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Chapter 1 – General Introduction 
 

Angiosperm plants that depend on an animal-pollination strategy must advertise 

themselves to lure pollinators into their flowers. As a result, animal-pollinated plants have 

developed several floral traits, which can be divided mainly into visual traits, scent emissions 

and time-synchronization. Different floral traits on each category can be combined and grouped 

in response to different pollination syndromes, for example plants depending on medium-large 

size nocturnal-pollinators like moths and bats make a pollination syndrome group, or plants 

relying on diurnal small pollen feeders make another group. The right display of the floral traits 

often matches the activity period of the most efficient pollinators, for which the plant might 

have evolved or ecologically adapted to maximize its reproductive fitness. Here to make a 

distinction a plastic trait can be an ecological adaptation in a localized range compared to a 

general evolved trait for all the habitat range. Not all pollinators are equally efficient for a floral 

trait set, even when the traits have developed under similar selection pressures. For instance 

the case of hawkmoths and hummingbirds which share a similar foraging behavior thus making 

the plants develop excluding strategies that ensure the best fitness. In the case of these two 

different pollinators a strategy would be to develop a temporal partition, important to separate 

both groups with different efficiency, because Sphingid hawkmoths are in general nocturnal 

pollinators, compare to hummingbirds. 

 The results presented for this doctoral thesis are centered on the floral traits regulated 

by the circadian clock to maximize its plant-pollinator interaction. The thesis is divided in three 

manuscripts, taking the coyote tobacco Nicotiana attenuata as a plant model. First, I addressed 

the identification and conserved functionality of the circadian clock genes in N. attenuata, 

including its implication in flowering time. Second, I characterized the floral traits: corolla limb 

aperture, vertical movement and benzyl acetone emission on wild type (WT) plants, and empty 

vector (EV) as control for the transgenic clock-silenced lines. Additionally I provided evidence 

supporting a differential clock regulation between vegetative and floral tissue. Using the results 



 
 

of previous manipulation of the upward night flower orientation in N. attenuata to 

demonstrate its importance for interacting with the hawkmoth, Manduca sexta, and the 

existing knowledge on the other two traits, as third part I investigated how different clock 

components alter floral traits’ display and time in order to assess their pollination fitness in 

glasshouse and field conditions. 

 

Flower adaptation to pollinators 

Floral traits such as reward and advertisement have been developed through 

evolutionary time in the Angiosperms to increase their chance of reproductive success (Grant 

1949) by luring animal pollinators that transfer pollen between flowers. Prior to these 

developments, Gymnosperms depended on wind and water to transport their pollen (Harder & 

Barrett 2006), same as several present Angiosperms groups such as grasses (Poaceae).  

The appearance of these floral traits have to precede any interaction with the 

pollinators (Stebbins 1970; Hodges & Arnold 1994, 1995), as a selective pressure cannot exist 

without an organ on which to exert it.  From this point we can define the aleatory mutation as 

the starting point that recalls the attention of a pollinator which develops behavioral 

(deception) and/or physiological (nutrition) mutualism with flowers (Fenster et al. 2004). The 

development of flower traits also responds to avoid nectar and pollen robbers, and/or 

florivores (Harder & Barrett 2006)that feed on floral tissues, fruits or seeds, decreasing the 

reproductive fitness. In some cases pollinators can act as herbivores, not by consuming the 

flower directly but through their offspring, i.e. larvae, which consume plant tissues (Roda et al. 

2004).  

The evolution of floral traits may not be seen under current pollinator interactions, 

because some of the flower specializations might have evolved under extinct species and their 

interactions. These specializations might have nowadays readapted to extant species. This can 

be exemplified with invading plant species, where specialized floral traits fit or repurpose 

depending on available pollinators (Aizen et al. 2008). A flower is constituted by several 



 
 

different tissues, such as corolla, sepal, anthers, pistil, etc. which can evolve differentially in 

response to different pollinators if none of these exert a negative influence over the other 

pollinators (Hurlbert et al. 1996). 

 

Pollination syndrome 

Floral traits grouped by pollinator functional groups are defined as pollination 

syndromes, when the traits are selected to improve the efficiency of outcrossing by specific 

floral sizes and shapes according to the pollinator physiology and behavior (Fenster et al. 2004). 

Most general cases focus on rewarded interactions, and can be separated between those 

feeding on pollen and/or nectar, or, in special cases, oil rewards (Buchmann 1987). The interest 

of this research is to focus on one pollinator functional group, the one composed by Sphingid 

hawkmoths and hummingbirds because these two exert similar selection pressures over the 

floral traits (Grant 1952; Hodges et al. 2004). Flowers favored by these animals present long 

tubular corollas that allow an easier access of the proboscis/tongue to the nectar at the bottom 

of the corolla or either to a nectar spur (Hodges & Arnold 1995). Flowers present flat wide 

corolla limbs, either zygomorphic or actinomorphic. The coloration depends if it is specialized 

on hummingbirds, having then a red color, or white if on hawkmoths. Pattern colorations are of 

importance for the later, where grooves and black visual guides are more appealing while 

darker colorations tend to be ignored (Goyret 2010). 

The flower orientation plays another important role, as the flying behavior of 

hummingbird and hawkmoths are different, giving a different visual perspective. Hummingbirds 

have a more flying free style and tend to move between the plants, allowing them to be more 

able to recognize flowers at different orientations (Fulton & Hodges 1999). On the contrary, 

hawkmoths have a hovering flight, observing the flowers from above (Sprayberry & Daniel 

2007; Sprayberry & Suver 2011). At least in the case of Hyles lineata, the capability of 

recognizing flowers from which to feed is reduced mainly to those on upright orientation(Fulton 

& Hodges 1999; Hodges et al. 2004). The flower orientation is addressed on Manuscript III, 

where the flower angle is altered in clock-silenced lines, and their pollination relevance tested. 



 
 

Natural history of the circadian clock 

The circadian clock is a molecular oscillator entrained by the planet’s 24 h rotation. It 

has a vital role in synchronizing the daily performance of organisms through light and 

temperature cycles, allowing a compartmentalization of activities to the correct day-time 

(Sanchez et al. 2011; McClung 2013). For example, the internal clock in plants influences 

processes through all the development stages, such as hypocotyl growth, cotyledon movement, 

leaf movement, bolting and flowering, and also abiotic and biotic stress resistance (Yakir et al. 

2007; Roden & Ingle 2009). It is of equal importance for short-medium life-span plants that 

require a fast seed set, and for perennials that need years to reach reproductive maturity, in 

some cases overwintering under freezing temperatures (Ramos et al. 2005). 

The interconnected molecular processes governing circadian rhythms in several 

organisms from different taxa have been elucidated, for instance in Drosophila melanogaster, 

Neurospora crassa, Synechoccocus elongatus, and Mus musculus(Panda et al. 2002; Golden & 

Canales 2003; Doherty & Kay 2010). In the plant kingdom, the Brassicaceae Arabidopsis 

thaliana was initially chosen as a model plant for extensive investigation of the circadian clock, 

on which a core oscillator based on an extended three-loop model was proposed (Ueda 2006; 

Pokhilko et al. 2012).  

The core oscillator in A. thaliana is composed of four genes, two expressing at dawn: 

LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1); the other 

two expressing at subjective dusk: TIMING OF CAB EXPRESSION 1/PSEUDO-RESPONSE 

REGULATOR 1 (TOC1/PRR1) and ZEITLUPE (ZTL) (Pokhilko et al. 2012). The core oscillator 

comprises the first loop, it forms a negative feedback loop where CCA1 and LHY bind to TOC1 

promoter to repress its transcription and, similarly, TOC1 represses LHY/CCA1 transcription 

(Huang et al. 2012; Pokhilko et al. 2013). The ZTL regulates TOC1 through its protein turnover 

during night. ZTL proteins contain an F-box domain which is part of a Skp/Cullin/F-box (SCF)E3 

ubiquitin ligase complex that marks the TOC1 proteins for ubiquitination and subsequent 

degradation, therefore decreasing TOC1 protein concentration overnight (Más et al. 2003). In 

the same way other proteins from the TOC1 family are also targeted (Harmer 2009), leaving an 



 
 

still open question of how many proteins can be targeted by this complex. Recent works from 

the last decade have also found some, if not all, of these circadian clock genes in varied plant 

species including rice, soybean, maize, and poplar (Murakami et al. 2007; Liu et al. 2009; Takata 

et al. 2009; Wang et al. 2011b), showing how conserved in eudicots and monocots (Izawa et al. 

2002; Ramos et al. 2005; Kaldis & Prombona 2006; Miwa et al. 2006) this endogenous clock is, 

playing therefore a central regulation role. 

The second loop is formed by TOC1 and three genes: EARLY FLOWERING 3 (ELF3), ELF4, 

and LUX ARRHYTHMO (LUX) which are designated as Evening Complex (EC), with a peak 

expression at subjective dusk (Covington et al. 2001; Kikis et al. 2005; Helfer et al. 2011; 

Nusinow et al. 2011). The third loop is formed by another negative feedback loop between 

PRR7/PRR9 and LHY/CCA1, where LHY/CCA1 activate PRR7/PRR9 transcription and repress the 

EC. EC can inhibit itself and also represses PRR7/PRR9. This last duo represses LHY/CCA1 

transcription instead (Zeilinger et al. 2006). 

The circadian clock requires external signals for entrainment, which provides it with the 

possibility to adapt to different photoperiod and thermoperiod (Harmer 2009). This has been 

extensively studied in laboratory conditions, which allowed to identify the main regulatory 

agents due to its stable conditions. Some studies have shown the importance of the circadian 

clock to make the most of its resources through nutrient assimilation and photosynthesis in 

order to maximize its fitness (Roenneberg 1994; Green et al. 2002; Dodd et al. 2005). 

Nevertheless, light and temperature oscillate in natural conditions in a greater range without 

perfect repetitive patterns over days. A series of other interactions also provide extra input for 

clock regulation, such as drought and herbivory. Few works have been conducted on field 

conditions to study the same clock principles (Resco et al. 2009), as demonstrated on rice 

studies in Japan, where mutant phenotypes were rescued by the strong environmental signals 

in the field, which entrained the endogenous clock to its normal oscillation (Izawa 2012; 

Nagano et al. 2012). 

 



 
 

Circadian clock regulation of floral rhythms 

Currently most studies between circadian clock and flowers have been limited to the 

flowering time, the flower aperture, and scent emission. Many of these observations were done 

indirectly for testing non circadian hypothesis, and none of those studies used circadian clock 

mutants. The timing of elongation and flowering has been widely studied in several species, as 

it differs between the location and weather conditions that a plant inhabits (Fournier-Level et 

al. 2011). In the case of Arabidopsis, a long day flowering plant, it requires the photoperiod to 

reach a critical length to match the light signaling and circadian molecular mechanism that 

triggers the change to reproductive stage (Sawa et al. 2007). Homologous genes of ZTL are 

involved in the circadian regulation of photoperiodic flowering. This gene family known as 

ADAGIO involves FLAVIN-BINDING, KELCH REPEAT, F-BOX 1/ADAGIO3 (FKF1/ADO3) that 

interacts with GIGANTEA (GI) in a blue light-dependent manner and regulates CONSTANS (CO) 

expression by degrading the CYCLING DOF FACTOR 1 (Imaizumi & Kay 2006). Additionally, the 

third ADAGIO gene member LOV KELCH PROTEIN 2 (LOV2/ADO2) works together with ZTL and 

FKF1 to regulate the protein degradation of TOC1 and PRR5. These last two interact with 

ELF3/ELF4/LUX contributing to the circadian oscillation (Baudry et al. 2010). 

Given the variety of habitats, plants respond in different ways to the different 

photoperiod lengths that trigger flowering, being possible to classify plants as short, neutral or 

long day photoperiod. Opposite to Arabidopsis, rice requires a short day to flower matching 

with the autumn’s start in the northern hemisphere (Itoh & Izawa 2013). Also other species are 

dissimilar, for which the standard Arabidopsis model can’t be applied as a general rule, neither 

the expected effects of their mutants can be inferred for all.  

In the past, the flower aperture was observed and described in the works of Linnaeus 

(Linnaeus 1751) who observed the distinctive flower opening time of different species, inferring 

that flower aperture is under an endogenous clock control. Nonetheless, studies using knock-

out circadian clock genes, either mutants or by silencing, have not been made (van Doorn & 

Van Meeteren 2003; Resco et al. 2009). 



 
 

Given the variety of circadian rhythms observed within a same plant, the question of a 

clock multiplicity had arisen because different processes require different synchronization, like 

leaf movement, photosynthesis, stomata conductance, catalase activity, etc. (Harmer 2009). 

Currently, there is even evidence of a circadian clock driven entirely by reactive oxygen species 

(Edgar et al. 2012) or sugar metabolism (Stitt & Zeeman 2012). In consideration of these 

examples, it is worthwhile to ask if reproductive tissues can also have a different clock 

regulation or even one of their own, a question that is addressed on Manuscript II, combining 

molecular and phenotypic data. 

 

Nicotiana attenuata as a clock-ecological interaction model 

In this investigation, the Solanaceous plant Nicotiana attenuata, commonly known as 

coyote tobacco, was employed to study the effects of the circadian clock regulation. Ecological 

research has been previously done on areas such as abiotic response(Dinh et al. 2013), 

herbivore’s interaction(Wu et al. 2008; Schäfer et al. 2011), defense metabolism (Voelckel et al. 

2001; Wu et al. 2007; Steppuhn et al. 2008), and pollinator’s interaction (Kessler & Baldwin 

2007; Kessler 2012). The natural habitat of N. attenuata is the Great Basin Desert in the United 

States, where it inhabits a large range of landscapes (Goodspeed 1954) with their particular 

meteorological conditions, abiotic and biotic factors, and adaptations(Zavala et al. 2004). N. 

attenuata is a seasonal plant, which completes its life cycle during spring and summer to lie 

dormant in the seed bank for the many years between fires in its native habitat (Baldwin et al. 

1994). 

The flowers of N. attenuata have visual and olfactive traits. It has been previously 

described as a flower with two distinctive flower opening times: the first type opens at night 

(after dusk) until early morning and comprises 90% of the total, and the second opens in the 

morning between 6 - 8 h and only to 50% of the full corolla limb extent. Both flower types close 

normally after 8 h until they reopen later in the day as normal night flowers for a second and 

third time. Together with the flower opening, there is the emission of a floral bouquet, on 

which benzyl acetone (BA) is the main component. BA is mainly emitted at night, for which 



 
 

morning flowers have little scent emission; this is because scent emission intensity is 

associated with the corolla limb expansion, so less BA is emitted during a partial opening 

(Kessler et al. 2010). 

A third trait is N. attenuata’s flower vertical movement, described for the first 

time in WT and also characterized in clock-silenced lines in Manuscript II. This vertical 

movement falls within visual traits, as it makes the corolla limb more conspicuous 

depending on the flower orientation, which goes on WT approximately from -90° to 40°. 

It is considered a clock regulated trait, because its movement follows a rhythmic pattern 

during the flower life span, up at night and down during the day. 

 

The pollinator dilemma 

It is usually considered that a plant species specialize only into a pollinator functional-

group(Stebbins 1970) and within this group to particular set of species(Grant 1949), as is the 

case of Nicotiana attenuata with Manduca spp. hawkmoths. As the flower shape and size are 

characteristic of big pollinator’s functional group, this specialization can be considered a 

temporal one. The raised question through several plant-pollinator interactions is: when does 

the plant should specialize in a single pollinator? The mainstream theory proposed by Stebbins 

in the ‘70s, “Most Effective Pollinator Principle” (MEPP), implies that a plant will always evolve 

specializations to maximize its interaction with the most effective pollinator. Currently this 

theory is controverted because it has been found that assemblages of pollinator generalists 

work at unison with pollinator specialists, and several of the well-known examples of 

specialized flowers are dependent on pollinator generalists (Waser et al. 1996). As 

demonstrated by the study of Hurlbert (Hurlbert et al. 1996) in Impatiens capensis, a plant does 

not necessarily need to adapt to a single pollinator type if it does not bring considerable 

negative effects on the other pollinators. It is the case of hummingbirds and bees, where the 

development of spurs and wider corolla limb does not interfere with the foraging behavior of 

any of both respectively. 



 
 

It is important for this research to describe the animal pollinator interaction of N. 

attenuata. There are multiple pollinators in the Great Basin Desert, which can be divided as 

night active or day active. The most important night-time pollinators are hawkmoths from the 

Sphingidae family, as so far agreed. In this habitat the hawkmoth pollinators are composed by 

Manduca sexta and Manduca quinquemaculata, and Hyles lineata. Both Manduca spp. are 

considered the most effective pollinators of N. attenuata, having their activity peak after dusk, 

around 22 h. Instead, the active time of H. lineata, comprises the time before and after dusk. 

This whole pollinator group feeds on nectar, for which they can repeatedly visit the same 

flower over the nights of the flower’s life span. 

In the day time we can find a variety of pollinator groups, among hummingbirds and 

mainly Hymenoptera insects. The principal day pollinator is the black-chinned hummingbird, 

Archilochus alexandri, which preferentially pollinates morning flowers (Kessler et al. 2010). In 

the case of Hymenoptera, it has been observed that bees and sweat bees visit N. attenuata 

flowers, but these two groups are mainly pollen feeders, which will visit the flowers mostly on 

the first day of opening, as later pollen will be depleted. In pollination experiments of 

Manuscript III, bees were not considered as the target flowers were emasculated. In contrast, 

hummingbirds visit flowers that contain nectar, so they can overtime learn to choose the most 

nutritious flower in an assemblage of a given plant species. 

As both pollinators of N. attenuata, hawkmoths and hummingbirds, belong to the same 

functional group, in Manuscript III we tested how this floral temporal regulation is controlled by 

single clock genes and its effect on the reproduction fitness mediated by night- and day-time 

pollinators. 
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Nicotiana attenuata LHY and ZTL regulate circadian rhythms in flowers 

Felipe Yon, Youngsung Joo, Eva Rothe, Ian T. Baldwin, Sang-Gyu Kim1 

Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 

8, D-07745 Jena, Germany. 

 

Summary 

The rhythmic opening/closing movement and volatile emissions of flowers attract pollinators at 

specific times. That these rhythms are maintained under constant light or dark conditions 

suggests a circadian clock is involved. A forward and reverse genetic approach allows for the 

identification of core circadian clock components in Arabidopsis thaliana. However, the role of 

these core clock components for floral rhythms has remained untested in Arabidopsis flowers, 

likely due to their weak diurnal rhythms. The wild tobacco Nicotiana attenuata flowers open at 

night, emit benzyl acetone scents, and move vertically through a 140° arc when engaged in 

opportunistic outcrossing. To examine the role of the clock components for floral rhythms, we 

generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE 

ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL). The silencing of NaLHY and NaZTL altered 

the transcript accumulation of CHLOROPHYLL A/B BINDING PROTEINS 2 in seedlings exposed to 

constant light conditions and strongly affected floral rhythms under long day conditions, 

demonstrating that conserved clock components coordinate these floral rhythms.  
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Introduction 

Linnaeus (1751) designed a garden known as the “flower clock,” comprised of different 

plant species with unique flower opening and closing times. The opening of dandelion 

(Taraxacum officinale) flowers in his garden indicated morning, while the opening of Mirabilis 

dichotoma flowers meant it was around 4 o’clock in the afternoon. Many flowering plants also 

emit floral scents at specific times during a day. Cestrum nocturnum (night-blooming jasmine) 

(Overland 1960), Nicotiana sylvestris and Nicotiana  suaveolens (Kolosova et al. 2001, Loughrin 

et al. 1991) emit a bouquet of floral scents at night, and Antirrhinum majus (snapdragon) 

flowers emit methyl benzoate in the afternoon (Kolosova, Gorenstein, Kish and Dudareva 

2001). These famous examples show that flowering plants have characteristic rhythms which 

synchronize with environmental factors such as the active times of their pollinators’ (Fründ et 

al. 2011, Somers 1999). In addition, classical experiments demonstrated the retention of floral 

rhythms under constant light (LL) or dark conditions, suggesting that an internal biological 

clock, called a circadian clock, regulates flower opening as well as the emission of floral volatiles 

(Bunning 1956, Kolosova, Gorenstein, Kish and Dudareva 2001, Loughrin, Hamilton-Kemp, 

Andersen and Hildebrand 1991, Overland 1960, Sweeney 1963, van Doorn and Van Meeteren 

2003).  

The plant circadian clock has been intensively elucidated in the genetic model species 

Arabidopsis thaliana (Nagel and Kay 2012). Forward and reverse genetic approaches have 

revealed that this clock consists of transcriptional and post-translational feedback loops. In 

Arabidopsis, two morning-expressed MYB transcription factors, LATE ELONGATED HYPOCOTYL 

(LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), bind to the promoter of the evening 

component, TIMING OF CAB EXPRESSION 1 (TOC1, also called PSEUDO-RESPONSE REGULATOR 

1, PRR1) to repress TOC1 transcription during the day. Near dusk, the positive regulator, 

REVEILLE8, induces the expression of TOC1 transcript (Hsu et al. 2013), and TOC1 protein 

suppresses the expression of LHY and CCA1 transcripts, establishing a transcriptional negative 

feedback loop (Gendron et al. 2012, Huang et al. 2012). Post-translational regulation also fine-

tunes the plant circadian clock. ZEITLUPE (ZTL) protein physically binds to TOC1 and PRR5 
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proteins under dark conditions, resulting in the degradation of TOC1 and PRR5 proteins (Kiba et 

al. 2007, Kim et al. 2007, Mas et al. 2003). Two homologous proteins of ZTL, FLAVIN BINDING 

KELCH REPEAT F-BOX 1 and LOV KELCH REPEAT PROTEIN 2, also adjust the protein stability of 

the clock components (Baudry et al. 2010, Nelson et al. 2000, Sawa et al. 2007). Like ZTL, the 

FKF1 protein interacts with GIGANTEA in a blue-light-dependent manner and connects the clock 

to photoperiodic flowering of Arabidopsis (Sawa, Nusinow, Kay and Imaizumi 2007). 

Altering the expression of these circadian clock genes has produced arrhythmic or 

disrhythmic plants; these plants show many defects in development (Nagel and Kay 2012) and 

defense (Goodspeed et al. 2012, Wang et al. 2011a). For instance, several daily rhythmic traits, 

such as stomata aperture, leaf movement and the expression of photosynthetic machinery are 

altered in clock-altered lines (Yakir et al. 2007). In addition, hypocotyl elongation, flowering 

time and biotic/abiotic defense are also regulated by the circadian clock and have been 

examined using clock-altered lines (Nagel and Kay 2012, Seo et al. 2012, Wang, Barnaby, Tada, 

Li, Tor, Caldelari, Lee, Fu and Dong 2011a). However, to our knowledge, no one has 

demonstrated that the internal clock in flowers is the circadian clock whose molecular details 

are now known. Are the floral rhythms regulated by the known circadian clock components? 

This question is frequently noted in literatures as one that festers and remains to be rigorously 

tested (Nitta et al. 2010, van Doorn and Van Meeteren 2003, Yakir, Hilman, Harir and Green 

2007).  

To examine the influence of the core clock components on floral rhythms, we used the 

wild tobacco Nicotiana attenuata, which shows strong diurnal rhythms in flowers and whose 

plant-pollinator interactions have been well studied. N. attenuata produces self-compatible 

flowers which are visited by nocturnal hawkmoths (e.g. Manduca sexta) and day-active 

pollinators such as hummingbirds (Kessler et al. 2010). Approximately 95% of N. attenuata 

flowers open at night; at this time they emit a bouquet of volatiles, mainly benzyl acetone (BA), 

which attracts nocturnal hawkmoths (Kessler, Diezel and Baldwin 2010). These floral rhythms 

are repeated for two or three days, and then, if pollination occurs, corollas senesce, capsules 

develop and seeds mature.  
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In a previous study, we identified the N. attenuata LHY (NaLHY), NaTOC1, and NaZTL, 

which are the homologous proteins of Arabidopsis LHY, TOC1, and ZTL, respectively (Yon et al. 

2012). The oscillating patterns of these genes under light-dark cycles and LL conditions are 

similar to those of Arabidopsis clock components. To examine the functional conservation of 

the Arabidopsis clock components, we generated the overexpression lines of NaLHY and NaZTL 

transcripts in Arabidopsis. These lines displayed elongated hypocotyls and late flowering 

compared to wild-type (WT) plants: phenotypes similar to those of Arabidopsis LHY- and ZTL-

overexpressing lines (Schaffer et al. 1998, Somers et al. 2004). In addition, TOC1-ZTL 

interactions in Arabidopsis are also conserved in N. attenuata; the NaTOC1 protein binds NaZTL 

and Arabidopsis ZTL proteins as well, indicating that NaLHY, NaTOC1, and NaZTL are 

functionally homologous proteins of Arabidopsis (Yon, Seo, Ryu, Park, Baldwin and Kim 2012). 

In this study, we show that silencing NaLHY and NaZTL alters the internal rhythm of N. 

attenuata and three main diurnal rhythms of the flowers. In addition, transcript levels of NaLHY 

differ between corollas and pedicels. 

 

Results 

Silencing NaLHY and NaZTL alters the internal rhythm in N. attenuata.  

We silenced the transcript levels of NaLHY and NaZTL in N. attenuata by transforming 

plants with gene-specific inverted-repeat (ir) constructs and identified more than two 

independent lines, each of which harbored a single insertion of the transformation construct 

and displayed more than 90% silencing efficiency at the peak expression times of the targeted 

gene (Figure S1). Empty vector-containing (EV) plants were used as controls to control for 

possible transformation effects, which were not observed. To examine the internal rhythm of 

these lines, we measured the transcript levels of N. attenuata CHLOROPHYLL A/B BINDING 

PROTEINS 2 (CAB2) (Figure S2), which has been frequently used to determine internal rhythms 

of the Arabidopsis clock-altered lines (Nagel and Kay 2012, Somers et al. 1998). Seedlings were 

grown under 12 h light and12 h dark conditions for 12 days and exposed to LL conditions. After 

that, we collected samples of EV, irLHY (NaLHY-silenced line), and irZTL (NaZTL-silenced line) 
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plants every 4 h for 3 days under LL conditions. As shown in Arabidopsis (Mizoguchi et al. 2002, 

Somers et al. 2000), the period of transcript oscillation of NaCAB2 under LL conditions was 

shorten by silencing NaLHY compared to the period of NaCAB2 oscillation in EV plants, and 

silencing NaZTL lengthened the period of NaCAB2 oscillation (Figure 1a).  

In a previous study, we showed that the overexpression of NaLHY and NaZTL in 

Arabidopsis seedlings results in an elongated hypocotyl compared to the hypocotyl in WT 

seedlings (Yon, Seo, Ryu, Park, Baldwin and Kim 2012). To test whether silencing NaLHY and 

NaZTL alters hypocotyl length in N. attenuata, we germinated the seeds under dim light 

conditions, and 10 days later we measured hypocotyl lengths of the lines. Seedlings of irLHY 

and irZTL displayed significantly increased hypocotyl lengths compared to seedlings of EV plants 

(Figure 1b). Taken together, these results indicate that silencing NaLHY and NaZTL alters 

internal rhythms of plants and suggest functional similarity of LHY and ZTL between Arabidopsis 

and N. attenuata. 

NaLHY and NaZTL regulate flower opening.  

To examine whether NaLHY and NaZTL regulate diurnal rhythms in flowers, we first 

examined flower-opening times in the lines. Flowers in N. attenuata started to open around 4 

pm (Zietgeber Time ZT10) in plants under long day (LD, 16 h light and 8 h dark) conditions, and 

fully opened by 8 pm (ZT14) before dusk (Figure 2). Fully opened flowers displayed white 

flattened corolla limbs during the night (Figure 2) (Kessler, Diezel and Baldwin 2010). The 

flowers rapidly closed within 1 h of dawn the next day, but stopped in a half-opened position, 

which they retained over the day (Figure 2b). Under LL conditions, the timing of flower opening 

in N. attenuata remained unchanged (allowing for a 2 h difference) at least for 6 days (Figure 

2a), as shown in several flowering plants (Bunning 1956, Overland 1960, Sweeney 1963, van 

Doorn and Van Meeteren 2003, Yakir, Hilman, Harir and Green 2007). Flowers from plants 

exposed to LL did not close well (Figure S3), suggesting that an internal clock in N. attenuata 

mainly regulates floral opening but not closing.  

Next, we analyzed the timing of flower opening and closing in irLHY and irZTL lines 

grown under LD conditions. The distance between the junctions on a corolla limb was 
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measured to characterize the opening and closing of flowers (Figure 2b, inset). Flowers in irLHY 

lines began opening 2 h earlier than did EV flowers and reached full opening 2 h earlier at 6 pm 

(ZT12) (Figure 2b). Interestingly, irZTL flowers began opening at the same time as EV flowers 

but did not open completely: they were approximately 60% open compared to EV flowers, 

which were fully open (Figure 2b). By the next morning, irLHY and irZTL flowers closed rapidly 

within 1 h as did EV flowers, but the closing patterns of these flowers differed among the lines 

(Figure 2b).  

NaLHY and NaZTL regulate floral scent emission.  

N. attenuata flowers emit several volatiles to attract pollinators at night (Kessler and 

Baldwin 2007). The most abundant attractant, BA, is released from fully opened flowers: its 

release begins near dusk and lasts until the middle of the night (Figure 3) (Kessler, Diezel and 

Baldwin 2010). This diurnal emission is repeated for 2-3 days (Bhattacharya and Baldwin 2012), 

synchronized with flowers’ opening/closing times. We first monitored BA emission every 2 h in 

the headspace of WT flowers under LD and LL conditions using a z-NoseTM instrument for real-

time measurements. For LL experiments, we exposed LD-grown plants to LL conditions 24 h 

before flowers opened and then measured BA amount. The pattern of BA emission from 

flowers under LL conditions was similar to the pattern of BA emission from flowers under LD 

conditions (Figure 3a), suggesting that BA emission in N. attenuata is regulated by an internal 

clock.  

To determine whether NaLHY and NaZTL regulate the emission of floral volatiles, we 

monitored BA emission from the NaLHY- and NaZTL-silenced lines. BA emission from irLHY 

flowers started earlier but also declined earlier than did BA emission from EV flowers (Figure 

3b). BA emission was correlated with early opening phenotypes, suggesting that rhythms in 

irLHY flowers shift to earlier times than do rhythms in EV flowers. Interestingly, BA emission 

was not detected from irZTL flowers (Figure 3b).  

NaLHY and NaZTL regulate diurnal vertical movement of flowers.  

N. attenuata flowers have an additional rhythmic trait. WT flowers in N. attenuata 

maintain an upright position approximately 40° from the horizontal axis before opening (Figure 
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4a). In the morning of the first opening day, flowers move to face down at more than 90° below 

the horizontal axis (Figure 4a). These flowers return to the upright position just before dusk 

(Figure 4a, inset), when they fully open and emit BA. By the next morning, flowers face down 

again and have closed their corollas. This vertical movement of flowers is repeated for 2-3 days 

under LD conditions, with diminishing movement of flowers in the third day.  

To examine whether this diurnal movement is independent of light-dark cycles, we 

exposed LD-grown flowering plants to constant light (LL) conditions 24 h before flowers opened 

and measured the angle of flowers for three days (Figure 4a). Flowers exposed to LL conditions 

started to move downward when LD-grown flowers did, but the amplitude of movement in LL-

exposed flowers (1st day, 39.2°; 2nd day, 28.1°; 3rd day, 6.0°) was reduced in comparison to that 

of flowers grown under LD conditions (1st day, 73.8°; 2nd day, 65.5°; 3rd day, 28.0°). The 

maximum upward angle in LL-exposed flowers was similar to the maximum angle in flowers 

grown under LD conditions. This result suggests that an endogenous clock regulates flower 

movement in N. attenuata, but that light signals are also needed to adjust the amplitude of the 

movement.  

To clarify whether core clock components control this movement, we measured the 

angle of flowers in EV, irLHY, and irZTL. Silencing LHY and ZTL strongly altered flower 

movements in different ways (Figure 4b). The timing of the downward movement in irLHY lines 

during the first day was similar to the timing of the same movement in EV flowers, but irLHY 

flowers moved upward approximately 2 h earlier than did EV flowers, resulting in a smaller 

amplitude of flower movement in irLHY flowers (Figure 4b). This earlier vertical movement was 

correlated with flower opening and initial scent emission occurring 2 h earlier in irLHY plants 

than in EV plants. The period of movement in irLHY flowers (22.4h ± 0.2h) for the first two days 

was significantly shorter than that in EV flowers (23.5h ± 0.1h, P < 0.05, one-way ANOVA 

followed by Bonferroni post hoc tests). An alteration of the movement was also observed in 

irZTL lines; downward movement was almost abolished, but plants retained the weak diurnal 

pattern for the first two days (Figure 4b).  

Expression of NaLHY and NaTOC1 in flower tissues.  
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To test whether silencing NaLHY or NaZTL alters the clock gene expression in flowers, 

we collected corolla limbs, where flower opening and BA emission occurs, as well as pedicels 

which are primarily engaged in vertical movement of flowers. We measured the transcript 

levels of NaLHY in EV and irZTL plants and the transcript levels of NaTOC1 in EV, irLHY, and irZTL 

plants every 2 h from 4 am (ZT22) to 8 pm (ZT14) under LD conditions. 12 flowers among 30 

plants per lines at each time point were collected. The results revealed that the levels of NaLHY 

transcripts were reduced both in corolla limbs and pedicels of irZTL (Figure 5a). Silencing NaLHY 

and NaZTL induced the transcript expression of NaTOC1 earlier than in EV both in corolla limbs 

and pedicels (Figure 5b). Interestingly, the transcript levels of NaLHY in EV plants differed 

between corolla limbs and pedicels. The transcript levels of NaLHY in pedicels (Figure 5) peaked 

at dawn and returned to the basal level within 4 h under LD conditions, which was similar to the 

NaLHY expression in leaves and roots (Yon, Seo, Ryu, Park, Baldwin and Kim 2012). However, 

NaLHY expression in corolla limbs did not return to the basal level for up to 6 h. 

 

Discussion 

Following  the first scientific report on the effect of daily leaf movement in mimosa that 

were kept under constant dark conditions in 1729, several daily rhythms in plants have been 

examined (McClung 2006). Diurnal rhythms in flowers are one of the most popular examples 

known to both chronologists as well as non-scientists.  Many reports including time-lapse 

movies and nature documentaries demonstrate that internal clocks regulate floral rhythms. 

However, these interesting floral rhythms have not been re-examined after the core circadian 

clock components were molecularly identified. Perhaps floral traits were not examined in clock-

altered lines because researchers assumed that any trait exhibiting a diurnal rhythm under free-

running conditions would be regulated by the clock system defined mainly in leaves. However, 

this assumption is not justified, considering the recent literatures on circadian rhythms. For 

example, the circadian clock system in roots of Arabidopsis is known to be different from the 

circadian clock system in the leaves, indicating the existence of the tissue-specific clock system 

in plants (James et al. 2008). In addition, redox cycles of peroxiredoxins mediate circadian 
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rhythms in erythrocytes that lack transcription (Edgar et al. 2012, O'Neill and Reddy 2011), 

indicating that the clock gene expression is not required for all circadian rhythms. Here we 

revisit a set of floral traits previously thought to be under circadian control with knock-down 

lines of verified clock components and provide the first test of the hypothesis that ‘diurnal 

rhythms in flowers are regulated by the circadian clock components’ at a molecular level. 

Homologous genes of the clock components elucidated in Arabidopsis have been 

identified in many eudicotyledonous and monocotyledonous plants (McClung 2013, Staiger et 

al. 2013): poplar (Filichkin et al. 2011, Takata et al. 2009), chestnut (Ramos et al. 2005), 

soybean (Liu et al. 2009, Xue et al. 2011), Brassica rapa (Lou et al. 2012, Xu et al. 2010), rice 

(Filichkin, Breton, Priest, Dharmawardhana, Jaiswal, Fox, Michael, Chory, Kay and Mockler 2011, 

Murakami et al. 2007), and maize (Khan et al. 2010, Wang et al. 2011b). The genome of green 

alga Ostreococcus tauri also contains TOC1- and CCA1-like genes (Corellou et al. 2009), 

suggesting that circadian clock genes are well conserved in plants. To extend the results of our 

previous study (Yon, Seo, Ryu, Park, Baldwin and Kim 2012), we provide new evidence that 

NaLHY and NaZTL are the functional homologues of Arabidopsis LHY and ZTL. Silencing NaZTL 

reduced the transcript accumulation of NaLHY under LD conditions (Figure 5), as shown in the 

Arabidopsis ztl mutants (Baudry, Ito, Song, Strait, Kiba, Lu, Henriques, Pruneda-Paz, Chua, 

Tobin, Kay and Imaizumi 2010, Somers, Kim and Geng 2004). The phase-shift of NaTOC1 

expression in irLHY (Figure 5) is consistent with the phase-shift of TOC1 expression in the 

Arabidopsis mutant lhy-12 (suppressor mutation of LHY-overexpressed line) (Mizoguchi, 

Wheatley, Hanzawa, Wright, Mizoguchi, Song, Carré and Coupland 2002). In addition, CAB2 

expression in irLHY and irZTL seedlings was also similar to CAB2 expression in Arabidopsis lhy-12 

and ztl-3 plants. 

Peak times of Arabidopsis LHY and TOC1 transcript levels in leaves and roots (James, 

Monreal, Nimmo, Kelly, Herzyk, Jenkins and Nimmo 2008, Schaffer, Ramsay, Samach, Corden, 

Putterill, Carré and Coupland 1998, Strayer et al. 2000) are also well-conserved in N. attenuata 

leaves, roots, and flowers (Figure 5) (Yon, Seo, Ryu, Park, Baldwin and Kim 2012). The transcript 

levels of NaLHY and NaTOC1 in corollas and pedicels peaked at dawn (6 h, ZT0) and at near dusk 

(18 h, ZT12), respectively, under LD conditions. However, the transcript levels of NaLHY in 
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corollas declined more slowly than did these levels in pedicels (Figure 5) and leaves (Yon, Seo, 

Ryu, Park, Baldwin and Kim 2012), suggesting there is a flower-specific circadian clock in N. 

attenuata. In a previous study, we identified a homologous protein of Arabidopsis TOC1 and 

discovered a late-flowering phenotype of NaTOC1-silenced lines under LD conditions. Although 

the TOC1 protein is one of the major targets of ZTL, silencing NaTOC1 did not alter the floral 

rhythms under LD conditions (Figure S4), suggesting that the NaZTL protein regulates floral 

rhythms through other target proteins (e.g. PRR5 and GI) (Kiba, Henriques, Sakakibara and Chua 

2007) or unknown flower-specific proteins. 

The floral phenotypes of irZTL plants are not well explained by the long internal rhythms 

of irZTL, which was determined by NaCAB2 expression under LL conditions (Figure 1). 

Incomplete opening, no BA emission, and small amplitude of vertical movement in irZTL flowers 

comprise a suite of arrhythmic traits. Internal rhythms of the clock-altered plants have been 

determined mainly by the expression patterns of CAB2 or COLD-CIRCADIAN RHYTHM-RNA 

BINDING 2 (CCR2) transcripts under constant light or dark conditions (Nagel and Kay 2012). For 

instance, the period of CAB2 or CCR2 transcripts in Arabidopsis lhy-12 and TOC1 RNAi plants 

was shorter than their periods in WT plants under free-running conditions (Más et al. 2003, 

Mizoguchi, Wheatley, Hanzawa, Wright, Mizoguchi, Song, Carré and Coupland 2002, Strayer, 

Oyama, Schultz, Raman, Somers, Más, Panda, Kreps and Kay 2000), and the ztl-1 mutation 

lengthens the period of CAB2 and CCR2 expression under LL conditions (Somers, Schultz, 

Milnamow and Kay 2000). However, the phenotypes of clock-altered plants are commonly 

found to be different or even opposite although these plants have same internal rhythms 

(Nagel and Kay 2012, Niwa et al. 2009), indicating that internal rhythms defined by the 

expression of a single reporter construct in a single tissue might not fully explain the complex 

traits regulated by the circadian clock.  

Most insect-pollinated flowers have evolved special traits to attract pollinators (Raguso 

2004), including the ability to synchronize flower rhythms with times when pollinators are 

active (van Doorn and Van Meeteren 2003). In nature, N. attenuata flowers produce morning- 

and night-opening flowers, which are synchronized with day-active or night-active pollinators, 

respectively (Kessler, Diezel and Baldwin 2010). The downward-facing movement of N. 



Chapter 4 – Manuscript II 
 

47 
 

attenuata flowers likely prevents nectar from drying up during the day in its native habitats, in 

particular the Great Basin Desert, Utah, and the upward-facing movement might increase the 

accessibility of M. sexta moths during the night. In this study, we show that the conserved clock 

components regulate the circadian rhythms in flowers, which sustain the pollination services 

mediated by insects for many wild plants as well as in domesticated crops (Potts et al. 2010).  

We conclude that the circadian clock in flowers is the “battery” that makes the hands of 

Linnaeus’s multi-species “flower clock” tick. 

 

EXPERIMENTAL PROCEDURES 

Plant growth conditions 

We used Nicotiana attenuata Torr. Ex. Wats (Solanaceae) plants (30st inbred 

generation), which originated from a population in Utah. Seeds were sterilized and germinated 

on Petri dishes with Gamborg’s B5 media as described in Krügel et al.(55). Petri dishes with 30 

seeds were kept under long-day conditions (LD, 16h light and 8h dark) in a growth chamber 

(Percival, Perry, Iowa, USA) for 10 days, and seedlings were transferred to small pots (TEKU JP 

3050 104 pots, Pöppelmann GmbH & Co. KG, Lohne, Germany) with Klasmann plug soil 

(Klasmann-Deilmann GmbH, Geesten, Germany) in the glasshouse. After 10 days, plants were 

transferred to 1L pots. The glasshouse growth conditions are described in Krügel et al. (55). For 

the light-dark and constant light treatment, two growth chambers (Microclima 1000, Snijders 

Scientific, Netherlands) were maintained at similar humidity and temperature conditions with 

the glasshouse conditions. To measure hypocotyl length, seedlings were grown on vertically 

oriented agar plates under dim light conditions for 10 days.  

The silencing of NaLHY, NaTOC1, and NaZTL in N. attenuata 

A specific fragment of NaLHY (NCBI accession number JQ424913), NaTOC1 (JQ424914) 

and NaZTL (JQ424912) was independently inserted into the pSOL8 (for NaTOC1 and NaZTL) and 

pRESC8 (for NaLHY) transformation vectors as an ir construct driven by the CaMV 35S promoter 

(56). These vectors were transformed into N. attenuata WT plants using Agrobacterium 
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tumefaciens-mediated transformation, and diploid transformed lines were selected as 

described in Gase et al. (56). Homozygosity was confirmed in T2 plants by hygromycin 

resistance, and selected lines were transferred to the glasshouse for further analysis. 

Transformed WT plants with an EV were used as controls for characterizing the transgenic lines. 

Gene expression levels of each silenced line were determined by qPCR from rosette leaf tissues 

of selected T2 plants collected at ZT0 for irLHY, and at ZT12 for irZTL. Total RNA was extracted 

using the TRIzol reagent (Invitrogen) and 1 µg of total RNA of each sample was used to 

synthesize a single strand cDNA with reverse transcriptase (Fermentas). Quantitative real-time 

polymerase chain reaction (qPCR) was conducted with a Stratagene MX3005p instrument and 

SYBR Green kit (Eurogentec). The sequences of primers used for qPCR (NaLHY-F, 

CACTCTTTTCAAGGAAGGTG; NaLHY-R, GTCGAAGGTGTTACAAGAGC; NaTOC1-F, 

ATCGTAGAACGGCAGCACTT; NaTOC1-R, TCACAAACTGTCCCCTCACA; NaZTL-F, 

CCCTATTGACTCGCTTCTGC; NaZTL-R, GCCAAGGACTTCTTCAGCAC; NaCAB2-F, 

GCCGGAAAGGCAGTGAAAC; NaCAB2-R, ACCGGGTCTGCAAGATGATC) were designed by 

Geneious (Version 5.7.7, http://www.geneious.com). Finally, we selected two independent 

lines of the clock-silenced lines: irLHY404, irLHY-406, irTOC1-205, irTOC1-212, irZTL-314, and 

irZTL-318. All data shown in main figures were derived from irLHY-406 and irZTL-314 and the 

data from irLHY-404 and irZTL-318 were shown in Fig. S5. 

Measurements of diurnal rhythms in flowers 

Flower position was recorded at 1 h acquisition intervals using a time-lapse imaging 

setup, composed of a digital camera IXUS 400 (Canon, Tokyo, Japan) and its remote control 

software ZoomBrowser v5.6 (Canon, Tokyo, Japan). Selected flowers in photos were analyzed 

using the software Image Tools v.3.0 (UTHSCSA) and Tracker v.4.72 (Cabrillo College). Flower 

angles were measured with reference to the horizontal axis. Flower opening was measured 

using excised flowers with 6 to 12 biological replicates for each measurement. Photos were 

taken every 30 min using a time lapse imaging setup. To quantify the opening, the inner 

distance between opposite lobes was measured in pixels and converted to millimeters.  
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BA emission from flowers was measured using a portable gas chromatograph, z-NoseTM 

4200 (Electronic Sensor Technology, Newbury Park, CA) in real time. To make a headspace trap, 

50mL plastic tubes (Falcon Plastics) were cut in half, and the upper parts with a cap were used. 

A single hole was made in a cap to inject a needle into a headspace of flowers.  

Analysis of flower rhythms and statistical test  

Rhythmic parameters (period, phase, amplitude) were measured using the ARSER 

algorithm (57), which was designed to identify circadian rhythms in gene expression. To detect 

rhythms in expression data, ARSER first removes any linear trends from the data and then 

determines the period of the expression data. Finally, ARSER provides four rhythmic 

parameters: period, phase, amplitude, and mean, using harmonic regression analysis. To 

calculate amplitude of WT flower movement in plants under LD and LL conditions, flower angle 

data were divided into three parts (first, second, and third day) and time-series data in each 

part were concatenated before ARSER analysis. To measure the period and the amplitude of 

the clock-silenced lines, flower angle data from first and second day were used. After 

measuring period and amplitude of each flower by ARSER analysis, mean (±SE) values of each 

clock-silenced line were calculated. 

All statistical tests were performed using R 2.12.1 (http://www.r-project.org/) and R-

Studio (Version 0.96.316, http://www.rstudio.com/).  
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Figure Legends 

 

Figure 1. Silencing NaLHY and NaZTL alters an internal rhythm in seedlings. (A) Transcript accumulation 

of CAB2 in seedlings of EV, irLHY, and irZTL grown under 12 h light and 12 h dark conditions and then 

exposed to constant light (LL) conditions. Seedlings were harvested every 4 h for three days. The ratio to 

average was calculated by dividing the average transcript levels at the each time point by the average 

levels of the same transcript across all time points. Gray boxes indicate the subjective dark period of LL 

conditions. (B) Mean (±SE) length of hypocotyl in EV, irLHY, and irZTL seedlings grown under the dim 

light conditions. LHY, LATE ELONGATED HYPOCOTYL; ZTL, ZEITLUPE; EV, plant transformed with the 

empty-vector used to generate transgenic lines; irLHY, NaLHY-silenced line; irZTL, NaZTL-silenced line; 

CAB2, CHLOROPHYLL A/B BINDING PROTEINS 2. 
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Figure 2. N. attenuata LHY and ZTL regulate flower opening. (A) Flower opening in wild-type N. 

attenuata grown under LD conditions and exposed to LL conditions for 4 days and 6 days. (B) Mean (±SE) 

distance between petal junctions on corolla limbs of EV, irLHY, and irZTL plants grown under LD 

conditions. LD, 16 h light and 8 h dark; LL, constant light. 
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Figure 3. N. attenuata LHY and ZTL regulate attractive floral volatile, benzyl acetone (BA) emission from 

flowers. (A) Mean (±SE) levels of BA emission from wild-type plants under LD and LL conditions. We 

exposed LD-grown flowering plants to LL condition for 24 h and measured BA emission using a z-NoseTM 

instrument for real time measurements. (B) Mean (±SE) levels of BA emission from flowers in EV, irLHY, 

and irZTL plants grown under LD conditions. LD, 16 h light and 8 h dark; LL, constant light. 
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Figure 4. N. attenuata LHY and ZTL regulate vertical movement in flowers. (A) Mean (±SE) angles of 

flowers in N. attenuata wild-type plants under LD and LL conditions. Flower movement is initiated in the 

morning of the first-opening day and repeated over 2-3 days. Flower photos in (A) were taken at 6 

different times in a day and merged after removing background colors using Adobe Photoshop. (B) 

Mean (±SE) angle of flowers in EV, irLHY, and irZTL plants grown under LD conditions. LD, 16 h light and 

8 h dark; LL, constant light. 
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Figure 5. NaLHY and NaTOC1 transcript expression in corolla limbs and pedicels of EV, irLHY, and irZTL 

plants. (A) Mean (± SE) levels of transcript accumulation of NaLHY in corolla limbs and pedicels of EV and 

irZTL. (B) Mean (± SE) levels of transcript accumulation of NaTOC1 in corollas and pedicels of EV, irLHY, 

and irZTL. 
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Supporting information 

 

Figure S1. Silencing efficiency of irLHY and irZTL lines. Mean (± SE) levels of transcript accumulation of 

NaLHY and NaZTL in irLHY and irZTL lines, respectively. Plants were grown under 16 h light and 8 h dark 

conditions, and leaf samples were collected at ZT0 for irLHY, at ZT12 for irZTL lines. WT, wild-type; ZT, 

zeitgeber time. 
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Figure S2. Protein alignment of CAB2 orthologs in N. attenuata and A. thaliana. Full-length amino acid 

sequences were aligned using the Geneious software V5.7.7 (www.geneious.com). TAIR accession 

number of A. thaliana CAB2 (AtCAB2) is AT1G29920. CAB2, CHLOROPHYLL A/B BINDING PROTEINS 2. 

 

Figure S3. Flower opening and closing under constant light conditions. Mean (±SE) distance between 

petal junctions on corolla limbs of wild-type plants under constant light conditions. We exposed LD-

grown flowering plants to LL condition for 24 h and measured flower opening/closing. A gray box 

indicates the subjective dark period of LL conditions. 
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Figure S4. Floral phenotypes in irTOC1 lines. We measured flower opening, benzyl acetone (BA) 

emission, and flower angles of irTOC1 lines as described in Materials and Methods. Silencing efficiency 

of irTOC1 lines was shown in Yon et al.(25). 
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Figure S5. Floral phenotypes in two independent lines of irLHY and irZTL. We measured flower opening 

and flower angles of two independent lines of the clock gene-silenced lines: irLHY404, irLHY-406, irZTL-

314, and irZTL-318, as described in Materials and Methods. 
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Abstract 

Ecological interactions between flowers and pollinators are all about timing. Flower 

opening/closing and scent emissions are largely synchronized with pollinators’ active time, and a 

plant circadian clock regulates these rhythmic traits. Despite its importance for outcrossing, the 

hypothesis that the circadian clock increases the reproductive success by regulating floral 

rhythms is rarely tested. To test this, we examined the outcrossing success of the wild tobacco 

Nicotiana attenuata flowers, which rhythmically open, emit scents and move vertically to 

interact with nocturnal hawkmoths and also day-active pollinators, such as hummingbirds. Under 

both glasshouse and field conditions, we examined the outcrossing success of phase-shifting 

flowers generated by silencing circadian clock genes. The results demonstrated that the circadian 

rhythms in N. attenuata flowers influence the successful outcrossing and the choice of 

pollinators as well. 
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INTRODUCTION 

In the 18th century, Carl Linnaeus noticed that many flowers open or close at specific 

times of a day, and he designed a garden known as the “flower clock” with these flowers 

(Somers 1999). Special diurnal rhythms in flowers, including opening/closing and scent 

emissions, have been evolved to synchronize with pollinators’ active time for successful 

outcrossing (Fründ et al. 2011). For instance, the wild tobacco Nicotiana attenuata, which 

inhabits the Great Basin Desert in USA, produces two kinds of self-compatible flowers to 

interact with different pollinators: night-opening flowers for nocturnal hawkmoths (e.g. Manduca 

sexta and M. quinquemaculata) and morning-opening flowers for day-active pollinators such as 

hummingbirds (Kessler et al. 2010). Approximately 90% of N. attenuata flowers opens at night 

and emits benzyl acetone (BA), the main floral volatile compound that attracts nocturnal 

hawkmoths (Kessler et al. 2008), and the flowers close by the next morning (Kessler et al. 2010). 

These floral rhythms are repeated for two or three days. The relatively small number of flowers 

partially opens in the morning with reduced BA emissions and fully opens in the next night 

(Kessler et al. 2010). In addition, N. attenuata flowers show a special diurnal rhythm: flowers 

face downward in the morning and upward during the night.  

 To examine the ecological relevance of the diurnal rhythms in flowers, the choice of a 

proper model system with the physical or genetic manipulation of floral rhythms is essential 

(Resco et al. 2009). Several experiments under constant conditions suggested that an internal 

clock, which is called a circadian clock, regulates diurnal rhythms in flowers (Sweeney 1962; 

Hoballah et al. 2005). The plant circadian clock has been identified in a model plant species, 

Arabidopsis thaliana (Nagel & Kay 2012), and these clock components are highly conserved in 

many plant species (McClung 2013). The two morning elements of Arabidopsis clock, LATE 

ELONGATED HYPOCOTYLE (LHY) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1) 

negatively regulate the transcription of the evening element, TIMING OF CAB EXPRESSION1 

(TOC1). In the evening, induced TOC1 protein inhibits LHY and CCA1 expressions, forming the 

core negative feedback loop of the clock. Another clock component, ZEITLUPE (ZTL) 

physically binds and degrades TOC1 protein in a light dependent manner (Kim et al. 2007) (Fig. 

S1). Altering the expression of the clock genes produces arrhythmic or dysrhythmic plants, 

which show many developmental (Adams & Carré 2011) and metabolic (Wang et al. 2011a; 
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Goodspeed et al. 2012) defects. However, to our knowledge, there is no report of which clock 

components regulate floral rhythms. Moreover, the most of the clock-altered plants were 

generated from the species which show little interaction between its flowers and pollinators.  

Previously we identified the homologous genes of the core clock components, LHY, 

TOC1, and ZTL in N. attenuata (Yon et al. 2012). To manipulate diurnal rhythms in flower, we 

silenced these clock genes in N. attenuata by transformation with gene-specific inverted-repeat 

(ir) constructs and found that silencing the clock genes alters floral rhythms in N. attenuata (Fig. 

1)(Yon et al. 2012). The first objective of this study was to demonstrate the effects of altering 

floral rhythms for outcrossing mediated by M. sexta. The second was to test advantages and/or 

disadvantages of altering floral rhythms under field conditions, where several simultaneous 

interactions shape different fitness outcomes. We assessed the fitness by measuring the capsules 

and seed set produced from the emasculated flowers. Our results demonstrated that altering floral 

traits results in the change of the outcrossing rate in N. attenuata and the change of pollinators. 

 

MATERIAL AND METHODS 

Plant growth conditions 

We used Nicotiana attenuata Torr. Ex. Wats (Solanaceae) plants (30st inbred generation) 

and isogenic silenced transformed plants, originated from a population in Utah. Seeds were 

sterilized and germinated on petri dishes and kept under long-day conditions (LD, 16h light/ 8h 

dark) in a growth chamber for 10 days until transferred to pots in a glasshouse as described in 

Krügel et al. 2002. 

In the field, fifteen days old seedlings were transferred into hydrated 50-mm peat pellets 

until adapted to the environmental conditions in the Great Basin Desert. And later we 

transplanted them to an irrigated plot at the Lytle Ranch Preserve as described in Kessler et al. 

2012. The release of transgenic plants was carried out under Animal and Plant Health Inspection 

Service releases 11-350-101r and 12-333-101r. 

Floral traits of the clock-gene silenced lines in N. attenuata 
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NaLHY (NCBI accession number JQ424913), NaTOC1 (JQ424914) and NaZTL 

(JQ424912) was independently silenced by the transformation of gene-specific inverted repeat 

(ir) construct driven by the CaMV 35S promoter (Yon et al. 2012). Two independent T2 and T3 

homozygous lines (irLHY404, irLHY-406, irTOC1-205, irTOC1-212, irZTL-314, and irZTL-

318) were used to characterize diurnal rhythms in flowers (Yon et al. unpublished data) and all 

pollination results of this study were derived from irLHY-406, irTOC1-205, and irZTL-314. All 

floral traits of the clock-altered lines shown in Fig. 1 were summary of the result from our 

previous work (Yon et al. unpublished data). 

Cross pollination experiment 

To measure outcrossing rates in the clock-silenced lines, plants with emasculated flowers 

were transferred to a table covered with a green mesh tent of 1.8m height x 1.6m width x 6m 

length in a glasshouse. Fully developed flowers in LD-grown plants were emasculated in the 

early morning to avoid self-pollination. We chose experimental days when there were no other 

flowering N. attenuata plants in the same glasshouse cabin except from our experimental plants. 

For the no-competition experiment, five flowers on five plants per each line (EV, irLHY, 

irTOC1, and irZTL) were emasculated in the morning and exposed to two M. sexta moths with 

10 WT plants as a pollen donor for one night. For the paired-competition experiments, five 

flowers on four EV plants and five flowers on four of each clock-silenced line (irLHY, irTOC1, 

and irZTL) were emasculated in the morning and competed for the pollination services of two M. 

sexta moths with 10 WT pollen donor plants for one night. EV and clock-silenced plants were 

arranged in a pair of one plant per genotype with 30 cm apart. The number of matured capsules 

and seeds were counted after ripening. 

Field pollination experiments were conducted in June 2012 and June 2013, on the field 

plot at the Lytle Ranch Preserve (Santa Clara, Utah, USA). Flowers were emasculated before 9 

am to prevent self-pollination. In the 2012 season flowers were enclosed in mesh ventilated 

plastic cups and released at next morning after night opening, to be accessible to day-time 

pollinators (mainly hummingbirds). At dusk they were reclosed in their plastic cups to exclude 

the night-time pollinators. In the 2013 season punctured plastic bags fixed on top of bamboo 

sticks by a ring wire were used for covering the flowers in the same time periods. Additionally in 

the 2013 season night-time pollination experiments were conducted, on which the flowers were 
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covered after emasculation, released at dusk for an entire night, and prior dawn they were 

covered to exclude day-time pollinators. Target plants were surrounded by WT as pollen donors, 

to ensure pollen flow in the experimental population. Formed capsules were counted and 

removed prior ripening to avoid seed release. 

Statistical analysis 

The results from capsule number and seed number were statistically analyzed using 

student’s t-test and one-way ANOVA followed by Tukey-HSD post hoc tests, all were 

performed using R 2.15.3 (http://www.r-project.org/). 

 

RESULTS 

N. attenuata flowers maintain an approximately 40° upward position from the horizontal 

during the development (Fig. 1). In the morning of the first opening day, flowers move 

downward to approximately 90° below the horizontal; these flowers return to the upright position 

before dusk, and open (Fig. 1). By the next morning, flowers face down again and close their 

corollas. This vertical movement of flowers is repeated for 2-3 days under long day (LD, 16h 

light and 8h dark) conditions, with diminishing amplitude on the third day. 

Why do N. attenuata flowers show diurnal vertical movement? Both the flight style and 

the construction of the proboscis of M. sexta moths (Fig. 2) (Sprayberry & Suver 2011), a main 

pollinator of N. attenuata, may restrict how the moth accesses the nectar reward of the flowers, 

and so we previously hypothesized that flower positions affect the success of N. attenuata’s 

outcrossing mediated by M. sexta. We previously tested this hypothesis by emasculating flowers 

to prevent self-pollination and fixed them at one of the three different positions (45°, 0° and -

45°) and allowed M. sexta visitation. We found that the emasculated flowers tethered at 45° and 

0° produced 65% and 35% capsules, respectively, from the total of emasculated flowers, and no 

capsules were produced at -45° (Llorca et al, unpublished data).  

With the evidence of the flower orientation importance, in this study we used the clock 

gene-silenced plants to evaluate the ecological significance of floral rhythms in a fine resolution 

and under more natural conditions. In our previous study, we found that silencing circadian clock 
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genes in N. attenuata alters diurnal rhythms in flowers; LHY-silenced (irLHY) plants show 2 h 

earlier diurnal rhythms in flower opening, BA emission, and upward vertical movement than 

those in EV plants, and irZTL flowers show incomplete opening, no BA emission, and weak 

vertical movement (Fig. 1). In contrast, irTOC1 flowers have similar diurnal rhythms compared 

to EV flowers (Fig. 1). We used single (no competition) and pairs (competition with EV) of 

plants in pollen-acceptor experiments (Fig. 3). For the no-competition experiment using a single 

line, we emasculated a total of 25 flowers (5 flowers/plant) on EV, irLHY, irTOC1, or irZTL 

plants and placed plants of a single line in the tent with two M. sexta moths and 10 WT pollen-

donor plants for one night (Fig. 3A). After two weeks, 60% of EV flowers had produced mature 

capsules, and similar outcrossing rates were observed in irLHY and irTOC1, but irZTL flowers 

tended to produce fewer capsules than did flowers in EV (t = 1.84, P = 0.07). Seed numbers per 

capsule did not differ among the lines (Fig. 3A). 

However, when pollinators were given a choice between visiting EV and clock-silenced 

lines, the rates of outcrossing success differed significantly. irZTL plants produced fewer 

capsules than EV plants (Fig. 3B, t = 7.82, P < 0.001). Furthermore, difference in capsule 

numbers of the EV-irZTL pair (Fig. 3B) was larger than the difference in capsule numbers 

between single EV and irZTL plants (Fig. 3A). EV plants in the EV-irZTL pair produced more 

capsules than EV plants in EV-irLHY or EV-irTOC1 pairs. In addition, irZTL line produced 

significantly fewer seeds per capsule (t = 3.42, P < 0.05) than did EV lines in EV-irZTL pairs 

(Fig. 3B). EV- irTOC1 pairs showed no difference either in capsule formation or in number of 

seeds per capsule (Fig. 3B). Unexpectedly, in the EV-irLHY pair, irLHY line produced a 

significantly larger number of matured capsules (t = 7.5, P < 0.001) than did EV, which was the 

opposite outcome compared with the EV-irZTL pair (Fig. 3B). While irLHY produced more 

capsules under competition with EV, there was no significant difference in the numbers of seeds 

per capsule in the EV- irLHY pair (t = 1.28, P = 0.21). 

N. attenuata flowers are also visited by day-active pollinators, mainly hummingbirds or 

minor one of hymenoptera species. To examine whether the changes of floral rhythms affect the 

interaction with day-active pollinators, we performed outcrossing experiments under competition 

conditions over two successive field seasons in 2012 and 2013 in the native habitat of N. 

attenuata. Interestingly, the results showed the opposite trend compared to the tent experiment 
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done with M. sexta moths. In 2012 field season, irZTL flowers produced significantly more 

matured capsules than did EV (t = 3.26, P < 0.01) and irLHY (t = 2.71, P < 0.05) flowers; 0%, 

5%, and 30% of total emasculated flowers were matured in EV, irLHY, and irZTL plants, 

respectively (Fig. 4A). In the 2013 season, irZTL plants produced approximately 20% more 

capsules than EV and irLHY plants, but there was no significant difference among the lines 

(F = 1.29, P = 0.3) or in paired comparisons (EV-irZTL, t = 1.94, P = 0.08; EV-irLHY, t = 0.9, P 

= 0.39) (Fig. 4B).  

We were able to perform pollination experiment with night-active pollinators in the 2013 

field season because of the presence and positive identification of M. sexta moths. In contrast to 

the result from the tent experiment, EV plants produced twice more capsules than did irLHY 

plants (Fig. 4C). EV plants also produced 30% more capsules than irZTL plants (Fig. 4C), while 

irZTL flowers opened completely and emitted low amount of BA in the field conditions 

(unpublished data). But there was no significant difference among the lines (F = 0.87, P = 0.44) 

or in paired comparison (EV-irLHY, t = 1.28, P = 0.23; EV-irZTL, t = 0.65, P = 0.53). 

 

DISCUSSION 

Ecological implication of the circadian clock 

The fundamental concept in chronobiology is that the circadian clock increases the fitness 

of organisms. Therefore, we predicted that disrhythmic/arrhythmic traits in the clock-altered 

flowers reduce the outcrossing success. As expected, outcrossing rates in irZTL plants was 

reduced when irZTL plants competed with EV plants to attract M. sexta moths in a tent (Fig. 

3B). However, irLHY flowers had higher outcrossing rates when they competed with EV flowers 

in a tent (Fig. 3B), while their flower angles, opening, and the amount of BA emission were 

similar to those in EV flowers when M. sexta moths were most active (22 - 23 h) under our 

glasshouse conditions. The possible explanation is that floral volatiles over irLHY plants can be 

accumulated more than EV plants due to the 2 h earlier BA emission from irLHY flowers and 

low airflow conditions in a glasshouse. Alternative hypothesis is that other unmeasured floral 

traits, such as minor floral scents, green leaf volatiles, nectar volume or non-visible UV floral 

pigmentation, may be altered in irLHY flowers. However, this benefit of irLHY flowers was lost 
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in the field (Fig. 4C). Although there is no statistical difference between irLHY and EV plants in 

the 2013 field experiment, irLHY flowers produced 50% less capsules than EV flowers. These 

results suggest that the early “advertisements behavior” in irLHY may increase the visitation of 

unfavorable insects in nature, such as florivores or nectar robbers, which reduce outcrossing 

success (Kessler & Baldwin 2011).  

Interestingly, day-active pollinators visited irZTL flowers more than EV flowers in 

nature, suggesting that the circadian clock regulates floral rhythms as a means of selecting 

pollinators. This could be attained from the upward position of irZTL flowers in a day when EV 

flowers face downward. White corolla limb facing upward may attract more day-active 

pollinators, such as hummingbirds, which normally use visual cue to find flowers. Hymenoptera 

species were observed visiting flowers to collect pollen in the field, but they were not considered 

important pollinators in this experiment because we emasculated flowers for checking the 

outcrossing success. This result from the day-time experiment supports the hypothesis that visual 

stimuli are more important for day-time pollinators (Aizen 2003; Kessler et al. 2010; Clarke et 

al. 2013) in order to find N. attenuata flowers, and a downward orientation is an effective mean 

to reduce the visitation of unwanted pollinators (Fulton & Hodges 1999; Hodges et al. 2004). 

Ecological implication of flower orientations 

Several hypotheses have been formulated about the effect of flower orientation on 

outcrossing. For example, the horizontal or downward orientations of flowers increase pollen 

transfer because pollinators are in contact with flowers for a longer time (Fenster et al. 2009).  In 

addition, the upward orientation of flowers facilitates a multi-directional recognition by 

pollinators despite the reduction of pollen transfer (Ushimaru & Hyodo 2005; Fenster et al. 

2009). Why down? Downward orientation of flowers gives several advantages: it reduces 

susceptibility to florivores (Ashman & Schoen 1994) and nectar desiccation caused by solar 

radiation(Kessler 2012), and it excludes the visit of day-active pollinators (Fenster et al. 2004). 

Sugar concentrations of the nectar in N. attenuata flowers are decreased by the strong sun light 

in the Great Basin Desert (Climate 101 2013), although flowers face downward and close during 

the day (Kessler 2012). If flowers face upward and open during the day, this effect could be 

greater. Other literature shows that the downward orientation of flowers helps to avoid pollen 

wash and nectar dilution due to rain exposition (Tadey & Aizen 2001; Aizen 2003). However, 
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nectar robbing carpenter bees can collect nectar by puncturing the corolla tube at dawn and dusk 

(Kessler et al. 2008), suggesting that the vertical movement alone cannot prevent some degree of 

damages by opportunistic robbers. 

Circadian rhythms in flowers have been developed to interact with mutualist and 

antagonist and also to synchronize with the environmental rhythms in their native habitats. The 

main purpose is to ensure outcrossing services by attracting pollinators in a right time (Jones & 

Little 1983; Harder & Barrett 2006). N. attenuata is an interesting model species to study the 

function of floral rhythms for plant-pollinator interactions, because N. attenuata produces two 

kinds of flowers which show three diurnal rhythms to attract the different types of pollinators 

(Kessler et al. 2010). By manipulating floral rhythms genetically, we clearly show that altering 

circadian rhythms in flowers affect outcrossing success under both lab and field conditions and 

also the choice of pollinators.  
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FIGURE LEGENDS 

 

Figure 1. The circadian clock regulates floral rhythms in N. attenuata. Simple representation of 

(a) vertical movement and (b) aperture of the clock gene-silenced flowers in the first opening 

day. (c) Benzyl acetone (BA) emission trends in relative percentage to the maximum amount of 

BA emission from EV flowers. Inset figure depicts BA molecule. Each color indicates each 

transformed line. All plants were grown under long day conditions (16 h light:8 h dark). LHY, 

LATE ELONGATED HYPOCOTYL; TOC1, TIMING OF CAB EXPRESSION1; ZTL, 

ZEITLUPE; EV, plant transformed with the empty-vector used to generate transgenic lines; 
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irLHY, NaLHY-silenced line; irTOC1, NaTOC1-silenced line; irZTL, NaZTL-silenced line. 

These data are the summary of our previous work (Yon et al., unpublished). 

 

Figure 2. Manduca sexta hawkmoth approaching, probing and foraging on N. attenuata EV 

flowers facing naturally upwards. Photo sequence taken in glasshouse conditions at ca. 22 h with 

a wild-camera Snapshot Mini (Dörr, Germany), equipped with a PIR sensor camera and IR flash. 
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Figure 3. The circadian clock coordinates outcrossing success in N. attenuata. (a) Flowers of 

EV, irLHY, irTOC1, and irZTL lines were emasculated and exposed to two M. sexta moths for 

one night with 10 WT pollen donor plants. (b) In the competition experiments, one of the clock 

gene-silenced lines were paired with EV and competed for the pollination services of two M. 

sexta moths and 10 WT pollen donor plants. Mean (±SE) percentage of mature capsules per plant 

and mean (±SE) number of seeds per capsule resulting from outcrossing by M. sexta moths in 

emasculated flowers. Asterisks represent significant difference between EV and clock gene-

silenced lines (** = P <0.01, Student’s t-test). 
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Figure 4. Alteration of the circadian clock confers time shift advantage in nature. (a) Flowers of 

EV, irLHY and irZTL lines were emasculated and exposed during day time after first opening 

night, with several surrounding WT pollen donors. Mean (±SE) percentage of mature capsules 

per plant and mean (±SE) number of seeds per capsule resulting from outcrossing by M. sexta 
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moths in emasculated flowers. Asterisks represent significant difference between EV and clock 

gene-silenced lines (** = P <0.01, Chi square test of independence). 

 

SUPPORTING INFORMATION 

 

Figure S1. Simplified clock core components interaction. LHY and TOC1 genes inhibit each 

other transcription at different times of the day (solid black lines), whether ZTL proteins targets 

TOC1 proteins for degradation at night time (dashed black lines). 
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Chapter 6 – Discussion 
 

The daily rotation cycles of Earth had dictated the living rhythm of organisms, adapting 

to available times to acquire energy and nutrients, two processes not necessarily coupled on 

time in the photosynthetic organisms. The output of endogenous clocks has been observed 

with detail for some centuries. An example is the flower clock garden of Linnaeus. Ever since 

the deduction of circadian clock components and mechanism it has been studied in several 

organisms, with different findings, like animals that have a centralized pacemaker, unlike 

plants, or the case of unicellular organisms with more than a single internal clock (Roenneberg 

& Mittag 1996). Although several clock mutants have been identified in species of the plant 

kingdom, its use for understanding the reproduction dynamics that are established with 

animals have been largely ignored. This is of particular interest to conservation ecology and 

crops pollination given the actual deterioration context, where pollinator species and 

assemblages are lost at fast pace, in part to the climate pattern change that causes species and 

habitat shifts. The comprehension of how these dynamic interactions are regulated by the inner 

plant rhythms would be a strong asset to analyze poor reproduction and propagation of plant 

species in their original or new habitats. In this work, with the results from Manuscript II and III, 

the importance of the regulation and synchronization of the floral traits in order to interact 

with pollinators is presented and discussed. 

 

Different clock in species 

Since the first observations and descriptions of an endogenous clock in plants, 

considerable progress has been made in describing the components and mechanisms that 

make the circadian clock work in plants. The currently accepted clock model in plants was 

developed by extensive studies in the model plant A. thaliana due to its manipulation easiness 

and relatively small genome. Nowadays, the clock has been described in several photosynthetic 
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species, sharing the same components at the higher plants taxa but not necessarily on earlier 

photosynthetic taxa (McClung 2013). Therefore, assuming a uniform circadian clock model will 

be misleading, already considering the diversity within the evolutionary Plantae kingdom. 

A more suitable assumption will be to consider a variety of evolutionary circadian-clock 

models, which despite sharing features as closer they are in evolutionary time, will not 

necessarily share the same regulation and phenotypic output. This is evidenced by the number 

of clock components that are replicated in some species. For example, the CCA1-like gene is so 

far not commonly found in monocots, or the case of multiple LHY-like genes coincidences in 

poplar and chestnut (Ramos et al. 2005; Takata et al. 2009). Thus far CCA1/LHY like genes have 

not been found in taxa not belonging to the land plants. Given that, it can be assumed that it 

appeared after land colonization and then it duplicated to separate in one of each or both 

functional genes. Evidence can be found in the moss Physcomitrella patens, which presents two 

CCA1-copies (Okada et al. 2009), but not a defined LHY copy. 

In the case of N. attenuata, as shown in Manuscript I, only one LHY gene copy was 

identified, and up to now not a copy of CCA1. The normal oscillation of the circadian clock in N. 

attenuata suggests that the presence of a CCA1 copy is not necessary for a functional 

endogenous clock oscillation. This normal clock function with only one of both genes can be 

explained by the fact that CCA1 and LHY have overlapping time keeping functions, as already 

shown in other organisms that work normally with one copy.  

Given the different clock components composition in land plants and lower taxa, it is 

apparent to assume a differential clock output depending on the species group, where different 

pathways will have differential regulation in response to the plant metabolic needs. And 

additive factor in a differential clock output will be the environmental conditions on which the 

plant species thrive. Because if a species is present in a continuous habitat range, the 

environmental conditions change between localities imposing different resources and 

interactions, which imply a variety of time restrictions (Hut et al. 2013). This has been observed 

in cross latitudinal studies in A. thaliana. An example of this is the flowering time that changes 

between ecotypes, as each one is adapted to a particular photoperiod ranging from 
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Mediterranean to circumpolar habitats (Hancock et al. 2011). Under this view it’s possible to 

expect that N. attenuata accession originated from Utah has a different flowering time 

compare to accessions grown in other habitats.  

Similar variation was demonstrated using clock mutants from Arabidopsis accessions 

that do not show delayed flowering, like the case of toc1-1 mutant, where C24 present late 

flowering under long day conditions but Columbia and Landberg accessions do not(Somers et 

al. 1998). In Manuscript I it was shown that irTOC1 line has a delayed flowering time, but on 

different genetic backgrounds different results would be probable. It is expected that other N. 

attenuata accessions will have differential clock plasticity of flowering time and different clock 

mutant responses depending on their environmental conditions, like latitude or altitude, which 

affect the photoperiod and temperature adaptations. 

 

Differential clock in tissues 

Circadian clocks are not only transcriptional oscillations, but also metabolic, as it was 

shown with peroxiredoxins, which are highly conserved across species and works under 

different species clock models (Edgar et al. 2012). As it was shown in a previous study, N. 

attenuata has different oscillatory rhythms between the leaf and root tissues, where different 

sets of genes are circadian regulated, and the same is observed in metabolites rhythms (Kim et 

al. 2011). Different plant tissues require different regulations as each responds to specific 

purposes and functions, and the environmental conditions are also different if compared the 

above- and underground tissues. In the case of aboveground tissues, its purpose can be 

separated by organ types, and between vegetative and reproductive tissue. The first is in 

charge of producing photosynthates and give structural support. The second accounts for the 

seed production. The last involves a set of different tasks such as attracting pollinators and/or 

seed dispersal depending on the species.  

As described in the results of Manuscript II, N. attenuata pedicel and corolla tissues 

keep the same peaking time of NaLHY, but the corolla tissue shows a slower NaLHY transcript 
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decrease rate, which differentiates it from the pedicel, a green tissue, which has the same 

decrease profile as the leaf tissue. An evidence of tissue independence was obtained while 

performing a trial experiment, on which N. attenuata rosette leaf tissue was covered with 

aluminium foil, the stalk leaves were removed and only the flowers were left exposed to light. 

During the five-day experiment the floral traits of young and old flowers kept their circadian 

rhythms independently of the continuous dark conditions from the vegetative tissue. This can 

be possible because photoreceptors are located in all plant tissues, which perceive the light 

cycles and provide the gating signals to entrain the circadian clock in situ(Yakir et al. 2011; 

Wenden et al. 2012). As demonstrated by studies on Arabidopsis, where different tissues were 

entrained at different phases or free running conditions, leaves and stalks of a single plant 

could be differentially set even within a same organ, such as a leaf between its tip and base 

(Thain et al. 2002; Yakir et al. 2011).  

Considering the circadian clock independence of the plant tissues, it is possible to 

consider that each of these clocks have slight changes to synchronize the metabolic functions 

related with their function. The flower opening and its related BA emission at dusk could be 

associated by a trigger involving proteins regulated by TOC1 with peak at subjective dusk and 

slow transcript level decrease. Thus, mathematical models and tissue specific microarray data 

will be required in the future to correlate and analyze this association. So far the time of 

opening and BA emission can be associated with TOC1 through the use of clock-silenced lines, 

where the alterations of TOC1 peaking time cause variations in the floral traits timing, as seen 

in Manuscript II. 

 

Single circadian clock components effects 

The research in N. attenuata has lead overtime to the development of a molecular 

biology toolbox implementing reverse genetics approaches, such as gene silencing by inverted 

repeat (ir) technique. This approach coupled with a developed analytical platform allowed the 

floral phenotypic analysis of the circadian clock components. 
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The silencing of single circadian clock components had differential effects on the floral 

traits and elongation/flowering time of the transformed lines. Nevertheless, as in Arabidopsis 

there are not extensive works studying the effect on floral traits, this study in N. attenuata adds 

significant evidence on the differential regulation of single clock components.  

The silencing of clock components had a strong effect on the opening time. The afore 

mentioned association of flower opening and TOC1 expression can be observed with irLHY line, 

where the opening time starts earlier at 14 h matching its peak expression of TOC1. Also the BA 

emission was set in advance at 16 h, correlating with the early corolla limb expansion, i.e. 

opening. This couldn’t be studied through the irZTL clock-silenced lines in the glasshouse 

despite it had a slight earlier accumulation of TOC1 transcript in the corolla limb tissue. The 

reason is a partial flower opening; hence the BA emission cannot be correlated with the TOC1 

transcript earlier accumulation as both factors cannot be separated. Instead, under field 

conditions irZTL flowers still emit low BA despite a fully open corolla; in this context, it was 

possible to separate opening from scent emission, so it is possible to suggest a control of ZTL 

through TOC1 over the BA emission.  

The importance of TOC1 as a direct regulator of flower opening and BA emission is less 

supported by observing the irTOC1 flower phenotype, which doesn’t present any strong 

deviation from the EV phenotype. Even so its absence causes a slight earlier opening, but more 

interestingly it extends the BA emission period by two extra hours in the night. The extended 

BA emission could be explained if TOC1 acts as a repressor of the genes involved in shutting 

down the emission. It is possible that other PSEUDO-RESPONSE REGULATOR genes participate 

in the BA regulation, possible with redundant functions of TOC1, like in the case of PRR7 and 

PRR9. These genes are proved to have partial redundancy in temperature responsiveness and 

are also regulated by ZTL (Salome & Mcclung 2005; Han 2006; Yamashino et al. 2008). 

This type of functional redundancy is not observed in irZTL lines, which show an 

arrhythmic flower phenotype given that the opening is incomplete, BA is not emitted, and 

vertical movement is impeded. It is proven in Arabidopsis mutants, that LKP2 and FKF1 have 

partial redundancy over ZTL functions. Even so, only a triple mutant of these three genes in 
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Arabidopsis could produce a transcriptional arrhythmic plant in several circadian markers 

(Baudry et al. 2010). This evidence suggests that in N. attenuata several ZTL functions do not 

have a partial redundancy, at least in flowers, since the clock output is severely disrupted. This 

leads to propose that a ZTL protein interacts with many more targets beside the well-known 

interaction with TOC1, PRRs genes and other genes. Further experiments should be conducted 

on proteomic arrays to test how broad ZTL interaction is in other metabolic pathways.  

The comparative observations between glasshouse and field conditions showed that 

flower aperture is not only regulated by the circadian clock, but also through light signaling, 

because irZTL deficient flower opening was restored under the strong light intensity in the field 

plot at Utah. Additionally, the WT flower opening results under free running conditions showed 

a deficient closing compare to normal light/dark conditions. These two results allow to 

hypothesize that the flower aperture is partially circadian regulated because it requires light 

entrainment for tuning the correct clock cycle. 

Elongation and flowering time consequences of silencing single clock components on 

glasshouse conditions were only observed in irTOC1 lines as depicted in Manuscript I, not on 

irZTL or irLHY lines. The results of these last lines do not match with the observed phenotypes 

of A. thaliana Columbia accession, like previously exemplified with Arabidopsis toc1-1 mutant 

accession. This can be due to different genetic backgrounds of the Utah ecotype, the unknown 

gene redundancy, or a different clock regulation. It could be studied by crossing different clock 

deficient lines or using different ecotypes to observe the genetic importance of each 

component combination during the plant development towards reproductive stage. In 

perspective, it will be important to study and compare the plant development time by stages 

between glasshouse and field conditions because the strong entraining signals and abiotic 

stresses in the field make clock periods differences more visible, leading the plant to 

compromise its survival and reproduction, depending on the advantages of their clock. 
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Relevance of Nicotiana attenuata floral traits 

The genus Nicotiana has developed a pollination interaction with the functional group 

of hawkmoths-hummingbirds since all of their described species have a tubular corolla with 

nectaries in the bottom that produces a nutritious reward. Either a hawkmoth or a 

hummingbird is equipped with a long collector organ to reach the bottom nectar, probiscides, 

and tongue, respectively. Color and size varies among Nicotiana species, as it is expected from 

an optimal foraging theory perspective because, despite the adaptations for a same functional 

group, the pollinator members vary in size and activity time and periods over latitudinal and 

altitudinal gradients that the Nicotiana species inhabit over three continents: America, Africa 

and Oceania(Goodspeed 1954). 

Similar flower specializations are the scent emissions that several studies have 

measured, and then identified the major scents in certain Nicotiana species (Loughrin et al. 

1991; Kolosova et al. 2001; Raguso et al. 2003). Unlike N. attenuata, other genus species major 

scent is benzyl alcohol, instead of benzyl acetone, but these species are also mainly pollinated 

by hawkmoths. This difference would require a hawkmoth approach to solve the attractiveness 

of both compounds and define the importance of the distinctiveness of BA. 

 

Adaptation of vertical movement 

Following Sttebin’s principle of a trait preceding the appearance of an interaction, the 

mutations for vertical movement should have appeared first, but its circadian control is rather a 

question. Given the marked night-time outcrossing results between clock-silenced lines in the 

field, the circadian control over this trait is necessary for a successful reproduction. Since the 

vertical movement is not reported in other Nicotiana species, it can be assumed as a novel trait 

because the pedicel tissue initially developed uniformly, without producing any movement by a 

time regulation (Cortes Llorca et al. 2013). 

Thus, a time separation of tissue growth will have lead to the movement, which poses 

the question if this was originally guided by the internal rhythms, or uncoupled and later 
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controlled by the clock. The resemblance of the pedicel tissue transcripts for clock genes with 

the leaf tissue and the results from irZTL movement disruption will suggest that it originally 

started under clock control. An interesting question is if the growth difference that produces 

the movement started in its current pattern or inverted. It can be answered by comparing to 

the observations of Nicotiana acuminata movement in the glasshouse, which have an inverted 

vertical movement, not bending downwards but upwards. As we have two related species with 

inverted movement direction with a circadian pattern, it is more plausible that the original trait 

movement, phase, and direction appeared as it is currently observed. This is supported by the 

evidence that the clock silencing in N. attenuata doesn’t invert the movement but shifts it or 

reduces it.  

What can be argued is the amplitude and range of the vertical movement, as this might 

adapt overtime depending on the selective pressures of the habitat. Under this assumption, the 

amplitude can be a plastic trait, which adapts depending on the availability of pollinators that 

select those with stronger and marked different orientation between day and night. If in the 

original habitat both hawkmoths and hummingbirds were present, those that provide a better 

pollination service will have exerted a stronger selection, especially in the case of the 

hawkmoths that would have driven the amplitude selection towards an upward orientation at 

night. This would have exerted a negative pressure over those without a lower orientation 

during the day. The specimens with short amplitude would have allowed an easier recognition 

of the flower by the hummingbirds, but if their outcrossing output was lesser than the one 

mediated by hawkmoth, then it wouldn’t have been selected in the Utah ecotype. In 

perspective, complementary studies should measure pollen removal and transfer to directly 

evaluate the pollinator efficiency. 

 

Pollinators 

The flowers of N. attenuata have a white color that is agreed by several studies to be 

attractive for hawkmoths (Sprayberry & Suver 2011). It is preferable for hawkmoths to fly under 

low light to avoid predation, e.g. bats, on which case the olfactive stimuli plays a strong role.  
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The emission of a floral bouquet in time plays a strong role in attracting Manduca 

hawkmoths to the flower sources. As it was observed in the field, the lack of scent emission 

ends up in reduced pollination service by Manduca spp., demonstrated by the lack of BA in 

irZTL flowers. The importance of a correct emission time is crosschecked with the irLHY flowers, 

where an earlier strong emission did not attract them. The presence or activity period could not 

be disentangled with the performed experiments, since it was not possible to know if Manduca 

hawkmoths were present at a given time in the plot, either active or inactive, as they could only 

be identified by visual contact when flying. An initial hypothesis of the high outcrossing results 

at glasshouse conditions with irLHY flowers was that in a contained space with low airflow the 

scent emission could induce an earlier visitation by M. sexta. Given the low outcrossing results 

at field conditions and the lack of any observed M. sexta at dusk, it can be concluded that an 

earlier scent emission does not stimulate the hawkmoths to start its activity period at earlier 

time, independently of proximity or activity period. 

Since N. attenuata flowers reach their upward orientation before dusk, the original 

adaptation would have been for pollinators active from dusk onwards. If not, the chosen 

flowers by selection would have had a longer clock loop that synchronizes better with the 

currently more efficient pollinator at Utah, Manduca sexta hawkmoth. From the corolla 

opening point of view, this one reaches its full opening after the upward orientation is 

achieved, and even later the peak of BA emission. 

At the field station in Utah, the hawkmoth Hyles lineata is also present. It acts as one 

pollinator of N. obtusifolia, visiting the flowers before and after dusk, time after which it is 

infrequent and can also act as N. attenuata pollinator(Kessler et al. 2013). This outcrossing 

viability with both pollinators suggests an old interaction with a single pollinator with an earlier 

and longer period of activity or a pollinator assemblage. At the present time, it has been 

revealed that several long considered specialized flowers depend quite much on pollinator 

assemblages (Waser et al. 1996). This could be the case of N. attenuata with regard to 

hawkmoths, because not only Manduca spp. will be preferred, but a wider range of hawkmoths 

with different activity periods prior dusk onwards. The attraction of most efficient pollinators 
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could work through the floral traits sequence display (upward orientation->opening->scents) 

without stopping the attraction of other hawkmoths that can respond to traits separately. A 

plasticity to attract several hawkmoths and also graduate for the most efficient will be a good 

adaptation in a wider range of habitats with different hawkmoth assemblages. These remain to 

be tested, for example, by transplanting ecotypes and studying the pollinator community 

according to the floral traits. 

Hummingbirds are the main day-time pollinator considered in this study because it 

feeds on nectar, independently of the pollen presence. As previously demonstrated by Kessler 

et al. (Kessler et al. 2010), Archilochus alexandri  is the principal day-time pollinator, which 

preferentially feeds on morning open flowers because the nectar is not consumed overnight by 

hawkmoths. In the field, an altered clock was favored by day-time pollinators, possibly for two 

causes: the lack of BA emission at night, which is a main attractant of hawkmoths, and the lack 

of vertical movement during day, which make flowers in an upward orientation more 

conspicuous.  

The importance of BA has been tested in studies of Kessler (Kessler et al. 2008; Kessler & 

Baldwin 2011) using silenced lines deficient in BA production, where a lesser capsule 

production was found in comparison to WT phenotype flowers. This supports irZTL capsules 

production, as that was the only factor differentiating it from the EV and irLHY in the field at 

night-time. This silenced line shows how ZTL gene plays an important role in regulating BA 

emission and the disadvantageous reproductive effects of its disruption.  By comparing to 

morning open flowers that have a partial corolla closure in the field after mid-morning, but 

bend downwards as any night opening flower, irZTL flowers kept an upward orientation that 

made them more conspicuous and attractive to hummingbird as morning flowers during the 

partial closure hours. Considering the fact that hummingbirds can learn overtime to choose the 

most nutritious source, it gives them the advantage of, once irZTL flowers are recognized, 

continuously visit them in the mornings to feed on its not removed nectar. In this way, the 

hummingbird foraging behavior facilitates a higher outcrossing during day-time, when normally 

no other plant with a functional clock will be beneficiated. 
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Nectar robbers and pollen feeders 

In a more holistic view, the development and conservation of a flower vertical 

movement could be hypothesized to respond to multiple selective pressures beside the positive 

pressure of pollinators. In the 2012 and 2013 field seasons I could observe carpenter bees 

(Xylopa spp.) visiting N. attenuata flowers at dawn and dusk to rob the nectar by punctures at 

the flower base, which has been previously described in studies by Kessler(Kessler et al. 2008, 

2010). In the same manner during day, several species commonly known as “sweat bees” 

visited open flowers searching for pollen to collect. If the vertical movement would have 

developed to avoid nectar robbers and pollen feeders by not advertising flowers in upward 

orientation, it would have required a longer day-time loop. The flower reaches its upward 

position at subjective dusk (18 h) and moves downward after dawn, not avoiding carpenter 

bees or sweat bees, rendering it as an ineffective measure. The movement will be wasteful in 

energy terms, as it is not a good trade-off between energy usage and avoidance. In the same 

sense, the flower aperture time should have had a stricter period, as its partial opening 

happens early enough to attract the robbers and feeders and, similarly, its partial closing 

happens too late to avoid them. 

Given that both visual traits do not occur on a stricter time period, after dusk and prior 

to dawn, it does not avoid the time of carpenter bees and sweat bees foraging behavior. For 

this reason, it can be inferred that the fine circadian control of the floral traits developed to 

synchronize in response to the pollinators selection pressure, instead of the negative pressure 

that nectar robbers and pollen feeders would exert in the floral traits timing.  

 

Conclusions 

As any other organism regulated by a circadian clock, the solanaceous plant N. 

attenuata uses its endogenous clock to mark the day phases and prepare itself in advance, but 

unlike animals it cannot directly transfer its gametes. In this thesis it is demonstrated that N. 

attenuata also counts with an internal circadian clock (Manuscript I) that is conserved and 
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works as suggested by the current accepted plant clock model. It uses its internal clock to 

regulate its floral traits (Manuscript II) and synchronizes them with the activity period of its 

night pollinator M. sexta for successful outcrossing (Manuscript III). Besides describing how the 

floral traits are regulated by the circadian clock, this thesis provides first evidence of the 

ecological relevance of the circadian control to mediate pollination using clock-silenced lines 

with dysfunctional clocks. Also, I demonstrated how an altered clock can be disadvantageous in 

a standard pollination interaction but advantageous under other context involving alternative 

pollination services. These new evidences of the circadian clock effects in flower and its 

synchronization importance to successful reproduction point to new paths of study in 

pollination ecology, and the direct mechanisms of clock control, with further ramifications to 

improve crop pollination services. 

To conclude, pollinator-dependent plants confront a time challenge, over their natural 

history and day to day, of developing and synchronizing traits that will attract pollinators in 

exchange of a reward. The flower effort to attract pollinators leads it to finely tune the traits 

display with the pollinator activity period, shaping not only a morphological but also a time 

pollination syndrome. 
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Summary 

Like most of all known organisms, the angiosperm plants need to keep a daily rhythm to 

synchronize their inner functions according to the availability of energy and nutrients; even due 

to its sessile nature it’s especially important for a large group to find ways to reproduce by 

outcrossing in order to prevent deleterious selfing. The endogenous circadian clock regulates 

metabolic processes related to the synchronization of plant traits that allows its survival and 

successful reproduction in pollinator dependent plants. 

In this work, the circadian clock genes in N. attenuata were identified and found to have 

a conserved function, as demonstrated by yeast two-hybrid assays and a similar hypocotyl 

length phenotypes on transformed Arabidopsis thaliana plants using N. attenuata transferred 

genes. Additionally, under long day conditions NaLHY and NaTOC1 peak at dawn and dusk, 

respectively, without NaZTL having marked oscillations just like in other plant clock models. The 

silencing of circadian genes in N. attenuata using inverted repeat (ir) technique showed similar 

clock transcription profile alterations of NaCAB2 and hypocotyl growth alteration as in the 

established clock model. Nevertheless, irTOC1 plants had a delayed elongation and flowering 

under long day conditions unlike some other model plant accessions, but this can be attributed 

to a different habitat and genetic background, agreeing with previous observations in cross 

latitudinal studies of other species. 

Vertical movement, as observed in N. attenuata, appears as an independent trait in its 

genus, which temporally excludes other pollinators by reducing the flower conspicuousness. 

Floral traits are under circadian control and are relevant to synchronize the flower display and 

scent emission with its pollinator Manduca sexta. The correct synchronization improves 

outcrossing by M. sexta in the field since dysrhythmia by shifts of the floral traits resulted 

ineffective to improve the outcrossing as in irLHY case. However, a lack of regulation caused 

basically arrhythmic floral traits since irZTL had unexpected advantages during day-time 

outcrossing in the field due to the recruitment of day-active pollinators that provided similar 

reproductive results as night-pollinator dependent plants.  
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Zusammenfassung 
 

Wie die meisten aller bekannten Organismen müssen bedecktsamige Pflanzen 

(Angiospermen) einen Tagesrhythmus einhalten um ihre inneren Funktionen mit der 

Verfügbarkeit von Licht und Nährstoffen zu synchronisieren. Aufgrund der sessilen Lebensweise 

ist es besonders für Pflanzen wichtig Wege für eine Auskreuzung zu finden um eine 

Selbstbestäubung zu verhindern. Die innere circadiane Uhr regelt Stoffwechselvorgänge und 

anderen Merkmale, die ein Überleben und eine erfolgreiche Fortpflanzung für Pflanzen 

ermöglicht, welche auf Bestäubung durch Insekten angewiesen sind. 

In dieser Arbeit wurden Gene der circadianen Uhr von N. attenuata identifiziert und 

kloniert und eine konservierte Funktion konnte mittels eines Hefe-Zwei-Hybrid-Systems und der 

Expression in Arabidopsis thaliana-Pflanzen nachgewiesen werden, welche mit den von 

N. attenuata übertragenen Genen einen ähnliche Phänotyp in der Hypokotyllänge aufwiesen. 

Zusätzlich zeigten die Gene NaLHY und NaTOC1 unter Langtagsbedingungen ihr 

Expressionsmaximum jeweils bei Dämmerung oder Morgengrauen, ohne dass jedoch NaZTL 

eine Oszillation zeigte, wie bereits in anderen Pflanzenmodellen gezeigt wurde. Das silencen 

der circadianen Gene in N. attenuata mittels inverted repeat (IR) Technik resultierte in einer 

ähnlichen Änderung des Transkriptionsprofils für NaCAB2 und dem Hypokotyl Wachstum wie 

auch in anderen Modellsystemen gezeigt wurde. Jedoch zeigten irTOC1 Pflanzen unter 

Langtagsbedingungen ein verzögertes Wachstum und Blütenbildung, welches im Gegensatz zu 

den Ergebnissen von einigen anderen Modellpflanzen steht. Dies kann jedoch den 

unterschiedlichen Lebensräumen und dem genetischen Hintergrund zugeschrieben werden, 

wie bereits früher zwischen verschiedenen Spezies beobachtet werden konnte. 

Eine vertikale Bewegung der Blüten, wie in N. attenuata beobachtet, scheint ein 

spezielles Merkmal dieser Pflanzengattung zu sein, die es ermöglicht bestimmte Bestäuber 

durch eine Reduzierung der Blütenpräsenz auszuschließen. Verschiedene Blütenmerkmale sind 

unter circadianer Kontrolle und wichtig um den Duft und die Präsenz der Blüte mit der 

Anwesenheit des Bestäubers (Manduca sexta) zu synchronisieren. In einem Feldversuch konnte 
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gezeigt werden dass eine funktionierende Synchronisation die Auskreuzungsrate durch 

M. sexta erhöhen kann, wohingegen die asynchronen Blüteneigenschaften wie bei irLHY der 

Fall, die Auskreuzungsrate verringern kann. Allerdings zeigte sich auch, dass ein Mangel an 

Regulierung und grundsätzlich arrhythmische Blüteneigenschaften wie bei irZTL der Fall, auch 

unerwartete Vorteile bringen kann, da durch die Rekrutierung von tagaktiven Bestäubern, 

welche ähnlich effizient waren wie nachtaktive Bestäuber, ein Auskreuzen gewährleistet wurde. 
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