Preprint No. M 14/03

On limit point and limit circle classification for PT symmetric operators

Tomas Ya. Azizov and Carsten Trunk

2014
On limit point and limit circle classification for \mathcal{PT} symmetric operators

Tomas Ya. Azizov* and Carsten Trunk

Abstract

A prominent class of \mathcal{PT}-symmetric Hamiltonians is

$$H := \frac{1}{2}p^2 + x^2(ix)^N, \quad \text{for } x \in \Gamma$$

for some nonnegative number N. The associated eigenvalue problem is defined on a contour Γ in a specific area in the complex plane (Stokes wedges), see [3, 5]. In this short note we consider the case $N = 2$ only. Here we elaborate the relationship between Stokes lines and Stokes wedges and well-known limit point/limit circle criteria from [11, 6, 10].

Keywords: non-Hermitian Hamiltonian, Stokes wedges, limit point, limit circle, \mathcal{PT} symmetric operator, spectrum, eigenvalues

1 Introduction

In this paper we consider the quantum system described by the Hamiltonian

$$H = \frac{1}{2m}p^2 - x^4,$$

(1.1)

where g is real and positive, see [4] (or [3] with $N = 4$). The Hamiltonian (1.1) is of particular interest because the corresponding $-\phi^4$ quantum field theory might be a good model for describing the dynamics of the Higgs sector of the standard model as the $-\phi^4$ theory is asymptotically free and thus nontrivial, cf. [4] and the references therein. Consider the one-dimensional Schrödinger eigenvalue problem (where we assume, for simplicity, all constants equal to one)

$$-y''(z) - z^4y(z) = \lambda y(z), \quad z \in \Gamma,$$

(1.2)
associated with the non-Hermitian Hamiltonian in (1.1). Here, \(\lambda \in \mathbb{C} \) and the number \(z \) runs along a complex contour \(\Gamma \) which is within a Stokes wedge (for details we refer to Section 2). In the situation considered here, the Stokes wedge does not include the real-\(x \) axis. We will not use the same complex contour that Jones and Mateo employed in their operator analysis of the Hamiltonian (1.1) in [8]. Instead we use a more simple contour which is not as smooth as the one used in [4, 8]. In this short note, we associate with (1.1) an operator in a \(L^2(\mathbb{R}) \) space with some boundary conditions. Moreover, we determine the cases when the expression (1.1) is in limit point or limit circle case. This classification is due to [11]; for a more recent refinement see [6, 10].

2 Limit point and limit circle classification

Recall (see, e.g., [3, 4]) that the curve \(\Gamma \) is located in two Stokes wedges and tends to infinity in each of these wedges. A Stokes wedge is an open sector in the complex plane with vertex zero. In the situation considered here (N=4), the complex plane decomposes into six sectors, each with vertex zero, angle \(\frac{\pi}{3} \), and with a boundary contained in the set of all complex numbers with

\[\arg z \in \left\{ 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3} \right\} . \]

To be more explicit: In the case considered here, we have six Stokes wedges \(S_j \), \(j = 1, \ldots, 6 \), defined by

\[S_j = \left\{ z \in \mathbb{C} : (j - 1)\frac{\pi}{3} < \arg z < j\frac{\pi}{3} \right\} . \]

According to the rules imposed by \(\mathcal{PT} \)-symmetry, the contour \(\Gamma \) has to satisfy some symmetry assumptions, i.e., \(\Gamma \) is assumed to be located in

\[S_1 \cup S_3 = \left\{ z \in \mathbb{C} : 0 < \arg z < \frac{\pi}{3} \text{ or } \frac{2\pi}{3} < \arg z < \pi \right\} . \]

(2.1)

However, in this note we will also consider the case when \(\Gamma \) coincides with some Stokes line: \(\Gamma \subset \{ z \in \mathbb{C} : \arg z \in \{ \frac{\pi}{3}, \frac{2\pi}{3} \} \} \).

Let \(\phi \) with \(0 < \phi \leq \frac{\pi}{3} \). Here (for simplicity) we assume that \(\Gamma \) is given by

\[\Gamma := \{ xe^{i\phi \text{sign } x} : x \in \mathbb{R} \} . \]

Note that \(0 < \phi < \frac{\pi}{3} \) corresponds to the case that \(\Gamma \) is contained in a Stokes wedge. This case is usually assumed, cf. [3, 4, 5, 8, 9] whereas \(\phi = \frac{\pi}{3} \) corresponds to the case that \(\Gamma \) coincides with some Stokes lines.

Our approach starts with the idea of Mostafazadeh in [9] to map the problem (1.2) back onto the real axis using a real parametrization. Here (contrary to [9]) we use the following parametrization \(z : \mathbb{R} \to \mathbb{C} \),

\[z(x) := xe^{i\phi \text{sign } x} . \]
Then \(y \) solves (1.2) for \(z \neq 0 \) if and only if \(w, w(x) := y(z(x)) \), solves
\[
\begin{align*}
-e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) &= \lambda w(x) \quad \text{if } x > 0, \quad (2.2) \\
-e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) &= \lambda w(x) \quad \text{if } x < 0. \quad (2.3)
\end{align*}
\]

We define for a complex number \(\alpha \) the operator \(A_\alpha \) with domain \(\text{dom } A_\alpha \) in \(L^2(\mathbb{R}) \). The domain \(\text{dom } A_\alpha \) consists of all \(w \in L^2(\mathbb{R}) \) which are locally absolutely continuous on \(\mathbb{R} \) such that \(w' \) is locally absolutely continuous on \(\mathbb{R} \setminus \{0\} \) with
\[
A_\alpha w \in L^2(\mathbb{R}) \quad \text{and} \quad w'(0+) = \alpha w'(0-).
\]

For \(w \in \text{dom } A_\alpha \) we define \(A_\alpha w \) in the following way:
\[
A_\alpha w := \begin{cases}
-e^{-2i\phi}w''(x) - e^{4i\phi}x^4w(x) & \text{if } x > 0, \\
-e^{2i\phi}w''(x) - e^{-4i\phi}x^4w(x) & \text{if } x < 0.
\end{cases}
\]

The two (linearly independent) solutions \(y^\pm \) of (2.2) satisfy as \(x \to \infty \) (see, e.g., [7, pg. 58])
\[
y^\pm(x) \sim [e^{-4i\phi} s(x)]^{-1/4} \exp \left(\pm \int_0^\infty \Re s(t)^{1/2} dt \right)
\]

with \(s(x) := -e^{4i\phi}x^4 - e^{2i\phi}\lambda \). We use the notation \(f(x) \sim g(x) \) to mean that \(f(x)/g(x) \to 1 \) as \(x \to \infty \). The same holds for the two solutions of (2.3) (as \(x \to -\infty \)) which is easily seen by replacing \(x \) by \(-x \). We have
\[
\Re s(t)^{1/2} \sim -t^2 \sin 3\phi.
\]

The following theorem is the main result of this note. It is a consequence of the above observations and follows from the classification given in [11] (see also [6, 10]).

Theorem 2.1.

(i) If \(0 < \phi < \frac{\pi}{4} \), then (2.2) and (2.3) are in limit point case.

In particular this implies that one solution of (2.2) is not in \(L^2(\mathbb{R}^+) \) and that one solution of (2.3) is not in \(L^2(\mathbb{R}^-) \).

(ii) If \(\phi = \frac{\pi}{4} \), then (2.2) and (2.3) in limit circle case. In particular this implies that both solutions of (2.2) are in \(L^2(\mathbb{R}^+) \) and that both solution of (2.3) are in \(L^2(\mathbb{R}^-) \).

Theorem 2.1 allows the following mathematical interpretation: If \(\Gamma \) coincides with a Stokes line, then (2.2) and (2.3) are in limit circle case. If \(\Gamma \) is contained in a Stokes wedge, then (2.2) and (2.3) are in limit circle case.

3 Point spectrum of \(A_\alpha \) in the limit circle case

In the case \(\Gamma \) coincides with a Stokes line, both solutions of (2.2) are in \(L^2(\mathbb{R}^+) \) and that both solution of (2.3) are in \(L^2(\mathbb{R}^-) \). It is easily seen, that there exist a linear combination of these solutions which is in \(\text{dom } A_\alpha \) and the following theorem follows.
Theorem 3.1. Assume that Γ coincides with a Stokes line. Then the point spectrum $\sigma_p(A_\alpha)$ of A_α coincides with the complex plane,

$$\sigma_p(A_\alpha) = \mathbb{C}.$$

In the situation of Theorem 3.1 a boundary condition is missing. In order to avoid the situation in Theorem 3.1, one has to impose so-called boundary conditions at $\pm \infty$, see e.g., [1, 2].

References

Contact information

Tomas Ya. Azizov
Voronezh State University, Faculty of Mathematics
Universitetskaya pl. 1, 394006 Voronezh, Russia
azizov@math.vsu.ru

Carsten Trunk
Institut für Mathematik, Technische Universität Ilmenau
Postfach 100565, D-98684 Ilmenau, Germany
carsten.trunk@tu-ilmenau.de