Rising Energy Prices and Advances in Renewable Energy Technologies

Sherief Emam & Thomas Grebel

July 2014
Rising Energy Prices and Advances in Renewable Energy Technologies

Sherief Emam* Thomas Grebel

Abstract: In this paper we investigate the impact of rising energy prices on technological progress in the market for renewable energies. We use patent data of OECD countries from 1970 to 2010 and test the impact of oil prices on the innovative success of countries; R&D, investment activities, electricity consumption, etc. are used as control variables. We compare several models such as Pooled Mean Group (PMG), Mean Group (MG), Count data (CD) and Dynamic fixed effects (DFE) models to distinguish short and long-term effects. The preliminary results show that increasing energy prices seem to encourage innovation in renewable energy technologies.

Keywords: Renewable Energy, Heterogeneous Dynamic Panel Data, Technological Progress

JEL: Q55, C23

I. INTRODUCTION

This paper tries to provide evidence to the relationship between rising energy prices and technological progress in the market for renewable energies. The technology push and the demand pull approach, respectively, argue why we observe technological advances in industries. This still is an ongoing debate in the domain of evolutionary economics. The technology push argument claims that it is the advances in sciences that may induce the rate and direction of technological change in contrast to the demand pull approach which finds the drivers of technological

* Corresponding author: TU Ilmenau, Ehrenbergstr. 29, 98684 Ilmenau, Germany, e-mail: Sherief.emam@tu-ilmenau.de.
change in yet unsatisfied consumer needs. Both arguments received critique. The demand pull approach would be too broad as a concept to be useful. It would be inadequate to explain discontinuous change as the most important source of progress. Firms would not have sufficient capabilities to identify consumer needs, nor would they have the chance to choose from a ready-made stock of technological solutions to come to grips with consumer needs. It neglects the role of technological opportunities. The technology-push argument has been strongly criticized as it ignores the role of prices as incentive to invest in new technologies. With respect to technology policies, as Nemet (2009) points out, a consensus has evolved that both types of instruments: demand-pull and technology-push policies should be pursued as market conditions (to which the demand-pull argument relates to) and technological opportunities (the basis for the technology push argument) have to coincide in order to lead to technological progress. On these grounds, we will focus on the demand pull argument and try to find out whether increasing oil prices (changing market conditions), as indicator for a steadily increasing demand for energy and the general perception of dwindling fossil energy resources, make countries increase their innovative activities in order to boost technological progress in alternative renewable energy technologies. Our work draws to a large extent on Nesta et al. (2014), Johnstone et al. (2010) and Nemet (2009).

As in Johnstone et al. (2010) and Nesta et al. (2014) we apply negative binomial regression and extend our empirical exercise with estimators allowing for non-stationary heterogeneous panels suggested by Blackburne and Frank (2007), which allows, besides traditional fixed-effects estimation, also the estimation of the mean-group estimator (MG) (Pesaran et al., 1999) and the pooled mean-group estimator (PMG) put forward by Pesaran and Smith (1995). Thus we try to differentiate long-run and short-run effects.

In section II we refer to related work on the determinants of the technological progress in renewable energies. Section III presents the construction of our data and the methodological specifications we use. Results delivered by negative bino-
mall count data models will be discussed in section IV. These results will be com-
pared with the results of dynamic heterogeneous panel estimation in section V.
Section VI discusses primarily discusses shortcomings/caveats and concludes.

II. RELATED WORK AND RESEARCH QUESTION

Economic growth hinges on the disposability of energy. As Stern (2011) points out, energy scarcity is a main constraint for economic growth. The industrial revolution impressively showed that the invention of new technologies that drove eco-
nomic growth was based on the usage of fossil fuels. This was key to substitute human labor for automated labor and thus enhance economic growth. Ever since the world economy has been growing, and so has the consumption of fossil fuels. A side effect of the steady increase in demand for fossil fuels has been rising energy prices. Standard textbook economics tells us about the consequences of increasing (relative) prices: all market participants will adapt their behavior. If fossil fuels be-
come more expensive relative to non-energy goods, (1) the demand for energy should go down, as consumers adapt their behavior. They try to substitute energy-intensive goods for non-energy goods. Quite similarly, (2) the supply side will change its be-
havior as well. Producers will try to innovate on energy-efficient products and tech-
nologies. They try to find less expensive substitutes (Newell et al., 1999). Last not least, (3) policy makers will participate in this process, too. Legitimizing their inter-
ventions by market failure, they carry out reforms to foster renewable energy sources and, at the same time, try to fight negative externalities such as greenhouse gas emissions or the potential risks involved in nuclear waste as a by-product of electricity production. Hence, renewable energies should be attractive for all market participants: policy makers, consumers and suppliers. Renewable energies make us believe that they can be supplied at almost zero marginal costs and no negative ex-
ternalities. All what remains to be done is to develop and employ such new energy sources and to build the required infrastructure.
In traditional theory, markets should do the job, and as Newell et al. (1999) concludes, rising energy prices should eventually lead to increasing innovative activities. This hypothesis we want to test empirically in this paper to answer the following research question:

Research Question: Do rising oil prices induce technological progress in renewable energies?

Meanwhile, this topic of technological progress in renewable energies and its determinants have been investigated intensively. Johnstone et al. (2010) and Nesta et al. (2014) give an excellent overview to this strand of literature. By and large, there are two fundamental options to boost technological progress – and this we can already conclude from Newell et al. (1999): either leave it to the market (Nesta et al., 2014; Sanyal and Ghosh, 2012) or try to induce innovation by policy intervention (Nesta et al., 2014; Acemoglu et al., 2012; Johnstone et al., 2010). In many countries, market liberalization has intensified competition. Along with an increasing demand for renewable energy sources, due to a growing consumer awareness to environmental issues, innovative activity has risen. Many countries also carried out policy reforms to stimulate the innovation and adoption of renewable energy technologies (Johnstone et al., 2010; International Energy Agency, 2004). However, it is not obvious to what extent rising energy prices actually contribute to increasing innovative activities. If we can shed light on this, we will, at the same time, gain insights on the question how well the price mechanism and the market for energy work as a whole.

III. DATA

As dependent variable to measure innovative activity in renewable energy technology, we collected patent statistics from European Patent Office Worldwide Patent Statistics Database PATSTAT (EPO, 2012) and focused on patents related to wind power technologies? Oil prices were retrieved from the Federal Reserves Eco-
nomic Data (FRED) database. As further controls we included GDP, financial development funding, and electricity consumption all downloaded from the World Bank database. Research and development data stem from the OECD database. The time span of annual data covered ranges from 1970 to 2010.

Table I: DATA PROPERTIES AND SOURCES

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>Source</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PatNumb</td>
<td># of patents</td>
<td>PATSTAT 2012</td>
<td>counts</td>
</tr>
<tr>
<td>GDP</td>
<td>gross domestic product</td>
<td>World Bank DB</td>
<td>In Millions $</td>
</tr>
<tr>
<td>Fdev</td>
<td>financial development</td>
<td>World Bank DB</td>
<td>% of GDP</td>
</tr>
<tr>
<td>R&D</td>
<td>research and development fund-</td>
<td>OECD database</td>
<td>bn.$</td>
</tr>
<tr>
<td>OilPrice</td>
<td>oil price</td>
<td>Dow Jones & Company</td>
<td>Ind $</td>
</tr>
<tr>
<td>ElecConsump</td>
<td>Electrical Consumption</td>
<td>World Bank DB</td>
<td>MWh</td>
</tr>
</tbody>
</table>

A higher GDP stands for a country’s potential to generate technological progress in general. Industrialized countries manage to patent far more than less developed ones. As a further control we introduce financial development, which gives indications to the investment activity within a country. Financial development can be measured in various ways. The ratio of broad Money (M2) to GDP e.g. expresses the overall size of the financial intermediary of the country. Or, it can be expressed in terms of domestic credit to private sector to GDP (Hamdi et al., 2013; Fernandez and Galetovic, 1994; Calderón and Liu, 2003; Khan and Semlali, 2000). Due to missing data in the M2 indicator, we calculate financial development as the ratio of domestic credit of the private sector to GDP.

An increase in credit offered for private sector should lead to an increase in patents counts. R&D is included as a major input factor in generating technological
progress. Hence, a positive impact of R&D on patent counts should be expected. With the consumption of electricity patenting activities should also increase, as producers try to escape the shortage in its supply. Table I depicts the sources and units of our data.

<table>
<thead>
<tr>
<th>Table II: DESCRIPTIVE STATISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>PatNumb</td>
</tr>
<tr>
<td>GDP</td>
</tr>
<tr>
<td>Fdev</td>
</tr>
<tr>
<td>R&D</td>
</tr>
<tr>
<td>OilPrice</td>
</tr>
<tr>
<td>ElecConsump</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table III: CROSS-CORRELATION TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(1) PatNumb</td>
</tr>
<tr>
<td>(2) OilPrice</td>
</tr>
<tr>
<td>(3) GDP</td>
</tr>
<tr>
<td>(4) R&D</td>
</tr>
<tr>
<td>(5) Fdev</td>
</tr>
<tr>
<td>(6) ElecConsump</td>
</tr>
</tbody>
</table>

Descriptive statistics can be found in Table II. With respect to patents, we confined the analysis on all world-wide patents on wind power. Table III shows the pairwise correlations between dependent variable and all covariates. From visual inspection multicollinearity seems not to be a problem. We also perform a multicollinearity test with the variance inflated factor (vif) and did not find multicollinearity among regressors.
In the following, negative binomial regressions provide first preliminary results with respect to our research question, whether oil prices have an effect on innovative activities among in respective countries.

IV. NEGATIVE BINOMIAL REGRESSIONS

For a start, negative binomial regression were run. The dependent variable is count data and because of over dispersion, negative binomial regressions had to be preferred to a poisson model. We introduce variables sequentially to see whether there are changes in the estimates, when further covariates are considered. All covariates are instrumented by their one year lag. All models in this table are fixed-effects models taking a full set of year dummies into account. Model (1) in Table IV is a univariate regression of PatNumb on OilPrice. The correlation suggests a positive relationship between rising oil prices and patent counts. With GDP as a first control, OilPrice remains positive and significant, and so does GDP. Model (3) takes additional control variables into account, that is, R&D, Fdev, and ElectConsump. The coefficients of OilPrice and GDP change little, they are positive and the correlation is significant to the 1% level.

From the three variables introduced only Fdev has a significant, positive effect on the number of patents generated in a country. R&D and Fdev, however, are insignificant. In model (4) all variables are logged. The fixed-effect model applied here does not change the basic relationship between the dependent variable and the independent variables. Model (5) differs from model (4) in this regard, that all logged variables are in differences, in other words, model (5) regresses lagged growth rates. The interesting observation in this model is that all variables which are significant in the previous models become insignificant, whereas R&D and ElecConsump all of a sudden have a significant effect, a positive effect with respect to R&D and a negative effect with respect to ElecConsump. A change in R&D funding has a positive effect on patent counts, the absolute amount of R&D does not.
The same holds for ElecConsump. An positive change in electricity consumption explains a decreases in patent counts, the absolute value, however, does not.

We are aware that these results are very rudimentary. But what we can infer is that there are differences in the time patterns. An increase in R&D funding as short-term impulse may enhance patenting and a short-term positive change in electricity consumption seems to reduce patent counts. Models (1) to (3) suggest that there might be a positive long-term relationship between oil prices, GDP and patent counts. As most of these variables are cointegrated, a robust conclusion cannot be drawn from these results. Furthermore, spurious regression and endogeneity problems qualify these results even more. In order to face those problems, we apply dynamic heterogeneous panel models which offer alternative estimators in addition to the traditional fixed-effects estimator, i.e. the pooled mean-group estimator by Pesaran and Smith (1995) and the mean-group estimator by Pesaran et al. (1999) (Blackburne and Frank, 2007).
Table IV: REGRESSION 1: NEG. BIN (1-3), PANEL FIXED EFFECTS (4-5)

<table>
<thead>
<tr>
<th>Dependent Variable: PatNumb (model: 1-3) log (PatNumb) (model: 4-5)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OilPrice</td>
<td>0.038*</td>
<td>0.030***</td>
<td>0.025***</td>
<td>0.917***</td>
<td>-0.607</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.350)</td>
<td>(0.531)</td>
</tr>
<tr>
<td>GDP</td>
<td>0.003***</td>
<td>0.002***</td>
<td>0.397*</td>
<td>-0.186</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.228)</td>
<td>(0.424)</td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td>0.017</td>
<td>-0.002</td>
<td>-0.139</td>
<td>0.491***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.024)</td>
<td>(0.098)</td>
<td>(0.148)</td>
<td></td>
</tr>
<tr>
<td>Fdev</td>
<td>0.005***</td>
<td>0.333***</td>
<td>0.047</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.119)</td>
<td>(0.244)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ElectConsump</td>
<td>-0.113</td>
<td>-1.029</td>
<td>-5.207*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.237)</td>
<td>(1.039)</td>
<td>(2.829)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.192</td>
<td>0.641*</td>
<td>0.599</td>
<td>-2.730***</td>
<td>1.792***</td>
</tr>
<tr>
<td></td>
<td>(1.063)</td>
<td>(0.366)</td>
<td>(0.372)</td>
<td>(0.674)</td>
<td>(0.278)</td>
</tr>
<tr>
<td>Observations</td>
<td>408</td>
<td>377</td>
<td>375</td>
<td>375</td>
<td>364</td>
</tr>
<tr>
<td>Number of country1</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>LL</td>
<td>-1288</td>
<td>-1128</td>
<td>-1110</td>
<td>-255.4</td>
<td>-248.4</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Dynamic Heterogeneous Panel Models

In this subsection, we introduce the general model of dynamic heterogenous panel estimation as presented by (Blackburne and Frank, 2007) and will then adapt this model to our example.

General Model

In the general model it is assumed that the input data on time period, \(t = 1,2, \ldots, T \), and cross section groups, \(i = 1,2, \ldots, N \), can be estimated by an autoregressive distributive lag (ARDL) model \((p,q, \ldots, q_k)\) as in the following:
\[y_{it} = \sum_{j=1}^{p} \lambda_{ij}y_{i,t-j} + \sum_{j=0}^{q} \delta_{ij}X_{i,t-j} + \mu_{i} + \varepsilon_{it} \] (1)

where \(X_{it} \) is the \((k \times 1)\)-vector of explanatory variables, \(\mu_{i} \) the group specific effect, \(\lambda_{it} \) the \(k \times 1 \) coefficient vectors and \(\lambda_{ij} \) a scalar of constants. As \(T \) is large enough each group can be estimated separately and the variables in eq:1 are cointegrated and I(1), then the error term is an I(0) process for all \(i \), thus the error correction equation can be reparameterized:

\[\Delta y_{it} = \phi_{i}y_{i,t-1} - \beta_{i}'X_{it} + \sum_{j=1}^{p-1} \lambda_{ij}^{*}\Delta y_{i,t-1} + \sum_{j=0}^{q-1} \delta_{ij}^{*}\Delta X_{i,t-1} + \mu_{i} + \varepsilon_{it} \] (2)

for \(i = 1,2,\ldots,N \) and \(t = 1,2,\ldots,T \) where the error correction speed of adjustment is parameter expressed by

\[\phi_{i} = -(1 - \sum_{j=1}^{p} \lambda_{ij}), \] (3)

\[\beta_{i} = \sum_{j=0}^{q} \delta_{ij}, \] (4)

\[\lambda_{ij}^{*} = -\sum_{m=j+1}^{p} \lambda_{im} \quad j = 1,2,\ldots,p \] (5)

and

\[\delta_{ij}^{*} = -\sum_{m=j+1}^{q} \delta_{im} \quad j = 1,2,\ldots,q - 1 \] (6)

assuming that the ARDL model in eq: 1 is stable in that the roots of \(\sum_{j=1}^{p} \lambda_{ij}z^{j} = 1 \quad i = 1,2,\ldots,N \) lie outside the unit circle, ensuring that the error correcting speed of adjustment term \(\phi_{i} < 0 \). This indicate that there is a long run relationship between dependent variable \(y_{it} \) and controllers \(x_{it} \) and is defined by

\[y_{it} = -(\beta_{i}'/\phi_{i})x_{it} + \eta_{it} \] (7)
Adapted Model

Adapting the general model from above to our case renders the long run function:

\[
patnum_{it} = \theta_{0t} + \theta_{1t}GDP_{it} + \theta_{2t}OilPrice_{it} + \theta_{3t}RD_{it} + \theta_{4t}Fdev_{it} + \theta_{5t}ElectConsump_{it} + \mu_i + \epsilon_{it}
\]

(8)

where \(i = 1,2,\ldots,N \) is the number countries in our panel. \(t = 1,2,\ldots,T \) the time span of the panel, and \(patnum_{it} \) the real number of patents per country \(i \) in period \(t \).

The variables are \(I(1) \) and cointergrated. Hence, the ARDL(1,1,1) dynamic panel specification of 8 is

\[
\Delta PatNumb_{it} = \phi_i (PatNumb_{it-1} - \theta_{0i} + \theta_{1i}GDP_{it} + \theta_{2i}OilPrice_{it} + \theta_{3i}RD_{it} + \theta_{4i}Fdev_{it} + \theta_{5i}ElectConsump_{it}) \\
+ \delta_{1i}\Delta GDP_{it} + \delta_{2i}\Delta OilPrice_{it} + \delta_{3i}\Delta RD_{it} + \delta_{4i}\Delta Fdev_{it} \\
+ \delta_{5i}\Delta ElectConsump_{it} + \epsilon_{it}
\]

(9)

where \(\phi_i = -(1 - \lambda_i) \), \(\theta_{0i} = \frac{\mu_i}{1 - \lambda_i} \), \(\theta_{it} = \frac{\delta_{0it} + \delta_{it}}{1 - \lambda_i} \), and \(\phi_i = -(1 - \lambda_i) \). The error correction speed of adjustment parameter is \(\phi_i \). The long run coefficients \(\theta_{1i}, \theta_{2i},\ldots,\theta_{Ni} \) are of primary interest.

Estimators for heterogeneous slopes: So far the two introduced models do not handle macro panel problems. Micro panels, i.e. small \(T \) and large \(N \), usually relies on either fixed- or random-effects estimators or a combination of both including instrumental variable estimators such as the Generalized Method Of Moments (GMM) put forward by Arellano and Bond (1991). It requires pooling individual groups and allows for different intercepts across groups.
As a rule, macro panels do not fulfill the assumption of homogeneous slope parameters (Phillips and Moon, 2000; Im et al., 2003). In contrast to micro panels the issue of non-stationarity plays a more important role. When T becomes large, it is necessary to pay more attention to serial correlation, when shocks whether temporary or persistent bias estimation results. Traditional nonstationary panels with a short time span T have different characteristics (Phillips and Moon, 2000). Analyzing panel data with large T in this paper, we draw on techniques introduced by Pesaran and Smith (1995) and Blackburne and Frank (2007), which allow estimating nonstationary dynamic panels heterogeneous parameters across groups: the mean-group (MG), pooled mean group (PMG), and dynamic fixed effects (DFE) estimators.

The MG estimator depends on estimating N time series regressions and averaging the coefficient (Pesaran and Smith, 1995). PMG is based on a combination of pooling and averaging coefficients (Pesaran et al., 1999). The dynamic fixed-effects estimator (DFE) is similar to the PMG estimator. Both restrict the coefficients of the cointegrating vector to be equal across all panels. The fixed-effects model additionally restricts the speed of the adjustment coefficient to be equal to the short-run coefficients.

V. DYNAMIC HETEROGENEOUS ESTIMATORS

The regressions in this section refer to the heterogeneous panel techniques discussed above. All three estimators, PMG, MG and DFE, are applied in order to investigate short-run and long-run effects. The preliminary findings, depicted in Table IV, give some indications to possible short-run and long-run effects. Therefore, we consider R&D and electricity consumption to also have short-run effects on innovative activities. In Table V all three model results are reported with two model versions each.

In all models, model (6) to model (11), we introduced $R\&D$ and $ElectConsump$ as short-term variables and also as
variables for the long run. Persistent R&D investments should, in the long run, increase the country stock of knowledge captured in new technologies and human capital. Further long-term explanatory variables are GDP, Fdev and OilPrice, the latter as the variable of our interest. Note that these variables are the same as in our negative binomial regressions above. The two model versions of each estimation approach differ only in the (non-)inclusion of ElectConsump. Comparing all six models, we observe that the error correction coefficient (ec) is positive and significant in all models. This suggests that the time series components are serially correlated. In model (6-9) R&D seems to have a short-term effect on patent counts.¹

¹ We used a five-year forward window of patent counts to take into account that the time span between innovative activities and the resulting actualization of innovation can take several years. Compare e.g. Nesta (2008).
Electricity consumption has no significant explanatory power. Looking at the long-run coefficients *OilPrice* has a positive effect on patent counts, a preliminary result which corroborates our research hypothesis that it should have such an effect on innovative activities. In models (8) and (9), this effect vanishes, that is, it becomes insignificant. *GDP* has a negative long-run effect on patenting in renewable energy in all six models, although in model (8) and (9) this effect is insignificant. A possible explanation could be that economic growth is uncoupled from the progress in renewable energy technologies. To recall, we only consider
wind power patents so far, which gives us a rather blurred picture of the role of renewable energy technologies. The sign of its coefficient is consistently negative. The reported long-run effects of R&D investments deliver only in model (6) and (7) a positive significant effect. In all other models it is insignificant. The sign of financial development \((Fdev)\) is ambiguous. In model (6) and (7). \(Fdev\), i.e. the share of credits to the private sector as a percentage of GDP, appears as a positive driver of patenting in this field. In model (8) and (9) this effect is insignificant and in model (10) and (11) we observe flipped and significant signs. Electricity consumption (model 7) has a significant and negative long-run effect on patent counts. When comparing model (6) and (7), we observe that introducing \(ElecConsump\) does not change a lot with regard to the other coefficients. So far, this can be interpreted as an indication for these two models’ robustness.

There is no need for denying that the results in Table V are mixed. This calls for further research efforts on our side. Nevertheless, the Hausman test suggests that the PMG estimator is to be preferred over the MG and DFE estimator. This is good news with regard to the effect of \(OilPrice\), \(R&D\) and \(Fdev\). All three are positive, which is consistent to the results in the negative binomial regressions above.

VI. DISCUSSION, CAVEATS AND CONCLUSION

At the current stage of this paper, there is not much need for discussing the results any further. This is pretty much work in progress and there are many shortcomings and caveats which have to be considered as we progress.

From an econometric stance, more tests have to be performed to understand the characteristics of the panel time series. This hopefully sheds more light on the inconsistencies identified. A further option is to compare the models with other models such as a pre-sample mean count data specification used in Nesta et al. (2014). It is conceivable that this could explain the negative sign of the long-run effects of \(GDP\). Moreover, the paper by Nesta et al. (2014) also gives good advice on further factors that have an impact on innovative activities in the field of renewable energies. For example, to weight patent counts by patent family or by
their triadic relationship to adjust for patent quality make a difference. Industry dynamics play an important role, too. Many countries liberalized their energy markets in recent years. This has increased market competition and the ongoing technological progress in renewable energies driven by small start-up firms change the industry dynamics (Klepper, 1997, 1996; Abernathy and Utterback, 1978). This scrapes off a some of the market power of large incumbent firms. Another aspect is the role of global warming that has risen consumer awareness to environmental issues. The demand for renewable energies has been steadily increasing Nesta et al. (2014). Even households become energy producers, as is the case in Denmark where the majority of wind power plants are owned by households Hadjilambrinos (2000). From the viewpoint of policy making, policy reforms adapt the institutional frame of energy markets to the new needs. Consumers are drawn in to participate in energy production. An example for having introduced such demand side policies is the US (Loiter and Norberg-Bohm, 1999). Finally, the interplay between industrial change and policy reforms needs attention in our work, too. Nesta et al. (2014) provide evidence for such kind of endogeneity issues.

For the time being, it remains our positive attitude that we will find convincing evidence of the oil price impact on countries' innovative activities in renewable energies.

REFERENCES

Nr. 44 Jaenichen, Sebastian; Steinrücken, Torsten; Schneider, Lutz: Zu den ökonomischen Wirkungen gesetzlicher Feiertage - Eine Diskussion unter besonderer Berücksichtigung der Arbeitszeit politik, Juni 2005.

Nr. 48 Steinrücken, Torsten; Jaenichen, Sebastian: Überkapazitäten zur Absicherung politischer Risiken und Instrumente finanzwirtschaftlicher Gegensteuerung, November 2005.

Nr. 49 Jaenichen, Sebastian; Steinrücken, Torsten: Opel, Thüringen und das Kas pische Meer, Januar 2006.

Nr. 51 Sickmann, Jörn: Airport Slot Allocation, März 2006.

Nr. 54
Jaenichen, Sebastian; Steinrücken, Torsten: Zur Ökonomik von Steuerge-
schenken - Der Zeitverlauf als Erklärungsansatz für die effektive steuerliche
Belastung, Dezember 2006.

Nr. 55
Jaenichen, Sebastian; Steinrücken, Torsten: Wirkt eine Preisregulierung
 nur auf den Preis? Anmerkungen zu den Wirkungen einer Preisregulierung
auf das Werbevolumen, Mai 2007.

Nr. 56
Kuchinke, B. A.; Sauerland, D.; Wübker, A.: Determinanten der Wartezeit auf einen
 Behandlungstermin in deutschen Krankenhäusern - Ergebnisse einer
Auswertung neuer Daten, Februar 2008.

Nr. 57
Wegehenkel, Lothar; Walterscheid, Heike: Rechtsstruktur und Evolution von
Wirtschaftssystemen - Pfadabhängigkeit in Richtung Zentralisierung?,
Februar 2008.

Nr. 58
Steinrücken, Torsten; Jaenichen, Sebastian: Regulierung und Wohlfahrt in

Nr. 59
Lehnert, Ninja M.: Externe Kosten des Luftverkehrs - Ein Überblick über
den aktuellen Stand der Diskussion, April 2008.

Nr. 60
Walterscheid, Heike: Reformbedarf etablierter Demokratien im Kontext dezentralisierter
Gesellschaftssysteme - Grundlegende Hindernisse bei Steuersystemreformen “, April 2010.

Nr. 61
Walterscheid, Heike; Wegehenkel, Lothar: Kostenstruktur, Zahlungsbereit-
schaft und das Angebot von Mediengütern auf Medienmärkten, Juni 2008.

Nr. 62
Walterscheid, Heike; Wegehenkel, Lothar: Wohlstand der Nationen und
handlungsrechtliche Struktur eines Gesellschaftssystems, September 2008.

Nr. 63
Dewenter, Ralf; Haucap, Justus; Wenzel, Tobias: Indirect Network Effects with

Nr. 64
Dewenter, Ralf; Jaschinski, Thomas; Wiese, Nadine: Wettbewerbliche
Auswirkungen eines nichtneutralen Internets, Juli 2009.

Nr. 65
Dewenter, Ralf; Haucap, Justus; Kuchinke, Björn A.: Das Glück und Unglück von Studierenden aus Ost- und Westdeutschland: Ergebnisse einer
Befragung in Ilmenau, Bochum und Hamburg, Oktober 2009.

Nr. 66
Kuchinke, Björn A.; Zerth, Jürgen; Wiese, Nadine: Spatial Competition
between Health Care Providers: Effects of Standardization, Oktober 2009.
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Autor(en)</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>Itzenplitz, Anja; Seifferth-Schmidt, Nicole: Warum Klimakonferenzen</td>
</tr>
<tr>
<td></td>
<td>scheitern, aber dennoch zum Wohl des Weltklimas kooperiert wird, Juli</td>
</tr>
<tr>
<td></td>
<td>2010.</td>
</tr>
<tr>
<td>68</td>
<td>Kallfaß, Hermann H.: Die Aufmerksamkeit für, die Nutzung der und die</td>
</tr>
<tr>
<td></td>
<td>Werbung in Medien in Deutschland, November 2010.</td>
</tr>
<tr>
<td>69</td>
<td>Budzinski, Oliver: Empirische Ex-Post Evaluation von wettbewerbspoliti-</td>
</tr>
<tr>
<td></td>
<td>schen Entscheidungen: Methodische Anmerkungen, Januar 2012.</td>
</tr>
<tr>
<td>70</td>
<td>Budzinski, Oliver: The Institutional Framework for Doing Sports Business:</td>
</tr>
<tr>
<td>71</td>
<td>Budzinski, Oliver; Monostori, Katalin: Intellectual Property Rights and</td>
</tr>
<tr>
<td></td>
<td>the WTO, April 2012.</td>
</tr>
<tr>
<td>72</td>
<td>Budzinski, Oliver: International Antitrust Institutions, Juli 2012.</td>
</tr>
<tr>
<td>73</td>
<td>Lindstädt, Nadine; Budzinski, Oliver: Newspaper vs. Online Advertising -</td>
</tr>
<tr>
<td></td>
<td>Is There a Niche for Newspapers in Modern Advertising Markets?</td>
</tr>
<tr>
<td>74</td>
<td>Budzinski, Oliver; Lindstädt, Nadine: Newspaper and Internet Display Ad-</td>
</tr>
<tr>
<td></td>
<td>vertising - Co-Existence or Substitution?, Juli 2012b.</td>
</tr>
<tr>
<td>75</td>
<td>Budzinski, Oliver: Impact Evaluation of Merger Control Decisions, August</td>
</tr>
<tr>
<td></td>
<td>2012.</td>
</tr>
<tr>
<td>76</td>
<td>Budzinski, Oliver; Kuchinke, Björn A.: Deal or No Deal? Consensual Ar-</td>
</tr>
<tr>
<td></td>
<td>rangements as an Instrument of European Competition Policy, August</td>
</tr>
<tr>
<td></td>
<td>2012.</td>
</tr>
<tr>
<td>77</td>
<td>Pawlowski, Tim, Budzinski, Oliver: The (Monetary) Value of Competitive</td>
</tr>
<tr>
<td></td>
<td>Balance for Sport Consumers, Oktober 2012.</td>
</tr>
<tr>
<td>78</td>
<td>Budzinski, Oliver: Würde eine unabhängige europäische Wettbewerbsbe-</td>
</tr>
<tr>
<td></td>
<td>hörde eine bessere Wettbewerbspolitik machen?, November 2012.</td>
</tr>
<tr>
<td>79</td>
<td>Budzinski, Oliver; Monostori, Katalin; Pannicke, Julia: Der Schutz gei-</td>
</tr>
<tr>
<td></td>
<td>stigter Eigentumsrechte in der Welthandelsorganisation - Urheberrechte im</td>
</tr>
<tr>
<td></td>
<td>TRIPS Abkommen und die digitale Herausforderung, November 2012.</td>
</tr>
<tr>
<td>80</td>
<td>Beigi, Maryam H. A.; Budzinski, Oliver: On the Use of Event Studies to</td>
</tr>
<tr>
<td>81</td>
<td>Budzinski, Oliver; Beigi, Maryam H. A.: Competition Policy Agendas for</td>
</tr>
<tr>
<td></td>
<td>Industrializing Countries, Mai 2013.</td>
</tr>
</tbody>
</table>
Nr. 82 *Budzinski, Oliver; Müller, Anika*: Finanzregulierung und internationale Wettbewerbsfähigkeit: der Fall Deutsche Bundesliga, Mai 2013.

Nr. 84 *Pawlowski, Tim; Budzinski, Oliver*: Competitive Balance and Attention Level Effects: Theoretical Considerations and Preliminary Evidence, März 2014.

Nr. 85 *Budzinski, Oliver*: The Competition Economics of Financial Fair Play, März 2014.

Nr. 86 *Budzinski, Oliver; Szymanski, Stefan*: Are Restrictions of Competition by Sports Associations Horizontal or Vertical in Nature?, März 2014.

Nr. 87 *Budzinski, Oliver*: Lead Jurisdiction Concepts Towards Rationalizing Multiple Competition Policy Enforcement Procedures, Juni 2014.

Nr. 88 *Budzinski, Oliver*: Bemerkungen zur ökonomischen Analyse von Sicherheit, August 2014.

Nr. 89 *Budzinski, Oliver; Pawlowski, Tim*: The Behavioural Economics of Competitive Balance: Implications for League Policy and Championship Management, September 2014.

Nr. 90 *Grebel, Thomas; Stuetzer, Michael*: Assessment of the Environmental Performance of European Countries over Time: Addressing the Role of Carbon Leakage and Nuclear Waste, September 2014.