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ABSTRACT

In mechatronics and robotics one often encounters highly complex nonlinear systems, whose dynamics are de-
scribed by a system of nonlinear ordinary differential equations. In simulation, one can use very sophisticated
models, whereas controllers are typically designed on strongly simplified models. Quite often, this results in lin-
ear controllers which are unsuitable for the original nonlinear system. We suggest an approach allowing nonlinear
controller design even for very complicated models. Our approach is based on an alternative differentiation method
called algorithmic or automatic differentiation. With this computation method we can circumvent problems that
may arise in symbolic computation.

Index Terms— Nonlinear control, algorithmic differentiation, automatic differentiation, operator overloading,
differential geometry, Lie derivatives, tank reactor

1. INTRODUCTION

In mechatronics and robotics one often encounters highly complex nonlinear systems, whose dynamics can be
written as a system of ordinary differential equations

ẋ = F (x,u), (1)

provided appropriate minimal coordinates are found. The state vector x describes the actual position in this coor-
dinate frame. System (1) can be influenced via the input u. We introduce an additional variable y representing the
output of the system (e.g. measurement or control variable):

y = H(x,u). (2)

There are several approaches how to deal with a nonlinear control system (1)-(2). A very promising direction
is the use of differential geometry. Many specify control problems have been solved using differential geometric
or differential algebraic concepts. These approaches often require some types of Lie derivatives [1, 2].

The computation of Lie derivatives occurring in nonlinear control laws is usually carried out symbolically [3–
6]. An alternative approach using automatic/algorithmic differentiation has been suggested in [7–9]. An efficient
implementation of these algorithms has been presented in [10]. Based on this implementation, we discuss an
application on a continuous-stirred tank reactor [11].

Equations (1) and (2) provide a very general description of nonlinear systems. For several classes of systems,
the nonlinear map F occurring in (1) is affine w.r.t. the input. For most examples the output map H in (2) does
not depend explicitly on the input u, i.e., the system does not have a direct throughput.

The paper is structured as follows: In Section 2 we remind the reader of the linearization by feedback approach
from nonlinear control theory. The computation of derivatives is discussed in Section 3. Our approach is illustrated
on an example system in Section 4. We finally provide a summary in Section 5.
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2. NONLINEAR CONTROL SYSTEMS

2.1. Single-Input Single-Output Systems

An input-affine single-input single-output system

ẋ = f(x) + g(x)u, y = h(x) (3)

is described by the drift vector field f : Rn → Rn, the input vector field g : Rn → Rn and the output map
h : Rn → R, which is a scalar field. We assume that these fields are sufficiently smooth. Modern control
algorithms often require Lie derivatives of these different types of fields. In particular, the exact input-output
linearization by feedback employs Lie derivatives of the scalar field h along the vector field f or g, which are
defined by

Lfh(x) =
∂h(x)

∂x
f(x) and Lgh(x) =

∂h(x)

∂x
g(x), (4)

respectively. Higher order Lie derivatives along the same vector field are defined by the recursion

Lk+1
f h(x) =

∂Lk
fh(x)

∂x
f(x) with L0

fh(x) = h(x), (5)

see [1]. Similarly, we can also define the Lie derivative of a scalar field along different vector fields such as

LgLfh(x) =
∂Lfh(x)

∂x
g(x). (6)

Definition 2.1 ( [1, 2]) System (3) is said to have relative degree r at the point x0 ∈ Rn if

1. LgL
k
fh(x) = 0 for all x in a neighborhood of x0 and all k = 0, . . . , r − 2, and

2. LgL
r
fh(x0) 6= 0.

The first order time derivative of the output can be expressed in terms of Lie derivatives:

ẏ(t) =
d

d t
y(t)

=
d

d t
h(x(t))

=
∂h(x)

∂x
ẋ(t)

=
∂h(x)

∂x
(f(x(t)) + g(x(t))u(t))

= Lfh(x(t)) + Lgh(x(t))u(t).

In case of Lgh(x0) 6= 0 we have relative degree r = 1. Otherwise, i.e., with Lgh(x) ≡ 0, we compute the second
order time derivative

ÿ(t) =
d

d t
ẏ(t)

=
d

d t
Lfh(x(t))

=
∂Lfh(x)

∂x
ẋ(t)

=
∂Lfh(x)

∂x
(f(x(t)) + g(x(t))u(t))

= L2
fh(x(t)) + LgLfh(x(t))u(t).

If LgLfh(x0) 6= 0 we have relative degree r = 2. Otherwise, we continue this process and calculate further time
derivatives of the output along the trajectory of system (3). In general, the time derivatives of the output can be
written as

y(t) = h(x(t))
ẏ(t) = Lfh(x(t))

...
y(r−1)(t) = Lr−1

f h(x(t))

y(r)(t) = Lr
fh(x(t)) + LgL

r−1
f h(x(t))u(t).

(7)
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Roughly speaking, the relative degree is the minimum order of a time derivative of the output which depends
directly on the input u. For a well-defined relative degree, this fact can be formulated as

r = arg min
k

{
d y(k)

du
6= 0

}
.

The last line of (7) can be employed to carry out an exact linearization by feedback. For this reason, we define
a virtual input v by

y(r) = Lr
fh(x) + LgL

r−1
f h(x)u

!
= v. (8)

Resolving (8) w.r.t. the original input u yields the state-feedback

u =
v − Lr

fh(x)

LgL
r−1
f h(x)

. (9)

The resulting input-output behavior y(r) = v corresponds to a chain of r integrators, i.e., we obtain a linear
controllable system. The coordinates of the associated controller canonical form are given by the output and
its time derivatives y, . . . , y(r−1). To obtain stable input-output dynamics described by a given characteristic
polynomial

ρ(s) = sr + pr−1s
r−1 + · · ·+ p1s+ p0 (10)

we use the additional feedback
v = −p0 y − p1 ẏ − · · · − pr−1y(r−1). (11)

The time derivatives of y occurring in (11) can be expressed in terms of Lie derivatives, see (7). Combining (9)
and (11) yields the linearizing and stabilizing feedback law

u = − 1

LgL
r−1
f h(x)

r∑
k=0

pk L
k
fh(x) with pr = 1. (12)

For r < n we linearize the system’s dynamics only w.r.t. an subsystem. In this case, the feedback derived
above achieves a partial linearization. For r = n, we obtain a completely linear system, i.e., the feedback law
carries out a full linearization.

2.2. Multi-Input Multi-Output Systems

The dynamics of an input-affine multi-input multi-output system is given by

ẋ = f(x) +
m∑
i=1

gi(x)ui, y = h(x) (13)

with the vector fields f , g1, . . . , gm : Rn → Rn and the vector-valued map h : Rn → Rm. The output map h
describes the m components of the output y = (y1, . . . , ym)T by m scalar fields h1, . . . , hm : Rn → R, i.e.,
yi = hi(x) for i = 1, . . . ,m.

Definition 2.2 ( [1, 2]) System (13) is said to have a (vector valued) relative degree (r1, . . . , rm) at the point
x0 ∈ Rn if

1. Lgj
Lk
fhi(x) = 0 for all x in a neighborhood of x0 and all j = 1, . . . ,m as well as k = 0, . . . , ri − 2 with

i = 1, . . . ,m, and

2. the so-called decoupling matrix

A(x0) =

 Lg1
Lr1−1
f h1(x0) · · · Lgm

Lr1−1
f h1(x0)

...
. . .

...
Lg1

Lrm−1
f hm(x0) · · · Lgm

Lrm−1
f hm(x0)

 (14)

is regular (i.e., nonsingular).
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The feedback linearization was carried out in the single-input single-output case using the last line in (7). In
the multi-input multi-output case, this corresponds toy

(r1)

...
y(rm)

 =

L
r1
f h1(x)

...
Lrm
f h1(x)


︸ ︷︷ ︸

b(x)

+

 Lg1
Lr1−1
f h1(x) · · · Lgm

Lr1−1
f h1(x)

...
. . .

...
Lg1

Lrm−1
f hm(x) · · · Lgm

Lrm−1
f hm(x)


︸ ︷︷ ︸

A(x)

u1
...
um

 . (15)

Similar as in Section 2.1 we introduce a virtual variable v = (v1, . . . , vm)T , for which we want to achieve a linear
input-output behavior. The feedback

u = A−1(x) (v − b(x)) , (16)

which is a generalization of (9), decomposes the input-output dynamics intom chains of integrators, i.e., y(ri) = vi
for i = 1, . . . ,m. Each subsystem is linear and controllable. Furthermore, the feedback (16) also achieves a
decoupling between the subsystems. These subsystems can be stabilized separately as in the single-input single-
output case, see (12). If r1 + · · · rm < n we have a partial linearization, for r1 + · · · rm = n we achieve a full
linearization.

Note that the vector-valued map h : Rn → Rm should not be confused with a vector field. As mention above,
h can be seen as a collection of m scalar fields, i.e., h(x) = (h1(x), . . . , hm(x))T . In this sense we extend the
definition in (4) to the vector-valued case by

Lfh(x) =
∂h(x)

∂x
f(x) =

Lfh1(x)
...

Lfhm(x)

 , (17)

which is simply the collection of the Lie derivatives Lfh1(x), . . . , Lfhm(x) of the scalar fields h1, . . . , hm. This
notation is useful in the context of software implementations, see [12, 13].

Similarly, we can combine the input vector fields g1, . . . , gm into an n×m matrix

G(x) = (g1, . . . , gm) .

The Lie derivative of the vector-valued map h along the matrix G can be defined column-wise by

LGh(x) =
(
Lg1

h(x), . . . , Lgm
h(x)

)
(18)

as a collection of the Lie derivatives Lg1
h(x), . . . , Lgm

h(x) in the sense of (17).

Definition 2.3 ( [14, 15]) Assume system (13) has a well-defined relative degree (r1, . . . , rm). System (13) is said
to have uniform relative degree r if r = ri for all i = 1, . . . ,m, i.e., if the relative degrees are the same for all
outputs.

If system (13) has a uniform relative degree r, we have b(x) = Lr
fh(x) and A(x) = LGL

r−1
f h(x). In this

case, the linearizing feedback (16) can be written as

u =
(
LGL

r−1
f h(x)

)−1 (
v − Lr

fh(x)
)
.

2.3. Dynamic Extension

Assume that y(r1)1 , . . . , y
(rm)
m are minimum order time derivatives of the outputs y1, . . . , ym that depend directly

on some inputs ui. The tuple (r1, . . . , rm) does not constitute a relative degree if the decoupling matrix (14) is
singular. This possibility is illustrated by the following example.

Consider the 3-dimensional system
ẋ1 = sinx3 + u1
ẋ2 = cosx3 + u1
ẋ3 = u2
y1 = x1
y2 = x2

(19)
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with the two inputs u1, u2 and the two outputs y1, y2. The tuple (r1, r2) = (1, 1) corresponds to the time derivatives(
ẏ1
ẏ2

)
=

(
sinx3
cosx3

)
+

(
1 0
1 0

)
︸ ︷︷ ︸
A(x)

(
u1
u2

)
. (20)

The associated decoupling matrix is singular due to the zero column in the second position. However, we can
circumvent this problem with an additional integrator

u̇1 = u∗1,

where we treat u1 as an additional state, and u∗1 replaces the input u1. Further differentiation of (20) yields

ÿ1 = ẋ3 cosx3 + u̇1 = u2 cosx3 + u∗1
ÿ2 = −ẋ3 sinx3 + u̇1 = −u2 sinx3 + u∗1,

(21)

which can be rewritten as (
ÿ1
ÿ2

)
=

(
1 cosx3
1 − sinx3

)(
u∗1
u2

)
. (22)

The augmented 4-dimensional system has the well-defined relative degree (2, 2) whenever sinx3 6= cosx3. The
well-defined relative degree was achieved with an additional integrator. This approach is called dynamics exten-
sion [13, 16].

3. ALGORITHMIC DIFFERENTIATION

3.1. Methods to Compute Derivatives

For an explicitly given function, symbolic differentiation is probably he most common method to compute deriva-
tives. This approach uses elementary differentiation rules in combination with the chain rule. For symbolic dif-
ferentiation, there are several computer algebra packages available. However, symbolic differentiation has also
limitations. Symbolic differentiation is usually not applicable if the function under consideration is given as an al-
gorithm containing control structures such as loops and branches. Furthermore, the size of symbolically computed
derivative expressions may increase exponentially for higher order derivatives.

Another standard method to obtain derivative values is numeric differentiation using finite difference schemes.
This method can be applied to functions described by highly complicated algorithms. While this method can
easily be implemented, the accuracy of the resulting derivative values is significantly lower than the accuracy of
the associated function values, see [17].

An interesting alternative to the above mentioned derivative computation methods is called algorithmic or au-
tomatic differentiation [17]. This method is applicable to very general algorithmic descriptions of a given function.
Similar to symbolic differentiation, elementary differentiation rules are applied in connection with the chain rule.
However, the derivatives are evaluated during each step, i.e., the intermediate results are floating point numbers
and not symbolic expressions. The most common approaches to implement algorithmic differentiation are source
code transformation and operator overloading [18, 19]. The second approach can be used for object-oriented pro-
gramming languages.

3.2. Forward Mode and Taylor Arithmetic

Consider a smooth map F : Rn → Rm, which can be given as an algorithm. In addition, we consider a curve x
in Rn given by a Taylor series

x(t) = x0 + x1t+ x2t
2 + · · ·+ xdt

d +O(td+1) (23)

with vector-valued Taylor coefficients x0, . . . ,xd ∈ Rn. The curve x is mapped via F from the vector space Rn

into a curve z of the vector space Rm given by

z(t) = F (x(t)) = z0 + z1t+ z2t
2 + · · ·+ zdt

d +O(td+1) (24)

with Taylor coefficients z0, . . . ,zd ∈ Rm. The algorithm (in its original form) computes the Taylor coefficient z0

as the function value at the point x0, i.e.,
z0 = F (x0). (25)
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The time derivative of (24) at t = 0 results in a formula for the next Taylor coefficient

z1 = F ′(x0)x1. (26)

Assume that the algorithm under consideration is formulated in the programming language C++. The variables
would usually be represented by the build-in numerical type double. It is easy to replace this numerical standard
type by a new class (say ddouble) containing both the function value and the derivative value:

class ddouble
{
double val; // function value
double der; // derivative value
}

If we overload elementary functions (e.g. sin, cos, exp) and operations (e.g. +, −, ∗, /), we could use the same
procedure not only for the computation of the function value z0 as given in (25) but also (and simultaneously) for
the computation of the directional derivative z1 in (26).

In general, the Taylor coefficients of the curve z are given by

zk =
dk

dtk
z(t)

∣∣∣∣
t=0

. (27)

Higher order Taylor coefficients z2, z3, . . . cannot be expressed anymore in the convenient matrix-vector nota-
tion [17]. However, these Taylor coefficients can easily be computed simply replacing the floating point type
double by a new class (say tdouble) which contains not only one value but all (d+ 1) Taylor coefficients:

const int d=...; // highest degree d
class tdouble
{
public:
double coeff[d+1]; // array for the coefficients
}

Again, one has to overload elementary functions and operations. For instance, the multiplication of two (scalar)
curves x(t) and y(t) results in the new curve

z(t) = x(t) · y(t)

= (x0 + x1t+ x2t
2 + · · · ) · (y0 + y1t+ y2t

2 + · · · )
= (x0 + y0) + (x0y1 + x1y0)t+ (x0y2 + x1y2 + x2y0)t2 + · · ·
= z0 + z1t+ z2t

2 + · · · ,

where the Taylor coefficients zk of the new curve z are given by the convolution

zk =
k∑

i=0

xiyk−i for k = 0, . . . , d.

Similar rules can be found for all usual operations, see [20]. These (new) operations are known as Taylor arithmetic.

3.3. Ordinary Differential Equations and Lie Derivatives

The Taylor arithmetic described in Section 3.2 can be used for the efficient series expansion of the solution of
ordinary differential equations [21–23]. Consider the initial value problem

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn (28)

of an unforced differential equation given by the vector field f : Rn → Rn. For a smooth vector field f , the
solution of (28) can be expanded into a Taylor series (23). The time derivative of the curve x, which is the left-
hand side of (28), is given by

ẋ(t) = x1 + 2x2t+ 3x3t
2 + 4x4t

3 · · · . (29)
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The right-hand side of (28) can be seen as a mapping from the curve x into a curve z with a Taylor expansion
as in (24). For given Taylor coefficients x0, . . . ,xk ∈ Rn of x, the Taylor coefficients z0, . . . ,zk ∈ Rn can be
computed with Taylor arithmetic. Matching the coefficients of the curves ẋ in (29) and z as in (24) yields

xk+1 =
1

k + 1
zk, (30)

which allows the recursive computation of all Taylor coefficients x1, . . . ,xd ∈ Rn starting with the initial value x0.
Now, we additionally take the output map h : Rn → Rm into account, which maps the curve x into a curve y

given by
y(t) = h(x(t)) = y0 + y1t+ y2t

2 + · · ·+ ydt
d +O(td+1) (31)

with Taylor coefficients y0, . . . ,yd ∈ Rm, which can directly be computed using Taylor arithmetic. Comparing
the series expansion (31) with the time derivatives of the output curve discussed in Section 2 we obtain

Lk
fh(x0) = k!yk for k = 0, . . . , d. (32)

This relation allows the efficient computation of the function values of Lie derivatives using algorithmic differen-
tiation [24–26]. The mixed Lie derivative needed for the feedback linearization can be computed based on Eq. (7).
The computation of more general types of mixed Lie derivatives is discussed in [27, 28].

3.4. Packages ADOL-C and LieDrivers

ADOL-C is an algorithmic differentiation package based on the operator overloading capability of the object-
oriented programming language C++ [29]. In this package, it is first necessary to generate an internal representation
of the function under consideration. During this process, ADOL-C generates a sequential data structure called tape,
which is accessed via a handle denoted as tag. Several types of derivatives (e.g. gradeints, Jacobians, Hessians)
can be computed using appropriated driver functions, which are also provided by ADOL-C. These drivers access
the internal data structure tape via its handle. More details can be found in [30].

Based on [24–26] a library for the efficient computation of different types of Lie derivatives was developed [10].
This library provides ADOL-C drivers and was therefore named LIEDRIVERS. We are currently working of the
native integration of this library into ADOL-C.

As for our application, the LIEDRIVERS library provides drivers for the computation of the Lie derivatives (4)-
(5) of a scalar field. The C function Lie scalarc has the following arguments:

int Lie_scalarc(Tape_F,Tape_H,n,x0,d,res)
short Tape_F; // tape tag of vector field f
short Tape_H; // tape tag of scalar field f
short n; // dimension n
double x0[n]; // vector x0
short d; // highest degree d
double res[d+1]; // Lie derivatives

The case of multiple scalar fields defined by (17) is treated similarly. We also developed an interface to MATLAB R©,
where wrapper functions are provided for ADOL-C’s build-in drivers and the LIEDRIVERS toolbox.

4. EXAMPLE

The Continuous-Stirred-Tank-Reactor (CSTR) model as a benchmark system in nonlinear control has been pro-
posed in [11]. The CSTR, see Fig. 1, is continuously fed by a liquid flow containing the reactant A with the
concentration cin and the temperature ϑin. Within the CSTR a VAN-DER-VUSSE-reaction of the substances A, B,
C and D occurs:

A
k1−−→ B

k1−−→ C, 2A
k2−−→ D.

The liquid phase inside the reactor is supposed to be of constant volume and ideally mixed. The desired product of
the reaction is B, while C and D are undesired by-products. The normalized flow rate u1 and the cooling power
u2 are the available control inputs. The describing differential equations are given by

ċA = rA(cA, ϑ) + (cin − cA)u1
ċB = rB(cA, cB, ϑ)− cBu1
ϑ̇ = h(cA, cB, ϑ) + α(ϑC − ϑ) + (ϑin − ϑ)u1
ϑ̇C = β(ϑ− ϑC) + γu2

(33)
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u1, cin, ϑin

u1

ϑC

cA, cB, ϑ

u2

A,B,C,D

A

Fig. 1: Scheme of the Continuous-Stirred-Tank-Reactor

with cA and cB, the concentrations of A and B, ϑ and ϑC, the temperatures in the reactor and the cooling jacket,
respectively. The concentrations cC and cD do not influence the dynamics (33) and thus they are not interesting.
The reaction rates rA and rB and the contribution h to the reaction enthalpy are described by

rA(cA, ϑ) = −k1(ϑ)cA − k2(ϑ)c2A
rB(cA, cB, ϑ) = k1(ϑ)(cA − cB)
h(cA, cB, ϑ) = −δ(k1(ϑ) (cA∆HAB + cB∆HBC) + k2(ϑ)c2A∆HAD).

The temperature-dependent functions k1 and k2 are of the ARRHENIUS-Type

ki(ϑ) = ki0 exp

(
−Ei

ϑ/◦C + 273.15

)
, i = 1, 2 (34)

with constant coefficients ki0. The other symbols α, β, γ, δ, E1, E2,∆HAB,∆HAD,∆HBC denote constant pa-
rameters adapted from [31].

With the state space vector x = (cA, cB, ϑ, ϑC)T one can get a system of form (13) with

f(x) =


rA(x1, x3)

rB(x1, x2, x3)
h(x1, x2, x3) + α(x4 − x3)

β(x3 − x4)

 , g1(x) =


cin − x1
−x2

(ϑin − x3)
0

 , g2(x) =


0
0
0
γ

 . (35)

In the following two controllers are suggested, applying the control schemes shown in Section 2.

4.1. Controller Design by Partial Feedback Linearization

As in [32] we first focus on the concentration part (x1, x2) of the system. For this subsystem a feedback lineariza-
tion controller should be designed. We choose

y = h(x) =
x2

cin − x1
(36)

as the output in the sense of a control variable. To specify the relative degree r we calculate time derivatives of the
chosen output (36) until u1 appears

ẏ = −k2(x3)x21x2 + cink1(x3)x2 + k1(x3)x21 − cink1(x3)x1
(x1 − cin)2

= Lfh(x) (37)

ÿ = L2
fh(x) + Lg1

h(x)u1. (38)
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This yields relative degree r = 2 for the considered subsystem. Thus, the state feedback (9) can be written as

u1(x) =
1

Lg1
Lfh(x)

(
v − L2

fh(x)
)
. (39)

Since r < n, this feedback achieves only a partial linearization. To stabilize a constant output value yref we use
the additional feedback

v = p0(yref − y)− p1ẏ. (40)

Hence, the input-output dynamics can be described by a given characteristic polynomial

ρ(s) = s2 + p1s+ p0. (41)

We obtain the linearizing and stabilizing feedback law by combining (39) and (40) and expressing the time deriva-
tives of y by Lie derivatives

u1(x) =
1

Lg1
Lfh(x)

(
p0(yref − h(x))− p1Lfh(x)− L2

fh(x)
)
. (42)

Using this control law the system output y can be kept constant for an desired yref . However, the main goal is to
keep cB = x2 constant. Therefore a steady-state dependency between yref and x2,ref is searched. Knowing this,
from an desired x2,ref the corresponding yref can be computed. From (36) follows

yref =
x2,ref

cin − x1,ref
. (43)

To know how x1,ref depends on x2,ref we look at (37). For steady state one obtains

0 = −
(
k2(x3)x21,refx2,ref + cink1(x3)x2,ref + k1(x3)x21,ref − cink1(x3)x1,ref

)
, (44)

which is quadratic w.r.t. x1,ref . The physically meaningful solution is given by

x1,ref =
cink1(x3)−

√
−cink1(x3)(4k2(x3)x22,ref + 4k1(x3)x2,ref − cink1(x3))

2(k1(x3) + k2(x3)x2,ref)
. (45)

Due to (43) with (45) we obtain

yref =
cin(2k2(x3)x∗2,ref + k1(x3))−

√
−cink1(x3)(4k2(x3)(x∗2,ref)

2 + 4k1(x3)x∗2,ref − cink1(x3))

2cin(cink2(x3) + k1(x3))
. (46)

We introduce the new variable x∗2,ref , such that

x∗2,ref = x2,ref + ki

∫ t

0

(
x2,ref(τ)− x2(τ)

)
d τ, ki > 0. (47)

This modification by adding an I-component is made to ensure steady state accuracy also in case of disturbances
or parameter variation. This modification is indispensable if cin is not well known .

Now we consider the second subsystem in order to design a controller for the cooling circuit. With a given
temperature ϑK0, the temperature of the cooling medium we choose the simple P-controller

u2 = −β
γ

(x3 − ϑK0). (48)

Therewith for x4 the stable dynamics

ẋ4 = −β(x4 − ϑK0) (49)

occurs.
With (42) and (48) we got controllers for both subsystems, namely for the concentration subsystem and the

cooling circuit. Simulation results are shown in Section 4.3.
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∫u∗1 x5 = u1

u2

y1

y2

Fig. 2: Structure of CSTR system with dynamic extension

4.2. Controller Design by Full Feedback Linearization

The previous section described a feedback controller just for a partial system of the CSTR. Now we consider
whether it is possible to control the whole system by some feedback controller of multi-input-multi-output type
shown in Section 2.2. For system output we choose

y =

(
y1
y2

)
= h(x) =

(
h1(x)
h2(x)

)
=

( x2
cin − x1
x3

)
. (50)

Using Definition 2.2 we determine the relative degree (r1, r2):

Lg1
h1(x) ≡ 0

Lg2
h1(x) ≡ 0

Lg1
h2(x) = ϑin − x3 ⇒ r2 = 1?

Lg2
h2(x) ≡ 0

Lg1
Lfh1(x) �≡ 0 ⇒ r1 = 2?

Lg2
Lfh1(x) ≡ 0

(51)

Checking the decoupling matrix

A(x0) =

(
Lg1

Lfh1(x0) Lg2
Lfh1(x0)

Lg1
h2(x0) Lg2

h2(x0)

)
=

(
∗ 0
∗ 0

)
(52)

for regularity we found out the relative degree r1 = 2, r2 = 1 is ill-defined. As proposed in Section 2.3 we use an
additional integrator

u̇1 = u∗1 (53)

and treat u1 as an additional state x5 = u1. Fig. 2 shows the structure of the augmented system. This leads to the
state space representation

ẋ = f(x) + g1(x)u∗1 + g2(x)u2 (54)

with

f(x) =


rA(x1, x3) + (cin − x1)x5
rB(x1, x2, x3)− x2x5

h(x1, x2, x3) + α(x4 − x3) + (ϑin − x3)x5
β(x3 − x4)

0

 , g1(x) =


0
0
0
0
1

 , g2(x) =


0
0
0
γ
0

 . (55)

For this augmented 5-dimensional system also relative degree has to be determined. Doing this one recognize that
y1 has to be derived three times and y2 two times until any input component occurs. This leads to the decoupling
matrix

A(x0) =

(
Lg1

L2
fh1(x0) Lg2

L2
fh1(x0)

Lg1
Lfh2(x0) Lg2

Lfh2(x0)

)
=

(
∗ ∗
∗ ∗

)
(56)

which is fully occupied and regular. Thus relative degree is r1 = 3, r2 = 2. Since r1 + r2 = n the augmented
system is full linearizable. The state feedback (16) adapted to the augmented system can be written as(

u∗1
u2

)
= A−1(x)

(
v1 − L3

fh1(x)

v2 − L2
fh2(x)

)
. (57)
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Now we got a three dimensional and a two dimensional linear subsystem which are decoupled from each other. In
order to stabilize some constant output vector yref = (y1,ref , y2,ref)

T we use the additional feedback

v1 = p1,0(y1,ref − y1)− p1,1ẏ1 − p1,2ÿ1,
v2 = p2,0(y2,ref − y2)− p2,1ẏ2.

(58)

Therewith the input-output dynamics of the two subsystems is described by the characteristic polynomials

ρ1(s) = s3 + p1,2s
2 + p1,1s+ p1,0,

ρ2(s) = s2 + p2,1s+ p2,0.
(59)

Combining (57) and (58) leads to the control law(
u∗1
u2

)
= ∆−1(x) ·

(
p1,0(y1,ref − h1(x))− p1,1Lfh1(x)− p1,2L2

fh1(x)− L3
fh1(x)

p2,0(y2,ref − h2(x))− p2,1Lfh2(x)− L2
fh2(x)

)
. (60)

To compute y1,ref from x2,ref we again use the steady state characteristic (46). Also the additional I-component (47)
is used. Furthermore we use an I-component for y2,ref :

y2,ref = x3,ref + ki,2

∫ t

0

(
x3,ref(τ)− x3(τ)

)
d τ, ki,2 > 0, (61)

where x3,ref is the desired reactor temperature.

4.3. Simulation Results

Both control laws from Section 4.1 and 4.2 have been implemented using MATLAB. For the control laws, (42)
and (48) respectively (57) is being evaluated. The required Lie derivatives are computed in each step by calling
MATLAB-MEX functions wrapping calls to the ADOL-C using package LIEDRIVERS [10]. Take for example, the
computation of Lie derivatives of the scalar field h along the vector field f , required in (42) and (57), respectively.
Therefore the C function Lie_scalarc has to be called. With

LgL
r−1
f h(x) = Lr

f+gh(x)− Lr
fh(x), (62)

also mixed Lie derivatives may be computed this way, see last line of Eq. (7).
The presented control laws have been parametrized by(

p0
p1

)
=

(
10 000

200

)
, ki = 20 (63)

for the controller based on partial feedback linearization andp1,0p1,1
p1,2

 =

8 000 000
120 000

600

 ,

(
p2,0
p2,1

)
=

(
40 000

400

)
, ki,1 = ki,2 = 20 (64)

for the controller based on full feedback linearization. The control variables are said to be limited by

5 ≤ u1 · h ≤ 35, −8500 ≤ u2 · kJ−1 h ≤ 0. (65)

For some set point jumps simulation results are given in Fig. 3. There cin is assumed to be 5.1 mol l−1 while it
actually varies in some particular range. Therefore simulation was executed for three different values.

5. SUMMARY

During the last decades, several nonlinear control methods based on differential geometric concepts have been de-
veloped. The associated control laws are often formulated in terms of Lie derivatives. Usually, these Lie derivatives
are computed symbolically, which can be difficult for highly complex systems. Alternatively, these Lie derivatives
can be calculated using algorithmic differentiation. We reported the implementation of an library for the computa-
tion of Lie derivatives used in nonlinear control. This library was applied successfully to the complicated nonlinear
model of a tank reactor.
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(b) Full feedback control

Fig. 3: Simulation results for the CSTR system with x3,ref = 134.14 ◦C, α = 30.828 h−1, β = 86.688 h−1,
γ = 0.1 K kJ−1, δ = 3.522 · 10−4 m3 K kJ−1, cin = 5.1 mol l−1, ϑin = 130 ◦C, ϑK0 = 128.95 ◦C,
k10 = 1.287 · 1012 h−1, k20 = 9.043 · 106 m3 (mol h)−1, E1 = 9758.3, E2 = 8560, ∆HAB = 4.2 kJ mol−1,
∆HAD = −41.85 kJ mol−1, ∆HBC = −11.0 kJ mol−1.
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[3] M. Bär, H. Fritz, and M. Zeitz, “Rechnergestützter Entwurf nichtlinearer Beobachter mit Hilfe einer symbol-
verarbeitenden Programmiersprache,” Automatisierungstechnik, vol. 35, no. 5, pp. 177–183, 1987.
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