Einfluss von Wangenrotationslappenplastiken
nach Esser auf die periorbitale Weichgewebsarchitektur

Dissertation
zur Erlangung des akademischen Grades

doctor medicine dentariae
(Dr. med. dent.)

vorgelegt dem Rat der Medizinischen Fakultät der
Friedrich-Schiller-Universität Jena

von Marcus Karapetow
geboren am 13.12.1989 in Schlema
Gutachter

1. Prof. Dr. Dr. Stefan Schultze-Mosgau, Jena
2. PD Dr. Dr. Gregor F. Raschke, Bonn
3. PD Dr. Dr. Michael Thorwarth, New York, New York 10022 UNITED STATES

Tag der öffentlichen Verteidigung: 01.07.2014
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Cpi</td>
<td>Corneal Palpebral inferior Contact Point</td>
</tr>
<tr>
<td>EFH</td>
<td>Eye Fissure Height</td>
</tr>
<tr>
<td>EFI</td>
<td>Eye Fissure Index</td>
</tr>
<tr>
<td>EFW</td>
<td>Eye Fissure Width</td>
</tr>
<tr>
<td>En</td>
<td>Endocanthion</td>
</tr>
<tr>
<td>Et al.</td>
<td>et alii</td>
</tr>
<tr>
<td>Ex</td>
<td>Exocanthion</td>
</tr>
<tr>
<td>Ic</td>
<td>Iris centre</td>
</tr>
<tr>
<td>ID</td>
<td>Iris Diameter</td>
</tr>
<tr>
<td>LIC</td>
<td>Lower Iris Coverage</td>
</tr>
<tr>
<td>Ls</td>
<td>Lid sulcus</td>
</tr>
<tr>
<td>LIRv</td>
<td>Lower Iris Radius visible</td>
</tr>
<tr>
<td>Os</td>
<td>Orbitale superioris</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>Postop.</td>
<td>Postoperativ</td>
</tr>
<tr>
<td>Präop.</td>
<td>Präoperativ</td>
</tr>
<tr>
<td>Ps</td>
<td>Palpebrale superioris</td>
</tr>
<tr>
<td>Pi</td>
<td>Palpebrale inferioris</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>UIC</td>
<td>Upper Iris Coverage</td>
</tr>
<tr>
<td>UIRv</td>
<td>Upper Iris Radius Visible</td>
</tr>
<tr>
<td>ULH</td>
<td>Upper Lid Height</td>
</tr>
<tr>
<td>ULSH</td>
<td>Upper Lid Sulcus Height</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

1 Zusammenfassung ... 1

2 Einleitung .. 3
 2.1 Tumoren der äußeren Gesichtshaut .. 3
 2.1.1 Allgemeine Epidemiologie ... 3
 2.1.2 Prädilektionsstellen .. 4
 2.1.3 Entitäten ... 5
 2.1.3.1 Basalzellkarzinom .. 5
 2.1.3.2 Plattenepithelkarzinom .. 6
 2.1.3.3 Malignes Melanom .. 7
 2.2 Chirurgische Techniken .. 9
 2.2.1 Mohs-Chirurgie ... 9
 2.2.2 Techniken der Wangenrekonstruktion ... 9
 2.3 Die Wangenrotationslappenplastik ... 12
 2.3.1 Geschichte der Wangenrotationslappenplastik .. 12
 2.3.2 Modifikationen ... 13
 2.4 Kriterien der Bewertung der morphologischen Ergebnisse 14
 2.5 Stand der Literatur ... 16
 2.5.1 Überblick ... 16
 2.5.2 Vorliegende Studien .. 16

3 Ziele und Fragestellung .. 17

4 Material und Methodik ... 26
 4.1 Auswahl des Patientenkollektivs .. 26
 4.1.1 Patientenidentifikation .. 26
 4.1.2 Kriterien der Patientenauswahl ... 26
 4.2 Angewandte Operationstechnik ... 27
 4.3 Fototechnik .. 28
 4.3.1 Standardisierung des Set-up ... 28
 4.3.2 Digitale Analyse des Bildmaterials ... 28
 4.4 Beschreibung der verwendeten anthropometrischen Parameter 29
 4.4.1 Anthropometrische Messpunkte ... 29
 4.4.1.1 Palpebrale superioris (Ps) ... 30
 4.4.1.2 Palpebrale inferioris (Pi) .. 30
 4.4.1.3 Endocanthion (En) .. 30
 4.4.1.4 Exocanthion (Ex) .. 30
4.4.1.5 Iris centre (Ic)................................. 30
4.4.1.6 Iris lateral (Il)................................. 30
4.4.1.7 Lid sulcus (Ls)................................. 30
4.4.1.8 Orbitale superioris (Os)...................... 30
4.4.1.9 Corneal Palpebral inferior Contact Point (CPi)............. 31
4.4.2 Anthropometrische Distanzen 31
4.4.3 Anthropometrische Indizes.......................... 32
 4.4.3.1 Intercanthal Index (ICI)................. 32
 4.4.3.2 Eye Fissure Index (EFI)............... 32
4.4.3.3 Upper Iris Coverage (UIC).................... 33
4.4.3.4 Lower Iris Coverage (LIC)............... 33
4.4.3.5 Upper Lid Sulcus Height (ULSH/ULH)...... 34
4.4.4 Anthropometrische Winkel........................ 34
 4.4.4.1 Canthal Tilt (CAT)......................... 34
 4.4.4.2 Position of lower Eyelid to Iris 35
4.4.5 Evaluierte Parameter.............................. 36
4.5 Statistische Auswertung 36

5 Ergebnisse .. 38
5.1 Zusammensetzung des Patientenkollektivs 38
5.2 Ergebnisse der anthropometrischen Messungen........ 38
 5.2.1 Ergebnisse für das gesamte Patientenkollektiv........ 38
 5.2.2 Ergebnisse nach Defektlokalisation.............. 39
 5.2.3 Betrachtung der einzelnen Parameter 40
 5.2.3.1 Intercanthal Index (ICI)............... 40
 5.2.3.2 Eye Fissure Index (EFI)......... 40
 5.2.3.3 Upper Iris Coverage (UIC)......... 40
 5.2.3.4 Lower Iris Coverage (LIC)........ 41
 5.2.3.5 Upper Lid Sulcus Height (ULSH/ULH) 41
 5.2.3.6 Canthal Tilt (CAT).................. 41
 5.2.3.7 Position of lower Eyelid to Iris 41
 5.2.3.8 Scleral Show............................ 41
 5.2.3.9 Ektropium.............................. 41
6 Diskussion .. 42
6.1 Diskussion der Methode 42
 6.1.1 Zusammensetzung des Patientenkollektivs 42
 6.1.2 Diskussion der Operationstechnik 43
 6.1.3 Anthropometrie.................................. 46
1 Zusammenfassung

Die antropometrischen Parameter Intercanthal Index, Eye Fissure Index, Upper Lid Sulcus Height, Upper Iris Coverage, Lower Iris Coverage und Canthal Tilt wurden

Die anthropometrische Evaluation der operativen Resultate ergab keine signifikanten Veränderungen von Intercanthal Index, Eye Fissure Index, Upper Lid Sulcus Height, Upper Iris Coverage, Lower Iris Coverage, Position of lower Eyelid to Iris, Canthal Tilt und Scleral Show. Dies wurde dahingehend interpretiert, dass sowohl die Form und Inklination der Lidspalte, die Position der Augenbraue und des Oberlides, als auch Position und Verlauf der Unterlidkante weitestgehend gewahrt wurden. Dies spricht sowohl für eine korrekte Einschätzung des intraoperativen Ausmaßes an Gewebemobilisation und -rotation als auch für die erfolgreiche Anwendung deformationspräventiver chirurgischer Techniken.

Allerdings zeigte sich eine signifikante prä- zu postoperative Zunahme der Rate an Ektropia, die im Kontext der Literatur als typisch zu bezeichnen ist. Ihr Auftreten lässt sich vor allem durch vertikale Zugkräfte, wie sie im Zuge von Narbenkontrakturen und insuffizienter Lappenfixierung auftreten, erklären.

Das Risiko einer Lidretraktion im Sinne einer verringerten Lower Iris Coverage sowie gesteigerten Rate an Scleral Show zeigte sich insbesondere dann als signifikant erhöht, wenn Lidhaut in den zu deckenden Defekt eingeschlossen war. Daher erscheint im Falle einer Beteiligung der Augenlider besondere Sorgfalt in der Anwendung retraktionspräventiver operativer Techniken geboten.

Die dargestellten Ergebnisse zeigen auf, dass sich das gewählte technische sowie anthropometrische Set-up als geeignet zur Beantwortung der Fragestellung erwies. Die in dieser Arbeit dargelegte Methode bietet eine valide Basis für die Gegenüberstellung operativer Techniken, die in Zukunft zu einer Weiterentwicklung derselben führen und damit zu einer Optimierung des postoperativen Erscheinungsbildes der Patienten beitragen könnte.
2 Einleitung

2.1 Tumoren der äußeren Gesichtshaut

2.1.1 Allgemeine Epidemiologie

Unter dem Begriff Hautkrebs werden bösartige Tumoren der Haut zusammengefasst, die in vielfältigen Erscheinungsformen auftreten. Unterschieden werden maligne Melanome (umgangssprachlich Schwarzer Hautkrebs) von epithelialen Hauttumoren (umgangssprachlich Heller Hautkrebs), zu denen in erster Linie das Basalzellkarzinom und das Plattenepithelkarzinom gezählt werden.

Nach Angaben der International Agency for Research on Cancer (IARC) betrifft jeder dritte diagnostizierte Tumor die Haut (Boyle und Levin 2008). Somit stellt Hautkrebs mit weltweit zwei bis drei Millionen neuen Fällen von nicht-melanotischen Tumoren, sowie mehr als 200.000 neuen Fällen von malignen Melanomen pro Jahr, die häufigste Form maligner Tumoren dar (Boyle und Levin 2008).

In Deutschland sind nach Schätzungen der Gesellschaft der epidemiologischen Krebsregister jährlich 234.000 Patienten von einer Neuerkrankung betroffen (GEKID 2013). Dabei gab es im Jahr 2011 3.598 Todesfälle, was etwa 1% aller Krebstodesfälle in Deutschland entspricht (Statistisches Bundesamt 2012). Für diese sind mit über 80% hauptsächlich die malignen Melanome verantwortlich (Kraywinkel et al. 2012).

2.1.2 Prädilektionsstellen

Im Bereich der Augenlider haben die malignen Tumoren einen Anteil von 40% an allen Neoplasien (Wojcicki und Zachara 2010). Bei Kaukasiern werden dabei 80-90%, im asiatischen Raum dagegen 20-40% dieser Tumoren durch Basalzellkarzinome gebildet (Takamura und Yamashita 2005).

2.1.3 Entitäten
Da das Basalzellkarzinom, das Plattenepithelkarzinom und das Melanom 85-95% der malignen Tumoren im Gesichtsbereich repräsentieren, sollen diese exemplarisch kurz charakterisiert werden.

2.1.3.1 Basalzellkarzinom
Basalzellkarzinome (auch Basaliom, Epithelioma basocellulare) sind langsam lokal infiltrierend und destruierend wachsende Tumoren, die sich aus den Zellen der Basalzellschicht und der äußeren Wurzelscheide der Haarfollikel entwickeln (Breuninger et al. 2006).

Die Inzidenz hat sich in den letzten 10 Jahren verdoppelt (Dissemond und Grabbe 2004) und wird in Deutschland mit etwa 100-200/100.000 Einwohnern pro Jahr angegeben (Kraywinkel et al. 2012). In Ländern mit erhöhter Sonnenexposition wie Australien werden Werte von 1.000/100.000 Einwohner pro Jahr angeführt (Dissemond und Grabbe 2004).

Ätiologisch bedeutsam sind zudem eine genetische Disposition, ionisierende Strahlung, Arsenbelastung und chronische Hautschäden (Braun-Falco 2009). Desweiteren besteht
eine Assoziation zu Xeroderma pigmentosum und dem Gorlin-Goltz-Syndrom (Moll 2010).

Die histologisch gesicherte Exzision stellt trotz einer Vielzahl an Therapiekonzepten das Standardvorgehen dar, da die Rezidivrate durch mikrographisch kontrollierte Chirurgie gesenkt wird (Breuninger et al. 2006, Mohs 1941).

Die Überlebensaussichten gegenüber der Normalbevölkerung sind nicht eingeschränkt (Kraywinkel et al. 2012), sodass die 5-Jahres-Überlebensrate bei praktisch 100% liegt (Stabenow et al. 2012).

2.1.3.2 Plattenepithelkarzinom

Plattenepithelkarzinome (auch Spinozelluläres Karzinom, Epithelioma spinocellulare) sind relativ langsam wachsende, infiltrierende und selten metastasierende Tumoren epidermalen Ursprungs.

Das Durchschnittsalter der Erkrankung liegt bei 70 Jahren, wobei Männer dreimal häufiger betroffen sind als Frauen (Boyle und Levin 2008).

Risikofaktoren stellen Sonnenexposition, chronische Hauterkrankungen, chemische Noxen, onkogene Viren, Röntgenstrahlung und Immunsuppression dar (Braun-Falco 2009, Moll 2010).

Die Entstehung der Neoplasien ist stark abhängig von der kumulativen Sonnendosis und der Häufung von Sonnenbränden in der Jugend, sodass sie fast ausschließlich auf

Obwohl sie nur ein Fünftel der epithelialen Tumoren repräsentieren, werden 75% der durch epitheliale Tumoren hervorgerufenen Todesfälle durch Plattenepithelkarzinome verursacht (Boyle und Levin 2008).

2.1.3.3 Malignes Melanom

Das maligne Melanom ist der potentiell gefährlichste Hauttumor und ist Ursache für über 80% der Hautkrebs-Mortalität (Kraywinkel et al. 2012, Garbe et al. 2010).

Es handelt sich um einen bösartigen Tumor des melanozytären Systems, der primär die Haut betrifft. Er kann aber auch an Schleimhäuten, im Auge und an den Meningen entstehen (Garbe et al. 2010).

Es ist die acht- bzw. sechsthäufigste Krebsart bei Männern bzw. Frauen in Europa (Boyle und Levin 2008) und hat einen Anteil von 4% an allen Krebsneuerkrankungen (Kraywinkel et al. 2012).
Jährlich sind in Deutschland etwa 18.000 Menschen von dieser Erkrankung betroffen - Männer und Frauen mit einer altersstandardisierten Inzidenzrate von 12,4 versus 11,5 pro 100.000 Einwohnern gleichermaßen (GEKID 2013, Stabenow et al. 2012). Letztere nimmt weltweit stetig zu und hat sich nach Schätzungen im letzten Jahrzehnt in Deutschland verdoppelt (GEKID 2013). In Australien, wo die höchsten Inzidenzraten beobachtet werden, liegt sie sogar bei 50 bis 60 pro 100.000 Einwohner und Jahr (Kraywinkel et al. 2012).

Das Erscheinungsbild der Tumoren variiert je nach Art des Subtyps, sodass eine klinische Diagnose immer durch eine histopathologische Untersuchung eines Exzidates gestützt werden muss (Moll 2010).

Da in 90% der Fälle die Tumoren in einem frühen Stadium ohne Metastasierung diagnostiziert werden, ist die 10-Jahres-Überlebensrate mit 75-85% mittlerweile recht günstig. Mit größerer Tumor dicke und lokalem Lymphknotenbefall steigt jedoch die Wahrscheinlichkeit einer systemischen Metastasierung, was sich in einer sehr ungünstigen Prognose mit einer 2-Jahres-Überlebensrate unter 5% niederschlägt (Boyle und Levin 2008).

Maligne Melanome haben eine Tendenz zur frühzeitigen Metastasierung und somit eine Mortalitätsrate von 3 auf 100.000 Personen (Kraywinkel et al. 2012).

Bei suspekt klinischem Befund sollte daher eine Exzisionsbiopsie mit histologischer Sicherung erfolgen (Moll 2010). Bei positiver Diagnostik ist eine Nachresektion mit ausreichendem Sicherheitsabstand angezeigt. Therapeutische Alternativen können zudem die Strahlentherapie, die Elektrochemotherapie, die fotodynamische Therapie und die Chemotherapie sein (Mozzillo et al. 2012).
2.2 Chirurgische Techniken

2.2.1 Mohs-Chirurgie

Die erstmals 1941 von Dr. F. E. Mohs beschriebene „mikrographische Chirurgie nach Mohs“ ist ein Verfahren, welches die vollständige, histologisch nachgewiesene Entfernung (R0-Resektion) maligner Tumoren bei größtmöglicher Schonung des umgebenden Gewebes zum Ziel hat (Löser et al. 2010).

Um dies zu realisieren werden horizontale Kryostatschnitte aus dem umgekehrt kegelförmigen Exzidat hergestellt. Dieses Vorgehen erlaubt die lückenlose Beurteilung des Resektionsrandes auf Tumorfreiheit bis in die Tiefe (Mosterd et al. 2008). Durch die genaue Bestimmung der Tumorgrenzen werden im Zuge der Mohs-Chirurgie signifikant geringere Rezidivraten gegenüber konventionellen chirurgischen Exzisionen erzielt (Mosterd et al. 2008, Nemet et al. 2006), bei denen in etwa 50 % der Fälle Tumorreste zurück bleiben (Sivkova 2005).

Zudem kann durch die Kryofixierung das Präparat bereits nach einer Stunde histopathologisch untersucht werden. So können notwendige Nachexzisionen unmittelbar im Anschluss erfolgen und ein zeitnaher Wundverschluss gewährleistet werden (Löser et al. 2010).

2.2.2 Techniken der Wangenrekonstruktion

Die nächsthöhere Stufe auf der rekonstruktiven Leiter stellen die sogenannten Nahlappenplastiken dar, bei denen Haut aus der unmittelbaren Umgebung in den zu deckenden Defekt eingebracht wird. Somit bieten sie Ersatzgewebe mit gleicher Farbe, Textur und Dicke. Da insbesondere im Gesicht der Grundsatz „Gleiches mit Gleichem“

Für große und mehrschichtige Defekte kann zur Deckung auch Gewebe aus entfernteren Körperregionen verwendet und somit die nächste Stufe der Leiter erklommen werden. Diese sogenannten Fernlappenplastiken können jedoch nur um den versorgenden Gefäßstiel rotiert werden und sind daher in ihrer Einsetzbarkeit eingeschränkt (Reichart et al. 2003).

2.3 Die Wangenrotationslappenplastik

Nachdem gezeigt wurde, dass Tumoren im Bereich der Lider häufig auftreten und eine erhebliche Gefährdung darstellen, wurden verschiedene Techniken der Rekonstruktion dieser ästhetisch bedeutenden Region dargestellt.

Eine als lokale Lappenplastik bedeutsame Technik stellt die Wangenrotationslappenplastik dar, die geeignet ist, Defekte im Bereich der Augenlider und der Wange zu rekonstruieren. Da in den nächsten Jahren und Jahrzehnten eine weitere Zunahme der Tumorinzidenz und damit der rekonstruktiven Maßnahmen zu erwarten ist, erscheint eine Evaluation der operativen Ergebnisse von besonderem Interesse.

Einführend soll zunächst auf die Geschichte und anschließend auf Modifikationen der Wangenrotationslappenplastik eingegangen werden. Die Vorstellung der operativen Technik erfolgt im Kapitel Material und Methodik.

2.3.1 Geschichte der Wangenrotationslappenplastik

2.3.2 Modifikationen

Auch Murakami et al. modifizierten den Wangenrotationslappen indem sie ihn nach der Mobilisation mit dem übrigen Augenlid und dem Rest der Wange im Stile einer W-Plastik vernähten, um so Distorsionen des Unterlides zu vermeiden (Murakami et al. 2010).

2.4 Kriterien der Bewertung der morphologischen Ergebnisse

Obwohl die Wangenrotationslappenplastik als sehr reliabel und als Mittel der Wahl in der Wangenrekonstruktion gilt (Hashmi et al. 2003, Moore et al. 2005), sind Komplikationen keine Seltenheit.

In der periorbitalen Region äußern sich solche Verziehungen hingegen in ästhetisch bedeutsamen Deformationen (Rapstine et al. 2012), da der Betrachter in der Lage ist, entstehende Asymmetrien von frontal zu erfassen.

2.5 Stand der Literatur

2.5.1 Überblick

Dazu werden im Folgenden Studien der letzten Jahre vorgestellt, um einen Einblick in die bis dato vorliegende Literatur zu geben und diese mit besonderem Hinblick auf die verwendeten Bewertungskriterien zu betrachten. Zunächst werden Studien zu Wangenrotations- und anschließend zu zervikofazialen Lappenplastiken dargestellt.

2.5.2 Vorliegende Studien

Die Einteilung der Wange erfolgte nach dem Vorbild von Gonzalez-Ulloa et al.: Zone 1 beinhaltete die suborbitale, Zone 2 die präaurikuläre und Zone 3 die buccomandibuläre Region (Gonzalez-Ulloa 1957).

In 23% der Fälle kam es zu Komplikationen, wobei 13% auf Blutergüsse und 10% auf partielle Lappenrandnekrosen entfielen. Sowohl funktionell als auch ästhetisch betrachtet waren jeweils 93% der Operationen zufriedenstellend. In je zwei Fällen waren jedoch Ektropia und Hautüberschüsse zu verzeichnen, die einer Revision bedurften.

Die kosmetischen Aspekte wurden sowohl aus Patienten-, als auch aus Chirurgensicht bewertet. Dabei wurde der Patient als unzufrieden angesehen, wenn er nach einer Revision verlangte. Von chirurgischer Seite wurde die Rekonstruktion als zufriedenstellend bewertet, wenn Farbe und Kontur sich gut einfügten, die Narben...
entlang der Hautfalten verborgen waren und die angrenzenden anatomischen Strukturen nicht beeinträchtigt wurden.

Die Läsionen waren am häufigsten am unteren Augenlid lokalisiert (55%), gefolgt von innerem Augenwinkel (19%), oberem Lid (17%) und äußeren Augenwinkel (9%). Die Defektgröße varierte zwischen 2mm und 30mm und die Resektion erfolgte mit 5mm Sicherheitsabstand. Insgesamt kam es in der Zeit der Verlaufskontrollen in zwei Fällen zu Rezidiven.

Für die Angabe der Komplikationsraten erfolgte keine Differenzierung zwischen den chirurgischen Techniken. Somit ist in der Publikation keine fundierte Aussage über die ästhetischen Resultate der durchgeführten Wangenrotationslappenplastiken enthalten,
sodass eine nachhaltige Bewertung der morphologischen Ergebnisse nicht möglich ist. Auch die für die Fragestellung interessante Beteiligung des unteren Augenlides wird nicht differenziert dargestellt.

Für die Rekonstruktion der 55 Basaliome und 21 Plattenepithelkarzinome wurden verschiedene chirurgische Techniken vorgestellt.

In 8 Fällen (10,5%) wurde die Rekonstruktion des Unterlides bei Karzinomen >2cm mit einem Wangenrotationslappen durchgeführt. Bemerkenswert dabei ist, dass insgesamt in nur 12 Fällen (15,4%) der Defekt über 2cm groß war.

Laut den Autoren wurden mit dieser Technik gute therapeutische, ästhetische und funktionelle Ergebnisse erlangt. Über die Patientenzufriedenheit oder eine objektivierbare Bewertung wurde nichts berichtet.

Die Gesichtsrekonstruktionen wurden aufgrund von Basalzellkarzinomen (38%), Plattenepithelkarzinomen (38%) und Melanomen (25%) notwendig, deren Exzision mit der von Mohs postulierten mikrographischen Chirurgie erfolgte. Die durchschnittliche Defektgröße betrug 7.2x5.8cm. Die Nachbeobachtungszeit betrug 32 Monate mit einem Minimum von 11 Monaten.

Laut den Autoren wurde bei allen Operationen ein gutes kosmetisches Ergebnis mit guter Übereinstimmung in Farbe und Textur erreicht. So waren auch 31 der 32 Patienten (97%) mit dem Resultat zufrieden, obwohl einige kleinere Komplikationen auftraten: drei Lappenrandnekrosen (9%), zwei Parästhesien, zwei Hämatome (6%) und ein Ektropium (3%).

Auf die Art der Evaluation der Ergebnisse wurde nicht eingegangen. Die Publikation enthält weder Angaben, durch wen die ästhetischen Ergebnisse bewertet, oder wie die Patienten befragt wurden. So beantwortet auch diese Studie die Frage nach einer objektivierbaren Evaluationsmethode nicht.

Die häufigste Lokalisation der neoplastischen Veränderungen war die Wange und die häufigste histologische Diagnose das Plattenepithelkarzinom. Defekte von 1.5x1.5cm bis 7x6cm wurden durch zervikofaziale Lappen und größere Läsionen bis zu 16x7cm wurden durch zervikothorakale Lappenplastiken rekonstruiert.

In drei Fällen (14,3%) kam es zur Epidermolyse und in zwei Fällen (9,5%) zu Nekrosen am distalen Lappenrand.

Die postoperativen Ergebnisse wurden anhand einer Skala von 1 bis 7 aus chirurgischer Sicht bewertet. 7 Punkte beschrieben ein exzellentes, 6 und 5 Punkte ein gutes, und 4 und weniger Punkte ein schlechtes Ergebnis. Den Bereich über 5 Punkten fassten sie als akzeptables Ergebnis zusammen. Es ist nicht näher nachzuvollziehen, anhand welcher Kriterien die Bewertung der morphologischen und ästhetischen Ergebnisse vorgenommen wurde. Die durch dieses Schema ermittelte Erfolgsrate korrelierte mit der subjektiven Patientenzufriedenheit von ebenfalls 95%.

Die Bewertung des ästhetischen Ergebnisses geht durch die differenzierte Erhebung der Patientenzufriedenheit deutlich über das hinaus, was die meisten der bereits vorgestellten Publikationen aufweisen. Jedoch ist auch diese Bewertung als subjektiv dem jeweiligen Empfinden des Patienten zugeordnete Bewertung einzuschätzen und daher nicht als reproduzierbar oder objektivierbar anzunehmen.

Es wird nicht näher definiert ob es sich um eine objektive oder subjektive Evaluationsmethode handelt. In jedem Falle ist sie durch die fehlenden Informationen als nicht reproduzierbar anzusehen.

Es wurden Defekte der Wange, Orbita, präaurikulären Region und des Nackens mit zervikofazialen oder zervikothorakalen Lappen gedeckt. Insgesamt unterzogen sich
57% der Patienten einer zervikofazialen Lappenplastik, wobei keine signifikanten Unterschiede der Komplikationsraten zwischen zervikofazialen und zervikothorakalen Lappen feststellbar waren.

Die Inzision erfolgte über dem Arcus zygomaticus in einer milden superolateralen Kurve, setzte sich in die präaurikuläre Falte fort, um das Ohrläppchen herum, entlang der Haarlinie und bis zum Vorderrand des Musculus trapezius, wobei immer wieder der Rotationspunkt und die Fähigkeit zur spannungsfreien Defektdeckung geprüft wurden. War eine verbesserte Durchblutung notwendig, extendierten sie den Lappen bis in den infraclaviculären Bereich, um die Arteriae intercostales internae einbeziehen zu können. Moore et al. waren bis dahin die Einzigen, die die inferiore Inzision bis zum Unterrand des Rippenbogens vollzogen.

Insgesamt traten in 15 Fällen (43%) Komplikationen auf. Dazu gehörten drei Ektropia (9%), eine orokutane Fistel und ein dog-ear, welches eine Revision notwendig machte. Erneut erfolgte die Evaluation des Ergebnisses nur über die Angabe der Komplikationsraten. Über ästhetische Gesichtspunkte wird dabei keinerlei Aussage getroffen.

können. Weiterhin wurde die Rekonstruktion des Augenlides mit Wangenhaut abgelehnt, da diese in ihrer Dicke nicht geeignet ist, die sehr dünne Lidhaut zu ersetzen. Daher schnitten sie immer an der Lid-Wangen-Grenze und nicht subciliär.

Insgesamt kamen sechs unterschiedliche Techniken zum Einsatz. Für große Defekte und für alle Läsionen, die nicht primär geschlossen werden konnten, waren subkutane zervikofaziale Lappen die bevorzugte Wahl. So unterzogen sich 80 der 422 Patienten dieser Operationstechnik.

Dabei wurde streng darauf geachtet, dass genug Haut im temporalen Bereich und entlang der Lid-Wangen-Grenze zur Verfügung stand, um Ektropia zu vermeiden. Es wurde auf die Verankerung im temporalen Bereich verzichtet, da die Autoren davon ausgingen, dass dies zu distalem Lappenverlust führen kann und es ein unnötiger Schritt ist, wenn man genügend Haut im superioren temporalen Bereich zur Verfügung hat.

Die gesamte Komplikationsrate ist laut den Autoren mit 4% als sehr gering anzusehen. Dahingegen besteht ein deutlicher Unterschied zu der mit 14% recht hohen Komplikationsrate bei zervikofazialen Lappen.

Die Wange wurde in Zone 1: suborbital, Zone 2: prä-aurikulär und Zone 3: buccomandibulär eingeteilt. Die meisten Fälle (n=7) waren dabei in Zone 1, und damit suborbital, zu verzeichnen.

Je nach Lokalisation des Defektes, die zwischen 4x4 bis 10x10cm (Mittel 5,3x5,6cm) groß waren, wurde eine Rekonstruktionsvariante gewählt: Für Defekte in Zone 1 kamen sowohl Lappen mit anterier Basis, als auch mit posteriorer Basis in Frage. Für die Rekonstruktion in Zone 2 und Zone 3 oder für eine gleichzeitige Parotidektomie oder Neck-Dissection empfahlen sie eine anteriore Basis.

Vor allem bei Defekten in Zone 1, bei denen das Augenlid beteiligt war, wurde der Lappen so gestaltet, dass er über dem Niveau des lateralen Augenwinkels am Periost des Orbitarandes befestigt werden konnte. Dieses Vorgehen diente der Vermeidung der Entstehung von Ektropia.

In allen Zonen erfolgte die Elevation des Lappens unter dem Superficial Musculo-Aponeurotic System und eine Inkludierung des Platysmas. Durch das Heben dieser Muskelschichten entstand ein muskulo-faszio-kutaner Lappen mit axialer Blutversorgung.

Bei einem der Patienten trat eine Lappenrandnekrose auf, was auf die präoperative Radiotherapie zurückgeführt wurde. Die beiden anderen neoadjuvant therapierten Patienten entwickelten keine Nekrosen.

Des Weiteren kam es in je 6% der Fälle zu Lappenrandnekrosen, Ektropia, Lidretraktion und Hämatomen.

Laut den Autoren wurde in allen Fällen eine gute Übereinstimmung in Farbe und Textur erzielt, wobei in nur zwei Fällen kleinere Defizite in der Kontur beobachtet wurden.

Die Angabe der morphologischen Resultate erfolgt damit durch rein subjektive Angaben. Auch in dieser Studie liegt keine objektivierbare Auswertung der Ergebnisse vor. Die für die Thematik interessante Involvierung des Unterlides wurde nicht evaluiert.

Es ist somit festzustellen, dass in den vorliegenden Studien die ästhetische Bewertung undifferenziert erfolgte und keine einheitlichen Standards vorliegen, um morphologische Veränderungen reproduzierbar darzustellen. Eine Vergleichbarkeit der Studien und der zugehörigen Techniken ist dadurch nur bedingt möglich.

Wünschenswert erscheint daher die Etablierung einer Evaluationsmethode, die eine objektive Darstellung der postoperativen Ergebnisse ermöglicht und auch klinisch nicht ohne Weiteres erkennbare Veränderungen detektiert.

Für die periorbitale Region sind dazu bereits anthropometrische Parameter in der Literatur etabliert, die in der Lage sind, die Auswirkungen chirurgischer Maßnahmen auf die umgebende Weichgewebsmorphologie aufzuzeigen (Farkas et al. 1985, Koury und Epker 1992, Raschke et al. 2011, Starck et al. 1996).

Darüber hinaus soll aufgrund der großen ästhetischen Bedeutung der periorbitalen Region der Einfluss einer Beteiligung des Lidapparates separat evaluiert werden. Bis dato ist auch hierzu in der Literatur keine differenzierte Betrachtung hinterlegt.
3 Ziele und Fragestellung

Aufgrund der großen ästhetischen Bedeutung der Wangen- und Augenregion für das Erscheinungsbild eines Menschen erscheint die Etablierung einer objektiven und standardisierten Analyse der operativen Resultate als erstrebenswert. Eine solche Analyse ist sowohl für wissenschaftliche Fragestellungen, als auch im Rahmen von Gutachten und der Qualitätssicherung innerhalb der Klinik von Interesse.

In der vorgelegten Arbeit sollte die Eignung standardisierter prä- und postoperativer Fotografien zur Durchführung einer derartigen Evaluation untersucht werden. Die Auswertung dieser Aufnahmen erfolgte auf Basis etablierter anthropometrischer Parameter nach Farkas (Farkas und Munro 1987). Zudem wurden klinische Parameter wie die Rate an Ektropia und Scleral Show erhoben, um eine Vergleichbarkeit zu bisherigen Studien zu gewährleisten.

4 Material und Methodik

4.1 Auswahl des Patientenkollektivs

4.1.1 Patientenidentifikation

4.1.2 Kriterien der Patientenauswahl

Für die Aufnahme in das Patientenkollektiv kamen diejenigen Patienten in Frage, deren Wange oder deren unteres Augenlid durch eine Wangenrotations- bzw. eine zervikofaziale Lappenplastik nach Tumorablation rekonstruiert wurden.
Es wurden dabei sowohl männliche als auch weibliche Patienten europider bzw. kaukasischer Herkunft jeden Alters in die Studie eingeschlossen, welche eine suffiziente und standardisierte Fotodokumentation aufwiesen. Letztere erforderte das Vorhandensein standardisierter prä- sowie postoperativer Fotografien, die den unter Punkt 4.4.1 aufgeführten Kriterien entsprachen. Zudem sollte die postoperative Aufnahme mindestens drei Monate nach der Operation angefertigt worden sein.

Im Hinblick auf die besondere Fragestellung, welchen Einfluss eine Beteiligung des Lidapparates auf das postoperative Ergebnis hat, wurde das Patientenkollektiv für diese Betrachtung in zwei Gruppen eingeteilt. Während bei einer Gruppe lediglich Wangenhaut involviert war, lag bei der anderen Gruppe eine Beteiligung der Lidhaut vor.

4.2 Angewandte Operationstechnik

Im Folgenden wird die nach einem standardisierten Vorgehen durchgeführte operative Technik dargestellt:

Zunächst wurden das zu resezierende Gebiet und die weitere Schnittführung markiert. Entlang der markierten Linien wurde Lidocain 2% mit Epinephrin 1:100.000 (Mibe GmbH, Brehna, Germany) zur Blutungsminderung injiziert.

Es erfolgte nun die Resektion des histologischen Befundes entlang der Markierungen mittels Mohs’ mikrographischer Chirurgie, die als sichere und bewährte Methode gilt und in der periorbitalen Region als Standard anzusehen ist (Merritt et al. 2012, Nemet et al. 2006). Hämostase wurde dabei durch Kauterisierung erreicht.

Abschließend wurden Hautüberschüsse, sogenannte „dog-ears“, entfernt und ein doppelschichtiger Wundverschluss durchgeführt. Im Bereich der dünnen Lidhaut erfolgte dies mit 6x0 Prolene und im Bereich der Wange mit 5x0 Prolene. Zur Unterstützung der Wunde wurden Steri-strips verwendet.
4.3 Fototechnik

4.3.1 Standardisierung des Set-up
Um eine Standardisierung der erhobenen Fotodokumentation zu gewährleisten, wurde zur Erstellung stets das gleiche technische sowie personelle Set-up verwendet. Die Aufnahmen wurden dazu durch einen professionellen Fotografen des Universitätsklinikums Jena mit einer Kamera des Typs Nikon D 80 (Nikon Corp., Tokio, Japan) mit gleichbleibendem Objektiv (AF Micro Nikkor 105 mm, 1 : 2,8 D, Nikon Corp. Tokio, Japan) und identischer Blende (f 13, Nikon Corp., Tokio, Japan) angefertigt.
Der Patient wurde gebeten, Brille, Schmuck und andere potentielle Störfaktoren abzulegen und die gesamte Gesichtsmuskulatur zu entspannen. Für die Erstellung der En Face-Aufnahme wurde der Kopf des stehenden Patienten so positioniert, dass die Frankfurter Horizontale und die Interpupillarlinie waagerecht ausgerichtet waren. War dies gewährleistet und der Patient befand sich in Ruhe, wurde ein Foto aus einer definierten Distanz von 55cm vor einem himmelblauen Hintergrund angefertigt. Die Verwendung der digitalen Technik erlaubte dabei die Überprüfung der Aufnahmen noch direkt am Patienten, sodass diese gegebenenfalls unmittelbar erneut angefertigt werden konnten.
Nur wenn alle anthropometrischen Punkte eindeutig zu identifizieren waren, gingen die Fotografien in die weitere digitale Fotoanalyse ein.

4.3.2 Digitale Analyse des Bildmaterials
Die anthropometrischen Indizes ergaben sich nun durch Einsetzen der ermittelten Strecken in die korrespondierenden Formeln.

4.4 Beschreibung der verwendeten anthropometrischen Parameter

4.4.1 Anthropometrische Messpunkte
Die verwendeten anthropometrischen Messpunkte waren gut auffindbar und eindeutig zu bestimmen. Die genutzten anatomischen Landmarken werden nachfolgend dargestellt.

Abb. 1: Darstellung der anthropometrischen Messpunkte
4.4.1.1 Palpebrale superioris (Ps)
Der Punkt Palpebrale superioris gibt den kranialsten Punkt der Lidspaltöffnung wieder und ist am Lidrand des Oberlides aufzusuchen.

4.4.1.2 Palpebrale inferioris (Pi)
Der kaudalste Punkt an der Lidkante des Unterlides wird durch den Punkt Palpebrale inferioris repräsentiert. Somit stellt er die kaudale Begrenzung der Lidspalte dar.

4.4.1.3 Endocanthion (En)
Das Endocanthion stellt das anthropometrische Korrelat des Angulus oculi medialis dar und ist am abgerundeten, inneren Augenwinkel zu finden.

4.4.1.4 Exocanthion (Ex)
Das Exocanthion befindet sich an der Kommisur zwischen oberem und unterem Augenlid, die den lateralen Augenwinkel bildet.

4.4.1.5 Iris centre (Ic)
Der Mittelpunkt der Iris wird in der Anthropometrie als Iris Centre definiert. Hilfreich zur Bestimmung kann dabei die Pupille sein.

4.4.1.6 Iris lateral (Il)
Der anthropometrische Punkt Iris lateral kann auf jeder beliebigen Stelle des Irisumfangs liegen und dient der Bestimmung des Radius sowie des Durchmessers der Iris.

4.4.1.7 Lid sulcus (Ls)
Der kranialste Punkt der parallel zur Lidkante verlaufenden Oberlidfurche (Sulcus palpebralis superior), die durch den Ansatz des M. levator palpebrae am M. orbicularis oculi unter der Haut entsteht, wird in der Anthropometrie als Lid sulcus bezeichnet (Stewart und Carter 2002).

4.4.1.8 Orbitale superioris (Os)
4.4.1.9 Corneal Palpebral inferior Contact Point (CPI)

Der Kontaktpunkt des Limbus corneae mit dem Unterlid wird als Corneal Palpebral inferior Contact Point bezeichnet. Liegt eine flächige Berührung der beiden Strukturen vor, so ist der CPI in die Mitte der Kontaktfläche zu legen.

4.4.2 Anthropometrische Distanzen

Die anthropometrischen Distanzen stellen den Abstand anatomischer Landmarken zueinander dar und werden in Millimetern angegeben. Den Legenden der Abbildungen 2 und 3 ist zu entnehmen, welche Strecken die verwendeten anthropometrischen Distanzen definieren.

Abb. 2 Schematische Darstellung zur Visualisierung der anthropometrischen Distanzen

Abb. 3 Schematische Darstellung zur Visualisierung der anthropometrischen Distanzen
4.4.3 Anthropometrische Indizes

4.4.3.1 Intercanthal Index (ICI)

Der Intercanthal Index gibt das Verhältnis von interendocanthaler (Intercanthal Width, IW) zu interexocanthaler (Biocular Width, BW) Distanz wieder und kann wie folgt berechnet werden (Farkas und Munro 1987):

\[
ICI = \frac{IW \times 100}{BW} \text{ (in %)}
\]

Abb. 4 Schematische Darstellung zur Visualisierung des Intercanthal Index; IW- Intercanthal Width, BW- Biocular Width

4.4.3.2 Eye Fissure Index (EFI)

Der Eye Fissure Index gibt die Lidspalthöhe als prozentualen Anteil der Lidspaltweite am geöffneten Auge wieder (Farkas und Munro 1987, Raschke et al. 2011). Die Lidspalthöhe ist definiert als Abstand von Palpebrale superius zu Palpebrale inferius und wird als Eye Fissure Height (EFH) bezeichnet. Die Lidspaltweite wird als Eye Fissure Width (EFW) bezeichnet und stellt die Distanz von Endocanthion zu Exocanthion dar.

\[
EFI = \frac{EFH \times 100}{EFW} \text{ (in %)}
\]

Abb. 5 Schematische Darstellung zur Visualisierung des Eye Fissure Index, EFH- Eye Fissure Height, EFW- Eye Fissure Width
4.4.3.3 Upper Iris Coverage (UIC)

Die Upper Iris Coverage stellt den prozentual durch das Oberlid verdeckten Anteil der Iris dar. Zur Bestimmung wird zunächst der bedeckte Irisanteil berechnet, indem vom Irisradius \((1/2 \text{ ID} \equiv \text{Ic-II})\) der Upper Iris Radius visible (UIRv) subtrahiert wird. Anschließend wird die berechnete Strecke durch den gesamten Irisdurchmesser \((\text{ID} \equiv 2(\text{Ic-II}))\) dividiert, um eine Proportion zu erhalten.

\[
\text{UIC} = \frac{(1/2 \text{ID} - \text{UIRv}) \times 100}{\text{ID}} \text{ (%)}
\]

Abb. 6 Schematische Darstellung zur Visualisierung der UIC- Upper Iris Coverage; ID- Iris Diameter, UIRv- Upper Iris Radius visible

4.4.3.4 Lower Iris Coverage (LIC)

Der durch das Unterlid verdeckte Irisanteil wird durch die Lower Iris Coverage definiert. Analog der Berechnung der UIC wird hierzu der bedeckte Anteil der Iris, welcher sich aus der Differenz des Irisradius \((1/2 \text{ ID})\) und der Lower Iris Radius visible \((\text{LIRv} \equiv \text{Ic-Pi})\) berechnet, durch den Irisdurchmesser \((\text{ID} \equiv 2(\text{Ic-II}))\) dividiert.

\[
\text{LIC} = \frac{(1/2 \text{ID} - \text{LIRv}) \times 100}{\text{ID}} \text{ (%)}
\]

Abb. 7 Schematische Darstellung zur Visualisierung der LIC- Lower Iris Coverage; ID- Iris Diameter, LIRv- Lower Iris Radius visible
4.4.3.5 Upper Lid Sulcus Height (ULSH/ULH)
Dieser anthropometrische Index stellt das Verhältnis der Distanz Upper Lid Sulcus Height zur Upper Lid Height dar (Raschke et al. 2012). Die Distanz ULSH repräsentiert den Abstand vom Lidsulkus (Ls) zum Rand des Oberlides (Ps), während die ULH den Abstand von letzterem (Ps) zum Unterrand der Augenbraue (Os) darstellt.

\[
ULSH = \frac{ULSH \times 100}{ULH} \text{ (in %)}
\]

Abb. 8 Schematische Darstellung zur Visualisierung des Index ULSH; ULSH- Upper Lid Sulcus Height, ULH- Upper Lid Height

4.4.4 Anthropometrische Winkel
Der Evaluation der postoperativen Ergebnisse dienten ebenfalls die folgenden anthropometrischen Winkel.

4.4.4.1 Canthal Tilt (CAT)
Der Canthal Tilt wird als Winkel zwischen einer Verbindungslinie zwischen den Punkten Endocanthion und Exocanthion (EFW) und einer horizontalen Referenzlinie durch das Endocanthion bestimmt (Raschke et al. 2011). Er repräsentiert somit die Neigung der Lidachse und wird in Grad angegeben.

Abb. 9 Schematische Darstellung zur Visualisierung des CAT- Canthal Tilt; En- Endocanthion, Ex- Exocanthion
4.4.4.2 Position of lower Eyelid to Iris
Zur Bestimmung der Position of lower Eyelid to Iris (Biesman 1999) wird zunächst eine vertikale Referenzlinie durch das Iriszentrum (Ic) konstruiert. Es folgt eine zweite Linie durch das Iriszentrum (Ic) und den Kontaktpunkt der Kornea mit dem Unterlid (CPI). Der zwischen beiden Linien gemessene Winkel wird in Grad angegeben. Deviationen gegenüber der Referenzlinie nach medial wurden als negative Winkel und nach lateral als positive Winkel angegeben.

Abb. 10 Schematische Darstellung zur Visualisierung der Position of Lower Eyelid to Iris (dargestellter Winkel); CPI- Corneal Palpebral inferior Contact Point
4.4.5 Evaluierte Parameter

In der vorliegenden Studie wurden die vorangehend beschriebenen anthropometrischen Indizes und Winkel, die helfen sollten, den Einfluss der durchgeführten Operationen auf das periorbitale Weichgewebe zu quantifizieren, sowie die klinischen Parameter Ektropium und Scleral Show in die statistische Auswertung einbezogen (Tab. 1).

Da sich die beiden letztgenannten, welche ernsthafte Komplikationen bei Wangenrotationslappenplastiken darstellen, jedoch nicht reproduzierbar auf Fotografien quantifizieren lassen, wurde lediglich das Vorliegen oder Nichtvorliegen einer Sklerenexposition bzw. einer Evertierung des Lidrandes dokumentiert. Eine Objektivierung und Quantifizierung dieser beiden Parameter erfolgte über negative Werte der Lower Iris Coverage.

<table>
<thead>
<tr>
<th>Tab. 1 Evaluierte Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropometrische Indizes</td>
</tr>
<tr>
<td>1.) Intercanthal Index (ICI)</td>
</tr>
<tr>
<td>2.) Eye Fissure Index (EFI)</td>
</tr>
<tr>
<td>3.) Upper Iris Coverage (UIC)</td>
</tr>
<tr>
<td>4.) Lower Iris Coverage (LIC)</td>
</tr>
<tr>
<td>5.) Upper Lid Sulcus Height (ULSH)</td>
</tr>
<tr>
<td>Anthropometrische Winkel</td>
</tr>
<tr>
<td>6.) Canthal Tilt (CAT)</td>
</tr>
<tr>
<td>7.) Position of lower Eyelid to Iris</td>
</tr>
<tr>
<td>Klinische Parameter</td>
</tr>
<tr>
<td>8.) Scleral Show</td>
</tr>
<tr>
<td>9.) Ektropium</td>
</tr>
</tbody>
</table>

4.5 Statistische Auswertung

Welchen Einfluss die Lokalisation des Defektes auf das postoperative Ergebnis hat, wurde evaluiert, indem die postoperativen Werte der operierten Seiten miteinander verglichen wurden.
Patienten, die prä- oder postoperativ ein Ektropium oder das Zeichen einer Scleral Show aufwiesen, wurden von der Vermessung der Position of lower Eyelid to Iris exkludiert. Um den Einfluss des chirurgischen Eingriffes zu analysieren, wurde eine unifaktorielle Varianzanalyse (ANOVA) durchgeführt.

Scleral Show und *Ektropium* wurden dabei als dichotome Variablen behandelt und mit Chi-Quadrat-Tests analysiert. Zudem wurden F-Tests durchgeführt, um zu untersuchen, ob signifikante Effekte auf die evaluierten Parameter im Zuge der Operation auftraten. Als statistisch significant wurde ein p-Wert von ≤ 0,05 angenommen.

5 Ergebnisse

5.1 Zusammensetzung des Patientenkollektivs

Von Januar 2005 bis Dezember 2012 unterzogen sich 31 Patienten einer Wangenrotationslappenplastik nach Esser oder einer zervikofazialen Lappenplastik an der Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie/Plastische Chirurgie in Jena. Das Patientenkollektiv setzte sich aus 17 Männern (54,8%) und 14 Frauen (45,2%) zusammen. Zum Zeitpunkt der Operation betrug das Durchschnittsalter 70,5±17,1 Jahre.

Alle in die Studie inkludierten Patienten wurden aufgrund von histopathologischen Veränderungen der Haut operiert. Diese hatten eine Durchschnittsgröße von 9,62±3,42cm² und setzten sich aus 13 (41,9%) Basalzellkarzinomen, 6 (19,4%) Plattenepithelkarzinomen und 3 (9,7%) Melanomen zusammen. Die übrigen 9 (29,0%) entfielen auf kutane Veränderungen wie Keratoakanthoma, solare Elastosen und Nävi.

Im Hinblick auf die spezielle Fragestellung, welchen Einfluss eine Beteiligung des Lidapparates auf das postoperative Ergebnis hat, wurde die Lokalisation der Defekte klar differenziert. Dabei waren in 16 (51,6%) Fällen Haut der Wange oder der lateroorbitalen Region betroffen, in 15 (48,4%) Fällen lag eine Beteiligung des Lidapparates vor. Bei zwei dieser Patienten war zusätzlich der Lidrand involviert. Die Rekonstruktion der hinteren Lamelle erfolgte mit einem tarsokonjunktivalen Transplantat aus dem Oberlid des kontralateralen Auges.

5.2 Ergebnisse der anthropometrischen Messungen

Die statistische Auswertung der evaluierten Parameter zeigte auf, dass drei der neun Parameter drei Monate nach den operativen Eingriffen signifikante Veränderungen aufwiesen.

Nachfolgend sollen die erhobenen Werte zunächst für das komplette Patientenkollektiv und für die nach Defektlokalisation unterschiedenen Gruppen übersichtlich dargestellt und anschließend die einzelnen Parameter näher betrachtet werden.

5.2.1 Ergebnisse für das gesamte Patientenkollektiv

Der Vergleich der Ergebnisse der prä- zu postoperativen fotometrischen Messungen des operierten und des kontralateralen Auges zeigte für das gesamte Patientenkollektiv keine signifikanten Veränderungen von Intercanthal Index, Eye Fissure Index, Upper
Iris Coverage, Lower Iris Coverage, Upper Lid Sulcus Height, Canthal Tilt, Position of lower Eyelid to Iris und Scleral Show auf. Bei der Zahl der Ektropia zeigte sich hingegen ein signifikanter Anstieg durch den Eingriff (p=0.03).

Auch im Vergleich mit dem kontralateralen Auge wiesen die Ektropia eine signifikante Beziehung (p=0.03) zu der durchgeführten Operation auf. Die übrigen Parameter zeigten hingegen keine signifikanten Veränderungen zwischen operiertem und nicht-operiertem Auge.

Die postoperativ erhobenen Werte der operierten und der kontralateralen periorbitalen Regionen, sowie die Signifikanzen zwischen den prä- zu postoperativen Messungen beider Seiten und der signifikante Unterschied zwischen den Seiten sind in Tabelle 2 dargestellt.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Postop. Operierte Seite</th>
<th>Postop. kontralateral</th>
<th>Signifikanz Prä- zu Postop. (p)</th>
<th>Signifikanz Operiert oder nicht (p)</th>
<th>Interaktion der Faktoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>IW/BW (%)</td>
<td>43.0±6.0</td>
<td>43.0±6.0</td>
<td>0.70</td>
<td>0.96</td>
<td>0.70</td>
</tr>
<tr>
<td>EFH/EFW (%)</td>
<td>31.2±5.8</td>
<td>31.1±4.9</td>
<td>0.41</td>
<td>0.80</td>
<td>0.94</td>
</tr>
<tr>
<td>ULSH/ULH (%)</td>
<td>24.8±12.6</td>
<td>24.2±11.9</td>
<td>0.55</td>
<td>0.95</td>
<td>0.10</td>
</tr>
<tr>
<td>UIC (%)</td>
<td>28.9±8.6</td>
<td>26.9±7.1</td>
<td>0.43</td>
<td>0.46</td>
<td>0.53</td>
</tr>
<tr>
<td>LIC (%)</td>
<td>1.8±15.8</td>
<td>5.6±10.6</td>
<td>0.33</td>
<td>0.31</td>
<td>0.22</td>
</tr>
<tr>
<td>Position of lower Eyelid to Iris (Grad)</td>
<td>-3.5±8.4</td>
<td>-0.85±8.3</td>
<td>0.92</td>
<td>0.37</td>
<td>0.63</td>
</tr>
<tr>
<td>Canthal Tilt (Grad)</td>
<td>0.4±3.6</td>
<td>1.2±3.4</td>
<td>0.94</td>
<td>0.63</td>
<td>0.33</td>
</tr>
<tr>
<td>Scleral Show</td>
<td>5</td>
<td>5</td>
<td>0.43</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Ektropium</td>
<td>5</td>
<td>0</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

5.2.2 Ergebnisse nach Defektlokalisation

Der Vergleich der erhobenen prä- zu postoperativen Messungen der nach Defektlokalisation eingeteilten Gruppen zeigte signifikante Veränderungen von Lower Iris Coverage (p=0.02) und Scleral Show (p<0.01) auf. Die übrigen Parameter waren von einer Beteiligung der Lidhaut nicht signifikant beeinflusst.

Die postoperativ erhobenen Messwerte sowie der signifikante Unterschied zwischen den morphologischen Ergebnissen in Abhängigkeit von der Defektlokalisation sind in Tabelle 3 dargestellt.
Tab. 3 Ergebnisse der anthropometrischen Messungen differenziert nach Defektlokalisation

<table>
<thead>
<tr>
<th>Defektlokalisation</th>
<th>Wangenhaut</th>
<th>Lidhaut</th>
<th>Signifikanz (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fälle</td>
<td>16</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>IW/BW (%)</td>
<td>44.6±7.0</td>
<td>41.3±4.3</td>
<td>0.87</td>
</tr>
<tr>
<td>EFH/EFW (%)</td>
<td>30.8±5.1</td>
<td>31.7±6.6</td>
<td>0.57</td>
</tr>
<tr>
<td>ULSH/ULH (%)</td>
<td>21.9±15.1</td>
<td>25.8±18.4</td>
<td>0.23</td>
</tr>
<tr>
<td>UIC (%)</td>
<td>31.6±10.1</td>
<td>26.1±5.5</td>
<td>0.50</td>
</tr>
<tr>
<td>LIC (%)</td>
<td>6.0±9.7</td>
<td>-2.7±19.8</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Position of lower Eyelid to Iris (Grad)

- Wangenhaut: -3.0±10.3
- Lidhaut: -4.1±6.0

Canthal Tilt (Grad)

- Wangenhaut: 3.2±5.9
- Lidhaut: 1.0±3.1

Scleral Show

- Wangenhaut: 1
- Lidhaut: 4

Ektropium

- Wangenhaut: 2
- Lidhaut: 3

5.2.3 Betrachtung der einzelnen Parameter

5.2.3.1 Intercanthal Index (ICI)

Der Intercanthal Index wurde durch die durchgeführten Operationen nicht beeinflusst. Es bestand weder ein signifikanter Unterschied zwischen der präoperativen und postoperativen Situation (p=0.70), noch zwischen der operierten und nicht-operierten Seite (p=0.96). Auch die Lokalisation des Defektes hatte keinen Einfluss auf diesen Index (p=0.87).

5.2.3.2 Eye Fissure Index (EFI)

Der Eye Fissure Index zeigte keine signifikanten Veränderungen im Zuge der Operation (p=0.41; p=0.80). Auch eine Beteiligung des Lidapparates wirkte sich nicht signifikant auf diesen Parameter aus (p=0.57).

5.2.3.3 Upper Iris Coverage (UIC)

Der Parameter Upper Iris Coverage war von den operativen Eingriffen unbeeinflusst (p=0.43) und wies bezüglich der Seite (p=0.46) oder Defektlokalisation (p=0.50) keine signifikanten Unterschiede auf.
5.2.3.4 Lower Iris Coverage (LIC)
Unabhängig von der Defektlokalisation waren an der Lower Iris Coverage keine signifikanten prä- zu postoperativen Veränderungen erkennbar (p=0.33). Hinsichtlich der Defektlokalisation trat jedoch bei einer Beteiligung der Lidhaut eine signifikante Veränderung (p=0.02) hin zu negativen Werten auf.

5.2.3.5 Upper Lid Sulcus Height (ULSH/ULH)
Die Upper Lid Sulcus Height zeigte keine signifikanten Veränderungen hinsichtlich der Durchführung der Operation (p=0.55) oder der untersuchten Seite (p=0.95) auf. Auch von einer Beteiligung der Lidhaut blieb dieser Parameter unbeeinflusst (p=0.23).

5.2.3.6 Canthal Tilt (CAT)
Die Neigung der Lidachse zeigte keine signifikanten Veränderungen im Zuge der Operation (p=0.94). Auch eine Beteiligung des Lidapparates wirkte sich nicht signifikant auf diesen Parameter aus (p=0.73).

5.2.3.7 Position of lower Eyelid to Iris
Die Position des Unterlides zum Unterrand der Iris wurde von den operativen Eingriffen sowohl auf der operierten als auch auf der kontralateralen Seite nicht signifikant verändert (p=0.92; p=0.37). Die Lokalisation des Defektes hatte ebenfalls keinen Einfluss auf die Lage des Unterlides (p=0.80).

5.2.3.8 Scleral Show
Im Zuge der Operationen war unabhängig von der Defektlokalisation kein signifikanter Einfluss auf das Zeichen der exponierten Sklera zu beobachten (p=0.43; p=0.50). Jedoch konnte ein signifikanter Unterschied zwischen einer reinen Wangenbeteiligung und zusätzlicher Involvierung von Lidhaut in den zu deckenden Defekt festgestellt werden (p<0.01).

5.2.3.9 Ektropium
Die Anzahl der Ektropia zeigte prä- zu postoperativ einen signifikanten Anstieg (p=0.03), wobei zwischen operiertem und kontralateralem Auge ein signifikanter Unterschied zu verzeichnen war (p=0.03). Eine Beteiligung des Lidapparates hatte dagegen keinen signifikanten Einfluss auf die Evertierung des Unterlides (p=0.30).
6 Diskussion

Um diese Fragen objektiv zu beantworten, wurden anthropometrische Indizes nach Farkas und Munro verwendet (Farkas und Munro 1987), um standardisiert angefertigte Fotografien zu vermessen. Diskutiert werden nachfolgend die Auswahl und Zusammensetzung des Patientenkollektivs, die Operationstechnik, sowie die Evaluationsmethode und die Ergebnisse.

6.1 Diskussion der Methode

6.1.1 Zusammensetzung des Patientenkollektivs

In der vorgelegten Studie entsprachen 31 Patienten den beschriebenen Auswahlkriterien und wurden in die Studie eingeschlossen.

Im Kontext der Literaturlage erscheinen daher die Größe des erfassten Kollektives und ein Betrachtungszeitraum von 7 Jahren als adäquat, um postoperative Veränderungen durch diese Operationstechnik zu erfassen. Sowohl Altersdurchschnitt, als auch die Größen der histopathologischen Befunde entsprachen dabei den vorgestellten Studien. Abweichungen von den Literaturwerten bestanden dagegen bei der prozentualen Verteilung der Tumorentitäten. So waren nicht 80-90% der malignen Neoplasien durch Basalzellanaplastische repräsentiert (Malhotra et al. 2004, Kakudo et al. 2009), sondern lediglich 59%. Der Anteil von malignen Tumoren an allen Neoplasien erscheint dagegen zunächst mit 71% gegenüber den hinterlegten 40% erhöht (Wojcicki und
Zachara 2010), wobei jedoch Unterschiede in der Resektionsgröße und damit Notwendigkeit einer Deckung mit Wangenrotationslappenplastiken bestehen.

6.1.2 Diskussion der Operationstechnik

Bei der Planung der Rekonstruktion sollte auf die Behaarung achtgegeben werden. Die Haarlinie sollte vor allem bei Frauen aus ästhetischen Gründen gewahrt werden, um keine behaarte Kopfhaut in die Wangenregion einzubringen (Menick 2001).

6.1.3 Anthropometrie

6.1.3.1 Grundlagen der Anthropometrie

So basierte sein Hauptwerk "Anthropometric Facial Proportions in Medicine" auf der Toronto Growth Study, in der von 1967 bis 1984 mehr als 2500 Kaukasier vermessen wurden (Edler et al. 2006, Farkas und Munro 1987). Farkas und Munro definierten anhand ihrer linearen und angulären Messungen 104 anthropometrische Distanzen,

6.1.3.2 Nutzen der Anthropometrie

Die Dokumentation von vorab bestehenden Abnormalitäten lenkt die Aufmerksamkeit des Patienten auf bisher unbemerkte Probleme und schützt so den Chirurgen, da Patienten nach einer Operation viel kleinere Unterschiede wahrnehmen als präoperativ (Biesman 1999).

Aufgrund der genannten Vorzüge erstreckt sich das Einsatzgebiet der Anthropometrie über viele Disziplinen wie die plastische Chirurgie, Mund-, Kiefer- und Gesichtschirurgie, Kieferorthopädie und die Dermatologie (Ferrario et al. 2001, Gosman

6.1.3.3 Techniken der Anthropometrie
Die ursprüngliche Form der Anthropometrie stellt die direkte oder auch manuelle Anthropometrie dar, bei der die anthropometrischen Parameter direkt am Patienten erhoben werden (Borman und Ozgur 1998). Die Vermessung erfolgt dabei für gewöhnlich mit dem klassischen anthropometrischen Messinstrument, dem Stangenzirkel, auch Anthropometer genannt.

Sofern alle Punkte klar identifiziert werden können und die Aufnahmen standardisiert angefertigt wurden, ist die indirekte Anthropometrie eine gänzlich valide Technik (Edler et al. 2006). So zeigte sich im Vergleich zur direkten Anthropometrie eine deutlich geringere Inter- sowie Intraobserver-Variabilität (Coombes et al. 2007). Dies ist auf die Vermeidung von Distorsionen des Weichgewebes während der Messung zurückzuführen (Price et al. 2009).

6.1.4 Medizinische Fotografie

Als Basis der indirekten Anthropometrie ist die Fotografie essentiell für die plastische Chirurgie (Aveta et al. 2012) und wesentlicher Bestandteil der okuloplastischen Bewertung (Coombes et al. 2007).

Das Protokoll der Fotostandardisierung umfasst sowohl die Aufnahmebedingungen, als auch die technischen Voraussetzungen, die daher nachfolgend dargestellt werden.
6.1.4.1 Aufnahmebedingungen

6.1.4.2 Fototechnik

Für die Erstellung von qualitativ hochwertigen und vergleichbaren Aufnahmen ist ein standardisierter Aufbau des fotografischen Arbeitsplatzes unerlässlich (Nayler 2003), da bereits kleine Veränderungen im technischen Set-up zu großen Abweichungen führen (Riml et al. 2011).

Zweifellos werden die besten Ergebnisse von professionellen Fotografen erzielt (Nayler 2003), wobei ein Fotostudio oder eine dafür vorgesehene Räumlichkeit zu empfehlen ist (Yavuzer et al. 2001).

Hinsichtlich der Beleuchtung bietet die Verwendung von drei Lichtquellen optimale Resultate, da so dreidimensionale Effekte besser zur Geltung kommen und der möglichst himmelblaue Hintergrund schattenfrei ausgeleuchtet wird (Yavuzer et al. 2001).

Wichtiger jedoch als professionelles Equipment ist die stete Beibehaltung des gewählten fotografischen Set-up in Position, Perspektive, Licht, Kontrast und Hintergrund (Nayler 2003).

Vor- und Nachteile zugleich hat die zur Bildbearbeitung vorhandene Software, die zum einen ein Morphing vor der Operation und damit eine leichtere Kommunikation zwischen Arzt und Patient ermöglicht, auf der anderen Seite jedoch das Risiko einer

6.2 Auswahl der anthropometrischen Indizes

Das Ektropium und die Scleral Show stellen klinisch bedeutsame Malpositionen des Unterlides dar, deren exakte Quantifizierung aufgrund der schwierigen Wiedergabe der fotografischen Dimensionen nur schwer möglich ist (Raschke et al. 2012).

Sie können jedoch mit negativen Werten der Lower Iris Coverage bzw. positiven Werten des Eye Fissure Index umschrieben werden, da sie mit diesen in engem Zusammenhang stehen.

6.3 Diskussion der evaluierten Parameter

6.3.1 Intercanthal Index (ICI)

Der Intercanthal Index repräsentiert das Verhältnis der Intercanthal Width (IW), die von Endocanthion zu Endocanthion gemessen wird, zur Biocular Width (BW), der Distanz zwischen den Exocanthia.

6.3.2 Eye Fissure Index (EFI)

Der Eye Fissure Index (EFI) nach Farkas gibt das Verhältnis von Höhe (EFH) und Breite (EFW) der Lidspalte des geöffneten, gerade nach vorne blickenden Auges wieder (Farkas und Munro 1987).

Durch Angabe dieser beiden Distanzen im Verhältnis, ist der Eye Fissure Index im Vergleich zu den linearen Messungen geeigneter, Form und Proportion der Lidspalte zu erfassen, von denen die Ästhetik der periorbitalen Region in hohem Maße abhängt (Stein und Antonyshyn 2009). Selbst kleine Retraktionen des Lides, aber auch indirekt das Ektropium und die Scleral Show, werden durch diesen anthropometrischen Index erfasst (Raschke et al. 2012), sodass ihm für die Evaluation des operativen Ergebnisses nach Wangenrotationslappenplastiken große Bedeutung zukommt.
6.3.3 Upper Lid Sulcus Height (ULSH/ULH)
Da ein Absinken der lateralen Augenbraue eine typische Komplikation von Wangenrotationslappenplastiken darstellt, wurde das Verhältnis von Upper Lid Sulcus Height (ULSH) zu Upper Lid Height (ULH) in die Evaluation des postoperativen Ergebnisses einbezogen. Die Betrachtung der Morphologie des Oberlides erscheint zudem angebracht, da es unmittelbar anatomisch und funktionell mit dem Unterlid verbunden ist (Raschke et al. 2012). Spannungen im Bereich des lateralen Augenwinkels werden sich nicht nur auf das Unterlid, sondern auch auf das Oberlid und die Augenbraue auswirken. Eine Absenkung der Augenbraue führt dabei zur Kompression des Oberlides, was zu dem Eindruck überschüssiger Haut und einer gealterten Erscheinung führt (Biesman 1999).

6.3.4 Upper Iris Coverage (UIC)

6.3.5 Lower Iris Coverage (LIC)
Die Lower Iris Coverage definiert den durch das Unterlid verdeckten Anteil des Irisdurchmessers (Starck et al. 1996). Die Bewertung dieses Parameters war bei der vorliegenden Studie von besonderem Interesse, da eine Retraktion des Unterlides durch ihn objektiv dargestellt und quantifiziert werden kann. Mithilfe dieses Indexes können
auch kleinere Veränderungen erfasst werden, die nicht zwingend zu einer Exposition der Sklera führen (Raschke et al. 2013). So beschränkt sich die Auswertung des operativen Ergebnisses nicht nur auf die reine Angabe der Häufigkeit von Sceral Show und Ektropia, die mit Lidretraktionen assoziiert sind. Im Falle dieser häufigen Komplikationen wurden negative Werte der Lower Iris Coverage gemessen.

6.3.6 Position of lower Eyelid to Iris
Die Position of lower Eyelid to Iris beschreibt den Kontaktpunkt des Limbus corneae mit dem Rand des Unterlides (Biesman 1999).

6.3.7 Canthal Tilt (CAT)

Eine Absenkung dieser Achse durch suboptimale Rekonstruktionstechniken führt zu einem traurigen Erscheinungsbild, was sich erheblich auf das psychosoziale Befinden des Patienten auswirken kann (Biesman 1999). Zudem ist die Verteilung der Tränenflüssigkeit behindert, da diese physiologischerweise der Achsneigung der Lidspalte folgt (Patipa 2000).

Der Canthal Tilt wurde in die Evaluationskriterien implementiert, da sich ein temporal insuffizient fixierter Wangenrotationslappen direkt auf diesen Winkel auswirkt. Nachteilig zeigt sich dabei besonders eine Beteiligung des lateralen Augenwinkels bei der Rekonstruktion (Raschke et al. 2013).
6.3.8 Scleral Show

6.3.9 Ektropium

6.4 Diskussion der Ergebnisse
Die Diskussion der evaluierten anthropometrischen Parameter zeigte auf, dass grundsätzlich ein jeder von ihnen durch eine suboptimale Rekonstruktion mittels Wangenrotationslappenplastiken beeinflusst werden kann. So ist ein insuffizient fixierter oder unter Spannung vernähter Wangenrotationslappen in der Lage, die Augenbraue, das obere sowie das untere Augenlid herabzuziehen und somit zu unerwünschten Effekten an den evaluierten Werten zu führen. Daher sollen die Parameter zunächst einzeln im Kontext der Literatur und anschließend zusammenfassend betrachtet werden.
Ein Vergleich mit anderen Studien zu dieser Operationstechnik ist nicht möglich, da bei diesen das ästhetische Ergebnis rein subjektiv bewertet wurde.

6.4.1 Intercanthal Index (ICI)
Im Zuge der operativen Eingriffe wurde der Intercanthal Index unabhängig von einer Lidbeteiligung nicht signifikant beeinflusst. In erster Linie wurde dieser Index zur Überprüfung der Standardisierung der Fotodokumentation evaluiert, die für die vorliegende Studie von fundamentaler Bedeutung ist. Die prä- zu postoperative Konstanz dieses Parameters bestätigte diese und sicherte die Erlangung reproduzierbarer Werte der übrigen Parameter. Das Ergebnis kann auch dahingehend interpretiert werden, dass eine Verziehung der Augenwinkel insbesondere in horizontaler Richtung erfolgreich vermieden und die Symmetrie der periorbitalen Region, die ein wichtiges Kriterium für Ästhetik darstellte, gewahrt wurde.

6.4.2 Eye Fissure Index (EFI)
Dass durch die Operationen keine signifikanten Veränderungen des Eye Fissure Index auftraten, zeigt, dass Form und Proportion der Lidspalte erhalten wurden. So war insbesondere eine signifikante postoperative Veränderung der Lidspalthöhe (EFH) und damit des Indexes durch eine Retraktion des Unterlides oder ein Herabziehen des Oberlides ausgeblieben. Das erhöhte Risiko einer Lidretraktion bei Involvierung von Lidhaut, wie es Scleral Show und Lower Iris Coverage aufzeigten, wurde durch diesen Parameter nicht erfasst, sodass ein unmittelbarer Zusammenhang zwischen Eye Fissure Index und Lower Iris
Coverage wie er in der Literatur beschrieben wurde, nicht bestätigt werden konnte (Raschke et al. 2012).

Der Referenzwert des Eye Fissure Index wurde von Farkas für 18-jährige Frauen mit 36,2% angegeben (Farkas und Munro 1987, Koury und Epker 1992). Der im Vergleich zur Referenz geringere präoperative Wert von 32,0% ließe sich durch eine vergrößerte Eye Fissure Width erklären, ist jedoch im vorliegenden Patientenkollektiv unwahrscheinlich, da diese bei einem Durchschnittsalter von 70,5±17,1 Jahre kleiner sein dürfte als im Alter von 18 Jahren (van den Bosch et al. 1999). Vielmehr ist diese Beobachtung wohl auf eine geringere Eye Fissure Height zurückzuführen, die sich durch altersbedingten Deszensus des Oberlides ergibt.

6.4.3 Upper Lid Sulcus Height (ULSH/ULH)

Die Weichgewebsmorphologie des supraorbitalen Bereiches wurde in dieser Studie unter anderem durch die Upper Lid Sulcus Height erfasst. Die dabei ausgebliebene signifikante Veränderung spricht für die Vermeidung einer Deformation in diesem Bereich, welche eine typische Komplikation bei Wangenrotationslappenplastiken darstellt.

Insbesondere die Inzision über dem Niveau des lateralen Augenwinkels sowie die Fixation des Lappens im temporoparietalen Bereich wirken einer Absenkung der Augenbraue entgegen. Das postoperative Erscheinungsbild der Patienten wird auf diese Weise deutlich positiv beeinflusst, da eine Kompression des supraorbitalen Bereiches mit einhergehendem gealtertem Erscheinungsbild ausbleibt.

6.4.4 Upper Iris Coverage (UIC)

Auch die Upper Iris Coverage diente der Erfassung der Morphologie des supraorbitalen Bereiches, konkret der Stellung des Oberlides.

Präoperativ zeigte sich dabei für das vorliegende Patientenkollektiv ein mit 26% um 13% gegenüber Referenzdaten erhöhter Wert, wobei dies am ehesten auf eine altersbedingte Absenkung der Oberlider zurückzuführen ist.

Wie bereits die Upper Lid Sulcus Height bestätigt dieser Parameter das Ausbleiben einer Verziehung des Oberlides im Zuge der operativen Eingriffe und damit den Nutzen der genannten deformationspräventiven Techniken. Eine Beteiligung des Unterlides wirkte sich dabei nicht signifikant auf die Weichgewebsarchitektur des Oberlides aus.
Ein Herabhängen des Lides, dass einen müden Gesichtsausdruck zur Folge hat, wurde erfolgreich vermieden.

6.4.5 Lower Iris Coverage (LIC)
Normalerweise sollten 7% des Irisdurchmessers durch das Unterlid bedeckt sein (Starck et al. 1996). Der in dieser Studie präoperativ erhobene Wert entsprach weitestgehend diesem Normwert wohingegen postoperativ eine Abnahme auf etwa 2% zu verzeichnen war. Dies war für das gesamte Patientenkollektiv jedoch nicht statistisch signifikant.

6.4.6 Position of lower Eyelid to Iris
Die Analyse des Kontaktpunktes der Iris mit dem Rand des Unterlides diente der Überprüfung des Lidrandverlaufes. Dieser hatte sich im untersuchten Patientenkollektiv nicht signifikant geändert, was insbesondere auf die adäquaten intraoperativen Einschätzungen zurückzuführen ist. So können sowohl eine übermäßige Spannung als auch eine Laxheit des Lides zu einer signifikanten Distorsion dessen Verlaufs führen, was sich in einem geänderten Kontaktpunkt äußert. Solch negative ästhetische Effekte traten sowohl im gesamten Patientenkollektiv als auch in der Gruppe mit einer Beteiligung der Lidhaut nicht auf.

6.4.7 Canthal Tilt (CAT)
Im vorliegenden Kollektiv lag präoperativ bereits eine Absenkung der Lidachse vor, die sich im Rahmen der Operation nicht signifikant veränderte. Zurückzuführen ist die Wahrung der Inklination der Lidachse im Wesentlichen auf die Fixation des Lappens im temporalen Bereich, da so ein Absinken des Lappens verhindert wird. Auf diese Weise kann unter Beachtung der chirurgischen Möglichkeiten der Entstehung eines traurigen Augenausdruckes entgegengewirkt
werden. Eine Involvierung von Lidhaut in den zu deckenden Defekt hatte dabei keinen Einfluss auf das postoperativ ästhetische Ergebnis.

6.4.8 Scleral Show

In dieser Studie wurde erstmals auch eine Beteiligung des Lidapparates auf das morphologische Ergebnis nach Wangenrotationslappenplastiken evaluiert, wobei sich in diesen Fällen eine signifikant höhere Rate an Scleral Show zeigte. Eine Objektivierung und Quantifizierung dieses klinischen Parameters erfolgte durch die Lower Iris Coverage, die den ungünstigen Einfluss einer Lidinvolvierung ebenfalls erfasste. Die festgestellten Lidretraktionen können Folge einer unzureichenden Mobilisation und einer insuffizienten Fixation des Wangenrotationslappens mit Absinken des Unterlides sein.

Weitere Ansätze zur Erklärung sind zum einen eine Verkürzung des Lides durch interne Narbenbildungen aufgrund der Inzisionen am Lid und zum anderen der negative Effekt des Ersatzes der Lidhaut, die zu den dünnsten Stellen des menschlichen Körpers gehört, mit der dickeren Wangenhaut. Die beiden letzteren Thesen werden durch die Tatsache bekräftigt, dass für das gesamte Patientenkollektiv keine signifikante Zunahme an Scleral Show festzustellen war.

6.4.9 Ektropium

Bei der Rate an Ektropia trat in der vorliegenden Studie ein signifikanter Anstieg im Zuge der durchgeführten Wangenrotationslappenplastiken auf. Somit waren 16,1% der Patienten von dieser Komplikation betroffen, wobei eine Beteiligung der Lidhaut keinen signifikanten Einfluss hatte.

Die Raten der in der Literaturübersicht vorgestellten Studien zu Rotationslappenplastiken lagen in einer Spanne von 0% bis 37,5%. Der Vergleich mit diesen
Raten lässt jedoch kaum Schlussfolgerungen für eine Verbesserung der Operationstechnik zu, da diese Studien in weiten Teilen einer Angabe der angewandten Verfahren entbehren und keine objektivierbaren oder nachvollziehbaren Evaluationsmethoden enthielten.

6.4.10 Zusammenfassung der Ergebnisse

An den anthropometrischen Parametern waren keine signifikanten Veränderungen durch die intraoperativ getätigten Maßnahmen aufgetreten. Im Zuge der Rekonstruktionen wurden demzufolge größere Distorsionen der periorbitalen Region vermieden, sodass sowohl die Form und Inklination der Lidspalte (EFI, Canthal Tilt), die Position der Augenbraue und des Oberlides (ULSH, UIC), als auch Position und Verlauf der Unterlidkante (LIC, Position of lower Eyelid to Iris) weitestgehend gewahrt wurden. Auch die ästhetisch nachteilhafte Exposition der Sklera (Scleral Show) wurde erfolgreich vermieden.

7 Schlussfolgerungen

Operative Eingriffe im Rahmen von Gesichtsrekonstruktionen mittels Wangenrotationslappenplastiken nach Esser sind aufgrund der komplexen Anatomie und der besonderen ästhetischen Implikation der periorbitalen Region stets eine chirurgische Herausforderung. Distorsionen in diesem Bereich können zu einem erheblichen Leidensdruck der Patienten führen, was die Wichtigkeit einer objektivierbaren Analyse und nachvollziehbarer Behandlungsstrategien verdeutlicht.

Das zur Quantifizierung und Objektivierung des subjektiven Eindrucks für Ästhetik gewählte anthropometrische sowie technische Set-up erwies sich als geeignet, die morphologischen Veränderungen der periorbitalen Region reliabel zu erfassen. Im untersuchten Gesamtkollektiv waren keine signifikanten Veränderungen der anthropometrischen Parameter sowie des klinischen Parameters Scleral Show zu verzeichnen. Dies ist auf eine adäquate intraoperative Einschätzung des Ausmaßes an Gewebemobilisation und -rotation und die Anwendung deformationspräventiver chirurgischer Techniken wie die Fixation des Lappens am Periost des Margo orbitalis oder den spannungsfreien Wundverschluss zurückzuführen.

Einziger signifikant verändert stellte sich der klinische Parameter Ektropium dar, wobei die erhobene Rate weitestgehend anderen Studien zu Wangenrotationslappenplastiken entsprach. Ein weiterführender Vergleich mit diesen Arbeiten war jedoch mangels objektiver und nachvollziehbarer Evaluationsmethoden nicht möglich.

Der erstmals in dieser Studie untersuchte Einfluss einer Beteiligung des Lidapparates auf das postoperative Erscheinungsbild zeigte ein signifikant erhöhtes Risiko einer Lidretraktion auf, sodass bei Ersatz der Haut des Unterlides besondere Vorsicht geboten und die Verwendung retraktionspräventiver Techniken angezeigt ist. Dieses Ergebnis impliziert, dass, wenn immer möglich, der Ersatz der dünnen Lidhaut mit Wangenhaut vermieden werden sollte, um so Verziehungen und ein klobiges Erscheinungsbild zu vermeiden.

Unter Beachtung dieser Hinweise können, wie die Ergebnisse dieser Studie zeigen, signifikante Deformationen weitestgehend vermieden und gute ästhetische sowie funktionelle Resultate durch Wangenrotationslappenplastiken nach Esser erzielt werden.
Die in dieser Arbeit dargelegte Methode bietet zudem eine valide Basis für die Gegenüberstellung operativer Techniken, die in Zukunft zu einer Weiterentwicklung derselben führen und sich in einem Benefit für das postoperative Erscheinungsbild der Patienten äußern könnte.

Die entwickelte Systematik kann auch in Einzelfällen für Gutachten und Rechtsstreitigkeiten, aber auch im Sinne einer Qualitätssicherung innerhalb der Klinik von Bedeutung sein.
8 Literaturverzeichnis

Esser JFS. 1918. Die Rotation der Wange und allgemeine Bemerkungen bei chirurgischer Gesichtsplastik. FCW Vogel.

9 Anhang

9.1 Danksagung

Allen voran möchte ich mich meinem Doktorvater Prof. Dr. Dr. Stefan Schultze-Mosgau, Direktor der Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie/Plastische Chirurgie des Universitätsklinikums Jena, danken, der mir die Möglichkeit gab, die Arbeit unter seiner Leitung durchzuführen.

Mein ganz besonderer Dank gilt meinen Betreuer, PD Dr. Dr. Gregor F. Raschke, der mir jederzeit mit seinem großen persönlichen Engagement sowohl bei der Datenauswertung als auch beim späteren Niederschreiben der Studienergebnisse mit Rat und Tat zur Seite stand.

Desweiteren gilt mein Dank allen Patienten, die durch ihre Kooperation die Erstellung der für diese Studie essentiellen Fotografien ermöglichten und durch ihr Einverständnis zur wissenschaftlichen Auswertung ihrer Bilder zur Gewinnung der wissenschaftlichen Daten beigetragen haben.

Und nicht zuletzt danke ich meinen Eltern, die in jeglicher Hinsicht die Grundsteine für meinen Weg gelegt haben.
9.2 Ehrenwörtliche Erklärung

Hiermit erkläre ich, dass mir die Promotionsordnung der Medizinischen Fakultät der Friedrich-Schiller-Universität bekannt ist,

ich die Dissertation selbst angefertigt habe und alle von mir benutzten Hilfsmittel, persönlichen Mitteilungen und Quellen in meiner Arbeit angegeben sind,

mich folgende Personen bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts unterstützt haben:

- Prof. Dr. Dr. Stefan Schultze-Mosgau
- PD Dr. Dr. Gregor F. Raschke

die Hilfe eines Promotionsberaters nicht in Anspruch genommen wurde und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen,

dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder andere wissenschaftliche Prüfung eingereicht habe und

dass ich die gleiche, eine in wesentlichen Teilen ähnliche oder eine andere Abhandlung nicht bei einer anderen Hochschule als Dissertation eingereicht habe.

Jena, den 03.12.2014

[Signature]