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Abstract

The utility of composite error-function velocity profiles for the modeling of
gas–liquid shear layers is examined by comparing temporal stability results
from such approximate error-function profiles with results from the exact ve-
locity profiles based on the two-fluid boundary layer equations. The stability
analysis is restricted to two-dimensional perturbations. The two-fluid bound-
ary layer equations are solved numerically using a shooting method in each
fluid layer. The composite error-function profile is constructed by matching
displacement thicknesses with the exact solution. With given fluid properties,
the displacement thicknesses depend on the asymptotic velocity ratio of the
liquid and gas stream in the laboratory frame. For di¤erent sets of fluid prop-
erties, the maximum growth rates of the Kelvin–Helmholtz instability show
good numerical agreement between the exact and the approximate velocity
profiles, especially when the asymptotic velocities of the gas and liquid phase
are close.

1. Introduction

The instability of parallel shear flow is of considerable interest from a funda-
mental viewpoint and because of its importance for flows in industry and in
the environment. The present paper is concerned with the linear instability of
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two-phase shear (mixing) layers, which is important for the atomization of
fuels in thermal engines. In atomization experiments and applications, one
typically prepares approximately uniform liquid and gas streams with dif-
ferent velocities, which are brought into contact at a nozzle exit or the edge
of a splitter plate. Wavy perturbations of the liquid–gas interface grow with
increasing downstream distance from the nozzle, and are then drawn out into
liquid sheets. Three-dimensional destabilization of these sheets turns them
into ligaments, which eventually break up into droplets [1].

Instead of analyzing the spatially growing perturbations, the present work
takes the simplest approach to the linear instability. The base flow is assumed
parallel and invariant with respect to the streamwise coordinate. Wavy per-
turbations are assumed as Fourier modes in the streamwise coordinate, and
their temporal growth is analyzed. This approach can be adopted as temporal
stability results for sinusoidal streamwise perturbations are related to spa-
tially growing perturbations by Gaster’s transformation, provided the growth
over one oscillation period of the unstable wave is su‰ciently small [2]. The
consistency of the parallel base flow assumption requires that the cross-
stream velocity component is insignificant compared with the streamwise
velocity, and that the predicted unstable wavelength is substantially smaller
than the downstream distance over which the base flow changes significantly.
Both requirements may be met when the Reynolds number (based on the
downstream distance from the nozzle) is large, in which case the base flow is
amenable to boundary layer theory. The base flow should then also approach
a self-similar velocity distribution due to the absence of an external length-
scale. Lock [3] has derived ordinary di¤erential equations for this self-similar
velocity distribution from the two-fluid boundary layer equations, which
evolves from a piecewise constant velocity profile at the origin (nozzle exit).
This is shown schematically in Figure 1.

As in the case of one-phase free shear layers, there is no analytical solution
for the self-similar velocity distribution. However, an analytical tanh-profile
serves as a good approximation of the base flow for stability calculations in
the one-phase problem [4]. For this reason, analytical expressions for the
base flow have been used in recent works [5–7] instead of Lock’s exact solu-
tion. The analytical expressions are error functions for the liquid and gas
phase. The argument of the error function is scaled with a certain boundary
layer thicknesses in each phase, and the zero is located on the interface,
i.e., these functions are centered on the interface. Concerning the choice of
these analytical expressions, we remark that error functions are approximate
solutions to the two-phase boundary layer equations far away from the
interface [3] but generally not centered there, and that error functions with
time-dependent boundary layer thickness are solutions for parallel flow with
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cross-stream momentum di¤usion in the so-called first Stokes problem [8],
i.e., the flow next to an impulsively started flat boundary.

The goal of the present paper is to demonstrate the utility of composite error-
function profiles for the base flow in the temporal stability analysis of two-
phase shear layers. For this purpose, we shall compare stability results for
composite error-function profiles with results for the profiles from Lock’s
theory. We note that the publications [5–7] were all concerned with the linear
stability of the composite error-function velocity profiles, but they did not
study the profiles from Lock’s theory. Yecko et al. [5] started the investiga-
tion by analyzing the instability of two-dimensional perturbations, and Boeck
and Zaleski [7] built on this by examining the e¤ects of viscosity through
viscous and inviscid stability computations. Yecko and Zaleski [6] go beyond
traditional stability analysis in terms of eigenvalues by analyzing optimal
temporal growth of three-dimensional perturbations [9].

The present paper is concerned with a traditional stability analysis of two-
dimensional perturbations. In the next section, we formulate the boundary
layer equations and describe our numerical method for solving them. We
then compute the displacement thicknesses of the two boundary layers next
to the interface in each fluid for the exact velocity profile, and define the
corresponding composite error-function profiles with identical displacement
thicknesses. We also consider the variation of the displacement thicknesses
with the fluid properties and the asymptotic velocities far away from the in-
terface. In the final section, the temporal stability problem is formulated and
stability results for the exact profiles and corresponding approximate profiles
are compared.

U1

U1

U2 U2

y

x

fluid 2

fluid 1

Figure 1 Sketch of the velocity distribution from two-fluid boundary layer analysis.
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2. Two-fluid boundary layer equations

The boundary layer equations for the two-fluid problem are [3]

u
qu

qx
þ v

qu

qy
¼ n1

q2u

qy2
ðy > 0Þ; u

qu

qx
þ v

qu

qy
¼ n2

q2u

qy2
ðy < 0Þ; ð1Þ

where the two fluids are labeled 1 and 2, and n denotes the kinematic
viscosity. The two velocity components u and v satisfy the two-dimensional
continuity equation

qu=qxþ qv=qy ¼ 0;

and can be represented by a streamfunction c with

u ¼ qc

qy
; v ¼ � qc

qx
ð2Þ

in each fluid. For the similarity solution, one introduces the nondimensional
similarity variables

h1 ¼ y

ffiffiffiffiffiffiffi
U1

n1x

r
ðy > 0Þ; h2 ¼ y

ffiffiffiffiffiffiffi
U1

n2x

r
ðy < 0Þ; ð3Þ

which are then used in the ansatz

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xU1n1

p
f1ðh1Þ ðy > 0Þ; c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xU1n2

p
f2ðh2Þ ðy < 0Þ ð4Þ

for the streamfunction in each layer. The velocities U1 and U2 are the asymp-
totic values of the velocities of the flows far away from their interface (cf. Fig-
ure 1). Using the streamfunction ansatz in the boundary layer equations (1),
one obtains the ordinary di¤erential equations

2
d3f1

dh3
1

þ f1
d2f1

dh2
1

¼ 0 ðh1 > 0Þ; 2
d3f2

dh3
2

þ f2
d2f2

dh2
2

¼ 0 ðh2 < 0Þ: ð5Þ

Each of these nonlinear, third-order equations requires three boundary condi-
tions. One condition is that the dividing streamline c ¼ 0 coincides with the
interface y ¼ 0, i.e., f1ð0Þ ¼ f2ð0Þ ¼ 0. Two other conditions on the interface
are the continuity of the tangential velocity u and the shear stress, which take
the form

f 0
1 ð0Þ ¼ f 0

2 ð0Þ;
ffiffiffiffiffiffiffiffiffi
r1m1

p
f 00
1 ð0Þ ¼ ffiffiffiffiffiffiffiffiffi

r2m2

p
f 00
2 ð0Þ; ð6Þ
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where r and m denote the density and the dynamic viscosity. The final two
conditions prescribe the limiting values of the streamwise velocity component
u far away from the interface, i.e.,

f 0
1 ðlÞ ¼ 1; f 0

2 ð�lÞ ¼ l ¼ U2

U1
: ð7Þ

We solve the equations for f1 and f2 by integrating them numerically with
initial values at the interface h1 ¼ h2 ¼ 0. Besides the given values f1ð0Þ ¼
f2ð0Þ ¼ 0, we prescribe values for f 00

1 ð0Þ, f 00
2 ð0Þ, and f 0

1 ð0Þ ¼ f 0
2 ð0Þ. For fixed

f 0
1 ð0Þ ¼ f 0

2 ð0Þ, we adjust f 00
1 ð0Þ, f 00

2 ð0Þ by fixed point iteration such that the
asymptotic values for f 0 are met far away from the interface in each fluid.
This way, all conditions are satisfied except for the shear stress continuity.
The zero in the shear stress di¤erence

ffiffiffiffiffiffiffiffiffi
r1m1

p
f 00
1 ð0Þ � ffiffiffiffiffiffiffiffiffi

r2m2
p

f 00
2 ð0Þ is found

through bisection with respect to the remaining independent variable f 0
1 ð0Þ,

which represents the dimensionless interface velocity. For the numerical inte-
gration we use a straightforward Adams–Bashforth method.

3. Approximate velocity profiles

The streamwise velocity from the boundary layer equations is given by
u ¼ U1 f

0
1 ðh1Þ for y > 0 and u ¼ U1 f

0
2 ðh2Þ for y < 0. For the stability prob-

lem we consider the profile UðyÞ of the streamwise velocity at a fixed position
x > 0. This profile will be approximated by error functions centered at the
interface, namely by

UaðyÞ ¼ ðU1 �U0Þ erfðy=d1Þ þU0 ðy > 0Þ; ð8Þ

UaðyÞ ¼ ðU0 �U2Þ erfðy=d2Þ þU0 ðy < 0Þ; ð9Þ

where U0 denotes the velocity at the interface. The boundary layer thick-
nesses d1 and d2 are chosen such that the approximate profile UaðyÞ has the
same displacement thickness in each fluid as the exact solution UðyÞ. The dis-
placement thicknesses in the fluids 1 and 2 are defined by

1

U1 �U0

ðl
0

ðU1 �UðyÞÞ dy;
1

U0 �U2

ð0

�l
ðUðyÞ �U2Þ dy: ð10Þ

Ideally, the approximate solution Ua should also satisfy the shear stress con-
tinuity condition on the interface, i.e., m1ðU1 �U0Þ=d1 ¼ m2ðU0 �U2Þ=d2. We
can judge the quality of the approximation from the shear stress ratio q at the
interface given by
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q ¼ m1

m2

d2

d1

U1 �U0

U0 �U2
¼ ms

n
; m ¼ m1

m2

; n ¼ d1

d2
; s ¼ U1 �U0

U0 �U2
: ð11Þ

For the definition of q we have introduced the dimensionless ratios m, n, and
s for the dynamic viscosities, boundary layer thicknesses, and asymptotic
velocities (in the co-moving reference frame with velocity U0). We also intro-
duce r as the density ratio r ¼ r1=r2.

Figure 2 shows the dependency of n and q on the velocity ratio l in the labo-
ratory frame for two sets of parameters r and m. Shear stress balance is real-
ized for q ¼ 1. The largest departure of q from unity occurs for l ! 0. The
values of n are of order unity even though m and r are fairly small compared
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Figure 2 Ratio n of boundary layer thicknesses (a) and ratio q of gas and liquid shear stresses
on the interface (b) as functions of the asymptotic velocity ratio l for parameters correspond-
ing approximately to air/water ðr ¼ 0:001, m ¼ 0:01Þ and hydrogen/liquid oxygen ðr ¼ 0:02,
m ¼ 0:025Þ.
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with unity. Except for l ¼ 0, di¤erences between the numerical solution UðyÞ
and the approximation UaðyÞ are hardly visible when plotted. For this rea-
son, we do not include plots of UðyÞ.

4. Temporal stability problem

The temporal stability is governed by the Orr–Sommerfeld equations, which
take the nondimensional form [5]

ðU � cÞðD2 � a2Þf1 �D2Uf1 ¼ 1

iaRe
ðD2 � a2Þ2f1 ðy > 0Þ; ð12Þ

ðU � cÞðD2 � a2Þf2 �D2Uf2 ¼ r

m

1

iaRe
ðD2 � a2Þ2f2 ðy < 0Þ: ð13Þ

In these equations, U represents either the exact velocity profile UðyÞ or the
approximate velocity profile UaðyÞ; and f denotes the y-dependence of the
streamfunction perturbations

C1ðx; y; tÞ ¼ expðiaðx� ctÞÞf1ðyÞ ðy > 0Þ; ð14Þ

C2ðx; y; tÞ ¼ expðiaðx� ctÞÞf2ðyÞ ðy < 0Þ ð15Þ

to the base flow. The symbol D denotes the derivative with respect to the
coordinate y, a denotes the wavenumber, and c the complex phase velocity.

The boundary conditions at the interface y ¼ 0 are derived in [10]. They com-
prise the continuity of the normal and tangential velocity, i.e.,

f1ð0Þ ¼ f2ð0Þ; Df1 þDUð0þÞ f1ð0Þ
c

¼ Df2ð0Þ þDUð0�Þ f2ð0Þ
c

; ð16Þ

and the continuity of normal and tangential stress, i.e.,

� a2

cWe
f1 ¼ � 1

r
ðcDf2 þ f2DUÞ � 1

m

1

iaRe
ðD3 � 3a2DÞf2

þ cDf1 þ f1DU þ 1

iaRe
ðD3 � 3a2DÞf1; ð17Þ

m D2 þ a2 þ 1

c
D2U

� �
f1 ¼ D2 þ a2 þ 1

c
D2U

� �
f2: ð18Þ
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Notice that these dimensionless equations and boundary conditions are based
on the length and velocity scales of fluid 1, i.e., on d1 and U1 �U0. The Rey-
nolds number Re and the Weber number We are defined as

Re ¼ r1ðU1 �U0Þd1

m1

; We ¼ r1ðU1 �U0Þ2d1

s
; ð19Þ

where s denotes the interfacial tension. The Orr–Sommerfeld equations rep-
resent a linear eigenvalue problem for c with given nondimensional velocity
profile U and given values for Re, We, the various ratios of material proper-
ties, and the wave number a. It is solved numerically using a Chebyshev col-
location method [11]: One assumes additional rigid walls at y ¼ �L2, y ¼ L1

and expands the eigenfunctions f1ðyÞ and f2ðyÞ in Chebyshev polynomials
on the intervals ½0;L1� and ½�L2; 0�. The algebraic eigenvalue problem is ob-
tained by substitution of the expansions into the Eqs. (12) and (13) for f1 and
f2 and evaluation of (12) and (13) at collocation points chosen to ensure spec-
tral accuracy. For the solution of the resulting general algebraic eigenvalue
problem, we use the NAG library function F02GJF. Both L1 and L2 need
to be su‰ciently large to ensure that the results are independent of the choice
for these parameters.

In the following, the imaginary part of the complex eigenvalue c will be de-
noted by ci. The growth rates aci of the unstable modes are shown in Figure
3 as function of a for the parameters m and r used in Figure 2. The values for
m and r correspond approximately to the fluid combinations air/water and
hydrogen/liquid oxygen, which are used in laboratory atomization experi-
ments and in cryogenic rocket engines, respectively. The chosen Reynolds
and Weber numbers are also in the typical range for these applications. The
diagrams compare results for the exact and approximate velocity profiles U

and Ua for l ¼ 0 and l ¼ 0:9. We see from Figure 3(a) and 3(c) that there is
a noticeable di¤erence in the growth rates for l ¼ 0 between the exact and
approximate profiles, whereas there is no visible di¤erence for l ¼ 0:9 in
Figure 3(b) and 3(d). The improving agreement between the growth rates
from exact and approximate profiles with growing l is in line with the obser-
vation qðlÞ ! 1 as l ! 1 shown in Figure 2(b). We can conclude that the
error-function approximation works very well in this limit. Another interest-
ing observation is that the thickness of the boundary layer in fluid 2 does not
seem to have much e¤ect on the results. This is demonstrated by Figures 3(b)
and 3(d), where the curves for l ¼ 0 and l ¼ 0:9 are fairly close although the
thickness ratio n di¤ers by a factor of three or more. The reasons for this
behavior are discussed in [7].
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