₁Similarity measure d₁

Similarity measure d₂Similarity measure d₂

Feature f₂

Feature f₁

Feature f₁

Similarity measure t₂

PF

PSM

Figure 5.7: Operator view and internal view for two regular similarity measures. The operator view

shows the similarity measures d1 and d2 that are externally requested by an operator for the cluster

analysis. The internal view shows internal mechanisms, including dependencies of related similarity

measures, the separation into regular and temporary similarity measures as well as the resulting

processing orders PF and PSM.

Figure 5.7 shows an example for two regular similarity measures d1 and d2 (requested by an

operator)with various inter-dependencies. An operator view is provided that shows the view of

the operator who requested the similarity measures. The corresponding internal view depicts

additional internal characteristics that are hidden from the operator. Inter-dependencies

between features and similarity measures are shown as well as the separation in regular and

temporary features/similarity measures and the resulting processing orders PF and PSM.

With respect to limited resources and the requirements of a multiprocessing environment,

onlyminimal resources are used to store results inmemory. For temporary similaritymeasures,

memory is allocated for each thread to store only similarities for the two actual tracts. If

the processing of this set of tracts is finished and the thread advances to process the next

pair of tracts, previous results are discarded and allocated memory is used to store the

temporary similarities for the new tracts. For regular similarity measures, two different

scenarios are considered – the labeling of unprocessed tracts and the computation of the

similarity matrices (see section 5.2.1). If similarities are used for the labeling of unprocessed

tracts regular similarity measures are used only once (cmp. section 3.2.7 and Figure 5.2). In this

case, memory allocation for regular similarity measures is identical to the memory allocation

strategy for temporary similarity measures and results can be discarded after they have been

processed. The corresponding memory layout for these scenarios is shown in Figure 5.8. If

similarity matrices are computed for the clustering and the generation of prototype clusters

(cmp. section 3.2.3 and Figure 5.3), results are accessed multiple times and the entire similarity

matrices have to be available. Therefore, memory for similarity matrices is allocated once and

thread-specific segment boundaries to access the matrices are relayed to each thread. As the

utilized similarity measures adhere to certain assumptions (see Eq. 2.33–2.35 in section 2.6),
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Figure 5.8: Allocated memory that is used to store results from the computation of features and

similarities for two set of tracts P andQ with T threads. Reserved memory is shown for R features, K

regular similarity measures as well as S temporary similarity measures. Each rectangle corresponds to

the memory that is allocated to hold the results of the feature and similarity computations. As results

of regular and temporary similarity measures are used only once, only a minimal amount of memory

is reserved per thread. During subsequent computations, temporary results are discarded and memory

is reused.

the similarity matrix S of a datasetD withN elements is triangular and the diagonal elements

are zero. To reduce memory consumption, a linear memory layout that stores solely the upper

matrix of S without diagonal elements is used instead of storing the entire N × N matrix.

Matrix S (cmp. Table 2.1) is thus mapped to memory as followed:

Slin: S(1, 2) · · · S(1,N) S(2, 3) · · · S(2,N) · · · S(N− 1,N)

Memory: 0 · · · N− 1 N · · · 2(N− 1) · · · (N2 −N)/2

Using this linear memory model, the value in the similarity matrix at the (i, j)th position (with

i, j = 1 . . .N) is given by:

S(i, j) =


Slin

(
N× i−N+ j− 1− i2+i

2

)
if i < j,

S(j, i) if i > j,

0 if i = j.

(5.1)

5.3 Algorithms for the computation of the Hausdorff distance

The Hausdorff distance – HD (see section 4.5) is employed for various experiments and for

the investigation of benefits and disadvantages of graphics processing units (GPUs) during the
computation of similarity measures (see next chapter). Due to the differing architectures of

CPU and GPU systems (cmp. section 2.7), customized implementations have to be used to

achieve optimal performance for the different systems. Therefore two algorithms are outlined

that are suitable for the computation of the HD with GPU and CPU systems.
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Figure 5.9: Allocated memory that is used to store results from the computation of features and

similarity matrices for a set ofN tracts with T threads. Reserved memory is shown for R features, K

regular similarity measures as well as S temporary similarity measures. Each rectangle corresponds to

the memory that is allocated to hold the results of the feature and similarity computations. Temporary

similarity measures are used only once. Therefore only a minimal amount of memory is reserved per

thread. During subsequent computations, these results are discarded and memory is reused.

The first algorithm is a straightforward implementation of the HD (cmp. section 4.5) that

computes dHD(p,q) between two tracts p = {p1, . . . ,pN} and q = {q1, . . . ,qM} with N, M

tract points (see Listing 1). At the beginning, the full distance matrix S between all points of p

and q is computed. S is then used to determine the one-sided HDs dHD(p,q), dHD(q,p) and

finally dHD(p,q). The algorithm contains no diverging paths of execution, which makes it

particularly suitable for the processing with GPUs. The computation of S, however, will result

in additional, superfluous computations7.

The second algorithms is an alternative, more complex implementation that incorporates

conditional statements to prevent unneeded operations (see Listing 2). As distances between

pi and all points of q are iteratively assessed to determine min(pi,q), it is evaluated in each

step if the processing of remaining points of q is still necessary (cmp. section 4.5). Let min dist

be the minimum distance between pi and any point of q, determined in an iterative process

that computes the distances between pi and any qj ∈ q:

min dist = min
qj∈q

∥pi − qj∥ . (5.2)

The maximum of previously computed minimum distances between ps = {p1, . . . ,pi−1} and

q is given by max min:

max min = max
px∈ps

min dist(px,qj). (5.3)

7All similarities are computed in advance, regardless of whether they are actually needed or not.
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If min dist falls belowmax min for any qj ∈ q during the iterative determination of min dist

(Eq. 5.2), it follows that max(min dist,max min) = max min. As it is guaranteed that

min dist < max min for pi and for all qj ∈ q, further processing of Eq. 5.2 can be ceased

and the next tract point pi+1 can be processed.

Both algorithms (Listing 1 and 2) are integrated into the CPU-based similarity computation

framework (cmp. section 5.2). Even though the algorithms themselves are not parallelized for

CPU architectures, intrinsic parallelization is achieved by the clustering framework if multiple

similarities are computed (cmp. section 5.2). Due to the distinct processing concepts of CPUs

and GPUs and the limitation of GPUs, the clustering framework as presented in section 5.2

cannot be transformed to GPU architectures. Hence, only the first algorithm (Listing 1) is

specifically implemented for GPUs.

Listings 1: Algorithm for the computation of the Hausdorff distance.
Data: Tracts p = {p1, . . . ,pN} and q = {q1, . . . ,qM} withN andM tract points.

Result: The Hausdorff distance dHD(p,q).

// compute N×M distance matrix S between all points of p and q

for i = 1 toN do
for j = 1 toM do

S(i, j) = ∥pi − qj∥;

// determine the one sided Hausdorff distance dHD(p,q)

for i = 1 toN do // for each point in p, find minimum distance to q

m(i) = find minimum({D(i, 1), . . . ,D(i,M)});

dHD(p,q) = find maximum(m);

// determine the one sided Hausdorff distance dHD(q,p)

for i = 1 toM do // for each point in q, find minimum distance to p

m(i) = find minimum({D(1, i), . . . ,D(N, i)});

dHD(q,p) = find maximum(m);

dHD(p,q) = max(dHD(p,q),dHD(q,p));

84



5.3 Algorithms for the computation of the Hausdorff distance

Listings 2: Optimized algorithm for the computation of the Hausdorff distance.
Data: Tracts p = {p1, . . . ,pN} and q = {q1, . . . ,qM} withN andM tract points.

Result: The Hausdorff distance dHD(p,q).

// compute one sided Hausdorff distance max min between p and q

min dist = inf ;

// initialize min dist by finding the minimum distance between p1 and

q

for j = 1 toM do
if ∥p1 − qj∥ < min dist then min dist = ∥p1 − qj∥;

max min = min dist;

for i = 2 toN do
min dist = inf ;

j = 1;

// process all points in q and iterate as long as

min dist > max min

while j < M andmin dist > max min do
if max min < min dist then min dist = ∥pi − qj∥;
j = j+ 1;

max min = max(min dist,max min);

// At this point, max min corresponds to the one sided Hausdorff

distance dHD(p,q)

// now compute max(dHD(p,q),dHD(q,p))

for i = 1 toM do
min dist = inf ;

j = 1;

// process all points in p and iterate as long as

min dist > max min

while j < N andmin dist > max min do
if d(pj,qi) < min dist then min dist = ∥pj − qi∥;
j = j+ 1;

max min = max(min dist,max min);

dHD(p,q) = max min;
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Chapter 6

Clustering experiments

The true method of knowledge is
experiment.

—William Blake (1757–1827)

The experimental investigation of the cluster analysis framework is important to study the

properties of the implemented algorithms and to assess the quality of the clustering. For this

purpose, extensive experiments were conducted that are presented in this chapter.

Several datasets of healthy subjects were acquired.These datasets were not only used during

the clustering experiments, but also to create a voxel-based white matter atlas which was

used for the atlas-guided clustering and for the evaluation of results. In order to assess the

quality of the clustering quantitatively, the spatial agreement between obtained clusters and

the atlas classes was determined. To investigate the computational efficiency of the clustering

framework in multiprocessing environments, multiple experiments were conducted.

6.1 Data acquisition and data processing

46 healthy subjects (24 female, 29±8.6 years old; 22male, 29±10.0 years old)were included and

measured on a clinical 3 T whole-body MR-Scanner (Tim Trio, Siemens Healthcare, Erlangen,

Germany). The study was approved by the Ethics Committee of the Jena University Hospital.

Participants provided informed written consent to participate in this study in accordance to

the statement of the Ethics Committee.

For the diffusion tensor acquisition, a conventional single shot twice refocused echo planar
imaging (EPI) sequence was used with four bipolar diffusion gradients to compensate for eddy

currents (Heid, 2000). Fat suppression was achieved by applying a spectral attenuated inversion
recovery (SPAIR) pulse. A 12 channel phased array matrix head coil was employed for signal

reception. To minimize subject motion, special pads were used that secured a tight fit of the

heads in the coil.The following acquisition parameters were used: amatrix of 96 × 96, 55 slices

with a thickness of 2.5mm each, voxel size = 2.5× 2.5× 2.5mm3, TE = 91ms, TR = 6800ms,

α = 90° and data sampling acceleration factor 2. Six b0 images without diffusion weighting (b
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= 0 s/mm2) as well as 70 diffusion weighted images sampled with different gradient directions

at b = 1000 s/mm2 were acquired.

Following data acquisition, in-plane interpolation was performed on the MR-Scanner,

resulting in an effective voxel size of 1.25× 1.25× 2.5mm3. Due to the head fixation, subject

motion was not observed and a retrospective motion correction was not performed. The

Diffusion Toolkit (Wang et al., 2007) was used to perform DTI-based analysis and whole

brain fiber tractography using the interpolated streamline method (Conturo et al., 1999) with

a fixed step-length of 0.5mm and an angle threshold of 41°. For fiber tracking, three randomly

located seed points were placed at intravoxel positions in each voxel of the brain’s white matter.

The white matter seed mask was derived from the FA maps with a manually-tuned minimum

FA threshold of 0.2. Tracts having a length less than 30mm were subsequently removed from

the dataset. On average, each dataset consisted of about 280 000 tracts with more than 20

million tract points per dataset. Tracts were not resampled and differed in both length and

number of tract points.

All datasets were spatially normalized in a two step procedure by using the advanced
normalization tools (ANTs) (Avants et al., 2011). In an initial step, a rigid transformation was

applied to the FA maps to register and coarsely align all data to the common FA template

(FMRIB58) of the FMRIB’s software library (FSL) (Jenkinson et al., 2012). A subject-specific

template was created by normalizing the datasets with the non-linear template generation

framework of ANTs. As a starting point for this non-linear, spatial normalization process, the

rigidly transformed FA maps were averaged to produce an initial FA template. The template

was refined and improved in four iterations using the greedy SyN transformation model and

the cross correlation metric of ANTs.The resulting transformation matrices and displacement

fields were finally employed to transfer the fiber tracts into the space of the newly generated

template. To enable the spatial transformation of fiber tracts, the open source ANTs framework

was extended.

6.2 Creation of a white matter atlas

A probabilistic white matter atlas was semi-automatically constructed. Out of the 46 spatially

normalized datasets (see previous section), 15 datasets were randomly selected to generate the

atlas. 16 white matter structures (bundles) were included in the atlas: forceps major (Fmaj),

the frontal projection of the corpus callosum (forceps minor – Fmin) as well as the following

bundles of the left and right hemisphere: anterior thalamic radiation (ATR), gyrus part of

the cingulum (CGC), hippocampal part of the cingulum (CGH), corticospinal tract (CST),

inferior fronto-occipital fasciculus (IFO), temporal part of the superior longitudinal fasciculus

(SLFt), uncinate fasciculus (UNC). To delineate these bundles, a set of regions of interest (ROIs)
was drawn for each bundle, taking into account the guidelines for reproducible extraction

by Wakana et al. (2007). For each dataset, tracts that crossed these ROIs were extracted and

assigned to the corresponding WM bundle. While this is an efficient and fast way to extract

the WM fiber bundles, it only extracts the major parts of the bundles. Tracts that belong to

the bundle but do not cross all ROIs are not assigned to the bundle. This probably resulted in

a loss of minuscule details for the bundles.
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Theprobabilistic whitematter atlas was then created by using the extracted bundles (K = 16)

of all datasets (N = 15). With all these bundles, the 16 prototype classes of the white matter

atlas were generated. Each class in the atlas contains all voxels that are associated with the

corresponding atlas class and describes how reliably each voxel can be associated with this

class. Let A1, . . . ,AK be the prototype classes. If A is one of these classes, it formally consists

of a list of voxels VA = {v1, . . . , vn} with an unknown number of voxels n that belong to it.

Each vi ∈ VA is a set of coordinates vi = (vxi , v
y
i , v

z
i ) that describes the position of voxel vi in

the 3D dataset. The probability that voxel vi belongs to class A is denoted by φA(vi). As V
A

consists only of voxels that belong toA, the probability for each voxel vi ∈ VA is φA(vi) > 0.

φA(vi) is therefore bounded by ]0, 1].

To generate the probabilistic atlas a two step procedure was used. During the first step,

the probabilities for each fiber bundle were computed individually for each dataset (N = 15),

before these probabilities were used to generate the final prototype classes in the second step.

For the first step, the computation of the dataset probability φD is performed individually

for each dataset D ∈ {D1, . . . ,DN}. Initially, for each fiber bundle A of dataset D, the tract

density ρA is determined. Hereby each tract that belongs to bundle A is rasterized to a user-

defined 3D grid and all voxels VA = {v1, . . . , vn} that contain tracts of A are identified. The

tract density ρA(vi) for voxel vi is computed by counting the number of tracts that run

through voxel vi. To obtain the dataset probability φDA(vi) for voxel vi of bundle A, the

ratio between the tract density ρA(vi) and the number of all tracts that occupy voxel vi is

computed:

φDA(vi) =
ρA(vi)∑K
j=1 ρj(vi)

. (6.1)

If only tracts of A occupy voxel vi, the probability φ
D

A(vi) is 1.

After computing the dataset probability for each dataset and each fiber bundle the final

prototype classes are generated in the second step. For prototype class A, the prototype

probability φA(vi) in voxel vi is defined as the average of all dataset probabilities φj
A(vi) for

A in voxel vi with j = 1, . . . ,N:

φA(vi) =
1

N

N∑
j=1

φj
A(vi). (6.2)

If there is no voxel in a bundle A to which the corresponding bundles of all N datasets

contribute, the maximum bundle probability max(φA) will be less than 1. To prevent such a

degradation of probabilities, the probabilities in each bundle are normalized to a maximum

value of 1.

During this prototype generation stage, tracts are rasterized to a 3D grid. As tracts are

a set of real-valued points in 3D space, the atlas can be reconstructed for arbitrary grid

resolutions. For the experiments, the atlas was reconstructed for an isotropic resolution of

1mm3. Unreliable voxels with probabilities less than 0.3 were removed from the atlas before

further processing was performed. An example for a class of the probabilistic atlas is given in

Figure 6.1. Volume renderings for a selection of fiber bundles that are defined in the atlas are

shown in Figure 6.2. The bundles are overlaid onto the FA volume of a single subject.
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Figure 6.1: Example for an atlas class in the probabilistic white matter atlas. The maximum intensity

projection of the probabilities is shown as a pseudo color image for the gyrus part of the left cingulum

(CGCleft). Regions with high probability (φCGCleft
= 1) are colored in red, while regions with low

probability (φCGCleft
= 0) are shown in blue.

6.3 Spatial matching of clusters and atlas classes

After the clustering of a dataset, the obtained clusters are not ordered and a spatial matching is

performed to relate the clusters to their best matching atlas class. For this purpose, the clusters

of a dataset D are rasterized to a 3D grid with the same spatial resolution as the atlas. The

tract density ρC is computed for all clusters C ∈ {C1, . . . ,Cn} and normalized to a maximum

density of 1 for each cluster.

The spatial agreement between all atlas classes and all obtained clusters is then determined.

A matching value ζ(A,C) for an atlas class A and a cluster C is computed that reflects the

spatial resemblance betweenA and C (see below). The larger the value ζ(A,C) the higher the

spatial agreement between A and C. After the computation of the spatial matching value for

all atlas classes and all obtained clusters, clusters are iteratively assigned to the best matching

atlas class until clusters have been associated with an atlas class. During this process, a one to

one mapping is enforced and clusters cannot be assigned to more than one atlas class.

To determine the matching value ζ(A,C), the intersecting voxels VAC = {v1, . . . , vM} as

well as the non-intersecting voxels VA = {vA
1 , . . . , v

A
K } for A and VC = {vC

1 , . . . , v
C
L } for C

are identified. For A and C, the number of all unique voxels (A∨ C) is denoted byN with

N = K+L−M. In the following it is assumed that VA and VC are not empty (K > 1∧L > 1)

and at least one intersecting voxel exists (M > 1). Otherwise, the matching value ζ(A,C)

is zero. To assess the similarity in the overlapping regions of A and C, the average of the

differences in the intersecting voxels is computed by:

∆(A,C) =
1

M

M∑
i=1

(1− abs (ρA(vi) − ρC(vi))). (6.3)
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Figure 6.2:This figure shows the volume renderings for a selection of fiber bundles defined in the white

matter atlas. From left to right the bundles are: anterior thalamic radiation (ATRleft), corticospinal tract

(CSTleft), the forceps minor (Fmin), gyrus part of the right cingulum (CGCright), hippocampal part

of the right cingulum (CGHright), forceps major (Fmaj), inferior fronto-occipital fasciculus (IFOleft),

temporal part of the superior longitudinal fasciculus (SLFtleft), uncinate fasciculus (UNCleft).

To take into account the average tract density of non-intersecting voxels for both A and C,

∆(A) and ∆(C) were also computed:

∆(A) =
1

K

K∑
i=1

(1− ρA(v
A
i )), (6.4)

∆(C) =
1

L

L∑
i=1

(1− ρC(v
C
i )). (6.5)

The matching value ζ(A,C) is then defined as the product of Eqs. 6.3–6.5, weighted by the

ratio between the number of intersecting voxelsM and the number of all unique voxelsN:

ζ(A,C) =
M

N
× ∆(A,C)× ∆(A)× ∆(C). (6.6)

6.4 Experiments

6.4.1 Cluster analysis

For each of the 46 whole brain tractography datasets, the cluster analysis was performed

in the atlas space with three different techniques: atlas-guided clustering with CATSER,

conventional CATSER clustering (without atlas) as well as standard hierarchical agglomerative
clustering (HAC) using Ward’s method (Ward, 1963). For both atlas-guided and non-atlas-

guided clustering with CATSER, the same parameters were used (see below). For HAC, the

datasets were far too large to be processed within reasonable time. Therefore, 10 000 tracts

were selected randomly from each dataset. The samples were clustered individually and 250

clusters were reconstructed for each dataset.

For the cluster analysis with CATSER, identical parameters empirically derived from prior

experiments were used. A sampling size of 10 000 tracts was chosen (Figure 3.2, step 1). The

sample was divided into 3 partitions (Figure 3.2, step 3) and clustered during the preclustering
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stage (Figure 3.2, step 4). After finishing 80% of the preclustering iterations (see section 3.2.4),

outlier elimination was performed and very small clusters with less than three tracts were

removed. During the final clustering stage (Figure 3.2, step 6) the second outlier elimination

stage was performed after finishing 60% of the clustering iterations. This time, clusters with

less than 4 tracts were removed. For the computation of the LOFs, the number of neighboring

points k was set to 15. The number of representatives was set to a maximum value of 40 for

a cluster size of 120 tracts. With respect to Eq. 3.8 this yields x1 = 120 and s = 40/120. The

factor fr for reassignment of outliers was set to 1 and for the labeling of unprocessed tracts to

fl = 1.5 (see section 3.2.7). 250 fiber bundles were reconstructed for each dataset.

For the atlas-guided clustering with CATSER, the white matter atlas was used (see sec-

tion 6.2). A subsequent step was employed, in which the spatial agreement of the clusters

to all atlas bundles was assessed, and clusters were merged if this merging would lead to an

increased spatial agreement between the newly formed clusters and the best matching atlas

regions. The purpose of this additional step is to guarantee that clusters are not splitted but

are completely formed.

To investigate the performance of the similarity measures for multiple subjects and the

different clustering techniques, the clustering of all datasets was performed thrice, each

time with the three clustering techniques (see above) but different similarity measures. For

this experiment, the combined distance measure (CD), the Hausdorff distance (HD) and the

matched point distance (MPD) were used (see chapter 4). For CD, the tract approximation

distance l was set to 15mm (see section 4.7). For MPD, tracts were resampled to consist of 10

tract points (see section 4.6). In total, cluster analysis was performed 414 times (46 datasets×
3 clustering techniques × 3 similarity measures).

With spatial matching (see section 6.3), clusters were identified and related to their corre-

sponding and best matching class in the atlas. To evaluate the quality of the final results, the

spatial agreement (see Eq. 3.12) between the rasterized clusters and their corresponding, best

matching atlas classes was computed.

6.4.2 Outlier elimination

To demonstrate the benefits of outlier elimination, the effects of different outlier elimination

strategies and varying levels of noise on the clustering results were investigated. For this

purpose, one dataset that resided in its native space was segmented according to the guidelines

by Wakana et al. (2007). The same 16 fiber bundles that are also defined in the atlas (see

Figure 6.2) were extracted. For this segmented dataset, unsupervised clustering (without

white matter atlas) was performed with varying levels of noise and different sets of outlier

elimination parameters. As the correctness of fiber tract clusters are visually hard to grasp

due to their inherent complexity, the Euclidean norm between the tract centroids was used

as a similarity measure for this clustering experiment (see section 4.2). Contrary to fiber

tracts, the distance between tract centroids can be easily depicted in 3D Euclidean space,

which allows good visual delineation of the clusters and their shapes. For this experiment,

the cluster analysis was performed for three different outlier elimination parameter sets (low,

moderate and high outlier elimination, see Table 6.1 for details). In addition, artificial white
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noise was added on top of the tract centroids and gradually increased (0%, 33%, 66% and

99% additional noise).

Table 6.1: Parameters for the three different outlier elimination strategies.

Outlier Preclustering Final clustering

elimination

strategy time point t1 in % critical size h1 time point t2 in % critical size h2

low 95 1 85 4

moderate 80 2 85 6

high 80 4 85 8

The table shows the outlier elimination parameters for the three outlier elimination strategies

(low, moderate, high). The outlier elimination is performed during the preclustering (Fig-

ure 3.2, step 4) as well as during the final clustering (Figure 3.2, step 6). Clusters that contain

no more tracts than the critical cluster size h1 (h2) after t1% (t2%) of the clustering has been

finished are considered outliers and are removed from the subsequent clustering.

6.4.3 Performance analysis

In order to assess the performance of the clustering in a multiprocessing environment, a

performance analysis was conducted using an eight core symmetric multiprocessing (SMP)

system (CPU system 1, Table 6.2). Effects on the execution time TP and the relative speedup

SP were investigated by gradually increasing the number of utilized cores P (cmp. section 2.7).

The performance analysis was conducted for unsupervised CATSER clustering without

white matter atlas using the parameters stated in section 6.4.1. One datasetD with 100 000

fiber tracts was used, whereas the reduced random sample consisted of 10 000 tracts. The

Hausdorff distance (HD), the combined distance (CD) and thematched point distance (MPD)

were used as similaritymeasures. To impede statistical fluctuations due to running background

processes, all computations were repeated 10 times.

The analysis of the clustering framework was divided into three individual parts to iden-

tify the parts of the clustering that are suspected to be computationally most critical (cmp.

Figure 3.2), as well as to identify the parts that will profit the most from adding additional

cores:

• Part 1: Computation of the similarity measures forDin (Figure 3.2, step 2)

• Part 2: Clustering of the sample datasetDin (Figure 3.2, steps 3–7):

The performance during the formation of clusters was investigated by gradually increas-

ing the number of parallel clustered partitions.
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Table 6.2: Technical details for the employed CPU and GPU systems.

Technical

Details

CPU systems GPU systems

System 1 System 2 NVIDIA

Quadro

FX 1800

NVIDIA

Tesla

C1060

NVIDIA

Tesla

C2050

Manufacturer Intel AMD NVIDIA NVIDIA NVIDIA

Processor Xeon L5430 Opteron 8350 G94 GT200 GF100

Clock rate 2.66GHz 2.0GHz 1.38GHz 1.3 GHz 1.15 GHz

Multiprocessor 2 8 8 30 14

Cores/MP 4 4 8 8 32

Cores (total) 8 32 64 240 448

RAM 16GB 128GB 2GB 4GB 2.6GB

• Part 3: Labeling of remaining tractsDout = D\Din (Figure 3.2, step 8):

By employing identical clustering parameters as in part 2, the performance of the

labeling was analyzed.

To investigate the potential of graphics processing units – GPUs (section 2.7) in speeding up

fiber tract similarity computations, three different GPU systems were employed. The three

systems were used to compute the Hausdorff distance (see section 5.3, algorithm 1) and to

assess the performance. In addition, a 32 core CPU system (CPU system 2, Table 6.2) was

employed as gold standard and the performance of the two HD algorithms was assessed (see

section 5.3, algorithm 1 and 2). Finally, a comparison between the CPU and GPU systems was

conducted. Technical details for the different computing systems are given in Table 6.2.

6.5 Results

6.5.1 Cluster analysis

The clustering of all 46 datasets was successfully performed using the three clustering tech-

niques (atlas-guided CATSER, CATSER, HAC) and all three similarity measures (CD, HD,

MPD). For each clustering experiment and each dataset, the clusters were matched to the

atlas classes and the best matching cluster was determined for each class. Clusters for one

exemplary dataset, processed with the atlas-guided CATSER clustering and the combined
distance measure (CD), are shown in Figure 6.3. All extracted bundles of the dataset are

displayed in the top row. To enhance the visualization, the bundles in the upper row have

been divided into three groups: bundles of the left hemisphere (left image), bundles that

cross both hemispheres (middle image) and bundles of the right hemisphere (right image).

Fiber bundles are displayed in distinct colors, and tracts that belong to the same cluster are
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CST
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IFO
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Figure 6.3: Atlas-guided clustering results for one dataset, clustered with the combined distance measure.
In the top row all bundles are presented. Fiber bundles are shown for the left hemisphere (left image),

bundles that cross the hemispheres (middle image) and bundles of the right hemisphere (right image).

Different fiber bundles are displayed in distinct colors. In the middle image a tracking error is present

that resulted in a fiber bundle connecting the prefrontal lobe and the corpus callosum (green bundle,

marked with an arrow). The bottom row shows the clusters that correspond to the atlas classes shown

in Figure 6.2.

colored identically. The matched bundles that correspond to the atlas classes in Figure 6.2 are

displayed in the bottom row of Figure 6.3 with the same coloring as in Figure 6.2.

To assess the quality of the clustering quantitatively, the spatial agreement (see Eq. 3.12)

between matched bundles and atlas classes was determined for all 46 clustered datasets. The

spatial agreement for CD, HD and MPD is shown in Figures 6.4–6.6. The figures use box

plots to present the spatial agreement of the individual, clustered bundles, obtained with

atlas-guided CATSER (in red), CATSER (in green) and HAC (in blue). The centerline in the

boxes denotes the median (second quartile). The bottom and the top of a box correspond to

the first and the third quartile and define the inter-quartile range (IRQ). The lines that emerge

from the top and bottom of a box are whiskers and contain all remaining data points that are

in the range of ±1.5× IRQ. All data points that are outside of the whiskers are outliers and

marked with grey dots.

For all similarity measures (CD, HD, MPD) the clustering techniques were able to group

fibers into bundles that had a high spatial agreementwith the classes in the atlas (see Figures 6.4–

6.6). Nonetheless, various differences between the three clustering methods were observed for

all similarity measures. For every clustered bundle, the variability of the spatial agreement for

atlas-guided CATSER clustering is considerably lower compared to clustering with CATSER

and HAC. Especially the IRQs are significantly reduced, but also is the number of outliers.

By comparing the spatial agreement between CATSER (without atlas) and HAC no striking

differences of the IRQs and outliers are apparent.
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Figure 6.4: Spatial agreement of clustered fiber bundles and atlas classes for the combined distance (CD).
Using the atlas-matched fiber bundles of the 46 datasets that were clustered with the three different

methods (atlas-guided CATSER, CATSER, HAC), the average spatial agreement between fiber bundles

and atlas class was determined. The results for each bundle and each clustering technique are shown

above.

By inspecting the average spatial agreement of atlas-guided CATSER and CATSER (without

atlas) using CD and HD, a higher spatial agreement can be observed for the atlas-guided

clustering in most bundles (expect for the left IFO (for CD and HD), the left SLFt (for CD)

and the right ATR (for HD)). In contrast, by using MPD as similarity measure results are

more diverse and spatial agreement was higher for only eight bundles, using atlas-guided

CATSER clustering. For the conventional clustering with HAC, higher spatial agreement

was observed in certain bundles than in corresponding bundles that were clustered with

atlas-guided CATSER. However, it has to be considered that HAC clustered only a small

subset of 10 000 tracts, which resulted in considerably smaller clusters that occupied less space

compared to the two other techniques. As fewer tracts exist to delineate the whole bundle

and to depict its smaller details, a higher spatial correspondence was obtained for HAC. This

effect can be easily identified in Figure 6.7, which shows an example of a single fiber bundle

(inferior fronto-occipital fasciculus – IFO), clustered with all methods. Using HAC, the best

matching bundles contain only few fiber tracts. These few tracts travel primarily through

the atlas class, which results in a high spatial agreement. Regarding the other methods, the

fiber bundles are more detailed and contain more fiber tracts. They resemble the atlas class
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Figure 6.5: Spatial agreement of clustered fiber bundles and atlas classes for the Hausdorff distance
(HD). Using the atlas-matched fiber bundles of the 46 datasets that were clustered with the three

different methods (atlas-guided CATSER, CATSER, HAC), the average spatial agreement between

fiber bundles and atlas class was determined.The results for each bundle and each clustering technique

are shown above.

more closer, even though the spatial agreement is lower compared to HAC (expect for the

atlas-guided CATSER clustering with HD). For atlas-guided CATSER with CD, however, the

obtained cluster for the IFO is rather large and contains large parts of the uncinate fascicle

compared to the clusters obtained with the other methods. By using CATSER (without atlas)

and the MPD, the obtained IFO bundle was only partially covered by tracts. While the results

for different clustering methods were consistent for all three similarity measures, the spatial

agreement with HD was consistently higher for most bundles compared to CD and MPD

(Figure 6.4 vs. Figure 6.5 vs. Figure 6.6). Overall, the previous observations are confirmed by

Table 6.3, where the average spatial agreement and the standard deviation are summarized for

all clustering techniques and similarity measures. For atlas-guided CATSER, HD achieved

the highest spatial agreement, followed by CD and MPD. By performing the clustering with

CATSER (without atlas), HD still achieved the highest spatial agreement, but is followed by

MPD and CD. For the clustering wit HAC, the highest spatial agreement was obtained with

MPD, followed by HD and CD.

For the CGH (in particular the CGH of the left hemisphere) fiber bundles could not be

extracted for all datasets. By analyzing the data, it was observed that no or only few fibers
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Figure 6.6: Spatial agreement of clustered fiber bundles and atlas classes for thematched point distance
(MPD). Using the atlas-matched fiber bundles of the 46 datasets that were clustered with the three

different methods (atlas-guided CATSER, CATSER, HAC), the average spatial agreement between

fiber bundles and atlas class was determined.The results for each bundle and each clustering technique

are shown above.

traversed the volume of the CGH atlas classes for certain datasets. This is also captured in

Figures 6.4 and 6.5, in which the CGH bundle has a very low spatial agreement and a high

spread of values. This is presumably due to imperfections in the coregistration, the small

volume of the CGH atlas class and the small number of tracts that this bundle contains. Some

of the very few tracts that belonged to the CGH were presumably removed by the outlier

elimination. The corticospinal tract also has a relatively low spatial agreement (Figures 6.4

and 6.5), which is the result of merging the CST bundle with adjacent tracts that are not part

of the CST but are highly similar. While the CST is a very narrow fiber bundle, the tracts in

its vicinity are still highly similar compared to the tracts that constitute the CST. Even though

anatomical information was incorporated into the cluster analysis, some highly similar tracts

are still merged into the CST, which leads to a reduction in spatial agreement (compare the

occupied volume of the CST atlas class and the corresponding CST cluster in Figures 6.2 and

6.3).

With the atlas-guided CATSER clustering, an elevated IRQ of the spatial agreement was

observed for certain bundles (e.g., UNC). This increase is primarily associated with the inclu-

sion of additional tracts during clustering that belong only partly to the bundle. In Figure 6.8,
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one example is presented that shows the uncinate fasciculus (UNC) of the left hemisphere

for two datasets and the volume of the corresponding atlas class (in semi-transparent green).

While the tracts follow the anticipated trajectory of the fibers in the clustered UNC in the left

image, the bundle in the right image contains additional fibers that leave the bundle (arrows).

These incorrect tracts share major parts of the atlas-class volume and also have a high partial

correspondence to other tracts in the bundle.

In order to demonstrate the consistency of the atlas-guided CATSER clustering, Figure 6.9

displays the temporal part of the superior longitudinal fasciculus (SLFt) for different datasets.

The clusters are superimposed on the volume of the corresponding atlas class. Even though

clusters vary between subjects, the appearance, the shape and size of the clusters are very

similar and close to the volume-based atlas representation. Due to the fact that various sub-

parts of the SLFt leave the atlas class, the spatial agreement is decreased and ranges between

0.60 and 0.82 for the shown bundles.

During the analysis of the clustered datasets, some tracking errors were observed. In

Figure 6.3, for example, various tracts were traced by the tracking algorithm that connect

the prefrontal lobe and the corpus callosum (green bundle in the middle image of the top

row, marked with an arrow). Another tracking error is visible in Figure 6.9, in which the SLFt

bundle of various datasets connect to the external capsule in the sub-insular white matter

(see regions of the bundles marked with an arrow).

6.5.2 Outlier elimination

Results of the outlier elimination are presented in Figure 6.10. The fiber tracking dataset in

the upper left corner was manually segmented and the 16 fiber bundles that are also defined in

the atlas were extracted.The data was not spatially transformed and resided in its native space.

For visualization of the data, a tableau view shows the data in three different orientations: top

left image = anterior-posterior view, bottom left image = left-right view, top right image =

superior-inferior view. Each of the segmented fiber bundles is shown in a different color. For

all tracts of the dataset the centroids were computed and used as gold standard. Centroids are

shown in the top right corner, with the same tableau view and identical coloring as the tracts.

To investigate the clustering with CATSER, the centroids were clustered with different

outlier elimination strategies (low, moderate, high outlier elimination) and varying levels of

Table 6.3: Average spatial agreement and standard deviation for all clustering techniques and similarity

measures.

Similarity measure Clustering technique

atlas-guided CATSER CATSER HAC

CD 0.66± 0.21 0.54± 0.22 0.60± 0.23

HD 0.70± 0.20 0.63± 0.22 0.65± 0.21

MPD 0.65± 0.20 0.60± 0.22 0.66± 0.20
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CD

Atlas-guided CATSER CATSER HAC

HD

MPD

Figure 6.7: Inferior fronto-occipital fasciculus (IFO) of one dataset clustered with all three methods

(atlas-guided CATSER, CATSER, HAC) and all similarity measures (CD, HD, MPD). Bundles are

shown in the atlas space and are superimposed on the corresponding class of the atlas (in semi-

transparent blue). The spatial agreement for bundles clustered with CD is (from left to right): 0.58;

0.62; 0.69, for bundles clustered with HD: 0.75; 0.67; 0.73 and for bundles clustered with MPD: 0.65;

0.69; 0.69.

noise (D1=0%, D2=33%, D3=66%, D4=99%). The results for this tract-centroid clustering

are shown below the gold standard datasets (tracts, centroid). Again, the tableau view is used

to visualize the results of the clustering in three distinct orientations. Resulting clusters are

shown in different colors, while the colors of the clusters were selected in correspondence to

the coloring of the gold standard dataset (top right tableau in Figure 6.10). Centroids that

were identified as outlier during the clustering are displayed in grey.

First of all, the transformation from the segmented tracts (top left) to centroids (top right)

already resulted in some isolated centroids that are visible in the tableau of the (segmented)

fiber tract centroids (the gold standard).

By inspecting the clustered tableaus in Figure 6.10, it is evident that the quality of the

clustering depends on both the level of noise added to the tract centroids (see section 6.4.2)

and the outlier elimination strategy. Overall, the framework was able to handle all scenarios

quite well. However, no outlier elimination strategy was able to achieve an adequate clustering

in all four noise scenarios (D1 . . .D4). If noise is barely present (D1, D2), minimal outlier

elimination is sufficient to obtain a good discrimination between the clusters, while a more

aggressive outlier elimination strategy is indispensable if the data contains too much noise

(D3, D4). If more aggressive outlier elimination strategies are used for datasets with little

noise (e.g., D1, D2), the outlier elimination rate might be too high and small clusters might be

labeled as outliers. In the opposite case, when plenty of noise is present (e.g., D3, D4) and

minimal outlier elimination is used, clustering will probably fail and lead to erroneous clusters.
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Figure 6.8: Left uncinate fasciculus (UNC) of two datasets clustered with atlas-guided CATSER

clustering. Both bundles reside in the atlas space and are superimposed on the corresponding class of

the atlas (in semi-transparent green). While the bundle on the left follow the anticipated trajectory of

the UNC, the bundle on the right side contains additional tracts that leave the bundle and follow other

paths. The spatial agreement for the left bundle is s= 0.93 and for the right bundle s= 0.58.

In general, the number of points that were identified as outliers increases with intensified

outlier elimination. Hence, it seems that a moderate outlier elimination strategy is a good

compromise.

Nevertheless, an increase in noise always has harmful effects on clustering and will result in

degraded cluster quality. The clustering methods will have difficulties to identify the correct

clusters and chaining effects will lead to the merging of distinct clusters. Themore noise being

present the more aggressive the outlier elimination should be in order to achieve a satisfying

clustering with good delineation of fiber bundles.

6.5.3 Performance analysis

Performance analysis of the clustering framework

The performance analysis of the clustering framework was conducted as described in sec-

tion 6.4.3. Results of the analysis for the individual parts of the clustering framework and

the analyzed similarity measures (CD, HD, MPD) are presented in Figure 6.11. The overall

computation time in dependency of the number of employed CPU cores is shown with stack

plots on the left side, along with the corresponding speedup on the right side.

Overall, the clustering of the data using the MPD similarity measure (Figure 6.11e) had

the lowest computation time followed by the clustering with CD (Figure 6.11a) and HD

(Figure 6.11c). Due to the separation of the similarity measures from the clustering, precom-

putation of the similarity measures (part 1, step 2 in Figure 3.2) and assignment of remaining

tracts to the prototype clusters (part 3, step 8 in Figure 3.2) were the most time consuming

parts that accounted for major portions of the computation time. Using CD and HD, the

actual clustering process that is responsible for the generation of prototype clusters from the
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Figure 6.9: Temporal part of the left superior longitudinal fasciculus (SLFt) for 15 datasets. The datasets

reside in the atlas space and were clustered with the atlas-guided CATSER clustering. From left to

right, the spatial agreement for the bundles in the top row is: 0.62; 0.65; 0.67; 0.61; 0.68, in the middle

row: 0.67; 0.60; 0.82; 0.64; 0.60 and in the bottom row: 0.64; 0.61; 0.74; 0.65; 0.69. In certain images,

tracking errors are present that connect the SLFt to the external capsule (see arrows).

sample (part 2, steps 3–7 in Figure 3.2) accounted only for a fraction of the total computation

time. For MPD, however, the computation time was governed by the CATSER clustering itself

(part 2) due to the low algorithmic complexity of MPD.

Increasing the number of active cores led to a significant reduction of the computation time

for all similarity measures. The speedup in Figure 6.11b for part 1 and part 2 using CD is fairly

linear for an increasing number of CPU cores. For HD, the speedup in Figure 6.11d scales

with number of cores, while it scales only moderately for MPD. This implies that the HD

could be parallelized very efficiently, whereas the additional CPU cores are not as efficiently

used with CD and MPD. For the CATSER clustering (part 2), the increase of partitions that

are clustered in parallel resulted in super linear speedup1 (SP > P) for all three similarity

measures (Figures 6.11b, 6.11d and 6.11f).

While the performance analysis was only performed for unsupervised clustering, an in-

crease in computation time of approximately 10% was observed for atlas-guided CATSER

clustering.

Performance analysis for the computation of the Hausdorff distance

The performance analysis of the Hausdorff distance was conducted with three different GPU

systems and one CPU system (see section 6.4.3). Results for the computation time and the

speedup using the 32 core CPU system and algorithms 1 and 2 are shown in Figure 6.12. As

1As a matter of fact, the super linearity of the speedup is the result of two contributing factors: the increase in

the number of processing cores and the increase of parallely clustered partitions.
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Figure 6.10: Results of the experiments that were conducted to demonstrate the effects of outlier

elimination. One dataset was segmented into a set of bundles that are shown in distinct colors in the

top left corner. Using the segmented fiber tracts, centroids of tracts were computed and used as a gold

standard. Each point in the gold standard image (top right) represents the centroid of one fiber tract.

The groups of centroids (gold standard) are show in the same color as their corresponding fiber bundles.

All data is presented in a tableau view that shows the data in three different orientations: top left image

= anterior-posterior view, bottom left image = left-right view, top right image = superior-inferior view.

The centroids of the gold standard dataset were clustered using the tract centroid distance as similarity

measure. Varying levels of artificial noise (0%, 33%, 66% and 99% additional noise) were used and

different outlier elimination strategies were tested. The results for the clustering are displayed in the

4× 3 table (D1–D4).
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Figure 6.11: Performance analysis of the cluster analysis for the similarity measures CD (top row), HD

(middle row) and MPD (bottom row). The overall computation time is shown on the left side and the

achieved speedup on the right side. For the analysis, the clustering process was separated into three

distinct parts and analyzed separately (see section 6.4.3). In all plots, each part is highlighted in distinct

colors, whereas blue denotes the computation of the distance matrix (part 1: ”DM computation”), green

the clustering (part 2: ”CATSER”) and red the labeling of remaining tracts (part 3: ”Assign tracts”). For

CD and HD, part 1 and part 3 were the most time consuming stages. By utilizing multiple CPUs a high

speedup was achieved and computation time was reduced significantly. While the speedup is nearly

optimal for HD, it is reduced for CD and MPD. For MPD, the computation time is already low due to

the reduced algorithmic complexity of the MPD. Compared to the CD and HD, it was therefore not

governed by the computation of the similarities (parts 1 and 3) but by the clustering itself (part 2).
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Figure 6.12: Computation times and speedup for the Hausdorff distance (algorithm 1 and 2), computed

with the 32 core CPU system.
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Figure 6.13: Computation times for the Hausdorff distance with different GPU systems and the 32 core

CPU system.

already observed in the previous section, the clustering framework achieves good speedups

for both algorithms with the CPU systems, even if many processing cores are employed (cmp.

Figure 6.12). However, severe differences were observed in the computation times between

the two algorithms. In comparison to algorithm 1, algorithm 2 had a dramatically lower

processing time and a slightly higher speedup.

The processing times for 1 million similarity computations with the GPU systems and the

CPU system (using all 32 cores, CPU system 2) are presented in Figure 6.13. Even though

algorithm 1 was solely implemented for GPUs, the processing times with all GPU systems

were significantly reduced compared to the CPU system. Algorithm 1 on the GPU was not

only faster than algorithm 1 on the CPU but also faster than algorithm 2 on the CPU. Even the

weakest GPU system (Quadro FX 1800, GPU system 1) outperformed the 32 core CPU system.

Despite the fact that the GPU system C2050 has almost twice the number of CPU cores

compared to the C1060, differences between both systems were quite small. By comparing

computation times between the fastest GPU (C2050, GPU system 3) and the fastest CPU (32

cores, CPU system 2), a speed up of ≈ 40 was observed for algorithm 1 and a speed up of

≈ 3.5 for algorithm 2.
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Chapter 7

Quantitative analysis of fiber bundles

What we observe is not nature itself, but
nature exposed to our method of
questioning.

—Werner Heisenberg (1901–1976)

Quantitative fiber bundle-driven techniques are promising methods to investigate altered

diffusion properties in individual fiber bundles for group-based imaging studies. In this

chapter, a new approach is presented that uses fiber bundles to enhance quantitative analyses.

Previously presented techniques are briefly discussed before concepts to improve the analysis

are introduced. To investigate the peculiarities of the proposed method, various experiments

were performed.

7.1 Introduction

Alterations in brain diffusivity are often indications for changes in the structural organization

of the brain. In order to study subtle changes of the white matter microstructure between

groups of subjects, a quantitative statistical analysis is frequently performed. While estab-

lished methods such as voxel-based morphometry – VBM (Ashburner and Friston, 2000) or

tract-based spatial statistics – TBSS (Smith et al., 2006) are predominately used to investigate

diffusion in the whole brain or the white matter skeleton, fiber bundle-driven techniques
(FDTs) facilitate quantitative analysis of diffusion properties in individual fiber bundles (see

section 2.5). The earliest concepts to study characteristics of selected white matter pathways

with fiber tracts were presented by Fillard et al. (2003) and later extended by various re-

searchers (e.g., Gong et al. (2005); O’Donnell et al. (2007); Hua et al. (2008); Yeatman et al.

(2012)). All of these tractography-based approaches investigate diffusion properties along

the course of specific bundles of interests (BOIs). Often, a mean tract projection is employed

in which quantitative values along the tracts of the BOI (e.g., FA, ADC) are projected onto

corresponding points of the BOI’s mean tract1. Even though this reduces data dimensionality

1Amean tract is either a constructed tract that follows the average course of the bundle or a tract of the bundle

with the highest average similarity to all other tracts.
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from three dimensions to one dimension and results in amore convenient analysis of diffusion

data, these approaches have various limitations.

Due to the analysis of data along the course of bundles and the reduction of data dimen-

sionality, these methods are restricted to analyze BOIs with a simple tubular structure. If

BOIs are not tubular but fan out, split up or even contain misguided tracts with incorrect

trajectories, the statistical analysis of diffusion properties along the course of the bundles will

be compromised. If the mean tract approach is employed, significant differences in distinct

regions of the bundle perpendicular to the mean tract may remain undetected. In addition,

bundle-specific analysis with FDTs is obviously limited to bundles that can be traced reliably

and separated correctly from other bundles (Smith et al., 2006).

Another important but often neglected aspect are adverse, normalization-induced inter-

polation effects at the boundaries of grey and white matter structures. As demonstrated by

Chao et al. (2009), interpolation not only affects grey and white matter boundaries but also

boundaries between distinct white matter structures. If contributions of different bundles

are not separated, statistically incorrect results may arise. As these effects are only present

if spatial normalization is used to align and superimpose different datasets, a solution to

avoid normalization-induced interpolation is to perform the quantitative analysis in native

space. With this latter approach, however, spatial correspondence between fiber bundles of

different datasets has to be established with alternative techniques. To perform valid statistical

analyses with FDTs, these problems have to be taken into account, which often requires

manual, time-consuming interventions of an operator.

In this chapter, a new method to improve the quantitative fiber bundle-driven analysis
of cerebral diffusion weighted MRI data is presented. Instead of studying diffusion prop-

erties solely along the course of specific white matter bundles, a voxel-based approach is

employed that analyzes diffusion properties in entire fiber bundles. To this end, the clustering

framework (see Part II) is used to automatically partition fiber tracts into bundles that corre-

spond to known anatomic white matter structures. To avoid adverse interpolation effects at

the boundaries of tissue structures, quantitative values are projected onto the tracts before

spatial normalization. The analysis is then performed independently for each bundle while

suppressing contributions of voxels that do not belong to the selected white matter structures.

7.2 Quantitative analysis of fiber bundles

7.2.1 General workflow

In the following sections, a new FDT for analyzing diffusion MRI data is outlined and the

individual processing steps are described. Compared to other FDTs, the analysis is not per-

formed along the trajectory of the fiber bundle but uses the voxels of the entire bundle. The

method is therefore not restricted to tubular structures and can be applied to study complex

fiber pathways (e.g., bundles that fan out or split up).

The presented technique also avoids normalization-induced interpolation between distinct

anatomical structures that may occur as a result of the spatial normalization of different

datasets (Chao et al., 2009). In Figure 7.1, normalization-induced interpolation is illustrated
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with two different white matter structures. Applying spatial normalization may result in an

overlap of bundles and interpolation of quantitative values in overlapping areas.

To avoid this and additionally suppress contributions of other anatomical structures, fiber

tracts that follow the course of white matter structures are instrumented. As fiber tracts

are defined by real-valued points in 3D space (see section 2.4), the spatial normalization of

these points results in no interpolation but a coordinate transformation that changes the

course of the tracts. By utilizing this tract-specific property, interpolation can be avoided

if quantitative values are projected onto the tract points prior to the normalization. As the

spatial transformation changes only the spatial location of tract points, quantitative values

that are attached to these points are preserved. By organizing fiber tracts into bundles that

correspond to anatomically known white matter structures and rasterizing each bundle

separately, corruption of quantitative values by other bundles is prevented. This concept

is illustrated in Figure 7.2 by using the previously employed white matter structures (see

Figure 7.1). Following separate rasterization and gridding of bundles, a voxel-wise quantitative

analysis is performed individually for each fiber bundle. Due to the individual extraction of

fiber bundles for each dataset, reliability maps can be computed for each fiber bundle which

allows exclusion of regions to which only few datasets contribute.

The entire processingworkflow for the quantitative analysis ofmultiple datasets is illustrated

in Figure 7.3. The seven workflow steps are briefly divided into four major parts that are

outlined in the following sections.The projection of quantitative values onto the tracts (step 1)

is described in section 7.2.2 before section 7.2.3 covers spatial normalization and grouping of

tracts (steps 2–4). The gridding of attached values (step 5) is outlined in section 7.2.4 and the

final voxel-wise statistical analysis of individual fiber bundles (steps 6 and 7) in section 7.2.5.

Conventional processing

Input data

original space common space

Normalized data

Spatial
normalization

Interpolated quantiative values
(bundle  & bundle )

Quantiative values 
(bundle )

Quantiative values
(bundle )

Figure 7.1: Illustration of the normalization-induced interpolation of conventional methods for quan-

titative analysis. The red and green regions correspond to quantitative values of two distinct white

matter structures on a regular grid. Due to spatial normalization of the individual datasets and the

resulting dislocation of the structures, interpolation between white matter bundles may occur.
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Fiber bundle-based processing

Input data and
�ber tracts

original space original space common space

Fiber tracts
(with quantitative values)

Normalized �ber tracts
(with quantitative values)

. Spatial
normalization

. Separation of
�ber bundles

. Gridding
of quantitative

values

. Gridding
of quantitative

values

. Projection
of quantiative

values

common space
Gridded values

common space
Extracted bundles

Quantiative values 
(bundle )

Quantiative values
(bundle )

Plain �ber tracts

Figure 7.2: Illustration of fiber bundle-based processing that avoids normalization-induced interpo-

lation. Again, red and green regions correspond to quantitative values of two distinct white matter

structures. Fiber tracts that traverse through these regions are shown as lines. Yellow lines denote tracts

without quantitative values, while red and green lines correspond to tracts with attached, spatially

corresponding quantitative values. In order to avoid interpolation of quantitative values, the white

matter structures are analyzed independently. For this purpose, quantitative values are projected onto

the fiber tracts prior to the spatial normalization (step 1, tracts in red and green). Spatial normalization

results in a coordinate transformation (step 2), which preserves the quantitative values that are attached

to the tracts. After spatial normalization, fiber tracts are partitioned into bundles that correspond to

anatomical structures (step 3). By processing fiber bundles independently, contributions of different

bundles are masked out. For the quantitative analysis, values that are still attached to the fiber tracts

are finally gridded to a regular grid in common space (step 4).
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Figure 7.3: Workflow of the quantitative fiber bundle-driven analysis. After data acquisition and

preprocessing, individual quantitative values are projected onto the tracts of each dataset (step 1).

Using the FA maps of all datasets, a spatial normalization is performed (step 2) and fiber tracts are

transferred to the normalized space (step 3). For each dataset, fiber tracts are grouped into bundles

(step 4). Tracts are rasterized to obtain tract density and quantitative maps for all fiber bundles (step

5). Tract density maps are then used to create reliability maps that determine how reliably a voxel can

be associated with the fiber bundle (step 6). Using reliability and quantitative maps, statistical analyses

are performed to detect significant differences in each BOI (step 7).
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7.2.2 Projection of quantitative values

Projection of quantitative values onto fiber tracts prior to the spatial normalization is an

important step to avoid normalization-induced interpolation.

For all tract points that define the trajectories of the tracts in 3D space, quantitative values

are determined and attached to these tract points. To compute the quantitative value τ(pj)

that is projected onto an arbitrary tract point pj, trilinear interpolation is used which takes

into account the quantitative values of all voxels {v1, . . . , v8} that surround pj (see Figure 7.4).

If τ(vi) denotes the quantitative value of voxel vi ∈ {v1, . . . , v8}, the quantitative value τ(pj)

for pj is given by:

τ(pj) =

8∑
i=1

τ(vi)× ki(vi,pj), (7.1)

whilst k(vi,pj) denotes the weighted contribution of voxel vi.

In order to determine the weighting value ki(vi,pj) for a tract point pj and a voxel vi,

voxels are interpreted as point sources that are located at the vertices of a unit cube (Figure 7.4).

From this, it follows that the x,y and z coordinates of all voxels {v1, . . . , v8} along the three

axes are either 0 or 1. Hence, the voxels have the following coordinates:

v

v

v

v

v

v

v

pj

v

Figure 7.4: Quantitative values are at-

tached to the fiber tracts with trilinear in-

terpolation. For each tract point pj, the

nearest neighboring voxels {v1, . . . , v8}

are determined and their quantitative

values are used to approximate the quan-

titative value at the intermediate loca-

tion of pj. Hereby, surrounding voxels

are interpreted as point sources that are

located at the vertices of a unit cube.

v1 = (0, 0, 0), v2 = (0, 0, 1), v3 = (0, 1, 0),

v4 = (0, 1, 1), v5 = (1, 0, 0), v6 = (1, 0, 1),

v7 = (1, 1, 0), v8 = (1, 1, 1).

(7.2)

It is further assumed that tract point pj = (px
j ,p

y
j ,p

z
j )

is located inside the cube and its coordinates px
j ,p

y
j ,p

z
j

are bounded by [0, 1] with 0 6 px
j 6 1, 0 6 py

j 6 1

and 0 6 pz
j 6 1. Then, ki(vi,pj) is the product of pj’s

projections onto each axis x, y and z. If vi is a voxel

with coordinates vxi , v
y
i , v

z
i , the value ki(vi,pj) is given

by:

ki(vi,pj) = δx(v
x
i ,p

x
j )× δy(v

y
i ,p

y
j )× δz(v

z
i ,p

z
j ),

(7.3)

where δx(v
x
i ,p

x
j ) denotes the contribution of pj along

the x axis in dependency of vxi :

δx(v
x
i ,p

x
j ) =

{
px
j if vxi = 1,

1− px
j if vxi = 0.

(7.4)

For the remaining axes, the contributions δy(v
y
i ,p

y
j )

and δz(v
z
i ,p

z
j ) are computed analogously.
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7.2 Quantitative analysis of fiber bundles

7.2.3 Spatial normalization and separation of fiber bundles

In order to perform the quantitative analysis, a spatial normalization is performed that aligns

and superimposes corresponding anatomical structures of different datasets. During this

normalization process, the different datasets are distorted and transferred to a common

template space (see e.g., section 6.1). As the normalization of the tracts results in a coordinate

transformation of the tract points, values that are attached to the points are preserved.

To suppress contributions of other structures during the statistical analysis, the whitematter

structures are analyzed individually by using fiber tracts. As fiber tracts have no apparent

structural organization and are loosely distributed throughout the brain, it is uncertain to

which underlying white matter structure particular tracts belong to. It is therefore necessary

to group tracts into fiber bundles that represent the underlying white matter anatomy2.

To delineate the bundles, manual methods are often used that are highly time consuming,

prone to errors and require an operator with profound anatomical knowledge (see section 2.5).

However, as datasets are spatially normalized and transferred to common template space, au-

tomatic techniques such as the previously presented atlas-based clustering are highly suitable

to group tracts automatically into fiber bundles (see chapter 3).

7.2.4 Gridding of quantitative values

To perform the voxel-wise analysis, tracts are rasterized and quantitative values that are still

attached to the tracts are transferred to a regular grid with a user-defined target resolution.

To separate distributions from distinct bundles and avoid the interpolation of quantitative

values that belong to different white matter structures, gridding is performed independently

for each fiber bundle. All tracts that belong to the bundle are rasterized and quantitative

values are gridded to the voxels they occupy. If multiple tracts of a bundle contribute to the

quantitative value of a single voxel, contributions of the different tracts are averaged.

With the rasterization of a tract p, quantitative values are gridded to voxels that are traversed

by p. If a single fiber tract p traverses through an arbitrary voxel vi, the quantitative value

τ(vi) in voxel vi has to be determined. To compute τ(vi), two cases are considered that

depend on the number of tract points ρ(p, vi) that occupy voxel vi:

τ(vi) =

τ(pj) if ρ(p, vi) = 1,

τ(pj)×
∥vi−pj+1∥
∥pj−pj+1∥ + τ(pj+1)×

∥vi−pj∥
∥pj−pj+1∥ if ρ(p, vi) = 0,

(7.5)

with pj,pj+1 ∈ p. In the first case, a single tract point pj is located in voxel vi. Then, the

quantitative value τ(vi) corresponds to the quantitative value τ(pj) that is attached to pj.

In the second case, the number of tract points ρ(vi) that occupy voxel vi is zero. Hence,

two successive tract points pj and pj+1 are located outside of the voxel and span a line that

traverses vi. Linear interpolation is then used to approximate the quantitative value τ(vi) in

voxel vi between pj and pj+1. If a situation arises in which multiple tract points are located in

2If fiber tracts are not partitioned into bundles and the entire tractography dataset is processed, interpolation

of quantitative values will occur later during gridding.
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pj

pj+

pj+
vi vi+ vi+

Figure 7.5: After spatial normalization and separation of fiber bundles, quantitative values that are

attached to the tract points are gridded to a regular grid in order to separate contributions of distinct

whitematter structures. For the computation of the quantitative values, different cases are distinguished

that depend on the number of tract points that are located inside a single voxel. If exactly one tract point

is located inside the voxel, the quantitative value inside the voxel corresponds to the quantitative value

of the tract point (e.g., tract point pj in voxel vi). If no tract point is located inside the voxel, but two

successive tract points span a line that traverses the voxel, linear interpolation is used to approximate

the quantitative value at the intermediate voxel position (e.g., tract points pj, pj+1 and voxel vi+1). If

a tract contributes multiple times to the quantitative value of a voxel, values are computed separately

before they are finally averaged (e.g., tract points pj+1, pj+2 and voxel vi+2).

one voxel or a tract travels multiple times through a voxel, quantitative values are computed

separately before they are finally averaged. An example in Figure 7.5 illustrates these cases.

To determine the quantitative value τ(vi) in voxel vi not only for individual tracts, but for

an entire fiber bundle, allN tracts of the bundle that traverse vi are taken into account. Then,

the quantitative value τ(vi) for vi is the average of all tract-specific quantitative values τj(vi)

in vi with j = 1, . . . ,N:

τ(vi) =
1

N

N∑
j=1

τj(vi). (7.6)

7.2.5 Voxel-wise statistical analysis of individual fiber bundles

After spatial normalization, extraction of fiber bundles and gridding of quantitative values,

statistical analysis is performed in bundles of interest (BOIs) to detect significant differences
between groups of subjects. It is assumed that the extracted bundles of the datasets have been

matched inter-individually to ensure that only anatomically corresponding bundles are used

for the statistical analysis (see section 6.3). For each BOI, this results in a set of matched

bundles, while each bundle belongs to a different dataset.

During the statistical analysis of a BOI, all voxels that belong to the BOI are analyzed.

However, the matched bundles of the different datasets are not identical but differ in shape

and extent. Voxels that are occupied in bundles of several datasets, may not be occupied

in bundles of other datasets. As a result, the number of datasets that contribute to a voxel

can vary. As size and extent of BOIs are known from the earlier bundling of fiber tracts (see

section 7.2.3), contributions from other anatomical structures that do not belong to the BOI
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Figure 7.6: Number of datasets that contribute to the statistical analysis. For a central slice of the left

superior longitudinal fasciculus (SLFt), the number of datasets that contribute to the group-based

analysis is shown and encoded with pseudo colors. In the middle, the entire slice is displayed for both

groups, each consisting of overall 46 datasets. On the left and the right, a smaller fragment provides a

detailed view about the number of datasets per group that contribute to the independent statistical

analysis in each voxel.

are suppressed.This benefits the statistical voxel-wise analysis of BOIs, as only those regions of

a bundle from a dataset are considered that actually belong to the bundle. Figure 7.6 illustrates

an example with different numbers of datasets that contribute to the statistical analysis of a

selected bundle.

The partitioning of tracts into bundles and the subsequentmatching enable the computation

of probability maps that provide information about the number of datasets that contribute to

each voxel of the BOIs (see section 6.2). With these reliability maps, regions of the BOI can

be excluded from the analysis if too few datasets contribute to the region.

The statistical analysis of a BOI is finally performed for each voxel independently. On the

basis of the quantitative values in each group, appropriate statistical tests (e.g., Student’s t-test,
permutation test (Nicholson, 2001)) are performed to determine statistical significance be-

tween groups. During the analysis of each BOI one test per voxel is performed, which requires

adequate correction procedures to control statistical errors in such a multiple hypothesis

testing scenario. As pointed out by Abdi (2007), the Bonferroni or Šidák correction are overly

conservative for brain imaging data. Instead, the false discovery rate (FDR) as introduced by

Benjamini and Hochberg (1995) represents a more appropriate approach to deal with multiple

hypothesis testing.

7.3 Experiments

Various experiments were conducted to study the performance of the presented method and

to investigate the influence of certain parameters on the analysis. For the experiments, the
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Table 7.1: Parameters that were used to investigate the influence of the number of tracts, the distance

between tract points and the gridding resolution on projecting and gridding of quantitative values.

Resolution in mm3 Number of tracts Distance between

tract points in mm

0.3× 0.3× 0.3, 0.4× 0.4× 0.4,

0.5× 0.5× 0.5, 0.6× 0.6× 0.6,

0.7× 0.7× 0.7, 0.8× 0.8× 0.8,

0.9× 0.9× 0.9, 1.0× 1.0× 1.0,

1.1× 1.1× 1.1, 1.25× 1.25× 1.25,

1.0× 1.0× 2.0, 1.5× 1.5× 1.5,

1.25× 1.25× 2.5, 1.6× 1.6× 1.6,

1.75× 1.75× 1.75, 2.0× 2.0× 2.0,

2.25× 2.25× 2.25, 2.5× 2.5× 2.5,

3.0× 3.0× 3.0, 3.5× 3.5× 3.5,

4.0× 4.0× 4.0, 4.5× 4.5× 4.5,

5.0× 5.0× 5.0

300 000, 280 000,

260 000, 240 000,

220 000, 200 000,

180 000, 160 000,

140 000, 120 000,

100 000, 80 000,

60 000, 40 000, 20 000,

10 000, 8000, 7000,

6000, 5000, 4000,

3000, 2000, 1000, 900,

800, 700, 600, 500

0.3, 0.4, 0.6, 0.8, 1.0,

1.2, 1.4, 1.6, 1.8, 2.0,

2.2, 2.4, 2.6, 2.8, 3.0,

3.2, 3.4, 3.6, 3.8, 4.0,

4.2, 4.4, 4.6, 4.8, 5.0,

5.2, 5.4, 5.6, 5.8, 6.0,

6.2, 6.4, 6.6, 6.8, 7, 8,

9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27,

28, 29, 30

same data as in section 6.1 was used. As certain processing steps differ depending on the

experiment, each section summarizes relevant processing steps.

7.3.1 Dependency of the resolution, number of tracts and distances between

tract points

Projection and gridding of quantitative values result in errors that are affected by the number

of tracts, the distance between tract points and the gridding resolution. To prevent mis-

representation of quantitative values due to inadequate parameters, the influence of these

parameters was investigated by conducting various experiments and comparing the results to

previously generated ground truth datasets.

The latter datasets were created from a tractography dataset with 300 000 tracts and an

average tract point distance of approximately 1.05±0.17mm (see section 6.1). Tracts were

resampled to consist of equally distributed tract points with an average tract point distance

of 0.3mm. The dataset was not spatially normalized and resided in its native space. The

fractional anisotropy (FA) was projected onto the tracts and attached values were normalized

to a maximum value of 1. To investigate the influence of the parameters at different resolutions,

tracts were rasterized and the attached FA values were gridded to a regular grid. This resulted

in a set of ground truth volumes with different resolutions ranging from 0.3× 0.3× 0.3mm3

to 5× 5× 5mm3 (see Table 7.1, first row).

The dependency between number of tracts and resolution was studied by continuously

reducing the number of tracts from 300 000 down to 500 using random sampling (see Ta-

ble 7.1, second row). To investigate the influence of the distance between tract points at various

resolutions, the tract point distance was successively increased from 0.3mm to 30mm (see Ta-
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7.3 Experiments

ble 7.1, third row). As this resampling of tracts resulted in the computation of new tract points,

the FA values were projected onto the tract points after resampling. Hence, normalization

of FA values was also performed after resampling. For both experiments, i.e., tract number

reduction and tract resampling, tracts were rasterized and FA values that were attached to

the tract points were gridded with the same resolutions as the corresponding ground truth

volumes (see Table 7.1, first row). If multiple tracts traversed identical voxels their FA values

were averaged (see the gridding procedure in section 7.2.4).

To investigate the effects of different number of tracts and varying tract point distances

at various levels of resolution, the obtained FA maps were compared to the ground truth

volumes by computing the average difference of quantitative values per voxel. IfG is a ground

truth dataset andD one experimental dataset, both having the same resolution, the average

voxel difference ∆(G,D) is given by:

∆(G,D) =
1

N

N∑
i=1

∆G,D(vi), (7.7)

where N denotes the number of occupied voxels and ∆G,D(vi) the difference between G

andD in voxel vi that is occupied by tracts ofG orD. As the quantitative values have been

normalized and are bounded by [0, 1], the maximum possible difference ∆G,D(vi) in a voxel

is 1. ∆(G,D) therefore also ranges from 0 to 1.

The difference ∆G,D(vi) is the difference of quantitative values betweenG andD in voxel

vi. Thus, one has to take into account whether voxel vi is occupied by tracts from both

datasetsG andD or only by tracts from the ground truth datasetG. If tracts of both datasets

traverse vi (the tract densities ρG(vi) and ρD(vi) are higher than 0), ∆G,D(vi) corresponds

to the arithmetic difference between the quantitative values τG(vi), τD(vi) of G and D in

vi. However, if only tracts of G traverse vi but no tracts of D, the difference between their

respective quantitative values cannot be assessed in vi. This case can be considered the worst

case scenario, in which the error is maximal. Consequently, the difference ∆G,D(vi) is set to

the maximum value of 1. Mathematically, ∆G,D(vi) in voxel vi is given by:

∆G,D(vi) =

{
abs (τG(vi) − τD(vi)) if ρG(vi) > 0∧ ρD(vi) > 0,

1 if ρG(vi) = 0⊕ ρD(vi) = 0.
(7.8)

7.3.2 Investigation of normalization-induced interpolation

The spatial normalization results in interpolation of quantitative values at tissue boundaries,

which can influence the analyses. To investigate the prospects of the proposed technique to

reduce this normalization-induced interpolation, the following experiments were conducted.

A first experiment was performed to confirm that individual fiber bundle-based processing

leads to correct separation of quantitative values from fiber bundles. For this purpose, a new

dataset was generated that consisted only of two partially overlapping fiber bundles – the

inferior fronto-occipital fasciculus (IFO) and the uncinate fasciculus (UNC) (see Figure 7.7).

Both bundles were extracted from a previously acquired, spatially normalized dataset that

was clustered with the atlas-guided CATSER clustering and the Hausdorff distance (HD).
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Overlap Overlap

IFO IFO
UNC UNC

Figure 7.7: Tracts of the inferior fronto-occipital fasciculus – IFO and uncinate fasciculus – UNC (left

image). The gridded voxels (1× 1× 1mm3 resolution) that are occupied by the bundles are shown

in the right image. In both images, the IFO is visualized in blue, the UNC in green and overlapping

regions of both bundles are emphasized in red.

Acquisition, normalization and clustering parameters are specified in sections 6.1 and 6.4.1.

Conventional gridding of the entire dataset and separate bundle-wise gridding of the in-

dividual bundles was performed to compare interpolation effects between both methods.

With conventional gridding, the values that are attached to dataset are gridded for the entire

dataset and contributions of different bundles are not handled individually. With bundle-wise

gridding, values attached to the bundles of the dataset are gridded separately, respecting the

previous division of tracts into different fiber bundles.

To investigate the interpolation in a controlled way, known values were attached to the

tracts of both bundles. For the IFO a value of 1 and for the UNC a value of 2 was attached. Next,

the newly generated dataset was rasterized and attached values were gridded to a 3D volume

with conventional and bundle-based gridding. On the basis of the resulting 3D volumes, the

distributions of gridded values were determined. As the gridding resolution influences the

extent of the bundle overlap and thus influences the results, the experiment was performed for

two different resolutions.While the first resolution corresponds to the resolution of the dataset

in its native space (1.25× 1.25× 2.5mm3), the second resolution was chosen to correspond

to the resolution of the data in the MNI152 space of the atlas, in which the data resided after

spatial normalization (1× 1× 1mm3 isotropic resolution).

In a second experiment, normalization-induced differences between conventional and

fiber bundle-based gridding were investigated for the previously acquired 46 real datasets

(see section 6.1). FA values were projected onto the fiber tracts of the 46 datasets prior to

spatial normalization (FApre). Then, fiber tracts and quantitative FA maps were transferred

to the common template space and FA values were again projected onto the fiber tracts

(FApost). By performing atlas-guided clustering with CATSER and the CD similarity measure,

the grouping of fiber tracts into bundles was achieved. Relevant parameters for fiber track-

ing, normalization and clustering are specified in sections 6.1 and 6.4.1. The fiber tracking

datasets were rasterized to a grid with a resolution of 1× 1× 1mm3 and attached FA values

(FApre and FApost) were gridded with conventional and fiber bundle-based gridding. With
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conventional gridding, one volume for FApre and one volume for FApost was obtained per

dataset. With bundle-based gridding, two volumes per fiber bundle were obtained for each

dataset (again, one volume for FApre and one volume for FApost). In overlapping regions of

bundles, FA differences between conventional and bundle-based gridding were computed to

investigate discrepancies between both gridding methods. Differences were thereby assessed

independently for FApre and FApost. The computed voxel value differences from all datasets

were finally used to investigate interpolation-related differences between FApre and FApost.

7.4 Results

7.4.1 Dependency of the resolution, number of tracts and distances between

tract points

As described in section 7.3.1, the number of fiber tracts was gradually reduced from 300 000

to 500. Resulting tractography datasets were rasterized to various resolutions and average

differences per voxel between gridded quantitative values of the experimental and the ground

truth datasets were computed (see Eqs. 7.7 and 7.8). The results are presented in Figure 7.8.

Variation of the number of tracts are shown on the y-axis and different resolutions on the

x-axis. Resolutions are sorted according to their corresponding voxel volume from small to

large voxels. The average differences per voxel are shown with pseudo colors. By inspecting

the computed differences between experimental and ground truth datasets in Figure 7.8, it is

evident that the average voxel differences depend on the number of fiber tracts and resolution.

The observed differences between experimental and ground truth datasets ranged between 0

and 0.99. With decreasing number of tracts, fewer tracts were available in occupied voxels

for the computation of quantitative values. When the number of tracts became too low, this

resulted in voxels with incorrect values or voxels that were not occupied, which in return

produced a higher average error per voxel. Especially in regions that contained few tracts,

the average difference increased. To obtain correct quantitative values with the bundle-based

projection-gridding approach, an adequate number of fiber tracts is necessary. Essentially, the

higher the resolution the more tracts are necessary. At very high resolutions (e.g., 6 0.4mm3

isotropic resolution), a large number of tracts was mandatory while considerably fewer fiber

tracts sufficed for high–moderate resolutions (e.g., > 0.7mm3 isotropic resolution). In order

to chose an adequate number of tracts for this projection-gridding approach one has also

to consider that tracts are later grouped into fiber bundles and that outlier elimination will

most certainly reduce the number of tracts in the final dataset. As both, the grouping and the

outlier elimination, influence the gridded quantitative values, it is advised to use more tracts

than necessary to minimize potential alteration of quantitative values during gridding (e.g.,

10-20% additional tracts).

For the second experiment, the distance between tract points was increased from 0.3mm

to 30mm, which implicitly resulted in a reduction of tract points. Attached quantitative

values were gridded to different resolutions and the average difference of values per voxel

was computed between obtained experimental and ground truth datasets (see Eqs. 7.7 and

7.8). The results are depicted in Figure 7.9. The average tract point distances are shown on the
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Figure 7.8: Average difference per voxel in dependence of resolution and number of tracts. Quantitative

values have been projected onto a high resolution dataset. The number of tracts (y-axis) was gradually

reduced from 300 000 to 500 and remaining tracts were gridded to different resolutions (x-axis). The

average differences of quantitative values between experimental and ground truth datasets in occupied

voxels are shown in pseudo colors.

y-axis and different resolutions on the x-axis. For all resolutions, increased distances between

tract points resulted in elevated differences of quantitative values between experimental

and ground truth datasets. Compared to the previous experiment, the maximum observed

differences were lower and ranged only between 0 and 0.55. While increased tract point

distances altered the course of the fiber tracts, the projection of quantitative values became

less reliable as values were projected onto fewer tract points. If the native resolution was too

high and the tract point distances were too large (e.g., 0.4mm3 isotropic resolution and a tract

point distance of 10mm), various voxels were insufficiently taken into account during the

projection of quantitative values onto the tracts. Due to this inaccurate projection, incorrect

values were gridded. For larger tract point distances (5mm and larger), the average differences

were more susceptible to variations in resolution. Basically, the higher the resolution, the

shorter distances between tract points have to be, to preserve quantitative values correctly. It is

therefore necessary to use sufficiently small tract point distances to preserve quantitative values

for the analysis. In general, it is advised to resample tracts to an average tract point distance

of at least 1mm, except for very high resolutions (e.g., 6 0.4mm3 isotropic resolution) where

the tract point distance should be adequately adjusted to minimize alterations of quantitative

values (see Figure 7.9).

122



7.4 Results

.

.

.

.

.

.

.

.

.

.

.

A
ve

ra
ge

 d
ist

an
ce

 b
et

w
ee

n 
tr

ac
t p

oi
nt

s i
n 

m
m

.
.
.
.
.












.
  


 
.

 
 

.

.
  


 
.

 
 

.

 .
  


 
. 

 
 

. 

Resolution in mm³

.
 


 
.

 
 

.

.
 


 
.

 
 

.

.
 


 
.

 
 

.

.
 


 
.

 
 

.

 .
  


 
. 

 
 

. 

 .
  


 
.

 
 

.

 .
  


 
.

 
 

.
.

 


 
.

 
 

.
 .

  


 
.

 
 

.

.
 


 
.

 
 

.

 .
  


 
. 

 
 

. 

.
 


 
.

 


 
.

 .
  


 
. 

 
 

. 

 .
  


 
. 

 
 

. 
 .

  


 
. 

 
 

. 
 .

  


 
. 

 
 

. 

 .
  


 
. 

 
 

. 

.
 
 

.
 
 

.


.
 
 

.
 
 

.


.
 
 

.
 
 

.


Figure 7.9: Average difference per voxel in dependence of resolution and tract point distance. The

average distance between tract points (y-axis) was gradually increased from 0.3mm to 30mm. Quan-

titative values were projected onto obtained datasets and tracts were gridded to different resolutions

(x-axis).The average differences of quantitative values between experimental and ground truth datasets

in occupied voxels are shown in pseudo colors.

7.4.2 Investigation of normalization-induced interpolation

To confirm that the bundle-based approach facilitates the separation of contributions from

different fiber bundles, a first experiment was conducted to compare conventional and bundle-

based gridding of values (see section 7.3.2). For this purpose a reduced dataset was generated

that consisted only of two overlapping fiber bundles (IFO and UNC). Different quantitative

values were attached to the bundles (IFO = 1, UNC = 2), and the resulting dataset was gridded

to a regular grid. First, conventional gridding was used to grid values of all tracts irrespective

of the bundle-membership of the tracts. Second, the gridding was performed separately,

by gridding the tracts of each bundle independently. The gridding was performed for two

resolutions (1.25× 1.25× 2.5mm3 and 1× 1× 1mm3) and the resulting distributions of values

in the generated 3D volumes were investigated.

In Figures 7.10a and 7.10b the distribution of gridded values is visualized for both resolutions.

The distributions are shown with histograms for conventional gridding (first row in blue), for

separate gridding of the IFO (second row in red) and for separate gridding of the UNC (third

row in green). With conventional gridding (first row), all tracts were gridded irrespective

of the fiber bundle they belong to. In overlapping areas of the bundles, this resulted in

interpolation of bundle-specific values (cmp. Figure 7.7). As the gridding takes into account the
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(b) Gridding at 1× 1× 1 mm3 resolution.

Figure 7.10: Distribution of values after gridding of fiber bundles with different methods. A single

dataset that consisted of two overlapping fiber bundles – the inferior fronto-occipital fasciculus (IFO)

and the uncinate fasciculus (UNC) – was gridded with conventional and individual bundle-based

gridding at two different resolutions (a), (b). By performing separate, bundle-based gridding (second

and third rows in red and green), values that were attached to the bundles (IFO = 1, UNC = 2) are

preserved. With conventional gridding, interpolation between values occurs in overlapping regions

(first row in blue).

number of tracts that traverse through each voxel, a continuous interpolation of quantitative

values occurred in overlapping regions. If bundles are gridded individually (second and third

row in Figures 7.10a, 7.10b), two separate 3D volumes are obtained, each consisting of one

compartment that contains the preserved values of the respective bundles (IFO = 1, UNC

= 2). No interpolation occurred and overlapping regions in the resulting volumes were not

corrupted by values of the other bundle.

While these observations are consistent for both resolutions, differences were observed in

the proportion of interpolated voxels with conventional gridding. With decreasing resolution,

the voxel size as well as the proportion of interpolated voxels increases. With a resolution

of 1.25× 1.25× 2.5mm3 (Figure 7.10a), the UNC consisted of 1728 voxels whereas the IFO

consisted of 6251 voxels. With a total of 1143 overlapping voxels, approximately 66% of the

UNC voxels and 18% of the IFO voxels were subject to interpolation. Hence, attached values

were preserved for only 34% of the UNC and for 82% of the IFO voxels. With a gridding

resolution of 1× 1× 1mm3 (Figure 7.10b), the separation of values in the overlapping regions

of the bundles improved. For the increased resolution, the UNC consisted of 4149 and the

IFO of 15 863 voxels. A total of 2283 voxels were overlapping, which corresponded to 55%

voxels of the UNC and 14% for the IFO. Compared to the resolution of 1.25× 1.25× 2.5mm3

(see above), more voxel values were preserved by percentage (45% for the UNC and 86% for

the IFO). In principle, this implies that the separate gridding especially aids fiber bundles

with a high proportion of overlapping voxels.

In the second experiment, differences between conventional and fiber bundle-based grid-

ding were investigated for quantitative FA values that were attached to previously acquired

datasets before (FApre) and after (FApost) spatial normalization. After normalization, the tracts

of the individual datasets were grouped into fiber bundles with atlas-guided clustering. For

FApre and FApost, conventional and separate gridding of fiber bundles was performed and dif-
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ferences of quantitative values between both gridding methods were computed in overlapping

voxels of fiber bundles (separately for FApre and FApost).

Resulting distributions of differences between FApre and FApost are presented in Figure 7.11

for all fiber bundles. Histograms are shown for 100 discrete intervals. Identical tracts, bundles

and regions were analyzed for both FApre and FApost. Distributions for FApre and FApost in the

histograms are therefore based on the same number of voxels.

Closer inspection of the distribution of the obtained voxel value differences revealed diverse

effects. Investigating the distribution differences for FApost – the FA values that were attached

after spatial normalization (depicted with red bars) – revealed that conventional gridding

and independent gridding of individual fiber bundles led to differences in the FAs of the

bundles. This can be seen in Figure 7.11 where the height of the red bars denotes the number

of voxels with FApost differences between conventional gridding and independent gridding. If

conventional gridding and independent gridding would have been identical, the voxel value

differences would have been zero for all analyzed voxels and only one single red bar with

a voxel value difference of 0 would have existed. Normalization-induced interpolation can

be ruled out as a reason for these differences, as FA values were attached to the tracts after

spatial normalization. Since identical datasets were used, the observed discrepancies are thus

directly related to differences in the gridding methods. With conventional gridding all tracts

of a dataset were gridded, irrespective of the bundle the tracts belong to. In contrast, for

bundle-based gridding, each bundle was gridded independently and only those tracts were

gridded that belonged to the same bundle. These different processing strategies influenced

the final voxel value. If only one fiber bundle contributed to a voxel, conventional and bundle-

based gridding led to identical results and the same voxel value. However, ifN fiber bundles

overlapped and occupied the same voxel (with N > 2), differences between the gridding

methods arose for this voxel. By applying conventional gridding in a case whereN > 2, the

tracts of allN bundles were used to determine the final value in the voxel. For bundle-based

gridding, however, each bundle was gridded separately. Hence, the gridding was performedN

times. Each time a single bundle was gridded, only those tracts were used for the gridding that

belonged to the actual bundle. As the tracts of the otherN− 1 bundles were neglected, they

contributed nothing to the final voxel value. The slight differences between conventional and

bundle-based gridding, in voxels that were occupied by multiple bundles, were ultimately due

to variations in the tracts that were gridded with conventional and bundle-based gridding.

Besides these gridding-related alterations, discrepancies were also observed for quantitative

FA values that were attached before (FApre) and after (FApost) spatial normalization (see the

differences between the blue (FApre) and the red (FApost) bars in Figure 7.11). For the gridding

of the attached quantitative values for FApre and FApost, identical tracts and fiber bundles

were used. Hence, the contributions of fiber bundles to the voxels during the gridding were

identical for FApre and FApost. This implies that the observed differences in the distributions

between FApre and FApost (blue and the red bars in Figure 7.11) can not be explained with the

previously described gridding-related differences (see previous paragraph). As the additional

processing steps for FApre and FApost were also identical, the only plausible explanation for

the discrepancies in the distributions between FApre and FApost are normalization-induced

interpolation differences that occurred during the gridding of fiber tracts with conventional

gridding.
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Figure 7.11: Distributions of voxel value differences between conventional and fiber bundle-based

gridding for quantitative FA values attached before (FApre in blue) and after (FApost in red) spatial

normalization.

A more detailed investigation of the distribution differences between FApre and FApost

supports this hypothesis.The histogram in Figure 7.11 can be divided into two parts. In the left

part of the histogram, the number of voxels for FApost exceed the number of voxels for FApre

(the red bars are higher than the blue bars in Figure 7.11). Strictly spoken, compared to FApre

more voxels of FApost have lower voxel value differences. In the right part of the histogram

this effect is inverted. Here, more voxels of FApre have higher voxel value differences in

comparison to FApost (the blue bars are higher than the red bars in Figure 7.11). Overall,

the observed voxel value differences were higher for FApre than for FApost. Practically, this

means that the gridding differences between conventional and bundle-based gridding were

higher for FApre than for FApost, which is a strong indicator that the bundle-based gridding

preserved the quantitative values. For FApost, quantitative values were attached after spatial

normalization. The interpolation of quantitative values had thus already occurred and the

observed voxel value differences can be attributed to the griddingmethods only (see the earlier

paragraph on gridding-related alterations). In contrast, for FApre quantitative values were

attached to the tracts before spatial normalization. Due to the utilization of fiber tracts, no

interpolation of quantitative values took place during this normalization step (see section 7.2.3).

As demonstrated with the first experiment in this section, bundle-based gridding preserves

the attached quantitative values and avoids corruption of the values from other fiber bundles.

For conventional gridding, however, attached values are not preserved as all tracts are gridded
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irrespective of the bundle they belong to. Hence, for FApre and conventional gridding, the

interpolation of the values was only postponed and occurred later during the conventional

gridding. As the attached values are preservedwith bundle-based gridding but are interpolated

with conventional gridding, observed differences between conventional and bundle-based

gridding were the result of the normalization-induced interpolation and gridding-related

alterations. However, due to the identical processing of FApre and FApost, gridding-related

alterations were identical in both cases. As they can thus be ruled out, spatial normalization

remains as the source for the observed differences between FApre and FApost.
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Chapter 8

Applications

The beginning of knowledge is the
discovery of something we do not
understand.

— Frank Herbert (1920–1986)

In order to investigate the applicability of the presented quantitative analysis method and

to determine whether it is capable to detect statistically significant alterations in white mat-

ter diffusion, two studies were conducted. Initially, diffusion-associated hemispheric differ-

ences in white matter bundles were studied for a group of healthy volunteers. Subsequently,

hemispheric differences of diffusion were also investigated for selected fiber bundles of

schizophrenic patients. Findings were finally compared to the previously obtained results for

healthy volunteers.

8.1 Assessing hemispheric white matter differences in healthy

volunteers

8.1.1 Introduction

The brain as a whole consists of numerous structures and is divided into two hemispheres

that are partly characterized by a profound hemispheric asymmetry and bilateralization in

both structure and function (Hellige, 1993). The earliest observations of brain asymmetry

were described by Broca (1865) and Wernicke (1874), who discovered the specialization of the

left hemisphere for speech and language processing and the impairment in speech synthesis,

language comprehension and syntactic processing that resulted from localized injuries of the

left hemisphere (Toga andThompson, 2003; Hugdahl, 2005).

These initial observations marked the beginning of a new research area that aims at un-

raveling differences in the structural and functional organization of the brain hemispheres.

Sperry (1961), for example, performed split-brain experiments and investigated epileptic

patients who had undergone a corpus callosotomy in which the inter-hemispheric connections
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of the corpus callosum were surgically severed1. His split-brain experiments opened a new

window to study brain function and facilitated the investigation of functional differences

between the hemispheres. The independent functional analysis of the cerebral hemispheres

provided the unique opportunity to study inter-hemispheric communication and interaction

of processing centers. While Sperry’s experiments provided insight into a variety of neural

mechanisms (Gazzaniga, 2005), investigations of other scientists, such as Galaburda et al.

(1978) and Geschwind (1979), shed light on inter-hemispheric differences at a structural

and cytoarchitectural level, which later culminated in their theory of cerebral lateralization

(Geschwind and Galaburda, 1987; Toga andThompson, 2003).

Hemispheric asymmetry and bilateralization of the brain are characteristics that are not

unique to humans, but are in fact a ubiquitous phenomenon that exists in other species

(Güntürkün, 2005) and can be observed even in simple multicellular organisms such as

Caenorhabditis elegans (see section 1.1 Origin of the brain; Corballis (2009); Goldsmith (2011)).

Because of the widespread occurrence of cerebral asymmetry among species, it is believed

that genetic factors influence the expression of asymmetries, though the underlying genetic

mechanisms still remain elusive (Corballis, 2009). In addition to genetic factors, research

indicates that cerebral asymmetries are at least modulated by environmental and biological

factors (Hellige, 1993). Due to complex interactions with the environment, asymmetries are

shaped across the life span (Hellige, 1993), but are also influenced as the brain maturates (e.g.,

during adolescence, Geschwind and Galaburda (1987)).

Besides traditional experiments (e.g., split-brain, see above), MRI has been used as a com-

plementary method to study cerebral lateralization. Conventional structural MRI techniques

were primarily, but not exclusively, used to assess hemispheric differences in the neuronal

processing centers of the grey matter (Good et al., 2001; Kovalev et al., 2003), while altered

diffusion in white matter pathways was investigated with DWI (Fillard et al., 2003; Park et al.,

2004; O’Donnell et al., 2009; Takao et al., 2011). In order to determine whether the presented

method for quantitative analysis (see chapter 7) is capable to detect statistically significant

alterations in white matter diffusion, hemispheric differences of selected fiber bundles were

investigated for a group of healthy volunteers.

8.1.2 Data acquisition, data processing and statistical analysis

For the investigation of hemispheric differences in selected white matter tracts, the previ-

ously acquired 46 datasets of healthy volunteers were employed. Subsequently to the data

acquisition, fiber tracking was performed and tracts were resampled to an average tract point

distance of 1mm. Acquisition and tractography parameters are described in section 6.1. For

the quantitative analysis as described in chapter 7, quantitative values (FA, ADC, AD and RD;

see section 2.3.3) were projected onto the fiber tracts (see section 7.2.2). In order to achieve

the superposition between the bundles of opposite hemispheres, all 46 datasets were flipped

from left to right. This resulted in a total of 92 datasets for both two groups – 46 original

datasets and 46 flipped datasets.

1A corpus callosotomy is a treatment for epilepsy introduced by VanWagenen and Herren (1940) to prevent

epileptic seizures from spreading across the cerebral hemispheres.
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Spatial normalization of all 92 datasets was performed with the ANTs framework using

the FA maps (Klein et al., 2009). During this process, an FA template, displacement fields

and affine transformation matrices were obtained for all datasets. Using this information,

the fiber tracts of the individual datasets were transferred to the common template space.

Normalization steps and parameters were identical to the steps and parameters in section 6.1.

In order to extract the fiber bundles, fully automated atlas-guided cluster analysis was

performed for all 92 datasets using the matched point distance (MPD) and the previously

generated white matter atlas (see Part II). Other clustering parameters corresponded to the

parameters that were used previously (see section 6.1). To relate the clusters to the corre-

sponding atlas classes, extracted fiber bundles were spatially matched to the atlas bundles

(see section 6.3). As hemispheres are symmetrical, only nine bundles of interest (BOIs) were
obtained for each dataset: forceps major (Fmaj), the frontal projection of the corpus callosum

(forceps minor – Fmin), anterior thalamic radiation (ATR), gyrus part of the cingulum cin-

gulate (CGC), hippocampal part of the cingulum (CGH), corticospinal tract (CST), inferior

fronto-occipital fasciculus (IFO), temporal part of the superior longitudinal fasciculus (SLFt)

and the uncinate fasciculus (UNC).

To conduct the voxel-wise quantitative analysis for each BOI, tracts were rasterized to a

regularly spaced grid with 1× 1× 1mm3 resolution and attached quantitative values were

investigated separately for each BOI. For each dataset and each diffusion property this resulted

in nine volumes (one for each BOI) that were used for the quantitative analysis. For the statis-

tical analysis, permutation tests with 1000 permutations (Nicholson, 2001) were performed in

the voxels of each BOI, as long as at least 10 datasets (out of 46) per group contributed data to

the voxels. To correct for multiple comparisons the false discovery rate – FDR (Benjamini et al.,

2006) was used with a significance level p < 0.01. Only regions with at least 50 connected

voxels were deemed valid.

8.1.3 Results

The quantitative analysis of hemispheric differences of diffusion in selected white matter

fiber bundles was successfully performed as described in the previous section. Statistically

significant FA differences in corresponding bundles of the left and right hemisphere were

observed. After applying the FDR correction, results were still statistically significant in certain

regions of the CGC, UNC, CST, IFO and SLFt. In Figures 8.1–8.5, the fiber bundle regions

that were statistically significantly different between both hemispheres as well as quantitative

values in these regions are shown. In each figure, a volume rendering (on the left) displays the

analyzed bundle and the spatial location of voxels that had statistically significantly different

FAs between the left and right hemisphere. Voxels with statistically significant differences

before the correction for multiple hypothesis testing are shown in green, voxels that were

still significant after the FDR correction are colored in brown. To summarize the findings,

quantitative values (FA, ADC, AD, RD) of the left and right hemisphere of all datasets in

statistically significant voxels after FDR correction are shown with box plots. The centerline in

the boxes denotes the median (second quartile). The bottom and the top of a box correspond

to the first and the third quartile and define the inter-quartile range (IRQ). The lines that

emerge from the top and bottom of a box contain all remaining data points that are in the
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Figure 8.1: Hemispheric differences in the CGC of healthy volunteers. The volume rendering on the

left shows the analyzed CGC and voxels that have statistically significantly different FAs between the

left and right hemisphere. Voxels with statistically significant differences are shown in green (before

FDR correction) and brown (after FDR correction). The box plots on the right present quantitative

values of the left and right hemisphere from all datasets in the statistically significant voxels (after FDR,

p < 0.01).

range of±1.5× IRQ. For the statistically significantly different regions in the bundles, Table 8.1

provides a qualitative overview of FA, ADC, AD and RD differences.

For the CGC, UNC, CST, IFO and SLFt prominent differences in FA, AD and RD values

between the left and right hemisphere were found. Differences in ADC, which represents the

average diffusion along all three orthogonal axes of the diffusion tensor (see sections 2.1 and

2.3.2), were often barely noticeable and may thus remained undetected. Observed differences

in ADC and FA were the result of differences between eigenvalues, and thus differences in

the axial diffusivity – AD (the first eigenvalue λ1) and radial diffusivity – RD (the average

Table 8.1: Summary of differences in diffusion

parameters for statistically significant regions

of bundles from the left and right hemisphere

(healthy volunteers).

Bundle Average quantitative values

FA ADC AD RD

CGC l ≫ r l ≈ r l ≫ r l < r

UNC l ≪ r l > r l < r l ≫ r

CST l ≪ r l > r l ≈ r l ≫ r

IFO – R1 l ≪ r l > r l < r l ≫ r

IFO – R2 l ≪ r l > r l < r l ≫ r

SLFt – R1 l < r l > r l < r l ≫ r

SLFt – R2 l ≫ r l ≈ r l ≫ r l ≪ r

of the second and third eigenvalue (λ2 + λ3)/2).

By investigating the quantitative values for

each bundle in detail, it becomes evident that

AD and RD influence FA and ADC in different

ways. In the anterior part of the CGC for exam-

ple (Figure 8.1), the FA of the left hemisphere is

increased compared to the right hemisphere. Ob-

served differences in the voxels are thereby the

result of an AD increase and an RD decrease (left

vs. right). Differences in the ADC, however, were

minimal. For the UNC (Figure 8.2) differences

in diffusion between the left and right UNC are

reversed compared to the CGC.While AD in the

left hemisphere was slightly decreased compared

to the right hemisphere, RDwas increased which

resulted in a decreased FA and a slightly higher

ADC (left vs. right). For the CST (Figure 8.3),

FA was decreased as in the UNC (left vs. right).
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Figure 8.2: Hemispheric differences in the UNC of healthy volunteers. The volume rendering on the

left shows the analyzed UNC and voxels that have statistically significantly different FAs between the

left and right hemisphere. Voxels with statistically significant differences are shown in green (before

FDR correction) and brown (after FDR correction). The box plots on the right present quantitative

values of the left and right hemisphere from all datasets in the statistically significant voxels (after FDR,

p < 0.01).

However, in contrast to the UNC, these differences were primarily governed by an increased

RD of the left CST.TheAD of the left CST is nearly identical to the AD of the right hemisphere,

which led to increased ADC values in the left CST region. For the IFO bundle (Figure 8.4)

two regions show statistically significant differences between the left and right hemisphere.

These differences are in line with the pattern of differences observed in the UNC (see above).

In both left IFO regions FAwas decreased andADC slightly increased compared to the right

hemisphere. The differences in both IFO regions were due to decreased AD and increased RD

of the left IFO (see UNC, above). Comparing quantitative values between both significantly

different regions of the IFO, only minor, negligible variations were found.

The SLFt bundle also consists of two regions that are significantly different between the

left and the right hemisphere (Figure 8.5). However, in contrast to the IFO, the differences

between the regions were opposed, though the regions were spatially close.While FA in region

R1 was decreased it was increased for region R2 (left vs. right). For region R1 the increased FA

was the result of a slightly reduced AD and an increased RD in the left hemisphere compared

to the right hemisphere. The ADC for the left hemispheric region was slightly increased. In

region R2 the situation is different. In R2, hemispheric differences of the FA were the result

of a major AD increase and a more pronounced RD decrease (left vs. right). The ADC is

almost identical and differences were barely noticeable. Considering the opposed differences

between regions R1 and R2 of the SLFt, the question arises where these differences originate.

At a microstructural level, the SLFt (ofter termed arcuate fasciculus) is composed of three

fiber segments (anterior, posterior and long) that interconnect Brocca’s, Geschwind’s and

Wernicke’s territory (see Figure 8.6). By comparing the spatial location of R1 and R2 with the

anatomically labeled image in Figure 8.6, it appears that region R1 is primarily located in the

anterior segment connecting Brocca’s and Geschwind’s territory, while region R2 is located in

the long segment that ties Brocca’s to Wernicke’s territory. Observed differences between R1

and R2 were most likely associated with differences in the distinct segments of the SLFt.
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Figure 8.3: Hemispheric differences in the CST of healthy volunteers. The volume rendering on the

left shows the analyzed CST and voxels that have statistically significant differently FAs between the

left and right hemisphere. Voxels with statistically significant differences are shown in green (before

FDR correction) and brown (after FDR correction). The box plots on the right present quantitative

values of the left and right hemisphere from all datasets in the statistically significant voxels (after FDR,

p < 0.01).
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Figure 8.4: Hemispheric differences in the IFO of healthy volunteers. The volume rendering on the left

shows the analyzed IFO and voxels that have statistically significantly different FAs between the left

and right hemisphere. Voxels with statistically significant differences are shown in green (before FDR

correction) and brown (after FDR correction). The box plots on the right present quantitative values

of the left and right hemisphere from all datasets in the statistically significant regions R1 and R2 (after

FDR, p < 0.01).
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Figure 8.5: Hemispheric differences in the SLFt of healthy volunteers. The volume rendering on the left

shows the analyzed SLFt and voxels that have statistically significantly different FAs between the left

and right hemisphere. Voxels with statistically significant differences are shown in green (before FDR

correction) and brown (after FDR correction). The box plots on the right present quantitative values

of the left and right hemisphere from all datasets in the statistically significant regions R1 and R2 (after

FDR, p < 0.01).
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Figure 8.6: The segments of the arcuate fasciculus and the regions they connect. Taken and modified

from Catani and Mesulam (2008).
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8.2 Assessing hemispheric white matter differences in

schizophrenic patients

8.2.1 Introduction

Schizophrenia is a complexmental disorder that is characterized by an impairment of thinking,

cognition and behavior (Picchioni andMurray, 2007).While it is amultifactorial illness caused

by genetic and environmental factors, the underlying cerebral mechanisms that finally lead to

the typical psychopathological symptoms are not well understood (Picchioni and Murray,

2007; MacDonald and Schulz, 2009; Insel, 2010). With the advent of MRI, hundreds of studies

have been conducted to explore the profound neuropathological changes that are associated

with schizophrenia (van Os and Kapur, 2009). The comprehensive reviews by Shenton et al.

(2001) and Kubicki et al. (2007) provide a broad overview of various MRI studies. Reported

findings are diverse and suggest an involvement of a large number of cerebral structures

that are scattered throughout the brain (Shenton et al., 2001). Due to the heterogeneity

of findings and symptomatology, researchers still struggle in developing a comprehensive,

generally accepted theory that explains all observations and neuropathological symptoms.

Consequently, multiple complementary theories have evolved, trying to relate findings to,

for example, neurodevelopmental issues (Weinberger, 1986; Owen et al., 2011), abnormal

functions of either glutamate (Javitt, 2010) or dopamine receptors (Howes and Kapur, 2009)

or dysfunctional connectivity between brain regions (Friston, 1998, 2002).

The latter theory, also termed dysconnection hypothesis, postulates that schizophrenia is the

result of abnormal synaptic plasticity, impaired structural connectivity of white matter tracts

or a combination of both (Stephan et al., 2009; Bullmore et al., 1997). These alterations might

culminate into abnormal communication between functionally related, but spatially disparate

brain regions (Stephan et al., 2009; Whitford et al., 2011). Experiments already provided

evidence for disturbed synaptic function and plasticity (Stephan et al., 2009; Medkour et al.,

2010; Guo et al., 2013). In theory, such abnormal structural connectivity might results in

subtle changes of the underlying white matter microstructure, thereby influencing diffusion of

molecules. However, studies that investigated altered diffusion with DWI remain inconclusive

(Kubicki et al., 2007). While various studies observed altered diffusion (e.g., Ardekani et al.

(2011)), other studies showed no abnormal diffusion in schizophrenic patients (for an overview

of findings, see the studies by Kanaan et al. (2005), Kubicki et al. (2007) and Whitford et al.

(2011)).These heterogeneous results only reinforce the fact that schizophrenia is amultifaceted

disease with distinct manifestations.

To investigate the presence of potential hemispheric diffusion differences in selected white

matter bundles of schizophrenic patients, a small study was conducted. Differences in cor-

responding bundles of the left and right hemisphere were investigated and findings were

compared to the previously obtained results in healthy volunteers.
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8.2.2 Data acquisition, data processing and statistical analysis

15 schizophrenic patients (4 female, 41±11.1 years old; 11 male, 35±9.0 years old) were included

and measured on a clinical 3 T whole-body MR-Scanner (Tim Trio, Siemens Healthcare,

Erlangen, Germany). All patients were diagnosed with schizophrenia according to DSM-IV

(American Psychiatric Association, 2000). At the time point of the measurements, patients

were medication-free or clinically stabilized by standard antipsychotic medication.

The study was approved by the Ethics Committee of the Jena University Hospital. Partic-

ipants provided informed written consent to participate in this study in accordance to the

statement of the Ethics Committee. To enable comparability between healthy volunteers and

patients, the data acquisition and data processing was performed as previously described in

section 8.1.2. All 15 datasets were flipped from left to right, which resulted in a total of 30

datasets for both two groups. The statistical analysis was performed for the same BOIs as

in section 8.1.2. However, as only a small group of 15 patients was enrolled compared to the

46 healthy volunteers in section 8.1, parameters for the quantitative analysis were slightly

adjusted. Permutation tests (1000 permutations) were performed in the voxels of each bundle,

as long as at least five datasets per group contributed data to each voxel. To correct for multiple

comparisons the FDR (Benjamini et al., 2006) was used with an adjusted significance level

(p < 0.05). Only regions with at least 50 connected voxels were deemed valid.

8.2.3 Results

Using the datasets of schizophrenic patients, the quantitative analysis of hemispheric differ-

ences in diffusion was performed in the nine selected fiber bundles. As in section 8.1.3,

statistically significant differences were observed between bundles of the left and right

hemisphere. After adjusting the p-value using the FDR, differences in diffusion between

Table 8.2: Summary of differences in diffusion

parameters for statistically significant regions

of bundles from the left and right hemisphere

(schizophrenic patients).

Bundle Average quantitative values

FA ADC AD RD

CGC l ≫ r l ≈ r l ≫ r l ≪ r

UNC l ≪ r l > r l < r l ≫ r

CST l ≪ r l > r l ≈ r l ≫ r

IFO – R1 l ≪ r l > r l < r l ≫ r

IFO – R2 l ≪ r l > r l ≈ r l ≫ r

SLFt – R1 l < r l > r l > r l ≫ r

SLFt – R2 l ≫ r l ≈ r l ≫ r l ≪ r

regions of the left and right hemisphere were still

statistically significant for the CGC, UNC, IFO

and SLFt fiber bundle. In the CST, however, only

few voxels showed statistically significant differ-

ences. For the sake of completeness, results for

the CST are nevertheless presented (before FDR

correction). In Figures 8.7–8.11, regions with sta-

tistically significant differences in diffusion be-

tween the left and right hemisphere are shown for

the CGC, UNC, CST, IFO and SLFt along with

quantitative values (FA, ADC, AD, RD) in these

regions. A condensed summary of FA, ADC, AD

and RD differences in statistically significant dif-

ferent regions of bundles between the left and

right hemisphere is given in Table 8.1.

For schizophrenic patients, similar left-right

differences in diffusion parameters were found

as in healthy subjects (see section 8.1.3). Spatial
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location and extent of statistically significantly different regions were mostly alike to the statis-

tically significantly different regions found in healthy volunteers. However, as spatial location

and extent of these significant regions were not identical between both groups, extracted

values have thus to be compared carefully, taking into account that observed differences may

be due to variations in the spatial location of studied regions. In the cingulum (Figures 8.7),

for example, a much smaller region was found to be statistically significant different between

the left and right hemisphere compared to the region found in healthy volunteers. Due to the

smaller extent of the region, the extracted, average FA, RD and ADC differences between the

CGC of the left and right hemisphere were increased. For the UNC (Figures 8.8), findings

between healthy volunteers and schizophrenic patients were almost identical. The location of

the statistically significant regions was slightly different, which resulted in subtle changes of

FA and RD. For the CST (Figures 8.9), however, no statistically significant differences between

the left and right hemisphere remained after applying the FDR correction. Thus, only the

statistically significant different region before applying the FDR correction was compared to

the findings in healthy controls. As spatial location and extent of the observed regions differed

between schizophrenic patients and healthy subjects, major changes in FA, AD and RD were

found. In the IFO, two regions R1 and R2 were statistically significant different between the left

and the right hemisphere (Figures 8.10). By comparing region R1 of the schizophrenic patients

to the almost identical region R1 of the healthy controls, slight increases in the difference

between the IFO of the right and left hemisphere were found for FA, ADC and RD. In contrast,

region R2 is much larger for the schizophrenic patients, which resulted in pronounced differ-

ences of all quantitative values between schizophrenic patients and healthy volunteers. In the

SLFt, again two statistically significant different regions were found (Figures 8.11). Compared

to the corresponding findings in the healthy controls, both regions are located in spatially

different areas of the SLFt bundle. Region R1, in particular, shares no volume with region

R1 of the control group and quantitative values are thus not comparable. Region R2 is only

slightly dislocated and associated with an increase of differences in all quantitative values.

On first inspection, findings for schizophrenic patients are in good agreement with the

observations in healthy volunteers (see section 8.1.3). Both studies found similar differences in

diffusion parameters between bundles of the left and right hemisphere. Observed differences

between the two groups were therebymost likely the result of variations in spatial location and

extent of these regions. However, it is noticeable that the extent of the significant regions was

consistently smaller in schizophrenic patients compared to healthy volunteers, even though

the significance level was adjusted to account for the smaller group size in the second study.
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Figure 8.7: Hemispheric differences in the CGC of schizophrenic patients. The volume rendering on

the left shows the analyzed CGC and voxels that have statistically significantly different FAs between

the left and right hemisphere. Voxels with statistically significant differences are shown in green (before

FDR correction) and brown (after FDR correction). The box plots on the right present quantitative

values of the left and right hemisphere from all datasets in the statistically significant voxels (after FDR,

p < 0.05).
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Figure 8.8: Hemispheric differences in the UNC of schizophrenic patients. The volume rendering on

the left shows the analyzed UNC and voxels that have statistically significantly different FAs between

the left and right hemisphere. Voxels with statistically significant differences are shown in green (before

FDR correction) and brown (after FDR correction). The box plots on the right present quantitative

values of the left and right hemisphere from all datasets in the statistically significant voxels (after FDR,

p < 0.05).

139



Chapter 8 Applications



































- --

.
.
.
.


.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.



FA

A
D

C
 in

 m
m

�s
�

A
D

 in
 m

m
�s

�

RD
 in

 m
m

�s
�

S
P

I
A

le


le


le


le


rig
ht

rig
ht

rig
ht

rig
htstatistically signi�cant differences (before FDR)

statistically signi�cant differences (aer FDR)

Quantitative values in statistically signi�cant regions (before FDR)

Figure 8.9: Hemispheric differences in the CST of schizophrenic patients. The volume rendering on the

left shows the analyzed CST and voxels that have statistically significantly different FAs between the

left and right hemisphere. Voxels with statistically significant differences are shown in green (before

FDR correction).The box plots on the right present quantitative values of the left and right hemisphere

from all datasets in the statistically significant voxels (before FDR, p < 0.05).
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Figure 8.10: Hemispheric differences in the IFO of schizophrenic patients. The volume rendering on

the left shows the analyzed IFO and voxels that have statistically significantly different FAs between the

left and right hemisphere. Voxels with statistically significant differences are shown in green (before

FDR correction) and brown (after FDR correction). The box plots on the right present quantitative

values of the left and right hemisphere from all datasets in the statistically significant regions R1 and

R2 (after FDR, p < 0.05).
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Figure 8.11: Hemispheric differences in the SLFt of schizophrenic patients. The volume rendering on

the left shows the analyzed SLFt and voxels that have statistically significantly different FAs between the

left and right hemisphere. Voxels with statistically significant differences are shown in green (before

FDR correction) and brown (after FDR correction). The box plots on the right present quantitative

values of the left and right hemisphere from all datasets in the statistically significant regions R1 and

R2 (after FDR, p < 0.05).
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Chapter 9

Discussion and conclusion

Everything we hear is an opinion, not a
fact. Everything we see is a perspective,
not the truth.

— Marcus Aurelius (121–180)

Since the introduction of diffusion weighted imaging and the advent of fiber tractography,

researchers explore novel ways tomap and unravel the inherent complexity of the white matter

fiber network in the human brain. While fiber tracts offer the unique opportunity to study the

course and integrity of the underlying white matter microstructure in unprecedented ways,

the handling and processing of the large tractography datasets is complicated and generally

impaired by long processing times. The automatic parcellation of fiber tracts into bundles

that represent the underlying white matter (micro-) structure is thereby of extraordinary

importance for many medical applications, like delineation of tumorous tissue, radiation

treatment planing or neuronavigation, but often too time consuming thus limiting the usability

of fiber tractography.

In order to improve the applicability of fiber tractography, this thesis introduces novel

concepts and strategies towards automatic parcellation of fiber tracts with subsequent cluster

analysis. With CATSER (cluster analysis through smartly extracted representatives), a new
method for the automated clustering of fiber tracts was presented, which exploits the intrinsic

redundancy of the data to make cluster analysis applicable to large tractography datasets.

By using parallel computing, random sampling and partitioning as well as novel similarity

measures, cluster analysis can be performed in reasonable time. In order to improve the

grouping of tracts into bundles that represent the underlying microstructure more correctly,

CATSER can be used together with a white matter atlas.

Especially in the light of the recent introduction of algorithms for generating and visualizing

fiber tracts with the already built-in MRI scanner software of vendors, methods and tools for

fast and correct extraction of fiber bundles are becoming increasingly important to aid the

medical personal in analyzing and interpreting tractography data.

Besides the application of CATSER for clustering single subject datasets in clinical routine,

the presented techniques and algorithms enable fast and fully automated clustering of multiple
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datasets for quantitative analyses of diffusion parameters in the white matter with fiber
bundle-driven techniques (FDT). With these recent advances in fiber clustering, it is now

feasible to extend the quantitative analysis of white matter microstructure by incorporating

fiber bundles. The thesis also presented a new approach to quantitatively analyze diffusion

properties in white matter fiber bundles, enabling selective analysis of individual bundles

while simultaneously restricting the analysis to voxels that only belong to the fiber bundles. By

projecting quantitative values onto fiber tracts prior to spatial normalization, normalization-

induced interpolation between different fiber bundles are prevented.

To investigate the applicability of the presented quantitative analysis method, diffusion-

associated hemispheric differences in white matter bundles of healthy volunteers and schizo-

phrenic patients were investigated. Both studies were performed successfully and revealed

spatially localized hemispheric differences in various bundles.

9.1 Cluster analysis

As the high computational complexity of many conventional clustering algorithms restricts

cluster analysis to small datasets (e.g., Ding et al. (2003);Moberts et al. (2005);Maddah (2008)),

this thesis introduced a new framework for the cluster analysis of large tractography datasets

derived from diffusion weighted MRI data (see part II). To assess the similarity of fiber tracts,

the framework contains several proximity measures that can either be used independently or

in conjunction with other similarity measures to perform clustering in higher dimensions.

The new clustering method CATSER allows to incorporate structural information of a white

matter atlas to achieve an anatomically correct and reproducible grouping of fiber tracts. This

approach combines the benefits of classification and clustering and can be considered as a

hybrid technique. In addition to the identification of clusters that correspond to the classes

of the atlas, CATSER also extracts additional clusters that are concealed within the dataset.

If an atlas is not available (e.g., in pediatric cases (Mentzel et al., 2011)), the technique can

still be used to cluster large datasets without anatomical guidance. To evaluate the developed

framework (see chapter 6), 46 tractography datasets of healthy volunteers were processed and

clustered with three different clustering techniques and three similarity measures (combined
distance (CD), Hausdorff distance (HD) andmatched point distance (MPD)). CATSER (with

and without atlas-guidance) and conventional hierarchical agglomerative clustering (HAC)
were used for clustering. With HAC only a small subset of 10 000 tracts was clustered due to

its high computational complexity.

For the majority of the fiber bundles corresponding to classes in the atlas, consistent

results were obtained as demonstrated by the assessment of the spatial agreement between

clustered fiber bundles and their corresponding atlas classes. For all similarity measures, the

incorporation of the volumetric atlas clearly resulted in an improved, more consistent and

reproducible clustering of fiber tracts. While spatial resemblance to the atlas classes increased,

variability decreased. In contrast, both other methods (CATSER without atlas and HAC) had

a significantly higher spread of the values defining spatial agreement.

The comparison of the utilized similarity measures revealed consistently higher spatial

agreement for HD compared to CD and MPD. Even though incorporation of shape similarity
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into CD was supposed to improve clustering and increase spatial agreement between clusters

and atlas classes, this assumption was not confirmed. One reason for the lower spatial agree-

ment may be due to the fact that the shape similarity is not computed for the entire tracts but

only for matched partial tract parts to determine the similarity of complete and incomplete

tracts (see section 4.7). If the shape of the matched tract parts is highly similar, agreement

rates are also high even if the tracts are not incomplete but belong to a different fiber bundle.

Figure 6.7 shows an example where the IFO contains a substantial part that belongs to the

UNC. However, in practical terms one has not only to consider spatial agreement but also

computation time. Here, the best performance was achieved by usingMPD for cluster analysis.

While clustering with MPD was more than twice as fast compared to CD, clustering with CD

was still 10 times faster than the cluster analysis with HD.

The spatial correspondence between resulting clusters and atlas classes was computed by

using the number of all cluster voxels and the number of cluster voxels that intersect the atlas

class (see Eq. 3.12). While this procedure takes into account voxels that are occupied by both

– the cluster and the atlas class, it entirely neglects the possibility that tracts may have been

falsely assigned to the fiber bundle and occupy voxels that belong to other atlas classes. To

check the correctness of the obtained clusters more accurately, future studies should ideally

use measures that not only consider voxels that occupy the corresponding atlas class but also

voxels of the cluster that belong to different classes.

The separation of the similarity computations from the clustering permits dramatic reduc-

tion of the computation time for the cluster analysis by utilizing multiple CPUs of modern

multiprocessor systems. The performance of the clustering framework was analyzed and the

high speedup in a multiprocessing environment was demonstrated. The framework delivers

nearly optimal speedup and performance as long as the employed similarity measures are

implemented efficiently.

As an anatomically correct and consistent grouping of tracts across multiple subjects is

difficult to achieve without additional anatomical information, CATSER allows incorporation

of an atlas to guide the clustering process. As demonstrated in this thesis, CATSER is capable

to extract bundles that are defined in the atlas and also extracts additional reasonable clusters

with conventional clustering. To influence the cluster generation the spatial correspondence

between tracts and atlas classes was computed and incorporated into the clustering. Since the

atlas contains not only the occupied voxels for each atlas class but also additional probabilistic

information, it might be reasonable to incorporate this information in the future. The atlas

contains only the major parts of the bundles due to the employed ROI-based extraction

technique. Even though the spatial agreement between obtained clusters and atlas classes was

already high, manual generation of an atlas that captures even smallest details will further

increase the spatial agreement between the clusters and the atlas bundles.

The validity and anatomical correctness of the obtained clusters is not only affected by the

cluster algorithm. Both data quality and preprocessing techniques play a crucial role and

influence the generation of thewhitematter atlas and the cluster analysis. In this study, diffusion
tensor imaging (DTI) and deterministic tractography were only used, as such techniques are

widely available and often used in clinical routine (Mentzel et al., 2011). However, the diffusion

signal measured in this way is just an approximation of the underlying microstructure that

in fact consists of billions of axonal connections per imaging voxel (Drachman, 2005). Even
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though the diffusion tensor is a good approximation if tissues are homogeneous and axons are

aligned parallel, it is insufficient in heterogeneous tissue, where multiple fiber compartments

give rise to complex diffusion signals (e.g., crossing, fanning or kissing fibers). In such cases,

DTI is incapable to describe the microstructure properly and tractography often fails to

reconstruct meaningful fiber tracts. Tracts may be incorrect, may be disrupted along their

course or may follow an unreliable trajectory that belongs to distinct nearby anatomical

structures. Examples for tracking artifacts and tracts that connect wrong regions are seen in

Figures 6.3 and 6.9. A bundle containing additional spurious tracts is shown in Figure 6.8.

While the clustering technique can counter some of these imperfections by using outlier

elimination, it will be unable to identify incorrect tracts if there is a sufficiently large number

of similar, misguided tracts. If such tracts share major parts of the atlas-class volume and

also have a high (partial) correspondence to the other tracts in the bundle, the atlas-guided

clustering is limited in excluding these incorrect fibers.

In order to describe the diffusion in the presence of complex fiber architectures accurately

more elaborate methods have to be used. Applying MRI techniques that sample the diffusion

signal in many different directions with high b-values (e.g., high angular resolution diffusion
imaging (Tuch, 2004; Descoteaux et al., 2007)), so called orientation distribution functions
(ODFs) can be reconstructed from the data that allow to resolve regions with crossing fibers.

By employing high angular resolution diffusion imaging in conjunction with ODF-based

tractography techniques (Descoteaux et al., 2009), significant improvements in data quality

and a reduction of unreasonable clusters are anticipated.

As the white matter atlas is generated on the basis of reconstructed fiber tracts, erroneous

tractography will influence the atlas generation. Connections that cannot be traced reliably

will be thus missing from the atlas (e.g., the connection between the uncinate fasciculus and

the inferior frontal gyrus in Figure 6.8). Considering heterogeneous tissue where multiple

fiber compartments exist (e.g., crossing fibers), a voxel-based probabilistic atlas is limited

as probabilities will be significantly reduced in regions with crossing fibers. An orientation-

dependent atlas that takes into account the fiber orientation in each voxel by using, for example,

ODFs, will be the next reasonable step to further enhance the clustering and to prevent the

bundling of misguided tracts. In addition, a grey matter atlas might also be employed to

improve the clustering. In this case, a weighting factor might be based on the distance between

the tracts and their closest grey matter region.

The atlas-guided clustering approach aims at fast and consistent extraction of fiber bundles

from multiple subjects by employing a white matter atlas. Compared to recently presented

techniques (e.g Visser et al. (2011); Guevara et al. (2011); Garyfallidis et al. (2012)), it enables

anatomically correct extraction of bundles that are defined in the atlas as well as extraction

of additional bundles that are not available in the atlas. While Guevara et al. (2011) uses a

reasonably fast approach that is not based on clustering of tracts but on clustering of voxels,

Visser’s algorithm employs partitioning and repeated hierarchical clustering to achieve a

grouping of tracts. Even though Visser’s technique (Visser et al., 2011) works quite well for the

clustering of fiber tracts, it is limited by the long computation times, whichmakes it impractical

to cluster large numbers of datasets. However, although such similarity-based approaches

are useful for grouping fiber tracts, good correspondence of the clustered bundles to the true

anatomical bundles cannot be guaranteed due to the lack of anatomical information. As a
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result, Guevara et al. (2012) extended their voxel clustering approach to increase anatomical

correspondence by incorporating a white matter atlas. First, agglomerative voxel clustering

is performed until many thousand, clustered voxels remain. This multitude of clusters is

then classified using a manually labeled white matter atlas, derived from a set of clustered

datasets. A different approach for an anatomically correct extraction of white matter fiber

bundles was proposed by Yendiki et al. (2011) with the TRACULA framework. Instead of using

cluster analysis to retrospectively bundle fiber tracts from whole brain tractography datasets,

TRACULA aims to reconstruct bundles separately during the fiber tracking itself. Hereby,

probabilistic tractography is used to reconstruct only the tracts of interest by restricting the

tracking using anatomically a-priori-defined regions of interest as defined by Wakana et al.

(2007).

Besides the employed algorithms, cluster analysis also depends fundamentally on the

employed similarity measures that define the criteria to distinguish fiber tracts. Popular

measures such as theHausdorff distance (Moberts et al., 2005), the Chamfer distance (Corouge
et al., 2004) or shape-based similarity measures (Batchelor et al., 2006) are often used, but

neglect partially overlapping (Wassermann et al., 2010) or incomplete fibers. To take into

account partially overlapping tracts, Wassermann et al. (2010) proposed a mathematical

framework that modeled tracts and fiber bundles as Gaussian processes in voxel space. In

Wassermanns framework cluster are successively formed and the Gaussian processes of tracts

are merged in each iteration. This kind of processing has some resemblance to the presented

atlas-guided clustering.

Finally, the scalability of the clustering framework was analyzed with respect to the number

of employed CPU cores. The results revealed that the computationally most demanding

parts are the computations of fiber tract similarities, while clustering with CATSER itself

is quite fast. An in-deep analysis demonstrated that the clustering framework enables fast

processing with minimal computational overhead. Even when all CPU cores of a system are

employed, the achieved speedup is nearly optimal. However, the results also indicate that

speedup of the framework depends on the utilized similarity measure. This was confirmed

by additional experiments, which revealed that a reduced speedup for certain similarity

measures is primarily related to the computer system’s memory management. It can only be

assumed that the degraded multiprocessing efficiency is the result of a memory bandwidth

bottleneck because of the system’s inability to handle excessive memory (de-) allocations

that may occur during the computation of certain similarity measures. To minimize such

performance degradation, memory (re-) allocation during the computation of similarities

has to be minimized. Although the presented framework already offers good performance, an

additional gainmay be achieved by developingmore sophisticated algorithms for determining

fiber tract similarity. To investigate the prospects of alternative hardware architectures, the

computation of the Hausdorff distance was implemented for graphics processing units (GPUs)
that are based on a stream processing architecture (Owens et al., 2008; NVIDIA, 2010).

By using different GPUs systems for the computation of the similarities, the achievable

performance was assessed and compared to processing with conventional multi-core CPU

systems. Even though GPU systems demonstrated their potential to reduce the processing

time notably, they are not suited for complex similarity measure that contain conditional

statements. Due to the conditional statements, branching and stalling of processing cores is
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inevitable and degrades processing performance. Besides the computation of similarities on

GPU systems, it might also be worthwhile to develop and investigate GPU-aided clustering

methods.Theymay be used to replace the clustering of the random sample (see Figure 3.2, steps

3–7) with an alternative, more efficient clustering method. In the future, this may ultimately

help to achieve some kind of real-time clustering.

9.2 Quantitative analysis of fiber bundles

Alterations in diffusivity are often indicators for structural changes that are related to either

natural or pathological causes. To assess altered diffusion in the white matter microstructure, a

novel method for quantitative group-based analyses was introduced in this thesis (see part III).

With the presented approach, diffusion properties (e.g., FA, ADC) are not studied in the whole

brain, but across individual bundles of interest (BOI).The clustering framework is thereby used

to automatically partition the fiber tracts of multiple datasets into bundles that correspond

to known anatomic white matter structures (see Part II). In order to prevent normalization-

induced interpolation of quantitative values of the diffusion parameters at the boundaries of

tissue structures, these values are projected onto the tracts before spatial normalization1. As

fiber tracts are defined by real-valued points in 3D space, the spatial normalization is only

a coordinate transformation that changes the course of the tracts but preserves the values

that are attached to the tract points. For the individual voxel-wise analysis of each bundle
of interest, the attached values are gridded separately for each bundle before the subsequent

statistical analysis, thereby avoiding interpolation of values from different, adjacent bundles.

During the individual analysis of each bundle of interest, only corresponding fiber bundles
from all datasets of the group are used. This suppresses contributions of voxels that do not

belong to the analyzed white matter structures, thereby minimizing the negative influence of

other structure on the statistical voxel-wise analysis.

With respect to other techniques for quantitative analysis (see section 2.5), the presented

method can be considered a hybrid fiber bundle-driven technique (FDT). It is a comprehensive

approach that aims to improve conventional analyses techniques (VBM (Ashburner and

Friston, 2000), TBSS (Smith et al., 2006)) by incorporating additional information about

subject-specific white matter anatomy. Like VBM, the presented technique performs a voxel-

wise analysis, but uses subject-specific fiber bundles to delineate regions for the statistical

analysis. With VBM, different tissue types and anatomical structures are not considered

adequately, which often results in statistical errors that are foremost notably at tissue bound-

aries. With the presented FDT approach, however, each BOI is processed separately and only

anatomically corresponding fiber bundles from all datasets are used.

The complications with VBM culminated in the development of TBSS, which performs the

statistical analysis along an average FA skeleton. The statistical analysis of TBSS is notably

more robust compared to VBM, but is also restricted to the white matter skeleton, which

represents only the most prominent area of the fiber bundles, extracted from the averaged

FA maps of all datasets. Alterations that occur outside the FA skeleton or in the periphery

1The spatial normalization transfers the individual datasets to the common template space.
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of a white matter structure may remain undetected. With the presented fiber bundle-driven
technique, peripheral regions can still be investigated whilst any negative influence of other,

unrelated structures on the analysis is prevented.The introduced FDT approach can essentially

be considered a middle ground between VBM and TBSS that combines the benefits of both

methods.

Compared to other fiber bundle-driven techniques that can only be used to study diffusion

along the course of the BOI’smean tract (see sections 2.5 and 7.1 for an overview), the presented

FDT technique has the merit that the analysis of the BOI is not restricted to tubular structures

but can be performed with fiber bundles of arbitrary shapes.

While the presented technique is an initial step to enhance quantitative analyses by incorpo-

rating complementary anatomical information, limitations and challenges still exist. As fiber

bundles are utilized as additional anatomical information, the analysis is restricted to white

matter structures and processing is more complex compared to conventional techniques (e.g.,

VBM, TBSS). For the presented technique, tractography is necessary to reconstruct the white

matter fiber network, before the obtained fiber tracts are grouped into bundles. The analysis is

thereby performed on the basis of fiber bundles and thus relies on the correctness of extracted

tracts, which is in return governed by the utilized tractography algorithm. If the course of

the tracts does not represent the underlying white matter structure, potential tracking arti-

facts (e.g., tracts that connect unrelated regions) may introduce additional interpolation of

quantitative values and may affect the subsequent analysis. By using advanced acquisition,

reconstruction and tracking methods, the quality of the reconstructed fiber network will

improve and ultimately benefit the analysis (see the previous section 9.1 for a more detailed

discussion on advanced reconstruction and tracking methods).

Besides fiber tracking, the subsequent grouping of tracts is essential for the statistical

analysis as it defines the bundles that are later analyzed. If the grouping into bundles fails, the

quantitative analysis cannot be performed. If extracted bundles are incorrect and/or contain

additional tracts, the quantitative analysis can usually still be performed but will be impaired

by interpolation effects from adjacent structures. While the grouping of the fiber bundles

can be performed with manual and (semi-) automatic techniques, automatic methods are

usually faster and less prone to errors due to the minimized user interactions (e.g., automatic

fiber clustering, see part II). In some cases however, when bundles only consist of few tracts,

the automatic extraction of bundles may fail (e.g., the CGH, see section 6.5.1). In such cases,

manual methods may be applied instead to still obtain bundles.

Like all automatic methods for quantitative analysis, the presented FDT approach relies on

spatial normalization to superimpose corresponding brain structures of different datasets and

to account for inter-subject variability of brain anatomy. For the analysis it is essential that the

investigated bundles are properly aligned and corresponding regions are actually compared.

If certain brain structures are not superimposed adequately, the quantitative analysis might

be problematic in these bundles. In order to cope with such cases, it might be feasible to use

bundle-wise coregistration in which the normalization is performed separately for correspond-

ing bundles of the different datasets. If bundle-wise normalization is performed in addition to

the conventional spatial normalization, small misalignments may be compensated even if the

spatial normalization worked well and already achieved good alignment. However, to utilize

a bundle-wise normalization, bundles have to be extracted in advance and the region that is
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occupied by the bundles has to be delineated in the 3D volumes of the datasets. If the bundle

delineation is insufficient this approach will most likely also fail and result in an inadequate

superimposition of bundles. Additional normalization errors may also be introduced as the

spatial normalization cannot use anatomical landmarks for guidance during bundle-wise

normalization.

In order to avoid interpolation effects due to the spatial normalization, quantitative values

of diffusion parameters are projected onto the fiber tracts prior to the normalization. For

the quantitative analysis, tracts are clustered, obtained fiber bundles are rasterized and the

values, still attached to the bundles, are gridded to a regular grid for each fiber bundle

individually (see section 7.2.1). In regions where multiple fiber compartments exist and

fiber bundles overlap, the bundle-wise gridding prevents the interpolation of values from

overlapping bundles (see section 7.4.2, first experiment). By investigating gridded FA values

that were attached before (FApre) and after spatial normalization (FApost), the occurrence of

normalization-induced interpolation effects was demonstrated by showing differences in the

distributions of analyzed values (cmp. section 7.4.2, second experiment). These effects were

thereby only shown indirectly by comparing differences between conventional gridding of

the whole dataset and bundle-wise gridding of individual bundles for FApre and FApost. The

obtained voxel value differences between conventional and bundle-wise gridding were larger

for FApre than for FApost, which is a strong indicator that these differences are truly the result

of interpolation due to the spatial normalization (see section 7.4.2).

Additional gridding-related differences were also observed for conventional and bundle-

wise gridding (see section 7.4.2, second experiment), which are the result of variations in

the tracts that were gridded with conventional and bundle-wise gridding. In voxels that are

occupied by tracts of multiple bundles, the number of tracts that contribute to the voxels

during bundle-wise gridding is reduced compared to the conventional gridding that takes

into account the different contributions of all tracts, irrespective to which bundle the tracts

belong to. Considering both interpolation effects, i.e., normalization-induced and gridding-

related interpolation of quantitative values, the question remains to what extent these effects

truly influence the subsequent statistical analysis. To investigate the impact of the spatial

normalization and the gridding on the analysis, additional experiments have to be performed

in future studies.

One further issue is related to the gridding resolution and the chosen tract-related param-

eters (i.e., number of tracts, distance between tract points, see sections 7.3.1 and 7.4.1). In

order to preserve quantitative values, the number of tract tracts and the distance between

tract points has to be chosen adequately depending on the grid resolution. With respect to the

tract point distance, one has to consider that the analysis is not performed in native space but

in the atlas space. As the normalization results in a coordinate transformation that changes

the course of the tracts and thus the distance between tract points, it might be necessary to

reduce the tract point distance to avoid misrepresentation of quantitative values in the atlas

space.

As fiber bundles are instrumented for the presented quantitative analysis technique, it is

inevitable to discuss the resolution that is used for the voxel-wise statistical analysis. Tracts of

the fiber bundles are defined by real-valued points in 3D space, which makes it mandatory to

rasterize the tracts and grid the attached values to a regular grid (step 5 in Figure 7.3) prior to
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the statistical analysis (step 7 in Figure 7.3),The rasterization of the tracts can be performed for

arbitrary resolutions and implicitly defines the resolution for which the subsequent statistical

analysis is performed. However, which gridding resolution is optimal for the analysis is

debatable. While an analysis with a resolution that is lower than the resolution in the native

space of the datasets is usually not desired2, a higher resolution may help to improve the

delineation of regions with statistically significant differences (see section 7.4.2). In practice,

however, very high resolutions (e.g., 0.4mm3 isotropic resolution) are hardly suitable, as

higher resolutions requires more tracts as well as shorter tract point distances to prevent a

misrepresentation of quantitative values after gridding (see section 7.4.1). As the projection of

values onto the tracts is performed in native space, it is unlikely that a substantially higher

gridding resolution will aid the statistical analysis in any other way than to improve the

delineation of fiber bundles. However, if super resolution techniques are employed (e.g., tract
density imaging (Calamante et al., 2011)) or other contrasts (e.g., T1, T2) are used that have

a higher resolution than the conventional DTI on which the fiber tracking is based on, the

statistical analysis should also be performed with a high resolution to preserve to original,

high resolution.

To lower the overall processing time, it might be feasible to reduce the number of tracts in

the datasets. However, considering the dependency on the parameters (see section 7.4.1) and

the previously observed gridding-related interpolation effects (see section 7.4.2 and above),

tracts should not be removed randomly as this might culminate in additional gridding errors

if tracts are removed from regions where few tracts exist. Instead, tracts should be removed

if they traverse through regions that contain plenty of tracts. However, if such a density-

based tract removal scheme is applied, subsequent analysis that aim to investigate density

differences will be rendered invalid and will most certainly fail to detect differences. Consider

for example the study by O’Donnell et al. (2009) who found differences in the number of the

tracts between the CGC of the left and right hemisphere. In such a case, it is most likely that a

density-based removal of tracts will remove tracts from bundles that consist of many tracts,

thereby removing differences that would have been observed otherwise.

With the presented method developed in this thesis, the statistical analysis is performed

separately for each fiber bundle to detect statistically significant differences in diffusion

properties between two or more groups of subjects (e.g., patients vs. healthy controls). During

the analysis, adequate statistical hypothesis tests have to be performed in all voxels that are

occupied by the bundle of interest to determine if encountered differences between both

groups are statistically significant. To guarantee that results are valid, one has to consider that

the number of datasets that contribute to each voxel fluctuates with its location in the bundle

(see section 7.2.5). In some voxels, the requirements for a certain statistical hypothesis test

might not be satisfied, rendering the tests in these voxels invalid. Instead of classical tests that

are only based on assumptions about the probability distributions (e.g., Students t-test, z-test),
exact hypothesis tests may be more appropriate to be used for the statistical analysis (e.g.,

permutation tests).

2Though it may be considered some kind of smoothing due to the occurring interpolation.
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9.3 Applications

The applicability of the presented fiber bundle-driven technique for quantitative analysis was
tested by conducting two studies that investigated diffusion-associated hemispheric differences

in white matter bundles of 46 healthy volunteers (study 1) and 15 schizophrenic patients (study

2, see chapter 8). For both studies, the processing was almost identical. To account for the

fewer subjects in study 2, the significance level was adjusted to p < 0.05. Though both initial

studies only explored diffusion differences between cerebral hemispheres, the technique can

also be used to detect alterations of diffusion in white matter bundles of both hemispheres

between groups of subjects or subgroups of patients.

In both studies, noticeable differences in diffusion were found between corresponding

bundles of the left and right hemisphere. After correcting for multiple comparisons with the

false discovery rate – FDR (Benjamini et al., 2006), results of both studies were still statis-

tically significantly different in regions of the gyrus part of the cingulum (CGC), uncinate

fasciculus (UNC), inferior fronto-occipital fasciculus (IFO) and the temporal part of the su-

perior longitudinal fasciculus (SLFt). In healthy volunteers, statistically significant differences

were also observed in regions of the corticospinal tract (CST). In the CST of schizophrenic

patients, however, differences were not significant after correcting for multiple comparisons.

Nevertheless, the result indicates at least a trend of differences in quantitative values between

the CST of the left and right hemisphere.

Overall, both studies found similar differences in the diffusion parameters between bundles

of the left and right hemisphere. Differences between the two studies were primarily related

to variations in the spatial location and the extent of certain statistically significantly different

regions (see sections 8.1.3 and 8.2.3). Quantitative values that were extracted from these regions

were almost identical for healthy volunteers and schizophrenic patients. Even though the

significance level was set to p < 0.05 for study 2, the extent of the significant regions was

consistently smaller in schizophrenic patients compared to healthy volunteers. This might be

an indication that hemispheric asymmetries are less pronounced in schizophrenic patients,

which is supported by a study of Park et al. (2004), who also investigated hemispheric diffusion

differences between healthy volunteers (N = 32) and schizophrenic patients (N = 23) and

found similar results. Nevertheless, additional investigations (e.g., with larger group sizes)

are certainly necessary to draw any final conclusions whether these observed differences are

specific for schizophrenia. The large difference in the number of healthy volunteers (N = 46)

and schizophrenic patients (N = 15) may also explain why the extent of statistically significant

different regions was consistently smaller for schizophrenic patients.

Overall, detected differences and non-existing differences between healthy volunteers

and schizophrenic patients are in line with the literature. However, as observed by Shenton

et al. (2001) and Kubicki et al. (2007), in their review articles, results for schizophrenia are

heterogeneous and for every study that found differences between healthy volunteers and

schizophrenic patients another study exist that found none.

At least for healthy volunteers, differences in diffusion parameters between bundles of

the left and right hemisphere are obviously not the product of pathological processes but

occur naturally due to differences at a (micro-) cellular level. Considering the hemispheric

asymmetry and bilateralization in both structure and function that have been reported over
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the last 150 years (see section 8.1.1), it is only reasonable that such profound differences

manifest itself in altered diffusivity. Even though Miller (1996) proposed a hypothesis that

related functional differences to alterations in size and structure of axons, a study in rats by

Partadiredja et al. (2003) found no axonal differences between the left and right hemisphere

that supports this hypothesis. However, the study was only performed in rats which might

explain the negative results. In contrast, Highley et al. (2002) performed a post mortem
study and investigated the uncinate fasciculus (UNC) in healthy controls and schizophrenic

patients. They observed no significant differences in the UNC between schizophrenic patient

and healthy controls, but found, in both groups, hemispheric asymmetries and a larger UNC

in the right hemisphere that consisted of 33% more fibers, indicating a potentially greater

right-sided connectivity of the UNC.Their observations are overall in line with the results for

the UNC in both studies of this thesis that detected higher fractional anisotropy (FA) and axial
diffusivity (AD), but also lower radial diffusivity (RD) (see above and sections 8.1.3, 8.2.3). Here,
the observed lower RD in the right hemisphere may indicate higher packing density of axons

in the UNC, while the higher AF and AD support the hypothesis of greater connectivity in the

right UNC. Histological studies of hemispheric differences are unfortunately rare for other

bundles. Nevertheless, the observed differences in diffusion parameters between bundles of

the left and right hemisphere (both studies) as well as the identified patterns of hemispheric

asymmetry are in accordance with the literature (Fillard et al. (2003); Park et al. (2004); Gong

et al. (2005); O’Donnell et al. (2009) andThiebaut de Schotten et al. (2011)). The SLFt findings,

for example, are supported by two studies. While Eluvathingal et al. (2007) and Catani et al.

(2007) observed lower left than right FA in the anterior segment of the SLFt, Catani et al.

(2007) also found higher left than right FA in its long segment (see Figure 8.6). By considering

the locations of the statistically significantly different regions (R1 = anterior segment and R2

= long segment), these findings are in good agreement with the observations in this thesis

(see sections 8.1.3 and 8.2.3).

Interpretation of quantitative diffusion tensor-based values (e.g., FA, ADC, AD, RD),

however, is not free of pitfalls and has to be performed cautiously (Wheeler-Kingshott and

Cercignani, 2009). While these parameters characterize important properties of the diffusion

tensor, they can only be related to underlying biophysical properties (e.g., fiber density, axonal

myelination) if the diffusion tensor model is valid. In regions of multiple fiber compartments

(e.g., crossing fibers), the assumption of Gaussian diffusion is no longer valid and the diffusion

tensor model breaks down. To account for this problem, the different fiber configurations

have to be separated and analyzed individually (see the method by Caan et al. (2010)) or more

advanced techniques, such as high angular resolution diffusion imaging (see section 9.1) have

to be used to probe the diffusion microstructure and resolve complex fiber configurations.

Further approaches that use a cone of uncertainty to characterize directional uncertainty

of eigenvectors are also well suited (Koay et al., 2008; Jeong and Anderson, 2008; Wheeler-

Kingshott and Cercignani, 2009). In the studies conducted in this thesis (see above), the

investigated fiber bundles traversed, for the most part, regions with one principal direction of

diffusion and no fiber crossings. Even though the pitfalls stated before have to be considered

carefully, they are only of minor importance for the presented studies.

155



Chapter 9 Discussion and conclusion

9.4 Conclusion

The present thesis introduced novel concepts and promising strategies for the cluster anal-

ysis of large tractography datasets and the quantitative analysis of diffusion parameters in

multi-subject imaging studies. With CATSER (cluster analysis through smartly extracted rep-
resentatives), a new method was presented that enables fully automated grouping of fiber

tracts into bundles. The approach uses random sampling of tracts to exploit the intrinsic data

redundancy and partitioning to separate the data into manageable pieces. The sensitivity to

outliers is reduced by incorporating local outlier factors that provide insight into the structural
organization of the data. Moreover, multithreaded parallel programming is applied to improve

cluster analysis performance and to achieve grouping of tracts in a short time. By including a

white matter atlas, the grouping of tracts is enhanced and bundles are obtained that represent

the underlying microstructure more correctly. The functioning of the introduced cluster

analysis framework was investigated and its performance in a multiprocessing environment

was demonstrated.

As fast and consistent extraction of fiber bundles supports multiple medical applications, its

benefit for quantitative analyses of diffusion properties was demonstrated by introducing fiber

bundles as additional anatomical information into a new fiber bundle-driven technique. With

this new approach, parameters of diffusion are analyzed quantitatively in individual bundles

while simultaneously restricting the analysis to voxels only belonging to the fiber bundles of
interest. This incorporation of subject-specific information about white matter structures facil-

itates the minimization of interpolation effects and furthermore avoids the adverse influence

of different, adjacent structures on the statistical analysis. It ultimately enables the analysis

of diffusion properties in an unprecedented manner. The potential of this novel technique

was demonstrated with two experimental studies that investigated hemispheric differences of

diffusion-related parameters in healthy volunteers and schizophrenic patients. Extending the

presented approach to enable fiber bundle-based quantification of other biomarkers, such

as T1, T2, R2, R
∗
2 or quantitative susceptibility mapping (Schweser et al., 2011, 2012), will be a

promising, complementary approach to gain insight into diverse disease states of the human

brain that are associated with white matter alterations.

With the introduction of these new techniques, further steps were taken to make cluster

analysis feasible for a variety of applications and to enhance quantitative analysis by incorpo-

rating additional information about white matter microstructure. As the introduction of these

techniques opened new possibilities to investigate white matter diseases and characterize

abnormal and pathological conditions, further studies are already being planned.
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Al-Shuhari F,GüllmarD, LöbelU,RosC, HusainR, Reichenbach JR, StenzelMandMentzelHJ

(2013)Diffusion tensor imaging (DTI) bei Kindern und JugendlichenmitNeurofibromatose

Typ I. In: Jahrestagung der Gesellschaft für Pädiatrische Radiologie (GPR), volume 50.
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