Preprint No. M 14/10

The invertibility of 2×2 operator matrices

Junjie Huang, Junfeng Sun, Alatancang Chen, Carsten Trunk

November 2014
The invertibility of 2×2 operator matrices

Junjie Huang, Junfeng Sun, Alatancang Chen, Carsten Trunk

November 11, 2014

Abstract

In this paper the properties of right invertible row operators, i.e., of 1×2 surjective operator matrices are studied. This investigation is based on a specific space decomposition. Using this decomposition, we characterize the invertibility of a 2×2 operator matrix. As an application, the invertibility of Hamiltonian operator matrices is investigated.

Keywords: 2×2 operator matrix, Hamiltonian operator matrix, invertibility, row operator

MSC 2010: 47A05, 47A10.

1 Introduction

The invertibility of a linear operator is one of the most basic problems in operator theory, and, obviously, appears in the study of the linear equation $Tx = y$ with a linear operator T.

This problem becomes even more involved if one considers the invertibility of 2×2 operator matrices. For this let A, B, C and D be bounded linear operators on a Hilbert space. If, e.g., they are pairwise commutative, then the operator matrix

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

is invertible if and only if $AD - BC$ is invertible (cf. [3, Problem 70]). If only C and D are commutative, and if, in addition, D is invertible, then the operator matrix M is invertible if and only if $AD - BC$ is invertible (cf. [3, Problem 71]). In fact, the commutativity is essential in the above characterization, see [3, Problem 71]. The situation is even more involved if A and D are not defined on the same space and, hence, the formal expression $AD - BC$ has no meaning.

In general, there is no complete description of the invertibility of operator matrices in the non-commutative case. But if at least one of the entries A or D of
the operator matrix M is invertible, one can describe the invertibility of M in terms of the Schur complement. A similar statement holds also in the case of invertible entries B or C. Moreover, the Schur complement method can be effectively used also in the case where the entries of M are unbounded operators under additionally assumptions on the domain of the entries, such as the diagonally (or off-diagonally) dominant or upper (lower) dominant cases, see, e.g., the monograph [7]. We also refer to [5, 8] for sufficient conditions for nonnegative Hamiltonian operators to have bounded inverses.

However, it is easy to see that there are many invertible 2×2 operator matrices with non invertible entries A, B, C and D (see, e.g., Theorem 2.11 below). Obviously, in such cases, the Schur complement method is not applicable.

It is the aim of the present article to give a full characterization for the invertibility of bounded 2×2 operator matrices. We do this in the following manner: A necessary condition for the invertibility of a 2×2 operator matrix M in (1.1) is the fact that the row operator $(A \ B)$ is right invertible (that is, the range $R((A \ B))$ of the operator $(A \ B)$ covers all of the spaces). A further necessary condition is $N((A \ B)) \neq \{0\}$, where $N((A \ B))$ denotes the kernel of $(A \ B)$ (see Corollary 3.3 below). This non-zero kernel $N((A \ B))$ plays a crucial role. Its projection $P_X(N((A \ B)))$ onto the first component is a subset of the kernel of $P_{R(B)} \perp A$, where $P_{R(B)} \perp$ denotes the orthogonal projection onto $R(B) \perp$. Similarly, the projection of $N((A \ B))$ onto the second component is a subset of $N(P_{R(A)} \perp B)$.

Therefore we investigate a right invertible row operator $(A \ B)$ and choose a decomposition of the space into six parts which is built out of the subspaces $N(A), N(B), N(P_{R(B)} \perp A)$ and $N(P_{R(A)} \perp B)$. As a result, we show that the operator $B_2^{-1} \tilde{A}_2$ considered as an operator from $P_X(N((A \ B)))$ to $N(B) \perp \ominus N(P_{R(A)} \perp B) \perp$ is correctly defined. Here \tilde{A}_2 (B_2) denote the restriction of A (B, respectively) to $N(P_{R(B)} \perp A)$ ($N(B) \perp \ominus N(P_{R(A)} \perp B)$, respectively).

The main result of the present article is a full characterization of the invertibility of a 2×2 matrix operator M in terms of its entries A, B, C, D, or to be more precise, in terms of the restrictions \tilde{A}_2, B_2, C_2 and D_2 which are, in some sense, all related to $N((A \ B))$: A 2×2 operator matrix M is invertible if and only if the following two statements are satisfied

(i) The restriction $D|_{N(B)}$ is left invertible and

(ii) the operator

$$C_2 - D_2 B_2^{-1} \tilde{A}_2 : P_X(N((A \ B))) \to (R(D|_{N(B)}))^\perp$$

is one-to-one and surjective.

Here C_2 (D_2) is the restriction of C (D, respectively) to $N(P_{R(B)} \perp A)$ ($N(B) \perp \ominus N(P_{R(A)} \perp B)$, respectively) projected onto $(R(D|_{N(B)}))^\perp$.

This characterization is especially helpful if the spaces $N((A \ B)), N(P_{R(B)} \perp A)$ or $N(P_{R(A)} \perp B)$ are known explicitly, see, e.g., Theorem 2.11 in Section 2. Moreover, we use it to derive a characterization for isomorphic row operators in Section 3. Finally, in Section 4 we give an application to Hamiltonian operators.
2 Main result

We always assume that \(\mathcal{X} \) and \(\mathcal{Y} \) are complex separable Hilbert spaces. Let \(T \) be a bounded operator between \(\mathcal{X} \) and \(\mathcal{Y} \). We write \(T \in \mathcal{B}(\mathcal{X}, \mathcal{Y}) \) and, if \(\mathcal{X} = \mathcal{Y} \), \(T \in \mathcal{B}(\mathcal{X}) \). The range of \(T \) is denoted by \(\mathcal{R}(T) \), the kernel by \(\mathcal{N}(T) \). The term isomorphism is reserved for linear bijections \(T : \mathcal{X} \to \mathcal{Y} \) that are homeomorphisms, i.e., \(T \in \mathcal{B}(\mathcal{X}, \mathcal{Y}) \) and \(T^{-1} \in \mathcal{B}(\mathcal{Y}, \mathcal{X}) \).

A subspace in \(\mathcal{Y} \) is an operator range if it coincides with the range of some bounded operator \(T \in \mathcal{B}(\mathcal{X}, \mathcal{Y}) \). The following lemma is from [2, Theorem 2.4].

Lemma 2.1 Let \(\mathcal{R}_1 \) and \(\mathcal{R}_2 \) be operator ranges in \(\mathcal{Y} \) such that \(\mathcal{R}_1 + \mathcal{R}_2 \) is closed.

(i) If \(\mathcal{R}_1 \cap \mathcal{R}_2 \) is closed, then \(\mathcal{R}_1 \) and \(\mathcal{R}_2 \) are closed.

(ii) If \(\mathcal{R}_1 \) and \(\mathcal{R}_2 \) are dense in \(\mathcal{Y} \), then \(\mathcal{R}_1 \cap \mathcal{R}_2 \) is dense in \(\mathcal{Y} \).

From [1, Proposition 2.14, Theorem 2.16], we have the following basic facts, which are important in the proofs of our main results.

Lemma 2.2 Let \(\Omega_1 \) and \(\Omega_2 \) be two closed subspaces in \(\mathcal{X} \). Then

\[
\Omega_1 \cap \Omega_2 = (\Omega_1^\perp + \Omega_2^\perp)^\perp, \quad \Omega_1^\perp \cap \Omega_2^\perp = (\Omega_1 + \Omega_2)^\perp,
\]

and we further have the following equivalent descriptions:

(i) \(\Omega_1 + \Omega_2 \) is closed;

(ii) \(\Omega_1^\perp + \Omega_2^\perp \) is closed;

(iii) \(\Omega_1 + \Omega_2 = (\Omega_1^\perp \cap \Omega_2^\perp)^\perp \);

(iv) \((\Omega_1 \cap \Omega_2)^\perp = \Omega_1^\perp + \Omega_2^\perp \).

As usual, the symbol \(\oplus \) denotes the orthogonal sum of two closed subspaces in a Hilbert space whereas the symbol \(\dot{+} \) denotes the direct sum of two (not necessarily closed) subspaces in a Hilbert space. If \(\Omega, \Omega_1 \) are closed subspaces, \(\Omega \subset \Omega_1 \), we denote by \(\Omega \ominus \Omega_1 \) the uniquely determined closed subspace \(\Omega_2 \) in \(\Omega \) with \(\Omega = \Omega_1 \oplus \Omega_2 \).

The next lemma is well known, see, e.g., [7, Proposition 1.6.2] or [4, 6].

Lemma 2.3 Let \(A \in \mathcal{B}(\mathcal{X}), B \in \mathcal{B}(\mathcal{Y}, \mathcal{X}), C \in \mathcal{B}(\mathcal{X}, \mathcal{Y}), \) and \(D \in \mathcal{B}(\mathcal{Y}) \). Let \(A \) \((B)\) be an isomorphism. Then the \(2 \times 2 \) operator matrix

\[
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix} \in \mathcal{B}(\mathcal{X} \oplus \mathcal{Y})
\]

is an isomorphism if and only if \(D - CA^{-1}B \) (resp. \(C - DB^{-1}A \)) is an isomorphism.
Recall that an operator $T \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ is called right invertible if there exists an operator $S \in \mathcal{B}(\mathcal{Y}, \mathcal{X})$ with $TS = I_Y$, where I_Y stands for the identity mapping in \mathcal{Y}. Hence, if T is right invertible then it is surjective. Conversely, if $T \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ then the restriction $T|_{\mathcal{N}(T)^\perp}$ maps $\mathcal{N}(T)^\perp$ onto $\mathcal{R}(T)$ and, if $\mathcal{R}(T) = \mathcal{Y}$, then $T|_{\mathcal{N}(T)^\perp} : \mathcal{N}(T)^\perp \to \mathcal{Y}$ is an isomorphism. Then with

$$S := \begin{pmatrix} 0 \\ (T|_{\mathcal{N}(T)^\perp})^{-1} \end{pmatrix} : \mathcal{Y} \to \mathcal{N}(T) \oplus \mathcal{N}(T)^\perp$$

considered as an operator in $\mathcal{B}(\mathcal{Y}, \mathcal{X})$ we see that T is right invertible. This shows the equivalence of (i)-(iii) in the following (well-known) lemma.

Lemma 2.4 For $T \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ the following assertions are equivalent.

(i) The operator T is right invertible.

(ii) $\mathcal{R}(T) = \mathcal{Y}$.

(iii) The operator $T|_{\mathcal{N}(T)^\perp}$ considered as an operator from $\mathcal{N}(T)^\perp$ into \mathcal{Y} is an isomorphism.

(iv) There exists an isomorphism $U \in \mathcal{B}(\mathcal{Y})$ such that UT is a right invertible operator.

Proof. It remains to show the equivalence of (iv) with (i)-(iii). Choose $U = I_Y$ and we see that (i) implies (iv). Conversely, let $U \in \mathcal{B}(\mathcal{Y})$ be an isomorphism. If UT is right invertible, then by (ii) $\mathcal{R}(UT) = \mathcal{Y}$. As $\mathcal{R}(T) = \mathcal{R}(UT)$, again (ii) shows that T is right invertible. \(\Box\)

Similarly, $T \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ is called left invertible if there exists an operator $S \in \mathcal{B}(\mathcal{Y}, \mathcal{X})$ with $ST = I_X$. Hence, if T is left invertible then it is injective and for a sequence (y_n) in $\mathcal{R}(T)$ with $y_n \to y$ as $n \to \infty$ we find (x_n) with $Tx_n = y_n$ and

$$x_n = STx_n = Sy_n \to Sy \quad \text{and} \quad y_n = Tx_n \to TSy,$$

which shows the closedness of $\mathcal{R}(T)$.

Conversely, if $\mathcal{N}(T) = \{0\}$ and $\mathcal{R}(T)$ is closed, then T considered as an operator from \mathcal{X} into $\mathcal{R}(T)$ is an isomorphism and its inverse T^{-1} acts from $\mathcal{R}(T)$ into \mathcal{X}. Then with

$$S := \begin{pmatrix} 0 & T^{-1} \end{pmatrix} : \mathcal{R}(T)^\perp \oplus \mathcal{R}(T) \to \mathcal{X},$$

considered as an operator in $\mathcal{B}(\mathcal{Y}, \mathcal{X})$, we see that T is left invertible. We collect these statements in the following lemma, where the equivalence of (i)-(iii) follows from the above considerations and the equivalence of (i)-(iii) with (iv) is obvious.

Lemma 2.5 For $T \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ the following assertions are equivalent.
The operator T is left invertible.

The operator T considered as an operator from X into $\mathcal{R}(T)$ is an isomorphism.

There exists an isomorphism $V \in \mathcal{B}(X)$ such that TV is a left invertible operator.

Remark 2.6 The following observation for $T \in \mathcal{B}(X,Y)$ follows immediately from the Lemmas 2.4 and 2.5. If T is right invertible, then there exists a left invertible operator $S \in \mathcal{B}(Y,X)$ (cf. (2.1)) with $TS = I_Y$ and $\mathcal{R}(S) = N(T) \downarrow$. If T is left invertible, then there exists a right invertible operator $S \in \mathcal{B}(Y,X)$ (cf. (2.2)) with $ST = I_X$.

For the orthogonal projection onto a closed subspace Ω in some Hilbert space we shortly write P_Ω.

Theorem 2.7 Let $A \in \mathcal{B}(X)$ and $B \in \mathcal{B}(Y,X)$ and assume that the row operator $(A \ B) \in \mathcal{B}(X \oplus Y, X)$ is right invertible. Then X admits the decomposition

$$
X = (\mathcal{R}(A) \downarrow + \mathcal{R}(B) \downarrow) \oplus \overline{\mathcal{R}(A) \cap \mathcal{R}(B)}
$$(2.3)

and the space $X \oplus Y$ admits the decomposition

$$
X \oplus Y = X_1 \oplus X_2 \oplus X_3 \oplus Y_3 \oplus Y_2 \oplus Y_1,
$$(2.4)

where

$$
X_1 := N(A), \hspace{1em} X_2 := N(A) \downarrow \ominus N(P_{\mathcal{R}(B) \downarrow} A) \downarrow, \hspace{1em} X_3 := N(P_{\mathcal{R}(B) \downarrow} A), \hspace{1em} Y_1 := N(B), \hspace{1em} Y_2 := N(B) \downarrow \ominus N(P_{\mathcal{R}(A) \downarrow} B) \downarrow, \hspace{1em} Y_3 := N(P_{\mathcal{R}(A) \downarrow} B) \downarrow.
$$(2.5)

The row operator $(A \ B)$ from $X \oplus Y$ into X admits the following representation with respect to the decompositions (2.3) and (2.4)

$$
\begin{pmatrix}
0 & 0 & 0 & B_3 & 0 & 0 \\
0 & 0 & A_3 & 0 & 0 & 0 \\
0 & A_2 & A_0 & B_0 & B_2 & 0
\end{pmatrix},
$$(2.6)

where

$$
A_0 \in \mathcal{B} \left(X_3, \overline{\mathcal{R}(A) \cap \mathcal{R}(B)} \right), \hspace{1em} A_2 \in \mathcal{B} \left(X_2, \overline{\mathcal{R}(A) \cap \mathcal{R}(B)} \right), \hspace{1em} A_3 \in \mathcal{B} \left(X_3, \mathcal{R}(B) \downarrow \right); \hspace{1em} B_0 \in \mathcal{B} \left(Y_3, \overline{\mathcal{R}(A) \cap \mathcal{R}(B)} \right), \hspace{1em} B_2 \in \mathcal{B} \left(Y_2, \overline{\mathcal{R}(A) \cap \mathcal{R}(B)} \right), \hspace{1em} B_3 \in \mathcal{B} \left(Y_3, \mathcal{R}(A) \downarrow \right).
$$

Then the operators A_3 and B_3 are isomorphisms and the row operator $(A_2 \ B_2) : X_2 \oplus Y_2 \to \overline{\mathcal{R}(A) \cap \mathcal{R}(B)}$ is right invertible and

$$
\mathcal{R}(A_2) = \overline{\mathcal{R}(A) \cap \mathcal{R}(B)} = \overline{\mathcal{R}(B)}.
$$(2.7)
Proof. Step 1. We prove (2.3)–(2.6).

The row operator \((A \ B) : \mathcal{X} + \mathcal{Y} \to \mathcal{X}\) is right invertible and we have with Lemma 2.4
\[
\mathcal{R}(A) + \mathcal{R}(B) = \mathcal{X}.
\] (2.8)
We claim
\[
P_{\mathcal{R}(A)}(\mathcal{R}(B)) = \mathcal{R}(A)^\perp.
\] (2.9)
To see this, it suffices to show the inclusion \(P_{\mathcal{R}(A)}(\mathcal{R}(B)) \supset \mathcal{R}(A)^\perp\). Let \(x \in \mathcal{R}(A)^\perp\). Then there exist \(x_1 \in \mathcal{R}(A)\) and \(x_2 \in \mathcal{R}(B)\) such that \(x = x_1 + x_2\), so \(x = P_{\mathcal{R}(A)}x_2 \in P_{\mathcal{R}(A)}(\mathcal{R}(B))\). This proves the claim. Similarly, we obtain
\[
P_{\mathcal{R}(B)}(\mathcal{R}(A)) = \mathcal{R}(B)^\perp.
\] (2.10)
Moreover, by (2.8), we have
\[
\{0\} = \mathcal{X}^\perp = (\mathcal{R}(A) + \mathcal{R}(B))^\perp = \mathcal{R}(A)^\perp \cap \mathcal{R}(B)^\perp
\]
and also the sum \(\overline{\mathcal{R}(A)} + \overline{\mathcal{R}(B)}\) is closed. By Lemma 2.2 (iv) it follows that
\[
\left(\overline{\mathcal{R}(A) \cap \mathcal{R}(B)}\right)^\perp = \mathcal{R}(A)^\perp + \mathcal{R}(B)^\perp.
\]
To sum up, we have the space decomposition (2.3). As \(\mathcal{N}(A) \subset \mathcal{N}(P_{\mathcal{R}(B)^\perp}A)\), we have \(\mathcal{N}(P_{\mathcal{R}(B)^\perp}A)^\perp \subset \mathcal{N}(A)^\perp\). Analogously we see \(\mathcal{N}(P_{\mathcal{R}(A)^\perp}B)^\perp \subset \mathcal{N}(B)^\perp\) and, hence, decomposition (2.4) follows.

For \(x \in \mathcal{X}^\perp = \mathcal{N}(P_{\mathcal{R}(B)^\perp}A)\) we have
\[
Ax = \left(I - P_{\mathcal{R}(B)^\perp}\right)Ax = P_{\overline{\mathcal{R}(B)}}Ax.
\]
Hence, \(x \in \mathcal{N}(P_{\mathcal{R}(B)^\perp}A)\) if and only if
\[
Ax \in \overline{\mathcal{R}(B)}.
\] (2.11)
Similarly, \(y \in \mathcal{N}(P_{\mathcal{R}(A)^\perp}B)\) if and only if \(By \in \overline{\mathcal{R}(A)}\). Therefore, if \(x_2 \in \mathcal{X}(y_2 \in \mathcal{Y})\), then it follows that \(x_2 \in \mathcal{N}(P_{\mathcal{R}(B)^\perp}A)\) (resp. \(y_2 \in \mathcal{N}(P_{\mathcal{R}(A)^\perp}B)\)) and, by (2.11)
\[
Ax_2 \in \overline{\mathcal{R}(B)} \quad \text{(resp. } By_2 \in \overline{\mathcal{R}(A)})\). (2.12)
Then the zero entries in (2.6) follow from the fact that \(Ax = 0\) for \(x \in \mathcal{N}(A), By = 0\) for \(y \in \mathcal{N}(B), Ax \in \mathcal{R}(A), By \in \mathcal{R}(B)\), and (2.12).

Step 2. We show that \((A_2 \ B_2)\) is right invertible.

We have \(\mathcal{N}(A) \subset \mathcal{N}(P_{\mathcal{R}(B)^\perp}A), \mathcal{N}(B) \subset \mathcal{N}(P_{\mathcal{R}(A)^\perp}B)\) and by (2.8) and (2.3) we see that \(A_3\) and \(B_3\) are isomorphisms. Thus, there exists an isomorphism \(U \in \mathcal{B}(\mathcal{R}(A)^\perp + \mathcal{R}(B)^\perp) \overline{\mathcal{R}(A) \cap \mathcal{R}(B)}\)
\[
U := \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-B_0 B_3^{-1} & -A_0 A_3^{-1} & 1
\end{pmatrix}
\]
such that
\[
U \begin{pmatrix}
0 & 0 & 0 & B_3 & 0 & 0 \\
0 & 0 & A_3 & 0 & 0 & 0 \\
0 & A_2 & A_0 & B_0 & B_2 & 0 \\
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & B_3 & 0 & 0 \\
0 & 0 & A_3 & 0 & 0 & 0 \\
0 & A_2 & 0 & 0 & B_2 & 0 \\
\end{pmatrix}.
\]
As \((A, B)\) is right invertible, Lemma 2.4 shows that \((A_2 B_2) : \mathcal{X}_2 \oplus \mathcal{Y}_2 \to \mathcal{R}(A) \cap \mathcal{R}(B)\) is right invertible.

Step 3. We show (2.7).

By definition, we have \(\mathcal{R}(A_2) \subset \overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)}\) and \(\mathcal{R}(B_2) \subset \overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)}\). We will only show \(\overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)} \subset \overline{\mathcal{R}(A_2)}\) is the same and, hence, we omit this proof.

Let \(z \in \overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)}\). Then there exists a sequence \((z_n)\) in \(\mathcal{R}(B)\) which converges to \(z\). By the block representation (2.6) for \(B\) we find \(z_{1,n}\) in \(\mathcal{R}(A)^\perp\) and \(z_{3,n} \in \overline{\mathcal{R}(A) \cap \mathcal{R}(B)}\) with
\[
\begin{aligned}
z_n &= z_{1,n} + z_{3,n}, \\n\end{aligned}
\] where we have
\[
\begin{aligned}
z_{1,n} &= B_3 y_{3,n} \\ z_{3,n} &= B_0 y_{3,n} + B_2 y_{2,n}
\end{aligned}
\]
for some \(y_{2,n} \in \mathcal{Y}_2\) and \(y_{3,n} \in \mathcal{Y}_3\). The convergence of \((z_n)\) implies the convergence of \((z_{1,n})\) to some \(z_1 \in \mathcal{R}(A)^\perp\) and of \((z_{3,n})\) to some \(z_3 \in \overline{\mathcal{R}(A) \cap \mathcal{R}(B)}\),
\[
z = z_1 + z_3.
\]
The vectors \(z\) and \(z_3\) belong to \(\overline{\mathcal{R}(A)}\), thus \(z_1 \in \overline{\mathcal{R}(A)}\) and \(z_1 = 0\) follows. Therefore \((B_3 y_{3,n})\) in (2.14) converges to zero. The fact that \(B_3\) is an isomorphism implies \(y_{3,n} \to 0\) as \(n \to \infty\). We conclude
\[
z = z_3 = \lim_{n \to \infty} z_{3,n} = \lim_{n \to \infty} B_2 y_{2,n}
\]
and \(z \in \overline{\mathcal{R}(B_2)}\) follows. Relation (2.7) is proved.

The following proposition will be used in the proof of the main result.

Proposition 2.8 Let \(A \in \mathcal{B}(\mathcal{X})\) and \(B \in \mathcal{B}(\mathcal{Y}, \mathcal{X})\) and let the row operator \((A, B) \in \mathcal{B}(\mathcal{X} \oplus \mathcal{Y}, \mathcal{X})\) be right invertible. The following assertions are equivalent.

(i) \(\mathcal{R}(B)\) is closed.

(ii) \(P_X(\mathcal{N}((A, B)))\) is a closed subspace in \(\mathcal{X}\).

(iii) \(\mathcal{R}(B_2)\) is closed.
Proof. Let $\mathcal{R}(B)$ be closed. We have

$$P_{\mathcal{X}}(\mathcal{N}((A B))) = \{ x \in \mathcal{X} : Ax \in \mathcal{R}(A) \cap \mathcal{R}(B) \} = \{ x \in \mathcal{X} : Ax \in \mathcal{R}(B) \}$$

and $P_{\mathcal{X}}(\mathcal{N}((A B)))$ is the pre-image of $\mathcal{R}(B)$ under A, and, hence, it is a closed subspace and (ii) holds.

If $P_{\mathcal{X}}(\mathcal{N}((A B)))$ is closed, then also

$$\Omega := P_{\mathcal{X}}(\mathcal{N}((A B))) \cap \mathcal{N}(A)^{\perp} = \{ x \in \mathcal{X} : x \in \mathcal{N}(A)^{\perp}, Ax \in \mathcal{R}(A) \cap \mathcal{R}(B) \}$$

is closed. Decompose $x \in \Omega$ with respect to the decomposition, cf. Theorem 2.7, $\mathcal{X} = \mathcal{X}_1 \oplus \mathcal{X}_2 \oplus \mathcal{X}_3$ as $x = x_1 + x_2 + x_3$ with $x_j \in \mathcal{X}_j$ for $j = 1, 2, 3$. Then $x_1 = 0$ and for some $y \in \mathcal{X}$ we have $Ax = By$. Decompose y with respect to $\mathcal{Y} = \mathcal{Y}_1 \oplus \mathcal{Y}_2 \oplus \mathcal{Y}_3$ (cf. Theorem 2.7) as $y = y_1 + y_2 + y_3$ with $y_j \in \mathcal{Y}_j$ for $j = 1, 2, 3$. Relation (2.6) shows

$$Ax = A \begin{pmatrix} 0 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 & A_3 x_3 \\ A_2 x_2 + A_0 x_3 \end{pmatrix} = \begin{pmatrix} B_3 y_3 \\ 0 \\ B_0 y_3 + B_2 y_2 \end{pmatrix} = B \begin{pmatrix} y_3 \\ y_2 \\ y_1 \end{pmatrix} = By$$

and, as A_3 is an isomorphism, we obtain $x_3 = 0$. Therefore $\Omega \subset \mathcal{X}_2$ and we write

$$\mathcal{X}_2 = \Omega \oplus (\mathcal{X}_2 \oplus \Omega).$$

By Theorem 2.7 $(A_2 B_2)$ is right invertible and we obtain with Lemma 2.4

$$A_2(\mathcal{X}_2 \oplus \Omega) + B_2(\mathcal{Y}_2) = \overline{\mathcal{R}(A) \cap \mathcal{R}(B)}, \quad A_2(\mathcal{X}_2 \oplus \Omega) \cap B_2(\mathcal{Y}_2) = \{ 0 \}.$$

Thus, using Lemma 2.1, we deduce that $A_2(\mathcal{X}_2 \oplus \Omega)$ and $\mathcal{R}(B_2)$ are closed.

Assume that (iii) holds. Then, by (2.7), the operator B_2 is an isomorphism. Let $z \in \overline{\mathcal{R}(B)}$. Then there exists a sequence (z_n) in $\mathcal{R}(B)$ which converges to z. By the block representation (2.6) for B we find $z_{1,n}$ in $\mathcal{R}(A)^{\perp}$ and $z_{3,n} \in \overline{\mathcal{R}(A) \cap \mathcal{R}(B)}$ such that (2.13) and (2.14) hold for some $y_{2,n} \in \mathcal{Y}_2$ and $y_{3,n} \in \mathcal{Y}_3$. The convergence of (z_n) implies the convergence of $(z_{1,n})$ to some $z_1 \in \mathcal{R}(A)^{\perp}$ and of $(z_{3,n})$ to some $z_3 \in \overline{\mathcal{R}(A) \cap \mathcal{R}(B)}$, $z = z_1 + z_3$. As the operators B_2 and B_3 (cf. Theorem 2.7) are isomorphisms, we have

$$y_{3,n} \to B_3^{-1} z_1 \quad y_{2,n} \to -B_2^{-1} B_0 B_3^{-1} z_1 + B_2^{-1} z_3 \quad \text{as } n \to \infty.$$

Thus, with (2.6),

$$B \begin{pmatrix} B_3^{-1} z_1 \\ -B_2^{-1} B_0 B_3^{-1} z_1 + B_2^{-1} z_3 \\ 0 \end{pmatrix} = \begin{pmatrix} z_1 \\ 0 \\ z_3 \end{pmatrix} = z,$$

and $z \in \mathcal{R}(B)$. \qed
Lemma 2.9 Let $A \in \mathcal{B}(X)$, $B \in \mathcal{B}(Y, X)$ and assume that the row operator $(A, B) \in \mathcal{B}(X \oplus Y, X)$ is right invertible. Let A_2 and B_2 be as in Theorem 2.7. Then B_2 considered as an operator from Y_2 to $\mathcal{R}(B_2)$ is one-to-one and has an inverse $B_2^{-1} : \mathcal{R}(B_2) \rightarrow Y_2$. Define
\[
\tilde{A}_2 := (0 \ A_2) : X_1 \oplus X_2 \rightarrow \overline{\mathcal{R}(A) \cap \mathcal{R}(B)}.
\]
Then $\tilde{A}_2|_{P_X(\mathcal{N}((A, B)))}$ maps to $\mathcal{R}(B_2)$ and the operator
\[
B_2^{-1} \tilde{A}_2|_{P_X(\mathcal{N}((A, B)))} : P_X(\mathcal{N}((A, B))) \rightarrow Y_2
\]
is correctly defined.

If $\mathcal{R}(B)$ is closed, then B_2 is an isomorphism and we have
\[
X_1 \oplus X_2 = \mathcal{N}(P_{\mathcal{R}(B)^\perp} A) = P_X(\mathcal{N}((A, B)))
\]
and the operator
\[
B_2^{-1} \tilde{A}_2 : \mathcal{N}(P_{\mathcal{R}(B)^\perp} A) \rightarrow Y_2
\]
is correctly defined.

Proof. As $Y_2 \subset \mathcal{N}(B)^\perp$ the operator B_2 is one-to-one, hence its inverse $B_2^{-1} : \mathcal{R}(B_2) \rightarrow Y_2$ exists. From
\[
P_X(\mathcal{N}((A, B))) = \{ x \in X : Ax \in \mathcal{R}(A) \cap \mathcal{R}(B) \} \subset \{ x \in X : Ax \in \overline{\mathcal{R}(B)} \}
\]
we conclude
\[
P_X(\mathcal{N}((A, B))) \subset \mathcal{N}(P_{\mathcal{R}(B)^\perp} A) = X_1 \oplus X_2.
\]
Moreover, we decompose $x \in P_X(\mathcal{N}((A, B)))$ with respect to the decomposition $X = X_1 \oplus X_2 \oplus X_3$ (cf. Theorem 2.7) as $x = x_1 + x_2 + x_3$ with $x_j \in X_j$ for $j = 1, 2, 3$. Then $x_3 = 0$ and for some $y \in Y$ we have $Ax = By$. Decompose y with respect to $Y = Y_1 \oplus Y_2 \oplus Y_3$ (cf. Theorem 2.7) as $y = y_1 + y_2 + y_3$ with $y_j \in Y_j$ for $j = 1, 2, 3$. Relation (2.6) shows
\[
Ax = A \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ A_2x_2 \end{pmatrix} = \begin{pmatrix} B_3 y_3 \\ 0 \\ B_0 y_3 + B_2 y_2 \end{pmatrix} = B \begin{pmatrix} y_3 \\ y_2 \\ y_1 \end{pmatrix} = By
\]
and, as B_3 is an isomorphism, we obtain $y_3 = 0$ and $A_2 x_2 = B_2 y_2$. Thus $\tilde{A}_2 x \in \mathcal{R}(B_2)$ for $x \in P_X(\mathcal{N}((A, B)))$ and $B_2^{-1} \tilde{A}_2|_{P_X(\mathcal{N}((A, B)))}$ is correctly defined. If $\mathcal{R}(B)$ is closed, then by Proposition 2.8 also $\mathcal{R}(B_2)$ is closed and by (2.7) we see that B_2 is an isomorphism. Moreover, from (2.16) we see in this case $X_1 \oplus X_2 = \mathcal{N}(P_{\mathcal{R}(B)^\perp} A) = P_X(\mathcal{N}((A, B)))$ and (2.15) follows. □

The following theorem is the main result. It provides a full characterization of isomorphic 2×2 operator matrices in terms of their entries.
Theorem 2.10 Let $A \in \mathcal{B}(\mathcal{X})$, $B \in \mathcal{B}(\mathcal{Y}, \mathcal{X})$. Assume that the row operator $(A B) \in \mathcal{B}(\mathcal{X} \oplus \mathcal{Y}, \mathcal{X})$ is right invertible and, hence, adopt the notions A_2, B_2, and \mathcal{X}_j, \mathcal{Y}_j, $j = 1, 2, 3$, as in Theorem 2.7 and \tilde{A}_2 as in Lemma 2.9. Let $C \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ and $D \in \mathcal{B}(\mathcal{Y})$. Define the operator matrix M by

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

Define the operator $B_2^{-1} \tilde{A}_2|\mathcal{P}_X(\mathcal{N}(\mathcal{A} B)))$ as in Lemma 2.9 and define

$$C_2 := P_{(\mathcal{R}(D|_{\mathcal{N}(B)})^{\perp})} C|_{\mathcal{X}_1 \oplus \mathcal{X}_2} : \mathcal{X}_1 \oplus \mathcal{X}_2 \rightarrow (\mathcal{R}(D|_{\mathcal{N}(B)}))^{\perp}$$

and

$$D_2 := P_{(\mathcal{R}(D|_{\mathcal{N}(B)})^{\perp})} D|_{\mathcal{Y}_2} : \mathcal{Y}_2 \rightarrow (\mathcal{R}(D|_{\mathcal{N}(B)}))^{\perp}.$$

Then M is an isomorphism if and only if the following two statements are satisfied:

(i) The restriction $D|_{\mathcal{N}(B)} : \mathcal{N}(B) \rightarrow \mathcal{Y}$ is left invertible.

(ii) The operator

$$\left(C_2 - D_2 B_2^{-1} \tilde{A}_2 \right)|_{\mathcal{P}_X(\mathcal{N}(\mathcal{A} B)))} : \mathcal{P}_X(\mathcal{N}(\mathcal{A} B))) \rightarrow (\mathcal{R}(D|_{\mathcal{N}(B)}))^{\perp}$$

is one-to-one and surjective.

Proof. Let M be an isomorphism. Then the row operator $(A B) : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{X}$ is right invertible, see Lemma 2.4, and the column operator $\left(\begin{array}{c} B \\ D \end{array} \right) : \mathcal{Y} \rightarrow \mathcal{X} \times \mathcal{Y}$ is injective. Moreover, if the range of $\left(\begin{array}{c} B \\ D \end{array} \right)$ is not closed then there exists a sequence (y_n) in \mathcal{Y} with $\|y_n\| = 1$, $n \in \mathbb{N}$, and $\left(\begin{array}{c} B \\ D \end{array} \right) y_n \rightarrow 0$ as $n \rightarrow \infty$. But this implies $M(\left(\begin{array}{c} 0 \\ y_n \end{array} \right)) \rightarrow 0$, a contradiction as M is assumed to be an isomorphism. Therefore the column operator $\left(\begin{array}{c} B \\ D \end{array} \right)$ is left invertible, cf. Lemma 2.5.

Now let $z \in \mathcal{R}(D|_{\mathcal{N}(B)})$. Then, there exists $z_n \in \mathcal{N}(B)$ such that $Dz_n \rightarrow z$ as $n \rightarrow \infty$, and we further have

$$\left(\begin{array}{c} B \\ D \end{array} \right) z_n = \left(\begin{array}{c} 0 \\ Dz_n \end{array} \right) \rightarrow \left(\begin{array}{c} 0 \\ z \end{array} \right),$$

which together with Lemma 2.5 implies

$$\left(\begin{array}{c} B \\ D \end{array} \right) x = \left(\begin{array}{c} 0 \\ z \end{array} \right)$$

for some $x \in \mathcal{N}(B)$, and hence $D|_{\mathcal{N}(B)} x = z$. This proves that $\mathcal{R}(D|_{\mathcal{N}(B)})$ is closed, hence, $D|_{\mathcal{N}(B)}$ is left invertible by Lemma 2.5 and (i) is proved.

As $\mathcal{R}(D|_{\mathcal{N}(B)})$ is a closed subspace in \mathcal{Y}, we decompose \mathcal{Y},

$$\mathcal{Y} = (\mathcal{R}(D|_{\mathcal{N}(B)})^{\perp}) \oplus \mathcal{R}(D|_{\mathcal{N}(B)}).$$ \hspace{1cm} (2.17)
Similar to the proof of Theorem 2.7, M as an operator from $\mathcal{N}(P_{\mathcal{R}(B)^\perp}A) \oplus \mathcal{X}_3 \oplus \mathcal{Y}_3 \oplus \mathcal{Y}_2 \oplus \mathcal{Y}_1$ into

$$(\mathcal{R}(A)^\perp \cap \mathcal{R}(B)^\perp) \oplus \mathcal{R}(A) \cap \mathcal{R}(B) \oplus (\mathcal{R}(D|_{\mathcal{N}(B)}))^\perp \oplus \mathcal{R}(D|_{\mathcal{N}(B)})$$

has the following block representation

$$M = \begin{pmatrix}
0 & 0 & B_3 & 0 & 0 \\
0 & A_3 & 0 & 0 & 0 \\
\tilde{A}_2 & A_0 & B_0 & B_2 & 0 \\
C_2 & C_3 & D_1 & D_2 & 0 \\
C_4 & C_5 & D_3 & D_4 & D_5
\end{pmatrix}. \tag{2.18}$$

By Theorem 2.7, A_3 and B_3 are isomorphisms. Additionally, as M is an isomorphism, D_5 is also an isomorphism. Then there exist isomorphisms

$$U \in \mathcal{B}\left((\mathcal{R}(A)^\perp \cap \mathcal{R}(B)^\perp) \oplus \overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)} \oplus (\mathcal{R}(D|_{\mathcal{N}(B)}))^\perp \oplus \mathcal{R}(D|_{\mathcal{N}(B)})\right),$$

$$V \in \mathcal{B}\left(\mathcal{N}(P_{\mathcal{R}(B)^\perp}A) \oplus \mathcal{X}_3 \oplus \mathcal{Y}_3 \oplus \mathcal{Y}_2 \oplus \mathcal{Y}_1\right)$$

with

$$U := \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
- B_0 B_3^{-1} & - A_0 A_3^{-1} & 1 & 0 & 0 \\
-D_1 B_5^{-1} & - C_3 A_3^{-1} & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix},$$

$$V := \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
-D_5^{-1} C_4 & - D_5^{-1} C_5 & - D_5^{-1} D_3 & - D_5^{-1} D_4 & 1
\end{pmatrix}$$

such that

$$UMV = \begin{pmatrix}
0 & 0 & B_3 & 0 & 0 \\
0 & A_3 & 0 & 0 & 0 \\
\tilde{A}_2 & 0 & 0 & B_2 & 0 \\
C_2 & 0 & 0 & D_2 & 0 \\
0 & 0 & 0 & 0 & D_5
\end{pmatrix}. \tag{2.19}$$

Thus, M is an isomorphism if and only if

$$\Delta := \left(\begin{array}{cc}
\tilde{A}_2 & B_2 \\
C_2 & D_2
\end{array}\right) : \mathcal{N}(P_{\mathcal{R}(B)^\perp}A) \oplus \mathcal{Y}_2 \to (\overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)}) \oplus (\mathcal{R}(D|_{\mathcal{N}(B)}))^\perp \tag{2.20}$$

is an isomorphism.
Case 1: $\mathcal{R}(B)$ is closed. In this case, from Lemma 2.9, $B_2 : \mathcal{Y}_2 \to \overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)}$ is an isomorphism and $B_2^{-1} \tilde{\mathcal{A}}_2 : \mathcal{N}(P_{\mathcal{R}(B)^\perp A}) \to \mathcal{Y}_2$ is correctly defined, see Lemma 2.9. According to Lemma 2.3, Δ is an isomorphism if and only if

$$C_2 - D_2 B_2^{-1} \tilde{\mathcal{A}}_2 : \mathcal{N}(P_{\mathcal{R}(B)^\perp A}) \to (\mathcal{R}(D|_{\mathcal{N}(B)}))^\perp$$

is an isomorphism. By Lemma 2.9 $\mathcal{N}(P_{\mathcal{R}(B)^\perp A}) = P_A(\mathcal{N}((A \ B)))$ and (ii) is satisfied.

Case 2: $\mathcal{R}(B)$ is not closed. By Proposition 2.8 also $\mathcal{R}(B_2)$ is not closed which implies $\dim \mathcal{R}(B_2) = \infty$ and $\dim \mathcal{Y}_2 = \infty$. The dimension does not change when we close a subspace, therefore we conclude from (2.7)

$$\dim \overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)} = \dim \overline{\mathcal{R}(B_2)} = \dim \mathcal{R}(B_2) = \infty. \quad (2.21)$$

By Theorem 2.7 $(A_2 \ B_2)$ is right invertible, (2.7) and Lemma 2.1 imply

$$\mathcal{R}(A_2) \cap \mathcal{R}(B_2) = \mathcal{R}(A) \cap \mathcal{R}(B).$$

Obviously, $\mathcal{R}(A_2) \cap \mathcal{R}(B_2) \subset \mathcal{R}(A) \cap \mathcal{R}(B)$ and we obtain $\overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)} \subset \overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)}$. Thus

$$\overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)} = \overline{\mathcal{R}(A) \cap \mathcal{R}(B)}.$$

From this and from $\mathcal{R}(A) \cap \mathcal{R}(B) \subset \mathcal{R}(A) \cap \overline{\mathcal{R}(B)} \subset \overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)}$ we conclude with (2.21)

$$\infty = \dim \overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)} = \dim \overline{\mathcal{R}(A) \cap \mathcal{R}(B)} = \dim \mathcal{R}(A) \cap \overline{\mathcal{R}(B)}. \quad (2.22)$$

We will use (2.22) to show

$$\dim \mathcal{N}((A_2 \ B_2)) = \dim \mathcal{N}(P_{\mathcal{R}(B)^\perp A}). \quad (2.23)$$

For this we consider

$$\mathcal{N}((A \ B)) = \{(\begin{smallmatrix} x \\ y \end{smallmatrix}) : x \in \mathcal{N}(A)\} \oplus \{(\begin{smallmatrix} y \\ z \end{smallmatrix}) : y \in \mathcal{N}(A)^\perp, Ay = -Bz \} \quad (2.24)$$

and

$$\mathcal{N}(P_{\mathcal{R}(B)^\perp A}) = \mathcal{N}(A) \oplus \left\{ x : x \in \mathcal{N}(A)^\perp, Ax \in \overline{\mathcal{R}(B)} \right\}.$$

As A restricted to $\mathcal{N}(A)^\perp$ is injective, we obtain with (2.22)

$$\dim \left\{ (\begin{smallmatrix} y \\ z \end{smallmatrix}) : y \in \mathcal{N}(A)^\perp, Ay = -Bz \right\} = \dim \mathcal{R}(A) \cap \mathcal{R}(B) = \dim \mathcal{R}(A) \cap \overline{\mathcal{R}(B)} = \dim \left\{ x : x \in \mathcal{N}(A)^\perp, Ax \in \overline{\mathcal{R}(B)} \right\}.$$

Therefore

$$\dim \mathcal{N}((A \ B)) = \dim \mathcal{N}(P_{\mathcal{R}(B)^\perp A})$$

12
and with (2.19) we obtain \(\dim \mathcal{N}(\tilde{A}_2 B_2) = \dim \mathcal{N}(P_{R(B)} \perp A) \), hence (2.23) is proved. Two separable Hilbert spaces of the same dimension are unitarily equivalent, therefore there exists a left invertible operator

\[
\begin{pmatrix} G \\ H \end{pmatrix} : \mathcal{Y}_2 \to \mathcal{N}(P_{R(B)} \perp A) \oplus \mathcal{Y}_2 \text{ with range } \mathcal{N}(\tilde{A}_2 B_2). \tag{2.25}
\]

Since \(\mathcal{X}_1 \oplus \mathcal{X}_2 = \mathcal{N}(P_{R(B)} \perp A) \) and by Theorem 2.7 and Lemma 2.9 \((\tilde{A}_2 B_2) : \mathcal{N}(P_{R(B)} \perp A) \oplus \mathcal{Y}_2 \to \overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)} \) is a right invertible operator. Then, see Remark 2.6, there exists a left invertible operator

\[
\begin{pmatrix} E \\ F \end{pmatrix} : \overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)} \to \mathcal{N}(P_{R(B)} \perp A) \oplus \mathcal{Y}_2 \tag{2.26}
\]

such that

\[
\tilde{A}_2 E + B_2 F = I_{\overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)}} \quad \text{with } \mathcal{R}\left(\begin{pmatrix} E \\ F \end{pmatrix}\right) = (\mathcal{N}(\tilde{A}_2 B_2))^\perp \tag{2.27}
\]

Define

\[
W = \begin{pmatrix} E & G \\ F & H \end{pmatrix} : \overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)} \oplus \mathcal{Y}_2 \to \mathcal{N}(P_{R(B)} \perp A) \oplus \mathcal{Y}_2. \tag{2.28}
\]

As \(\begin{pmatrix} G \\ H \end{pmatrix} \) and \(\begin{pmatrix} E \\ F \end{pmatrix} \) are left invertible and from (2.25) and (2.27) we obtain easily that \(W \) is an isomorphism. We have

\[
\Delta W = \begin{pmatrix} I_{\overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)}} & 0 \\ C_2 E + D_2 F & C_2 G + D_2 H \end{pmatrix}, \tag{2.29}
\]

As \(M \) is an isomorphism, \(\Delta \) is an isomorphism (see (2.20)) and the operator \(C_2 G + D_2 H : \mathcal{Y}_2 \to (\mathcal{R}(D|_{\mathcal{N}(B)}))^\perp \) is an isomorphism. Moreover, the operator \(B_2 \) considered as an operator from \(\mathcal{Y}_2 \) to \(\mathcal{R}(B_2) \) is one-to-one and has an inverse, see Lemma 2.9. From \(\tilde{A}_2 G + B_2 H = 0 \) we conclude \(- B_2^{-1} \tilde{A}_2 G = H \) and

\[
C_2 G + D_2 H = (C_2 - D_2 B_2^{-1} \tilde{A}_2) G. \tag{2.30}
\]

Therefore, \(C_2 - D_2 B_2^{-1} \tilde{A}_2 : \mathcal{R}(G) \to (\mathcal{R}(D|_{\mathcal{N}(B)}))^\perp \) is one-to-one with range equal to \((\mathcal{R}(D|_{\mathcal{N}(B)}))^\perp \). From

\[
\mathcal{R}\left(\begin{pmatrix} G \\ H \end{pmatrix}\right) = \mathcal{N}(\tilde{A}_2 B_2) = \left(\begin{pmatrix} \mathcal{N}(A) \\ 0 \end{pmatrix} \oplus \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x \in \mathcal{N}(A)^\perp, y \in \mathcal{N}(B)^\perp, Ax = -By \right\} \right) = \mathcal{N}(\begin{pmatrix} A \\ B \end{pmatrix}), \tag{2.31}
\]

see (2.24), it follows that \(\mathcal{R}(G) = P_{\mathcal{X}}(\mathcal{N}(\begin{pmatrix} A \\ B \end{pmatrix})) \) and (ii) is shown.
Now let us assume that (i) and (ii) hold. Then $\mathcal{R}(D|_{\mathcal{N}(B)})$ is a closed subspace and \mathcal{Y} admits a decomposition as in (2.17) and we obtain the representation of M as in (2.18), where A_3, B_3 and D_5 are isomorphisms. Then, taking the same U and V as above, we obtain the relation (2.19). Moreover, if Δ in (2.20) is an isomorphism, then M is an isomorphism.

If $\mathcal{R}(B)$ is closed, then from Lemma 2.9, $B_2 : \mathcal{Y}_2 \to \overline{\mathcal{R}(A)} \cap \overline{\mathcal{R}(B)}$ is an isomorphism and $B_2^{-1} \tilde{A}_2 : \mathcal{N}(P_{\mathcal{R}(B)^\perp} A) \to \mathcal{Y}_2$ is correctly defined. Moreover, Lemma 2.9, $\mathcal{N}(P_{\mathcal{R}(B)^\perp} A) = P_{\mathcal{X}}(\mathcal{N}((A B)))$. Then, by (ii),

$$C_2 - D_2 B_2^{-1} \tilde{A}_2 : \mathcal{N}(P_{\mathcal{R}(B)^\perp} A) \to (\mathcal{R}(D|_{\mathcal{N}(B)}))^\perp$$

is an isomorphism and according to Lemma 2.3, Δ is an isomorphism and, hence, M is an isomorphism.

If $\mathcal{R}(B)$ is not closed, then as above, we define the operators $G, H, E, F,$ and W as in (2.25), (2.26), (2.27), and (2.28). Moreover, the operator W in (2.28) is an isomorphism and also (2.30) and (2.31) hold. By (2.31) $\mathcal{R}(G) = P_{\mathcal{X}}(\mathcal{N}((A B)))$ and as B_2 is one-to-one, we see that the operator G in (2.25) is one-to-one. Hence, together with (ii), the operator $(C_2 - D_2 B_2^{-1} \tilde{A}_2)G : \mathcal{Y}_2 \to (\mathcal{R}(D|_{\mathcal{N}(B)}))^\perp$ is one-to-one with range equal to $(\mathcal{R}(D|_{\mathcal{N}(B)}))^\perp$. Therefore, by (2.30), $C_2 G + D_2 H$ is an isomorphism and, by (2.29) and as W is an isomorphism, also Δ is an isomorphism. Therefore, see (2.20), M is an isomorphism. \square

Finally, we consider the following special case.

Theorem 2.11 Let $A, B, C, D \in \mathcal{B}(\mathcal{X})$ and let $\mathcal{X}', \mathcal{X}''$ be closed subspaces of \mathcal{X} with

$$\mathcal{X} = \mathcal{X}' \oplus \mathcal{X}''$$

such that

$$\mathcal{R}(A) = \mathcal{X}', \quad \mathcal{N}(A) = \mathcal{X}'', \quad \mathcal{R}(B) = \mathcal{X}'', \quad \text{and} \quad \mathcal{N}(B) = \mathcal{X}'. $$

Moreover assume that the restriction $D|_{\mathcal{X}'} : \mathcal{X}' \to \mathcal{X}$ is left invertible. Then the 2×2 operator matrix M,

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

is an isomorphism if and only if

$$C_2 := P_{(\mathcal{R}(D|_{\mathcal{X}'})^\perp)} : \mathcal{X}'' \to (\mathcal{R}(D|_{\mathcal{X}'})^\perp)$$

is an isomorphism.

In particular, if, in addition, $\mathcal{R}(B) \neq \{0\}$ and the operator $D|_{\mathcal{X}'} : \mathcal{X}' \to \mathcal{X}$ is an isomorphism, then for every operator $C \in \mathcal{B}(\mathcal{X})$ the 2×2 operator matrix M is not an isomorphism.
Proof. Denote by P_X the orthogonal projection in $X \oplus X$ onto the first component. Then

$$P_X(\mathcal{N}((A \ 0))) = \mathcal{N}(A) = X''.$$

Moreover, we have

$$\mathcal{N}((P_{\mathcal{R}(B)^\perp} \cdot A)) = \mathcal{N}(P_{X'} A) = \mathcal{N}(A) = X'' \cap X'' = \{0\}.$$ Then the space X_2 in Theorem 2.7 equals zero and the operators A_2 and A_2 in Theorem 2.10 are zero. Then the statements of Theorem 2.11 follow from Theorem 2.10.

3 A characterization of isomorphic row operators

In this section let A, B, C, D and M be as in Theorem 2.10. In the following we use Theorems 2.7 and 2.10 to characterize the case of an isomorphic row operator $(A \ 0)$ and to derive a necessary condition for M to be an isomorphism.

Proposition 3.1 Let $A \in \mathcal{B}(X)$ and $B \in \mathcal{B}(Y, X)$. The row operator $(A \ 0) \in \mathcal{B}(X \oplus Y, X)$ is an isomorphism (i.e. $(A \ 0)$ is left and right invertible) if and only if the following two statements are satisfied:

(i) $\mathcal{N}(A) = \mathcal{N}(0) = \{0\}$.

(ii) $\mathcal{R}(A) = \mathcal{R}(B) = \mathcal{R}(A) = \mathcal{R}(B)$.

Proof. If (i) and (ii) hold, then $Ax + By = 0$ for some $x \in X, y \in Y$ implies $Ax = -By \in \mathcal{R}(B)$. By (ii), $Ax = 0$ and, hence, $By = 0$ follows. Then (i) implies $x = y = 0$ and $\mathcal{N}((A \ 0)) = \{0\}$. Moreover, we have with (ii)

$$\mathcal{R}((A \ 0)) \subset \mathcal{R}(A) + \mathcal{R}(B) = \mathcal{R}(A) + \mathcal{R}(A) = X$$

and the row operator $(A \ 0)$ is an isomorphism.

For the contrary let the row operator $(A \ 0)$ be an isomorphism. If for some $x \in X$ we have $Ax = 0$ then $(A \ 0)(x) = 0$ and, as $\mathcal{N}(A \ 0) = \{0\}$, $x = 0$ follows. That is, $\mathcal{N}(A) = \{0\}$ and, similarly, we see $\mathcal{N}(A \ 0) = \{0\}$. This shows (i). In order to show (ii) let $x \in \mathcal{R}(A) \cap \mathcal{R}(B)$ and assume $x \neq 0$. Then there exists sequences (x_n) in X and (y_n) in Y such that (Ax_n) and (By_n) converge both to x with $\lim \inf_{n \to \infty} \|x_n\| > 0$ and $\lim \inf_{n \to \infty} \|y_n\| > 0$. But then $((A \ 0))(x_n, -y_n) = Ax_n - By_n$ tends to zero and $\mathcal{R}((A \ 0))$ is not closed, a contradiction. This shows

$$\mathcal{R}(A) \cap \mathcal{R}(B) = \{0\}. \quad (3.1)$$

As $x \in \mathcal{N}(P_{\mathcal{R}(B)^\perp} \cdot A)$ if and only if $Ax \in \mathcal{R}(B)$ (see also (2.11)), we conclude with $\mathcal{N}(A) = \{0\}$ and (3.1)

$$\mathcal{N}(P_{\mathcal{R}(B)^\perp} \cdot A) = \{0\}.$$
In the same way we obtain from (3.1) and \(\mathcal{N}(B) = \{0\} \) that \(\mathcal{N}(P_{\mathcal{R}(A)} B) = \{0\} \). Then for the spaces \(\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_3, \mathcal{Y}_1, \mathcal{Y}_2, \mathcal{Y}_3 \) from Theorem 2.7 we conclude

\[
\mathcal{X}_1 = \{0\}, \quad \mathcal{X}_2 = \{0\}, \quad \mathcal{X}_3 = \mathcal{X}, \quad \mathcal{Y}_1 = \{0\}, \quad \mathcal{Y}_2 = \{0\}, \quad \text{and} \quad \mathcal{Y}_3 = \mathcal{Y}
\]

and the row operator \((A B)\) admits a representation according to Theorem 2.7 with respect to the decompositions \(\mathcal{X} \oplus \mathcal{Y} \) and \(\mathcal{X} = \mathcal{R}(A)^\perp \mathcal{R}(B)^\perp \) of the form

\[
\begin{pmatrix}
0 & B_3 \\
A_3 & 0
\end{pmatrix},
\]

where \(A_3 \in \mathcal{B}(\mathcal{X}, \mathcal{R}(B)^\perp) \) and \(B_3 \in \mathcal{B}(\mathcal{Y}, \mathcal{R}(A)^\perp) \) are isomorphisms. This shows (ii).

Example 3.2 Let \(\mathcal{X} = \mathcal{Y} = \ell^2(\mathbb{N}) \) and consider the following operators \(A \) and \(B \) in \(\mathcal{X} \):

\[
A(x_n)_{n \in \mathbb{N}} := (x_1, 0, x_2, 0 \ldots) \quad \text{and} \quad B(x_n)_{n \in \mathbb{N}} := (0, x_1, 0, x_2 \ldots).
\]

Then the row operator \((A B)\) satisfies (i) and (ii) of Proposition 3.1 and, hence, \((A B)\) is an isomorphism.

As a consequence, we derive the following condition for \(M \) to be an isomorphism.

Corollary 3.3 Let \(A \in \mathcal{B}(\mathcal{X}), \ B \in \mathcal{B}(\mathcal{Y}, \mathcal{X}), \ C \in \mathcal{B}(\mathcal{X}), \mathcal{Y}) \) and \(D \in \mathcal{B}(\mathcal{Y}) \). If

\[
\mathcal{Y} \neq \{0\} \quad \text{and} \quad \mathcal{N}((A B)) = \{0\}
\]

then the operator matrix \(M \)

\[
M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}
\]

is not a isomorphism.

Proof. If \(M \) is an isomorphism, then as noted in the proof of Theorem 2.10, the row operator \((A B)\) is right invertible. Assume \(\mathcal{N}((A B)) = \{0\} \). Then \((A B)\) is an isomorphism, and, by Proposition 3.1, \(\mathcal{N}(B) = \{0\} \). Hence, we obtain \((\mathcal{R}(D)_{\mathcal{N}(B)})^\perp = \mathcal{Y} \) and (ii) in Theorem 2.10 cannot be true unless \(\mathcal{Y} = \{0\} \). Therefore, either \(\mathcal{Y} = \{0\} \) or \(\mathcal{N}((A B)) \neq \{0\} \) holds.

\(\square \)

4 Application to Hamiltonian operators

In this section we consider the special case of Hamiltonian operators, i.e., in the situation of Theorem 2.10, \(\mathcal{X} = \mathcal{Y} \), the operators \(B, C \) are self-adjoint and \(D = -A^* \). Under these assumptions, Theorem 2.10 takes the following simple form.
Theorem 4.1 Let $A, B, C \in \mathcal{B}(X)$. Assume that the row operator $(A \ B) \in \mathcal{B}(X \oplus X, X)$ is right invertible and that B and C are self-adjoint operators in X, i.e. $B = B^*$ and $C = C^*$. Adopt the notions $A_2, B_2,$ and X_j, $j = 1, 2, 3$, as in Theorem 2.7 and \tilde{A}_2 as in Lemma 2.9. Define the operator $B_2^{-1}\tilde{A}_2|_{\mathcal{N}(\mathcal{N}((A \ B)))}$ as in Lemma 2.9 and define

$$C_2 := P_{\mathcal{N}(P_{R(B)} \perp A)}C|_{X_1 \oplus X_2} : X_1 \oplus X_2 \to \mathcal{N}(P_{R(B)} \perp A)$$

and

$$(-A^*)_2 := -P_{\mathcal{N}(P_{R(B)} \perp A)}A^*|_{Y_2} : Y_2 \to \mathcal{N}(P_{R(B)} \perp A).$$

Then the Hamiltonian operator

$$H = \begin{pmatrix} A & B \\ C & -A^* \end{pmatrix}$$

is an isomorphism if and only if

(i) the operator

$$\left(C_2 - (-A^*)_2B_2^{-1}\tilde{A}_2 \right)|_{\mathcal{N}(\mathcal{N}((A \ B)))} : \mathcal{N}(\mathcal{N}((A \ B))) \to \mathcal{N}(P_{R(B)} \perp A)$$

is one-to-one and surjective.

If in this case we have, in addition, that $\mathcal{R}(B)$ is closed, then $C_2 - (-A^*)_2B_2^{-1}\tilde{A}_2 \in \mathcal{B}(\mathcal{N}(P_{R(B)} \perp A))$ is an isomorphism.

Proof. By assumption, the row operator $(A \ B)$ is right invertible, hence (see Lemma 2.4) its range is closed and $\mathcal{R}(A) + \mathcal{R}(B) = X$. The same applies to $(B - A)$ and thus its adjoint,

$$(B - A)^* = \begin{pmatrix} B \\ -A^* \end{pmatrix},$$

has a closed range and is one-to-one. Let $z \in \overline{\mathcal{R}(-A^*|_{\mathcal{N}(B)})}$. Then, there exists $z_n \in \mathcal{N}(B)$ such that $-A^*z_n \to z$ as $n \to \infty$, and we further have

$$\begin{pmatrix} B \\ -A^* \end{pmatrix} z_n = \begin{pmatrix} 0 \\ -A^*z_n \end{pmatrix} \to \begin{pmatrix} 0 \\ z \end{pmatrix},$$

which together with the closedness of the range of $(B - A)^*$ implies

$$\begin{pmatrix} B \\ -A^* \end{pmatrix} x = \begin{pmatrix} 0 \\ z \end{pmatrix}$$

for some $x \in \mathcal{N}(B)$, and hence $-A^*|_{\mathcal{N}(B)}x = z$. This proves that $\mathcal{R}(-A^*|_{\mathcal{N}(B)})$ is closed and (i) in Theorem 2.10 is satisfied for $D = -A^*$.

17
Next, we verify
\[(\mathcal{R}(-A^*|_{\mathcal{N}(B)}))^\perp = \mathcal{N}(P_{\mathcal{R}(B)^\perp} A). \] (4.1)

Indeed, if \(x \in (\mathcal{R}(-A^*|_{\mathcal{N}(B)}))^\perp \), we have \((-Ax, y) = (x, -A^*y) = 0 \) for every \(y \in \mathcal{N}(B) \), hence \(-Ax \in \mathcal{N}(B)^\perp \), which together with the self-adjointness of \(B \) deduces \(Ax \in \mathcal{R}(B) \), and hence \(x \in \mathcal{N}(P_{\mathcal{R}(B)^\perp} A) \); while if \(x \in \mathcal{N}(P_{\mathcal{R}(B)^\perp} A) \), then \(Ax \in \mathcal{R}(B) \), and hence we have for \(y \in \mathcal{N}(B) \) that \((x, -A^*y) = (-Ax, y) = 0 \), i.e., \(x \in (\mathcal{R}(-A^*|_{\mathcal{N}(B)}))^\perp \).

Now the equivalence of (i) and the fact that \(H \) is an isomorphism follows from (4.1) and Theorem 2.10. The additional statement in the case of a closed range of \(B \) follows from Lemma 2.9.

Acknowledgements

Junjie Huang gratefully acknowledges the support by the National Natural Science Foundation of China (No. 11461049), and the Natural Science Foundation of Inner Mongolia (No. 2013JQ01).

References

Contact information

Junjie Huang
School of Mathematical Sciences, Inner Mongolia University
010021 Hohhot, P.R. China
huangjunjie@imu.edu.cn

Junfeng Sun
School of Mathematical Sciences, Inner Mongolia University
010021 Hohhot, P.R. China
sjfmss@163.com

Alatancang Chen
School of Mathematical Sciences, Inner Mongolia University
010021 Hohhot, P.R. China
alatanca@imu.edu.cn

Carsten Trunk
Institut für Mathematik, Technische Universität Ilmenau
Postfach 100565, D-98684 Ilmenau, Germany
carsten.trunk@tu-ilmenau.de