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1 | Abstract

Complex cognitive functions are usually processed by a number of cooperating areas
in the human brain. But how are these areas connected to each other and to what extend
does a connection’s strength correlate with cognitive abilities?

Diffusion weighted magnetic resonance imaging makes it possible to reconstruct
the courses of fiber bundles which shows how different areas of the brain might be
connected. This imaging technique can also be used to characterize microstructural
properties of brain tissue. If these two methods are combined in a way where the
local direction of a pathway is used to select indices that describe the structure of the
connecting fiber bundle without the influence of crossing fiber bundles, new insights
into the function and development of the human brain can be gained.

In order to model a connecting pathway, a new method of global tractography called
“Plausibility Tracking” has been developed. According to the underlying data, Plau-
sibility Tracking provides the most plausible connecting pathway between two areas
in the brain. The quality of the pathway is rated by a new measure: The plausibility
of the connection. The tracks of Plausibility Tracking allow selecting the tissue char-
acterizing indices that correspond to the analyzed connection. Plausibility Tracking
is embedded in a framework that maps these indices onto the pathway. This pathway
serves as a coordinate system for inter-subject comparisons. The parametrization of the
pathway is guided by a purpose-built atlas in order to take into account the individual
anatomical peculiarities of each subject.

Plausibility Tracking makes it possible to compare fiber bundle specific indices that
characterize connecting pathways along their arc length. These biophysically meaning-
ful indices allow a more specific characterization of the fiber bundle’s microstructure
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than the usually used fractional anisotropy. At the same time, the method has little
more requirements on the scanning protocol than standard acquisitions. Consequently,
the method presented in this thesis can even be used in clinical environments.
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2 | Zusammenfassung

Komplexe kognitive Funktionen werden in der Regel von mehreren Arealen im Ge-
hirn gemeinsam geleistet. Aber wie sind diese Areale miteinander verbunden und in
welchem Maße korreliert die Stärke der Verbindungen mit kognitiven Fähigkeiten?

Die diffusionsgewichtete Magnetresonanztomographie ermöglicht es, die Verläufe
von Faserverbindungen nachzuvollziehen und zeigt damit, wie verschiedene Areale im
Gehirn miteinander verbunden sind. Dieses Bildgebungsverfahren kann außerdem da-
zu eingesetzt werden, um mikrostrukturelle Eigenschaften des Gehirns zu beschreiben.
Wenn diese beiden Methoden so miteinander verknüpft werden, dass die lokale Rich-
tung eines Faserverlaufs dazu verwendet wird den Wert auszuwählen, der die Struktur
dieser Verbindung beschreibt, dann können neue Erkenntnisse über die Funktion und
Entwicklung des menschlichen Gehirns gewonnen werden.

Um einen Verbindungspfad zu modellieren wurde eine neue globale Traktogra-
phiemethode namens “Plausibility Tracking” entwickelt. Basierend auf den zugrun-
deliegenden Daten liefert Plausibility Tracking den plausibelsten Verbindungspfad
zwischen zwei Arealen im Gehirn. Die Qualität des Verlaufs wird mit einem neuen
Maß, der Plausibilität einer Verbindung, bewertet. Die Pfade von Plausibility Tracking
erlauben es, diejenigen Werte der Gewebecharakterisierung auszuwählen, die zu der zu
untersuchenden Verbindung gehören. Plausibility Tracking ist in ein System eingebet-
tet, welches diese Werte auf die Verbindungspfade projiziert. Diese Verbindungspfade
dienen als Koordinatensysteme für den Vergleich der Werte zwischen Probanden. Um
die anatomischen Eigenheiten der Probanden zu berücksichtigen, wird die Parametri-
sierung des Verbindungspfades durch einen speziell angefertigten Atlas geleitet.
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Plausibility Tracking ermöglicht es, faserbündelspezifische Werte die Verbindungs-
pfade kennzeichnen entlang deren Verlauf zu vergleichen. Diese biophysikalisch sinn-
vollen Werte erlauben eine spezifischere Beschreibung der Mikrostruktur eines Fa-
serbündels, als die zumeist verwendete fraktionale Anisotrophie. Gleichzeitig stellt
die Methode kaum höhere Anforderungen and die Aufnahmesequenz als etablierten
Standardmethoden. Folglich kann die hier vorgestellte Methode sogar im klinischen
Bereich eingesetzt werden.
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3 | Abbreviations

AD axial diffusivity
ADC apparent diffusion coefficient
ADC(k) parallel diffusivity
ADC(?) perpendicular diffusivity
AFD angular fiber density
AFDmax maximal angular fiber density
BA45 Brodmann area 45
CC corpus callosum
CHARMED composite hindered and restricted model of diffusion
CR corona radiate
CSD constrained spherical deconvolution
CSF corticospinal fluid
dMRI diffusion magnetic resonance imaging
dODF diffusion orientation density function
DTI diffusion tensor imaging
fODF fiber orientation density function
FA fractional anisotropy
FD fiber density
FFT fast Fourier transform
FS fiber spread



6 3. Abbreviations

GRAPPA generalized auto calibrating partially parallel acquisitions
HARDI high angular resolution diffusion imaging
IFOF inferior fronto-occipital fasciculus
ILF inferior longitudinal fasciculus
MAD median absolute deviation
MC motor cortex
MD mean diffusivity
MNI Montreal Neurological Institute
MRI magnetic resonance imaging
NODDI neurite orientation dispersion and density imaging
PFA peak fractional anisotropy
PFC prefrontal cortex
RBA region-based analysis
RD radial diffusivity
ROI region of interest
SD spherical deconvolution
SLF superior longitudinal fasciculus
SH spherical harmonics
TBA tract-based analysis
TBSS tract-based spatial statistics
VBM voxel-based morphology
VBA voxel-based analysis
voxel volume element
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4 | Introduction

4.1 Motivation

For centuries men and women have tried to better understand how the human brain
works. Lesions for example that could be correlated with functional deficits gave hints
to which areas of the brain are involved into which functions. Fortunately, with today’s
methods it does not require injuries anymore to study the human brain and its functions.
Non-invasive imaging methods give insights into the brain’s anatomy and function
like never before. Studies can be performed on healthy volunteers and even children.
Comparing data from children with data from adults allows to correlate cognitive skills
with anatomical changes at different ages and provides valuable insights into how the
human brain works.

It is known that complex cognitive functions are processed in cooperation of multiple
areas of the brain. But how are these areas connected to each other and to what extend
does a connection’s strength correlate with cognitive abilities?

In order to help answering these questions, the work presented in this thesis aims to
improve the quantification of anatomical connectivity within the human brain. A new
method is introduced that determines the most plausible pathway of connections be-
tween distinct locations in the brain. Then, microstructural properties that are relevant
for the connection strength are mapped onto the pathway to make them comparable
across subjects. Comparing these measurements between children and adults helps to
understand the development and function of the human brain.
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4.2 Current state

Many methods to investigate the human brain are based on the analysis of data from
Magnetic resonance imaging (MRI). MRI is a method to capture volumetric pictures of
biological bodies in general and the human brain in particular. One of its outstanding
features is that different molecular properties like spin relaxation, concentration and
diffusion can be recorded by different sequences at high spatial resolution. All these
measurements are non-invasive, which means that there is no known persistent side
effect for the the scanned persons (Formica and Silvestri, 2004). Accordingly, MRI
can be applied for various studies on healthy human subjects. The different scanning
protocols allow to investigate various aspects of anatomy, physiology and chemistry to
obtain a wide range of information. The scanning protocol of interest here is diffusion
weighted MRI (dMRI) (Le Bihan, 1991). It allows to estimate the diffusion of water
molecules within the tissue and, based on that, permits conclusions about the tissue’s
microstructure.

There are two major applications of dMRI: quantification of microstructural prop-
erties, and reconstruction of fiber pathways called tractography. The quantification
of tissue properties is based on local models that provide indices describing certain
characteristics of the tissue. From theses indices, maps of the brain can be generated
that visualize certain characteristics (that are parametrized by the indices) of the tissue.
These methods are mostly used to locate and quantify differences between groups of
subjects or changes in longitudinal studies (a more detailed explanation is given in
chapter 5.7). Tractography, on the other hand, integrates the directional information
from local models within a defined neighborhood or from the whole brain to model
possible axonal pathways. It allows to draw conclusions about the connectivity of
cortical regions and pathways through which two or more regions are linked (more
details are provided in chapter 5.6).

4.3 Limitations

In most studies only one of these two methods is applied although it seems a logical
consequence to map microstructural properties onto connecting pathways to get an in-
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tegrated assessment of the connection. A few approaches have been published showing
different levels of integration and complexity (see chapter 5.7.5 for a short review).

Still, most of the combining approaches use rotationally invariant indices that char-
acterize the tissue’s microstructure in a specific location, but not for a specific fiber
bundle. As with current scanner resolutions, one third to two thirds of all white matter
voxels include a mixture of multiple fiber bundles (Behrens et al., 2007; Jeurissen et
al., 2010). It is not ensured, that the observed peculiarity originates from the bundle of
interest itself or from a crossing connection.

The accumulation of index values perpendicular to a pathway’s main direction is
challenging for strongly curved pathways. Two intersecting planes at the two ends of
a pathway, as proposed by previously (Corouge et al., 2006), are only sufficient for
relatively straight or very thin pathways.

4.4 Suggested solution

In this thesis a framework is introduced that quantifies bundle specific microstruc-
tural properties along fiber pathways. It is composed of multiple methods that are
consecutively applied. The goal is to quantify microstructural properties of certain
connections in the brain with biophysically meaningful parameters. Such indices have
been introduced recently by Riffert and colleagues 2014. They are based on con-
strained spherical deconvolution (CSD) (Tournier et al., 2007) that can be computed
from standard single shell high angular resolution diffusion imaging (HARDI) (Tuch
et al., 2002). The required data can be acquired in reasonable time from most clinical
scanners. The indices provide multiple biophysically meaningful measures like fiber
density, fiber fraction and fiber spread. In regions of crossing fiber bundles, the indices
are available for every fiber bundle separately. They promise to increase the specificity
in characterizing the tissue microstructure compared to the most often used rotationally
invariant indices derived from the diffusion tensor.

The directionality of these indices poses the problem to reliably select the correct
index value that corresponds to the pathway of interest. This challenge is solved by
a new method of tractography called Plausibility Tracking, which is the core method
of this thesis. According to the underlying dMRI data it models the most plausible
connecting path between two locations in the brain and provides reliable information
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about the the pathway’s direction along the pathway. For initialization, it uses proba-
bilistic tractography (see chapter 5.6.2) to obtain close to optimal starting parameters
that keep the time for optimization at a minimum. Additionally, Plausibility Tracking
offers a new measure of connectivity that describes the anatomical plausibility of a
connection.

The parametrization of the connecting pathway is supported by a purpose-built atlas.
Multiple intersecting planes are defined between the atlas labels and serve as anchors
for the parametrization along the pathway’s arc length.

4.5 Graphical overview
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¿ The local model shows the fiber configuration as computed from diffusion
weighted MRI data in every voxel.

¡ Most plausible tracks through the field of local models are computed with a new
method of global tractography.

¬ A bundle of these tracks is obtained when all connecting tracks between two
regions in the brain are computed.

√ Biophysically meaningful indices are computed for every direction provided by
the local model.

ƒ The index values corresponding to the connection of interest are determined by
their accordance with the direction of a tract.

≈ The corresponding index values are mapped onto the fiber bundle.

∆ Intersecting planes, which are defined by an atlas, support the parametrization
of the fiber bundle into narrow sections.

« Index values which have been mapped onto the tracks are accumulated according
to the bundle’s parametrization and are available for statistical evaluation across
subjects.
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4.6 Major contributions

The major contributions of this thesis are:

• A framework to compare bundle specific parameters derived from dMRI
across subjects
This framework is implemented in a fully automatic processing pipeline that per-
forms data preprocessing, local modeling, computation of indices, Plausibility
Tracking, mapping of indices onto the fiber bundles and statistical evaluation.

• Introduction of a new global tractography method called Plausibility Track-
ing
Plausibility Tracking models, according to the underlying data, the most plausi-
ble pathway between two locations in the brain. It uses a new measure that rates
the plausibility of a local direction independently from the strength of the fiber
bundles. The smooth path provides a reliable local direction all along the path-
way. Additionally, a new measure of connectivity is introduced: the plausibility
of a connection.

The proposed initialization provides close to optimal starting parameters for the
optimization of Plausibility Tracking, so that the computation time is reduced to
a minimum, and local minima are avoided.

• Atlas-based parametrization of fiber bundles
The parametrization of fiber bundles with bundle specific atlases provides highest
correspondences across subjects, taking individual peculiarities of shape into
account.

4.7 Structure of the thesis

The thesis is organized as follows. Chapter Background gives an overview on state-of-
the-art methods that are relevant for or related to this work. It is rather comprehensive as
several methods are combined in the presented framework. Chapter Methods describes
in detail the novelties and implementations of the framework. In large parts it follows
the publication Plausibility Tracking: A method to evaluate anatomical connectivity
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and microstructural properties along fiber pathways, which has been submitted to the
journal of NeuroImage (Elsevier). The chapter Results is subdivided into validation
of the proposed tractography method and applications, featuring the comparison of
direction dependent indices along the inferior longitudinal fasciculus (ILF) between
children and adults. Finally, methods and results are discussed in the last chapter.
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5 | Background

5.1 Overview

This chapter reviews state-of-the-art methods that are applied in or related to the pre-
sented framework. Section 5.2 provides an overview of the structure, organization and
function of the human brain. It briefly describes the organization of nerve fibers, which
is the structure that is analyzed with the presented methods.

The analysis is based on measurements performed with diffusion weighted MRI
(dMRI). The theoretical concepts and practical applications of this technique are
described in section 5.3. It explains how the diffusion of water molecules are measured
using dMRI. The structure of this section roughly follows the concept of the book
written by Stieltjes (2013).

Local models and their indices are introduced in section 5.4. They describe the
characteristics of diffusion and provide the possibility to parametrize microstructural
configurations.

As the model used in this thesis uses spherical harmonics for its computation and
representation, a short introduction to the mathematics of spherical harmonics is given
in section 5.5.

Two applications of diffusion MRI that are based on the local models, namely map-
ping and comparison of indices as well as tractography, are described in sections 5.6
and 5.7 respectively.
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5.2 The human brain - function, organization and
structure

The human brain is the major part of the central nervous system. It receives and
differentiates sensory inputs, stores information and integrates all data to organize
complex behavior.

Not every region in the brain is equally involved in all processes of the brain. The
anatomically most pronounced peculiarity is the separation into the left and right hemi-
sphere (Fig. 5.1a). Sensory and motor areas for the left side of the body are located
in the right hemisphere and vice versa. Within the hemispheres, functional areas can
be roughly divided into different areas following anatomical landmarks, as shown in
Fig. 5.1b. The frontal lobe is the largest structure in the human brain and associated
with e.g. executive processes like voluntary behavior and movement, comprehension,
planning, problem solving, cognition, language processing, and many more. In the
parietal lobe, somatosensory information are perceived and integrated. It is also the
area of spatial attention and mapping as well as number representation. The occipital
lobe at the back of the brain is the primary visual area. The temporal lobe is associated
with a number of functions like learning and memory, perception for hearing, vision
and smell, as well as understanding languages. More archaic functions like startle
response, alertness and the control of breathing and heart rate are maintained in the
brain stem. The cerebellum is mainly associated with the coordination of voluntary
movements, and in particular with the regulation of automatic movements (Purves et
al., 2004).

A further subdivision is possible and has been done e.g. based on examinations
of microstructure (Brodmann, 1909), observations after injuries, measurements with
EEG, MEG and MRI (Bear et al., 2007) and many other methods.

These functions are maintained and executed by highly specialized cells. The most
prominent (although not the most numerous) cells within the brain are nervous cells,
also called neurons. A schematic drawing of a neuron can be seen in Fig. 5.2. The
interior of neurons is composed as most other cells of the body, and includes cell
organelles and the nucleus (for more details refer to e.g. Purves et al., 2004). Unique
features of neurons are dendrites and axons. Dendrites connect to other neurons to
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(a) (b)

Figure 5.1: The human brain. (a) Reconstructed from MRI data and (b) schematic
drawing showing telencephalic lobes, cerebellum and brain stem in different col-
ors. (from http://commons.wikimedia.org/wiki/File:Gehirn,_lateral_-

_Lobi_+_Stammhirn_+_Cerebellum_eng.svg)

receive input signals from them. These signals are electrical potentials induced by
neurotransmitters and are integrated in the axon hillock and passed on through the axon.
The axon is a tail like prolongation. It may be quite short and connect with neighboring
neurons or close by areas of the brain, but it can also be very long, projecting to distant
brain regions or through the spinal cord into other parts of the body.

The long connections are a major challenge regarding signal transmission, because
long distances lead to long transmission times. One possibility to improve the perfor-
mance of transmission is to increase the axon’s diameter, which is not practical for
many connections because it requires a lot of space to be effective. Another solution
is to improve the insulation of axons by supporting cells. These oligodendrocytes in
the brain or Schwann cells in the peripheral nervous system are wrapped around the
axons multiple times in several layers. They serve as insulation, the so called myelin
sheath, which is also sketched in Fig. 5.2. Gaps within the myelin sheath, referred
to as nodes of Ranvier, permit the signal in form of potentials to “jump” from node
to node. Depending on the degree of myelination, this concept provides a significant
increase in transmission time. The conduction velocity in unmyelinated axons ranges
from about 0.5 m/s to 1 m/s, whereas the velocity of conduction reach up to 150 m/s in
myelinated axons (Purves et al., 2004).
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Figure 5.2: Picture of a neuron showing the internal structure of its cell body, the axon
with myelin sheath, its dendrites and synapses from other neurons (from http://commons.

wikimedia.org/wiki/File:Complete_neuron_cell_diagram_en.svg).

The brain can be structured in according to the location of the neuron’s bodies and
their axons. In general, neuronal cell bodies are located in the so called gray matter,
which forms the outer 2 mm to 4 mm thick cortical layer of the brain. (see Fig. 5.3a).

Many axons are projecting from the gray matter through the so called white matter
to close-by or distant regions of the brain. In cases where the axons are connecting
neighboring regions, they are referred to as u-fibers. Long distance axonal connec-
tions are organized in bundles (see Fig. 5.3b). This fact is crucial for the analysis
with magnetic resonance imaging, which has a spatial resolution of 1.0 mm to 3.0 mm
(using up-to-date clinical scanners). Single axons have a diameter of 1 µm up to 20 µm,
and hence are much too small to be distinguished individually with today’s imaging
methods. But when organized in fiber bundles, axons form a more or less homogenous
thread wide enough to be captured with magnetic resonance imaging.
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(a) (b)

Figure 5.3: The human brain at different scales. (a) Coronal section through a human brain.
With the fiber staining, gray matter is shown in brown while the axonal fibers in the white
matter are stained black1. (b) Microscopic image of a peripheral fiber bundle. (from http:

//www.theworldcloseup.com ©Stephen Gschmeissner)

5.3 Principles of diffusion MRI

5.3.1 Brownian motion of molecules

The structure of white matter cannot be measured directly, but has to be estimated
indirectly through inference with the characteristics of diffusing water molecules.

Molecules in fluids, including water molecules in brain tissue, are constantly in
motion (Einstein, 1905). This so called Brownian motion is isotropic if there are no
barriers or other influencing forces like flow or gradients in concentration. As it is not
possible to measure the motion of every molecule separately, a statistical description
is used. Here, the expectation value hxi describes the euclidean distance x, a particle
is expected to travel within time t. As the molecules move in all directions with the
same probability, positive and negative directions would cancel out and the expectation
value would always be zero. To circumvent this problem, the expectation value of the

1Image courtesy of University of Wisconsin, Michigan State Comparative Mammalian Brain Collections
and the National Museum of Health and Medicine, preparation of the image and specimen has been
funded by the National Science Foundation, as well as by the National Institutes of Health. http:

//www.brainmuseum.org/
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squared displacement hx2i is used. Einstein (1905) showed that for free diffusion the
typical euclidean distance �

x

a molecule is expected to travel within time t is

�
x

=

p
hx2i =

p
2D0t. (5.1)

where D0 is the free diffusion coefficient. Hence, the typical displacement of a particle
is proportional to the square root of the diffusion time.

The distribution of distances x, that are expected to being traveled by the molecules,
can be described by the diffusion propagator P (Cory, 1990) which, in the case of free
diffusion, is defined as

P (x, t) =
1

2

p
⇡D0t

exp

✓
�x2

4D0t

◆
. (5.2)

This diffusion propagator is a Gaussian function (see Fig. 5.5a) depending on the
diffusion coefficient D0 and the diffusion time t.

But what happens if the diffusion is not free but restricted by barriers? Axons contain
microtubules and neurofilaments that are surrounded by the axonal membrane, which
is often covered by a myelin sheath. All these structures influence the anisotropy of the
diffusion of water molecules in white matter. Beaulieu and colleagues (2002; 2006)
showed that axonal membranes by far exert the strongest influence on the diffusion
of water molecules, and are only modulated by the amount of myelin. Hence, the
molecules are not able to move freely but are hindered (when located outside the
axons) or restricted (when located inside the axons) by the axonal membranes that
can be considered as barriers (see fig. 5.4). Note that this is a strongly simplified
model. To a small degree, the axonal membranes are permeable to water molecules.
Also, although these membranes show the strongest effect on the diffusion process,
intracellular structures and supporting cells other than neurons also have an influence
on the diffusion of water molecules.

As a logical consequence the expected traveling distance of molecules in tissue
is reduced compared to free diffusion. The longer the diffusion time, the more the
barriers influence the molecular motion, and the shape of the diffusion propagator
loses its Gaussian shape (see Fig. 5.5b).
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Figure 5.4: Hindered and restricted diffusion caused by axonal membranes. Water molecules in
the interaxonal space are hindered in their diffusion (blue) while the molecules inside the axons
are restricted (red) in the direction perpendicular to the fiber. (Modified reprint from (Le Bihan,
2003))

In practice, the shape of the diffusion propagator depends on multiple factors, like
the distance of the barriers to the starting location, their shape and reflective properties.
Still, one can use Eq. 5.2 to define a time dependent diffusion coefficient D(t) that
intuitively describes how far the particles displace within time t (Stieltjes et al., 2013).

p
hx2i

tissue

=

p
2D(t)t (5.3)

D(t) is not equal to the free diffusion coefficient because it is altered by the structures
of the tissue. It is the from the outside visible diffusion coefficient, that is accordingly
called the apparent diffusion coefficient (ADC) (Le Bihan et al., 1986).

5.3.2 Quantifying the motion of water molecules using MRI

As it is not possible to measure the the diffusion of water molecules directly and non-
invasively in a closed system like the human body or brain, as special sequence of
MRI, named diffusion weighted MRI (dMRI), has been developed. With this method,
water molecules are labeled with a location specific phase of the nuclear spin. After
a defined time of diffusion, the amount of signal attenuation that is quantified due to
phase shifts caused by molecules that changed their position. This technique allows to
estimate the ADC at arbitrary locations and in any direction, which provides a three
dimensional ADC profile in every measured volume element (voxel).
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(a) (b)

Figure 5.5: Gaussian shape of the diffusion propagator, a) in the case of free diffusion with
different diffusion times and b) in the case of restricted diffusion. (reprint from (Stieltjes et al.,
2013))

Going into detail, a fundamental property of atoms obviously is their magnetic mo-
ment. This moment precesses around an external magnetic field. Its angular frequency
depends on the magnetic field strength B, as well as on the gyromagnetic ratio �, which
is a nucleus specific constant. The angular frequency at which the spin precesses is
called the Larmor frequency ! which is defined as

! = ��B. (5.4)

In MRI, usually the gyromagnetic ratio of protons (1H) is used, and as � is a constant,
the Larmor frequency solely depends on the external magnetic field strength B. Also,
the main magnetic field strength is initially kept constant and homogeneous inside the
MR scanner. When adding an additional gradient field to the static magnetic field B0,
protons obtain a Larmor frequency that depends on their position in the scanner and
accordingly in the brain. This is used to change the phase of the proton’s moments in
order to label the water molecules according to their position.

Generally, the diffusion of water molecules can be measured using the following
protocol shown in Fig. 5.6:

t1 Initially, all spins rotate at the same angular frequency and in phase. The signal
intensity obtained from this state is recorded and serves as reference signal S0.
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Time axis

Dephasing

Rephasing
Gradient

t1 t2 t3 t4

Signals in phase Signals in phase

Sum of
all signals

Signal out of phase

B0 strength

Excitation t5

Readout S0 Readout S

Figure 5.6: Scheme of the dephase-rephase sequence to measure the diffusion of water molecules.
Water molecules located at different locations in a sample are represented by the colored circles.
Their arrows indicate the current phase arrangement. The length of the thick arrows indicates
the strengths of the magnetic field strength (B0) as modified by the gradient. (Reprint with small
modifications from (Mori, 2007))

t2 A magnetic field gradient G is applied for a short time �. It changes the Larmor
frequency depending on the position in the brain. This is called the dephasing
gradient.

t3 In the absence of gradient fields all spins rotate at the same angular frequency
but, as a result of the precedent dephasing gradient pulse, with different phases
that depend on the position in the brain. Molecules diffuse for a defined time �.

t4 A second gradient �G is applied. It is active for the same time � like the
dephasing gradient and has the same strength but goes in the opposite direction
compared to the first gradient. This is called the rephasing gradient.
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t5 The signal intensity S is recorded. The spins of the protons that have not moved
along the gradient field are again in phase, while the spins of the protons that have
moved along the gradient are out of phase. The phase shift, and consequently the
signal attenuation, depends on the distances that water molecules have traveled
in the direction of the gradient.

In theory, if no diffusion occurs during t3, the signal intensity S at t5 should be the
same as in the reference measurement S0 during t1. In cases where water molecules
have traveled along the gradient direction, S is smaller than S0, because not all spins
return to phase as they obtain (due to the change in position) a different gradient
amplitude for rephasing as for dephasing. The more spins are out of phase and the
greater the phase-offset, the lower is the intensity of S.

This protocol is sensitive for molecular motion only in the direction along the gradi-
ent. In order to measure the diffusion in three dimensions, several directions have to
be sampled consecutively (Tuch et al., 2002; Jones, 2004).

Stejskal and Tanner (1965) showed that for the narrow pulse assumption ( 13� << �)
the ratio of the signal before and after diffusion can be described as an exponential
function

S

S0
= e��

2
D�

2�G

2

(5.5)

where � is the gyromagnetic ratio, D the apparent diffusion coefficient, � the duration
of the gradient pulses, � the diffusion time and G the amplitude of the magnetic
gradient. The only unknown in this equation is the apparent diffusion coefficient D,
which can be determined by the described measurement.

In order to simplify equation 5.5 the constants �, � and G can be summarized in the
so called q-value that is defined as

q = ��G (5.6)

In clinical environments, the so called b-value (Le Bihan, 1991) is mostly used
instead of the q-value. The b-value is defined as

b = q2� = �2�2G2
� (5.7)
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Accordingly, Eq. 5.5 can be written as

E =

S

S0
= e�bD (5.8)

where E is the signal attenuation.
As it is difficult to interpret the signal attenuation profile directly, local models with

meaningful parameters are usually fitted into the signal attenuation profile.
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Figure 5.7: The diffusion tensor visualized as ellipsoid. The eigenvalues �1,2,3 of the tensor
matrix describe the ellipsoid’s axes.

5.4 Local models of diffusion MRI

5.4.1 Diffusion tensor

With diffusion tensor imaging (DTI) (Basser et al., 1994), the diffusion of water
molecules is described by a Gaussian distribution. The signal attenuation E along
the gradient direction ~r is defined as

E = e�b~r

T
D~r (5.9)

where b is the b-value and D the diffusion tensor, which can be written as a symmetric
3⇥ 3 matrix
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Combining equations 5.9 and 5.10, the 6 independent parameters of the diffusion tensor
can be computed when the signal attenuation is measured with at least 6 independent
diffusion directions. Usually, all measurements are performed using the same b-value.
Visualizing the direction of the diffusion measurements as vectors with the lengths of
the b-values leads to a spherical representation of the acquisition scheme.

The diffusion tensor is often visualized as an ellipsoid as shown in Fig. 5.7. The
three eigenvalues �1,�2 and �3 (which, due to D0s symmetry, correspond to D

xx

, D
yy

and D
zz

respectively) describe the lengths of the ellipsoid’s axes, while the remaining
components of the tensor matrix define their orientation. The shape of the ellipsoid
represents the anisotropy of diffusion. A spherical tensor indicates completely isotropic
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diffusion, while a more cigar shaped ellipsoid indicates anisotropic diffusion with less
restrictions in the direction of �1.

The shape of the ellipsoid, and accordingly the anisotropy of diffusion, is most often
described by the rotationally invariant parameter fractional anisotropy (FA) (Basser et
al., 1996) that is defined as the standard deviation of the eigenvalues divided by the
average of squares, or the eigenvalues

FA =

r
3

2

q�
�1 � ¯�

�2
+

�
�2 � ¯�

�2
+

�
�3 � ¯�

�2
p
(�2

1 + �2
2 + �2

3)
(5.11)

where �1,2,3 are the three eigenvalues of the diffusion tensor and ¯� = (�1+�2+�3)/3

(see Eq. 5.4.1). An equivalent expression for FA that does not require the computation
of ¯� is

FA =

r
1

2

q
(�1 � �2)

2
+ (�1 � �3)

2
+ (�2 � �3)

2

p
(�2

1 + �2
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3)
(5.12)

For positive eigenvalues, FA ranges between zero (isotropic diffusion) and one (diffu-
sion occurs only in a single direction).

Another frequently used index is the so called mean diffusivity (MD), which de-
scribes the average diffusivity in a voxel and is defined as the average of the three
eigenvalues:

MD = (�1 + �2 + �3) /3. (5.13)

FA is a very sensitive but not specific index. A change in FA can be the result
of change in length or width of the diffusion ellipsoid. In order to quantify these
effects separately, two additional indices, namely the axial diffusivity (AD) or parallel
diffusivity (ADC(k))

AD = ADC(k) = �1 (5.14)

and the radial diffusivity (RD) also called perpendicular diffusivity (ADC(?))

RD = ADC(?) = (�1 + �2) /2. (5.15)

are defined.
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(a) FA (b) MD (c) AD (d) RD

Figure 5.8: Indices of the diffusion tensor. a) fractional anisotropy (FA), b) mean diffusivity
(MD), c) axial diffusivity (AD) and d) radial diffusivity (RD). Value ranges are optimized for
best contrast.

FA FA

Figure 5.9: Fiber configuration influencing FA. While the vertical fiber configuration becomes
constantly “stronger“ from left to right but the FA first decreases and then increases.

Maps of these indices are visualized in Fig. 5.8. A practical issue of the indices de-
rived from the diffusion tensor is the ambiguity of the biological sources that influence
its values. FA for example is often associated with axonal properties like myelination,
although according to Beaulieux and colleagues (2002) the most dominant factor for
the diffusion profile are the axonal membranes themselves. Consequently, the config-
uration of fibers influences the value of FA most but is also ambiguous as described
by Jbabdi and colleagues (2010) and Fig. 5.9. An increased number of fibers in one
bundle in a crossing region can lead to both increased and decreased FA, depending on
the number of fibers in the other bundle. Last but not least, all measures derived from
DTI are scalar indices that do not differentiate different fiber bundles in a voxel.

With the low requirements on the measurement protocol, the simple mathematics
that is required to compute the diffusion tensor and the sensitivity of its indices, DTI
has become the most widely used model in dMRI.
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As DTI assumes anisotropic Gaussian distribution as it is expected only in regions
where all axonal fibers within one voxel run parallel, the model is, strictly speaking,
only valid in about 10 % to 37 % of the white matter voxels in the human brain (Jeuris-
sen et al., 2013; Schultz, 2012).

5.4.2 Multi-tensor

In order to circumvent some of the limitations that are characteristic for the single-
tensor, models with multiple tensors have been introduced (Tuch et al., 2002; Alexan-
der, 2005; Malcolm et al., 2009). They replace the simple Gaussian model with a
mixture of n Gaussian densities.

E =

nX

i=1

a
i

exp
�
�b~r TD

i

~r
�

(5.16)

where D
i

is the tensor matrix of the ith population and a
i

2 [0, 1] with
P

a
i

= 1 is
the volume fraction of each population.

This approach seems very attractive, as properties of different fiber bundles can
be characterized separately with the well established indices of the diffusion tensor.
Unfortunately, estimating the model parameters is numerically challenging as it is,
compared to the single-tensor case (Eq. 5.9), no longer possible to linearize Eq. 5.16 by
taking the logarithm on both sides. There are multiple solutions to increase numerical
stability of fitting the multi-tensor model e.g. restricting the number of diffusion tensors
(Caan et al., 2010), acquiring data with multiple b-values (Scherrer and Warfield, 2010),
incorporating physiological constraints (Tuch et al., 2002) or taking neighborhood
information into account (Pasternak et al., 2008).

5.4.3 Multi-compartment models

Ball-and-stick

The ball-and-stick model is a simple multi-compartment model, which has been in-
troduced by Behrens and colleagues (2003; 2007). It assumes that water molecules
either belong to an isotropic compartment (the ball) or are associated to one of multiple
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directional compartments (the sticks) with infinite isotropy. The signal attenuation E

for each diffusion-weighted measurement at each voxel can be expressed as
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where d is the diffusivity, b
i

and r
i

are the b-value and gradient direction associated
with the ith acquisition. f

j

is the signal contributed by the jth fiber orientation and
R
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ART
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is an anisotropic diffusion tensor that is aligned with the jth fiber orientation.
N is the maximum number of fibers and A constant matrix
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which is rotated into the direction of the jth fiber by R
j

(Behrens et al., 2007). The
isotropic and directional compartments are all modeled by standard or specially con-
strained tensors, so that the ball-and-stick model can be seen as a special case of the
multi-tensor model.

The model has been developed for probabilistic tractography (see chapter 5.6.2)
rather than for the quantification of microstructural tissue properties. Accordingly and
due to the simplicity of the model, it is, apart from the direction of fiber populations and
their uncertainty, probably not possible to derive meaningful indices from the model
in order to describe the tissue’s micro-structure (Jbabdi et al., 2007).

Ball-and-rackets

An extension to the ball-and-stick model, that is called ball-and-rackets model, has
been proposed by Sotiropoulos and colleagues (2012). It explicitly models the effect
of fiber fanning by using Bingham functions and represents a special case of the model
introduced by Kaden and colleagues (2007).
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Composite hindered and restricted model of diffusion

The composite hindered and restricted model of diffusion (CHARMED) described by
Assaf and colleagues (2004; 2005) combines models of extra-axonal and intra-axonal
diffusion. In the extra-axonal areas the diffusion of water molecules is only hindered
(not restricted) by axons and other cells, so that the diffusion process can be described
with the Gaussian model. The intra-axonal water is restricted by the axon membranes,
and a model of diffusion within a cylinder is used.

E = f
h

· E
h

+ f
r

· E
r

(5.19)

where E is the observed signal attenuation and E
h

and E
f

are the signal attenuations
of the hindered and restricted compartments, respectively, that are modeled separately.
f
h

and f
r

are the corresponding population fractions.
Multiple fiber direction can be modeled by adding terms for additional restricted

compartments. For low q-values, a single diffusion tensor is sufficient to model the
hindered diffusion even in configurations with multiple fiber directions (Basser and
Jones, 2002).

AxCaliber

In 2008 Assaf and colleagues proposed a method called AxCaliber, which is an exten-
sion to the CHARMED framework and allows to estimate the distribution of axonal
diameters. With AxCaliber, different degrees of diffusion weighting as well as differ-
ent diffusion times are evaluated in order to estimate the distribution of axon diameters,
which leads to long acquisition times.

Until now the distribution of axonal diameters can only be estimated in voxels of a
single, parallel fiber population, and where the direction is known a priori like in the
optic nerve, the spinal cord or the corpus callosum.

NODDI

Going one step further, Zhang and colleagues (2012) introduced a method called
NODDI (neurite orientation dispersion and density imaging) that describes a three-
compartment model. Intra- and extra-cellular compartments as well as corticospinal
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Figure 5.10: 2D schematic illustration of diffusion spectrum imaging. Signal attenuations are
measured on a rectangular grid of different q-values and transformed via FFT to a grid of
displacements. These displacement probabilities are then projected onto a sphere to obtain the
dODF. (from (Alexander and Seunarine, 2011))

fluid (CSF) are modeled by an orientation-dispersed cylinder plus an anisotropic and
isotropic compartment, respectively.

5.4.4 Diffusion spectrum imaging

Diffusion spectrum imaging (DSI) (Wedeen et al., 2000; Tuch, 2002; Lin et al., 2003;
Wedeen et al., 2005) is a model-free approach to describe the diffusion of water
molecules. In contrast to the models described so far it uses a different acquisition
protocol that measures data on a regular rectangular grid of different q-values (see
Fig 5.10). With this configuration of measurements the fast Fourier transform (FFT)
can be used to calculate the probability distribution p of the displacement of water
molecules in each direction. In order to obtain a useful representation of p, the discrete
representation from the FFT is projected to a sphere, which results in an orienta-
tion density function (ODF). As the ODF from DSI describes the diffusion of water
molecules, it is called diffusion orientation density function (dODF) and in the case of
DSI defined as

dODF
DSI

(x̂) =

Z 1

0
f (↵) p (↵x̂) d↵ (5.20)

where x̂ is a unit vector in the direction of x. ↵ is the index of the contour, and
f (↵) weights the influence of the different contours of p. Initially f (↵) was set to
1 (Wedeen et al., 2000), but was later changed to f (↵) = ↵2 (Wedeen et al., 2005),
which emphasizes higher frequencies and results in sharper peaks (Alexander and
Seunarine, 2011).
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The acquisition requirements for DSI are quite high (Wedeen et al., 2000; Kuo et al.,
2008). They require 203 or 515 measurements, with a b-value of up to 4000 s/mm2 or
6500 s/mm2, respectively. Consequently, very strong gradient systems are needed in
order to reduce the gradient pulse time as much as possible (Alexander and Seunarine,
2011).

5.4.5 Q-ball

Q-ball imaging (Tuch, 2002; Tuch, 2004; Descoteaux, 2008; Aganj et al., 2010) is
a simplification of DSI and uses a spherical acquisition scheme with a single shell,
reducing the acquisition time compared to DSI.

The dODF is approximated with the Funk Radon transform (FRT) (Funk, 1915)
that maps one function of the unit sphere to another. To compute the dODF, for
every direction x̂, the values of the signal attenuation E(q) on the great circle of the
plane perpendicular to x̂ through the origin are integrated as visualized in Fig. 5.11.
Mathematically this can be expressed as

dODF
Qball

(x̂) =

Z

C (x̂)
E (q) dq̂ (5.21)

where x̂ is the unit vector in the direction x, and E (q) is the signal attenuation on the
great circle C (x̂)(Alexander and Seunarine, 2011).

Enhancements

While Tuch implemented a numerical solution to solve the FRT, Descoteaux (2008,
2009) introduced a fast and robust analytical solution for the reconstruction of Q-balls.
This is achieved by proving a new corollary of the Funk-Hecke theorem and using
spherical harmonics (see section 5.5) in order to obtain a simplification of the FRT.

Aganj and colleagues (2010) proposed a new solution which, considering the solid
angle factor, uses the mathematically correct definition of the ODF and results in a
normalized ODF that also produces sharper lobes than previous implementations.
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Figure 5.11: Funk Radon transform to compute the q-ball’s dODF. For every direction (x̂)
samples (blue spots) from the signal attenuation profile (left) on a plane perpendicular to x̂ are
integrated in order to obtain values of the dODF (right, green spot).

Generalized fractional anisotropy

In analogy to the FA index from the diffusion tensor Tuch (2004) defined the general-
ized fractional anisotropy (GFA) as

GFA =

qR �
dODF (x̂)� dODF

�2
dx̂

qR
dODF (x̂)

2
dx̂

(5.22)

with dODF = (4⇡)�1
R
dODF (x̂) dx̂.

It has been shown (Gorczewski et al., 2009) that GFA computed from the original
q-ball and FA have a linear dependence. However, it should be noted that the GFA
behaves differently when it is computed with consideration of the solid angle compared
to the original version (Fritzsche et al., 2010).

Peak fractional anisotropy

Ghosh and Deriche (2011) introduced an index called peak fractional anisotropy (PFA),
which describes the geometric characteristic of every peak in the ODF. An ellipsoid
is fitted into each lobe of the ODF, so that the ellipsoid’s main direction and length
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f1E1 + f2E2 = E = R ⌦ fODF

Figure 5.12: Principle of spherical deconvolution. The signal attenuation profile E is the sum of
the signal attenuation profiles of all fiber bundles Ei with their volume fractions fi. It can also
be considered as the result of the convolution of the fODF with the kernel R. The deconvolution
inverts the convolution process and computes the fODF from the a signal attenuation profile and
the kernel. (Modified reprint from (Tournier et al., 2004))

correspond with the lobe’s direction and length, respectively. The width is defined by
the curvature at the lobe’s peak. This ellipsoid establishes a correspondence with a
fiber bundle specific diffusion tensor and allows to derive the same well known and
established indices for each fiber bundle separately.

5.4.6 Spherical deconvolution

Spherical deconvolution (SD) (Anderson and Ding, 2002; Tournier et al., 2004; Kaden
et al., 2007; Descoteaux et al., 2009; Dell’Acqua et al., 2010) follows a completely
different concept. The models introduced so far describe the diffusion profile in a
voxel that leads to implicit conclusions about the directional fiber configuration and
microstructural properties. In contrast, SD assumes that the diffusion characteristics
of all fiber populations found in the brain are identical (Tournier et al., 2004) and uses
the signal profile of a completely parallel fiber population as convolution kernel.

The signal attenuation profile E measured in a voxel is considered as the result of
the convolution of the directional fiber configuration described by the fiber orientation
density function (fODF) with the kernel (see Fig. 5.12). Conversely, deconvolving the
measured signal attenuation profile E with a kernel R directly results in the fODF in
that voxel.

E = fODF ⌦R (5.23)
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The name ”spherical deconvolution” (also known as ”spherical harmonic deconvo-
lution”) originates from spherical harmonics (SH) (see chapter 5.5 for details), which
are used to simplify the computation of the deconvolution and to represent the fODF.
Spherical harmonics form a set of orthonormal basis functions on the sphere, anal-
ogous to the Fourier series in Cartesian space. Accordingly, the shape of the fODF
(as well as the signal attenuation profile and the kernel) is described by a number of
coefficients that weight the different basis functions. The coefficients are enumerated
by order and phase factor. While the angular frequency increases with the order, the
phase factor describes different shapes (see Fig. 5.13, negative values of the basis func-
tions are colored gray). As the profile of the signal attenuation is symmetric to the
center, only symmetric SH basis functions are required. These are, when using e.g. the
orthonormal basis proposed by Descoteaux (2006), the functions of even order.

The spherical harmonic coefficients for the signal attenuation profile can be com-
puted by a simple linear least squares fit (Alexander et al., 2002), but require at least as
many independent diffusion directions as coefficients. In practice it might be advisable
to measure more directions than at least required for the desired order to compensate
for noise in the measurement.

Higher orders of SD do not only require more measurements, but are also prone to
produce biologically impossible negative spurious lobes in the fODF. These effects
can either be handled by filtering (Tournier et al., 2004) or suppressing negative lobes
(Tournier et al., 2007). A simple low-pass filter multiplies the coefficients with a factor
depending on the order. Tournier (2004) proposed the following filter that heavily
suppresses higher order coefficients:

coefficient order 0 2 4 6 8 10 12
factor 1 1 1 0.8 0.1 0.02 0.002

The disadvantage of such a low-pass filter is the loss of angular resolution. To circum-
vent this issue, Tournier (2007) proposed a method to suppress negative lobes without
sacrificing the angular resolution. It is referred to as constrained spherical deconvolu-
tion (CSD). CSD is an iterative approach based on a modified Tikhonov regularization
method (Hansen, 1994). In a first step, an initial estimate of the fODF is obtained using
only lower order coefficients. Then, negative lobes are identified and suppressed using
higher order coefficients. Finally, the fODF is obtained again with the new coefficients
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that are used as initial guess for the next iteration. In the implementation of Tournier,
negative lobes are significantly reduced but not completely eliminated.

Dell’Acqua and colleagues proposed a deconvolution performed by a modified ver-
sion of the Richardson-Lucy algorithm (Dell’Acqua et al., 2007), which reduces noise
by separating an isotropic compartment from the anisotropic fibers (Dell’Acqua et
al., 2010). A comparison of CSD (Tournier et al., 2007) and the Richardson-Lucy
algorithm (Dell’Acqua et al., 2010) is provided by Parker and colleagues (2012).

Kaden and colleagues presented a deconvolution method that parameterizes the
fODF by a finite number of Bingham distributions (Kaden et al., 2007).

Peak length

Dell’Aqua and colleagues (2013) as well as Raffelt and colleagues (2012) derived an
index from fODFs by extracting the length of every fODF peak as a bundle specific
index. This index describes the density of fibers in the direction of the peak, and hence
holds biophysical meaning for every fiber bundle separately.

Indices based on Bingham functions

Fiber bundles are composed of many axons that are not necessarily strictly aligned in a
single direction and are reflected by so-called lobes (i.e. distinct local maxima) of the
fODF. Hence, the microstructural properties of fiber bundles are better described by
the surrounding of a local maximum of the fODF than just by a single direction. Using
spherical harmonics it is easy to compute values of the fODF in a distinct direction,
but it is not possible to derive shape parameters from the SH coefficients directly.
Therefore, Riffert and colleagues (2014) developed a method to fit a Bingham function
(scaled Bingham distribution) into the fODF’s local maxima. The Bingham distribution
is an antipodally symmetric distribution on the sphere, analogue to the general bivariate
normal distribution, and is defined by parameters that can be directly used to quantify
the shape of fODF lobes and to directly describe the statistical moments of the fiber
direction distribution within a bundle.

In order to evaluate the presented method and to quantify directional characteristics
of fiber bundles, four indices were used (Riffert et al., 2014):
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• The bundle specific Fiber Density (FD) is the integral of angular fiber densi-
ties and is computed by integrating the corresponding Bingham function. If
the number of axons in the kernel voxels is known, FD can be measured abso-
lutely in 1

mm

3 . Otherwise, FD represents the dimensionless relative fiber density
compared to the kernel voxels.

• The maximal Angular Fiber Density (AFDmax) in a bundle (see section “Peak
length” above) is the local maximum of the fODF and is represented by the
scaling parameter of the respective Bingham function. Similar to FD, AFDmax

can be measured in 1
mm

3·rad or expressed as relative value in the unit 1
rad

. This
index is not directly analyzed; it is mentioned in this list only for defining the
Fiber Spread (see below).

• The Fiber Spread (FS) of a fiber bundle is measured indirectly and is defined as
the ratio of FD and AFDmax:

FS =

FD

AFD
max

(5.24)

It represents the angular width of a uniform distribution with the amplitude
AFDmax. This opening angle can range between 0 and ⇡.

• The Fiber Fraction (FF) describes how dominant (in terms of fiber density) the
fiber bundle of interest is compared to all fiber bundles in that location. For N
(here N3) crossing-fiber bundles, the fiber fraction of the bundle of interest (b)
is defined as

FF
b

=

FD
bP

N

i=1 FD
i

. (5.25)

A visualization of these indices and a comparison with FA is provided in chap-
ter 6.4.2, while a validation of stability in regards to different deconvolution kernels is
presented in chapter 7.2.
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5.5 fODF representation with spherical
harmonics

Similar to the Fourier series in the Cartesian space, spherical harmonics form a set of
orthonormal basis functions on the sphere. Descoteaux and colleagues (2006) proposed
the following basis functions:
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where Pm

l

is an associated Legendre polynomial. Each function can be identified by
its order l and its rank or phase factor m.

When using spherical harmonics to describe the shape of a signal attenuation profile
or ODF, certain assumptions can be made regarding the symmetry. As the diffusion
process is symmetric around the origin, only antipodally symmetric basis functions
are required. In the set of basis functions defined in Eq. 5.26, functions of even order
are antipodally symmetrical while those of uneven order are antipodally antisymmetric
(Descoteaux et al., 2006). With an index j that is computed as
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where ` = 0, 2, 4, 6, . . . , L with L being the highest order and m = �`, . . . , 0, . . . ,+`,
a modified spherical harmonic base can be defined as
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The angular frequency increases with order `, while the phase factor describes dif-
ferent shapes, which can be seen in Fig. 5.13. Consequently, spherical harmonics of
higher orders provide a higher level of detail and also a higher angular resolution. The
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Figure 5.13: Glyph representation of spherical harmonic base functions. The rows show the
glyphs of order 0,2,4 and 6, respectively, while the columns define the rank. Negative lobes are
colored gray.

function F can be computed as a series expansion of the spherical harmonics

F (✓,�) =

JX

j=0

c
j

Y
j

(✓,�) (5.29)

where c
j

are the weighting coefficients and J =

1
2 (` + 2)(` + 1) is the number of

coefficients and base functions that depends on the spherical harmonic order.
As the series are truncated and hence miss the higher frequencies, spherical har-

monics cannot represent the signal attenuation profile exactly, but only as a smooth
approximation as shown in Fig. 5.14.

5.6 Reconstruction of white matter fiber tracts by
tractography

5.6.1 Deterministic tractography

A visually appealing application of dMRI is tractography. Here, the most prominent
directions of nerve fiber bundles are extracted from the local models and are used for
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Figure 5.14: Signal attenuation profile approximation with spherical harmonics of different
order. Typical signal attenuation profiles from voxels in the pons, optic radiation and corona
radiata (left) together with SH models of orders 0, 2, 4, 6 and 8 (second from left to right).
(Reprint from (Alexander et al., 2002))

retrieving the course of white matter fiber pathways (Mori et al., 1999; Basser et al.,
2000; Mori and van Zijl, 2002).

One of the first methods for tractography has been introduced by Mori and col-
leagues (1999). It uses the diffusion tensor as a local model and propagates the path
as a streamline according to the main direction of the local tensors from one voxel to
the next until a stopping criterion is fulfilled. The stopping criteria most frequently
used are a very low anisotropy and a high curvature of the track (see Fig. 5.15). Sev-
eral variations and improvements have been published since then. These include, for
example, tensor deflection (Lazar et al., 2003) where the direction of the local model
is not followed strictly in every voxel, but the incoming track’s direction is deflected
according to the tensor’s anisotropy.

Tractography has also been adapted to multiple tensor and higher order local models
that are able to distinguish multiple fiber directions (Wedeen et al., 2008; Descoteaux
et al., 2009; Malcolm et al., 2010; Tournier et al., 2012) to improve the reconstruction
in regions of crossing fibers that cannot be described adequately by the diffusion tensor
(for a review, see, Lenglet et al., 2009). There are two limiting issues to all these
deterministic streamline approaches: error propagation and a bias for following only
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(a) (b)

Figure 5.15: Principle of deterministic tractography. The tract is propagated from one voxel to
the next in the direction of the principle direction of the diffusion tensor (white arrows). The
propagation is stopped when either a) the fractional anisotropy is lower than a defined threshold
(darker gray fields) and/ or b) when the track would bend too sharp. (reprint from (Mori, 2007))

the central line of fanning fiber bundles. Error propagation occurs if the diffusion
profile in a voxel is corrupted by, for example, noise, and the track is continued in the
wrong direction. This error accumulates as tracking progresses. The bias for major
fiber bundles results from the computation of the single best direction, in most cases
the locally most probable direction, that is then followed. In areas where fibers are
crossing or fanning, only one of the multiple, similarly probable, directions is chosen,
the others are neglected.

5.6.2 Probabilistic tractography

Probabilistic tractography (Koch et al., 2002; Behrens et al., 2003; Parker and Alexan-
der, 2005; Anwander et al., 2007; Kaden et al., 2007; Jeurissen et al., 2011) is an
approach to ameliorate these problems. In contrast to streamline tractography the
probabilistic approach does not produce distinct pathways. Accordingly, probabilistic
tractography cannot be used for virtual dissection of specific fiber bundles, as it is
possible with deterministic tractography. Instead it results in a set of tracks for each
seed location. This set of tracts can be transformed into a visitation map approximating
the probabilities of all voxels to be connected to the seed location (see Fig. 5.16). This
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Figure 5.16: Visitation map from probabilistic tractography. Several tracks were started in the
seed location (white arrow) to propagate through the tensor field. Voxels that have been touched
by the probabilistic streamlines are colored from red to yellow. The more tracks touched a
voxel the more yellow it appears. The short blue lines indicate the tensors’ principle directions.
(reprint from (Koch et al., 2002))

is achieved by starting multiple (often several thousand) tracks in every voxel, and not
only following the principle directions, in each voxel but varying the angle randomly
according to the estimated uncertainty of the main directions or according to a local
fiber orientation density function.

As can be seen in Fig. 5.16, it is difficult to derive a real measure of connectivity
from probabilistic tractography. A high value in the visitation map does not necessarily
mean a high connectivity to the seed locations, as fibers might just pass the area without
entering the cortex (like e.g. in the corpus callosum). On the other hand, areas that are
far away from the seed location, logically have a lower value in the visitation map than
close-by areas, because the long pathway offers more possibilities for the tracks to
deviate from the optimal course. Up to now no real solution has been proposed to this
problem. Another issue of probabilistic tractography shows up when comparing the
connectivity between subjects. It is not always clear if the reason why one connection
receives lower probability values is that it is weaker or that another pathway is more
probable and attracts more tracks, so that less reach the area of interest.
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Figure 5.17: Principle of global tractography with self-organizing particles. Fibers are built
with small line elements that contribute an anisotropic term to the simulated diffusion weighted
signal. Optimizing the number and orientation of the elements adjusts the simulated to the
measured signal. (reprint from (Kreher et al., 2008))

5.6.3 Global tractography

Global tractography methods abandon the sequential principle, which is inherent in
the previously described techniques, and which is responsible for error propagation.
One type of global tractography (Kreher et al., 2008; Fillard et al., 2009; Reisert et al.,
2011), which is visualized in Fig. 5.17, uses self-organization principles and builds all
tracks simultaneously by joining multiple particles modeled into each voxel.

Another type of global tractography, firstly proposed by Tuch (2002), describes a
method of modeling fiber pathways with cubic splines, which produces smooth curves
between two fixed endpoints that are optimized through the field of diffusion directions
extracted from q-ball imaging. Within the optimization process, control points of the
curve are dynamically added or removed. The result is the most probable pathway of
fibers between the two locations under the assumption that an axonal connection does
indeed exist.

Jbabdi and colleagues (2007) used a Bayesian framework for evaluation of the most
probable pathway using several parameters like local diffusion properties, fiber orienta-
tions, amount of anisotropy and noise. The major issues for this method are, according
to the authors, the planar initialization and connections where multiple pathways exist
that pass through different regions of the brain (e.g. the ventral and dorsal connections
between Broca’s and Wernicke’s Area).

For a detailed review of tractography methods refer to (Behrens and Jbabdi, 2009).
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5.7 Comparing microstructural differences within
or between groups

5.7.1 Voxel-based analysis

Voxel-based morphometry (VBM) (Ashburner and Friston, 2000; Good et al., 2001)
is a method for evaluation of the gray matter volume or concentrations in every voxel.
In order to obtain a voxel-wise correspondence across subjects, images are warped
onto a common template. Segmentation produces probability maps of different tissue
compartments like gray matter, white matter and cerebrospinal fluid. These probability
maps (usually only of gray matter) are then smoothed with a Gaussian kernel in order
to increase the signal to noise ratio, to ensure Gaussianity required for correction
for multiple comparisons with random-field theory (Worsley et al., 1992), to increase
sensitivity for specific effect sizes and to compensate for misalignments (Ashburner and
Friston, 2001; Jones et al., 2005). Optionally, the probability maps are modulated with
the Jacobian determinants of the deformation field in order to preserve concentrations
or volumes (Good et al., 2001).

With the same protocol, smoothed maps of dMRI indices like FA can be analyzed
instead of the tissue probability maps (Sommer et al., 2002; Snook et al., 2007; Seok et
al., 2007). This is called voxel-based analysis (VBA) because it compares quantitative
values instead of the morphometry of certain brain structures.

The advantage of this method is that no a priori hypotheses about the location of
anatomical differences are required. Still, the expected effect size should be known
in order to define a smoothing kernel of appropriate size. The main disadvantage is
that imperfections in the spatial normalization step may be interpreted as differences
in index values. Due to the required smoothing, this method cannot compare direction
dependent indices.

5.7.2 Region-based analysis

In region-based analysis (RBA) (Snook et al., 2007; Faria et al., 2010), regions of
interest (ROI) are defined in every individual dataset. The value of the index of interest
is averaged within this region. These regions can either be drawn manually or mapped
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automatically by aligning an atlas with the desired ROI(s). While the manual method is
very laborious and might impose rater specific biases, the automatic registration with an
atlas bears the risk of imperfect alignments and the risk of bias due to macroanatomical
differences between the groups.

In both cases, the user has to have a distinct hypothesis about the location and size
of the expected dissimilarity.

If there are no a priori hypotheses regarding the expected differences, an atlas (Mori
et al., 2008; Lim et al., 2013) with multiple regions covering the whole brain can be
aligned with each dataset. Nevertheless, the selected atlas has to be suitable for the
current research question as well as fit the data. With very small ROIs, one cannot
be sure that in every subject the same anatomical or functional region is selected.
This is due to anatomical variations and also due to possible misalignments from the
registration process. Larger ROIs, on the other hand, are less sensitive to anatomical
variations and registration errors. They also require larger effect sizes to become
significant. The smaller the ROIs, the more are required to cover the whole brain
area. This imposes the risk of type II error when correcting for multiple comparisons.
Actually, the tests are not independent, as axonal pathways might pass through multiple
ROIs. As volumes of the regions and the number of neighboring ROIs vary, cluster
based approaches for the correction of multiple comparisons are difficult to define.

The advantage of this method is that unsmoothed values in well defined ROIs can
be compared across or within groups of subjects. If there is only a single ROI defined,
it is not even necessary to correct for multiple comparisons because only one test is
performed. On the downside, precise a priori knowledge is required to define distinct
ROIs, otherwise the analysis of the whole brain area becomes statistically challenging.

The possibility to evaluate direction dependent indices is rather theoretical. If the
strength of fiber populations in a region is very discriminative, it would be possible to
extract indices of the dominant and minor population separately for comparison. The
number of regions where this condition is stable enough for analysis might be quite
limited.
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Figure 5.18: Principle of tract-based spatial statistics (TBSS). A common WM skeleton (green)
is computed from an average of all normalized FA maps. Then, the maximal FA values of each
subject are projected perpendicular to the skeleton (red lines). The skeleton forms a common
reference system that enables a voxel-wise comparison of related maximal FA values. (reprint
from (Smith et al., 2006))

5.7.3 Tract-based spatial statistics

With tract-based spatial statistics (TBSS2) as introduced by Smith and colleages (2006),
a common skeleton of white matter is created and serves as a reference frame for all
subjects. First, the FA maps of all subjects are normalized to a standard template. Then
a one-pixel wide skeleton is created from the average of all normalized FA maps. Due
to normalization this skeleton approximately fits to all subjects. Finally, the maxi-
mal FA values of each subject are projected perpendicular onto the skeleton as shown
in Fig. 5.18. This projection corrects for small misalignments of the individual sub-
ject with the common skeleton. After the skeleton has been defined based on the FA
maps, also other rotationally invariant indices than FA (like e.g. axial, radial or mean
diffusivity) can be projected onto the skeleton and compared across subjects.

One drawback of the method is that due to very low anisotropy values, the skeleton
cannot represent areas of heavy crossings accurately. Also, the method indicates where
in the brain differences exist but not the connections that are actually affected. Using

2
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS



48 5. Background

Figure 5.19: Effect of fODF modulation shown on a “ring” phantom. The original ring is
depicted on the left. Compressing the ring along the horizontal axis increases the fiber density in
the vertical but not the horizontal line. This increase of fiber density (resulting in larger glyphs)
is accounted for through modulation (right) but not when the fODFs are not modulated (middle).
(modified reprint from (Raffelt et al., 2012))

the maximal FA value is possible, because the index maps are implicitly smoothed
during the normalization process so that outliers due to noise or measuring artifacts
are smoothed out.

The method has been extended by Jbabdi and colleagues (Jbabdi et al., 2010; Douaud
et al., 2011) in a way that handles direction dependent partial volume fractions (PVF)
from the ball-and-stick model and potentially indices of other crossing-fiber models.

5.7.4 Raffelt’s method

Raffelt and colleagues (2012) perform a voxel-based comparison of the fiber orientation
density. First, the the data sets are aligned using a non-linear transform. Then fODFs
are modulated to account for changes that occur during spatial normalization (see
Fig. 5.19). In every voxel amplitudes of the fODF are sampled in 200 directions. For
each direction fODF amplitudes exceeding a defined threshold are compared between
the groups, resulting in up to 200 t-statistics per voxel. This method indicates the
location in the brain where differences between groups occur, but similar to TBSS, it
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does not directly show which fiber pathways or connections are affected, or what the
anatomical discrepancy might be.

5.7.5 Tract-based analysis

In order to analyze distinct fiber pathways that connect functional regions, several
methods of tract-based analysis (TBA) have been developed. In the simplest form,
tractography is used for defining a region of interest as the volume occupied by the
pathway between two defined areas in the brain. As proposed, for example, by Lebel
and colleagues (2008), indices of diffusion models like FA are averaged in this ROI for
each dataset and statistically evaluated. More advanced methods of TBA also take the
spatial arrangement of the index values into account by parameterizing the tractography
streamlines along their arc length and by summarizing the indices according to their
position between the two regions of interest. The difficulty with this approach is that
the definition of correspondences along the tract is not trivial. Several solutions to this
have been proposed (Gong et al., 2005; Corouge et al., 2006; O’Donnell et al., 2009;
Colby et al., 2012) that all measure absolute or relative distances, either on some
central line or on all streamlines. Malcolm and colleagues (2009) have presented a
study where they compare FA, trace and eigenvalue ratio of a single-tensor and a two-
tensor model. This method actually isolates some bundle-specific information but uses
rather unspecific indices.

As many fiber tracts in the brain have a rather sheet-like appearance, Yushkevich
and colleages (2008) model sheet-like tracts by a medial representation to reduce data
dimensionality and average tensor-based features onto this medial representation.

Most of these methods have been applied to rotationally invariant indices. One has to
keep in mind that, if a fiber tract crosses voxels with multiple fiber orientations, part of
the information reflected by the index does not refer to that tract. As many of the white
matter voxels indeed contain more than one fiber population (Behrens et al., 2007;
Schultz, 2012; Jeurissen et al., 2013), it is of great interest to develop more methods
that can handle crossing fibers adequately in order to eliminate information that is
not associated with the tract of interest and to improve specificity with regards to the
underlying tissue microstructure.





51

6 | Methods

6.1 Overview

The framework presented in this thesis consists of multiple steps that are described in
detail in this chapter. At first, the data detailed in section 6.2 are preprocessed following
the procedure described in section 6.3. The computation of the local model and the
biophysical meaningful indices is specified in section 6.4. Section 6.5 introduces
Plausibility Tracking - the core method of this thesis. Applications of Plausibility
Tracking including the comparison of direction dependent indices across subjects are
presented in section 6.6

6.2 MRI data

Data from nine children (five girls, mean age 7.0 years, stddev 1.1) and nine adults (five
female, 27.8 years, stddev 2.7) previously presented by Brauer and colleagues (2011;
2013) were used, when not stated otherwise. The data were acquired on a Siemens 3T
Trio scanner with 1.7 mm isotropic voxel size, GRAPPA acceleration factor 2. 3 ⇥ 60
diffusion directions with a b-value of 1000 s/mm2, and 21 images without diffusion
weighting (b0 images) were measured for each subject. Anatomical images were
acquired with T1 and T2 weighting in 1.0 mm resolution. All subjects were right
handed and healthy. Written informed consent was obtained from the participants in
accordance with the ethical approval from the University of Leipzig. Children gave
verbal assent prior to scanning, and written consent was obtained from their parent or
guardian. In order to minimize effects due to different brain sizes adults with relatively
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Figure 6.1: Average intensities of axial slices from dMRI volumes of a single subject. Each
line represents a volume in the dMRI dataset. The average intensities are plotted for each
axial slice. Slices with signal dropout due to subject motion can be identified as their average
intensity is lower than that of the neighboring slices. Two examples are indicated by red and
blue arrows. Volumes without diffusion weighting are generally brighter and appear above those
with diffusion weighting.

small heads were selected for the study. A t-test revealed no significant difference in
brain size between children and adults (p=0.45).

6.3 Preprocessing

6.3.1 Removal of corrupted volumes

Before processing the data, the few dMRI volumes corrupted by movement of the
participants were removed from the datasets. First, an automatic method was used to
remove volumes of low quality. The algorithm is based on the fact that motion during
the acquisition attenuates the signal in a slice. Usually the average voxel intensity of
two consecutive slices (interleaved acquisition) does not change significantly. Only
when motion extinguishes the signal in parts of a slice, its average voxel intensity
differs greatly from its neighbor’s intensity and indicates corruption of the volume.
A difference in intensity is considered significant, if it is greater than three times the
median of all differences. This threshold is defined separately for the b0 volumes and
the diffusion weighted data. Volumes are removed from the data set if they hold at
least one slice which is identified as corrupted.

Fig. 6.1 shows the average values of the axial slices from the dataset of one single
subject. Every colored line represents one dMRI volume, and the average intensity
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Figure 6.2: Consecutive axial slices from two different volumes with signal dropout due to
motion. The signal dropout in the lower volume is significantly less severe than in the upper
volume but still detectable as can be seen in Fig. 6.1.

is plotted for every axial slice. Volumes without diffusion weighting (b=0) are much
brighter and consequently appear above the volumes with diffusion weighting. The
38th axial slice (red arrow) of the volume represented by a red line is significantly
darker than its neighboring slices. This indicates a signal dropout leading to a rejection
of this volume. This slice is shown together with its neighboring slices in the upper
row of Fig. 6.2. The same figure also shows consecutive slices of another volume that
is less severely corrupted in axial slice 39 (visualized as blue line with blue arrow in
Fig. 6.1).

In a following control step visual inspection of the datasets ensured the satisfactory
quality of the remaining data. It was not necessary neither to remove further volumes
nor to re-add automatically rejected volumes. The data sets used for further analysis
have 185 to 198 out of 201 volumes.
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6.3.2 Spatial normalization and interpolation

The complete analysis described in this thesis was performed on 1.0 mm isotropic
voxel size. This resolution was chosen as a compromise between accuracy and speed.
All indices and fODFs were computed in advance voxel by voxel and accessed through
nearest-neighbor interpolation from then on. This dramatically reduces computational
costs of recurring interpolation during the optimization process (see below), but pro-
vides finer grained information than the original 1.7 mm voxel size. To avoid mul-
tiple interpolation operations on the diffusion weighed images, motion correction,
alignment with the MNI coordinate system (Collins et al., 1998) as well as inter-
polation to 1.0 mm isotropic voxel size were performed in a single step. Best re-
sults were achieved through the following protocol: Performing motion correction
on the original dMRI data using FSL (Smith et al., 2004; Woolrich et al., 2009)
(http://fsl.fmrib.ox.ac.uk/fsl/fsl-4.1.9), separating background
from the dMRI volumes and computing an FA map, rigidly aligning this FA map
with an FA map in MNI space (Jones and Cercignani, 2010) and transforming the aver-
age b0 image accordingly. Aligning all dMRI volumes to the b0 image and correcting
the gradient vectors with the same transformation. This removed the volume-shifting
and affine distortion effects of subject movements and resampled the diffusion data
to 1.0 mm isotropic voxel size with a single trilinear interpolation. Distortions due to
eddy currents were sufficiently suppressed by the double spin echo sequence used for
the acquisition so that no explicit correction was necessary.

6.3.3 Brain extraction

The brain region was determined using FSL’s brain extraction tool (bet). A student’s
t-test revealed no significant difference in brain volume between children and adults
(p=0.45).

6.3.4 Creation of white matter mask

A mask for white matter region was defined in order to restrict the analysis to that
region. Standard approaches either apply a threshold on the FA map or compute
a white matter probability map from the anatomical T1 weighted image. Here, a
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Figure 6.3: Outline of the white matter mask obtained from segmentation of FA map.

combined method is used. Due to small non-linear distortions in the dMRI datasets
caused by susceptibility artifacts, computing the white matter mask based on the T1
weighted image would result in a map that is not perfectly aligned with the diffusion
data. Thresholding the FA map holds the risk of producing holes in crossing regions
where the FA values are low. SPM’s (http://www.fil.ion.ucl.ac.uk/spm)
segmentation algorithm (Ashburner and Friston, 2005) was applied to the FA map. As
the FA map is perfectly aligned with the diffusion data, and the segmentation and
registration algorithm incorporates not only intensity but also spatial information, this
method results in highly reliable white matter probability maps that can be thresholded
to obtain the white matter mask as shown in Fig. 6.3.
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6.4 Local modeling

6.4.1 Spherical deconvolution

CSD as implemented in MRtrix (Tournier et al., 2012) (http://www.brain.org.
au/software/mrtrix) was used to compute the fODF in every voxel. For this
approach it is necessary to have some knowledge of the signal attenuation that would
be generated from completely parallel fibers (deconvolution kernel). The voxels that
are used to compute this kernel response should be chosen from regions where all
axonal fibers within one voxel run in the same direction.

A white matter skeleton was computed for every individual subject based on its
smoothed FA map using TBSS/FSL software (Smith et al., 2006). From this skeleton,
only the 300 voxels with the highest FA within the given range [0.5–0.9] that were
located within the corpus callosum region were chosen. The lower threshold ensured
that the mono-directionality of the fibers and voxels with FA > 0.9 were removed
because such high values indicate the possibility of being affected by an imaging
artifact. In the following, the voxels that are used to compute the kernel response will
be called kernel voxels.

In order to compare indices across subjects, a common kernel is required. Otherwise,
subject specific characteristics might be coded into the kernel and neglected in the
comparison. CSD coefficients for the kernel response were computed directly from
an axially symmetric diffusion tensor. For this tensor, the principal eigenvalue �1 was
calculated by the average of all �1 values of all kernel voxels averaged over all subjects.
To ensure axial symmetry, the remaining eigenvalues �2 and �3 were set to an equal
value that was computed by averaging �2 and �3 of the kernel voxels. This procedure
led to the following configuration:

�1 = 0.0014, �2 = �3 = 0.000177 ) FA = 0.86, MD = 0.0006

The stability of these parameter settings have been tested by assessing FD, FF and
FS in different fiber configurations with kernels of higher and lower values of FA and
MD. Results are presented in chapter 7.2.
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Deviating from the protocol proposed by Tournier (http://www.brain.org.
au/software/mrtrix/tractography/preprocess.html#csd), CSD was
not performed on the diffusion weighted signal but on the signal attenuation, which
is required for the interpretation of the derived indices. The signal attenuation was
obtained by dividing the diffusion-weighted images by the average b0 image.

6.4.2 Indices derived from spherical deconvolution and the
diffusion tensor

With CSD, the fODF was computed in every voxel and provides a measure of the fiber
density in every direction.

In the current analysis the indices based on Bingham fits to the fODFs were com-
puted with CSD of order 6. With the high angular resolution of the dMRI data an order
of up to 8 would be possible. Nevertheless, order 6 was chosen because higher orders
increase the number of spurious peaks (Anderson, 2005). This was also shown by
Descoteaux and colleagues (2009) on dMRI data with a b-value of 1000 s/mm2, and
Parker and colleagues (2012) confirmed this finding on synthetic data.

All indices were computed for all subjects in the whole brain using inhouse software
as described by Riffert and colleagues (2014). The three largest fiber compartments of
each voxel were used; smaller compartments were considered as noise and ignored.

The indices based on Bingham functions were compared with the standard indices
derived from the diffusion tensor. The tensor as well as its indices FA, RD and AD
were computed using the program emphdtifit from the FSL software package.

In order to illustrate the relationship between the indices based on Bingham func-
tions and FA, four different fiber configurations extracted from real data were visual-
ized as fODF glyphs and tensors (Fig. 6.4). The corresponding indices FD, FF, FS
and FA were plotted for the two largest peaks. From the shape of the tensor and the
corresponding FA values alone it was not possible to distinguish between crossing
and fanning fiber configurations. In contrast, the indices derived from the Bingham
functions provided detailed information about the existence of minor fiber directions as
well as the density and fanning of fibers within each fiber bundle. FD, FF and FS quan-
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Figure 6.4: Comparing indices of different fiber configurations. The top row shows glyphs
(purple) and tensors (green) from different areas in the brain of an arbitrary participant. The
second and third rows visualize the indices derived from Bingham fitting for the first and second
peak, respectively. To give a comparison, the FA values are visualized in both rows.

tify the different parameters of the fiber bundles analogue to the visual representation
as glyphs.

If the real fiber densities in the subjects’ kernel voxels were known, it would be
possible to multiply this number with the FD value in order to get an estimate of the bi-
ological fiber density in a bundle. Alternatively, a standard value of 3.717 ⇥ 105 fibers
per mm3 as published by Aboitiz and colleagues (1992) could be used as approxima-
tion. As the absolute density of fibers is not known in this study and is difficult to
estimate due to missing information for children, FD is expressed relative to the FD in
the kernel voxels.
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Figure 6.5: Modeling the connecting pathway using Catmull-Rom splines. Three different types
of control points define a pathway: the fixed end locations (blue), the control points on the path
(red) and the two outer control points that define the direction (yellow) at the fixed locations.

6.5 Plausibility Tracking

6.5.1 Introduction

The purpose of Plausibility Tracking is to model the path of a fiber track between two
defined endpoints in the form of a parametrized curve. The endpoints are fixed but the
curve is optimized for describing the most plausible path through the brain. Possible
axonal pathways were modeled with Catmull-Rom splines (Catmull and Rom, 1974).
These are cubic splines that are parametrized solely by the location of control points,
and hence are fast and easy to optimize.

The control points can be divided into three different categories as visualized in
Fig. 6.5. The first type comprises the two fixed locations on the gray-white matter
interface, whose connecting path is to be determined. Their position will not change
in the following optimization process. The second category comprises the control
points along the track. Their positions and numbers are flexible. A higher number of
control points allows for a more accurate modeling of the path, but also bears the risk
of overfitting and increases processing time. Finally, there is a pair of two extra control
points outside the curve that are required for defining the direction of the curve at the
fixed locations.



60 6. Methods

6.5.2 Initialization

The speed and quality of finding the optimal parameters for the spline curve greatly
depends on initialization. In the presented workflow probabilistic tractography was
used to get an estimate of the connecting pathway and to obtain the initial parameters
by computing an average track. Deterministic streamline tractography was not suitable
for this initialization because it followed only the most probable path and is not able
to follow e.g. all transcallosal connections. Probabilistic tractography as described
above determines the probability of two regions being connected, and also finds con-
nections that do not follow the major fiber bundles (Yo et al., 2009). By definition,
the tracks obtained from probabilistic tractography are jagged, and a single track does
not necessarily reflect a possible axonal pathway. However, when taking into account
multiple tracks that pass through two regions of interest, the majority of them follow
approximately the anatomically expected pathway.

Probabilistic tractography based on CSD was performed using the MRtrix software
package (Tournier et al., 2012). In order to retrieve a set of probabilistic tracks that
describe the connection of two locations in the brain, only tracks were selected that
passed through both connection points within a defined radius r of 2.5 mm. At least
11 tracts1 had to connect two points in order to render a connection significant. To
compute the control points of a spline that describes the average of the N selected
tracks T = {t1, t2, .., tN}, a two-stage procedure was followed. First, each probabilis-
tic track t

i

2T was parametrized along its arc length to define a fixed number M of
regularly distributed track points P

i

= {p
i1, pi2, .., p=}. Second, the coordinates of

the spline control points C = {c1, c2, .., cM} were computed by taking the medians of
all corresponding track points. The fixed locations that were the endpoints of the curve
defined additional control points c0 and c

M+1, which were not modified during the
optimization process. Catmull-Rom splines are cubic splines that are described by the
control points along their path plus two extra control points c�1 and c

M+2 that define
the direction at the fixed connection points c0 and c

M+1. These two extra control
points were initially set in the linear extrapolation of the fixed connection points and

1This number showed a reasonable results for the previously defined number of probabilistic tracks and
the radius. Similar to the problem of thresholding maps from probabilistic tractography, there is no
algorithm for computing the value from the data.
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Figure 6.6: Initialization based on probabilistic tractography. The method is visualized with real
data (top) and as a schematic drawing (bottom). Control points c for the Catmull-Rom splines
are computed in a multi-stage procedure. Tracks t are parametrized along their arc length to
obtain track points p (green). The coordinates of corresponding track points p are then averaged
to obtain spline control points c (red). Additional spline control points outside the track (c�1

and cM+2 (yellow)) are placed in the linear prolongation of the endpoints c0 and cM+1 (blue).

their neighboring control points. The computation of the fixed control points based on
probabilistic tractography is visualized in Fig. 6.6.
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6.5.3 Optimization

After initialization the spline parameters were optimized. This process consisted of
two major components: the metric to evaluate the quality of the current parameter set,
and the algorithm that chooses the next parameter set.

The metric in this method computed the current optimization value based on mea-
surements from CSD. Spherical deconvolution has been chosen because the local
fODF values are, in theory, proportional to the density of axonal fibers with respect to
the current local direction. Assuming that fibers are organized in bundles, the plausi-
bility of a given local direction depends on the alignment with the bundle’s direction
and the spread of fibers within the bundle.

Instead of using the absolute fODF amplitude fODF (~u) in the current direction
~u its value relative to its closest peak’s p (~u) amplitude fODF (p (~u)) has been com-
puted. This provided a measure of probability within the fiber bundle which is called
“local plausibility” � (~u) and can be written as

� (~u) =
fODF (~u)

fODF (p (~u))
. (6.1)

The idea of the local plausibility � (~u) is supported by Fig. 6.7. As fODF (~u) is
by definition always smaller than or equal to the corresponding fODF (p (~u)), the
local plausibility � (~u) ranged between 0 and 1. The maximal value was reached if
the curve’s local direction was perfectly aligned with one of the model’s peak direc-
tions p (~u). Any deviation from the closest peak’s direction lead to smaller values,
depending on the distribution of fiber directions modeled in the peaks. In peaks that
represented strongly aligned fiber bundles and hence showed a low spread, small di-
rectional deviations lead to strong decreases in the obtained value. Vice versa, � (~u)

decreased only moderately if the distribution of fiber directions was widespread and
the glyphs had broad lobes. Even in peaks where the model was not able to distinguish
two separate directions, reasonable values were obtained because � (~u) can be close
to 1 even if the angle to the closest peak is relatively large (see Fig. 6.7). The fact that
fODF (~u) became 1 if ~u is perfectly aligned with any of the model’s peak directions
is coherent with the assumption that the plausibility of a fiber direction can also be
maximal in minor fiber bundles.
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Figure 6.7: Schematic drawing of a glyph with two peaks. The local plausibility value is com-
puted as the ratio of the fODF values of the local fiber direction ~u (yellow) and its corresponding
peak direction p (~u) (green). The wider the peak, the slower the plausibility value decreases
with deviation from the peak direction.

In this context there is a difference between probability and plausibility: The proba-
bility of a track is high if it follows a pathway that potentially many fibers share. The
plausibility of a track is characterized by a maximal accordance with local fiber direc-
tions. It is therefore proportional to the probability of the track orientation under the
condition that the track belongs to a particular bundle (which can also be a minor one).
Even in a highly unbalanced crossing it is considered more plausible that a track is
well aligned with a less dominant fiber bundle than being only moderately well aligned
with a major fiber bundle.

Smith and colleagues (2012) also use the term plausibility for spherical-deconvolution
informed filtering of tractograms (SIFT). This method removes previously generated
streamlines from whole brain tractography in a way that the accumulated streamline
length passing a voxel in each direction corresponds with the fiber densities of the local
model. There are 2 major differences compared to Plausibility Tracking. First, SIFT is
a post-processing method that filters already generated tractograms while Plausibility
Tracking creates connecting pathways. Second, SIFT ensures that the accumulated
streamline length within a voxel correlates with the fiber densities of the local model
which requires whole brain tractography while Plausibility Tracking can be used to
model the pathway of distinct connections in the brain.
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The global plausibility X of a pathway was then computed as the average of all
local plausibility values X

i

(~u). As the initial parameters of the splines were already
expected to be close to optimum, a downhill optimization procedure could be used.
Unfortunately, gradient information was not available to guide the optimizer because
� (~u) was not always continuous. Therefore, a downhill simplex optimization proce-
dure (Nelder and Mead, 1965) that does not require gradients was applied.

An optimization solely based on the global plausibility X was not practical for two
reasons. First, in some configurations the path produced sharp bends. This was handled
by adding a term � that penalized excessive curvature of the path. � was defined as

� =

(
1, if max (↵

i

(d)) < ⇡

4

exp

⇣
� 1

2�2

�
max

�
↵
i

(d)� ⇡

4

��2⌘
, if max (↵

i

(d)) � ⇡

4

(6.2)

where ↵
i

(d) is the angle between the tangents of two points on the curve with dis-
tance d (set to 5 mm) from the i-th of n points of the spline path and � was set to
⇡/4 and weighted the influence of �. This penalized bends if the angle between the
two tangents became smaller than ⇡/4. The Gaussian shape of the penalty function
ensured a mild penalty for marginal undercuts of the given angle, but pushed � close
to 0 if the angle became much smaller. A direct conversion to the radius of curvature
as used in streamline tractography is not possible.

Another constraint for the optimizer was set for the distribution of control points.
Control points that were very closely spaced caused looping artifacts. In order to
ensure a relatively homogenous distribution of control points another term E had been
added that constrained the minimum distance of two control points. It was defined as

E = 1� exp

 
� 1

2�2

✓
min(D)

average(D)

◆2
!

(6.3)

where D is a set of distances between neighboring control points and � was set to
0.2. Again, the Gaussian shape of this penalty function put a mild penalty on small
irregularities in the distribution of control points, but pushed E close to 0 for a strong
inhomogeneity in the distribution.

In some cases additional constraints in form of waypoint masks were required to
ensure that the pathway followed a distinct route. Waypoint masks were implemented
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as image files that have a value of 1.0 for voxels within the mask and lower values for
voxels outside the mask, decreasing with increasing distance to the mask. For each
mask, the maximum voxel value passed by a track was stored and the minimum of
these values for all way-point masks was considered as the closeness C to the waypoint
masks. A value of C = 1.0 indicated that all waypoint masks were crossed by the
track.

Furthermore, the pathway was not allowed to leave the white matter area. However,
just disqualifying the path as invalid when it leaves white matter did not provide the op-
timizer with any information in which direction to search for better parameter settings.
Therefore, a modified plausibility measure �⇤

(~u) that took the white matter area and
optional waypoint masks into account was defined as

�⇤
(~u) =

(
� (~u) , if ~u is in white matter and C=1

�� (1� (p
wm

(~u)⇥ C)) , if ~u is not in white matter and/ or C<1
(6.4)

where p
wm

(~u) is the probability of ~u being in white matter and � is a weighting factor
that was set to 10. C is the closeness to the waypoint masks that was by default set to
1.0 if no waypoint masks were specified. The decision whether ~u was in white matter
or not was based on a thresholded map of white matter probability (see chapter 6.3).
In this way the number of points outside the white matter area and the distance to the
gray-white matter boundary as well as the distance to the waypoint masks were taken
into account.

The optimization value ⌦ for the path was then computed as

⌦ = �X⇤
� E. (6.5)

A number of parameters had to be chosen for the described algorithm. The values
specified have been evaluated empirically when testing the algorithm on phantom data
and different fiber pathways in the human brain. As it turned out, the used values for the
parameters of curvature, control point distribution and white matter probability were
applicable for a wide range of fiber pathways. They provided a good compromise for
straight and curved pathways and prevented loops as well as very sharp bends. In con-
trast, however, the search radius and the number of required probabilistic streamlines
for the initialization as well as the number of control points depended very much on the
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(a) (b)

Figure 6.8: Parameters for minimum number of probabilistic streamlines and search radius. 500
streamlines were seeded in the corpus callosum (red) and the same number in the ventral part
of the corticospinal tract (green). Most tracks from the corpus callosum were captured by the
sphere while the tracks from the corticospinal tract were fanning out to a larger region so that
less crossed the sphere.

pathway of interest. The number of required probabilistic streamlines also depended on
the desired confidence that a connection was considered as real and on the number of
streamlines actually expected in each region of interest. The latter is similar to the un-
solved problem at which value to threshold maps of probabilistic tractography. Visual
inspection revealed that a minimum of 11 probabilistic streamlines was a good value
for the given setup. The estimation of the minimum number of probabilistic tracks and
the size of the search radius is visualized in Fig. 6.8. 500 streamlines were seeded in
the corpus callosum (red) and the same number in the ventral part of the corticospinal
tract (green) as shown in Fig. 6.8a. Most tracks from the corpus callosum were cap-
tured by a sphere of radius r=5.0 mm while the tracks from the corticospinal tract were
fanning out to a larger region so that less crossed the sphere (Fig. 6.8b). Accordingly,
a smaller search radius and/ or lager number of minimally required streamlines can be
used for coherent fiber bundles while a smaller number of minimally required stream-
lines might be required if the streamlines are proceeding to different or larger areas in
the brain. Finally, a reasonable number for the minimum number of required stream-
lines also depends on the number of generated streamlines. The search radius ensured
that streamlines which passed close by the defined coordinate could be considered for
the connection. The larger the radius, the larger the number of required probabilistic
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streamlines should be. The number of control points depended on the complexity of
the shape of the fiber pathway, which was difficult to assess in advance. For specific
fiber pathways, the number of control points could be assessed empirically. This can
be seen in chapter 7.4.1, where several different fiber bundles have been reconstructed
with the described parameter values and the number of control points being the only
parameter that had been adapted. When testing the plausibility of connection between
a fixed location and various distributed other locations, it was useful estimating the
number of control points from the length of the initial track by placing control points
every 15 mm or 20 mm (as done in chapter 7.3.2).

6.6 Applications

6.6.1 Reconstruction of distinct fiber pathways

Plausibility Tracking can be used for reconstruction of the connecting fiber pathway
between two regions of interest. These regions can be obtained from various sources.
Someone familiar with the human anatomy might draw the ROIs into the individual
data sets based on anatomical prior knowledge. This method was applied to one single
subject in order to reconstruct parts of the left corticospinal tract, the arcuate and
uncinate fasciculus as well as the cingulum. Depending on the fiber bundle of interest,
the ROIs can have very different shapes and volumes. For example, the cortical area
was defined as the voxels at the dorsomedial ends of the white matter covering a
lengthy area. The fixed locations for the arcuate fasciculus are located on sagittal
planes through Broca’s and Wernicke’s areas. All other ROIs were defined with a
compact shape in the terminal regions of the respective fiber bundles.

Further possible methods would be to align an atlas with pre-defined regions with
the individual subject or to apply (semi-)automatic segmentation methods which would
reduce the user’s subjective influence.

The only parameter in Plausibility Tracking that was adopted to account for the
different shapes of the fiber bundles was the number of control points. Stronger curved
pathways obviously required more control points in order to reconstruct the fiber bun-
dles accurately. All other parameter values described above proved to be stable for all
four fiber bundles, despite their different shapes.



68 6. Methods

Figure 6.9: Anatomy of basal ganglia. Schematic drawings of successive coronal sections
through the basal ganglia show the location of putamen, globus pallidus and substantia nigra.
(from: commons.wikimedia.org/wiki/File:Anatomie-Basalganglien-A.jpg)

6.6.2 Connections through minor pathways

Modeling minor fiber pathways requires careful initialization as the majority of prob-
abilistic streamlines tend to follow the dominant pathways represented by the major
directions of the local model. In order to limit the probabilistic tracks to the pathway of
interest, waypoint masks might be necessary to guide the initial probabilistic tractog-
raphy and/ or Plausibility Tracking. These masks can either be defined on a common
template and registered to the individual anatomy or, alternatively, the masks can be
drawn on every individual data set.

In this project2 the connections between substantia nigra and putamen, which tra-
verse the globus pallidus, are modeled (see Fig. 6.9). Tracking this connection is
expected to be difficult for two reasons: a) The dMRI data in this areas show a low
signal to noise ratio caused by the high concentration of iron in the globus pallidus. b)
Due to the dominance of fibers in the external medullary lamina of the globus pallidus,
only a fraction of the initialized probabilistic tracks find their way from the globus

2This is a cooperation project with Andreas Hintzen and Marc Tittgemeyer from the Max Planck Institute
for Neurological Research, research group "Cortical Networks". All dMRI data and masks were provided
by the cooperation partners.
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pallidus into the putamen (4.6 %). Most of the probabilistic streamlines are deflected
in the external medullary lamina of the globus pallidus and do not continue to spread
within the globus pallidus into the putamen as described by Cossette and colleagues
(1999). Therefore, waypoint masks for the initialization through probabilistic tractog-
raphy and for Plausibility Tracking have been defined. Areas of substantia nigra and
the putamen as well as waypoint masks covering the dorsal surface of the substantia
nigra and the medial surface of the putamen were drawn on an MNI template and
registered to the b0 images of the subjects.

Data were acquired using the following protocol: acquisition on a Siemens 3T
Trio scanner with a double spin echo diffusion weighted EPI sequence, GRAPPA
acceleration factor 2 and 1.7 mm isotropic voxel size, 60 diffusion directions with a
b-value of 1000 s/mm2 and 6 images without diffusion weighting (b0 images).

Diffusion weighted data were interpolated to 1.0 mm isotropic voxel size. Regions
of substantia nigra and the putamen as well as the waypoint masks were defined on a
template with the same resolution. The kernel voxels were obtained for every subject
individually as described in chapter 6.4. MRtrix (Tournier et al., 2012) was used for
constrained spherical deconvolution (order=6) and probabilistic tractography. The
latter was performed with the default parameters except for the step size (-step 0.9),
number of desired tracks (-number 10 000), maximum track length (-length 60) and
the number of trials (-trials 50).

6.6.3 Mapping indices onto individual fiber bundles

Having a local direction in every voxel along the connecting pathway makes it pos-
sible to analyze not only directionally invariant but also direction dependent indices.
In order to compare locally corresponding quantities across subjects, two steps are
necessary. First, the pathway of every subject has to be parametrized or segmented in
a reproducible and comparable manner. Second, the indices have to be accumulated
within their segments for statistical evaluation.

In the method presented here, the parameterization is performed with an extended
version of Corouge’s approach (Corouge et al., 2006). While these authors specify
common start and endpoints by the intersection of the fiber tracts with two planes, mul-
tiple intersecting planes (as suggested by Corouge) along the pathway are defined here.
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(a) (b)

Figure 6.10: Atlas and tracks of the left inferior longitudinal fasciculus of a single subject. a)
The outer sections (blue and red) of an atlas define the areas for the fixed locations of the tracks
(temporal pole and medial occipital lobe), while sampling of indices takes place only in the
four central sections. b) Yellow disks represent the planes between the sections. The colored
stripes on the track indicate corresponding samples that are summarized perpendicular to the
pathway’s main direction.

It is also ensured that every section in all individuals has the same number of evenly
spaced samples. This procedure generates the same number of samples in every track
in all subjects and ensures perpendicular correspondence of samples even along curved
pathways. The planes are computed for every subject individually, guided by a purpose-
built white matter volume atlas (see Fig. 6.10a) that is aligned3 with each subject’s
anatomy. This atlas can be generated in any suitable way, depending on the available
information. Here, it is constructed semi-automatically by manually defining seed and
inclusion regions to extract the pathway from probabilistic tractography in all subjects.
The individual tracks are sampled to voxel maps, transformed to standard space and
averaged. Thresholding and dilating the averaged track map resulted in a binary mask
of the pathway. This mask was then divided manually into roughly equidistant sections.
The sections were aligned with interesting features of the tracts, such as crossing areas.
Finally the intersection planes for tract parametrization (Fig. 6.10b) were fitted to the
boundaries between the sections using a support vector machine algorithm (Joachims,

3The registration task is performed with the Advanced Normalization Tools (ANTS http://www.

picsl.upenn.edu/ANTS/) (Avants et al., 2008; Avants et al., 2011) that showed high class re-
sults in a comparison of different non-linear registration methods for atlas mapping (Klein et al., 2009).
The FA map that corresponds to the atlas and the individual FA maps serve as basis for the registration
as they are located natively in the diffusion space.
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1999). These planes support a reproducible and comparable parametrization of the
pathway across subjects.

Similar to Colby and colleagues (2012), the values of indices along the pathway
are sampled for every spline curve at a rate of 20 samples per atlas section (distance
between successive points about 1 mm), thus dividing each section into 20 segments.
As a consequence, voxel values from the index maps are potentially considered several
times in the accumulation. This approach effectively causes a weighting of the index
values: voxels that are passed more often by the modeled fiber tracks than others
are considered to be more representative of the current connection and privileged
accordingly.

There are three different types of indices that can be evaluated. In the simplest
case, these are rotationally invariant and bundle-independent values (e.g. FA) that are
sensitive to microstructural properties of the underlying tissue in every voxel. The
second type comprises compartmental (i.e., one value per bundle) indices like FD,
FS and FF. The third category of indices that can be evaluated with the presented
method contains functions of the direction, like the amplitude of the fODF or the local
plausibility as used for the plausibility tracking (see above).

6.6.4 Comparing indices between groups

After thorough validation of Plausibility Tracking the complete workflow was applied
to two different fiber bundles. First, in order to demonstrate the explanatory power of
the direction dependent indices, they were mapped onto an inter-hemispheric pathway
connecting the left and right Brodmann Area 45 (Brodmann, 1909). Second, as in the
example of the left inferior longitudinal fasciculus (ILF), it is shown how differences
between groups of subjects can be interpreted more specifically than with the widely
used tensor derived indices.

As shown in Fig. 6.10b, the corresponding samples from all tracks of a subject form
segments across the pathway. The measurement values at the sample locations are
summarized by calculating the median for every segment. Consequently, for every
index, the medians per segment and subject are calculated. As these median values
are not necessarily normally distributed across subjects, a non-parametric permutation
test (Nichols and Holmes, 2002) that implicitly accounts for multiple comparisons was
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chosen. After writing the median values to an image file, the randomise tool imple-
mented in the FSL software package (Smith et al., 2004; Woolrich et al., 2009) that
performs the non-parametric randomization test was used. In addition, post-processing
by Threshold-Free-Cluster-Enhancement as described by Smith and colleagues (2009)
was performed. Significance was defined for p<0.05, resulting from two one-sided
tests (as there is no a priori knowledge on the sign of the difference) at p<0.025 and
subsequent Bonferroni correction.
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7 | Results

7.1 Overview

The validity of the parameters to compute the fODF by constrained spherical decon-
volution are verified in section 7.2. The local model builds the basis for Plausibility
Tracking and has an influence on the tracking results. The influence of the deconvolu-
tion kernel on the indices that describe the white matter’s microstructure is described
in the same section.

In section 7.3, the correct function and general behavior of Plausibility Tracking is
demonstrated on data set of a phantom and a human brain. The phantom had been built
for comparison of the performance of different tractography methods. The pathway
of the artificial fibers is exactly known so that the modeled pathways can easily be
compared with the ground truth. On the human data, Plausibility Tracking is compared
with results of deterministic and probabilistic tractography. This visualizes the differ-
ences and commonalities of the methods and reveals new potentials to characterize the
human connectome.

The applications in section 7.4 demonstrate the feasibility of Plausibility Tracking
for reconstructing distinct major fiber bundles and track them along minor pathways.
Finally, the framework is completed by mapping of indices onto individual fiber bun-
dles and comparison of these between groups.
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Figure 7.1: Glyphs showing different fiber configurations along a connection between left and
right BA45. Fibers are running parallel within the corpus callosum and show a fanning config-
uration in the transition to the intersection with the corona radiata where the model shows a
crossing configuration.

7.2 Local modeling

In order to validate the stability of the parameters of the deconvolution kernel described
in chapter 6.4, voxels with known fiber configuration were extracted from a single
subject and their signal attenuation was deconvolved with different kernels. A voxel
with parallel fibers was extracted from the corpus callosum (CC), two with fanning
fibers from the transition of the CC to the crossing with the superior longitudinal
fasciculus (SLF) as well as from the corona radiata (CR). One voxel with a crossing
configuration was extracted from the intersection of CC and SLF. An anatomical
reference for these voxels (except for the first fanning configuration extracted from the
CR) is provided by Fig. 7.1.

The major parameters modifying a tensor are its shape (described by the FA) and
size (described by the MD). Fig. 7.2a shows the glyphs of the selected voxels with
constant MD (0.0006) and varying FA ranging between 0.75 and 0.95, while Fig. 7.2b
shows the glyphs computed with constant FA (0.85) and different values of MD ranging
between 0.0004 and 0.0008.

At first glance, the differences are quite subtle. A close look, however, at the first
fanning voxel reveals that higher values of FA and MD increase the tendency for false
crossings. An important aspect of this observation is if CSD derived indices that are
used for the quantification are able to describe the fiber configuration adequately. In
theory, for the dominant bundle, FD should be constant in all configurations while
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Parallel Fanning Fanning Crossing

(a) MD = 0.0006

Parallel Fanning Fanning Crossing

(b) FA = 0.85

Figure 7.2: Glyphs of voxels with parallel fibers, 2⇥ fanning and crossing fiber configurations
computed with different deconvolution kernels. (a) MD of the deconvolution kernel is kept
constant while FA ranges between 0.75 and 0.95. (b) FA of the deconvolution kernel is kept
constant while MD ranges between 0.0004 and 0.0008

FF should always be 1 in the parallel and fanning fiber cases and 0.5 for the crossing
configuration (assuming an equal crossing of two fiber populations). FS is expected
to be higher in fanning areas than for a parallel fiber configuration. Fig. 7.3 shows the
graphs of FD, FF and FS with varying FA and MD.

FF seems to be quite unaffected by different values of FA and MD in the parallel
and crossing configuration but decreases with increasing FA and MD in the fanning
areas. Hence, if the kernel is chosen too sharp or too large, the fODF tends to show
crossing configurations in fanning areas.

FS increases in the fanning areas with increasing FA and MD, so that a higher FA
and MD values seem desirable while the parallel and crossing configuration show only
small variations.

FD is approximately constant in all configurations but should be 1.0 where only one
fiber population exists. This theoretical value was not met, mainly due to limitations in
the spherical harmonic approximation (see Riffert et. al 2014). The fODF in the corpus
callosum should be close to a Dirac function. Truncated spherical harmonics expan-



76 7. Results

FA FA FA
FD FF FS

0.
00

04

0.
00

05

0.
00

06

0.
00

07

0.
00

08
0.0

0.5

1.0

1.5

Parallel

MD

FA
=

0.
85

0.
00

04

0.
00

05

0.
00

06

0.
00

07

0.
00

08

0.0

0.5

1.0

1.5

Fanning

MD 0.
00

04

0.
00

05

0.
00

06

0.
00

07

0.
00

08

0.0

0.5

1.0

1.5

Fanning

MD 0.
00

04

0.
00

05

0.
00

06

0.
00

07

0.
00

08

0.0

0.5

1.0

1.5

Crossing

MD

0.
75

0.
80

0.
85

0.
90

0.
95

0.0

0.5

1.0

1.5

FA

M
D

=
0.

00
06

0.
75

0.
80

0.
85

0.
90

0.
95

0.0

0.5

1.0

1.5

0.
75

0.
80

0.
85

0.
90

0.
95

0.0

0.5

1.0

1.5

0.
75

0.
80

0.
85

0.
90

0.
95

0.0

0.5

1.0

1.5

FA

Figure 7.3: FD, FF and FS in parallel, 2⇥ fanning and crossing fiber configurations computed
from CSD with different response kernels. The upper row shows results with deconvolution
kernels of constant FA and varying MD while the bottom row shows results with constant MD
and different values for FA.

sion are not suitable for describing such sharp functions. Despite the deviation from
the theoretical value due to limitations of the spherical harmonic approximation (see
section 8.3 in the chapter Discussion), FD has shown to be a valuable marker (Riffert
et al., 2014).

The parameters chosen to compute the deconvolution kernel seem to adequately and
reliably describe the fiber configuration.

7.3 Plausibility Tracking

7.3.1 Validation with data of a phantom

When introducing a new method of tractography, one way to evaluate its performance
is to apply it to data of a realistic phantom with known fiber pathways. Accordingly,
Plausibility Tracking was applied to the phantom of the FiberCup (Poupon et al., 2008;
Fillard et al., 2011) (http://www.lnao.fr/spip.php?rubrique79). This
phantom shows various fiber configurations from parallel and bending to crossing and
touching. The ground truth of fiber pathways for this phantom are depicted in Fig. 7.4a.
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(a) (b)

Figure 7.4: Phantom of the FiberCup. a) The green lines indicate the directions in which the
synthetic fibers are arranged in the phantom. b) The locations of the spatial positions are marked
in purple.

For the evaluation of Plausibility Tracking, the data with a b-value of 1500 s/mm2

and a resolution of 3 mm3 were used and interpolated to 1 mm3. The deconvolution
was performed with 6th order, and the kernel is defined by a tensor with the following
parameters:

�1 = 0.00184192, �2 = �3 = 0.00111604 ) FA = 0.2993, MD = 0.001358

These parameters were computed from the 37 voxels with highest FA. They differ
significantly from those of human white matter because the diffusive properties of the
plastic fibers used for the phantom are different from those of axons in the human
brain.

In contrast to streamline tractography methods it is not possible to start Plausibility
Tracking in a single voxel and see where the track ends. Hence, Plausibility Tracking
was started in the spatial locations suggested by the FiberCup (see Fig. 7.4b). All
voxels at the borders of the phantom were considered as possible connection points.
Consequently, there are multiple tracks originating from every spatial location that
may be rated according to their individual plausibility value (Fig. 7.5 and Fig. 7.6).
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(a) Spatial position 1 (b) Spatial position 2 (c) Spatial position 3

(d) Spatial position 4 (e) Spatial position 5 (f) Spatial position 6

(g) Spatial position 7 (h) Spatial position 8

Figure 7.5: Plausibility Tracking applied to phantom data of the FiberCup. Here, tracks that
connect the spatial locations 1–8 are shown.
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(a) Spatial position 9 (b) Spatial position 10 (c) Spatial position 11

(d) Spatial position 12 (e) Spatial position 13 (f) Spatial position 14

(g) Spatial position 15 (h) Spatial position 16

Figure 7.6: Plausibility Tracking applied to phantom data of the FiberCup. Here, tracks that
connect the spatial locations 9–16 are shown.
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Figure 7.7: Close up on the fODF glyphs in the lower crossing region (red rectangle). Not all
glyphs follow the strict orthogonal directions of the fiber configuration (red arrow).

Comparison of results with Fig. 7.4a reveals that pathways also gained relatively
high plausibility values if they did not follow the expected path. This effect may
have multiple reasons. On the one hand, the global nature of Plausibility Tracking
permitted local inaccuracies and hence tolerated suboptimal alignment with the local
model in some regions. On the other hand, the tilt of the fODFs in crossing regions
(as described e.g. by Riffert et al., 2014) sometimes even supported these bendings as
shown in Fig. 7.7. Despite these considerations, the results are very convincing which
becomes most obvious when looking at Fig. 7.8 showing only the most plausible track
for every given spatial location.

Except in case of spatial position 7, which is marked in red (Fig. 7.8), all of the
most plausible tracks follow the expected pathway closely. The reason for failure in
spatial position 7 was that not enough probabilistic streamlines from the initialization
reached the expected border voxels. The inability of probabilistic tractography to
adequately represent this pathway has also been shown in the supplementary material
of the FiberCup publication (Fillard et al., 2011) and is visualized in Fig. 7.9b. In
contrast to the method presented here, Fillard and colleagues used a different method
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Figure 7.8: Most plausible pathway for each spatial location (green and red). All tracks except
for spatial location 7 (red) follow the expected pathway. The potential target voxels at the
phantom’s border are marked in light blue.

of probabilistic tractography (bedpostx from the FSL software package), which is
based on the ball-and-sticks local model (see section 5.4.3). Obviously, the fibers
passing through spatial position 7 seem to be difficult to follow with different methods
of probabilistic tractography. In the contest of the FiberCup only 2 out of 10 methods
were able to reconstruct the expected pathway.

A quantitative comparison of the methods which participated in the FiberCup is
not possible because the most plausible tracks from Plausibility Tracking connected
only into one direction so that the tracks were generally shorter than the FiberCup’s
software for rating the results expects. Consequently, the scoring would have been
reduced. However, the results from Plausibility Tracking are visually extremely sim-
ilar compared to those of the global tractography method published by Reisert and
colleagues (2009), which scored highest at the FiberCup (see Fig. 7.9a).
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(a) (b)

Figure 7.9: Results of the winning method of the FiberCup and probabilistic tractography on the
phantom. a) Result of the winning global tractography method of the FiberCup. b) Visitation
map of probabilistic tractography performed with bedpostx seeded in spatial position 7. (reprints
from (Fillard et al., 2011) and its supplementary material, respectively)

7.3.2 Comparison with deterministic and probabilistic
tractography

Plausibility Tracking was also tested for connecting different regions in the brain of
one adult data set from the cohort described in chapter 6.2. In order to evaluate the
method on major pathways, it was compared to probabilistic as well as deterministic
tractography, as implemented in MRtrix. Three separate points A were chosen in the
prefrontal cortex (PFC), within Brodmann area 45 (BA45) and in the dorsal motor
cortex (MC), all in the left hemisphere of a single subject. Then the (according to
the underlying dMRI data) most plausible connections with a large number of other
points B

i

covering the gray-white matter interface that was reached by probabilistic
tractography, excluding locations of the same gyrus in which the corresponding A is
located, were computed. In the case of A

PFC

, points B
PFC,i

were limited to the right
PFC to demonstrate the possibility to focus the analysis on distinct connections.

Plausibility tracks were initialized with a control point distance of 15 mm based on
25 000 probabilistic streamlines started in each of the voxels containing A

PFC

, A
BA45
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and A
MC

, respectively. The deterministic streamlines were selected from whole-brain
tractography performed with MRtrix based on CSD generating 250 000 tracks. In
order to obtain a reasonable number of deterministic tracks, those were selected that
intersect with a sphere of radius 3.6 mm around the points A

PFC

, A
BA45 and A

MC

,
respectively. Constraining the spheres to the white matter led to effective volumes of
86 mm3 (PFC), 149 mm3 (BA45) and 178 mm3 (MC).

Fig. 7.10 shows a comparison of probabilistic tractography, deterministic streamline
tractography and Plausibility Tracking. Note that here, for the purpose of comparison,
the probabilistic tractography is represented as a collection of streamlines rather than a
visitation map, which is common practice. This implies that no thresholding is applied.
For some connections, the results of the three methods look quite similar, e.g. when
considering connections with A

MC

as shown in Fig. 7.10. In other areas it is possible
to find connections in a much wider range with Plausibility Tracking than with deter-
ministic tractography. More specifically, Plausibility Tracking finds connections to
more locations within a single target area as well as to more different target areas com-
pared to deterministic tractography. On the other hand, Plausibility Tracking removes
many implausible tracks that obscure the fiber bundles in probabilistic tractography.
These tracks may have low plausibility scores or do not connect the predefined regions.
Moreover, the plausibility tracks are smooth due to the representation with splines.

Fig. 7.11 shows the probability distribution of plausibility values for the computed
connections. In most cases the method was able to find very plausible connections
for the selected pathways in the brain. The peak at a plausibility of zero is due to
the fact that the track’s plausibility was set to zero if the pathway leaves the white
matter area, even if only in a small fraction of the path. This strict criterion was chosen
because it was considered better to eliminate some correct tracks rather than accept
questionable ones. To ensure comparability, the same plausibility threshold was used
for all connections (0.85). With this threshold, a relatively small fraction of tracks was
excluded (see Fig. 7.11).
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Figure 7.10: Comparison of deterministic and probabilistic tractography with Plausibility Track-
ing. Plausibility Tracking (right column) finds connections to a much wider range of areas than
deterministic streamlines (left column) and shows much smoother and less noisy pathways than
probabilistic tractography (middle column). As expected, in many cases the most plausible
pathways coincide with the deterministic streamlines. Tracks with a plausibility (according to
the underlying dMRI data) lower than 0.85 are not shown. Arrows indicate the seed regions.
While the coloring of the Plausibility tracking represents the plausibility values (according to
the scale bar), the colors of the probabilistic and deterministic tractography results indicate the
local streamline orientation in standard RGB color-coding.
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Figure 7.11: Distribution of the plausibility of connections with points in BA45, MC and PFC.

7.4 Applications

7.4.1 Reconstruction of distinct fiber bundles

Plausibility Tracking was used for reconstruction of different fiber bundles in the hu-
man brain. Fig. 7.12 shows the arcuate and uncinate fasciculus as well as the corti-
cospinal tract and cingulum. All tracks were computed with the parameters described
in section 6.5, only the number of control points has been adapted to account for the
individual shape of pathways.

Table. 7.1 lists the number of tracks that have been computed for every fiber bundle
and the percentage of tracks that reached plausibility values above 80 %. It also tells
the number of control points ranging from 5 for the rather straight CST and 9 for the
more complexly shaped cingulum bundle. The processing time for each bundle was
achieved on a computer workstation with an Intel® Core™ i7-2600K CPU at 3.40 GHz.
As expected, the processing time greatly depends on the number of tracks that build the
fiber bundle. A second influence is the number of control points as can be seen in the
last column. The higher the number of control points, the longer it takes to compute
the most plausible pathway of a connection although the relation does not appear to be
linear.
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Figure 7.12: Reconstruction of four major fiber bundles. In the upper picture, the arcuate (green)
and uncinate (yellow) fasciculus as well as the CST (blue) and the cingulum (red) are shown.
The bottom view visualizes the plausibility values of the tracks. Only tracks with a plausibility
higher then 0.8 are shown.

Pathway
Number of Plausibility Control Time Seconds

Tracks >0.8 Points [minutes] per Track

Arcuatus 7986 90.1 % 7 89.0 0.67
Uncinate 1259 98.8 % 7 21.0 1.00
CST 11643 98.5 % 5 92.7 0.48
Cingulum 650 99.2 % 9 18.8 1.73

Table 7.1: Computational performance of Plausibility Tracking shown on four different fiber
bundles. The processing time greatly depends on the number of tracks and number of control
points.
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7.4.2 Connections through minor pathways

Having seen good results with the reconstruction of long major pathways raised the
question if Plausibility Tracking could also be applied to short minor pathways. As
described in the methods section, an additional constraint by waypoint masks may
support the initialization through probabilistic tractography as well as the optimization
for the most plausible pathway. When using waypoint masks, the obtained pathway
is the most plausible under the condition that all waypoint masks are crossed. An
example of Plausibility Tracking with this constraint can be seen in Fig. 7.13 where
the most plausible tracks between substantia nigra and putamen are shown with and
without constraints for the initializing probabilistic tracks and Plausibility Tracking.

Fig. 7.14a shows the dominance of the fiber bundle (most dominant, second or
third) that was chosen in every voxel. The connections situated more dorsally mainly
passed through the most dominant fiber directions, while the ventral tracks mainly
used minor directions. Despite the minority of these directions, the local plausibility
values obtained in these regions were almost as high as those obtained in the dorsal
connection, as can be seen in Fig. 7.14b.

7.4.3 Mapping indices onto individual fiber bundles

The purpose of using an atlas that defines multiple planes is to ensure that correspond-
ing parameters which are mapped onto the pathway are accumulated in a reproducible
manner across subjects. Fig. 7.15 visualizes the improvement when the parametriza-
tion of a fiber bundle was guided by multiple planes. The arcuate fasciculus follows a
complexly shaped pathway and is therefore excellently suited for showing the advan-
tage of this method. The borders between sections, which were used to accumulate
index values along the fiber bundle, were much better defined when using multiple
planes.

To show the potential of the presented method, indices derived from the fODF via
Bingham functions were mapped onto an inter-hemispheric pathway between left and
right BA45, which holds parallel, crossing and fanning fibers as shown in Fig. 7.16.
As expected, FD and FF of this pathway are highest within the corpus callosum (CC),
decrease to a minimum when crossing the superior longitudinal fasciculus (SLF) and
the corona radiata (CR) and increase slightly in the regions of BA45. One can assume
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(a)

(b)

(c)

Figure 7.13: Effect of waypoint masks (yellow and light-blue) on the connection between sub-
stantia nigra (red) and putamen (blue). Colors of the tracks indicate their plausibility. The
orientation is supported by a coronal slice of an FA map in the background and the three di-
mensional brain in the foreground. a) Waypoint masks have not been used to constrain the
connection. b) Waypoint masks were used to force probabilistic tracks that were used for the
initialization. c) Waypoint masks were used for both, the initializing probabilistic tracks and
Plausibility Tracking.
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(a)

(b)

Figure 7.14: Connection between substantia nigra and putamen. a) The dorsal tracks mainly
use the most dominant fiber direction (green) while the more ventral tracks pass through second
(yellow) or even least dominant (red) directions. b) Local plausibility values mapped onto the
pathway. The ventral connections reach equally high local plausibility values as the dorsal
tracks although they pass through minor dominant fiber bundles.
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(a) (b)

Figure 7.15: Parametrization of the left arcuate fasciculus of a single subject. The top row shows
the atlas that defines the intersecting planes. These planes are placed between different labels
of the atlas. Neighboring sections, in which indices are accumulated, are represented by red,
green and blue colors in the bottom row. The small head on the lower right shows the position
of the arcuate fasciculus in the brain. a) Two planes are not sufficient to guarantee a clean
parametrization of the whole fiber bundle. The sections are not clearly separated from each
other. b) Well defined borders between neighboring compartments are visible when guiding the
parametrization with multiple planes.

that the compact fiber configuration in the corpus callosum widens in the crossing
area to allow fibers from SLF and CR to intersect. Accordingly, FF decreases because
not all fibers in this area belong to the fiber bundle of interest. In the gyri, FD and
FF increase again as the fiber bundle compacts. Still, FD and FF do not reach the
same level as in the corpus callosum because short association fibers and other gyral
connections consume space. The value of FS supports this observation as it increases
in the transition areas of different fiber densities. Coming from the CC, fibers are
fanning out to intersect with the crossing-fiber bundles. The increase of FS in the
middle of the CC may be explained with partial voluming with the septum pellucidum.

7.4.4 Comparing indices between groups

To compare direction dependent indices derived from CSD Plausibility Tracking was
applied to the inferior longitudinal fasciculus (ILF) of all subjects. The ILF was defined
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(a) (b)

(c) (d)

Figure 7.16: Indices along the inter-hemispheric connection between left and right BA45, over-
laid to a coronal slice of an FA map. It can be seen that the values of FD and FF are highest
in the corpus callosum as shown in panes (a) and (b), respectively. They show lowest values
where the pathway crosses the corona radiata. In pane (c) one can also see that FS increases
in areas where the density of fibers changes, e.g. in the transition from the corpus callosum to
the crossing with the corona radiata. As a reference, the plot of FD, FF and FS (d) additionally
shows the values of FA which show a similar profile as FD.
Exemplary fODFs with different fiber configurations are visualized as glyphs in pane (a).

by its end regions according to Mori and colleagues (2008), and initialized with five
control points evenly distributed on the pathway. Tracks with a plausibility value
less than 0.75 were considered implausible and therefore excluded from the analysis.
Fig. 7.17 shows the plausible tracks of the ILF color coded with their plausibility value.

In order to get an impression of the distribution of plausibility values within the
pathway, Fig. 7.18 shows the probability densities of the track’s plausibility values per
subject. For some connections (0.4% in children and 1.7% in adults) the optimizer
was not able to find a plausible pathway within the white matter area, but the majority
of tracks reached a plausibility of more than 0.75. The strong bimodal distribution of
plausibility values as visualized in Fig. 7.18 clearly shows that the optimizer was either
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Figure 7.17: Pathway of the left ILF modeled by Plausibility Tracking in one subject, overlayed
to a sagittal slice of a FA map through the left occipital cortex. The tracks with a plausibility
value greater than 0.75 are shown and color coded with their individual plausibility value.

able to find a very plausible pathway or failed completely, which makes it easy to decide
which tracks are realistic. Only very few connections show intermediate plausibility
values. In order to suppress questionable tracks, only those with a plausibility of at
least 0.75 were considered for further analysis.

Bingham derived indices were used in a group comparison study and placed in re-
lation to indices of the diffusion tensor. All indices were mapped onto the individual
pathways of the ILF (see Fig. 7.19) and accumulated separately for statistical evalua-
tion.

In Fig. 7.20, Bingham derived indices (FD, FS and FF) and tensor derived indices
(FA, AD, RD) were plotted as group medians along the left ILF from the temporal
pole to the occipital region. The curves of FD and FA are remarkably similar, thus
suggesting that the main factor influencing the FA in this region is the density of fibers
in the main bundle. Consequently, they show a significant difference between children
and adults at the same location on the pathway (as indicated by green shading). This
significant difference emerges where fibers of the inferior fronto-occipital fasciculus
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Figure 7.18: Distribution of plausibility values plotted for the ILF of all subjects.

(a) (b)

(c) (d)

Figure 7.19: Indices mapped onto the ILF pathway of a representative subject. a) Fiber density
(FD); b) Fiber fraction (FF); c) Fiber spread (FS); d) Fractional anisotropy (FA).
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(IFOF) and a transcallosal fiber bundle join the ILF within the temporal lobe, which
can be seen nicely in Fig. 7.21.

Along the ILF, RD appeared to be significantly higher in the group of children than
in the adults within the anterior half of the ILF, which could be interpreted as areas
of increased crossing and/ or fanning of fibers compared to adults. The difference
in AD is an observation that is probably impossible to interpret in this context. In
contrast, indices FS and FF provide a little more solid ground for a hypothesis about
the fiber configuration in this area. All along the temporal lobe where the ILF interacts
with the IFOF and the transcallosal fibers, FS was higher in children than in adults,
suggesting that the fibers were spreading more strongly in the younger subjects than
in the adults. One possible reason for this effect might be the pruning of connections
that are not well aligned with the ILF. In the area where group differences of FD and
FA become obvious, another effect seems to dominate the fiber configuration: FF was
significantly higher in adults than in children, suggesting that the ILF maturates later
than the crossing-fiber bundles in this area.
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Figure 7.20: Different indices sampled along the ILF. The median values are plotted separately
for children (red) and adults (blue) from temporal (x=0) to occipital (x=80). The shaded red
and blue areas show the variation within the groups, computed as 2 MAD (Median Absolute
Deviation). The areas highlighted in green indicate significant differences between the the
groups (p<0.05, corrected).
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Figure 7.21: Fiber bundles interacting with the ILF within the temporal lobe. Tracks of deter-
ministic streamline tractography that cross the ROI (yellow) are visualized together with the
plausibility tracks of the ILF (red, transparent) and the planes that separate the sections of the
atlas (gray disks).
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8 | Discussion

8.1 Overview

In this thesis, a framework is presented for quantifying microstructural tissue properties
along pathways that connect distant functionally or anatomically defined regions in the
human brain. As a basis, a new global tractography method was applied and referred
to as Plausibility Tracking, which is introduced in this thesis. Plausibility Tracking
was used for determining local directions of the connecting pathway and to evaluate
microstructural properties that correspond specifically to the pathway of interest. This
allowed separation of the properties of different fiber compartments within a voxel
and selection of data that were relevant for a specific connection. The hypothesis
was that the new method can identify microstructural changes more specifically than
previous methods. To evaluate this hypothesis, the method was applied to the inferior
longitudinal fasciculus in a group of children and a group of adults.

The term plausibility describes how well the pathway of a fiber track can be ex-
plained by the local model that represents the underlying measurements of diffusion
weighted MRI, and accordingly, the microstructural fiber configuration. Although the
concept of plausibility is very general, here it relies on the theoretical assumption that
the local model describes the local fiber configuration completely and axonal pathways
can be described as smooth curves.

In section 8.2 of this chapter, the presented framework is compared to previous
methods for comparing microstructural tissue properties between groups of subjects.
The use of constrained spherical deconvolution and the indices obtained by fitting a
Bingham function to the peaks of the fODFs are discussed in sections 8.3 and 8.4,
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respectively. The new global tractography method named Plausibility Tracking is
reviewed in section 8.5, followed by a discussion of how the indices are mapped onto
the individual pathways in section 8.6. Chapter 9 finally summarizes the novelties
presented in this thesis and gives an outlook on possible future developments.

8.2 Comparison to other methods

Compared to other existing methods for detecting changes or differences in the brain’s
white matter, this method differs in some ways. While with TBSS and VBA the whole
brain is analyzed by default, TBA evaluates only distinct pathways.

TBSS is based on a skeleton of maximal FA and therefore inadequately represents
areas with characteristically low FA, such as crossing. In addition, the limitation to the
center line of the white matter with maximal FA gives rise to a bias in the estimated
bundle properties. The third limitation comes from the use of tensor derived indices,
which do not adequately represent the fiber configuration in crossing or fanning regions.
This latter limitation was tackled by Jbabdi and colleagues (2010), who used a multi-
compartment model.

VBA, on the other hand, does not explicitly concentrate on high FA values, but
comes along with a strong smoothing that is prone to hiding local variances in the
tissue’s structure and changes the statistics (Jones et al., 2005). In contrast, the TBA
method proposed in this thesis reduces smoothing to a minimum (caused only by
motion correction), keeping the individual data as unbiased as possible. It allows the
analysis of connections realized through minor fiber bundles as well as the major tracts
and separates the dMRI information from different tracts.

In contrast to previous methods of TBA (Corouge et al., 2006; Lebel et al., 2008;
Colby et al., 2012), this method analyzes direction dependent indices along the tract,
which potentially gives more specific information about the underlying fiber structure
than rotationally invariant indices do. For the method presented here, the user has to do
both, choose a pathway of interest, and create a suitable atlas, if it does not already exist.
The advantage of this slightly more laborious approach is that anatomical peculiarities
of the individual pathways’ shapes are taken into account and multiple intersecting
planes guarantee a reliable correspondence across subjects.
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8.3 Constrained spherical deconvolution

Constrained spherical deconvolution is a sophisticated method to describe fiber con-
figurations in areas where axons are running in parallel as well as in areas of complex
crossings. Nevertheless, it is not perfect and its limitations should be known. The spher-
ical functions include negative values that (although suppressed as much as possible by
the non-negativity constrained of CSD) produce negative lobes that area biologically
impossible.

Negative as well as positive spurious peaks cannot be completely omitted as the
model is composed of a truncated series of spherical functions that inevitably cause
ringing artifacts. As demonstrated by Parker and colleagues (2012) these artificial
peaks occur at predictable angles when using CSD. In a controlled environment with
known fiber configuration these could be predicted and filtered out. Unfortunately,
this task gets challenging with noisy data of unknown, complex fiber configurations.
Possible solutions may include the use of multiple orders for the deconvolution and the
integration of information from neighboring voxels. The use of higher orders is limited
by two factors. First, it would be necessary to change the imaging protocol to record
more diffusion directions, which would increase the scanning time. Second, higher
orders are more sensitive to noise (Anderson, 2005) and hence produce a different kind
of spurious peaks.

Probably the biggest issue arises from the fact that it is not possible to approximate
sharp peaks with reasonable orders of CSD. Theoretically, when computing the de-
convolution kernel from a voxel with parallel fibers and than deconvolving the signal
attenuation from exactly the same voxel with the kernel, the fODF should resemble a
Dirac function. Due to the truncation of the spherical harmonic series, this cannot be
attained.

In contrast to most other methods CSD does not describe the diffusion in a voxel, but
translates the measurements directly into a fiber orientation density function. The user
does not have to estimate the fiber configuration from a given description of diffusion,
instead he or she gets a direct measure of fiber density in every direction. One has to
keep in mind that this measure is only valid under the assumption that the diffusive
properties of all fiber bundles in the brain resemble those of the bundle that was used to
compute the deconvolution kernel. To circumvent this issue, some research groups are
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working on methods to estimate fiber bundle specific deconvolution kernels. However,
no suitable solution has been published yet.

8.4 Indices based on Bingham functions

In this thesis, indices based on Bingham functions that are fitted into the peaks of
fODFs (Riffert et al., 2014) are used to describe differences between children and
adults in the ILF. They provide biophysically meaningful indices that describe the
density of fibers in each fiber bundle. Additionally, measures that describe geometrical
configurations of fibers and bundles are quantified. These are the fiber spread and
fiber fraction. The spread describes the divergency of fibers within a bundle, the
fiber fraction the density of the current fiber bundle in relation to crossing bundles.
Biologically, the difference between spreading and crossing is hard to define and is
not measurable with current resolutions of MR scanners. The distinctive feature used
here is of a very practical nature: if the model is able to separate two directions, then
they are considered different fiber bundles. If the model is not able to separate the
bundles, their directional uncertainty is considered as fiber spread within the bundle.
Accordingly, the definition of these two measures depends on the order of spherical
harmonics used for CSD because higher orders are more suitable for the separation of
peaks.

The fitting as described by Riffert and colleagues (2014) considers only the peak
area of each glyph. This procedure reduces the risk of the Bingham function shape
being influenced by other fiber bundles crossing at small angles. The downside is that
only a small fraction of the fODF shape is used to fit the Bingham functions. Also, in
contrast to the Bingham function, the fODF does not necessarily become zero between
two crossing fiber bundles. Accordingly, the sum of fiber densities computed from
the Bingham functions does not necessarily match the fiber density in the voxel as
computed directly from the fODF.

The greatest problem is that the local model is not able to describe describe sharp
peaks adequately, which was discussed in the previous section. The general question
is if the level of abstraction, when fitting a model (the Bingham function) to another
model (CSD), is suitable when other methods are able to directly fit the Bingham
functions into the diffusion signal (Kaden et al., 2008; Sotiropoulos et al., 2012). A
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great advantage of this procedure is that it elegantly circumvents the model selection
problem, which is inherent to all multi-compartment models, by using CSD and a
straight forward peak finding algorithm to decide how many fiber bundles should be
modeled.

The reason for choosing indices from Bingham functions fitted into fODFs from
constrained spherical deconvolution lies in the reliable model selection routine, the
low requirements on the imaging protocol and the efficient computation time that all
make the method applicable for every day use.

8.5 Plausibility Tracking

The tract specific analysis of direction dependent indices is supported by Plausibility
Tracking, a new global tractography method that provides a reliable direction of the
pathway all along the tract. In contrast to previously published methods of curve fitting
(Tuch, 2002; Jbabdi et al., 2007), Plausibility Tracking is initialized by probabilistic
tractography that produces a good estimate of the initial spline parameters. With this
initialization, a fast gradient descent algorithm can be used to find the global optimum
very quickly. Outliers from the initial probabilistic tractography have little impact
on the outcome of the final Plausibility Tracking as a two stage filter is implicitly
implemented. First, multiple probabilistic tracks are required to initialize a pathway
so that connections with low probability (i.e., with very few probabilistic tracks) are
ignored. Second, the estimation of the spline parameters acts as a filter itself because
connections that are implausible in the light of the diffusion data obtain a low plausi-
bility value and can be removed. Additional post-processing methods like the recently
introduced spherical-deconvolution informed filtering of tractograms (SIFT) (Smith et
al., 2012) could also be applied.

The measure of plausibility is based solely on the agreement with the direction and
uncertainty of one of the peaks described by the local model, although the optimiza-
tion process uses additional terms regarding curvature constraints and control point
distribution. In this sense, plausibility denotes how well the local directions can be
explained by the local model and assumes that the local model describes the underlying
fiber configuration completely. In practice, this requirement is not fulfilled and can
never be fully fulfilled due to technical limitations and the indirect estimation of the
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fODF (Jones et al., 2013). However, the model has been regarded accurate enough to
evaluate properties of differences in white matter tissue (Raffelt et al., 2012). On the
other hand, the framework proposed here can be applied to any type of indices derived
from local models of higher order.

Another assumption, that has direct influence on the plausibility, has been made
regarding the smoothness of the pathway. This smoothness is introduced by modeling
the pathway by a spline curve with a limited number of control points and forcing the
optimizer to avoid sharp bends. Modeling axonal pathways with a smooth curve might
appear questionable, as axons cannot be expected to constantly follow a smooth curve,
but may show abrupt changes in direction of certain areas. On the other hand, although
dMRI is performed at high resolution, it still summarizes the signal of thousands of
axons within one voxel. Hence the “true“ axonal pathway is out of reach of dMRI,
and the assumption of smoothness refers to the average path of thousands of axons.
The method presented here uses a global constraint for smoothness in the whole brain,
which is a compromise that prevents implausible bends, but still allows modeling of
curved pathways. Within the framework, it would also be possible to create an atlas
with expected local curvature angles and adapt the constraint for smoothness locally.

In order to reduce partial voluming and obtain more detailed information about
separate local fiber directions one may consider employing latest ultra-high field MR
scanners with resolution-optimized protocols as introduced by Heidemann and col-
leagues (2010; 2012). The higher the spatial resolution, the less complex is the fiber
configuration that has to be represented by the local model. In a gedankenexperiment
the resolution could be increased to the voxel becoming the size of a single axon’s
diameter. Then, a simple local model would be sufficient to describe the fiber layout.
When using realistic higher special resolution data, fewer fibers are represented by
every fODF and less smoothing is therefore required to model the pathway. Hence, the
number of control points that define the spline can be increased accordingly.

The track’s global plausibility value is computed as average of all local plausibil-
ity values sampled along the pathway. The effect this simple definition has on local
deviations from the optimal direction can be compensated for by sections with good
directional accordance with the local model. Accordingly and in contrast to probabilis-
tic tractography, the track’s length does not have a negative impact on its plausibility
value. On the other hand, compensating for locally implausible situations poses the
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risk of constructing pathways that are biologically impossible, like taking a shortcut
through non-white matter areas. In order to prevent this a strict criterion has been set
to disregard any pathway that leaves white matter.

8.6 Mapping of indices and statistical evaluation

In tract-based analysis it is common standard to pool index values according to the
parametrization along the pathway (Corouge et al., 2006; Colby et al., 2012). The
atlas-based definition of supporting planes, as described in section 6.6.3, increases the
comparability between subjects as the spatial normalization process for the atlas takes
characteristics of the individual anatomies into account. Due to the fact that only the
atlas is transformed to the individual space instead of diffusion data or index maps, no
smoothing artifacts from interpolation are introduced.

As a normal distribution of values cannot be assumed, the values are accumulated
by computing their median value rather than the arithmetic mean. This method seems
to be much more stable than collecting the maximal values as done in TBSS, but seems
to produce less significant differences between the groups. Further evaluations on the
distribution of values might provide hints for a more adequate summary of index values
within the cross-sections of fiber bundles.

In the present study, direction dependent indices, as recently introduced by Riffert
and colleagues (2014), were used to identify properties of the white matter structure.
Their specificity was compared to those of indices derived from the diffusion tensor.
It was shown that the biophysically meaningfull indices allow a more specific charac-
terization of the tissue microstructure than it is possible with the rotationally invariant
indices of the diffusion tensor.

In principle, the method is suitable for all kinds of indices derived from a variety
of different models. If there are less stringent constraints to the imaging protocol,
indices of models that require multiple b-values can be very easily incorporated into
the framework. Only the index-maps with their corresponding directions are required.
In fact, the full potential of the presented method will unfold when additional indices
based on models like CHARMED (Assaf et al., 2004) and AxCaliber (Assaf et al.,
2008), which embody a more complete sampling of the diffusion propagator might
bring even more insights into myelination or axonal diameter distribution.
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9 | Summary and outlook

In this thesis, a framework is proposed for comparing direction dependent indices
derived from dMRI across subjects. The fully automatic processing pipeline is already
applied to more data-sets than presented here and proved its stability.

In order to obtain reliable local directions in the fiber bundles the global tractog-
raphy method Plausibility Tracking is introduced. Plausibility Tracking provides the
most plausible pathway, modeled as a smooth spline curve, between two locations in
the brain. The plausibility of a connection is defined by the accordance of the track’s
directions with the local directions and their uncertainties based on data from dMRI.
Compared to other tractography methods Plausibility Tracking provides a spatial ex-
pansion similar to probabilistic tractography coupled with smooth tracks, which are
globally optimized using the fODF. Therefore this method is relatively robust against
local noise and error propagation.

So far, the plausibility of a connection has only been used to identify reasonable
tracks, although the measure has much more potential when it is used to characterize
the anatomical connectivity between two regions in the brain. Additionally, it could be
combined with an integration of local indices like fiber density along the pathway in
order to estimate the performance of a connection.

The initialization through probabilistic tractography provides a reliable starting po-
sition for the optimization process that allows a fast computation of the most plausible
pathways and increases the probability of finding the global optimum. Additionally,
probabilistic tractography can be used to filter out improbable connections so that only
realistic candidates are being processed.
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The parametrization of the pathway is guided by an atlas that is aligned with each
subject’s anatomy. This procedure takes into account individual peculiarities of the
fiber tracts and supports the comparison of corresponding sections of the pathway. In
most (if not all) tract-based analysis studies, the indices describing microstructural
tissue properties are summarized perpendicular to the pathways center line. Fig. 7.19
reveals that the pattern of index values is not necessarily aligned perpendicular to the
pathway, which might decrease the sensitivity of the method. Depending on the stabil-
ity of these patterns across subjects, the atlas could be used to restrict the collection of
values to certain regions, or to abandon the perpendicularity completely and perform a
more region based analysis.

It has been shown that the proposed method allows for a more specific interpretation
of the white matter’s microstructure compared to rotationally invariant indices derived
from the diffusion tensor. With the combination of the pathway’s shape, new indices
could be computed. The average fiber density multiplied with the pathway’s cross-
section area, for example, would give an estimate of the number of axons forming the
particular connection.

I hope the presented method will support researchers to provide new insights into
the understanding of anatomy and function of the human brain.
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