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Chapterl — General Introduction

Chapter 1

General Introduction

Nicotiana attenuata: a model system in Chemical ecology

Chemical communication occurs at all the levels of biological organization, including
regulation of cells and organs within an organism, as well as ecological interactions among
organisms. The production of chemical signals in plants and animals is regulated through
hormones and signal transduction pathways. The field of science that addresses the role of
these chemical signals in the interaction of organisms with their biotic or abiotic environment
as well as the evolutionary and behavioral consequences of these interactions is termed as
chemical ecology. This discipline provides the understanding of molecular and genetic
mechanisms of biological signal transduction controlling several interactions among
organisms such as the attraction of mates, defense against enemies, competition for resources,
etc. Among these interactions, the study of chemistry of plant defense strategies is an
excellent example that is benefitted from the advancement of molecular and chemical biology.
Advances in molecular biology, analytical chemistry and genetics coupled with the increasing
availability of high throughput “omics” technologies have recently been applied using
theoretical approaches of systems biology to study the functional basis of plant-insect

interactions.

Nicotiana attenuata is a wild tobacco species native to the Great Basin Dessert in
United States. It germinates in the post fire habitats from long-lived seed banks to form
monocultures in nitrogen-rich soils (Baldwin and Morse, 1994; Baldwin et al., 1994). After
germination, the newly emerged seedlings struggle against intense intraspecific competition
within population and highly variable biotic and abiotic challenges. The perception of fatty
acid-amino acid conjugates (FACs) in the oral secretions of Manduca sexta, a specialist
herbivore of N. attenuata, triggers the activation of protein kinases and jasmonic acid (JA)
biosynthesis and signaling (Figure 1). JA and its metabolites, collectively called as
jasmonates, mediate profound changes in the expression of regulatory and structural genes
which in turn elicit both direct and indirect defenses in N. atfenuata. In direct defense to
herbivore attack, plants produce toxic, anti-nutritive and/or anti-digestive compounds such as
alkaloids, phenolamids and terpenoids (Bennett and Wallsgrove, 1994; Kessler and Baldwin,
2002; Mithofer and Boland, 2012). In N. attenuata, insect attack or its simulation by the
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Chapterl — General Introduction

application of its OS results in significant reconfigurations in metabolic and growth processes,
in the de novo production of defense compounds such as nicotine (Steppuhn et al., 2004),
diterpene glycosides (Heiling et al., 2010) and phenopropanoid polyamine conjugates (Kaur et
al., 2010; Onkokesung et al., 2012). Systemically induced defenses - the accumulation of
defensive compounds in distal intact systemic leaves during insect herbivory - is also well-
characterized in N. attenuata (Baldwin, 2001; Wu and Baldwin, 2010; Onkokesung et al.,
2012). In addition, the release of volatile organic compounds to attract predators of herbivores
constitute indirect defense traits in N. attenuata (Kessler, 2004; Schuman, 2012). Since the
production of plant defense traits incurs significant fitness cost, plants have evolved
mechanisms to balance tolerance and defense. N. attenuata has developed a key tolerance
strategy in which roots act as a sink tissue for sequestration of partitioned assimilates to

facilitate re-growth after herbivore attack (Schwachtje et al., 2006).
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Figure 1: (A) Nicotiana attenuata is a wild tobacco species native to Southwestern North
America. (B) A schematic summarizing the information flow that results in the activation of
defense mechanisms in an herbivore attacked leaf: The perception of herbivore-derived
elicitors triggers the activation of signaling cascades which translates into large scale
transcriptional and metabolic reconfigurations that induces direct and indirect defense
mechanisms. Systemic signaling from the attacked leaf results in the activation of defense

responses in distal intact (systemic) leaves. (Photos were taken by Danny Kessler)
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N. attenuata is among the few model plants for which “omics” technologies have been
applied to understand chemically mediated heterotrophic interactions (Halitschke et al., 2003;
Giri et al., 2006; Kang et al., 2006; Gulati et al., 2013). Vast amounts of data generated
require the development of techniques such as multivariate analysis (MVA) that can correctly

frame the extremely complex biological designs into statistical models.
Functional-genomics studies using conjunctive reasoning

Biology has always been a science of complex systems, mainly studied for three
inherent properties (a) robustness: the ability to adapt to environmental changes and the
availability of components with redundant functionality (Csete and Doyle, 2002; Kitano,
2002), (b) modularity: physical and functional insulation of subsystems (Alm and Arkin,
2003), and (c) emergence: the behavior that cannot be predicted by simply analyzing the
structure of individual components (Van Regenmortel, 2004, 2004). With advances in
molecular genetics, research in last three decades has majorly been benefited from the
application of reductionist approach which is based on the concept that complex biological
systems are simply a sum of their constituent parts. This approach has also established a niche
in chemical ecology by identifying regulatory elements that play key roles in chemical traits
behind physiological responses (Kessler and Baldwin, 2002; Wu and Baldwin, 2010). For
example, when a gene is disrupted using genetic manipulations, its function can be inferred
from the phenotype of the organism. However, reductionist approach cannot adequately
account for the above mentioned properties of a complex biological network (Van

Regenmortel, 2004; Van Norman and Benfey, 2009).

In the last decade, the emergence of high-throughput technologies has enabled the
simultaneous detection of a large number of alterations in molecular components of a system
and has caused a major shift from a reductionist to a more holistic or systems biology based
studies. Systems biology is an inter-disciplinary field of research which studies complex
biological systems by examining all of the components and their interactions in the context of
the whole system (Ideker et al., 2001; Ideker, 2004). The implementation of systems biology
framework starts by defining the components of a biological system, profiling of relevant
biochemical and genetic data (transcripts, metabolites, proteins, lipids, etc) on a global scale
and the formulation of an initial model of interactions among elements that regulate the
observed traits. The next step is to perturb the components of the system and study the results

of the perturbation. Models are further refined based on the inferences which then leads to a
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set of new testable hypotheses (Joyce and Palsson, 2006). Auffray et al (Auffray et al., 2003)

proposed following four axioms that should be considered while studying systems biology:

1. Contextualization: characterization of objects in context of the associated
environment in which they function. It also accounts for the associated complexity
in biological systems when gene function depends on the context such as
developmental stage or environment, which reductionism fails to incorporate.

2. Relatedness: studying dynamic behavior of interacting objects, that is achievable
using high throughput multivariate “omics” studies.

3. Conditionality: identifying the rules that determine the behavior of interacting
objects, which is specifically dependent on axiom 2 since the combination of
multiple data sets would ease the identification of regulatory mechanism of the
given trait.

4. Pertinence: identifying few relevant modules from the large set of interactions, this

in other terms called as dimension-reduction.

These axioms define a framework for large scale functional genomics studies with the main
goal of developing system-level understanding of biological systems using conjunctive
reasoning which implies deducing results from collective “omics” studies. Methods of

integration for meta-analyses of “omics” data can simply be summarized in three steps:

1. Identification of network scaffolds which represents the connections between cellular
components.

2. Decomposition of scaffolds into modules which are the portions of the network that
are most active under a given condition and therefore best explain the observed
behavior.

3. Predicting network behavior using previously developed system models.

Several efforts have been made in integrating different “omics” data to facilitate the
functional identification of networks controlling growth and development, and response to
biotic and abiotic stresses in plants (Joyce and Palsson, 2006; Long et al., 2008; Moreno-
Risueno et al., 2010; Liberman et al., 2012). Earlier work of gene-to-metabolite associations
studied dynamic response in Arabidopsis during sulphur and nitrogen depletion at global level
(Hirai et al., 2005; Hirai et al., 2007; Sawada et al., 2009). Similar efforts have been made to
integrate transcripts and proteins to identify potential biomarkers for roots, flowers, leaves,

and seeds (Baerenfaller et al., 2008). The power of systems approach to understand biological
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networks is the identification of emergent network properties that is revealed while studying
interactions among components in different “omics” data sets. For example, A recent large
scale study of root transcriptional activity identified an emergent property which represents
root-specific short rhythms that determine the periodicity in lateral root development in

Arabidopsis (Moreno-Risueno et al., 2010).
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Figure 2: (A) Components of “omics” data sets: DNA (genomics) is first transcribed to
mRNA (transcriptomics) and translated into protein (proteomics), which can catalyze
chemical reactions that give rise to metabolites (metabolomics). (B) These components are
profiled for different factorial designed experiments to simultaneously measure their
abundance, size, type, tissue localization and time of action, for studying evolution, disease,

development or physiology of an organism.
Central problem of dimensionality in “omics”

With the advancement in data acquisition techniques and computing facilities,
practical environment of “omics” world has gained several layers of dimension. The first
increment is the manifold increase in the simultaneous sampling of different experimental
designs. Figure 2B represents the 5 dimensions of different components (transcriptomics,
proteomics, metabolomics, etc.) which are commonly incorporated in a complex experiment
to measure parameters such as their abundance, length, localization, time of expression,
different types, influence of genomic variation, etc. while studying development, physiology,
disease and evolution. At the same time, these “omics” measurements, with attributes —
features (genes, proteins, metabolites etc) and individuals (samples, subjects etc), represent an
expression scenario with the number of features p being much larger than the number of
samples n, often described as “large p small »” problem (Johnstone and Titterington, 2009).
However from a statistical point of view, it is desirable that the number of experimental units

n should significantly exceed the number of features p if inference is to be made about the
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data. Therefore, in order to improve the efficiency and accuracy of data analysis, it is essential
to reduce the dimension of the data. Dimension Reduction (DR) techniques are often applied
as a preprocessing step or as part of data analysis to simplify the data model. The strategies of
identifying low-dimensional representations for the original high dimensional data set are

majorly of two types:

1. Feature extraction: It involves transferring original features of a data set to a more
compact set of dimensions while retaining as much information as possible, through
the application of some mapping functions. Well known extraction methods include
Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA)

2. Feature selection: It involves a family of techniques that finds a minimum subset of
the original features set based on some criteria, rather than transforming the data to an
entirely new set of dimensions. The commonly used methods to identify set of

interesting features in “omics” data are clustering and statistical modeling.

Presently, developing effective methods to interpret these high dimensional data sets and
thereby deriving fundamental and applied biological information about whole systems is one
of the major challenges of computational biology. The most effective method to derive
information from complex biological experiments without introducing noise is statistical
modeling, which is an intuitive method of describing the influence of known variables on the

observed data.
Statistical modeling of high dimensional data

Clustering analysis identifies predominant patterns within the data by grouping
features (genes, metabolites etc) that have comparable patterns of variation across samples.
However, statistical modeling identifies features affected by a given stimulus and provides
specific information regarding individual response patterns. This involves modeling the
dependence of feature’s response on a specific environmental variable such as tissue type,
timing or treatments, using a set of interpretable parameters. If this representation adequately
accounts the response pattern of a feature, then the corresponding model parameters may
describe the timing, magnitude or duration of the response. This strategy is the basis of two
group comparison for identifying differentially expressed genes/metabolites between normal
and perturbed conditions. As previously mentioned, high-throughput experiments are now
designed to study perturbations of biological networks by combination of various factors.

Therefore, these multifactorial experimental designs require biologically interpretable models
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that could identify the effect of different treatments on a give feature. While the parameter
estimation of these models is similar to those of classical factorial experiments, the
interpretation of parameters account for the duration and magnitude of effects, interactions of
different treatments and the interactions among features. This extracted information can

effectively be used in designing “low cost, high impact” experiments.

Additionally, time course molecular profiling has attracted increasing attention in
biological research to identify dynamic patterns of features. Time course experiments can be
broadly classified into two types: periodic and developmental. Periodic time course
experiments are designed to study cell cycles and circadian/diurnal regulation mechanism, the
processes that are usually observed showing regular temporal patterns. They are often studied
as one-sample problem where the aim is to identify genes which change over time. On the
other hand, developmental time courses measure expression levels in a growth and
developmental processes or after the application of treatments and are often observed with
arbitrary patterns. They are studied as two or more sample problems, with no assumption of
the pattern, to identify genes which change differently over time between two or more
conditions. However, most temporal biological “omics” data sets contain a limited number of
time points with very few replicates and measured on biological processes which are often
shifted in time. Classical methods for the study of static “omics” datasets are of limited
application as they cannot consider specific ordering of time points in the series. Also,
traditional methods developed primarily to analyze time series data, eg. Auto regressive
moving average model (ARMA) or wavelet methods are not the preferred choices because of

the short sampled time series data sets.

Several methods have been specially designed for biological dynamic “omics” that are
plagued by above mentioned limitations and few broad ideas behind these methods are briefly
introduced here. An intuitive way of selecting the genes of interests in one-sample case is the
use of one-way ANOVA that models the gene expression on the time variable as a factor and
the example is the famous study by Wang et al. that identified genes with different temporal
profiles in a developmental stage in Caenorhabditis elegans (Wang and Kim, 2003).
Similarly, two or more sample case problems can be analyzed using ANOVA structures that
include time and biological conditions and their interaction terms in the model (Park et al.,
2003). Several variations of ANOVA approaches have been utilized to model developmental
time course microarray data sets. (mixed-effect ANOVA (Romagnolo et al., 2002; Wang and
Kim, 2003), modified ANOVA (Park et al., 2003)). However, a common problem underlying
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all these attempts was the assumption that samples measured at different time points are
independently distributed multivariate normal vectors. The commonly used alternatives are
the permutation based methods that simulate the null distribution of test statistic to estimate
the false discovery rate (FDR). A method recently developed based on non-parametric
ANOVA structure to simultaneously analyze more than one factor measured across time
series using boot-strap is a part of the statistical framework proposed in this thesis (Zhou et

al., 2010).

Second widely applied class of methods is based on regression models and the most
commonly used are those fitting continuous curves using B-splines. For example, Breeze et
al. used splines based clustering to identify temporal profiles of genes sampled over 22 time
points, in order to understand regulation of leaf senescence in Arabidopsis (Breeze et al.,
2011). However, these methods have been shown unsuitable for short time courses (Bar-

Joseph et al., 2003).

Another class of method was developed primarily to correct the problem associated
with the inference of large number of false positives (FP) and false negatives (FN) arising
from the above described analyses. This problem arises from the measurements of large
number of genes compared to the small number of replicates (large p, small » problem) which
then leads to the poor estimation of “within” variances or co-variance matrices. The idea of
moderation in which the gene-specific variances are corrected by moving it towards a
common value, estimated from the entire gene set, has been applied extensively to analyze
microarray data (Tai and Speed, 2006) and it is the basis for the well known tool used in
microarrays studies — SAM (significance analysis of microarrays) which adjusted t-statistic

by changing the standard deviation in the data sets (Tusher et al., 2001).
Objective of the thesis

The main objective of my Ph.D. work was to explore regulatory mechanisms
mediating plant defense against herbivores in N. atfenuata using statistical models. 1 have

reported and discussed the findings in following six chapters:
Chapter 2: Overview of the manuscripts

Chapter 3: Manuscript I: Tissue Specific Diurnal Rhythms of Metabolites and Their

Regulation during Herbivore Attack in a Native Tobacco, Nicotiana attenuata.
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Chapter 4: Manuscript II: Deciphering Herbivory-Induced Gene-to-Metabolite Dynamics

in Nicotiana attenuata Tissues Using a Multifactorial Approach.

Chapter 5: Manuscript III: An integrative statistical method to explore herbivory-specific

responses in plants.

Chapter 6: Manuscript 1V: The roots of plant defenses: Integrative multivariate analyses

uncover dynamic behaviors of roots’ gene and metabolic networks elicited by leaf herbivory.

Chapter 7: Discussion
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CHAPTER 2

Overview of Manuscripts

MANUSCRIPT I

Tissue Specific Diurnal Rhythms of Metabolites and Their Regulation during Herbivore

Attack in a Native Tobacco, Nicotiana attenuata

Sang-Gyu Kim, Felipe Yon, Emmanuel Gaquerel, Jyotasana Gulati and lan T. Baldwin
Published in Plos One 2011, 6: €26214

In this manuscript, we studied tissue-specific diurnal rhythms and their regulation in
the generalized and specialized metabolism of Nicotiana attenuata. We developed a liquid
chromatography-mass spectrometry procedure to profile metabolites of simulated herbivory-
elicited source leaves and unelicited sink leaves and roots in a time course experiment. We
identified metabolites with statistically significant diurnal patterns in sink/source leaves and
roots. We found that roots and leaves had distinct set of oscillating metabolites which mainly
peaked at dusk or night in roots while leaf metabolites peaked during the day. Many of these
oscillating metabolites showed more pronounced systemic responses to simulated herbivory
in un-attacked tissues. With these results, we demonstrated the significance of diurnal

regulation in metabolic reconfiguration during plant’s responses to herbivore attack.

Sang-Gyu Kim, Ian T. Baldwin conceived and designed the experiments. Sang-Gyu
Kim, Felipe Yon, Emmanuel Gaquerel performed the experiments. Sang-Gyu Kim,
Emmanuel Gaquerel, Jyotasana Gulati analyzed the data. Felipe Yon contributed
reagents/materials/analysis tools. Sang-Gyu Kim, Emmanuel Gaquerel, lan T. Baldwin wrote

the manuscript.
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MANUSCRIPT II

Deciphering Herbivory-Induced Gene-to-Metabolite Dynamics in Nicotiana

attenuata Tissues Using a Multifactorial Approach

Jyotasana Gulati, Sang-Gyu Kim, lan T. Baldwin and Emmanuel Gaquerel
Published in Plant Physiology 2013, 162: 1042-1059

In this manuscript, we designed a method to explore spatio-temporal dynamics of
activation of herbivory-induced changes in gene-to-metabolite networks in Nicotiana
attenuata. We conducted time-series transcriptome and metabolome profiling of simulated
herbivory-elicited source leaves and unelicited sink leaves and roots. To explore differential
expression patterns of genes and metabolites which are activated during shoot systemic
signaling, we analyzed dynamic response patterns obtained by comparing treated versus
untreated systemic leaves using bootstrap-based nonparametric ANOVA models on the
projected time-vector space. Using these response patterns, we highlighted branch-specific
functional organization and transition points in the oxylipin gene network. We also studied
nonlinearities in gene-metabolite associations involved in the acyclic diterpene glucoside
pathway, which is highly activated in systemic tissues during herbivory, after selectively
extracting modules obtained by self-organizing maps based spatio-temporal resolution of

induced molecular processes.

Jyotasana Gulati designed the research and data analysis, performed research,
interpreted results and wrote the manuscript. Sang-Gyu Kim designed and performed the
experiment. lan T. Baldwin designed the experiment and wrote the manuscript. Emmanuel
Gaquerel designed the research and data analysis, performed the research, interpreted results

and wrote the manuscript.
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MANUSCRIPT III

An integrative statistical method to explore herbivory-specific responses in plants

Jyotasana Gulati, lan T. Baldwin and Emmanuel Gaquerel

Accepted for Publication in Plant Signaling & Behavior 2013, 8:¢25638; PMID: 23857359

In this manuscript, we reviewed our newly developed approach to analyze whole-plant
molecular responses in a time course multivariate data-set by combining an extended self-
organizing map (SOM) based dimensionality reduction method with bootstrap-based non-
parametric ANOVA models. We extended the application of this method to extract genes
showing simulated-herbivory specific elicitation in systemic (distal from the treatment sites)
tissues using motif analysis for different combinations of treatment applied to Nicotiana
attenuata. We analyzed dynamic response patterns obtained by comparing transcriptomic data
of treated and untreated systemic leaves collected for W+OS (diluted oral secretion from
larvae of the specialist herbivore Manduca sexta applied into mechanically produced puncture
wounds) and W+W (mechanically produced puncture wounds treated with water) treatment
type to differentiate OS-specific systemic response from those inherent to mechanical
wounding. As a proof of principal, we compared time response behavior of genes involved in
the phenylpropanoid pathway, which is known to be activated in systemic tissues during
herbivory, for 2 comparisons: (a) Control versus W+OS (responses to combined herbivory

and mechanical wounding), (b) W+OS versus W+W (OS-specific responses).

Jyotasana Gulati, lan T. Baldwin and Emmanuel Gaquerel designed and performed the

research, interpreted results and wrote the manuscript.
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MANUSCRIPT IV

The roots of plant defenses: Integrative multivariate analyses uncover dynamic

behaviors of roots’ gene and metabolic networks elicited by leaf herbivory

Jyotasana Gulati, lan T. Baldwin and Emmanuel Gaquerel

In Review: Genome Biology 2013

In this manuscript, we explored the important role played by roots in above ground
stress responses in Nicotiana attenuata by identifying multivariate descriptors from a time-
course factorial experiment. The data set consists of previously published time-series
transcriptome and metabolome of simulated herbivory-elicited source leaves and unelicited
sink leaves and roots. From single time point analyses, we observed an interesting pattern of
co-linearity in the up- and down-regulation of genes and metabolites across the entire time
series in treated (source) and untreated (sink) leaves and large transcriptomic and metabolic
changes in roots but without co-linearity across the time series. Instead, we observed a unique
pattern in roots that manifest itself in a similar number of induced and suppressed genes
separated by a short time lag which when analyzed using multivariate time series analysis
resulted in two principal trends characterized by: (a) an inversion of root-specific semidiurnal
(12h) gene oscillations and (b) transcriptional changes with major amplitude effects that

translated into a distinct suite of root-specific secondary metabolites.

Jyotasana Gulati, lan T. Baldwin and Emmanuel Gaquerel designed and performed the

research, interpreted results and wrote the manuscript.
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Chapter 3

Tissue Specific Diurnal Rhythms of Metabolites and Their Regulation during Herbivore

Attack in a Native Tobacco, Nicotiana attenuata

Sang-Gyu Kim, Felipe Yon, Emmanuel Gaquerel, Jyotasana Gulati and lan T. Baldwin
Published in Plos One 2011, 6: 26214
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Tissue Specific Diurnal Rhythms of Metabolites and Their
Regulation during Herbivore Attack in a Native Tobacco,

Nicotiana attenuata

Sang-Gyu Kim, Felipe Yon®, Emmanuel Gaquerel®, Jyotasana Gulati, lan T. Baldwin*

Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany

Abstract

Ecological performance is all about timing and the endogenous clock that allows the entrainment of rhythms and
anticipation of fitness-determining events is being rapidly characterized. How plants anticipate daily abiotic stresses, such as
cold in early mornings and drought at noon, as well as biotic stresses, such as the timing of pathogen infections, is being
explored, but little is known about the clock’s role in regulating responses to insect herbivores and mutualists, whose
behaviors are known to be strongly diumnally regulated and whose attack is known to reconfigure plant metabolomes. We
developed a liquid chromatography-mass spectrometry procedure and analyzed its output with model-based peak picking
algorithms to identify metabolites with diurnal accumulation patterns in sink/source leaves and roots in an unbiased
manner. The response of metabolites with strong diurnal patterns to simulated attack from the specialist herbivore,
Manduca sexta larvae was analyzed and annotated with in-house and public databases. Roots and leaves had largely
different rhythms and only 10 ions of 182 oscillating ions in leaves and 179 oscillating ions in roots were rhythmic in both
tissues: root metabolites mainly peaked at dusk or night, while leaf metabolites peaked during the day. Many oscillating
metabolites showed tissue-specific regulation by simulated herbivory of which systemic responses in unattacked tissues
were particularly pronounced. Diurnal and herbivory-elicited accumulation patterns of disaccharide, phenylalanine, tyrosine,
lyciumoside |, coumaroyl tyramine, 12-oxophytodienoic acid and jasmonic acid and those of their related biosynthetic
transcripts were examined in detail. We conclude that oscillating metabolites of M. attenuata accumulate in a highly tissue-
specific manner and the patterns reveal pronounced diurnal rhythms in the generalized and specialized metabolism that
mediates the plant's responses to herbivores and mutualists. We propose that diurnal regulation will prove to an important
element in orchestrating a plant’s responses to herbivore attack.
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Introduction
Timing is everything for ecological performances. The earth’s
24 h rotation on its tiled axis, geographical differences, and

interactions  with other organisms shape the specific diurnal

ms of each organism. As sessile organisms, plants can entrain
their physiology to abiotic condition of their environment such as
day/mnight cycles and their associated temperature fluctuations.
The endogenous plant clock [circadian clock) ‘wakes up’ the
photosynthetic machinery just before sun rise to maximize energy
harvesting and regulates guard cells at noon to minimize water loss
|1]. It also increases cold tolerance of plants at night and dawn [2].
Plants also synchronize their physiclogy with tightly associated
organisms. For instance, snapdragon flowers emit methyl benzoate
during the day to attract day-active pollinating bees [3]. Pathogens
that attack at dawn are anticipated by the clock in Arabidopsis

[4].

Since the pioneering discoveries that the rhythmic behaviors of

animals are encoded in their genomes, the molecular components
and functions of the plant’s endogenous clock have been identified

@ PLoS ONE | www.plosone.org

in the model plant, Arabidopsis thaliana [3]. Forward and reverse
genetic approaches in Arabidopsis have revealed that many
diurnal *behaviors” are controlled by a few clock genes [1,3]. These
clock genes regulate 30~40% of total gene expression in
Arabidopsis [6]. Arrhythmic plants harboring mutations in the
clock genes have reduced photosynthetic capacity, growth and
competitive ability under normal conditions [7,8]. However,
natural mutations in clock genes have been discovered that help
entrain a particular acces
which enhances the plant fitness in that area [8].

Plants fix carbon in the shoot using light energy and make
numerous metabolites from the products of photosynthesis. Plant
metabolites therefore originate from a day/night cycle. Studies of
primary metabolites have shown that sngars, starch, amino acids,
most of organic acids involved in photosynthesis are circadian-
regulated in leaves [9]. Although transeriptomic analyses show
that many genes imvolved in secondary metabolite biosynthesis
have dinrnal expression patterns [3]

ions” physiology to its local environment

the divrmal rhythms ol
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Plants are exposed to two completely different environments:
the aboveground and the belowground. Aboveground and
belowground plant parts thus develop their own endogenous
rhythms | 10]. Clock components in the shoot and root oscillate in
a similar way under light/dark cycles but not under constant light.
The roots express approximately four-fold fewer oscillating genes
than do shoots in Arabidopsis [10]. However, this does not mean
that the endogenous clock is less important for root physiology.
Important physiological processes such as root bending and lateral
root formation occur every 6 h and are controlled by the internal
clock [11]. In addition, clock-regulated water contents in roots are
reduced during the day and increase during the night [12].

Nicotiana attenuata is a native tobacco plant growing in the Great
Basin Desert of southwestern USA. It germinates in post-fire
ecosysterns and shows diverse intra-specific and  inter-specific
interactions. We have studied V. attenuata growing in its ccological
niche in natural habitats for more than two decades and observed
several diurnal rhythms in its physiology. V. aftenuata interacts with
different pollinators in a light-dependant manner [13.14]. It
produces two kinds of flowers. Night-opening flowers (Nol's) that
open their corollas during the night and close during the day.
Morning-opening flowers (MoFs) open their corollas during the
early morning. NoFs emit benzyl acetone only during the night to
attract nocturnal hawkmoth pollinators (Manduca sexta and M.
quinguemaculata). Early morning flower visitors such as humming
birds mainly nectar at MoFs and transfer pollen. Plant-herhivore
interactions are also regulated in a day/night cycle. The
accumulation of two lipoxvegenase trancripts  (NalOX? and
NalOX3) involved in the biosynthesis of green leaf volatiles and
Jasmonic acid (JA) show diurnal rhythms in the leal [15]. In
addition, the generalist predator, Geacorts spp. feeds on the eggs
and nconates of the specialist herbivore, M. sexta, usually during
the day.

Metabolites produced in leaves and roots are essential elements
determining the outcome of plants’ aboveground and below-
ground interaction with other organisms. If most of the organisms
on earth are governed by their endogenous clocks, the rhythms of
the metabolites they produce should help us understand plant-
plant, plant-animal interactions. Even though many genes
involved in metabolism show diurnal expressions, large-scale
screenings of tissue-specific oscillating metabolites and  their
regulation by herbivory remain largely unknown. Here, we
examined tissue-specific diurnal rhythms of metabolites in leaves
and roots of AU attenuata for two days. T'o find interconnections
among oscillating metabolites and  herbivore-induced  plant
delenses, we treated mechanical wounds in the leaves of N
attenuata with oral secretions (OS) from M. sexta larvae to mimic
herbivore-induced changes [16] and precisely time the onset of
elicitations to analyze the changes in oscillating metabolite levels
with the oscillations of the transcripts of their associated genes.

Results and Discussion

Experimental Design

N attenuata plants were grown in 16 h light/8 h dark cycle for 3
weeks, and source/sink leaves and roots were collected every 4 h
for two days without any treatment to identify oscillating
metabolites (Figure 1A). Diluted OS (1:5 with distilled water)
from larvae of the specialist herbivore, M. sexta, were applied to
puncture wounds in leaves created with a pattern wheel (W+0OS)
to mimic herbivory at 1 pm on a second day (Figure 1A). We also
treated wounds with water (W+W) to distinguish OS-specific
responses [rom wound-induced responses. Two source leaves (at
nodes +2, +1) and one transition leaf (at node 0) were treated with
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water or OS, and collected o examine local response in oscillating
metabolites and transeripts. We also collected two sink leaves
(at nodes —1, —2) and roots to examine systemic response in
untreated tissues (Figure 1B).

The enormous diversity of metabolites among different plant
taxa and their diverse chemical propertics means that metabo-
lomic analysis must bhe optimized for each plant species. In
previous studies, we developed an efficient method to extract
defense-related metabolites in N, altennaia [17,18] and used this
40% methanol-based extraction method (Figure 1C) and separat-
ed the metabolites by rapid separation liquid chromatography
(RSLC). The separated metabolites were ionized by electrospray
in both negative and positive modes and the exact mass to charge
ratio of ions was measured with time of flight (TOF)-mass
spectrometry. We also used a ¢DNA library and a microarray
system of AL attenuata to explore the overall molecular mechanism
in plant-herbivore interactions. The three-dimensional data
[retention time, mass, intensity) of the mass spectrometry analysis
was processed using the peak picking freeware XCMS [19], and
diurnally oscillating metabolites were extracted by a model-based
peak picking algorithm of the HAYSTACK [20] program. To
reduce the information redundancy in the dataset, isotope peaks
were clustered and annotated using the pseudo-spectrum decon-
volution freeware CAMERA and removed from the analysis.
Fragment and adduct ions detected in negative mode were
included as there is no certain way to date of selecting only mother
ions in large scale experiments, and negative ionization produces
fewer daughter ions and adducts compared to positive ionization
mode. In the negative ionization analysis, a total of 2209 and 1463
ions were detected from leaves and roots, respectively. With these
platforms, we identified diurnally oscillating metabolites and their
related transcripts accumulation (Figure 1C).

Leaves and roots have distinctive diurnal patterns

Pattern analysis revealed that 8% of total leaf metabolites and
12% of total root metabolites detected in negative mode had
diurnal rhythms (Figure 2, Table S1 and File S1). Oscillating
metabolites separated roughly into two groups by hierarchical
clustering (Figure 2A and 2C). One group of metabolites was
highly induced during the day, and the other group peaked at dusk
or night. In leaf extracts, 72% of oscillating metabolites peaked
during the day (Figure 2A), whereas 81% of root oscillating
metabolites peaked at dusk or night (Figure 2C). The number of
ions that show highest accumulations at each time clearly showed
distinctive patterns in the two different tissues (Figure 2B and 2D).
Moreover, only 10 ions (among 182 in leaves and 179 in roots) had
diurnal accumulations in both tissues (Figure 2E) and among
them, only one ion had the same diurnal rhythm. Afier the pattern
analysis, we identified the fragment and adduct ions among the
oscillating ions by CAMERA and by Pearson correlations
dependent upon time and treatments [17] and found that a still
smaller number of jons (8 ions among 122 and 132 ions in leaves
and roots, respectively] were diurnal-regulated in both tissues
(Figure 21).

The results show that oscillating metabolites in N, atienuata
accumulated in a tissue-specific manner and a few metabolites
were commonly oscillating in both leaves and roots (Figure 2).
According to the transcriptome analyses performed in root and
shoot of Arabidopsis, the root has fewer oscillating genes than does
the shoot under constant light condition [10]. However, our
analysis of oscillating metabolites, which are the final products of
gene regulations, demonstrates that roots also have strong diurnal
rhythms which are distinet from those found in the leaves of A
atteitala.
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Figure 1. Experimental procedures used to identify oscillating and herbivore-induced metabolites and their associated genes in
different tissues of Nicotiana attenuata. (A) Wild type (WT) N. attenuata plants were harvested every 4 h for two days during the initiation of stem
elongation. To mimic herbivory, oral secretions (OS) of the larvae of the specialist herbivore, M. sexta, were immediately applied to puncture wounds
made in leaves at 1 pm. Water treatment of puncture wounds on separate plants was used to distinguish O5-specific from wound-induced changes in
metabolites and transcripts. (B) Metabolites from three different tissues, source leaves, sink leaves, and roots of N. attenuata were isolated. The leaf at
node 0 had completed the sink to source transition and the leaf at node +1 was older by one leaf position than the leaf at node 0 and so forth. Source
leaves (at nodes +2, +1, 0) were wounded with a fabric pattern wheel and treated with 20 pl of M. sexta OS, which was diluted 1:5 with water.
Untreated leaves (at nodes —1, —2) and roots were harvested to monitor systemic responses. (C) After sample preparation from six biological
replicates, a 40% methanol extraction method optimized for the defense metabolites of N. attenuata was used and the metabolites separated with a
rapid separation liquid chromatography (RSLC) on a Ciz column and detected by ESI-TOF-MS (electrospray ionization time-of-flight mass
spectrometer) for parents and their daughter ions. Peak picking and alignments were performed with the XCMS package [19]. Diurnal oscillating
metabolites were extracted by the pattern matching algorithms of HAYSTACK tool [20]. In-house and public databases were used to identify
oscillating metabolites and a 44K Agilent microarray designed for N. attenuata was used to examine the expression of metabolite-related genes.
doi:10.1371/journal.pone.0026214.g001

Transcriptome Analysis d
44K microarray

Next, we annotated the oscillating ions using in-house and levels (Figure 3A, blue line) were significantly reduced by W+OS
public databases, and analyzed their accumulation after W+W and treatment alter 13 h and WH+W weaunent afier 17 h (£<<0.03,
W+OS treatments. Here, we describe the stories of 7 suites of one-way ANOVA followed by Bonferroni post hoc test). However,
oscillating metabolites, tales that speak of interesting interactions disaccharide accumulations in treated leaves did not change within
among the diurnal rhythms of metabolites and plant defense 21 h after treatments (Figure 3A, red line), except for a small
responses against herbivory. reduction at 17 h after W+W treatment (P=0.0134, onc-way

ANOVA followed by Bonferroni post foe test).
A disaccharide and its related genes Most of the genes involved in sugar metabolism have diurnal

We first focused our attention on two signals corresponding to rhythms [9.22]. We blasted the Arabidopsis and other plant
the m/z 341.11 and its dimer, m/z 683.23, at 90 s both with the species homologues of these genes (Figure 3B) against our cDNA
same strong diurnal rhythms that peaked at dusk only in roots database of A attenuata and identified the transcripts with high
(Figure 3A and S1). While, the same signals were detected in similarity (Table 52). We observed two distinet diurnal patterns of
treated and systemic leaves they did not pass our selection filter in transeript accumulation for these genes using the HAYSTACK

these tissues (Figure 3A). We calculated the elemental formulas (m/ algorithm (Figure 3C and File S1). The first group peaked in the
2 34111, CoHo Oy, m/z 6835.28, CoyH 3000 ) using Smart- middle of the day and was low during the night (Figure 3C, lefi).

Formula. Molecular mass and standard compound injections The second group peaked at dawn and remained at low levels for
verified that m/z 341.11 at 90 s is a disaccharide and m/z 633.23 the rest of the day (Figure 3C, right). We analyzed the regulation
at 90 s is a dimer of the disaccharide. of these genes alter OS-clicitation.  Interestingly, the genes

Changes in primary metabolism strongly influence plant- involved in sucrose transport (sue fransporter and sugar exporter,
herbivore interactions [21]. We therefore examined the regulation SWEET [23]) were significantly up-regulated and several other
of disaccharide levels with their related genes (Figure 3B) after genes ([-amylase, sue synthase, suc phosphatase and sugar exporter)
W+W and W+OS treatments. The result showed that only OS- were  down-regulated by WH+OS  treatment in treated  leaves
clicitation rapidly reduced disaccharide levels in roots (Figure 3A, (Figure 3D; P<0.05, Student’s -test), while disaccharide levels in
green line) within 1 h (P<0.05, one-way ANOVA followed by treated leaves (Figure 3A) were not changed. The first group of
Bonferroni post hoe test). In untreated systemic leaves, disaccharide genes peaked in the day was usually down-regulated in treated
@ PLoS ONE | www.plosone.org 3 October 2011 | Volume 6 | Issue 10 | 26214
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Figure 2. Accumulation of oscillating metabolites in M
attenuata show tissue-specific rhythms. Oscillating metabolites in
source leaves (A) and roots (C) were roughly divided into two groups,
one peaking during the day, and the other peaking at night. The heat
map displays all of the Z-transformed oscillating metabolites levels in a
false-color scale where green indicates low and red indicates high
values. Each metabolite is represented by a single row with the average
linkage hierarchical clustering tree obtained using Euclidean distances
as metric. We counted the number of ions (y-axis) that peak at a
particular harvest times (x-axis) in source leaves (B) and roots (D). Gray
boxes depict the dark period. (E) Venn diagram of the oscillating
metabolites selected across source leaves (black solid line) and roots
{gray dashed line). (F) Venn diagram of the oscillating metabolites after
removing adduct and daughter ions. CAMERA package and Pearson
correlation [17] were used to select adduct and daughter ions detected
from extracts of source leaves (black solid line) and roots (gray dashed
line).

doi:10.1371/journal.pone.0026214.g002
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leaves by OS-clicitation but the regulation of the second group by
OS-elicitation was highly variable (File S1). This pattern of
regulation might be affected by the timing of induction (1 pm in
this experiment). It will be interesting to evaluate in future studies
how elicitations at night influence these patterns. In systemic
leaves and roots, these genes were less regulated (Figure 3D),
whereas suc levels reduced quickly after treatments (Figure 3A).
However, root SWEET and sue tnvertase transcript accumulations
were rapidly increased within 5 h of OS-treatment (Figure 3D:
P<0.05, Student’s i-test). The increase In suc weertase transcript
levels is consistent with previous results of increased invertase
activity in roots after OS-treatment [24].

Sucrose is synthesized from photosynthesis during the day and
loaded into the phloem for transport to sink leaves and roots [25].
Starch is synthesized from sugars during the day and degraded
into maltose to provide energy for the metabolic requirements of
the dark phase [26]. A plant’s clock anticipates the end of the night
and regulates the rate of starch degradation to prevent energy
limitations at night [27]. The sugar content in plants is known
to have a diurnal rhythm [28]. A weak diurnal rhythm of
disaccharide in source leaves was observed in ecarly-clongated stage
of N. attenuata but did not pass our selection filter (Figure 3A). The
fact that our analytical procedures do not distinguish sucrose from
maltose, which has a rhythm oppasite to that of sucrose, may be
the explanation, because sucrose accumulations are known to peak
at dusk, while maltose peaks at night [27]. Testing this possibility
will require caleulating the ratio of sucrose and maltose in A
attenuata  and  examining separately their regulation during
herbivory. The other reason may be the relatively strong selection
filter that we employed. Consistent with this, the kinetic of this
disaccharide in source leaves but not in sink leaves was detected as
diurnally rhythmic when the stringency was lowered (data not
shown).

OS-elicitation significantly altered many sugar-metabolic and
transporter genes in treated leaves within 5 h (Figure 3D) but the
disaccharide levels in treated leaves was not changed significantly
within 21 h (Figure 3A). This indicates that the rapid turnover of
disaccharide levels may maintain sugar levels in treated leaves,
which is used to produce sccondary metabolites for direct defense
responses and supply carbon for allocation from shoot to root that
would Increase a plant’s tolerance of herbivory [24,29,30]. In
contrast, disaccharide levels in sink tissues, systemic leaves and
roots were significantly reduced (Figure 3A). The OS-clicited
decrease in disaccharide levels in roots during a day may be
mainly due to a reduction of sucrose because maltose levels remain
low during the day and increase during the night [26,28]. The
reduced disaccharide levels in roots may have increased the
gradient force driving sucrose translocation from shoot to root
[24]. However, it remains an open question whether the decrease
in disaccharide levels in sink leaves is linked to a reduction of
sucrose or maltose levels or whether it results from increased
sucrose transport from source leaves to sink leaves.

A sugar-containing diterpene glycoside and its related
genes

The analysis identified a sugar-containing defense metabolite
with strong diurnal patterns of accumulation. We found that the
accurnulation of lyciumoside 1 (m/z 629.35 at 339 s, CiaH530057 ),
a precursor of various diterpene glveasides (DTGs) in N. attenuata
[31], peaked at dusk in treated and systemic leaves but this
metabolite was not detected in roots (Figure 4A and 4C). Sink
leaves contained more lyciumoside 1 than did source leaves
(Figure 4A and 4C). OS-clicitarion did not alter the accumulartion
of lyciumoside I in treated leaves within 21 h, whercas W+W
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Figure 3. Accumulation of disaccharides and sugar related genes in three different tissues. (A) Mean (+5E) levels of normalized intensity
of disaccharides (m/z 341.11 at 90 5, Cy2H2 044 ) in source leaves, sink leaves and roots at each harvest time for two days (gray dashed lines) in
control (Con) plants. After wounding and treating puncture wounds with either water (W+W, dashed lines with colors) or M. sexta OS (W+0S, solid
lines with colors), disaccharides levels were examined in treated leaves (red), untreated systemic leaves (blue) and roots (green). Gray boxes depict
the dark period. Asterisks indicate significant differences among the treatments at the indicated harvest time (*=P<0.05, one-way ANOVA with
Bonferroni post hoc test). (B) Schematic overview of sucrose (suc) metabolism. (C) Two diurnal patterns of sugar metabolism-related genes (Table 52)
accumulation in source leaves. Gray boxes depict the dark period. Sweet: sugar exporter [23]. Ratio to average: Ratio of transcript abundance at the
time point shown, to the mean abundance of the same transcript across all time points. (D) Volcano plot analysis of the transcript levels of sugar-
related genes in treated leaves (red dot), systemic untreated leaves (blue dot) and roots (green dot) 1 and 5 h after M. sexta OS-elicitation. The log;
ratio of mean intensities (OS-elicited/Con, with microarray expression data) plotted against the negative log,g-transformed P value derived from
Student’s t tests. The horizontal dashed line indicates the threshold for statistically significant expression at P=0.05 and the vertical dashed line, the

threshold for two-fold changes in gene expression.
doi:10.1371/journal.pone.0026214.9003

treatment (Figure 4A, red line) increased its levels in treated leaves
at 5, 13 and 17 h (P<0.05, onc-way ANOVA followed by
Bonferroni post hoc test). Consistent with these results was the
observation that NaGGPPS (N atienuata geranylgeranyl diphosphate
synthase) transcripts (Figure 4B), which are involved in the
biosynthesis of lyciumoside I [31], significantly increased only
after WH+W treatment (£<<0.05, one-way ANOVA followed by
Bonferroni post hoe test). Systemic signaling also elicited the
accumulation of lyciumeside I (Figure 4C) and NaGGPPS
transeript (Figure 4D) in systemic leaves (P<<0.05, one-way
ANOVA followed by Bonferroni post hoe test). WHW and W+OS

treatments resulted in similar increases in lyciumoside I, whereas

@ PLOS ONE | www.plosone.org

OS-clicitation resulted in larger increases in NeGGPPS ranseripts
in systemic leaves after wounding (Figure 41).

OS-clicitation reduced the wound-induced genes (type I) or
amplified the regulation of genes by wounding (type 1I) |32].
Interestingly, NaGGPPS transeript showed a tvpe I expression
pattern in treated leaves and a type Il expression pattern in
systemic flowering stage plants, DTGs
accumulate mainly in young leaves and reproductive tissues
[31]. Induction of Lyciumoside I by OS-clicitation also followed
this pattern which might enhance plant fitness by protecting these
young fitness-enhancing tissues first, as predicted by Optimal
Defense Theory.

leaves.  In several
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Figure 4. Diurnal rhythms and OS elicitation of glucose-c ining sec y metabolites in different tissues. Mean (+5E) levels of
normalized intensity of lyciumoside | (m/z 629.35 at 339 s, C33Hs3042 ) in treated (A), and untreated systemic leaves (C) at each harvest time for two
days (gray dotted lines) in control plants. Lyciumoside | was not detected in roots. After W+W (dashed lines with colors) or W+OS (solid lines with
colors) treatments, lyciumoside | levels were examined in treated leaves (A) and untreated systemic leaves (C). Gray boxes depict the dark period.
Asterisks indicate significant differences among the treatments at the indicated time points (* = P<<0.05, one-way ANOVA with Bonferroni posr hoc
test). (B), (D) Effects of W+W and W+OS on relative transcript abundance (2-5E) of NaGGPPS (N. attenuata geranylgeranyl diphosphate synthase), a gene
involved in producing the diterpenoid precursor, geranylgeranyl diphosphate [31]. Different letters (a, b and c) reflect significant differences among

the treatments at the indicated time points (F<<0.05, one-way ANOVA with Bonferroni post hoc test).

doi:10.1371/journal.pone.0026214.g004

Phenylalanine/tyrosine and their related genes

The aromatic amino acids, phenylalanine (Phe) and tyrosine
(T'yr) are well-known primary metabolites with diurnal rhythms
[9]. Phe and Tyr, which are synthesized via the shikimate
pathway, are used in the production of lignin, anthocvanins,
alkaloids, floral scents and defensive metabolites [33]. These
compounds were also identified by our method for identifying
oscillating metaholites (Figure 5C and 5G). The genes involved in
their biosynthesis or catabolism showed similar diurnal patterns as
well (Figure 5A, 5B and Table 53). Most of these genes increased
during the day and remained at low levels at dusk and night
(Figure 5B). Interestingly, Phe accumulation in different tissues
peaked at different times: 2 or 6 pm in leaves and 10 pm in roots
(Figure 5C and S2). While Phe levels in roots peaked later than in
leaves, we did not find a diurnal pattern of the Phe biosynthetic
gene transcripts, arogenate delydratases (NaADTs) in roots, which are
thought to convert arogenate to Phe, (Figure S3A and Table 83).
The diurnal rhythm of Phe levels in the roots may be linked to the
diurnal accumulation of NaADT1/2 ranscripts in leaves (Figure 5B
and 5D) and the translocation of Phe from leaves to roots through
the phloem [34-36]. Phe levels in flowers are particularly
interesting because it s a precursor of the nocturnally emitted
pollinator attractant, benzyl accrone [37,38]. Phe levels in flowers
were elevated during the night (Figure S2). Three different tissues
(leaf, root and flower] have their own diurnal rhythms of Phe,
which would be connected to specific roles of Phe in different
tissues. Tyr levels were constitutively high in roots, exceeding the
levels found in leaves even during peak accumulations (Figure 5G).

W+W and W+OS treatments induced similar increases of Phe
levels in treated leaves (Figure 5C, red line; P<<0.05, one-way
ANOVA followed by Bonferroni post hoe test), but OS-clicitation
resulted in much stronger systemic responses (Figure 5C, blue line;
P<0.05, one-way ANOVA followed by Bonferroni post hoe test).
Phe accumulation was also increased in roots, but the O8-clicited

@ PLoS ONE | www.plosone.org

increase was less than in treated/systemic leaves (Figure 5C, green
line). Transeripts of two NadD7Ts were significantly inereased
within 1 h of elicitation followed by dramatic decreases in treated
leaves (Figure 3D, red line; £<<0.05, Student’s t-test), which may
explain Phe's peak 5 h after treatment. Transcripts of the same
genes (Figure 3D, blue line) were also increased in systemic leaves
(P=<<0.05, Student’s -test) but with a 4 h delay. Phe accumulation
in systemic leaves peaked twice at 5 and 13 h after OS-treatment
but only once at 5 h after W+W treatment. It is possible that a part
of the induced Phe accumulation in younger leaves originated
from Phe produced in weated leaves.

Phenylalanine ammonia lyase (PAL) is the first enzyme in
phenylpropanoid biosynthesis (Figure 5A). NaPALI/2 transcript
accumulations followed a similar pattern to that of NedDT/
(Figure 5E) with OS-elicited increases within 1 h in treated leaves
and within 5 h in systemic leaves (P<0.05, Student’s t-test). The
other phenylpropanoid pathway gene, C4H (cinnamate-4-hydrozplase)
showed a similar pattern of inercase observed in NaPALs wranseript
levels (Figure 51, P<0.05, Student’s t-test). The accumulation of

NaADTs, NaPALs and NaC4Hs transcripts in roots was less affected

by W+W and W+OS treatments than in leaves (Figure 83).
WH+W and W+OS treatments increased the amount of Tyr in
treated and systemic leaves (Figure 5G; P<0.05, one-way
ANOVA followed by Bonferroni post fioc test), while OS-treatment
increased its level with an 8 h delay in systemic compared to
treated leaves (Figure 5G). Only W+W treatment increased Tvr
accumulation in roots at 9 and 13 h (Figure 5G; P<<0.05, one-way
ANOVA followed by Bonferroni post hoe test). We identified two
arogenate deliydrogenase (Tyrd) genes, which are thought to be
involved in Tyr biosynthesis (Figure 5H), with OS-elicited
increases in treated and systemic leaves (P<<0.05, Student’s f-rest).
NaTyidl/2 transcript levels increased more in treated leaves
compared to systemic leaves (Figure 5H), but induced Tyr levels in
both tissues were similar  (Figure 5G). The induced Tyr
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Figure 5. Diurnal rhythms and OS elicitation of Phe and Tyr and their related genes in different tissues. (A) Schematic overview of
Phenylalanine (Phe) and Tyrosine (Tyr) metabolism. CM, chorismate mutase; ADT, arogenate dehydratase; PAL, phenylalanine ammonia lyase; C4H,
cinnamate 4-hydroxylase; 4CL, 4-coumarate-coa ligase; TyrA, arogenate dehydrogenase; THT, tyramine N-hydroxycinnamoyltransferase; SAMDC, 5-
adenosylmethionine decarboxylase; SPDS, spemidine synthase. (B) Diurnal expression of genes encoding Phe or Tyr metabolism enzymes in source
leaves. Gray box depicts the dark period. Ratio to average: Ratio of transcript abundance at the time point shown, to the mean abundance of the
same transcript across all time points. Mean (+5E) levels of normalized intensity of Phe (C; m/z 164.07 at 192 s, CgH,oNO; ) and Tyr (G; m/z 180.07 at
144 5, CgHgNO; ™} in treated leaves, untreated leaves and roots at each harvest time for two days (gray dashed lines) in control plants. After W+W

@ PLOS ONE | www.plosone.org 7 October 2011 | Volume 6 | Issue 10 | e26214

21



Chapter3 — Diurnal rhythms of metabolites

Diurnal Rhythms in Plant Defense Metabolites

(dashed lines with colors) or W+05 (solid lines with colors) treatments, Phe (C) and Tyr (G) levels were quantified in treated leaves (red), untreated
systemic leaves (blue) and roots (green). Effects of W+W and W+05 treatments on relative transcript abundance (= SE) of genes related Phe (D-F) and
Tyr (H-J) metabolism. Gray box depicts the dark period. Different symbols (* and #) indicate significant differences among the treatments at the
indicated time point (P<0.05, one-way ANOVA with Bonferroni post hoc test).

doi:10.1371/journal.pone.0026214.g005

accumulation in treated leaves may also be translocated into
systemic leaves.

Tyramine N-hydroxycinnamoyltransferase (THT) is an enzyme
that conjugates cinnamoyl-CoA, caffeoyl-CoA, or feruloyl-CoA to
tyramine [39]. Interestingly, wwo ANalHTs transcript levels
(Figure 5I) were increased after OS-clicitation only in treated
but not in systemic leaves (P<<0.05, Student’s ftest). NaTHTI
(Figure 3]) and NaTHTZ (Figure S4) transeripts ac
high levels in roots and only NaTHTT transcript displayed diurnal
accumulation only in roots. OS-elicitation increased NeTHTI
(Figure 5]) and decreased NaTHTZ2 (Figure S4) rranseripr levels in
roots (<0.05, Student’s f-test).

-umulated to

Phenylpropanoid-polyamine conjugates

Coumaroyl tyramine (m/z 284.10 at 165 s, C;H sNOGY
peaked during the day (Figure 6A) with an OS-elicited increase
within | h in treated leaves (P<0.03, one-way ANOVA followed
by Bonferroni post fhoc test). The levels of two feruloylamine
conjugates |17] were also increased by W+W or W+OS treatments
(Figure 6B and 6C). The accumulation of feruloyl putrescine (m/z
265.152 at 212 s, €, Ho NoO3") increased in treated and systemic
leaves after  OS-elicitation  but not  after W+W  treatment
(Figure 6B; P<0.05, one-way ANOWVA followed by Bonferroni
post koc test), N-feruloyl tyramine accumnulated (m/z 314,140 at
319 s, C1gHygNOY markedly after WH+W and W+OS treatments,
but only in treated leaves (Iigure 6C; P<0.05, one-way ANOVA
followed by Bonferroni post hoe test). Systemic leaves did not
accumulate N-feruloyl tyramine after any treatments was consis-
tent with the low accumulation of NeTHTI/2 transcripts in
systemic leaves (Figure 51 and 6C). However, no change in N-
feruloyl tyramine levels was observed in roots (Figure S5 despite
the significant increases in NaZHT1 transcripts in these tissues
(Figure 6]).

THT enzyme activity of barley and wheat is known 1o be
stronger in roots than in shoats [40]. N-feruloyl tyramine levels in
roots (Iigure S3) were higher than in leaves (Figure 6C) before or
after W+OS wreatment, perhaps a reflection of these NaTHTs
transcript levels, but did not show diurnal rhythms (Figure S5).
Identification of oscillating tyramine conjugates in roots will be
helpful to understand plant defenses against root herbivores or
pathogens that have their own diurnal activity rhythms [41,42].

OPDA and JA in roots and their related genes

We found two jasmonates with root-specific diurnal patterns of
accumulation. OPDA (12-oxophytodienoic acid, m/z 291.20 at
479 s, CgHs;04 ) and JA (m/z 209.12 at 368 s, CoH;;047)
levels peaked at night only in roots (Figure 7A and 7B). OPDA is a
precursor of JA, which is an important phytohormone known to
activate defense responses against herbivore artack [43]. JA
accumulation is well known to increase after W+W and to be
amplified by the OS-elicitation (Figure 7B, red line). Without OS-
clicitation, OPDA and JA were detected at higher levels in roots
than in leaves (Iigure 7A and 7B). W+W and W+0OS treatments
did not dramatically alter the accuomulation of OPDA or JA in
roots as they did in treated leaves (Figure 7A and 7B: P<0.05, one-
way ANOVA followed by Bonferroni post hoe test). Only OS-
treatment slightly increased the accumulation of OPDA after 17 h

@ PLoS ONE | www.plosone.org

(Figure 7A; P=0.0064, one-way ANOVA followed by Bonferroni
post hoe test).

We identified several oscillating transcripts involved in JA
signaling (Figure 7C and Table S4).While the levels of JA in
leaves did not show diurnal patterns, the JA biosynthetic genes,
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= \W+0OS (Systemic leaf)
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Figure 6. OS-elicitation affects secondary metabolites in the
phenylpropanoid pathway. Mean (=5E) levels of normalized
intensity of coumaroyl tyramine (A; m/z 284.10 at 165 s, Cy;H,sNO3"),
feruloyl putrescine (B; m/z 265.15 at 212 5, C,4H2:N;03") and N-feruloyl
tyramine (C; m/z 314.14 at 319 5, C,3H;gNO,") in treated and systemic
leaves at each harvest time for two days (gray dotted lines) in control
plants. Feruloyl putrescine and N-feruloyl tyramine were not detected in
roots. After W+W (dashed lines) or W+0S (solid lines) treatments their
levels were examined in treated leaves (red) and untreated systemic
leaves (blue). Gray boxes depict the dark period. Asterisks indicate
significant differences among the treatments at the indicated time
point (*=P<:0.05, one-way ANOVA with Bonferroni post hoc test).
doi:10.1371/journal. pone.0026214.g006
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Figure 7. Diurnal rhythms and OS elicitation of OPDA, jasmonic acid and JA-related genes in roots. (A), (B) Mean (+5E) levels of
normalized intensity of 12-oxophytodienoic acid (OPDA, m/z 291.20 at 479 s, C,3H,,0; ) and jasmonic acid (JA, m/z 209.17 at 368 s, C,2H,;03 ) in
treated leaves and roots at each harvest time for two days (gray dotted lines) in control plants. After W+W (dashed lines with colors) or W+0S (solid
lines with colors) treatments, their levels were examined in treated leaves (red) and roots (green). Gray boxes depict the dark period. Different
symbols (* and #) indicate significant differences among the treatments at the indicated time point (P<0.05, one-way ANOVA with Bonferroni post
hoc test). (C) Diurnal rhythms of gene accumulation involved in JA biosynthesis or signaling. AQS, allene oxide synthase; JAZ, jasmonate-ZIM-domain

protein; COI1, coronatine insensitive 1.
doi:10.1371/journal.pone.0026214.g007

AQS (allene oxide synthase) and two major JA signaling components,
COIl (coronatine insensitive 1) and  JAJs  (jasmonate- JIM-domain
protens)  transcript  accumulations  showed  diurnal  rhythms
(Figure 7C, Red line). NaCOf] transeripts in leaves were induced

@ PLOS ONE | www.plosone.org

at dawn and remained at low levels for the rest of the day
(Figure 7C). NajAJ5 levels in leaves peaked at 6 or 10 pm in
leaves, while the same NgjA.J transcripts in roots peaked at 6 pm
(Figure 7C).
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Iatty acid-amine acid conjugates (FACs) in M. sexta OS induce
herbivore-specific defense responses in N, allenuata [16,44]. The
phytohormone, JA plays an important role in FACs-induced plant
defense signaling against herbivore attack [43]. JA biosynthesis
occurs in two organelles, the chloroplast and the peroxisome. o-
linolenic acid released from membrane is converted into OPDA by
LOX, AOS, and AOC (allene oxide cyclase), all enzymes of the
chloroplast. The OPDA is then imported into the peroxisome and
converted into JA [43]. Even though root cells have no
chloroplasts, transcripts encoding LOX, AOS and AOC proteins
are expressed in roots of several plant species, likely in the
leucoplasts of roots, and jasmonates are detected in their roots
[45—48]. To our knowledge, our study represents the first report of
a diurnal rhythm of OPDA and JA in roots of plants. Basal levels
of JA in leaves did not show a diurnal rhythm, although JA
biosynthesis genes, LOXF [15] and A0S (Figure 7C) transcripts in
N altennata’s leaves did (Figure 7C). It is stll unclear whether the
oscillation in JA levels in roots results from JA synthesis in leaves
and transport into roots or their de novo synthesis in the roots.
Wang el al. weated wounded N, aflenuwala’s leaves with isotope-
labeled ("% i) lle and detecred ‘].-\—':‘(J[,—Ile in treated leaves of
attenwata [49]. However, labeled JA-Ile was not detected in systemic
leaves and roots. These data suggest that V. atfenuata’s roots have
the ability to de novo synthesize jasmonates [47,49].

Stress-induced biosynthesis of JA initiates direct and indirect
defense responses in plants [29]. The diurnal rhythm of JA levels
in roots may be linked to the daily occurrence of these stresses in
roots. One of the possible stresses is elicited by pathogen attack.
The circadian clock component, CCAl has been recently shown
to be critical for plants in the anticipation of leaf pathogen attack
and in trn regulate the expression of defense related genes against
the pathogen [4]. Arabidopsis A0S gene has one CCAl binding
site (AAAAAATCT) and one evening element (AAAATATCT) in
its promoter region [5,50,51]. LOX3F in Arabidopsis have also one
evening element [50,51]. Homologous genes in V. attenuata showed
diurnal accumulations (Figure 7C) cither in leaves or in roots [15].
It will therefore be extremely interesting to analyze the promoter
sequences of JA-related genes in N afenuata. Leal pathogens
usually attack at dawn when temperature and moisture conditions
are conducive for pathogen infection. However, roots in the soil
are subjected a completely different microclimate. Diurnal
rhythms of JA accumulation in roots therefore may play other
roles.

Oscillating JA levels may facilitate root penetration into hard
soil. "The soil of M. attenuata’s native habitat, the Great Basin Desert
in Utah is usually dry and hard. We used sand-grown roots, rather
than hydroponic culture, to mimic as close as possible these
natural conditions. Comparisons of the JA contents of hydropon-
ically-grown and sand-grown roots are not simple, because these
different culture conditions produce roots with different patterns of
growth and morphology. Nonetheless, when we compared the JA
contents in the same mass of roots, we usually observed higher JA
levels in sand-grown roots than in hydroponically-grown roots
(data not shown). The pattern of JA accumulation that peaked at
night may be associated with the growth rhythm of roots and the
production of secondary metabolites to protect root cells from
infection and attack during growth-associated wounding.

Even though JA levels in leaves did not show a diurnal rhythm,
JA signaling components, COZ7 and several 7475 transeript levels
in N, attenuata were diurnal-regulated (Figure 7C). Far-red light
treatment increases AQC and JAJ! transcript accumulation of
Arabidopsis and phytochrome A elicits the degradation of JAZ]
proteins (52|, which suppress COIll-dependent JA signaling.
Extrafloral nectar secretion in lima bean is regulated by JA levels
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but also in a light dependent manner [53]. These results suggest
that diurnal changes in light quality in nature may influence JA
signaling pathway in a time-dependent manner. In other words,
diurnal rhythms of JA signaling components in leaves may play a
central role in modulating defense responses of plants depending
on the time of day when they are attacked.

Future work

The timing of gene regulation has been intensively studied in
Arabidopsis. However, a lack of association between diurnal
rhythms and one of the major biotic stresses for plants, that of
herbivore attack in which secondary metabolites play central roles,
led us to examine how oscillating metabolites are influenced by
herbivory. Recently, Kerwin ¢f al. reported the reverse mechanism,
that glucosinolate metabolism affects the outpur of the circadian
clock and clock gene expression [54,55]. Mutations in glucosino-
late biosynthetic genes result in the alteration of the circadian clock
genes including the PSUDORESPONSIVE REGULATORs (PRRs).
M. sexta attack elicits dramatic changes in V. atfenuata meraholism
[17.21,56]. These changes may also feedback on clock gene
expression during herbivory. To test this hypothesis, in future
work, we will examine the microarray data ol irLOX? (producing
less green leaf volatiles), irf.OX3 (deficient in JA hiosynthesis), and
irMYB8 (containing less phenylpropanoid-polyamine conjugates)
of N, attenuata using single time point analysis described by Kerwin
el al. [15,54,57].

Materials and Methods

Plant material and treatment

Wild  wype (W), Niotiana  afienuata  plants  (30th  inbred
generation) were grown from seeds originating from a natural
population in Utah. The original collection of the seeds was done
on private lands and since N. altenuata is not an endangered plant
species no specific permissions for seed collections were necessary.
Moreover, all seeds used in this study were bred in the glasshouse
at our institute. Seeds were sterilized and germinated on
Gamborg's B5 medium as previously described [58]. Ten-day
old seedlings were transferred to small pot (TEKU JP 3050 104
pots, Péppelmann GmbH & Co. KG, Lohne, Germany) with
Klasmann plug soil (Klasmann-Deilmann GmbH, Geesten,
Germany) and after 10 days, seedlings were transferred to 1 L
pots with sand to facilitate sampling of roots. Plants were watered
by flood irrigation system with 200 g CaNO44H,0, 200 g Flory
Bl in 400 L water and grown in the glasshouse at 26-28°C under
16 h supplemental light from Master Sun-T PIA Agro 400 or
Master Sun-T" PIA Plus 600 W Na lights (Philips, Turnhout,
Belgium).

We used early elongated stage of WT N aftenuata plants for
metabolomics and transcriptomic analyses. Six biological repli-
cates (plants) were harvested every 4 h for 2 d from each trearment
group. Before freezing the samples in liquid nitrogen, roots were
washed in a water tank for a few seconds to remove sand. M. sexta
oral secretions (OS) collected from fourth- or fifth-instar larvae
were diluted 1:5 with deionized warer.

Metabolite analysis
We used a 40% methanol extraction procedure optimized for
the extraction of a wide range of our interesting metaholites of in

N. attenuata [17]. 4 pL of the resulting leaf extracts and 6 pL of the

resulting root extracts were injected onto a C18 column (Acclaim,
2.2 pm particle size, 150 mmx2.1 mm inner diameter, Dionex
Corporation, Sunnyvale, USA) and separated using a RSLC
system (Dionex). Solvent A consisted of deionized water containing
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0.1% (v/v) acetonitrile (Baker, HPLC grade) and 0.05% (v/v)
formic acid. Solvent B consisted of acetonitrile and 0.05% (v/v)
formic acid. The following gradient conditions were used for the
chromatography: 0-0.5 min 10% B, 0.5-6.5 min linear gradient
80% B, 6.5-10 min 80% B, and re-equilibration at 10% B for
3 min. The flow rate was 300 pL/min.

An ESI-TOF mass spectrometer (Bruker Daltonic, Bremen,
Germany) was used to determine the molecular mass of ionized
molecular fragments and the amounts of the eluted analytes. The
capillary voltage was 4500 V, and dry gas (200°C) flow rate was
8 L/min. Detected ion range was from m/z 200 to 1400 at a
repetition rate of | Hz. The mass calibration was achicved using a
sodium formate solution (10 mM sodium hydroxide and 0.2%
formic acid in isopropanol/water 1:1, v/v).

Raw data processing
Raw data files from Bruker software (Dara Analysis v4.0) were
exported as netCDF format, and processed using the XCMS R
package [19] (http://fichnlab.ucdavis.edu/ staff/ kind / Metabolomics/
Peak_Alignment/xems/). Peak detection was performed using the
centWave algorithm with the following parameter settings: ppm = 20,
snthresh = 10, peakwidth=¢(5,18). Retention time correction was
accomplished using the XCMS retcor function with the following
parameter scttings: mzwid = 0.01, minfrac = 0.5, bw = 3. Missing peak
data were filled using the fillPeaks function. The CAMERA package
s used to annotate isotope and adduct ions (hup://bioconductor,
org/packages/devel/bioc/html/ CAMERA huml). After 75 percentile
normalization and log2 transformation, XCMS output files were
processed using Microsoft Excel and the Statview software for
statistical test, and TIGR’s Multiexperiment Viewer software for
visualization and clustering,

Diurnal pattern analysis and metabolites annotation
The model-based HAYSTACK [20] algorithm was used to
identify  diurnal-regulated (http:/ /haystack.cgrb.
oregonstate.edu/). Isotope ions detected using CAMERA were
removed before processing using pattern matching algorithm of
HAYSTACK. With the models from HAYSTACK we selected
oscillating metabolites, typically with the following values in the
selection filters: correlation cutoff’ 0.8, fold cutoft’ 1.5, Pvalue
cutofl’ 0.05. Molecular formulas were generated using  the
SmartFormular algorithm in Data Analysis v4.0 software (Bruker).
The following maximum elemental composition C H;,N O Na K¢
and restrictions were used: 1=b/a=3;e=0o0or |;f=0o0rl;a, b, c
and d not limited. Rings plus double bonds values from —0.5 to
40, the nitrogen rule and ions of even electron configuration were
considered. The structural annotation based on tandem MS
measurements  of the precursor ions of sclected  diterpene
glucosides and feruloyl putrescine has been published by our
group in Gaquerel et al. [17]. Tandem MS measurements for these
metabolites are available in the supplemental online material
associated with this article. Lyciumoside I has mtially been
characterized in N attenuata by means of NMR in Heiling ef al.
[31]. Phenvlalanine, tyrosine, 12-oxo-phytodicnoic acid and
Jjasmonic acid were identified afier comparison with authentic
standard material. Manual annotation using metaholite informa-
tion from the literature was performed in the case of tyramine
conjugates. Feruloyl tyramine and coumaroyl tyramine are well
described in tobaceco cells” metabolites whose biosynthesis highly
increases by wounding  [59.60]. Besides elemental  formula
calculation, the annotation of these metabolites was facilitated by
typical 1on signatures corresponding to coumaroyl- (m/z 147.04)
and feruloyl- (m/z 177.04) residues released after the break of the

metabolites
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ester bound linking them to a core tyramine molecule during in-
source [ragmentation.

Microarray data and analysis

Three biological replicates among the six replicates harvested
at each harvest time used for metabolites analysis were also used
for RNA isolation (six harvest time for control and W+OS8
treatments, three harvest time for W4+W treatments). Total RNA
was isolated with TRIZOL reagent and labeled ¢cRNA with the
Quick Amp labeling kit (Agilent). Each sample was hybridized on
Agilent single color technology arrays (4x44K 60-mer oligonu-
cleotide microarray designed for V. aftennata transcriptome
analysis, hup://www.agilent.com, GEO accession number
GPLI13527). Agilent microarray scanner (G2365BA) and Scan
Control software were used to obtain intensity of the spots. All
microarray data with each probe name were deposited in the
NCBI GEQ database [(accession number GSE30287). We
confirm that all details are MIAME compliant. The resulting
gene expression profiles were analyzed using GeneSpring GX
software (Silicon Genetics, Redwood City, CA). Raw intensities
were normalized using the 75th percentile value and log? and
baseline transformed prior statistical analysis. Probes were filtered
based on their Quality control Metrics.

The HAYSTACK algorism was also used to examine the
diurnal rhythm of genes after we selected genes of interest involved
in biosynthesis or signaling of oscillating metabolites. With the
models from HAYSTACK we examine the diurnal rhythm of
gene of interest, typically with the following valuces in the sclection
filters: correlation cutoft 0.8, fold cutoff 2, P-~value cutoff 0.05.

Supporting Information

Figure S1 Accumulation of m/z=683.23 at retention
time, 90 s, in roots. Mecan [£5L) levels of normalized intensity
of m/z=683.23 at 90 s in roots, Calculated molecular formula
(CyyH4300,7) and retention time (90 s) indicated that it is a
disaccharide dimer. After W+W (dashed lines with colors) or
W+HOS (solid lines with colors) treatments, compound levels were
examined in roots (green). Gray boxes depict the dark period.
Asterisks indicate significant differences among the weatments ar
the indicated time point (*=/<0.05, one-way ANOVA with
Bonferroni post hoe test).

(T1F)

Figure 82 Accumulation of Phe in leaves, roots and open
flowers. Mean (=SE) levels of normalized intensity of Phe in
different tissues. Phe accumulation was quantified in leaves (red),
roots (green), and flowers (black). To calculate relative accumu-
lation, 75th percentile normalized intensity at each harvest time
was divided by average value over all time points. We collected
open flowers from 7 week-old plants and extracted metabolites
with a 40% methanol extraction methad. Gray box depicts the
dark period.

[(T1k)

Figure S3 Transcript abundance of NaADT1/2, Na-
PAL1/2, and NaC4HI/2 in roots. Mean (XSE) levels of
normalized intensity of NaAdDTs, NaPALs and NaC4Hs in roots.
ADT, arogenate dehydratase: PAL, phenylalanine ammonia lyase;
C4H, cinnamate 4-hydroxylase. Gray boxes depict the dark
period. Asterisks indicate significant differences between control
plants and M. sexta oral secrctions-treated plants (W+OS] at
indicated time pomts (¥*=/<0.05, as determined by Student’s
f-test).

(TIF)
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Figure 54 Transcript abundance of NaTHT2 in roots.
Mean (*SE) levels of normalized intensity of MeTHTZ in roots.
THT. tyramine N-hydroxyeinnamoyltransferase. Gray box depicts
the dark period. Asterisks indicate significant differences between
control plants and M. sexta oral secretions-treated plants (W+OS) at
indicated time points (¥ = P<<0.05, as determined by Student’s f-test).
(T'1E)

Figure 85 Accumulation of N-feruloyl tyramine in roots.
Mean (£SE) levels of normalized intensity of N-feruloyl tyramine
in roots. Gray boxes depict the dark period. Asterisks indicate
significant differences between conwol plants and M. sexta oral
secretions-treated  plants  (W+08S) at indicated time points
(*= P=0.05, as determined by Student’s #test).

(TIF)

Table S1 Proposed molecular formulas for oscillating
compounds detected in leaves and roots.

(TIF)

Table S$2 Oscillating transcripts involved in sugar

metabolism of N. attenuata.
(T'1EF)
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Accumulation of m/z= 683.23 at retention time, 90 s, in roots. Mean (+SE) levels of

normalized intensity of m/z= 683.23 at 90 s in roots. Calculated molecular formula

(C24H430,; ) and retention time (90 s) indicated that it is a disaccharide dimer. After W+W

(dashed lines with colors) or W+OS (solid lines with colors) treatments, compound levels

were examined in roots (green). Gray boxes depict the dark period. Asterisks indicate

significant differences among the treatments at the indicated time point (* = P<0.05, one-way

ANOVA with Bonferroni post hoc test).
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Phenylalanine
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Figure S2.

Accumulation of Phe in leaves, roots and open flowers. Mean (+SE) levels of normalized
intensity of Phe in different tissues. Phe accumulation was quantified in leaves (red), roots
(green), and flowers (black). To calculate relative accumulation, 75th percentile normalized
intensity at each harvest time was divided by average value over all time points. We collected
open flowers from 7 week-old plants and extracted metabolites with a 40% methanol

extraction method. Gray box depicts the dark period.

29



Chapter3 — Diurnal rhythms of metabolites

Control =—— W+0S

>
w

NaADT1/2

[\%]

—

Relative abundance

%]

—

Relative abundance

o

O
w

48]

—

Relative abundance

o

2pm 6pm 10pm 2am 6am 10am
1h 5h 9h 13h 17h 21h

Figure S3.
Transcript abundance of NaADTI1/2, NaPALI1/2, and NaC4H]I1/2 in roots. Mean (£SE)

levels of normalized intensity of NaADTs, NaPALs and NaC4Hs in roots. ADT, arogenate
dehydratase; PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase. Gray boxes
depict the dark period. Asterisks indicate significant differences between control plants
and M. sexta oral secretions-treated plants (W+OS) at indicated time points (* = P<0.05, as

determined by Student'sz-test).
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Figure S4.
Transcript abundance of NaTHT2 in roots. Mean (+SE) levels of normalized intensity

ofNaTHT?2 in roots. THT, tyramine N-hydroxycinnamoyltransferase. Gray box depicts the
dark period. Asterisks indicate significant differences between control plants and M.
sexta oral secretions-treated plants (W+OS) at indicated time points (* = P<0.05, as

determined by Student's 7-test).
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Accumulation of N-feruloyl tyramine in roots. Mean (£SE) levels of normalized intensity
of N-feruloyl tyramine in roots. Gray boxes depict the dark period. Asterisks indicate
significant differences between control plants and M. sexta oral secretions-treated plants

(W+O0OS) at indicated time points (* = P<0.05, as determined by Student's #-test).
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Table S1. Proposed molecular formulas of oscillating compounds detected in leaves and
roots

Peak Error SigmaFit

No. R.T. m/z M.F. (mDa) (mo) Name
L1 129s  191.02 CgH,0; 0.76 4.9 Citric acid
L2/R3 137s 243.06 CgH{{N,Os 0.28 19.7
L3 143s  180.07 CgH1«NO3 0.85 19.1 Tyrosine
L4 167s  282.08 CgHgNOg -0.56 24.1
L5/R5 192s  164.07 CgH4«NO, -1.20 10.7 Phenylalanine
L6 261s  463.22 CyH3s0q4 1.99 156.3
L7 306s 691.34 (CuHs015 -0.28 26.7
L8 317s 22713  CyH104 1.44 10.7
LS 325s 67334 (Cu3Hs3044 1.61 60.5
L10 340s  629.35 (CaHs30q0 -0.79 17.2 Lyciumoside |
L11 352s  715.35 CasHssO15 -3.08 16.8
L12 361s  689.34 (Cu3Hs3045 2.63 12.2
R1 88s 34110  CyHpO4q 1.27 3.3 Dissacharide
R2 99s  259.02 CgH;N,Op 0.07 13.8
R4 138s  243.06 CgHyN,Og 0.71 6.7
R6 197s  315.07 Cy3H1s09 0.71 3.7
R7 354s  329.23 C,gH330s 0.07 1.3
R8 367s  209.12  CyHy705 0.81 6.6 Jasmonic acid
RO  396s 327.22 (CygHs 05 0.32 24
R10 433s  309.21 CygHx04 0.35 83.8
R11 437s 34123 CygH3305 1.08 11.8
R12 446s 31122 CygH3:04 1.01 21.8
R13 458 s  311.22 CygH3:0. 1.41 4.8
R14 478s 29119  CygH.705 1.04 56.6 OPDA

Molecular formulas (M.F.) were calculated using Bruker SmartFormula software. Blanks in name
column indicate unknown compounds. L, leaf; R, root; R.T., retention time.
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Table S2. Oscillating transcripts involved in sugar metabolism of N. attenuata.

Probe Name Peak Gene Annotation
Na_454 03214 Night alpha-amylase
Na_454 06724 Night beta-amylase
Na 454 08612 Night beta-amylase
Na_454 10779 Night beta-amylase
Na_454 35633 Night beta-amylase
Na_454 12641 Night sucrose invertase
Na_454 41936 Night sucrose invertase
Na_454 01065 Night sucrose synthase
Na_454 05247 Night sucrose transporter
Na 454 02704 Night sugar exporter (SWEET)
Na_454 05391 Night sugar exporter (SWEET)
Na_454_16634 Night sugar exporter (SWEET)
Na_454 28050 Night sugar exporter (SWEET)
Na_454 14081 Day beta-amylase
Na_454_ 18724 Day beta-amylase
Na_454 20797 Day beta-amylase
Na_454_22181 Day  beta-amylase
Na_454 34221 Day beta-amylase
Na_454 39081 Day  beta-amylase
Na_454 00622 Day maltose transporter
Na_454 11568 Day sucrose phosphate synthase
Na_454_39731 Day  sucrose phosphate synthase
Na_454 40855 Day sucrose phosphate synthase
Na_454 16096 Day sucrose synthase
Na_454 27568 Day sucrose synthase
Na_454 04103 Day sugar exporter (SWEET)
Na_454 05017 Day  sugar exporter (SWEET)
Na_454 06723 Day sugar exporter (SWEET)
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Table S3. Oscillating transcripts involved in Phe/Tyr metabolism of N. attenuata.

Probe Name

Gene Annotation

Na_454_02400
Na_454_09000
Na_454_00178
Na_454_00083
Na_454 00021
Na_454 00101
Na_454 00269
Na_454 00315
Na_454 00797
Na_454 36134
Na_454_07429

arogenate dehydratase (ADT)

arogenate dehydrogenase (TyrA)

Phe ammonia lyase 1 (PAL1)

Phe ammonia lyase 2 (PAL2)
4-coumarate:CoA ligase (4CL)

cinnamic acid-4-hydroxylase (C4H)

cinnamic acid-4-hydroxylase (C4H)
S-adenosylmethionine decarboxylase (SAMDC)
S-adenosylmethionine decarboxylase (SAMDC)
spermidine synthase(SPS)

tyramine N-hydroxycinnamoyltransferase (THT)
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Table S4. Oscillating transcripts involved in jasmonic acid metabolism and signaling of

N. attenuata.

Probe Name

Gene Annotation

Na_454_ 00565
Na_454 04958
Na_454 02978
Na_454_13225
Na_454 14633
Na_454 19886
Na_454 41896

allen oxide synthase (AOS)
coronatine insensitive 1 (COI1)
jasmonate-ZIM-domain (JAZ)
jasmonate-ZIM-domain (JAZ)
jasmonate-ZIM-domain (JAZ)
jasmonate-ZIM-domain (JAZ)
jasmonate-ZIM-domain (JAZ)
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Deciphering Herbivory-Induced Gene-to-Metabolite
Dynamics in Nicotiana attenuata Tissues Using a
Multifactorial Approach!!CIIWIOA]

Jyotasana Gulati, Sang-Gyu Kim, Ian T. Baldwin, and Emmanuel Gaquerel*

Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany

In response to biotic stresses, such as herbivore attack, plants reorganize their transcriptomes and reconfigure their physiologies
not only in attacked tissues but throughout the plant. These whole-organismic reconfigurations are coordinated by a poorly
understood network of signal transduction cascades. To explore tissue-based interdependencies in the resistance of Nicotiana
attenuata to insect attack, we conducted time-series transcriptome and metabolome profiling of herbivory-elicited source leaves
and unelicited sink leaves and roots. To probe the multidimensionality of these molecular responses, we designed a novel
approach of combining an extended self-organizing maps-based dimensionality reduction method with bootstrap-based
nonparametric analysis of variance models to identify the onset and context of signaling and metabolic pathway activations.
We illustrate the value of this analysis by revisiting dynamic changes in the expression of regulatory and structural genes of the
oxylipin pathway and by studying nonlinearities in gene-metabolite associations involved in the acyclic diterpene glucoside
pathway after selectively extracting modules based on their dynamic response patterns. This novel dimensionality reduction
approach is broadly applicable to capture the dynamic rewiring of gene and metabolite networks in experimental design with

multiple factors.

Plants adapt to environmental stresses through
large-scale transcriptional reprogramming, which in-
volves intricate signaling pathways (Hahlbrock et al.,
2003; Nakashima et al., 2009; Zeller et al., 2009; Walley
and Dehesh, 2010). These transcriptional adjustments
can be captured by studying changes in the expression
of genes in different tissues in order to elucidate the
influence of particular pathways as well as the relative
contribution of a given tissue to the whole-organism
response. Although poorly understood, signaling net-
works controlling these transcriptional responses have
been shown to be highly stress condition specific, as
clearly illustrated by the large number of studies that
have demonstrated differences in plant responses to
mechanical wounding and herbivory (Baldwin, 1990;
Alborn et al., 1997; Halitschke et al., 2003; Reymond
et al., 2004; Wu et al., 2007). Experiments designed to
study such intricate networks often have a complex
factorial structure, obtained from different conditions/

! This work was supported by the Max Planck Society and by the
European Research Council (grant no. 293926 to LT.B.).

* Corresponding author; e-mail egaquerel@ice.mpg.de.

The author responsible for distribution of materials integral to the
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Emmanuel Gaquerel (egaquerel@ice.mpg.de).
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treatments, tissue types, or genetic contexts. In addi-
tion, time-series experiments are often employed to
capture dynamic expression profiles that distinguish
primary from secundary ]"l:‘SpUn!:i(—.‘S to stress in 8(—.‘]"1(-_‘
regulatory networks (GRN).

Basic statistical tests and clustering algorithms based
on Pearson correlation to analyze multifactorial ex-
periments are often plagued by the problem of gene
prioritization and large numbers of false positives
(Bittner et al., 1999; Getz et al., 2000). First, clustering
algorithms classify genes on the basis of their expres-
sion under all experimental conditions, whereas sig-
naling pathways underlying these gene expression
responses are generally affected only by a subset of the
experimental conditions (Swindell, 2006). Addition-
ally, connections in GRN computed by considering
all samples for different tissues, treatments, and time
points together in a single analysis fail to recognize
the transient gene associations found in early stress-
responsive pathways that only appear in a subset of
treatment types. Thus, the synchronous coregulation
of genes representing intermediate biological states
cannot be captured using collective information
studies, and this represents a major challenge for
the identification of the exact mechanisms of stress
adaption in many organisms. Bioinformatic approaches
such as mutual information (Priness et al., 2007) and
biclustering (Dharan and Nair, 2009) have been devel-
oped to address this limitation. Moreover, interaction
patterns deduced from these coexpression studies rep-
resent the static wiring of the network, whereas net-
works will assemble dynamically as the organism adapts
to external stimuli.

1042 Plani Physiology”, June 2013, Vol. 162, pp. 1042-105%, www.plantphysiol.org @ 2013 American Society of Plant Biologists. All Rights Reserved.
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To best capture the temporal dimension as a variable
affecting the structure of GRN, several efforts have
been published that identify patterns in time-series
data. Park et al. (2003) used a modified ANOVA ap-
proach taking time as a factor along with other con-
ditions. Wang and Kim (2003) used mixed-effect
ANOVA to identify genes with different temporal
profiles for different stress conditions in Caenorhabditis
elegans. Tai and Speed (2006) used an empirical Bayes
approach to introduce moderation, defined as the ef-
fect of moving gene-specific variances toward a com-
mon value estimated from a whole gene set, to reduce
the number of false positives and false negatives.
Storey et al. (2005) developed a statistical method that
identifies genes showing differential temporal expres-
sion profiles by assigning a statistic calculated using
spline-based methods. Zhou et al. (2010) developed a
method to simultaneously analyze experiments in-
volving more than one factor measured across time
series by finding the significant direction in the time
course across different conditions.

Nicotiana attenuata, a wild tobacco species native to
the Great Basin Desert in the United States, is among
the few model plants for which different omics tech-
nologies have been applied to understand its complex
ecophysiological responses (Halitschke et al., 2003; Giri
et al., 2006; Gaquerel et al., 2010). N. atfenuata germi-
nates in the postfire environment from long-lived seed
banks to form monocultures in nitrogen-rich soils
(Baldwin and Morse, 1994; Baldwin et al., 1994). As a
consequence of its peculiar germination system, this
plant is an ideal model for understanding the traits
that native plants have evolved to cope with stresses
characteristic of the agricultural niche: intense intra-
specific competition and highly variable biotic and
abiotic stress regimes (Baldwin, 2001). By germinating
into the postfire environment, the plant becomes the
focus of herbivores that colonize open habitats. This
large and unpredictable herbivore community has
provided a major evolutionary selective pressure that
has likely sculpted many aspects of the plant’s GRN.
Some of the essential nodes in the plant’s tran-
scriptome and metabolome responses to attack from
larvae of the specialist lepidopteran herbivore, Man-
duca sexta, have been functionally characterized (for
review, see Wu and Baldwin, 2010). Feeding by this
herbivore or its simulation by the application of its oral
secretions (OS) into puncture wounds results in pro-
found reorganizations of the plant’s metabolic and
growth processes, in the de novo production of de-
fense compounds, such as the accumulation and mo-
bilization of nicotine (Steppuhn et al., 2004), phenolic
derivatives (Kaur et al., 2010), and acyclic diterpene
glycosides (Heiling et al., 2010), and in the activation
of tolerance mechanisms essential for survival (carbon
and nitrogen bunkering in roots; Schwachtje et al.,
2006). The jasmonic acid (JA) signaling cascade rep-
resents the core pathway controlling these responses
(Halitschke and Baldwin, 2003). Its activity mediates,
via a set of largely unknown pathway-specific
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transcription factors, profound changes in the expres-
sion of regulatory and structural genes (Halitschke and
Baldwin, 2003; Wang et al., 2008).

To investigate the dynamics of activation in time
and space of herbivory-induced changes in gene-to-
metabolite networks, we conducted replicated global
expression profiling using identically treated wild-type
N. attenuata plants for three tissues and two stress
conditions (mechanical wounding and simulated her-
bivory) with a regular time series of six time points for
both metabolomics and transcriptomics data. We then
employed a bootstrap-based nonparametric ANOVA
model to find the projected significant direction in the
time vector for two factors (stress and tissue type) for
both genes and metabolites (Zhou et al., 2010; Zhou
and Wong, 2011). To further characterize the coex-
pression modules of different tissues, we imposed the
structure using batch-learning (BL) self-organizing
maps (SOM). From this analysis, we framed the con-
cept of interactive motifs, which are defined as pat-
terns of interconnections between genes and metabolites
that are differentially perturbed in local and systemic tis-
sues in response to stress, with additional information of
their time of action obtained from projected data on time
series termed “ANOVA directions.” We extracted and
studied motifs defining gene-gene and gene-metabolite
interactions involved in early and late responses in sys-
temic leaf tissues. The premise of this approach is that
genes or metabolites with similar ANOVA directions and,
therefore, similar dynamic responses during herbivory are
likely to be involved in similar biochemical pathways
and/or are under the control of a common transcriptional
regulatory mechanism. This broadly applicable approach
allowed us to identify nonlinear relationships in gene-
metabolite interactions with a high level of accuracy and
robustness.

RESULTS

Work Flow for Analyzing the N, attenuata Transcriptome
and Metabolome

The objective of this study was to identify tissue-
specific gene-gene and gene-metabolite associations
recruited in response to chewing insect herbivory in N.
attenuata plants. Therefore, we conducted time-course
transcriptome analysis and broadly targeted ultra-high
performance liquid chromatography coupled to a
quadrupole time-of-flight mass spectrometer (UHPLC-
qTOFMS) metabolome measurements of source/sink
transition leaves and roots (Fig. 1). Each sample was
harvested from an independent control or treated
plant every 4 h during a 21-h period to capture early
and late activity phases of OS-elicited responses. In
treated plants, M. sextn feeding was simulated by
wounding a leaf with a fabric pattern wheel on both
sides of the midrib of a source leaf and immediately
applying M. sexta OS to the fresh puncture wounds
(W+0S). This procedure, hereafter referred to as OS
elicitation, recapitulates most changes in the N.
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Figure 1. Work flow for analyzing changes in the transcriptome/
metabolome landscape of N. attenuata elicited by insect herbivory.
Leaf and root tissues of wild-type N. attenuata plants were harvested 1,
5,9, 13,17, and 21 h after leaves were wounded with a fabric pattern
wheel and immediately treated with M. sexta (W+QS) to study her-
bivory-induced responses or with water (W-+W) to study OS-specific
induction. Replicated transcriptomic and metabolomic data were an-
alyzed using multifactorial analysis, with both factors (tissue and
treatment) taken together across the time series to identify modules
showing differential OS elicitation. These modules were spatiotemporally
resolved using BL-SOM. Herbivory-elicited interactive effects among
transcript and metabolite levels were analyzed, with a special emphasis on
identifying short- and medium-term changes in metabolism. To this end,
interactive motifs from resolved maps were extracted and analyzed using
network properties. [See online article for color version of this figure.]

alfenuala transcriptome and metabolome, which are
repeatedly activated during continuous insect feeding,
and provides a convenient means of accurately stan-
dardizing herbivore elicitation and dependent re-
sponses in N. aftenuata plants (McCloud and Baldwin,
1997). This standardization of herbivore elicitations is
critical to conduct replicated microarray and metab-
olomics analyses. Additionally, this procedure allows
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inferring OS-specific responses. For this, we also
sampled plants with leaves similarly wounded but in
which the puncture wounds were treated with water,
referred to as the W+W treatment. Microarray and
metabolomics data sets were then preprocessed and
normalized using pipelines described in “Materials
and Methods.” A pivotal step in this work flow con-
sisted of analyzing processed transcript and metabolite
data for two factors using nonparametric ANOVA
models in order to generate distinct clusters, separated
by their combined treatment effects and time behav-
iors. Instead of modeling effects of the three factors
(time, tissue type, and treatment applied) together, we
used time-vector space to find the most significant ef-
fects from two-way ANOVA and used this informa-
tion to conduct explorative studies on tissue- and
treatment-specific responses.

Multifactorial Time Response Features of OS-Elicited
Gene Expression

The nature and amplitude of herbivore responses in
untreated leaves and roots are controlled by short- and
long-distance systemic signaling networks (Wu et al,,
2007). As response pattern and timing of activation
of individual genes likely underlie the differences ob-
served between systemic and localized herbivore re-
sponses, we simultaneously analyzed time series with
two binary factors (treatment and tissue type) using
bootstrap-based nonparametric ANOVA models,
according to the methods implemented in the R
package TANOVA. This method has been designed
specifically to handle multifactorial microarray exper-
iments with the aim of extracting gene-specific re-
sponses across time series based on their dependency
on experimental factors used for comparison (Zhou
et al, 2010). We conducted such dynamic response
analyses for two tissue comparisons: treated (source)
leaf versus untreated systemic (sink) leaf (TvS com-
parison), to explore differential gene expression pat-
terns activated during shoot systemic signaling; and
treated leaf versus untreated root (TvR comparison), to
obtain novel insights into root-specific responses.

Using a series of statistical tests on factor effects
(false discovery rate [FDR] = 0.05, bootstraps = 200),
we obtained five mutually exclusive groups of genes
showing their best ANOVA structure along optimal
directions in the time series (Fig. 2A). The four
resulting structures represent interactive (tissues be-
having differently in response to OS elicitation across
the time series), additive (herbivore responses inde-
pendent of tissue type), or corresponding main effects
(major treatment effects in both treated and untreated
tissue or significant differences in tissue type with no
response to treatment; Supplemental Fig. S1). Briefly,
ANOVA structures with main effects correspond to
the sets of genes that are influenced by only one of the
factors. The best-fit model for two-way ANOVA with
interaction is observed when the effect of level change
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Figure 2. Time series-dependent multifactorial classification of transcripts and encoded molecular processes. A, We employed
a bootstrap-based nonparametric ANOVA model to classify transcript levels based on combined significant responses in dif-
ferent tissues and for different treatments across the time series. Transcripts with no significant changes in expression across
different conditions were excluded from further analysis. B and C, Functional categorization of transcripts. GO classification
was performed for processes with a bin-specific enrichment statistic of F < 0.05. TCA, Tricarboxylic acid. D, Box plots of
ANOWA directions, described as a time-response metric representing the significant interactive effect along the time series
while comparing systemic tissues (unelicited leaves and roots) with the treated leaves. E, Temporal profiles of two representative
genes (NaLOX3 and NaPMT) obtained from clusters exhibiting interactive effects between treated and systemic tissues using
ANOVA model analysis on transcript time-response behaviors.

for one factor depends on the level of the other factor;
therefore, structures resulting from interactive models
correspond to the sets of genes with significant
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responses to OS elicitation that are different between
the two tissues compared. By contrast, the additive
model assumes that the effect of level change for one
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factor does not depend on the level of other factors
and, therefore, includes genes showing both main ef-
fects (treatment and tissue differences). The estimated
optimal direction was biased toward the time points
with strong effects estimated by fitting different
models. Figure 2E shows the temporal profiles of
representative genes from the sets of genes showing
interactive response patterns for the two different
comparisons between elicited and unelicited tissues.
NaLOX3, whose gene product catalyzes the first com-
mitted step in JA biosynthesis (Halitschke and Baldwin,
2003), shows a strong interactive effect for the TvS
comparison for the first two time points (1 and 5 h after
elicitation), while NaPMT1, consistent with its require-
ment for the formation of the pyrrolidine ring of nico-
tine in roots (Steppuhn et al., 2004), shows a strong
interactive effect for the TvR comparison at 5 and 9 h
after elicitation. The optimal direction for interactive
effects was estimated by finding the first eigenvector of
the residuals, obtained by eliminating the main effects,
using the following ANOVA model:

Yy = vy + ay + By + ¥y + €y

where Yy, is gene expression vector, vy is mean expres-
sion vector, ay; and By; are main tissue and treatment
effects, and € and ¥ are residual and interactive ef-
fects between tissue and treatment type.

Genes displaying an interactive response pattern
were our major interest and were used for further
analysis. The set of genes showing interactive effects
between treated and untreated leaf tissues constituted
69% of the total probe set, while those showing inter-
active effects between treated leaf and untreated root
tissue constituted 66% (Supplemental File S1). We
analyzed the distribution of interactive effects detected
in leaf and root tissues using box plots and observed
larger effects at 1 and 5 h for the TvS comparison and
at 1, 5, and 13 h after elicitation for the TvR compari-
son (Fig. 2D). To assess the functional significance of
these gene clusters, we computed the enrichment of
Gene Ontology (GO) terms for genes within each
group defined by the multifactorial analysis using
hypergeometric tests (F < 10e-10; Fig. 2, B and C).
Consistent with previous transcriptomic studies (Hui
et al., 2003; Schittko and Baldwin, 2003; Schmidt et al.,
2005), the group of genes showing interactive effects in
shoots (TvS comparison) was highly enriched for
processes associated with signaling, stress responses,
hormone metabolism, and secondary metabolism. GO
term representations for groups of genes showing ad-
ditive and treatment effects clearly contrasted with sets
of genes with interactive effects. GO terms for these
gene classes likely reflect major reconfigurations, co-
ordinated between treated and systemic shoot tissues,
of transcriptional and cell cycle machineries. For the
TvR comparison, GO terms significantly enriched for
interactive effects were from signaling and secondary
and hormone metabolism; as expected from the root’s
highly specialized physiology, we also observed
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significant differences between tissue type for a large
set of genes with functional terms enriched for devel-
opment, transcription, and cell cycle machineries.

Biotic and abiotic stresses activate profound reor-
ganizations of the general phenylpropanoid metabo-
lism. Genes in this pathway were among those
exhibiting the largest interactive effects in shoots
(Supplemental Fig. S2). We evaluated the potential of
the time-response metric to improve the detection of
coexpression patterns among genes of this pathway
compared with the use of average expression data.
Supplemental Figure S2 presents Pearson correlation
coefficients between NaPALI1, characterized for the
first committed step in the phenylpropanoid pathway,
and downstream functionally characterized genes.
More significant coexpression values between func-
tionally related genes were obtained when using the
response metric from the factorial analysis, which was
specifically biased at time points showing the best ANOVA
structure.

Interactive Time Response Analysis Highlights
Branch-Specific Functional Organization and Transition
Points in the Oxylipin Gene Network

Genes involved in a common biological process tend
to be coregulated and thus under the control of a
shared regulatory system (Saito et al., 2008). Since in-
teractive effect vectors capture as a whole the dynamic
response of a gene in more than one tissue, we hy-
pothesized that this information could be used as a
metric to assess the differential regulation of members
of a gene family based on their functional associations
with other known genes. To illustrate the value of this
approach in delineating pivotal signaling pathways for
herbivory responses, we extracted gene interactive
responses within the oxylipin pathway and analyzed
the activation transition points between the different
branches of this pathway (Fig. 3).

Oxylipins are bioactive lipids rapidly produced
from enzymatic and nonenzymatic fatty oxidation
cascades upon various stresses. Lipoxygenases (LOXs)
are iron-containing enzymes that catalyze the dioxy-
genation of fatty acids, the first committed step in
oxidation cascades connecting most oxylipin biosyn-
thetic pathways. In most plant systems, ditferent LOX
isoforms with different tissue expression and cellular
compartmentalization control specific branches of the
oxylipin metabolic network. Three LOX genes re-
sponsive to OS elicitation have been functionally
characterized in N. altenuata (Halitschke and Baldwin,
2003). Activation of NaLOX1 leads in N. attenuata to
the production of fatty acid 9-hydroperoxides, which
serve as substrates for the formation of fatty acid
divinyl ethers by a divinyl ether synthase (Bonaventure
et al.,, 2011). NaLOX2 and NalLOX3 control the
biogenesis of two distinct chloroplastic linolenic acid
13-hydroperoxide (13-HPOT) pools (Allmann et al,
2010). NaLOX2-based 13-HPOTs are cleaved by
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Figure 3. Separation of LOX-dependent branches of the oxylipin pathway based on their ANOVA directions in the time
dimension. A, Schematic representation of the three main LOX-based branches of the oxylipin pathway. Free linolenic acid
released by the induced activity of a glycerolipase (NaGLAT) is oxygenated by Nal OX3 enzymes (LOX) and converted by a
multienzymatic cascade into JA. JA-lle formed after enzyme-dependent conjugation of JA to lle and is the bioactive jasmonate
interacting with the F-box receptor protein NaCOIT and NaJAZ transcriptional repressor proteins. C12 and C6 aliphatic chains
are produced by the cleavage of Nal OX2-dependent hydroperoxides. Divinyl ether (DVE) oxylipins are produced by enzymatic
rearrangement of NalOX1-dependent hydroperoxides. B, HCA of ANOVA directions for interactive effects for genes involved in
the two different branches of the LOX pathway. Elements of the NalOX3 branch (red) exhibit differential regulation in leaf
tissues 1 h after OS elicitation. Nal OX2 and Nal OXT branches (green) exhibit high interactive effects 5 h after elicitation. C,
Temporal profiles for genes from the NalOX3 pathway showing a high degree of coordination at 1 h and from the NaLOX2 and
NaLOX1 pathways showing a high degree of coordination at 5 h.

hydroperoxide lyase enzymes into C12 and C6 ali-
phatic chains, the latter ones being further metabolized
into a large array of green leaf volatiles. NaLOX3-
based 13-HPOTs are cyclized by the combined action
of allene oxide synthase (NaAOS) and allene oxide
cyclase (NeAOC) enzymes to serve as precursors for
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the production of JA and its Ile conjugate (JA-Ile; Fig. 3A),
the signaling molecules mediating most of the changes in
gene expression occurring during OS elicitation (Wang
et al., 2008).

Consistent with the functional diversification of
these three LOXs, the temporal profiles of NaLOX1,
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NaLOX2, and NaLOX3 and functionally associated
genes showed distinct responses to OS elicitation in the
two leaf tissues that were compared (Fig. 3B): NaLOX3
exhibits interactive effects largely at 1 h after elic-
itation, while NaLOX1 and NaLOX2 show significant
interactive effects 5 h after elicitation. To assess the
organization of LOX-dependent oxylipin branches, we
also extracted the time-response patterns for genes that
had been functionally associated with each LOX
branch and assembled them using hierarchical clus-
tering analysis (HCA) based on Euclidean distance
measure (Fig. 3C). HCA revealed clearly distinguish-
able clusters, each with a high degree of coordination
among genes involved in the same LOX branch. In-
teractive effects for all genes of the LOX3 branch were
detected 1 h after elicitation, while downstream ele-
ments of the LOX1 and LOX2 branches showed sig-
nificant interactive effects at 5 h. Interestingly, within
the LOX3 branch, interactive responses between leaf
tissues were highly transient for most structural genes
as well as for NaJAZ transcriptional repressors, but
NaLOX3 and genes involved in the formation and ca-
tabolism of JA-lle (NaJAR4, NaJAR6, NaCYP94C1, and
NaCYP94B3) showed more prolonged interactive ef-
fects. A striking observation was the coordination of
NaGLA1 (for glycerolipasel), the lipase controlling
wound- and herbivory-induced jasmonate levels in N.
attenuata leaves (Kallenbach et al., 2010) but not LOX1-
and LOX2-dependent oxylipin formation (Bonaventure
et al., 2011), with NeLOX3 and associated genes. This
pattern, which has not previously been detected in
correlational studies of gene expression data, is consis-
tent with the rapid conversion of fatty acid released
during herbivory into LOX3-dependent hydroperoxide
derivatives (Kallenbach et al., 2010).

SOM-Based Spatiotemporal Resolution of Interactive
Responses Identifies the Sequential Activation of
Functional Gene Associations

As seen above, clustering genes using their interac-
tive responses as an associative metric clearly delin-
eates the multiple branches of a biological process. To
further resolve the temporal distribution of OS-elicited
processes, we supplemented the time-response metrics
with additional information from the differences in
fold change between the two tissues that were com-
pared in factorial analysis as described in “Materials
and Methods.” We then used BL-SOM (Hirai et al.,
2004) to impose structure on the scaled data. With
grids of size 40 X 16 and 40 X 18 for comparisons
between treated leaf and systemic tissues (leaves and
roots), nodes were mapped into a six-dimensional
space, initially based on principal component analy-
sis. On subsequent iterations (200), a data point was
selected and its nearest nodes were adjusted by mov-
ing toward the selected point, finally converging to
distinctive and tight clusters (Fig. 4A). Maps produced
for each comparison were colored so that red clusters
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represent major up-regulated elements in treated
leaves and minor down-regulated elements in un-
treated systemic tissue. Similarly, blue clusters repre-
sent major up-regulation in untreated systemic tissue
with minor down-regulated elements in treated leaves.
Each cluster, termed an interactive motif, contains a set
of nodes with genes showing interactive responses of
similar amplitude (Fig. 4B). Since regulation patterns
could differ slightly for genes involved in one particular
process, functionally associated genes tend to localize
not necessarily within the same node but within a
common interactive motif. The nodes in these spatio-
temporally resolved muotifs with similar ANOVA di-
rections along time series may be biologically related, as
their dynamic responses are highly coordinated.

Examination of major interactive motifs extracted
from the SOM grid underscored fundamental trends in
the spatiotemporal activation of OS-elicited transcrip-
tional rewiring. Consistent with the interactive effect
concept, gene assemblies according to interactive effect
metrics appeared highly tissue specific and greatly
plastic over time (Fig. 4A). Thus, we observed few to-
pological overlaps between interactive motifs formed
at each time point and in different tissues. For the TvS
comparison, we observed a clear reduction in the size
of the treated leaf interactive motifs (red clusters) along
the time series, suggesting a rapid dampening of local
herbivory responses concomitant with an increase in
the size of the systemic leaf interactive motifs (blue
clusters) starting after 1 h and attaining maximum
values 9 h after OS elicitation. A similar trend of
dampening of responses in treated leaves was observed
for the TvR comparison, except for 13 h after OS elici-
tation in the middle of the dark phase. Mapping genes
known to be regulated by fatty acid-amino acid conju-
gates (FACs; Gilardoni et al., 2010), well-established
elicitors contained in M. sexta OS (Halitschke et al,
2001), revealed significant enrichment of these FAC-
regulated genes in motifs labeled as 1a, 5a, and 5c for
the TvS comparison and rla, r5a, rlb, and r5b for the
TvR comparison, indicating that FAC signaling had a
strong contribution to the activation of these interactive
motifs. GO enrichment analyses for these motifs (1a, 1b,
5a, 5b, r5a, and r5b) are well represented by processes
involved in signaling cascades and secondary metabo-
lism (Supplemental Fig. 54).

Plant tissue-specific responses to insect herbivory
are thought to be controlled by tissue-specific activa-
tion and interaction between hormone gene networks
(Meldau et al., 2012). Consistent with this view, our
factorial analysis revealed significant differences in the
amplitude and timing of the activation of hormone
gene networks between damaged and systemic leaf
tissues. Thus, the intensity of the ANOVA signals for
genes encoding for JA (maximum at 1 h; Fig. 3), eth-
ylene (1, 5, and 9 h), auxin (1, 5, and 9 h), cytokinin
(1 h), and brassinosteroid (1 h) synthesis and connected
signaling components was higher in treated leaf tis-
sues (Supplemental Figs. S3 and S4). Additionally, we
observed specific sets of genes encoding notably auxin-
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Figure 4. Spatiotemporal resolution of herbivory-regulated interactive motifs in gene expression. A, Time-response metrics,
derived from bootstrap-based nonparametric ANOVA models for genes with tissue-specific responses to OS elicitation, were
scaled and classified by BL-SOM. Red and pink clusters represent sets of genes showing up-regulation in treated leaves or
down-regulation in unelicited tissues (roats or systemic leaves). Blue and pale blue clusters represent sets of genes showing up-
regulation in unelicited systemic tissues (roots or systemic leaves) and down-regulation in elicited leaves. B, Each node in the
grid represents a cluster of genes with similar amplitude of responses to simulated herbivory, defined as the product of the
response metric with fold change differences between tissues that were compared. GO term enrichment for these motifs is

presented in Supplemental Figure S4.

and ethylene-related signaling processes that displayed
high responses to OS elicitation in untreated systemic
leaf tissues (Supplemental Figs. S3 and S4).

Studying OS Responses in Systemic Leaf Tissues Using
Interactive Motifs: the Acyclic Diterpene Glycoside
Pathway as a Case Study

Coordinated pattern analysis based on dynamic re-
sponse information from factorial analysis suggested
better clustering with fewer false positives and separated
components of biological machineries deployed at dif-
ferent times after elicitation. Next, we analyzed gene-
gene networks to understand how different biological
functions are orchestrated. To understand the perfor-
mance of entire parts of the OS-elicited transcriptome, we
isolated interactive motifs from the SOM grids and an-
alyzed their dynamic behaviors using network analysis.

We used this network-based approach to analyze
the regulation of OS-elicited changes in the acyclic

Plant Physiol. Vol. 162, 2013

diterpene glycoside pathway. 17-Hydroxygeranyllinalool
diterpene glycosides (17-HGL-DTGs) are a group of
sugar-containing defense metabolites active against a
wide spectrum of herbivores (Heiling et al., 2010). The
high abundance of these metabolites and their rapid de
novo production in systemic tissues during herbivory
are controlled by important transcriptional changes that
are not completely understood (Heiling et al., 2010).
Three experimentally validated genes, NaDXS, NaDXR,
and NaGGPPS2, of the nonmevalonate pathway (the
2-C-methyl-p-erythritol 4-P/1-deoxy-p-xylulose 5-P
pathway) involved in the biosynthesis of geranylger-
anyl pyrophosphate (GGPP), forming the backbone of
17-HGL-DTGs (Jassbi et al., 2008), as well as three other
genes (NaHDR, NaHDS, and NalSPD) predicted based
on their homology to Arabidopsis (Arabidopsis thaliana)
isoprenoid genes, were mapped to the SOM grid and
found to be localized in the same interactive motif (5¢),
the largest one showing a huge response to OS elicita-
tion in systemic leaves. GO terms enriched (F < 10e-10)
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for this motif are overrepresented by those involved in
photosystem, hormone metabolism, secondary metab-
olism, and stress, with a major section of them having
unknown functions.

Using a module-centric approach, we extracted this
interactive motif to construct a gene-gene network
using a statistically sound two-stage coexpression de-
tection algorithm with FDR = 0.05 and a minimal ac-
ceptable strength of 0.7 using the GeneNT package in
R (Fig. 5A). We found that this network shares prop-
erties of other biological networks. The scale-free to-
pology is of 0.96, which suggests that the network is
composed of many genes with few connections but
a few genes with many connections. Additionally, the
clustering coefficient, which provides a measure of
cliquishness (0.516), and the measure of network het-
erogeneity, which reflects the tendency of a network
to contain hub nodes (1.40), are within ranges expected
for biological networks (Supplemental Fig. S5). Inter-
estingly, we observed the highest degree of connec-
tivity for the six genes of the nonmevalonate pathway
(Supplemental Fig. S6), suggesting tight coregulation

Figure 5. OS elicitation selectively
activates interactive motif formation in
unelicited systemic leaves. A, Distri-
bution of enriched GO for a gene set
extracted from maotif 5¢, which dis-
played major transcriptional changes
in unelicited systemic leaves 5 h after
elicitation. Extracted genes were used
to construct a gene-gene network
representing connectivities screened
with FDR = 0.05 and a minimum
Pearson correlation of 0.98. A known
gene with the highest degree of nodal
connectivity (NaGGPPS2) is used to .
illustrate temporal overlap between

the two different treatments (W+OS/C

and W+W/C). B, Analysis of differ-

entially expressed genes between the

control and W+OS for a single time

point (5 h after elicitation) for treated

and systemic leaves independently. B

A Spatiakternporal distribution at 5h
(treated vs systemic leaves)

Treal&d I._aaf
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between this process and a large array of gene net-
works activated in untreated systemic leaves or sup-
pressed in treated leaves 5 h after OS elicitation
(interactive motif 5c). Network analysis also confirmed
differential functional activation of the three NaGGPPS
genes present in N. attenuata, with NaGGPPS1 showing
no significant interactive effect in the TvS comparison
while the other two showed large differences in their
degree of connectivity in the motif 5¢ network [deg
(NaGGPPS2) = 224, deg(NaGGPPS3) = 90].

To infer OS elicitation-specific gene associations, we
constructed a partial coexpression network using the
first neighbors of NaGGPPS2 for the W+W treatment
from the set of genes analyzed with the same param-
eters of the factorial analysis and compared it with the
subnetwork from the W+OS treatment. A large num-
ber of genes uniquely expressed in the W+OS condi-
tion failed to show interactive behavior in the W+W
treatment, which reduced the number of connections
in the W+W subnetwork (Fig. 5A). GO terms over-
represented in the OS elicitation-specific subnetwork
include those from the photosynthetic pathway and
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olism. [See online article for color
version of this figure.]
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from secondary metabolite and phytohormone me-
tabolism, reinforcing the conclusion that OS-based sig-
naling controls the recruitment and coherent activation
of molecular processes otherwise loosely connected.

To further support this conclusion, we conducted a
single-time-point differentially expressed genes analysis
for 5-h elicitation samples of both tissues independently
and detected a large number of genes uniquely up-
regulated in systemic leaves and down-regulated in
treated leaves (Fig. 5B). As expected, major processes
highlighted by this analysis included secondary metab-
olism and hormone metabolism as up-regulated path-
ways in untreated systemic leaf tissue and genes from
photosynthetic pathways as down-regulated processes
in treated leaf tissue. The biosynthesis of plastid isopre-
noids by the nonmevalonate is essential for photosyn-
thesis and chloroplast function (Vranova et al., 2012).
Dense connectivities were shared between the non-
mevalonate/17-HGL-DTG pathways and photosynthetic
genes, suggesting yet-unknown coordination mech-
anisms between these two processes and consistent with
the previously reported transcriptional down-regulation
of photosynthesis (Halitschke et al., 2001; Hui et al., 2003;
Mitra and Baldwin, 2008) as an integral part of the
mechanisms facilitating defense compound production.

Factorial Analysis Reveals OS-Elicited Metabolic Changes
with Diverse Response Patterns

To facilitate the interpretation of the large tran-
scriptomic differences observed between elicited and
unelicited tissues, we profiled downstream metabolite
responses using a broadly targeted UHPLC-qTOFMS
metabolomic approach (Gaquerel et al., 2010). Often in
such large-scale profiling, several compounds are not
completely chromatographically resolved or are ob-
served with shifts in their retention times, so mathe-
matical procedures involving deconvolution and
retention time corrections need to be applied to extract
accurate mass spectra with resolved chromatographic
peaks for further comparisons. These procedures re-
quire samples with somewhat similar metabolomes;
therefore, we only processed treated leaf and untreated
systemic leaf tissues for all time points, and the two
conditions together for both positive and negative modes,
using the XCMS package in R.

The first stage in the identification of differences
between local and systemic responses is the projection
of the ANOVA structure obtained by fitting the same
ANOVA models used in the transcriptomic analysis.
The experimental factors used were treatment (control
and W+OS) and tissue type (treated and untreated
leaves). As with the transcriptomic analysis and using
the same parameters (FDR = 0.05, bootstraps = 200),
the sampling time was not taken as another factor but
was used to find the best ANOVA structure along the
optimal direction resulting in response metrics. In
addition to the induced changes in responses to OS
(treatment effect), a set of metabolites of interest also
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showed small differences between the two leaf tissues
(tissue effect); hence, they were classified in an addi-
tive bin. Therefore, in order to increase metabolite
coverage, we combined both bins of ions showing in-
teractive and additive effects for further analysis. A
total of 19.2% (1,610 of 8,357) of mass-to-charge ratio
(m/z) signals from the positive mode and 26.9% (720 of
2,676) of m/z signals from the negative mode showed
major differences in induced responses between leaf
tissues for at least one time point in the series
(Supplemental Files S2 and S3). This is severalfold
fewer than the transcriptomic differences observed
between the responses of the two leaf tissues. One
reason for this lower coverage could be the use of a
targeted approach for profiling major classes of sec-
ondary metabolites; moreover, some metabolites
showed large constitutive biological variation, which
thwarted the detection of significant differences be-
tween control and W+OS conditions with FDR = 0.05.
For further analysis, we also combined positive and
negative mode m/z lists. We extracted and plotted re-
sponse metrics obtained from the factorial analysis
for both bins and observed larger differences between
elicited and unelicited leaves at 9 and 13 h after elici-
tation (Fig. 6A, box plots). Finally, we scaled the in-
teractive response metrics with additional data of the
fold change differences between elicited and unelicited
leaf tissue, as described in “Materials and Methods,”
and visualized these differences using HCA. We ob-
served a large number of small clusters showing very
diverse patterns across combinations of time points
after elicitation. Larger accumulation of metabolites in
systemic tissues was observed at 9, 13, and 17 h after
elicitation, reflected by the red part of the color scheme
used in the HCA. This difference in the timing of ac-
tivation of transcriptomic changes in systemic tissues
(1 and 5 h after elicitation; Fig. 4, blue motifs 1b and
5b) and metabolic changes (Fig. 6A) was likely due to a
time lag in the biosynthesis of metabolites compared
with underlying gene expression or to the transport of
metabolites from treated to untreated leaf tissues.

To identify major classes of compounds showing
larger differences between the two leaf tissues, we
included the additional information of retention time
and mapped interactive effects onto the chromato-
graphic scale. Figure 6B highlights three main regions
of the chromatogram showing differential OS re-
sponses in treated and systemic leaves at 9 h after
elicitation for both positive and negative modes,
corresponding to phenolic derivatives, 17-HGL-DTGs,
and O-acyl sugars, well-studied classes of defense
metabolites. Next, we ordered ions by their retention
time and visualized the scaled data obtained from
factorial analysis using heat maps. Since we reduced
the number of ions based on the ANOVA model for
their differential behavior between the two tissues, we
created bins of retention times for these selected ions to
match the chromatogram for visualization. To further
illustrate the application of this approach, we focused
on responses detected at 9 h after OS elicitation. This
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exploratory analysis covers the spanned red regions
across the classes of 17-HGL-DTGs and O-acyl sugars
for 9 h after elicitation, which suggests tandem in-
duction and/or metabolic cross talk among several of
the metabolic pathways affected by OS elicitation in
systemic tissues. To understand such concerted in-
creases in metabolites, we constructed metabolite net-
works based on associations among metabolites
(Pearson correlation = 0.98; Fig. 6C). We mapped
scaled data on the network to visualize distinctly oc-
cupied branches of the network in which the red re-
gions spanned, containing different sets of ions with
high OS responses in systemic leaves at 9 and 13 h. We
isolated a branch enriched with m/z signals showing
induction in systemic leaves at 9 h and detected the
presence of different known 17-HGL-DTGs; interest-
ingly, in the same network branch, we also found
several m/z signals corresponding to O-acyl sugars
(Supplemental Fig. S7). Consistent with the power
of this approach to cluster biochemically connected
metabolites, we additionally observed highly coordi-
nated dynamic responses between shikimate pathway-
derived amino acids and downstream metabolites
produced within the phenylpropanoid pathway
(Supplemental Fig. S2).

Time-Lag-Corrected Correlation on the Interactive
Response Metric Supports the Reconstruction of
Gene-to-Metabolite Networks

The nature of the coregulation of functionally related
genes and metabolites could vary depending on the
biological activity of the studied metabolic class and the
experimental conditions applied. The patterns of cor-
relation between metabolite and transcript data have
been successfully analyzed in a few studies using high-
resolution time-course analyses (Hirai et al., 2004), but
most studies in this field, including our work (Fig. 7),
have reported significant differences in the temporal
dynamics of transcriptomes and metabolomes (Walther
et al, 2010; Takahashi et al., 2011). Considering the
complex interdependencies between metabolites and
transcripts, we sought to detect and interpret gene-
metabolite interactions at the level of isolated pathways
for TvS comparisons using the interactive responses of
genes and metabolites as associative metrics and used
this approach to study previously reviewed oxylipin and
17-HGL-DTG pathways.

Although a tight correlation pattern is usually not
expected for metabolites that are rapidly consumed by
subsequent reactions, as is the case for jasmonate pro-
duction, we observed that genes of the LOX3 pathway
correlated well with JA levels as well as associated
metabolic intermediates, based on the interactive
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response patterns observed while comparing two leaf
tissues together (Fig. 2; Supplemental Fig. S8). We
observed a fundamentally different picture for the
17-HGL-DTG pathway. Figure 7A shows expression
profiles with their time-response metric for interactive
effects in a color-coded scheme of known genes and
metabolites of this pathway. A comparison of averaged
interactive responses suggests a shift in the observed
interactive effect behavior of 17-HGL-DTG metabolites
compared with that of their underlying genes. There-
fore, to address this time lag, we applied lagged Pear-
son correlation (PC), estimated as follows:

PC(G,M) = PC{(g1.....gr-1). (m2, ...,m1) }

Where (g, ..., gr.,) indicates gene expression from 1 h
onward and (m,, ..., m;) indicates metabolite level
from 5 h onward.

We constructed a gene-to-metabolite network using
lagged time-specific data with Pearson correlation =
0.98. Figure 7B presents a magnification of the network
region containing the first neighbors of the six known
genes of the nonmevalonate/17-HGL-DTG pathways
in strong associations with m/z signals derived from
17-HGL-DTGs. We observed strong coordination be-
tween 17-HGL-DTGs, O-acyl sugars, genes from the
nonmevalonate/17-HGL-DTG pathways, and photo-
synthetic genes. Unknown m/z signals reported in this
network represent potential molecular fragments of
the aforementioned compounds that will need to be
confirmed by additional mass spectrometry-based
fragmentation analysis.

DISCUSSION

The comprehensive classification of leaf and root
herbivory-activated gene expression levels presented
here significantly expands our knowledge of the mul-
tidimensionality of herbivory-activated transcriptional
and metabolic reprogramming. The use of SOM on in-
teractive effect-response metrics derived from factorial
analysis, instead of raw expression signatures, enabled
a reconstruction of gene-gene, metabolite-metabolite,
and gene-metabolite associations with a high degree
of predictive power. Spatiotemporal maps produced in
this study not only underscore the high plasticity of OS
elicitation responses but also provide a powerful data
platform for the functional genomics of novel regulatory
and structural genes involved in antiherbivory pro-
cesses. The two metabolic routes investigated in greater
detail in this study, oxylipin signaling and 17-HGL-DTG
pathways, illustrate fundamental working aspects of
gene-metabolite networks in terms of activation and

Figure 6. (Continued.)

and aligned with heat maps representing scaled interactive effect data ordered by retention time. C, Visualization of systemic
responses occurring 9 and 13 h after elicitation localized on different branches of the metabolite-metabolite network. D, Partial
network representations of the first neighbors of known 17-HGL-DTG and O-acyl sugar m/z signals extracted from the same

branch of the network. AA, amino acid; TIC, total ion current.
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pathway; UGT, UDP-glucosyltransferase.

transition points during herbivory and shared patterns
of regulation with other physiological processes.
Elucidating groups of genes involved in the se-
quential reorganization of biological networks is ex-
tremely challenging using the available bioinformatics
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approaches, but we successfully studied such a reor-
ganization by systematically combining information
about when to respond (time points) with information
about how to respond (fold changes). This method
could be used to query different gene families of
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interest as input or to discover regulatory motifs for
each separated module from the SOM grid. The ap-
plicability of this method can be further extended to
study diurnal rhythms perturbed in response to her-
bivore attack (Kim et al., 2011) by considering the
ordering of time points before deriving the optimal
direction for the best ANOVA structure. Here, we
demonstrate that SOM-based herbivory-elicited inter-
active motifs are highly tissue specific, highly versatile,
and decrease in size for later time points, reflecting
specific sequential responses deployed in different
tissues. We speculate that this increased modularity in
time reflects the functional specialization of the se-
quential responses deployed in the different tissues.
These observations are in line with smaller scale
transcriptional screens published by several groups
indicating that insect herbivory results in major shifts
in almost every aspect of a plant’s physiology
(Hermsmeier et al., 2001; Schmidt et al., 2001). The fact
that large-sized interactive motifs are more pro-
nounced in systemic tissues at 5, 9, and 13 h after
elicitation indicates the involvement of organismic-
level responses specifically triggered by OS-based sig-
naling, with a large proportion of these also attributable
to unexplored root-specific processes. Previous work
has shown that the elicitation in N. attenuata shoots of
defense-related transcriptional and metabolic programs
relies on the rapid translocation, specifically triggered
by OS perception, of signaling molecules from the sites
damaged by insects to systemic undamaged tissues
(Wu et al., 2007). Jasmonate signaling through the plant
vasculature has major functions in this process and is
controlled by rapid transcriptional and posttranscrip-
tional changes (Wu and Baldwin, 2010).

Analysis of interactive effects and response timings
for jasmonates and oxylipin genes illustrates that the
extraction of multifactorial statistical information in
terms of response patterns not only facilitates the
clustering of genes involved in similar biochemical
pathways, as also shown for the phenylpropanoid
(Supplemental Fig. S2) and 17-HGL-DTG pathways
(Figs. 6 and 7), but also the identification of transition
points in the activation of certain pathways (Fig. 3).
Most structural genes involved in the biogenesis of
jasmonates (NaAOS, NaAOC, and B-oxidation com-
ponents), associated upstream signaling components
such as mitogen-activated protein kinase (NaSIPK and
NaWIPK), posttranslationally activating linolenic acid
release and hydroperoxidation by NaLOX3 (Kallenbach
et al., 2010), and downstream signaling components
such as transcriptional repressors (NaJAZs) and
NaMYC2, show transient interactive responses. In clear
contrast, metabolic systems involved in the initiation
of JA synthesis (NaLOX3), its conjugation to form bio-
active JA-Ile (NaJAR4/NaJAR6), and the catabolism of
this signaling molecule (NaCYP94C1 and NaCYP94B3;
Koo et al., 2011; Heitz et al., 2012) exhibited a prolonged
interactive effect. Experimental work supported by
mathematical modeling (Banerjee and Bose, 2011) has
demonstrated that the transient nature of the jasmonate
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pulse and most of the underlying gene expression is an
outcome of two opposing influences. Jasmonate accu-
mulation activates a positive feedback loop in which
the expression of jasmonate biosynthesis genes is acti-
vated after degradation of a specific set of JAZ proteins
inhibiting MYC2 transcriptional activity (Chung et al.,
2008). This positive loop is counterbalanced by the
MYC2-dependent increased expression of JAZs repres-
sing jasmonate signaling transduction (Chini et al,
2007). Prolonged interactive responses for certain genes
that contrast with the pulse effects, however, are con-
sistent with the existence, as suggested by different
experimental efforts (Howe et al., 2000; Strassner et al.,
2002), of additional regulatory loops modulating tran-
sition points in pathway activation.

To analyze the metabolic output of these large tran-
scriptional changes, we also profiled metabolites for the
same experimental conditions and tissue types (Fig. 6).
Even though instrumental in highlighting the breadth of
the complete metabolic profile being affected by the
treatment, the mining of these data are extremely chal-
lenging, notably due to compound-specific in-source
fragmentation resulting in redundant signal detection
(Dettmer et al., 2007) and also because of the scarcity of
methods available for analyzing such complex factorial
time-series data. Here, we demonstrate the advantage of
constructing a dynamic correlation network based on
response features captured by the factorial analysis. This
conclusion is based on the inference of compound-
family-wise grouping of m/z signals exhibiting similar
interactive effects (e.g. for 17-HGL-DTG and O-acyl
sugar fragmentation patterns) and on the detection of a
significant coexpression, after time-lag correction of in-
teractive effect metrics, of structural genes and metab-
olites of the 17-HGL-DTG pathway (Fig. 7). To our
knowledge, this analysis represents the first success-
ful example of spatiotemporal categorization on a path-
way scale of induced changes in plant transcriptomics
and metabolomics data.

The analysis of OS-specific interactive motifs acti-
vated in systemic tissues as well as network recon-
structions placed known genetic elements of the
nonmevalonate pathway at the center of the largest
gene network formed in systemic leaf tissues following
OS elicitation (Fig. 5). This is consistent with the role of
the nonmevalonate pathway as a central metabolic
provider for the production of structurally diverse
plastidic isoprenoids such as carotenoids, phytol (a
side chain of chlorophylls), isoprene, and monoter-
penes and diterpenes (Vranova et al, 2012). In N.
attenuata, this plastidial metabolic route also supplies
the production of 17-HGL-DTG, an important defen-
sive molecule increasing in concentration during insect
herbivory (Heiling et al., 2010). The organization of the
molecular processes within this OS-specific gene net-
work supports known metabolic interactions between
the nonmevalonate pathway, photosynthesis, and
chloroplast functions (Vranové et al., 2012) and, more
importantly, highlights that the induction of 17-HGL-
DTG structural genes represents one of the major
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reorientations of the gene network dynamics triggered
by OS elicitation. The de novo production of 17-HGL-
DTGs during OS elicitation documented in this study
relies on the biogenesis of the GGPP backbone by a
specific GGPPS, NaGGPPS2 (Jassbi et al., 2008). Here,
we show that expression of the gene coding for this
protein is part of the hub region of a gene network,
while the two other NaGGPPS copies (NaGGPPST and
NaGGPPS3) exhibit reduced connectivity with this hub
region. We predicted the subcellular location of these
three proteins based on the presence of chloroplast
transit peptide, mitochondrial targeting peptide, or se-
cretory pathway signal peptide (Emanuelsson et al,
2007). Therefore, NaGGPPS2 and NaGGPPS3 with high
chloroplast transit peptide scores (0.369 and 0.457) are
most likely localized in the chloroplast, while NaGGPPS1
showed insignificant scores for chloroplast transit pep-
tide, mitochondrial targeting peptide, and secretory
pathway signal peptide. These predictions further sup-
port our findings on the differential activation of these
three GGPPS genes in response to OS elicitation.

The ability to reconstruct tissue-specific gene-to-
metabolite dynamics with high confidence underscores
the importance of extracted time-response patterns for
features of interest, which single-point analysis or pooled
data using time series as a third factor would fail to
identify (Supplemental Fig. S6). This novel method of
combining multifactorial analysis with the information
extracted from time-series data is broadly applicable to
investigate signaling/metabolic pathways in other bio-
logical systems with time-series data to deduce the acti-
vation times of particular response elements required
for understanding complex physiological processes. This
strategy can further be used for improving clustering
analyses by applying a dimension reductionist approach,
for different cell/tissue types, developmental stages, or
genetic backgrounds, based on the time-response metric.

MATERIALS AND METHODS
Plant Material

Wild-type Nicotiana attenuata from an inbred line in its 30th generation was
used for all gene expression and metabolite profiling experiments. All seeds
were first sterilized and incubated with diluted smoke and 0.1 & GA., as
described (Krugel et al, 2002), and then germinated on plates containing
Gamborg B5 medium, Ten-day-old seedlings were transferred to small pots
(TEKU JP 3050 104 pots; Poppelmann) with Klasmann plug soil (Klasmann
Deilmann), and after 10 d, seedlings were transferred to 1-L. pots with sand to
facilitate the sampling of roots. Plants were grown in the glasshouse with a
day /night cycle of 16 h {26°C-28°C)/8 h (22°C-24°C) under supplemental
light from Master Sun-T FIA Agro 400 or Master Sun-TPIA Plus 600-W
sodium lights (Philips Sun-T Agro).

Plant Treatment Experimental Design

A scheme for plant treatments and the work flow for data collection/ analysis
are shown in Figure 1. Briefly, plant treatments (no treatment, mechanical
wounding, and simulation of Manduca sexta feeding) were randomly applied to
plants in the early elongating stage of growth. To simulate M. sexta feeding, the
laminas of three leaves per plant (two source leaves at nodes +2 and +1 and one
source-sink transition leaf at node 0) were mechanically wounded with a fabric

pattern wheel on both sides of the midrib, and immediately, 20 uL of M. sexta OS5
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(diluted 1:10 in water) was applied to the fresh wounds (W+OS). This procedure,
which is referred to as OS elicitation, has been shown to recapitulate most of the
reconfigurations occurring in the leaf transcriptome, proteome, and metabolome
during M. sexta feeding (for review, see Wu et al,, 2010). M. sexta OS were col-
lected from third to fourth instar larvae reared on N. attenuate wild-type leaves
as described (Roda et al., 2004), and eggs of this insect species were obtained
from Morth Carolina State University. Responses inherent to the mechanical
damage were monitored by applying 20 uL of deionized water onto the wounds
(W+W). For cach time point (1, 5, 9, 13, 17, and 21 h after treatment), treated
leaves or control ones at the same nodal positions, systemic leaves (two sink
leaves at nodes —1 and —2), and the complete root system were collected from
six plants and immediately flash frozen in liquid nitrogen. Roots were washed
in a water tank for a few seconds to remove sand.

Analysis of Leaf Metabolites by UHPLC-ESI/qTOFMS

Metabolites were extracted from all local and systemic leaf samples. We used a
4% methanol extraction procedure optimized for the recovery of a wide range of
metabolites of interest in N, atfeuate (Gaquerel et al, 2010). Approximately
100-mg aliguots of liquid nitrogen-ground leaf powder were extracted by add-
ing 1 mL of acidified 40% methanol prepared with 0.5% acetic acid water to each
sample in 2-mL microcentrifuge tubes with metal balls. The samples were ho-
mogenized in a ball mill {Genogrinder 2000; SPEX Certil’rep) for 45 s at 250
strokes min . Homogenized samples were then centrifuged at 16,000¢ and 4°C
for 30 min, and supernatants were transferred into 1.5-mL microcentrifuge tubes.
Two microliters of the extracts prepared as above was separated using a Dionex
rapid separation liquid chromatography system equipped with a Dionex Ac-
claim 2.2-pm, 120-A, 2.1- 3% 150-mm column, applying the following binary
gradient: 0 to 6 min, isocratic 70° A (deionized water, 0.1% [v/v] acctonitrile
[Baker; HPLC grade], and 0.05% formic acid), 30% B (acetonitrile and 0.05%
formic acid); 6 o 13 min, isocratic 200 A, 80% B and 70% A, 30% B; 13 to 18 min,
isocratic 70% A, 30% B. Flow rate was 200 uL min™. Eluted compounds were
detected by a MicroToF quadrupole time-of-flight mass spectrometer (qTOFMS;
Bruker Daltonics) equipped with an electrospray ionization source. To maximize
metabolome coverage, mass spectral detection was performed in both positive
and negative ionization modes. Typical instrument settings were as follows:
capillary voltage, 4,500 V; capillary exit, 130 V; dry gas temperature, 200°C; and
dry gas flow, 8 L min 1. m/z values were detected within a range from my/z 200 to
1,400 at a repetition rate of 1 Hz, Mass calibration was performed using sodium
formate clusters (10 mm solution of NaOH in 50:50 [v/v] isopropanol:water

containing 0.2% formic acid).

Microarray Data Analysis

Three biological replicates from six harvested replicates were used for RNA
isolation. Total RNA was isolated with TRIZOL reagent and labeled copy RNA
with the Quick Amp labeling kit (Agilent). Each sample was hybridized
on Agilent single-color technology arrays (4x44K 60-mer oligonucleotide
microarray designed for N. alfeniala transcriptome analysis; hitp://www.
agilent.com; accession no. GPL13527). All microarray data with each probe
name were deposited in the National Center for Biotechnology Information
Gene Expression Omnibus database (accession no. GSE30287). Raw intensities
were log, and baseline transformed and normalized to their 75th percentile
using the R software package, prior to statistical analysis.

Processing of Metabolomics Data

Raw data files were converted to netCDF format using the export function of
the Data Analysis version 4.0 software (Bruker Daltonics) and processed using the
XCMS package in R (Smith et al,, 2006). Peak detection was performed using the
centwave algorithm with the following parameter settings: ppm = 20, snthresh =
10, peakwidth = ¢(5,18). Retention time correction was accomplished using the
XCMS retcor function with the following parameter settings: mzwid = 0.01,
minfrac = 0.5, bw = 3. Areas of missing features were estimated using the fill-
Peaks method. Annotation of compound spectra derived from in-source frag-
mentation during ionization and corresponding ion species was performed with
the BioConductor package CAMERA (version 1.9.8; Kuhl et al., 2012). Com-
pound spectra were built with CAMERA according to the retention time simi-
larity, the presence of detected isotopic patterns, and the strength of the
correlation values among extracted ion currents of coeluting m/z features.
CAMERA grouping and correlation methods were used with default parame-
ters. Clustered features were annotated based on the match (=5 ppm) of
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calculated ni/z differences versus an ion species and neutral loss transitions rule
set (Supplemental File S2). Consistent mass features that were at least present in
four out of the six biological replicates with a retention time greater than 1 min
were considered for further analysis. Zero values, which remained after appli-
cation of the “filling in” function in XCMS, were replaced by one-half of the
minimum positive value of the ion across all ime points and conditions in the
original data. Raw intensity values were 75th percentile normalized before sta-
tistical analysis. Metabolite fragmentation patterns were annotated as described
in Supplemental Materials and Methods S1.

Statistical Analysis and Data Visualization

Multifactorial analysis was carried out using the methods implemented in
the R package TANOVA (Zhou and Wong, 2011). Genes and ions were filtered
by fitting the following models in sequential order for identifying nonconstantly
expressed elements, elements showing interactive effects, and elements showing
major effects of tissue or treatment type:

Yy =y + €y 1)
Vi =y + oy + By + ¥y + € 2}
Yy =vy +ay+ €y (3)
Yy=uwy+By+€ 4)

where Y” is gene expression vector, vy is mean expression veclor, wyy and By
are main tissue and treatment effects, and €, and ¥, are residual and inter-
active effects between tissue and treatment type. To mine the major biological
processes perturbed in response to OS5 elicitation, we functionally annotated
probe sets using the best BLASTX hit of The Arabidopsis Information Re-
source 6 proteome with an e-value cutoff of le-15. Next, using MAPMAN
classification of biological processes for Arabidopsis (Arabidopsis thaliana), we
assigned classes to each probe identifier of our microarray data set. Enrich-
ment analysis of GO biological processes based on a hypergeometric test was
performed using R.

Significant enrichments were those with F < 10e-10. For spatial categori-
zation, we applied the following scaling method for time-response metrics
obtained from factorial analysis for genes and mi/z signals, filtered for their
interactive effect:

where E, is scaled expression, F, is difference in fold changes (OS elicitation/
control) between treated and untreated tissues, and R, is response timing.

BL-SOM for transcriptomic data were constructed using BL-SOM software
(http:/ /prime.psc.riken.jp/ ?action=blsom_index) with X coordinates sized 40.
Networks representing associations between genes and metabolites were vi-
sualized with Cytoscape (http://www.cyvloscape.org /) using organic layouts.
Topological properties of the networks were analyzed using the NetworkAnalyzer
plugin in the Cytoscape software. HCA for all heat maps is based on Euclidean
distance measures and average linkage aggregation methods. All heat maps and
box plots were created using R.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Examples of the structures obtained (interactive,
additive, and major effects) by fitting ANOVA model.

Supplemental Figure S2. Interactive effect responses of phenylpropanoid
pathway genes are highly coordinated.

Supplemental Figure $3. SOM-based classification of FAC-responsive and
hormone and secondary metabolism genes in leaves.

Supplemental Figure S54. Enriched GO terms for a few important molifs
extracted from SOM analysis unravels large OS-specific gene expression
responses in treated leaves and untreated systemic tissues (leaves and
TOOkS).

Supplemental Figure S5. Power law distribution plot of the network rep-
resentation oblained for genes extracted from motif 5¢, showing
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many genes with few connections but a small set of genes with many
connections,

Supplemental Figure Sb. Gene-gene Pearson correlation for six genes from
the nonmevalonate pathway using five different metrics.

Supplemental Figure 57. Temporal profiles for m/z signals corresponding
to the class O-acyl sugars exhibit high correlation and colocalize with
those of 17-HGL-DTG in the network.

Supplemental Figure S8. Temporal profiles of NaLOX3, functionally char-
acterized for the production of JA and mi/z signal of JA.

Supplemental File S1. Multifactorial analysis and BL-SOM results for gene
expression data.

Supplemental File 52, UHPLC-TOFMS metabolomic positive and negative
mode data.

Supplemental File S3. Multifactorial analysis results for metabolomic data.

Supplemental Materials and Methods S1. Identification of metabolites
from UHPLC-TOFMS data.
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Supplementary Figure 1: Examples for the structures obtained (interactive, additive and

major effects) by fitting ANOV A model.
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Supplementary Figure 2: Interactive effect responses of phenylpropanoid pathway genes
are highly coordinated. (A) Schematic representation of the phenylpropanoid pathway and
Pearson correlation coefficients (PC), calculated using two different associations metrics,
between NaPAL, controlling cinnamate biosynthesis, and downstream genes of the
phenylpropanoid pathway. Higher PC values obtained when using the interactive effect response
metric allows the identification of biologically-relevant gene interactions which are weak or
insignificant when drawn using pooled expression values across time series and all experimental
conditions. (B) HCA (IHierarchical Clustering Analysis) of genes involved in the oxylipin and
phenylpropanoid pathways exhibit high interactive effects 1h after OS-elicitation. But in contrast
with similar analysis for metabolites, we observed interactive effect for later time points (9h and

13h after elicitation) for known phenylpropanoids.
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Supplementary Figure 3: Self-organizing maps based classification of fatty acid amino acid
conjugate-responsive and hormone and secondary metabolism genes in leaves. (A) Probes
representing unique sequences, taken from published SuperSAGE library, known to be induced
by fatty acid amino acid conjugates (FAC) elicitors in N. attenuata are mapped onto SOM grid.
They are abundantly located in motif labeled as 1a, showing early response in treated leaf. (B)

Genes with GO terms for different hormone and signaling pathways were extracted and mapped
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onto SOM grid. While genes of the JA (jasmonic acid) and ET (ethylene) signaling pathways
were found overrepresented in the motif labeled as la and showing early responses in the treated
leaf, those of the auxin pathway were more abundantly located in the motif labeled as 1b with
major activation in the untreated systemic leaf. (C) Similarly, genes with GO terms involved in
the flavonoid, isoprenoid, and phenylpropanoid pathways were mapped onto the SOM grid and
found overrepresented in motifs labeled as 5a and Sc, indicating the importance of OS-specific

metabolic responses activated 5h after elicitation.
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Supplementary Figure 4: Enriched GO terms for few important motifs extracted from
SOM analysis unravels large OS-specific gene expression responses in treated leaves and

systemic tissues (leaves and roots).
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Supplementary Figure 5: Power law distribution plot of the network representation

obtained for genes extracted from motif Sc showing many genes with few connections, but a

small set of genes with many connections.
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Supplementary Figure 6: Gene-gene Pearson Correlation (PC) for 6 genes from the non-
mevalonate pathway using 5 different metrics: The time response metric-based PC
calculations for all gene pairs are recovered with a threshold of 0.75 but not in the case of pooled

data or with expression data obtained from just one tissue type.
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Supplementary Figure 7: Temporal profiles for m/z signals corresponding to the class O-
acyl sugars exhibit high correlation and co-localize with those of 17-HGL-DTG in the

network.
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Supplementary Figure 8: Temporal profiles of NaLOX3, functionally characterized for the
production of jasmonic acid and m/z signal of jasmonic acid. High values at 1h in time
response metric for interactive effect for treated leaf vs untreated systemic leaf comparison were
observed for both gene (Val.(OX3) and metabolite (jasmonic acid).
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Supplementary Method
Metabolite identification

Targeted structure elucidation analyses on metabolites presented in this study have previously
been published (Gaquerel et al., 2010; Heiling et al., 2010; Weinhold et al., 2011). Briefly, each
17-HGL-DTG was purified, analyzed by MS2 high resolution HPLC-ESI/TOF-MS and its
structure identified by NMR (Heiling et al., 2010). Fragmentation patterns of O-acyl sugars
characterized in N. aftenuata exhibit typical losses of acetylated and non-acetylated fructose,
previously observed for O-acyl sugars described in other Solanaceae. Short fatty acid chains
involved in N. attenuata O-acyl sugars were identified, after trans-methylation, by GC-MS and
comparison with authentic compounds (Weinhold et al., 2011). However, the position of these
acyl moieties could not be inferred from the MS2 analyses conducted on O-acyl sugars
(Weinhold et al., 2011). Herbivory-inducible phenolic derivatives produced by N. attenuata have
been identified by tandem MS analysis in a previous study (Okonkesung et al., 2012).

During the analysis of xems-processed metabolomic matrices, m/z signals corresponding
to molecular fragments of 17-HGL-DTG, O-acyl sugars and phenolic derivatives were annotated
based on elemental formula predictions and analysis of tandem MS high resolution fragmentation
patterns obtained by Gaquerel et al (2010). MS detection was carried out with a maXis ESIqTOF
mass spectrometer operated in electrospray positive mode. Typical instrument settings were as
follows: capillary voltage 4500 V, dry gas temperature 200 °C, dry gas flow of 8 L/min, capillary
exit 117V and funnel RF 300Vpp.

Below are examples of tandem MS records obtained for one 17-HGL-DTG and one O-acyl
sugars reported in this study, others are available in the Supplemental material of Gaquerel et al.
(2010).

Nicotianoside I, [M+Na]® (+MS2 m/z 885.4090, Cs/HesOoNa®, 18.4 min, 49 eV): 885.4098
(35.3 %, CaiHeOoNa', cale. 885.4090), 841.4192 (13.7 %, CioHeO17Na", calc. 841.4192),
739.3487 (8.6 %, CisHsgOysNa', cale. 739.3511), 559.2874 (6.3 %, CaieHyOsNa®, calc.
559.2877), 491.2973 (22.3 %, CagHs;s07Na", calc. 491.2979), 475.3023 (21.9 %, CaHisOgNa
cale. 475.3031), 473.2868 (23.5 %, CaHiO¢Na', cale. 473.2873), 435.1103 (100 %,
C1sH24013Na’, calc. 435.1109), 433.0949 (37.6 %, C1sH20,3Na", cale. 433.0952), 289.0530 (8.5
%, CoH1400Na", calc. 289.0530), 271.2424 (4.1 %, CaoHs, ", cale. 271.2420).

Massbank best hit: -
Authentic standard: purified from N. attenuata leaves and analyzed by NMR.

O-acyl sugar 1, [M+Na]" (+MS2 m/z 603.2608, C1H44O14Na’, 19.08 min, 46 ¢V): 603.2608
(Ca6H44014Na’, calc. 603.2623), 4422119 (23.1 %, C,C1oH3400Na’, calc. 442.2128), 441.2083
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(100 %, C_‘gqu.;OgNa‘, calc. 441.2‘095), 353.1558 (10.5 %, C15H2507Na‘, calc. 353.1571),

339.1399 (10.1 %, CisHaO7Na', calc. 339.1414), 325.1252 (12.1 %, Ci4H»OsNa', calc.
325.1257), 185.0419 (10.2 %, C¢H;9OsNa', cale. 185.0420), 127.0389 (9.6 %, CH705', calc.
127.0389).

Massbank best hit: -
Authentic standard: -

Chemical structure of O-acyl sugars and 17-HGL-DTGs

O-acyl sugars 17-HGL-DTGs

Class 2

o
wa
= Z = N
9 Ow .o O Y,
0. [}
R ey o ¢ Ha
I o o
OTO HO 'OH

R{G "o Class 3
ass Malonyl- Malonyl-
. o OH R, R, groups R, R groups
j\ 0. i Lyciumoside | Nicotianoside ¥ Rh Rh 1
R 0 ey OH Lyciumoside ¥ Rh Nicotianoside V. Rh Rh 2
o o) & Micolianoside | Rh 1 Attenoside Rh Gl
Q OH Nicotianoside#  Rh 2 Nicolianoside VI Rh Gk 1
\g MNicotianoside @ Rh Rh Nicotianoside VI Rh Gk 2
R= 2-MeC4:0
3-MeC4:0
3-MeC5:0
4-MeC5:0

O-acyl sugarl 617.276  CyHy04Na+
O-acyl sugar2 631.293  CyHyOqgNat
O-acyl sugar3 645307  CygHsoOysNa+
O-acyl sugard 673.303  C3gHspOsNa+
O-acyl sugar5 659.324  CyHs0 Na+
O-acyl sugaré 687.319  Cy3yHg,05Na+

O-acyl sugars are esterified by short chain fatty acids ranging from three to six carbons in chain
length. Type IIT sucrose esters are acetylated at their fructose moiety. 17-HGL-DTGs differ in
their sugar (Rh: rhamnose, Glc: glucose) and malonyl groups.
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Abbreviations: OS, oral-secretion; SOM, self-organizing maps; ANOVA, analysis of variance

Spatial-temporal coordination between multiple processes/pathways is a key determinant of whole-organism
transcriptome and metabolome reconfigurations in plant’s response to biotic stresses. To explore tissue-based inter-
dependencies in Nicotiana attenuata’s resistance to insect attack, we performed time course analyses of the plant's
transcriptome and metabolome in herbivory-elicited source leaves and unelicited sink leaves and roots. To dissect the
multidimensionality of these responses, we have recently designed a novel approach of constructing interactive motifs
by combining an extended self-organizing maps (SOM) based dimensionality reduction method with bootstrap-based
non-parametric ANOVA madels. In this previous study, we used this method to study nonlinearities in gene-metabolite
associations involved in the acyclic diterpene glucoside pathway. Here, we extend the application of this method to the
extraction of genes showing herbivory-elicitation specifically in systemic (distal from the treatment sites) tissues using
motif analysis for different combinations of treatment applied to Nicotiana attenuata.

Plants have evolved efficient defense strategies which involve rapid
changes in intricately connected signaling and metabolic net-
works." ! Experiments designed to study such intricate networks
often have a complex factorial structure, obtained by assessing
plant responses in different conditions/treatments, tissue types or
genetic contexts. Among the major problems associated with the
statistical analysis of multifactorial experimental designs are those
of gene prioritization and of large numbers of false positives.”®
Since signaling pathways underlying major stress responses are
generally affected only by a subset of the experimental conditions’
and are based on transient gene associations, therefore these can-
not be captured using collective information studies. Although
bioinformatic approaches such as murual information® and biclus-
tering” have been developed to address this limitation, gene net-
works assemble dynamically as the organism adaprts to external
stimuli and therefore their analysis necessitates the mining of mul-
tifactorial time series experiments. Several efforts including those
by Park et al.,' Wang and Kim'' and Tai and Speed’* have been
published to assess single factorial effect on gene expression in a
time course experiment. Zhou et al.” have developed a method to
simultaneously analyze experiments involving more than one fac-
tor measured across time series by finding the significant direction
in the time course across different conditions.

*Carrespondence to: Emmanuel Gaguerel, Email: egaquerel@ice.mpg.de
Submitted: 06/25/2013; Accepted:07/04/2013

Nicotiana attenuata is an annual fire-chasing plant native
to the Great Basin Desert of the southwestern United States of
America which has evolved a large number of specific induced
responses against generalist and specialist herbivores.'"*" Some of
the essential nodes in the plant’s transcriprome and metabolome
responses to attack from larvae of the specialist lepidopteran her-
bivore, Manduca sexta, have been functionally characterized.'
Feeding by this specialist herbivore or its simulation by the appli-
cation of its oral secretions (OS) into puncture wounds pmduced
by mechanical wounding activate rapid changes in the plant’s
metabolic and growth processes in order to facilitate de novo
Prudllclioll Ur llt'rl.‘[]SC CU]IlpUlllldS.

In a recent study,"” we profiled the transcriptome and metabo-
lome of identically treated wild type Nicotiana attenuata plants
for 3 tissues and 2 stress conditions (mechanical wounding
and simulated herbivory) with a regular time series of 6 time
points. To investigate the dynamics of activation in time and
space of herbivory-induced changes in gene-to-metabolite net-
works, we employed a bootstrap-based non-parametric ANOVA
(NANOVA) model designed to find gene/merabolite-specific
responses across the time series based on their dependency on
experimental factors used for comparison.” We conducted
dynamic response analyses taking control (Ctrl) and OS treated

Citation: Gulati J, Baldwin IT, Gaquerel E. An integrative statistical method to explore herbivory-specific responses in plants. Plant Signal Behav 2013; & e25638;
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Figure 1. (A) Implementation of a statistical method designed to study O5-elicitation specific
responses in untreated tissues in Nicotiana attenuata: Replicated transcriptomic and metabo-
lomic data were analyzed using multi-factorial analysis with both factors (tissue and treatment)
taken together across the time series to identify modules showing differential O5-elicitation.
Heatmap represents hierarchical cluster analysis of genes showing interactive effect for W+05
and W+W condition when compared for treated and untreated leaf tissue. Temporal profile of
NaPAL1 represents the specific pattern, OS5 specific response at 5 h after elicitation, extracted
using this method. Pie chart represents the distribution of enriched GO terms for genes show-
ing interactive effect. (B) Localization of genes showing OS-specific responses dependent on
tissue type in different interactive motifs: Probes from interactive bin for the analysis compar-
ing 2 factors (treatment, W+0S vs. W+W; tissue, Treated leaf vs. systemic leaf) were mapped
onto SOM grids and found overrepresented in motifs 1a, 1b, 5a and 5c. This set is further divided
into 2 sub-groups based on their time response. (A) greater than 0.5 at 1h after treatment; (B)
greater than 0.5 at 5h after treatment. Set (B) is represented by 2 well-studied secondary meta-
bolic pathways—the acyclic diterpene glycoside and phenylpropanoid pathways.

comparisons: treated (source) leaf vs. untreated systemic (sink)
leat (TvS comparison) to explore difterential gene expression pat-
terns activated during shoort systemic signaling, and treated leaf
vs. untreated roots (TvR comparison) to obtain novel insights
into root specific responses. Using a series of statistical tests on
factor effects,”* we divided the transcriprome/metabolome into 4
murtually exclusive groups showing their best ANOVA structure

e25638-2 Plant Signaling & Behavior

along the estimated optimal direction in the
time series. The 4 resulting structures repre-
sent interactive (tissues behaving differently
in response to OS-elicitation across the time
series), additive (herbivore responses indepen-
dent of tissue type), or corresponding main
effects on gene expression (major treatment
effects in both treated and untreared tissue
or significant differences in tissue type with
no response to treatment). Set of genes and
metabolites displaying interactive response
patterns were further studied. With this
apprDac]’l, we CaPrl.ll't'd rht' dyna[nic l'ESpOl'lSt'
of a gene in more than one tissue in terms of a
single metric which was then used to delineate
clements of signaling pathway and to analyze
activation transition points between differ-
ent sub-branches of a single pathway. Next,
we imposed structure on the data using barch
leaming St'lf:(}rg‘dlli?.illg maps (BL-SOM)"® to
obtain interactive motifs which are defined
as patterns of interconnections between
genes and metabolites that are differentially
perturbed in local and systemic tissues in
response to stress, additional information of
their time of action having been obtained
from projected data on time series termed as
ANOVA directions. Since dynamic responses
for signaling/metabolic pathways are con-
sidered highly coordinated, we hypothesized
that the nodes in these spatio-temporally
resolved motifs with similar ANOVA direc-
tions along the time series may reflect bio-
logical organization. We isolated interacrive
motifs from the SOM grids for genes involved
in the biosynthesis of defense metabolites of
the 17-hydroxygeranyllinalool diterpene gly-
coside (17-HGL-DTG) class"? and analyzed
their dynamic behaviors using network analy-
sis. Metabolic analyses conducted in parallel
further supported the advantage of construct-
ing dynamic correlation network based on
response features caprured by the facrorial
analysis. Specifically, we identified multiple
clusters of biochemically-connected metabo-
lites that shared similar time response met-
ric and grouped according to their inferred
compound-family-wise grouping of m/z ions
for 17-HGL-DTG, O-acyl sugars, shikimate

pathway-derived amino acids and downstream metabolites pro-
duced within the phenylpropanoid pathway.

Here, we illustrate the extension of this statistical method to
study herbivery-specific plant responses in treated and untreated
leaves. Additionally to the time course transcriptome data col-
lected from the W+OS treatment type, we considered transcrip-
tome dara for leaf tissues (treated and untreated leaves) thar had

Volume 8 Issue 10
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collected at 3 time points (2 carly
time points, 1 h and 5 h after trear-
ment; one late time point, 17 h after
treatment; Fig. 1A). By applying
method we  differenti-
ated OS-specific systemic response
(W+QOS) from those inherenr ro the
mechanical wounding (W+W) by
extracting the set of genes showing
an interactive effect to the trear-
ment type along the time series for
the comparison berween treated and
untreated leaf tissues. OS-specific
responses dependent on tissue type
are more clearly visible for early time
points (1 h and 5 h after treatment)
in a hierarchical cluster analysis
of genes showing interactive effect
(Fig. 1A). To assess the functional
signiﬁcance Uf I:hesc genes, we com-
puted the enrichment of GO terms
using hyper-geometric tests (f< 0.05)
(Fig. 1A). As L'XP(_’CI:{_'d from previ-
ously characterized mechanisms of
biotic stress adapration in this plant
species, the group of genes showing

this novel

OS-specific systemic responses were
highly enriched for processes associ-
ated with stress responses, hormone
metabolism,
lism, photosynthetic pathway and
amino-acid metabolism. We next
mapped the set of genes showing
an interactive effect to the W+OS
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Figure 2. O5 elicitation selectively activates genes in the phenylpropancid pathway at 5 h after elicita-

tion. Schematic representation of the phenylpropanoid pathway with the color coded representation of
interactive effect response metric for two different comparisons: (A) Control vs. W+05, (B) W+05 vs. W+W.
Activation of gene expression in response to 05 in treated leaves 1 h post elicitation is supported by the
high value of the response metric at 1 h while the differential activation of these genes specifically to OS
at 5 hin untreated leaf tissue in response to application of OS is reflected by the high value of response

| metric obtained from W+0S vs. W+W comparison at 5 h.

treatment type when compared with

the W+W condition onto the SOM

map which was generated earlier for the analysis of the TvS
(treated vs systemic leaf response) comparison between Control
and W+OS treatment type'” and detected these genes of inter-
est being localized into the nodes from interactive motifs la,
1b, 5a, and 5c¢ which have been shown earlier to be enriched
for stress, signaling and secondary metabolic pathways. Since we
found OS-specific systemic responses being more pronounced
at 1 h and 5 h, we resolved the map by ﬁlrering genes based on
their time response metrics (> = 0.5) for these 2 time points.
Genes showing large effects at 1 h are in morifs 1a and 1b with
many of them being up-regulated and few down-regulated in
treated leaf tissues while those showing large effects ac 5 h are
in mortifs 5¢ and only few from mortif 1a. The pathway for diter-
pene glycoside, present in motifl 5S¢, is well studied and has been
presented in an carlier study."” Figure 2 presents the comparative
time response behavior of genes involved in the phenylpropanoid
pathway for 2 comparisons: (A) Control vs. W+OS (combined
herbivory and mechanical wounding responses), (B) W+OS vs.
W+W (OS-specific responses). Activation of gene expression in
response to OS in treated leaves 1 h post elicitation is supported

www.landesbioscience.com
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by the high value of the response metric at 1 h while the dif-
ferential activation of these genes specifically to OS ac 5 h in
untreated leaf tissue in response to application of OS is reflected
by the high value of response metric obtained from W+OS vs.
WW comparison at 5 h.

This broadly applicable approach allows identifying complex
interdependencies berween metabolites and transcripts with
a high level of accuracy and robustness. The application pre-
sented here for the identification of herbivory-specific responses
in leaves distal to the plant treatment sites provides an additional
support for the importance of finely-tuned changes in metabo-
lism throughout the complete plant during stress adaptation.
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Abstract

Background

High-throughput analyses have frequently been used to characterize herbivory-induced
reconfigurations in plant primary and secondary metabolism in above and below-ground tissues
but the conclusions drawn from these analyses are often limited by the univariate methods used to
analyze the data.

Results

Here we use a multivariate time series data analysis to evaluate the simulated leaf herbivory-
elicited transcriptional and metabolic dynamics in the roots of Nicotiana attenuata. We observed
large, but transient, systemic responses in the roots that contrasted with the pattern of co-linearity
observed in the up- and down-regulation of genes and metabolites across the entire time series in
treated and systemic leaves. Using a newly developed approach for the analysis of whole-plant
molecular responses in a time course multivariate data-set, we simultaneously analyzed stress
responses in leaves and roots in response to the elicitation of a leaf. We found that transient
systemic responses in roots resolved into two principal trends characterized by: (a) an inversion
of root-specific semidiurnal (12h) gene oscillations and (b) transcriptional changes with major
amplitude effects that translated into a distinct suite of root-specific secondary metabolites (e.g.
alkaloids synthesized in the roots of N. attenuata).

Conclusions

These findings underscore the importance of understanding tissue-specific stress responses in the
correct day-night phase context and provide a holistic framework for the important role played by

roots in aboveground stress responses.
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Background

Advances in high-throughput “-omics” technologies have enabled several efforts to
characterize plant physiological responses by analyzing complex networks of interactions at
different levels and scales. Most of these analyses aim at deciphering how environmental
perturbations sensed by one part of the network impact the entire network, a dynamic process
which is often captured by static snapshots framed in a time course experiment. To explain the
underlying biochemical pathways of these complex networks, simplified representations are
generated using a top-down approach based on the principle of “guilt-by-association” [1]. The
observation that genes involved in a common biological process tend to be co-regulated has
enabled the inference of functional associations among genes and different biological pathways in
many studies of plant responses [1-4]. This conceptual approach is also the basis of the widely
known databases offering genome-wide representations of networks of co-function in
Arabidopsis (AraNet; [5]) and Rice (RiceNet; [6]). Although these representations are useful, a
major drawback of integrating multiple data-sets to predict co-functional relationships is the lack
of context specificity in which functional information depend only on a subset of key interactions
rather than on the entire data set [7]. To overcome this limitation, condition-dependent
approaches which limit co-functional studies of genes or metabolites to a single tissue are applied
to enhance the statistical confidence for inferring tissue-specific regulatory networks. A database
named SeedNet [3], which uses gene co-expression data exclusively from Arabidopsis seeds, is
one such example. Such approaches, however, are not appropriate for studies that seek to
understand the networks at the scale of the entire organism.

Plants have evolved sophisticated mechanisms to withstand herbivore attack which can be
classified as defense responses that limit the extent of damage and a suite of more poorly
understood tolerance mechanisms that mitigate the negative fitness effects of herbivore attack [8,
9]. Dramatic reconfigurations of these metabolic pathways spread rapidly throughout a plant
during herbivore attack which suggests the existence of complex inter-dependencies in the way
that each plant tissue adjusts its intrinsic physiology as part of the whole-plant response to the
attack. In the past, to unravel these defense-tolerance trade-off strategies, emphasis was placed
only on the response that leaves deploy, but more recently roots have been recognized as playing
an integral role in a plant’s aboveground defense mechanisms as well as serving as a dynamic

storage organ following herbivory-induced resource (re)-allocation [10].
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Several studies have highlighted the importance of roots in synthesizing nitrogen-rich
secondary metabolites involved in leaf defenses, such as nicotine in the roots of tobacco plants
[11], tropane alkaloids in various Solanaceae species [12] and pyrrolizidine alkaloids in
Astraceae species [13]. These systemically-activated changes in root metabolism can have a
profound impact on leaf attackers [14]. The production of proteins with shoot defensive functions
has also been reported in the roots of herbivore-attacked plants such as- mirl-CP in Zea mays
[15]. The role of roots as a sink tissue that sequesters partitioned assimilates to facilitate re-
growth after herbivore attack has also been uncovered as a key tolerance strategy to herbivory in
many plants and involves specific herbivory signaling networks [10]. Compared to leaf-mediated
aboveground defenses, the regulatory mechanisms by which roots contribute to these defenses
have however remains underexplored and “-omic” approaches have recently been applied in a
few cases [16, 17].

Another important area of research for plant’s responses to environmental stress involves
the analysis of the physiological importance of oscillations in genes and metabolites controlled by
the circadian clock. The diurnal regulation of primary metabolic pathways, such as those of starch
and sugar metabolism in leaves and of nitrogen metabolism in roots, involves multiple clock
components as demonstrated by previous studies using plants with disrupted clock functions [18-
21]. Interestingly, genes and metabolites involved in secondary metabolic pathways have also
been shown to oscillate [22, 23] but the implication of these rhythms in the roots for rapid
defense induction is unknown. A recent systems biology based study on root transcriptional
activity identified root-specific short-rhythms of gene expression that determine the periodicity in
lateral root development [24]. This study clearly highlights the power of holistic approaches in
identifying unknown key elements in roots in a time course experiment. Our understanding of the
biochemical pathways underlying root-based mixed tolerance-resistance strategies would
certainly be enriched by applying the above mentioned top-down approaches in co-functional
studies.

In order to gain a comprehensive picture of the role of roots in defense-tolerance trade-
offs during shoot herbivory, we studied the dynamic behavior of genes and metabolites and their
interactions in the roots of Nicotiana attenuata plants to which herbivore attack had been
simulated to a leaf. This plant has been well-studied for its de novo production of defense
compounds, such as phenolic derivatives [25] and acyclic diterpene glycosides in leaves

following insect attack [26], responses which are controlled by signaling pathways that have been
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partly elucidated. Roots of this plant synthesize alkaloids for aboveground defense [14] and
control tolerance mechanisms essential for survival, such as the bunkering of C and N in roots
[10].

To overcome problems associated with gene module detection using integrated data sets
or the loss of information that typically accompanies the analysis of context-specific inferences,
we investigated leaf herbivory responses in both treated leaves and roots in parallel using a
coordinated multivariate time series analysis, as reported in [27]. From this work, we established
the importance of deriving temporal information from multiple factors for the analysis of
systemic responses in roots that are elicited by simulated herbivory to leaves. Distinct functional
modules identified by this analysis are used to illustrate the changes in root-specific entrained
gene circadian rhythms elicited by simulated leaf-herbivory and the switching of amplitude
effects between leaves and roots. These findings highlight the power of this approach in depicting

the multiple roles of roots in aboveground defense responses.

Results and discussion

A mosaic of co-linear up- and down-regulations in transcripts and metabolites spreads
throughout the plant after OS-elicitation

To study tissue-based responses to leaf herbivory, we used a data set consisting of 134
published (Kim et al., 2011) microarray profiles of source/sink leaves and roots collected every 4
h from 3 biological replicates of treated and control Nicotiana attenuata plants. In treated plants,
diluted oral secretion (W+OS) from larvae of the specialist herbivore Manduca sexta was applied
into mechanically produced puncture wounds in leaves to mimic herbivory by this insect [22].
This procedure used to simulate leaf herbivory is hereafter referred to as “OS-elicitation”.
Principal component analysis (PCA) clearly separated control and treated leaves at 1 and 5h and
roots of control and treated plants at 9 and 13h after OS-elicitation (Figure S1). We investigated
OS-elicited transcriptomic and metabolic changes in elicited (treated leaves) and un-elicited
tissues (untreated systemic leaves and roots) of the same plant in a time course experiment using
differentially expressed genes (DEG) analysis at each time point (FDR=0.05, -1=>fold
change>=1). After plotting the results, we observed a strong coordination between the number of
up-and down-regulated transcripts and metabolites in leaf tissues (treated and untreated) across

the entire time series (Figurel). While the number of up and down-regulated transcripts decreased
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after 1h of OS elicitation in treated leaves, there was a clear increase in the number of both up
and down-regulated transcripts in systemic (untreated) leaves which further decreased in both the
leaf tissues 9h post elicitation, the harvest time-point which marks the beginning of the dark
phase. The maximum number of up and down-regulated m/z features derived from metabolite
mass spectrometry (MS)-based analysis peaked in the dark phase in treated and untreated leaves.
However, the number of significantly regulated metabolic features was similar in both treated and
systemic leaves, although larger differences were observed in the number of regulated genes in
these two tissues. We observed a common pattern of delayed responses that materialized in a sub-
set of transcripts and m/z features, peaking 13h after OS-elicitation in both elicited and un-
elicited leaves.

In clear contrast with leaf tissues, these patterns of co-linearity were not observed for the
time series of both the metabolomes and transcriptomes of root tissues. Interestingly, systemic
signaling elicited larger transcriptomic changes in roots compared to the systemic (untreated)
leaves with direct vascular connection with treated leaves. Despite these larger transcriptomic
responses, the metabolic responses of roots reached almost the same magnitude as those of
systemic leaves, but the differentially regulated metabolites were more frequently found in the
positive than in the negative ionization mode of the MS analysis (Figure 1, pattern b). We infer
that this pattern translates from root-specific changes in nitrogen-containing metabolites which
ionize poorly in the negative mode of the MS.

Surprisingly, we observed a pattern unique to root tissues that manifest itself in a similar
number of induced and suppressed genes separated by a short time lag (Figure 1, pattern a). This
temporal uncoupling between the up- and down-regulation of a root’s gene expression machinery
clearly contrasted with the highly collinear responses described above for leaves. To identify the
degree of overlap between the transcriptional and metabolic responses in treated and systemic
tissues, we calculated the percentage of genes showing significant differential expression in the
two tissues and found higher overlap between leaf tissues (elicited and systemic) than between
elicited leaves and roots, suggesting a role for distinct molecular players and pathways in roots
that respond to simulated leaf herbivory (Figure S2). To assess the representation of molecular
processes at each time point, we computed the enrichment of gene ontology (GO) terms for gene
sets obtained by DEG analysis at each time point using the MapMan classification of biological
processes for Arabidopsis (TAIRv6) [28]. Enriched GOs for up-regulated genes in elicited and

99 ¢

systemic leaves were related to “stress”, “oxidative pentose pathway” (OPP), “lipid metabolism”,
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and “cell wall” (Figure 2). The GO class that showed the largest difference between treated and
untreated leaves corresponded to “secondary metabolism” and contributed to a significant
number of the up-regulated transcripts at all the time points in the series. It is conceivable from
the above trends that the underlying regulatory networks might have evolved to provide tight
temporal control over resource partitioning in leaves. The enriched GOs for up-regulated root
transcriptome signatures occurring Sh and 13h after elicitation that showed a significant match to
Arabidopsis proteome included “OPP”, “stress”, “lipid metabolism”, “developmental programs”
and “cellular functions” (cell wall, cell cycle/organization, DNA) as main processes.
Comparatively, less information was inferred based on homology searches with Arabidopsis
regarding enriched gene processes for down-regulated transcripts in the roots. To robustly
disentangle the kinetics of these mechanisms, we employed informatics strategies involving

coordinated multivariate analysis without merging the time variable as a single functional entity.

Simulated leaf herbivory triggers largely unexplored metabolic changes in roots

To interpret the downstream effects of the large transcriptional changes observed in roots
upon leaf herbivory, we analyzed the time series root metabolomics data set. Figure 3A presents
the overlaid chromatograms for roots of treated and untreated plants, obtained 21h after OS-
elicitation of leaves. We visualized the large metabolic responses by extracting regions of
differential accumulation using the DISSECT algorithm of the Data Analysis software which
allows for the deconvolution of mass feature-specific traces into compound specific spectra. This
step in the MS data analysis allows for the mapping of different statistically significant patterns
of regulation in ion intensities of compound-specific precursor ions and fragments onto predicted
deconvoluted mass spectra. For ease of interpretation, we visualized metabolites exhibiting
pronounced changes in relative levels (Figure 3A), including many unknown ion peaks, on the
chromatogram. The calculation of predicted molecular formulae for many of these unknown ions
revealed that the simulated leaf herbivory-regulated root metabolome was replete with many
nitrogen containing compounds, which may provide an explanation for the much larger number
of induced ions detected in the positive which were not detected in the negative mode. This is
consistent with the well-established phenomena [29] that many of nitrogen-containing molecules
are only efficiently ionized in the positive ionization mode.

To facilitate the annotation of unknown molecular ions to particular metabolic pathways,

we classified patterns for the set of 1728 differentially regulated mi/z features (FDR=0.05,
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0.5=>FC>=2) using the time series clustering software SplineCluster [30]. For simplicity, we
presented 10 of the 15 clusters retrieved from this analysis (Figure 3B). The profiles of these
clusters indicated that changes in metabolite accumulation in roots upon leaf OS-elicitation are
extremely dynamic and detected at each time point; we therefore labeled the resulting clusters
based on the time point at which highest fold-change effects were detected. The set of clusters
labeled (a,b,c), (e,f,g) and h and j contained ions which accumulated respectively at 1, 5, 9 and
13h after OS-elicitation. A few of these clusters showed induced accumulations at more than one
time point, especially cluster “i” that contained a large number of ions with statistically
significant differential accumulation at 9, 17 and 21h after OS elicitation. Pronounced
accumulation patterns were detected for free tyramine (Figure 3C) and its conjugates to phenolic
derivatives, phenolic conjugates of putrescine with known defensive functions in leaves [25] and
free amino acids (tryptophan and phenylalanine) (Figure S3). We also detected clear elevations in
the levels of glucoside conjugates of 12-hydroxy-jasmonic acid and salicylic acid. It is unclear
whether these glucoside conjugates of active defense hormones were produced in attacked leaves
and transported to roots. Figure S4 represents the temporal profiles of a few unknown m/z

[13%4)
1

features from cluster with their predicted molecular formulae, which show an increasingly

induced accumulation in the time series.

Multivariate time series analysis captures sequential transcriptomic changes in roots

To dissect the pattern of up- and down-regulated genes shifted by a harvest time in roots,
we compared the transcriptional responses at Sh and 9h after elicitation and found a large overlap
(68%) in the gene identities of those 2 groups, but the genes were largely of unknown function
with only 40% having close homologs in Arabidopsis. Those that did have close homologs were
enriched in lipid metabolism, OPP, cell wall and cell cycle associated pathways (Figure 4A).
Considering this transient up-regulation of a set of genes in the root transcriptome, we postulated
that the simultaneous analysis of all 6 harvest times would help to deduce the significance of this
pattern and to explore new ones from the series. Studies have shown that responses to shoot
herbivory in roots are controlled by signaling pathways from aboveground tissues [10]; therefore
understanding shoot-root systemic defense signaling necessitated the coordinated analysis of
profiled transcriptomic responses in both treated leaves and roots. In a previous study of systemic
signaling in aboveground tissues [27], we developed a method to mine dynamic changes in the

expression of genes by simultaneously analyzing time series with 2 binary factors (tissue type
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and treatment). We used this method to characterize co-expression motifs in elicited leaves and
roots. By applying the first step of this method (Figure 4B, step 1), we obtained 4 clusters of
genes derived from bootstrap-based non-parametric ANOVA models [31] representing statistical
structures referred to as “interactive” (treated leaves and roots behaving differently in response to
OS-elicitation), “additive” (treatment responses independent of tissue type), “tissue effects”
(significant difference in leaves and roots with no response to OS-elicitation), or “treatment
effects” (equivalent response to OS-elicitation in both treated leaves and untreated roots).

To understand the differences in the transcriptional responses of elicited leaves and roots,
we focused on the set of genes displaying an “interactive” response pattern. Figure 4B (step 2)
provides a heatmap representation of the amplitudes of the time response metrics obtained from
the above analyses. The time response metric represents the projection of strong effects
(interactive) along the time series and was estimated by fitting different ANOVA models.
Consistent with results from the above single time point analysis, we observed large differences
in the responses of treated leaves and roots at 5 and 13h after elicitation. The end result of the
application of our novel method was the generation of spatio-temporally-resolved OS-elicited
gene clusters. These clusters were obtained by superimposing Self Organizing Maps (BL-SOM)
on the scaled data which include information about differences in fold changes of OS responses
in both treated leaves and roots and about the amplitude of the differences of responses between
the two tissues at each time point in the series (see Methods section). We designated each cluster
on the obtained maps (40x18 cells) as “interactive” motifs. As shown in our previous work using
a similar comparison of treated leaves and systemic leaves [27], these interactive motifs readily
identify major trends in the spatio-temporal activation of OS-elicited responses in systemic
tissues.

We mined these interactive motifs to understand the role of the root transcriptome in the
responses of aboveground tissues to herbivory. To this end, we mapped the genes showing the
specific pattern described above of significant induction at Sh and immediate suppression at next
time point (9h) onto the spatio-temporal maps and found these genes to localize entirely in the
motifs labeled “R5a”. Next, we used these “interactive” motifs to refine our interpretation of the
transient transcriptional changes that were unique to roots and also to identify new patterns that
were not captured by the univariate approach of single time point analyses but appeared in motifs

labeled R5b, R9 and R13.
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Simulated leaf herbivory elicits an inversion in root-specific transcriptome rhythms

The endogenous circadian clock regulating biological rhythms allows plants to anticipate
fluctuations in environmental conditions as well as certain biotic stresses [32, 33] and to regulate
its physiology accordingly. Importantly, above and belowground tissues of a plant possess
autonomous circadian clocks that adapt the rhythmic expression of genes and metabolites [24,
34]. Here we report and discuss the identification of novel circadian transcripts that displayed a
treatment and root-specific inversion of their thythm in response to leaf OS-elicitation.

To facilitate the interpretation of the very large transcriptomic responses observed in roots
Sh after leaf elicitation, we extracted “interactive” motifs assembled at this time-point from the
SOM grids and analyzed their dynamic behaviors. To this end, we scaled expression data so that
both the information representing the extent of differential statistical response to the OS treatment
in treated leaves and roots throughout the time series as well as the differences in fold change
responses were combined into a single metric. Using these data, we achieved spatio-temporal
resolution of gene expression using the SOM grids and detected two dominating motifs at Sh that
reflected two different modes of gene regulation (Figure 5A). The motif labeled “R5a” represents
the set of genes with large differences in fold changes (OS/C) between elicited leaves and roots
but weak time response metrics for the “interactive” effect. As expected, this motif contained all
the genes that showed significant differential expression in the single time point analysis
(FDR=0.05, F>2). To assess the functional significance of this first group of genes, we computed
the enrichment of GO terms using MapMan classification of biological processes in Arabidopsis
(hyper-geometric test, F<0.05). With only 48% of genes showing a significant match to
Arabidopsis genes, this motif appeared enriched with genes implicated in only two main
processes that corresponded to transport and cell wall metabolism.

The detection of rapid modulations in the expression of transport-related genes is not
surprising considering the fundamental roles that roots play in vascular transport and
translocation functions, particularly during stress adaptations. It is clearly established that leaf
OS-elicitation triggers the partitioning of recently fixed photoassimilates from the damaged sites
to sink tissues, including roots. Passive unloading of sucrose (symplasmically or apoplasmically)
diverted actively from attacked leaves has been proposed earlier, but the fact that roots of
herbivory-elicited plants recruit sugar much more efficiently than do roots of control plants
suggests the importance of transporter activity [10]. We screened sugar-related genes based on

literature search and found few genes known to regulate sugar translocation exhibiting rapid
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modulations characteristic of motif R5a (Figure S6). Reconfigurations of transporter-mediated
root functions also contribute to the defense of shoots, especially in species which have evolved
the capacity to defend leaves with root-produced secondary metabolites. This is especially well
described in N. attenuata, in which nicotine synthesized in roots are rapidly transported to
aboveground tissues during herbivore attack [35, 36]. JATI, a gene from the multidrug and toxic
compound extrusion transporter family, has been proposed to act as a secondary transporter
responsible for unloading of nicotine in the aerial parts of the xylem and loading it into the
vacuoles [37]. The expression of this transporter did not follow the mode of regulation found in
motif R5a.

The overrepresentation of processes associated with cell wall metabolism in motif “R5a”
suggests that leaf OS-elicitation systemically activates physical changes in roots’ cell wall. The
plant cell wall is a dynamic structure that plays important roles in growth and in the interactions
of plants with their environment. Simulated leaf herbivory has been shown to negatively impact
short-term dynamics of root growth [38, 39]. Transcriptomic changes controlling this
phenomenon have not been explored yet but may involve high amplitude effects in cell wall
related genes such as those observed in motif “R5a”. Large changes in the expression of genes
encoding structural components of the cell wall have been reported as part of the developmental
pathway response elicited in roots during abiotic stress [40]. The consecutive changes in the cell
wall structure can impact root exudation [41], have signaling functions and may also reflect
changes in root “foraging behavior” that are elicited by leaf herbivory.

To better visualize process-specific gene dynamics, we further classified motif R5a into 3
clusters using k-means clustering with averaged gene expression in roots and treated leaves for
all time points. Interestingly, cluster labeled “R5a-1" which covers almost 85% of the motif
“R5a” was dominated by genes showing rhythmic expression. To objectively determine which
genes exhibited robust circadian expression, we tested for statistically significant (P<0.05)
correlation (PC>(.75) between the temporal expression profiles of each gene and defined model
types using HAYSTACK [42]. This analysis considered parameters for minimal changes in
amplitude and the signal strength as -3 (log transformed) and 0.01 respectively. According to
these criteria, 3204 transcripts (89% of cluster “R5a-1") were classified as cycling with a best fit
to the “box” model type (Figure S4) in roots of control plants. In a previous study, we reported
perturbations in the oscillation of genes involved in secondary metabolic pathways in response to

simulated leaf herbivory in N. atfenuata [22]. In contrast to the secondary metabolic genes that
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had conventional circadian rhythms of 24h period lengths, these root transcripts oscillated with a
12h period length and all clustered into a single group with identical phases. Similarly, 2214
(60%) of these genes also showed a circadian rhythm with a 12h period length in leaves of
control plants. Root-specific, short-term fluctuations of gene expression with a 6h period have
previously been reported to coordinate lateral root formation in Arabidopsis [24] and semidiunal
(12h) oscillations controlling starch-related gene expression have been described in Cassava
storage roots [43]. One very striking observation from our analysis was that 41% of these
rhythmic transcripts following the “box” model type showed a phase inversion of their expression
to the “spike” model (Figure S4) in the roots of OS elicited plants. In other words, while still
maintaining a 12h period rhythm, these transcripts peaked now both at dusk and at dawn. These
oscillating transcripts showed a fold change (OS/C) greater than 2 at Sh which decreased along
the time series but the rhythm inversion was observed for all time points. This inversion of the
12h rhythms was not found in treated leaves suggesting that this rhythm change in response to
leaf OS-elicitation might be driven by root-specific circadian clock components and/or effects.

To identify whether this phenomenon involved the specific recognition of insect’s OS, we
compared the root transcriptional responses to OS-elicitation with those obtained after
mechanical wounding alone (W+W treatment) and found no overlap, which reinforced the
conclusion that these responses are highly selective to OS-elicitation. Next, we checked for the
presence of a similar pattern of inversion in the transcriptional responses in systemic leaves to
OS-elicitation but no transcripts showed statistically significant rhythmic patterns in systemic
leaves after OS elicitation. This demonstrates that the responsiveness is selective to the systemic
cues directed towards roots. Taken together, these data can be summarized by a model in which
long distance signals triggered by herbivore feeding onto leaves profoundly change the
expression pattern of a core set of genes in the roots by shifting their rhythmic behavior. Further
experiments involving a longer time series experiment with wild-type and transgenic lines
impaired in known upstream nodes of herbivory-signaling networks will be required to examine
the time required for the rhythms to revert back to their original “box” model type and to

understand which OS-elicited components regulate the 12h gene rhythms of roots.

An interactive motif with opposite amplitude changes in treated leaves and roots
The second component of the large transcriptional responses in roots visualized by the

spatial-temporal SOM grids 5h after elicitation corresponded to motif — “R5b” (Figure5B). This
83



Chapter 6 - The roots of plant defenses

motif is characterized by a stronger “interactive” behavior compared to fold change differences
between elicited leaves and roots, with up-regulation in roots and down-regulation of the same
genes in treated leaves. We further partitioned motif “R5b” using Euclidean distance-based k-
means clustering and analyzed the two main patterns. A cluster named — “R5b-1" represents the
set of genes with a similar inversion of a 12h periodic rhythm in roots in response to OS-
elicitation but which exhibits significant down-regulation in gene expression in treated leaves Sh
after elicitation (heatmap of Figure5B). Compared to other clusters, a cluster named — “R5b-2”
consists of few genes each of which showed a higher constitutive level in roots compared to
leaves and is well represented by genes implicated in the nicotine biosynthetic pathway. Temporal
profiles of these nicotine biosynthetic genes (NaPMTI, NaPMT2, NaA622, NaQPT, NaDAO)
correspond to a rhythmic pattern with peaks at 9h and 17h. As previously observed, OS-
elicitation in leaves induced an increase in the expression of these genes which lasted for all time
points but we also noticed that peaks shifted from 9 to Sh compared to control plants. Although,
we did not observe particular rhythms in treated leaves, expression of these genes showed a
significant and consistent down-regulation in this tissue. Nicotine synthesis takes place in the
roots and a role for the residual expression of nicotine structural genes in other plant parts has not
been assigned yet. Consistent with our observations, previous work has reported the down-
regulation of PUTRESCINE N-METHYL TRANSFERASE (PMT) transcript levels in treated
leaves in Nicotiana tabacum [44]. Investigating other genes in the cluster “R5b-2” with similar
leaf-to-root expression pattern as that of nicotine biosynthetic genes may help identifying

unknown elements of this pathway or make connections with other biochemical pathways.

A chronological perspective on the arrangement of root gene expression motifs using SOM
The main benefit of retaining the temporal information of a time series experiment rather
than merging it as a single variable within the multivariate analysis is the ability to directly
visualize the chronology of activation of known metabolic pathways central to signaling,
tolerance and defense in N. attenuata. Figure 6A reveals the location of a few examples of known
elements in these pathways onto “interactive” motifs of the SOM grid. For instance, NaGALS3,
the B-subunit of the SNF1-related kinase which mediates herbivory-induced allocation of sugars
to roots of N. attenuata [10], is detected in the motif named “R1”. We found sugar metabolic
enzymes and transporters located in motifs “R5b” and “R5a” respectively, reinforcing the role of

these motifs in adapting the root physiology to the tolerance response. Known and putative
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metabolism-based defense mechanisms are more represented in later established gene interactive
motifs: NaPMT] from the nicotine biosynthetic pathway is located in motifs “R5b” and “R9” and
NaLOXI which initiates the production of fatty acid 9-hydroperoxides and hydroxides, which
play central roles in root signaling [45] and in the production of defensive oxylipins -- is found in

motif “R13”.

Conclusions and perspectives

Approaches used to prioritize genes for functional characterization aim at identifying the
most promising genes among a larger pool of candidates through integrative computational
analyses. The rationale behind these methods is first to partition genes into modules or clusters,
so that these clusters can be readily queried for criteria such as their involvement into a given
cellular process. But often, the vector time corresponding to the genes’ temporal dynamics is
considered as another variable.

In this article, we implemented a similar approach to mine biologically important
transcriptomic patterns in roots by implementing a two step partition. In the first step, we
simultaneously handled the time course and the two binary factors (tissue type: treated leaves and
roots, treatment: Control and W+OS) and obtained four exclusive clusters. This approach
facilitated the retention of information about the timings of gene activation. A second step of
classification was applied to the cluster of genes showing an “interactive” effect and we
visualized the dynamic behavior of genes separated across the times series and the tissue type
(treated leaves and untreated roots) by employing SOM. From this analysis, distinct motifs
reflecting various broad functions were identified. As a proof of principle, we studied motifs —
“R5a” and “R5b” and discovered two major trends — OS-specific inversions in 12h root-specific
rhythms and amplitude effects in nicotine biosynthetic and other metabolic genes.

We also recovered 2 additional clusters which should be studied intensively in the future
to understand the role of roots in orchestrating leaf responses to attack from herbivores (Figure
6B): a cluster with an “additive” effect (genes’ responses to OS elicitation that are independent of
the tissue type) and one with a “treatment” effect (genes showing responsiveness to OS elicitation
in both treated leaves and untreated roots). NaLOX6 shows a significant up-regulation in treated
leaves at 1h after OS elicitation and in roots at later time-points. Consistent with a major function
of this gene in roots, a close homolog in Arabidopsis has recently been characterized for stress-

induced jasmonate accumulation in roots [46]. Combining together these sets of interactive,
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additive and treatment effects allowed us to decipher the complex dynamics that occur in the
transcriptomes and metabolomes of roots in response to leaf OS-elicitation with an

unprecedented level of resolution.

Materials and methods
Microarray Data Sets and processing

We analyzed 134 published microarray expression data of Nicotiana attenuata from the
Gene Expression Omnibus database (accession no. GSE30287), reflecting responses in treated
leaves and untreated leaves and roots to simulated M. sexta feeding (by applying diluted insect’s
oral secretions into freshly created puncture wounds to a specific leaf) and a W+W treatment with
the identical leaf damage (in which water was applied to the puncture wounds) for 6 whole-plant
harvest time points (1, 5, 9, 13, 17, 21h after treatment). Raw intensities were log, and baseline
transformed and normalized to their 75" percentile using the R software package, prior to

statistical analysis.
Processing of Metabolomics Data

Metabolites were extracted from root samples using an extraction procedure optimized for
the recovery of a wide range of metabolites of interest in N. attenuata [29]. Raw data files were
converted to netCDF format using the export function of the Data Analysis version 4.0 software
(Bruker Daltonics, Bremen, Germany) and processed using the XCMS package in R [47]. Peak
detection was performed using the centwave algorithm with the following parameter settings:
ppm=20, snthresh=10, peakwidth=c(5,18). Retention time correction was accomplished using the
XCMS retcor function with the following parameter settings: mzwid=0.01, minfrac=0.5, bw=3.
Areas of missing features were estimated using the fillPeaks method. Annotation of compound
spectra derived from in-source fragmentation during ionization and corresponding ion species
was performed with the BioConductor package CAMERA (v1.9.8) [48]. Compound spectra were
built with CAMERA according to the retention time similarity, the presence of detected isotopic
patterns and the strength of the correlation values among extracted ion currents (EICs) of co-
eluting m/z features. CAMERA grouping and correlation methods were used with default

parameters. Raw intensity values were 75" percentile normalized before statistical analysis. The
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DISSECT algorithm implemented in DataAnalysis was used to map deconvoluted compound

spectra onto the chromatographic scale.

Statistical Analysis and Data Visualization

All statistical tests for DEG analyses were carried out using R software. To mine the
major biological processes perturbed in response to OS elicitation, we functionally annotated
probe sets using best BlastX hit of Arabidopsis TAIR6 Proteome with an e value cut off of le-15.
Next, using MapMan classification of biological processes for Arabidopsis, we assigned classes
to each probe id of our microarray data set. Enrichment analysis of gene ontology biological
processes based on hyper-geometric test was performed using R. Significant enrichments were
those with F < 10e-10. Multifactorial data analysis was carried out using the methods
implemented in the R package TANOVA [31]. The cluster showing interactive effect in gene
expression between treated leaves and roots was scaled as

Ei = [Fl ----- F6]i * [Rl . ...Ré]iz

Where E;: scaled expression, Fj: difference in fold changes (OS-elicitation/control) between
treated leaves and untreated roots, R;: response timing. Results of the multifactioral analysis,
including gene annotation and scaled data used for the Self Organizing Maps are available as a
spreadsheet (217588Supplemental Filel.xls) in the TvR sheet at:
http://www.plantphysiol.org/content/early/2013/05/09/pp.113.217588/suppl/DC1. = The  Self

Organizing Maps were constructed using BL-SOM software

(http://prime.psc.riken.jp/?action=blsom_index). Hierarchical Clustering Analyses for all

heatmaps are based on Euclidean distance measures and average linkage aggregation methods.
All heatmaps and box-plots were created using R. The model based HAYSTACK algorithm [42]
was used to identify periodicity in root and leaf transcriptomes. Euclidean distance-based k-

means clustering was obtained using R.
Abbreviations

ANOVA: Analysis of variance, SOM: Self-organizing map, OS: Oral-secretion, DEG:

Differentially expressed genes
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Figure 1: Tissue-specific temporal patterns of up- and down-regulated transcriptional and

metabolic changes after simulated leaf herbivory in Nicotiana attenuata. Leaf herbivory-

elicited differentially regulated transcripts and m/z features derived from metabolite MS analysis

(Wound + OS/Control, P <= 0.05 and -1>=fold change<=1) were identified for treated (leaves)

and untreated systemic (leaves and roots) tissues using normalized and log2 transformed

expression values at each harvest time. Briefly, a trend of co-linearity between up- and down-

regulated transcripts and m/z features was observed for both treated and systemic leaf tissues

across the entire time series. Interestingly, root transcriptional responses were pronounced at 5, 9
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and 13h after elicitation and were as large as or larger than those in systemic leaves. The
amplitude of the metabolic responses in roots was comparable to that of systemic leaves for all
the time points. Two properties were particularly striking: (a) a pronounced temporal shift in the
peaks of up- and down-regulation in gene expression that were unique to roots and (b) a

predominance in the regulation of the positively-charged metabolome.
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Figure 2: Functional categorization of OS-elicited whole organism transcriptional

responses: A gene ontology (GO) enrichment (Hyper-geometric test, F<10e-10) was performed

to identify significantly up- (A) and down-regulated (B) transcripts in treated leaves and

untreated systemic tissues (leaves and roots) using MapMan classification of biological processes

for Arabidopsis (TAIRv6). Most perturbed processes in treated and systemic leaves correspond to

GO terms involved in stress, secondary metabolism and lipid metabolism. GO classification for

roots using MapMan revealed that only a small percentage of the genes exhibiting large

transcriptional responses (Figure 1) have functionally characterized homologs in Arabidopsis.

Overrepresented processes that were reconfigured in roots notably involved lipid metabolism,

transcription and cell wall pathways.
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Figure 3: Leaf OS-elicitation triggered metabolic reconfigurations in roots. (A)
Representative metabolic profiles obtained from the analysis by ultrahigh performance liquid
chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-qTOFMS) of root
samples collected after 21 h from elicited and control plants. As most pronounced metabolic
reconfigurations were detected in the positive ionization mode, only results obtained from this
analysis are presented. In-source fragmentation of ionized molecules is common for many
metabolites and the resulting fragmentation patterns are a source of redundant information for the
statistical analysis. To assemble metabolite-derived fragmentation patterns and thereby facilitate
metabolite annotation, we used two deconvolution tools, the R package CAMERA and the
DISSECT algorithm implemented in Data Analysis (Bruker). Colored peaks correspond to
compound spectra detected by DISSECT that were differentially regulated (W-+OS/C, Figure 1).
Annotations based on previously reported chemical analyses and elemental formula prediction
are provided for 20 metabolites. (B) We used SplineCluster to classify the dynamics shared by
different groups of metabolites. Ten of the 15 clusters are presented. Clusters are colored
according to the time of maximum differential regulation and red lines denote the threshold used
to identify up-regulated metabolites. (C) Temporal profiles of three representative m/z features
from clusters labeled — “I” and “k” whose accumulation was differentially amplified in roots by

the OS-elicitation in leaves and mechanical wounding treatments compared to controls.
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Figure 4: Multivariate analysis deciphers the complex root-specific transcriptional
responses activated 5, 9 and 13h after OS-elicitation. (A) Temporally-shifted peaks of up- and
down-regulation in gene expression unique to roots (Figure 1, pattern a) were observed via a
single time point analysis. A large overlap (68%) is observed between induced transcripts at Sh
and those suppressed at 9h. Remarkably, only 40% of these common transcripts have close
homologs in Arabidopsis. (B) Using multivariate time series analysis, a coordinated comparison
of transcriptional responses in treated leaves and untreated roots in the time series was
implemented following the novel method described in (Gulati et al., 2013). Step 1 summarizes
the experimental design of the microarray analysis. The heatmap depicts the extracted time
response metrics which represent the significant interactive effect -- genes with statistically
different transcriptional responses in treated leaves and untreated roots -- along the time series. In
step 2, the genes showing interactive effect were spatio-temporally-resolved after appropriate
scaling and classified by Self Organizing Maps (SOM). In step 3, transcripts common between
roots’ transcriptional responses at 5 and 9h that were extracted using single time point analysis

were found localized in motifs labeled as “R5b” in the SOM produced by multivariate analysis.
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Figure 5: Induced root responses involve changes of transcriptional rhythms and amplitude

effects inferred from a coordinated multivariate time series analysis. (A) Simulated leaf-

herbivory elicits an inversion of the rhythm in the roots transcriptome. Interactive motif

“R5a” from the leaf-to-root SOM is respresented by only 48% genes showing homologs in

Arabidopsis and is enriched with genes implicated in “transport” and “cell wall” processes. A

major section of this motif, represented by sub-cluster “R5a-1" showed strong induction in roots

5h after elicitation. 89% of the genes in sub-cluster “R5a-1" oscillated in control plants and their
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pattern of expression best fit the “box” model type (Haystack, PC>0.75, pvalue<0.05).
Strikingly, the expression of 41% of these genes showed an inverted pattern of peak expression
timing to dusk and dawn in response to simulated leaf herbivory. This trend is completely absent
in treated leaves. (B) A transcriptomic response with major amplitude changes in both
treated leaves and roots. Interactive motif “R5b” includes genes with strong significant
interactive behavior between treated leaves and roots (gene expression being induced in roots
while suppressed in treated leaves) compared to fold change (W+OS/C) and hence were not
identified by the single time point analysis. Enriched GO terms are represented by 63% of the
genes having close homologs in Arabidopsis. Sub-cluster “R5b-1" is exclusively represented by
genes of the nicotine biosynthetic pathway. These genes show a root-specific shift of their
peaking time only at Sh after elicitation but a major amplitude effect for all the time points in the

series.

100



1. Interactive effect

i 1
Early signaling processes |

: Transporter E
Leaves

Chapter 6 - The roots of plant defenses

Signaling

Hormanal signals '

1 Nicotine synthesis
| (NaPMT1) E |

| 9-hydroperoxide-based oxylipins !
(NaLOX1) [5] '

log2 expression

1
1
Treated leaves Roots 1
Ctrl — Ctrl 1 5% phosphale &
- f— . hoss :
Wos mmweos Sugar metaboism ___ |
4 4
3 3
4 2
2 2 1
1 0 0
0 - 1 = 4 p
\ -, -4 2 -
i '\/(,_T.--\"‘< 15 - 6 m— T T 8| > 7
2 8 — -4 —

4
th Sh % 13h 17h 21h

ih  5h 8h 13h 17h 21h

e

@
b3

o

Q
2
=
K]
L=
<
™~

“th 5h %h 13h 17h 21h

th 5h 9h 13h 17h 21h

NaLOX6

3. Treatment effect

th 5h 8h 13h

Na_42948

hod
8
=
o
o
3
]
=
-~

17h 21h

th  5h 9h 13h 17h 21h

1h 5h Sh 13h 17h 21k

F-box-like

th 5h Sh 13h 17h 21k

Figure 6: Sequential arrangement of major transcriptional responses identified using a

multivariate time series analysis: (A) Interactive effect: Three significant components of plant

responses to biotic stress — signaling, tolerance and defense-related processes —were represented

by distinct interactive motifs in spatio-temporally resolved SOM. (B) Temporal profiles of

NaLOX6, Na_F-Box-like and Na_42948 represent three additional clusters with genes showing —

Additive, Tissue and Treatment effects obtained from multivariate time series analysis.
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Supplementary Figure 1. Principal component analysis

modulations of leaf and root transcriptomes in Nicotiana

of constitutive and OS-elicited

attenuata. Normalized microarray

data were Logy-transformed and analyzed using factor analysis. Score plots generated for the two

first principal components were used for plotting. Dashed boxes are magnifications of selected

regions of the score plot. The size of the arrows is proportional to the strength of OS-elicited

responses specific to a given tissue.
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Supplementary Figure 2. Overlap in transcriptional and metabolic responses to OS-
elicitation in treated leaves, and systemic leaves and roots. Heatmap represents the percentage
of the intersection set of differentially expressed genes and m/z features between treated and

systemic tissues.
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Supplementary_ Figure 3. Temporal profiles of induced m/z signals in roots corresponding to

free amino acids (tryptophan and phenylalanine), phenolic conjugates of putrescine, glucoside

conjugates of 12-hydroxy-jasmonic acid and salicylic acid.
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Supplementary Figure 4. Temporal profiles of unknown m/z features showing an increasingly

induced accumulation across the time course in roots in response to OS-elicitation.
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Supplementary_Figure 5. Temporal profiles of oxo-phydienic acid (OPDA), the jasmonic acid

metabolic precursor, and jasmonic acid, showing induction in roots in response to OS-elicitation.

106



log2 expression

05

£%

05

05

15
Na_18504 (tonoplast monosaccharide transporter)
1

-
-

-
N Pl Ny
N ’ p- [

405

Chapter 6 - The roots of plant defenses

Na_22200 (Hexose transporter)
- ”~

~ -~

21h

log2 expression

Treated leaves Rools 15

—Ctrl — Ctrl
- = W+0S5 ——-W+0S
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Supplementary_Figure 7. Models describing the oscillating root transcriptome. (A) Spike
model type showing a significant match to the responses of the root transcriptome of treated
plants. (B) Box model type showing a significant match to the responses of the root transcriptome

of untreated plants.
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Chapter 7

Discussion

Phenotypic plasticity, the ability of an organism to alter its morphology, biochemical
or physiological properties in response to environmental changes, allows plants to maximize
their potential fitness in variable environments (Sultan, 2000). The costs and benefits of these
alternative phenotypes determine the adaptive value of phenotypic variation to environmental
heterogeneity (van Kleunen and Fischer, 2005). Studies on the trade-offs associated with
induced plant responses following insect herbivory suggests that induced plant defenses are
examples of adaptive behavior (Mole, 1994), where defenses enhance plant fitness only under
insect attack but reduce its fitness in the absence of herbivory (Agrawal, 1999). The inducible
production of nicotine in Nicotiana attenuata during herbivory is an example illustrating

adaptive phenotypic plasticity in plant defenses (Baldwin, 1999).

Plants have evolved sophisticated crisis management techniques, which include tight
regulatory control over type, amount and duration of defense responses, communicating their
stress status to un-attacked organs, and re-allocation of resources to undamaged sites (Wu and
Baldwin, 2010). The biosynthesis of defensive compounds, as part of inducible defense
systems (with direct and indirect defensive functions), is expensive and hence plants have
developed strategies to discern herbivory from casual mechanical wounding which includes
the perception of elicitors in insect’s oral secretions. A large number of studies in Nicotiana
attenuata have demonstrated differences in plant responses to mechanical wounding and
herbivory (Halitschke et al., 2001; Wu et al., 2007; Gaquerel et al., 2009; Gilardoni et al.,
2010). It has also been shown that herbivory induces defense responses not only in the
damaged leaf but also in the distal systemic leaves in N. attenuata. 1t is also well established
that roots of N. attenuata control tolerance mechanism essential for survival, such as
herbivory-induced allocation of sugars to roots (Baldwin, 1990; Halitschke et al., 2001;
Schwachtje et al., 2006; Wu et al., 2007; Wu and Baldwin, 2010). Additionally, periodicity in
plant biology is believed to confer advantages to plants in anticipating fitness-determining
environmental changes (Doherty and Kay, 2010; Pruneda-Paz and Kay, 2010). Underlying all
of these complex strategies are the multiple interacting genes and gene products and their
dynamics in time and space, many of which can be detected using systems biology

framework.
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Figure 1: The main objectives of this thesis were to identify tissue-specific diurnal rhythms
and their reconfigurations during leaf herbivory, extract molecular features recruited for local
and systemic responses to insect attack and the contribution of roots to above-ground
defenses. 1 designed a multi-factorial experiment consisting of transcriptomics and
metabolomics profiling for three parameters: time, tissue and treatment type. I designed and
implemented a statistical framework to capture metabolic reconfigurations in different tissues
to elucidate their contribution to the whole-organism response and to identify the influence of
particular biochemical pathways in plant-insect interactions by linking the patterns to the
networks of known pathways. Spatio-temporal maps produced in this study have provided
clusters of connected genes, which are separated based on their timings of activation, for

major secondary metabolic pathways in N. attenuata

Defining structure in large scale molecular data and detecting the emergence of
complexity in plant defenses are the key objectives in the study of plant-insect interactions.
The objective of this study was to identify tissue-specific gene-gene and gene-metabolite
associations underlying some of the above mentioned strategies which are recruited in
response to insect attack in N. attenuata. The manuscripts presented in the thesis are based on
findings of the analyses conducted on a time-course factorial designed experiment consisting
of transcriptome and metabolome profiling of source/sink leaves and roots of plants with
leaves treated by the application of oral secretions (OS) of M. sexta (Figure 1). I designed a
statistical framework to identify significant and biologically meaningful patterns that
characterized the transcriptional and metabolic adjustments in different tissues. This

facilitated linking relevant patterns to biochemical pathways which are perturbed or activated
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in plant-herbivore interactions. The statistical formulation described in this thesis allowed us
to explore the three main avenues of the application of systems biology to the study of plant-
insect interactions which are described in rest of the discussion section: (a) Dimensionality

reduction approach, (b) “Omics” integration, (c) Emergent network properties.

1. Dimension-reduction approach to identify tissue-specific stress responsive modules

The past few years in the plant biological sciences have been characterized by the
development of high-throughput technologies which provide quantitative measurements of
thousands of genes and metabolites for biological samples. The increased availability of these
high-dimensional observations has necessitated the development of important data-mining
techniques to identify, extract and interpret biological insights from these large “omics” data
sets. Techniques involving data transformation, statistical modeling and cluster analysis and
aims at reducing the dimension of the data, based on the fact that low-dimensional
representations often enhance the power of explanation and the prediction of biological

mechanisms that govern the observed phenotype.

In chapter 4, I introduced a novel dimensionality reduction method to probe multi-
dimensional molecular responses that spreads in the different tissue compartments of N.
attenuata during herbivory. Exploratory analysis on transcriptomic and metabolic changes in
treated and untreated leaves following a two group comparisons (OS vs. control) for each time
point showed a pattern of strong coordination between the number of up- and down-regulated
genes and metabolites across the entire time series. The above trends suggest the existence of
regulatory networks that provide a tight temporal control over defense induction and resource
partitioning in leaves during herbivory. This motivated the design of a statistical framework to
capture the sequential arrangement of transcriptional and metabolic networks in order to
identify activated/perturbed biochemical pathways and their timing of action. Since the nature
and amplitude of herbivore responses in distal untreated tissues are controlled by systemic
signaling spreading from treated tissues, I simultaneously analyzed dynamic responses of
elicited and un-elicited tissues from same plants. The developed statistical framework is a two
step procedure and involves a combination of an extended self-organizing maps-based
dimensionality reduction method with bootstrap-based nonparametric analysis of variance
models. The factorial structure of our experiment consisted of two binary factors — treatment

type (control and W+OS treated plants) and tissue type (treated leaves, and untreated leaves
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and roots). In the first step, I simultaneously analyzed time series and different factors using
ANOVA structures that considered above mentioned factors and their interaction terms (Zhou
et al., 2010). The most critical aspect of the method is the estimation of the optimal projected
direction in the time vector space that detects the strongest significant influence of the
structure. This procedure was iterated to detect the best model type for each gene and resulted
in the classification of the entire gene set into four exclusive groups representing structures
named as interactive, additive, major treatment and tissue effects. Genes from the interactive
effect set that displayed differential responses to OS treatment in treated and untreated tissues
from same plants were further evaluated and their corresponding projected vectors referred to
as “time response metrics” were used in replacement of the original gene expression
trajectories. The second step of our framework consisted in further resolving the temporal
distribution of OS-elicited processes by superimposing self organizing maps (BL-SOM) on
the scaled data. The scaling combined the information about “when to respond” (obtained
from projected vector) with the information about “how to respond” (obtained from fold
changes). The obtained spatio-temporal maps represent the classification of herbivory-
regulated genes with patterns of differential activation in treated and untreated tissues in six
dimensional time space termed as “interactive motifs”. This approach of generating sequential
arrangement of functionally related gene clusters facilitated the analysis of highly dynamic

responses that are characteristics of plant’s stress responses.

This method facilitated the study of dynamic behavior in more than one tissue at a
time, the extraction of small sets of meaningful patterns of interactive behavior between
elicited and un-elicited tissues from large data set, and the quantification of the differences in
response to treatment in terms of a projected vector. The projected vector is tilted towards the
time points with strongest effect and hence suggested the time of activation for each gene.
The information from projected vectors when used as associative metric, improved the co-
expression patterns of genes involved in similar biochemical pathways in comparison to
correlations based on temporal profiles. The method helped in identifying differential
regulation of members of a gene family based on their functional associations with other
known genes. It also assisted the detection of coordination between members of different but
connected biochemical pathways which could not be detected based entirely on their
expression data. I reported such coordination for NaGLA 1 with NaLOX3 and associated genes
while analyzing oxylipin signaling pathway. Further analyses using combination of a
comparative and functional genomics approach using phylogeny and time response metric

could assist the identification of oxylipin branch-specific glycerolipases. Thus, the spatio-
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temporal maps provide a platform for identifying novel regulatory and structural genes that

mediate plant defense responses.

The use of the framework was exemplified with the analysis of systemic signaling
induced pathways in untreated leaves. I isolated and analyzed a motif from SOM maps,
characterized for huge OS responses in systemic leaves, using network inference methods.
The motif was enriched with genes implicated in the synthesis of acyclic diterpene glycosides
(17-HGL-DTGs) which are de novo synthesized in systemic tissues during herbivory (Heiling
et al., 2010). These interactive motifs represent a group of network components that
collectively contribute to the observed OS responses in the leaves at each time point; therefore
they might overlap with “topological” or “functional modules” which are the set of genes
involved in the same biochemical pathway. Therefore, the gene-gene network constructed for
this motif showed dense connectivities between 17-HGL-DTG pathway and photosynthetic
genes, supporting the previously reported but unknown coordination mechanisms between the
two processes (Halitschke et al., 2001; Hui et al., 2003; Mitra and Baldwin, 2008). This
example highlights the power of this approach in detecting interactions between different

metabolic pathways activated at the same time in response to a perturbation.

In chapter 5, I extended the application of this method to study herbivory-specific
responses in treated and un-treated leaves by differentiating induced responses to oral
secretions (from the larvae of M. sexta) from those elicited by mechanical wounding. Tissue
type dependent OS-specific responses showed large interactive effect at early time points (1h
and 5h after treatment) and were enriched for two well studied secondary metabolic pathways
for the biosynthesis of 17-HGL-DTGs and phenylpropanoids (Heiling et al., 2010; Kaur et al.,
2010; Onkokesung et al., 2012). The functionally characterized elements of these pathways
show stronger W+OS elicitation in systemic leaves compared to local leaves at Sh after
elicitation. Together these results illustrate the applicability of dimension reduction techniques

in identifying relevant modules.

2. “Omics” integration at spatio-temporal resolution

In chapter 4, I demonstrated that our method can also be applied on metabolomics data
sets for which very few multivariate approaches have been developed. Since pre-processing
strategies involving deconvolution and retention time corrections require somewhat similar
metabolomes, therefore I restricted the comparison between treated and untreated leaves and

identified metabolites showing major differences in induced responses between two leaves in
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both positive and negative mode of ionization while using the same parameters that were used
for transcriptomic analysis. The identified interactive responses for metabolic data sets were
largely observed at 9 and 13h after elicitation which is later than the time points observed for
transcriptional changes in systemic leaves (1 and 5h after elicitation). I supplemented the
information of retention time to the interactive effects and recovered three major classes of
compounds — phenolic derivatives, 17-HGL-DTG, O-acyl sugars. As with the transcriptomic
analysis for a selected motif, the method facilitated the detection of tandem induction or
metabolic cross talk among several metabolic pathways activated by OS elicitation in
systemic tissues. Also, consistent with the power of this approach to cluster biochemically
connected genes, I observed highly coordinated dynamic responses between different types of
DTGs, shikimate pathway-derived amino acids and downstream metabolites produced within

the phenylpropanoid pathway.

The challenge of integrating “omics” data sets is the identification of unknown or
complex relationships between different molecular data types. The complexity arises because
the nature of the coregulation among functionally related genes, metabolites or proteins could
vary depending on the biological activity of the studied metabolic classes and on the applied
experimental conditions. I showed in chapter 4 that the technique of reducing the number of
features in both transcriptome and metabolome space with reference to a common six
dimensional time vector allows the detection and interpretation of gene-metabolite
interactions at the level of isolated motifs which are in turn used to mine activated metabolic
pathways. I used the interactive responses of genes and metabolites as associative metrics to
study 17-HGL-DTG pathway which I previously detected as the central metabolic pathway
activated in the interactive motif exhibiting the most pronounced systemic responses. A
comparison of averaged interactive responses for genes and metabolites of this pathway
suggested a shift in their interactive effect. Therefore, I applied a time lag Pearson Correlation
and constructed a gene-to-metabolite network which highlighted a strong coordination
between 17-HGL-DTGs and their biosynthetic genes. I also reported unknown m/z signals
which are likely to be involved in this pathway. These potential candidates need to be

confirmed by additional mass spectrometry-based methods.

Early studies of integration of genes and metabolites to identify global dynamic
responses during sulphur and nitrogen depletion in Arabidopsis are some of the successful
examples of identifying genes’ function based on their underlying gene-to-metabolite

networks (Hirai et al., 2004; Hirai et al., 2005). However, the study used a hard threshold on
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log ratio values for reducing the number of features before studying their dynamic responses.
After filtering, both genes and metabolites were classified on the same temporal maps
assuming no time lag between the activation of genes and metabolites of the same pathway.
Additionally, they studied stress responses in roots and leaves separately because of which
features showing coordinated dynamic responses in both tissues at the same or different time
point could not be extracted from the same temporal maps. However, our multifactorial
approach reduced the number of features based on their ANOVA structure (interactive effect)
and the timing of activation of a “motif”, therefore it efficiently extracts the biologically
meaningful information based on influence of the factors. Additionally, it allows the
identification of time lag for genes and metabolites based on the few known elements of the
same pathway and it collectively studies dynamic responses in treated leaves and untreated

tissues which helped in the identification of emergent properties in roots.
3. Emergent network properties in plant responses to herbivory

When two or more independent analyses are combined together, the resultant
properties are not always additive but infact new properties emerge that cannot be observed
by single analysis. Such properties are called as emergent properties. The observation that
interaction between entities in lower space constrain their behavior suggests that it is highly
expected to detect emergent features in a lower dimensional space compared to uncoordinated
dynamics in a bigger space (Boschetti et al., 2005). Methods to detect emergence include
techniques based on inductive inference that identify low dimensional space in higher
dimensional data sets. These techniques are commonly used in data compression strategies in
engineering sciences but now have also been extensively used in data mining in biological
sciences with potential application in the study of emergence (Long et al., 2008; Moreno-
Risueno et al., 2010). One of the goals of systems biology is the identification of emergent
properties via the integration of different data types within a system. In a comprehensive
study to understand the important roles played by roots in above-ground herbivory using our
dimensionality reduction method, I discovered an emergent physiological property of roots in
the way they adapt the periodicity of its transcriptional activity to leaf OS-elicitation (Chapter
6).

From single time point analyses, I observed large transcriptional and metabolic
changes in roots which surprisingly were either comparable or even more than those observed
in systemic leaves. In particular, I observed a pattern unique to root tissues that consisted of

the same set of induced and suppressed genes separated by a short time lag. Since a recent
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study in N. attenuata has shown that responses to shoot herbivory in roots are controlled by
hormone signaling pathways from aboveground tissues (Machado et al., 2013), I utilized our
previously designed statistical framework to characterize co-expression “interactive” motifs
derived on SOM maps by simultaneously analyzing elicited leaves and un-elicited roots of the
same plant. I discovered two principal trends that were characterized by an inversion of root-
specific semidiurnal (12h) gene oscillations and transcriptional changes with major amplitude
effects while analyzing dynamic behaviors of “interactive” motifs assembled on SOM maps at
Sh after leaf elicitation. The first set of semidiurnal rhythms consists of processes associated
with cell wall metabolism, sugar metabolism and transport which relates to the phenomenon
of root growth reduction by simulated herbivory and herbivory-induced allocation of sugars to
roots observed in N. attenuata (Schwachtje et al., 2006; Hummel et al., 2007). The influence
of signaling components on OS-responsive semidiurnal rhythms and their regulation by
circadian clock components can be studied using transgenic lines impaired in known upstream
nodes of herbivory-signaling networks and clock oscillators in N. attenuata. The second set is
well represented by nicotine biosynthetic genes (NaPMTI, NaPMT2, NaA622, NaQPT,

NaDAO) which show a rhythmic pattern in roots and induction in response to OS-elicitation.

‘ NaPMT2 NaPMT1
SN 2 1

.0 e

Figure 2: Gene-gene network representation of motif “R9” (connectivity screened with FDR =
0.05 and a minimum Pearson Correlation of 0.98) highlighted the differences in the degree of
connectivity between NaPMT1 and NaPMT?2 within the root gene network.

I also extracted “interactive motifs” marked on SOM maps as “R9” and analyzed using
network inference algorithms which based on the differences in the network-based positions
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suggested functional diversification of two NaPMT genes (Figure 2) that are known to be
involved in nicotine biosynthetic pathway (Steppuhn et al., 2004). Similarly, I analyzed other
“interactive motifs” obtained on SOM maps and visualized the chronology of activation of
known pathways central to signaling, tolerance and defense in N. atfenuata which would

assist identifying other key elements from the similar or related activated pathways.

I obtained similar prospective for root tissues while analyzing the tissue-specific
oscillation in primary and secondary metabolism and how these rhythms are reconfigured
during insect attack in Nicotiana attenuata using an informatics theoretic approach of pattern
recognition which finds a best match to periodic models with different amplitude and phase. I
reported in chapter 3 the identification of strong diurnal rhythms in roots which were distinct
from those found in leaves. While leaf metabolites mainly peaked during the day, root
metabolites peaked at dusk or night. In contrast to previously reported secondary metabolic
genes (Doherty and Kay, 2010) along with the metabolites reported in chapter 3 with
conventional circadian rhythms of 24h period length, the set of root transcripts identified
showing emergent property oscillated with a 12h period length. Other studies have also
reported short periodic rhythms in roots such as root-specific, short-term fluctuations of gene
expression with a 6h period length have been reported to coordinate lateral root formation in

Arabidopsis (Moreno-Risueno et al., 2010).

Collectively, these results underscore the importance of understanding the complex
physiology of roots for interpreting whole organism defense responses to leaf herbivory.
These findings provide an exemplary study for identifying emergent properties that govern
plant stress responses by analyzing large scale data using correctly framed biological

questions in a statistical model.
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Summary

The challenge to analyze and interpret large dimensional “omics” output in a variety of
experimental settings using systems biology framework calls for an unprecedented integration
of biological understanding and statistical methods. This work focuses on the development of
methods to select features (genes and metabolites) exhibiting induced local and systemic
defense responses to insect attack in Nicotiana attenuata along with the extraction of
additional information regarding their timing of action. Using our methods, we captured the
sequential transcriptional and metabolic adjustments in different tissues which elucidated the

relative contribution of a given tissue to the whole-organism response.

Using pattern recognition methods on a time course experiment, we first studied
tissue-specific oscillation in metabolite levels and how these rhythms are reconfigured during
insect attack in Nicotiana attenuata. The rhythmic metabolites largely showed systemic
responses in un-attacked leaves and roots. We also observed strong diurnal rhythms in roots
which were distinct from those found in leaves. To further characterize the dynamics of
activation in time and space of herbivory-induced responses, we designed a statistical
framework by combining methods previously developed for feature selection and extraction
to identify activated network motifs. These motifs are the set of features that are differentially
perturbed in local and systemic tissues in response to herbivory. The extraction of
multifactorial statistical information in terms of time response variable simultaneously
captured the dynamic response of a gene/metabolite in more than one tissue and therefore
helped in identifying tissue-specific activation of biochemical pathways during herbivory,
their transition points and shared patterns of regulation with other physiological processes.
Specifically, we studied gene-gene and gene-metabolite interactions in selected motifs to
identify activated metabolic pathways in untreated leaf tissues that control the deployment of
defense metabolism in these systemic tissues. This allowed us to identify non-linear
relationships in gene-metabolite interactions of a systemically activated diterpene glycoside
biosynthetic pathway. We extended the application of this method to study herbivory-specific
responses in treated and un-treated leaves by differentiating induced responses to oral
secretions (from the larvae of Manduca sexta) from those elicited by mechanical wounding.
Following the observation of strong diurnal rhythms in the roots of N. attenuata, we utilized
our framework to evaluate the transcriptional and metabolic dynamics in the roots to

investigate their role in aboveground stress responses. We discovered an emergent property of
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an inversion in root-specific semidiurnal (12h) rhythms in response to simulated leaf
herbivory. In addition, we illustrated the benefits of our statistical framework, used for
generating spatio-temporally resolved transcriptional/metabolic maps, by visualizing the
chronology of the activation of pathways central to signaling, tolerance and defense in N.
attenuata. The research described in this thesis, in addition to being valuable in deciphering
dynamic responses to insect attack in a whole plant context, lays the foundation for future
analyses in which statistical modeling of these networks assisted with experimental data could

predict the logical rules governing these dynamic interactions.
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Zusammenfassung

Die Analyse und Interpretation von multidimensionalen ,,omics“-Daten in einer Vielzahl
experimenteller Ansdtze unter Nutzung systembiologischer Grundstrukturen erfordert eine
beispiellose Integration von biologischem Verstdndnis und statistischen Methoden. Die
vorliegende Arbeit befasst sich mit der Entwicklung von Methoden zur Auswahl von
Komponenten (Genen und Metaboliten), die eine induzierte und systemische
Verteidigungsantwort auf Insektenfral in MNicotiana attenuata hervorrufen sowie mit der
Gewinnung zusitzlicher Informationen iiber den zeitlichen Ablauf der Reaktion. Mit unseren
Methoden haben wir aufeinanderfolgende transkriptionale und metabolische Regulationen in
verschiedenen Geweben erfasst, um den relativen Beitrag eines bestimmten Gewebes zur

Antwort des Gesamtorganismus aufzuklaren.

Mit Hilfe der Mustererkennung untersuchten wir zuerst iiber einen bestimmten Zeitverlauf die
gewebespezifische Oszillation metabolischer Konzentrationen und wie dieser Rhythmus
wihrend des Insektenfralles in Nicotiana attenuata rekonfiguriert wurde. Die rhythmischen
Metabolite zeigten weitgehend systemische Antworten in nicht befallenen Blittern und Wurzeln.
Zur weiteren Charakterisierung der zeitlichen und rdumlichen Aktivierungsdynamik der
herbivorie-induzierten Antworten entwarfen wir eine statistische Grundstruktur, indem wir die
zuvor entwickelten Methoden zur Auswahl und Extraktion von Komponenten konfigurierten, um
aktivierte Netzwerkmotive zu identifizieren. Diese Motive entsprechen dem Satz von
Eigenschaften, die differentiell in lokalen und systemischen Geweben als Reaktion auf
Herbivorie gestért werden. Die Extraktion der multifaktoriellen statistischen Information
hinsichtlich der variablen Antwort in Abhdngigkeit von der Zeit erfasste gleichzeitig die
dynamische Antwort eines Gens/Metabolits in mehr als einem Gewebe und trug daher zur
Identifikation von gewebsspezifischer Aktivierung biochemischer Stoffwechselwege wihrend
der Herbivorie, ihrer Umschlagpunkte und gemeinsamen Regulationsmuster mit anderen
physiologischen Prozessen bei. Insbesondere untersuchten wir Gen-Gen- und Gen-Metabolit-
Interaktionen innerhalb ausgewihlter Motive, um aktivierte metabolische Stoffwechselwege in
systemischen Blattgeweben zu untersuchen, die die Verwendung von Metaboliten zur

Verteidigung in diesen Geweben steuern. Damit konnten wir nicht-lineare Zusammenhénge in
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Gen-Metabolit-Interaktionen eines systemisch aktivierten Diterpen-Glycosid-Biosynthesewegs
identifizieren. Wir haben diese Methode erweitert, um bei herbivorie-spezifischen Antworten in
behandelten und unbehandelten Bléttern zwischen induzierten Antworten auf orale Sekrete (von
den Larven von Manduca sexta) und Antworten, die durch mechanisches Verwunden induziert
werden, zu unterscheiden. Nach der Beobachtung starker Tagesrhythmen in den Wurzeln von N.
attenuata nutzten wir unsere Grundstruktur zur Evaluierung der transkriptionalen und
metabolischen Dynamik in den Wurzeln und zur Untersuchung ihrer Rolle in oberidischen
Stressantworten. Wir entdeckten das Auftreten einer Inversion des wurzelspezifischen
halbtiglichen (12 h) Rhythmus als Antwort auf simulierte Blattherbivorie. AuBerdem
verdeutlichten wir den Nutzen unserer statistischen Grundstruktur fiir die Erzeugung raumlich-
zeitlich aufgeloster transcriptionaler/metabolischer Karten durch Visualisierung der Chronologie
der Aktivierung von zentralen Stoffwechselwegen fiir Signaliibertragung, Toleranz und
Verteidigung in N. attenuata. Die Forschung, die in dieser Dissertation beschrieben wird, ist
nicht nur wertvoll fiir das Entschliisseln dynamischer Antworten auf Insektenfral im Kontext der
gesamten Pflanze, sondern schafft auch die Grundlage fiir zukiinftige Analysen, in denen die
statistische Modellierung dieser Grundstruktur, unterstiitzt von experimentellen Daten, die

logischen Regeln vorhersagen konnte, die fiir diese Interaktionen maf3geblich sind.

121



References

References

(Introduction and discussion)

Alm E, Arkin AP (2003) Biological networks. Current Opinion in Structural Biology 13:
193-202

Auffray C, Imbeaud S, Roux-Rouquie M, Hood L (2003) Self-organized living systems:
conjunction of a stable organization with chaotic fluctuations in biological space-time.
Philosophical Transactions of the Royal Society of London Series a-Mathematical
Physical and Engineering Sciences 361: 1125-1139

Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S,
Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S (2008) Genome-scale
proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science
320: 938-941

Baldwin IT (2001) An ecologically motivated analysis of plant-herbivore interactions in
native tobacco. Plant Physiology 127: 1449-1458

Baldwin IT, Morse L (1994) Up in Smoke .2. Germination of Nicotiana-Attenuata in
Response to Smoke-Derived Cues and Nutrients in Burned and Unburned Soils.
Journal of Chemical Ecology 20: 2373-2391

Baldwin IT, Staszakkozinski L, Davidson R (1994) Up in Smoke .1. Smoke-Derived
Germination Cues for Postfire Annual, Nicotiana-Attenuata Torr Ex Watson. Journal
of Chemical Ecology 20: 2345-2371

Bar-Joseph Z, Gerber G, Simon I, Gifford DK, Jaakkola TS (2003) Comparing the
continuous representation of time-series expression profiles to identify differentially
expressed genes. Proc Natl Acad Sci U S A 100: 10146-10151

Bennett RN, Wallsgrove RM (1994) Secondary Metabolites in Plant Defense-Mechanisms.
New Phytologist 127: 617-633

Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS,
Penfold CA, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B,
Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K,
Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of
transcripts during Arabidopsis leaf senescence reveals a distinct chronology of

processes and regulation. Plant Cell 23: 873-894

122



References

Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 295:
1664-1669

Giri AP, Wunsche H, Mitra S, Zavala JA, Muck A, Svatos A, Baldwin IT (2006)
Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera,
Sphingidae) and its natural host Nicotiana attenuata. VII. Changes in the plant's
proteome. Plant Physiology 142: 1621-1641

Gulati J, Kim SG, Baldwin IT, Gaquerel E (2013) Deciphering herbivory-induced gene-to-
metabolite dynamics in Nicotiana attenuata tissues using a multifactorial approach.
Plant Physiology 162: 1042-1059

Halitschke R, Gase K, Hui D, Schmidt DD, Baldwin IT (2003) Molecular interactions
between the specialist herbivore Manduca sexta (lepidoptera, sphingidae) and its
natural host Nicotiana attenuata. V1. Microarray analysis reveals that most herbivore-
specific transcriptional changes are mediated by fatty acid-amino acid conjugates.
Plant Physiology 131: 1894-1902

Heiling S, Schuman MC, Schoettner M, Mukerjee P, Berger B, Schneider B, Jassbi AR,
Baldwin IT (2010) Jasmonate and ppHsystemin Regulate Key Malonylation Steps in
the Biosynthesis of 17-Hydroxygeranyllinalool Diterpene Glycosides, an Abundant
and Effective Direct Defense against Herbivores in Nicotiana attenuata. Plant Cell 22:
273-292

Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S,
Nakamura Y, Kitayama M, Suzuki H, Sakurai N, Shibata D, Tokuhisa J,
Reichelt M, Gershenzon J, Papenbrock J, Saito K (2005) Elucidation of gene-to-
gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics
and transcriptomics. Journal of Biological Chemistry 280: 25590-25595

Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai
N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-
based identification of Arabidopsis Myb transcription factors regulating aliphatic
glucosinolate biosynthesis. Proceedings of the National Academy of Sciences of the
United States of America 104: 6478-6483

Ideker T (2004) Systems biology 101 - what you need to know. Nature Biotechnology 22:
473-475

Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: Systems biology.

Annual Review of Genomics and Human Genetics 2: 343-372

123



References

Johnstone IM, Titterington DM (2009) Statistical challenges of high-dimensional data
INTRODUCTION. Philosophical Transactions of the Royal Society a-Mathematical
Physical and Engineering Sciences 367: 4237-4253

Joyce AR, Palsson BO (2006) The model organism as a system: integrating 'omics' data sets.
Nature Reviews Molecular Cell Biology 7: 198-210

Kang JH, Wang L, Giri A, Baldwin IT (2006) Silencing threonine deaminase and JAR4 in
Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against
Manduca sexta. Plant Cell 18: 3303-3320

Kaur H, Heinzel N, Schottner M, Baldwin IT, Galis I (2010) R2R3-NaMYBS8 Regulates
the Accumulation of Phenylpropanoid-Polyamine Conjugates, Which Are Essential
for Local and Systemic Defense against Insect Herbivores in Nicotiana attenuata.
Plant Physiology 152: 1731-1747

Kessler A (2004) Silencing the jasmonate cascade: Induced plant defenses and insect
populations (vol 305, pg 665, 2004). Science 306: 2042-2042

Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular
analysis. Annu Rev Plant Biol 53: 299-328

Kitano H (2002) Systems biology: a brief overview. Science 295: 1662-1664

Liberman LM, Sozzani R, Benfey PN (2012) Integrative systems biology: an attempt to
describe a simple weed. Current Opinion in Plant Biology 15: 162-167

Long TA, Brady SM, Benfey PN (2008) Systems approaches to identifying gene regulatory
networks in plants. Annu Rev Cell Dev Biol 24: 8§1-103

Mithofer A, Boland W (2012) Plant Defense Against Herbivores: Chemical Aspects. Annual
Review of Plant Biology, Vol 63 63: 431-450

Moreno-Risueno MA, Busch W, Benfey PN (2010) Omics meet networks - using systems
approaches to infer regulatory networks in plants. Current Opinion in Plant Biology
13: 126-131

Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang JY, Ahnert SE, Benfey PN
(2010) Oscillating Gene Expression Determines Competence for Periodic Arabidopsis
Root Branching. Science 329: 1306-1311

Onkokesung N, Gaquerel E, Kotkar H, Kaur H, Baldwin IT, Galis I (2012) MYBS
Controls  Inducible  Phenolamide Levels by Activating Three Novel
Hydroxycinnamoyl-Coenzyme A:Polyamine Transferases in Nicotiana attenuata.

Plant Physiology 158: 389-407

124



References

Park T, Yi SG, Lee S, Lee SY, Yoo DH, Ahn JI, Lee YS (2003) Statistical tests for
identifying differentially expressed genes in time-course microarray experiments.
Bioinformatics 19: 694-703

Romagnolo B, Jiang M, Kiraly M, Breton C, Begley R, Wang J, Lund J, Kim SK (2002)
Downstream targets of let-60 Ras in Caenorhabditis elegans. Developmental Biology
247: 127-136

Sawada Y, Kuwahara A, Nagano M, Narisawa T, Sakata A, Saito K, Hirai MY (2009)
Omics-Based Approaches to Methionine Side Chain Elongation in Arabidopsis:
Characterization of the Genes Encoding Methylthioalkylmalate Isomerase and
Methylthioalkylmalate Dehydrogenase. Plant and Cell Physiology 50: 1181-1190

Schuman MC (2012) Herbivory-induced volatiles function as defenses increasing fitness of
the native plant Nicotiana attenuata in  nature. eLife, 1:  e00007.
doi:10.7554/eLife.00007.

Schwachtje J, Minchin PEH, Jahnke S, van Dongen JT, Schittko U, Baldwin IT (2006)
SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots.
Proceedings of the National Academy of Sciences of the United States of America
103: 12935-12940

Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT (2004) Nicotine's defensive
function in nature. PLoS Biol 2: E217

Tai YC, Speed TP (2006) A multivariate empirical Bayes statistic for replicated microarray
time course data. Annals of Statistics 34: 2387-2412

Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the
ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116-5121

Van Norman JM, Benfey PN (2009) Arabidopsis thaliana as a model organism in systems
biology. Wiley Interdisciplinary Reviews-Systems Biology and Medicine 1: 372-379

Van Regenmortel MHV (2004) Biological complexity emerges from the ashes of genetic
reductionism. Journal of Molecular Recognition 17: 145-148

Van Regenmortel MHV (2004) Reductionism and complexity in molecular biology. Embo
Reports 5: 1016-1020

Wang J, Kim SK (2003) Global analysis of dauer gene expression in Caenorhabditis
elegans. Development 130: 1621-1634

Wu JQ, Baldwin IT (2010) New Insights into Plant Responses to the Attack from Insect
Herbivores. Annual Review of Genetics, Vol 44 44: 1-24

125



References

Zhou BY, Xu WH, Herndon D, Tompkins R, Davis R, Xiao WZ, Wong WH, Injury IHR
(2010) Analysis of factorial time-course microarrays with application to a clinical
study of burn injury. Proceedings of the National Academy of Sciences of the United

States of America 107: 9923-9928

126



Eigenstcndigkeitserkldrung

Eigenstindigkeitserklirung

Entsprechend der geltenden, mir bekannten Promotionsordnung der Biologisch-
Pharmazeutischen Fakultidt der Friedrich-Schiller-Universitidt Jena erklidre ich, dafl ich die
vorliegende Dissertation eigenstindig angefertigt und alle von mir benutzten Hilfsmittel und
Quellen angegeben habe. Personen, die mich bei der Auswahl und Auswertung des Materials
sowie bei der Fertigstellung der Manuskripte unterstiitzt haben, sind am Beginn eines jeden
Kapitels genannt. Es wurde weder die Hilfe eines Promotionsberaters in Anspruch
genommen, noch haben Dritte fiir Arbeiten, welche im Zusammenhang mit dem Inhalt der
vorliegenden Dissertation stehen, geldwerte Leistungen erhalten. Die vorgelegte Dissertation
wurde aulerdem weder als Priifungsarbeit fiir eine staatliche oder andere wissenschaftliche

Priifung noch als Dissertation an einer anderen Hochschule eingereicht.

Jyotasana Gulati

Jena, August 22,2013

127



Curriculum vitae

JYOTASANA GULATI

Born: 16" March 1985, India
Nationality: Indian Email: jyotasana@gmail.com

Education

2010-2013: Ph. D. (Plant systems biology)
International Max Planck Research School, Jena, Germany
Dissertation: “Integrative statistical methods for decoding molecular responses to insect
herbivory in Nicotiana attenuata”
2006-2008: M. Sc (Bioinformatics), Gold Medal
Jamia Milia Islamia Central University, Delhi, India

Dissertation: “Open Source Development of a Distribution Using LFS (Linux from Scratch)
specialized for molecular modeling and drug designing”

2003-2006: B. Sc (Life Sciences), Distinction
Maharshi Dayanand Univeristy, Haryana, India

Research Experience
- Junior Research Fellow, 2008-2009, Institute of Genomics and Integrative Biology, Delhi, India
1. Integrated insilico analysis of surface proteins from Mycobacterium tuberculosis.

2. A Comprehensive Immunoinformatics Analysis of M.Tuberculosis H37Rv and H37Ra Proteins.

- Project Intern, 2008, M. Sc, Jamia Milia Islamia Central University, Delhi, India

1. Analysis of the insertion sites of class I Non - LTR (Long Terminal Repeat) retrotransposons in
Human Genome using in silico approaches.

Publications:

- Gulati J, Baldwin IT, Gaquerel E (2013) The roots of plant defenses: Integrative multivariate
analyses uncover dynamic behaviors of roots’ gene and metabolic networks elicited by leaf
herbivory. (in review, The Plant Journal)

- Farhan A, Gulati J, Grosse-Wilde E, Vogel H, Hansson B, Knaden M. (2013).The CCHamide 1
receptor modulates sensory perception and olfactory behavior in starved Drosophila. Scientific
Reports 3(2765)

- Gulati J, Baldwin IT, Gaquerel E (2013) An integrative statistical method to explore herbivory-
specific responses in plants. Plant Signal Behav 8

- Gulati J, Kim SG, Baldwin IT, Gaquerel E (2013) Deciphering Herbivory-Induced Gene-to-
Metabolite Dynamics in Nicotiana attenuata Tissues Using a Multifactorial Approach. Plant
Physiol 162: 1042-1059

128



Curriculum vitae

Kim SG, Yon F, Gaquerel E, Gulati J, Baldwin IT (2011) Tissue specific diurnal rhythms of
metabolites and their regulation during herbivore attack in a native tobacco, Nicotiana attenuata.
PLoS One 6: €26214

Poster presentations:

Gulati J., Kim S.G., Baldwin. I.T, Gaquerel E. Leaf herbivory elicits distinct asynchronous shifts
in the root transcriptome of Nicotiana attenuata, 12th IMPRS Symposium, MPI for Chemical
Ecology-2013, Jena, Germany.

Gagquerel E., Briitting C., Schifer M., Stanton M., Ullmann-Zeunert L., Gulati J., Erb M.,
Schottner M., Baldwin I.T. New tools for the Nicotiana attenuata system: 'Real Time' genetic
manipulation in nature, transcriptome-metabolome networks, fluxomics, and new imaging
procedures. SAB Meeting 2012, MPI for Chemical Ecology, Jena, Germany.

Gulati J., Gaquerel E., Kim S.G., Baldwin. I.T. Finding transcriptomic modules mediating plant
defense responses to herbivory using systems biology. Intelligent systems for molecular biology
2012, CA, USA.

Gulati J., Gaquerel E., Kim S.G., Baldwin. L.T. Studying chemical ecology of Nicotiana
attenuata using system level factorial time course OMICS data, International Conference on
Systems Biology-2011, Mannheim, Germany.

Gulati J., Gaquerel E., Kim S.G., Baldwin. I.T. Inferring Stress-Responsive biochemical
networks in Nicotiana attenuata using Integrative systems biology approaches, International
Conference on Systems Biology-2010, Edinburgh center for bioinformatics.

Gulati J., Gaquerel E., Kim S.G., Baldwin. I.T. Exploring molecular signatures underlying
stress-responsive pathways in Nicotiana attenuata using Systems biology approach, 10th IMPRS
Symposium, MPI for Chemical Ecology-2010, Dornburg, Germany.

Gulati J., Ramachandran S., Integrated in silico identification and analysis of ligands binding to
Mtb protein Antigen MPT64, Institute of Microbial Technology 2009, Chandigarh, India.

Oral presentations:

Gulati J., Tissue and treatment specific transcriptomic modules directing chemical ecology
in Nicotiana attenuata. 11th IMPRS Symposium, MPI for Chemical Ecology-2012, Dornburg,
Germany.

Gulati J., Computational Genomics: An Edge to Functional Genomics in Plant Systems
Biology. Kick off meeting, Max-Planck Partner group-Kolkata, IISER-Kolkata, 2011.

Language Proficiency

Hindi: mother tongue

English: fluent

129



Acknowledgments

Acknowledgments

I would like to express my deep gratitude to my supervisors Professor lan T. Baldwin
and Dr. Emmanuel Gaquerel for their excellent guidance, never ending enthusiasm,
constructive suggestions and full-time support. Thank you Ian! Thank you for trusting me and
giving me the opportunity to work in such an interesting and “data-rich” research area. Your
passion for Science has always motivated me. I consider myself lucky for being in your
interdisciplinary lab. Thank you Emmanuel for your unflagging patience to listen to my
results, bringing them in finest shape; and I believe that I will bring that fineness to the
science | will do in future. You were a great resource for answering my scientific questions
and I have been fortunate to enjoy your invaluable suggestions mixed with your good sense of

humor.

I would also like to thank Dr. Sang-Gyu Kim, Dr. Klaus Gase, Wibke Krober, Thomas
Hahn, Dr. Matthias Schottner and Felipe Yon. Thesis would not have been the same without
their precious support in generating such a wonderful molecular data. I would also like to
thank Dr. Karin Groten and Evelyn Classen for their ever ready support and guidance that I

received since the day I arrived in Jena.

Thanks to Variluska for making my change of research from tuberculosis to tobacco
plant so easy. Thanks Vari! Thanks to Michael for always coming to help whenever I needed.

Thanks to Sagar and Pavan for introducing me to the world of small RNAs.

I would like to thank all the members of the department of molecular ecology for
wonderful scientific discussions. I feel privileged having had the opportunity to work with
them. I deeply appreciate the “instant” help provided by the wonderful people in IT
department, library team, administrative departments and the IMPRS office.

Finally, I would like to thank the Max Planck Society for giving me such a big

opportunity and for the financial support.

130



