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Abs t rac t 

We formulate an adaptive color space for segmenting all image into the two classes "object 
of interest" and "background" by using well-established methods from statistical pattern 
recognition. Both classes are modeled by a multivariate Gaussian distribution whose actual 
parameters are estimated via the Expectation Maximization (EM) algorithm. The output 
grayscale feature image is derived as the distance of each pixel's color to the decision boundary 
which is shaped bewteen the two class models. Based on this feature image, which provides a 
maximum discriminatory power with respect to the underlying model assumptions, the actual 
segmentation can be performed with appropriate methods from grayscale image processing. 
This adaptive color space is a practical tool for homogeneously colored scenes, as they appear, 
e.g., in microscopic images of biotechnical fundamental research. 

1 Introduction 

Color image segmentation is a fundamental problem in image processing. Recent developments 
like SIOX [1] and GrabCut [2] demonstrate considerable advances towards universal segmenta­
tion tools even for complex scenes. Notwithstanding, an all-purpose solution seems to be an 
unreachable ideal. 

An essential preprocessing step for color image segmentation is to transform the vector-valued 
color information into another representation, for instance into a scalar-valued image which is 
intended to offer preferably a maximum discriminatory power between the objects of interest and 
the background. We want to call this the feature image, since it represents the intended features 
of the underlying color image. Generally, there exists no ' 'standard transform" to perform this 
task. However, by using techniques from statistical pat tern recognition it is possible to gain a 
color model which automatically adapts itself to the actual color distribution of the particular 
image and to derive a feature image out of this color model which ultimately meets the desired 
maximum disriminatory power. As a mat ter of course, when dealing with statistical models, 
the da ta needs to match the underlying model assumptions. The model which is used in the 
presented approach is the multivariate Gaussian distribution — a very popular and easy to 
handle one. Mapped onto the image segmentation problem, this model is valid for homogenously 
colored objects both in case of the "object of interest" and the "background". This is true in 
a number of practically relevant cases. Especially in the context of biological image processing 
tasks the problem of identifying dyed objects arises in various facets. We demonstrate the worth 
of this parametric approach on some examples from biotechnical fundamental research. 

86 



This color space transformation procedure works as follows: First, the actual class parameters 
of the "background" and "object of interest" are estimated out of a rough initialization by using 
the EM algorithm (Section 2). Clearly, based on this two-class model it was easy to calculate the 
maximum likelihood class membership of each pixel which would result in a binary image.' But 
our intention is not decision-making, i.e., assigning a binary label to each pixel, but transforming 
the vector-valued color data into a grayscale image which actually reflects the distance of the 
pixel-color to the decision boundary between the classes. Therefore, we use appropriate distance 
measures to a linear or quadratic surface (Section 3). Since this transformation decouples the 
color information from the subsequent postprocessing (segmentation) algorithms, the whole pool 
of grayscale image segmentation algorithms like thresholding, region growing, edge detection, 
active contour models, level sets, morphological operations, etc. can be applied. 

2 Data Model: Mixture of Gaussians 

All subsequent considerations are based on the assumption that the entire image color dis­
tribution can be decomposed into K = 2 classes — namely the "object of interest" and the 
"background". Hence, the distribution of the color samples x is modeled by the mixture 

(1) 

where Pk is the a priori probability of class k and 6fc denotes the set of parameters which 
describes the distribution of class k. 
Choosing an appropriate distribution for the mixture components is a crucial step. To keep 
the subsequent procedure mathematically manageable at all, we rely on the popular multi­
variate Gaussian distribution. Its equal-probability surfaces describe (hyper)ellipsoids in the 
d-dimensional space. Here, d = 3 corresponding to the RGB color space. The model parameters 
Sk consist of the mean vector fik € R^*1 which describes the center of the ellipsoid, and the 
covariance matrix S/t 6 Wlxd which determines its shape and orientation. 

(2) 

Having defined the parametric data model, as a next step we need to estimate the model pa­
rameters out of the given data set, i.e., from the particular image which we want to transform 
into the adaptive color space. This is done with the Expectation Maximization (EM) algorithm. 

Estimation of Model Parameters using the EM Algorithm 

The Expectation Maximization (EM) algorithm [4, 5] is an iterative technique for finding the 
maximum likelihood parameter estimates when matching a distribution on a given data set. 
During the iterations, first the probability (at iteration step t) of all N data samples x„ to 
belong to class k is calculated by Bayes' theorem, which is known as the expectation step. 

(3) 

'Building more than two classes like, e.g., in [3] would result in a multi-label image. 
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In the subsequent maximization step, an updated parameter set for the iteration step t + 1 con­
taining the prior probabilities, mean vectors, and covariance matrices for each class is calculated. 

(4) 

(5) 

(6) 

As initialization, a rough guess of the class parameters is adequate. The algorithm is terminated 
at some stopping criterion, e.g., when the resulting class labelling of the data vectors does not 
change anymore. 
For a deeper understanding of the EM algorithm as well as the derivation of the parameter 
estimation equations the interested reader may refer to [6]. 

3 Adaptive Color Spaces 

Having obtained the actual model parameters for the two classes "object of interest" and "back­
ground", we are ready to transform the color image into the adaptive color space, i.e., to gain 
the desired feature image. As already mentioned in the introduction, we are not interested in a 
binary image which would correspond to a maximum likelihood decision of each color pixel, but 
in a grayscale image which actually reflects the distance of the pixel-color to the decision bound­
ary between the classes. Subsequently, appropriate grayscale image segmentation algorithms 
can be applied onto this feature image. 

3.1 Quadratic and Linear Decision Boundary 

Actually, this adaptive color space is obtained as follows: Due to the K = 2 ellipsoidal distri­
butions (which reflect the color of the "object of interest" and the "background") a quadratic 
decision boundary is shaped between these two classes i and j which is described by the implicit 
e<luation [7] 

(7) 

Its parameters are given by (for the derivation of these equations please refer to Appendix B) 

(8) 

(9) 

(10) 

If the covariance of both classes are equal, then A = 0 and a linear decision boundary is 
obtained. A linear decision boundary can be forced by a linearization operation. In this case, 
the covariances S, and £ j in (9) and (10) are replaced by the pooled covariance matrix [7] 

(11) 

where n^ denotes the number of samples in class k. 
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3.2 Distances to Linear and Quadratic Surfaces as Adaptive Color Space 

Now, based on the quadratic or linearized surface, the adaptive color space can be defined by 
calculating the distance of each color sample to the decision boundary. 

Linear Decision Boundary — Euclidean Distance 

Since it is much easier to deal with the linear case, we start with the corresponding linear 
adaptive color space. The distance of a query point p to the linear decision boundary is just 
given by 

(12) 

Remember to use the pooled covariance matrix (11) for calculating the parameters a and ao-
Furthermore, Equation (12) should be normalized in such a way that the vector norm of a is 

In fact, this linear distance measure represents the well known FISHER linear discriminant [8]. 

Quadratic Decision Boundary — Perpendicular Distance 

Generally, a nonlinear decision boundary provides a more accurate detachment of the class 
clusters and is therefore more suitable. As already mentioned, in case of cluster approximation 
by multivariate Gaussians, the decision boundary is inherently of a quadratic nature. There exist 
different definitions of distance measures to those curved surfaces. Thereby, the perpendicular 
distance. dp provides the most intuitive generalization of the distance measure to the linear 
decision boundary, since it represents the Euclidean distance between the query point p and the 
closest point on the surface. It is given by 

(13) 

Unfortunately, the calculation of the perpendicular distance is not straightforward at all and 
involves finding the roots of a 6th-order polynomial. The step-by-step solution is given in 
Appendix A. 

Quadratic Decision Boundary — Algebraic Distance 

The algebraic distance of a query point p to the surface is defined by 

(14) 

According to (22) and (23) (see Appendix B) this distance measure represents the difference 
of the generalized distances. It can be written also as dn = D2 — Df. Again, as in case of 
the Euclidean distance to the linear decision boundary, a normalization should be applied. We 
suggest to normalize Equation (14) such that |a| = 5. 

Other Distance Measures 

In case of an ellipsoidal surface, a radial distance as well as a normalized radial distance [9] can 
be defined. However, due to this dramatic limitation of an ellipsoidal decision boundary this 
case is not of practical relevance. 
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3.3 Examples 

In the end, the technique of parametrizing the color distribution by two multivariate Gaussians 
and obtaining a quadratic or a linearized decision boundary in between provides three applicable 
adaptive color spaces: They are expressed as the perpendicular distance dp to the quadratic de­
cision boundary, the algebraic distance da to the quadratic decision boundary, and the Euclidean 
distance d; to the linearized decision boundary. 
The performance of this approach is demonstrated on the figure pages. Let us exemplarily 
start with the first one: Out of the color image (Figure 1), first the actual class parameters 
are calculated via the EM algorithm. The resulting class labeling is shown in the clusters in 
Figure 2 (blue "background" and red "object of interest"). Figure 3 shows the ellipsoids of the 
parametric: model and the resulting quadratic decision boundary. In this particular case, this 
quadric is shaped as a one-sheet hyperboloid. For the reason of clearness, the linearized deci­
sion boundary is not shown in the plot. Finally, Figure 4 shows the resulting grayscale feature 
images in pseudocolor and the corresponding probability density functions (PDF). Note that 
the pseudocolor scale is mapped on the abscissa of the PDF plots. Subfigure a) and b) show 
the feature images based on the measure dv and dj, respectively. Bottom, Subfigure c) and d) 
show the algebraic distance da: In Subfigure d), the algebraic distance was iionlinearly scaled 
by a factor and an exponential. Both parameters were set by numerically minimizing the mean 
squared error (MMSE) between the perpendicular distance and the algebraic distance. The 
intention of this nonlinear transformation is to approximate the expensive2 calculation of the 
perpendicular distance by the algebraic distance. Clearly, appropriate values for the two trans­
formation parameters have to be determined individually for each family of images. As a result, 
the nonlinearly transformed algebraic distance can be used as an inexpensive approximation of 
the perpendicular distance. 

Figure 5 et seqq. and Figure 9 et seqq. show two additional examples. Sometimes it is sufficient 
to use the adaptive color space based on the linear decision boundary (Subfigure b). This 
strongly depends on the particular image material and the desired segmentation quality. In the 
example of Figure I) et seqq., definitely the quadratic decision boundary should be used since it 
provides a much better equalized background than the linear one. 
Based on these feature images the actual segmentation can be performed using appropriate 
grayscale image segmentation methods like thresholding, region growing, edge detection, active 
contour models, level sets, morphological operations, etc. 

4 Conclusions 

We have demonstrated a technique to transform a color image into a grayscale feature image of 
maximum discriminatory power bewteen the two classes "object of interest" and "background" 
using well-established procedures from statistical pattern recognition. The proposed method 
requires the classes to be homogeneously colored to be describable as multivariate Gaussian 
distributions. Based on the quadratic (or linearized) decision boundary between these two 
distributions, the feature image is calculated as a distance measure of each pixel's color to the 
decision boundary. Due to the high computational burden of the perpendicular distance, we 
proposed to use a nonlinearly scaled version of the algebraic distance instead which provides a 
similar performance. Depending on the data and the desired quality of the segmentation result, 
the performance of the linearized solution (which in fact represents FISHER'S linear discriminant) 
can be sufficient, too. 

2Transforming a 1 megapixel image on a Pentium® 4 processor with 2.66 GHz, the calculation of the algebraic 
distance takes less than half a second. In contrast, calculating the perpendicular distance needs several minutes 
since each pixel involves hnding the roots of a (ith-oder polynomial. This was done by calculating the eigenvalues 
of the 6x6 companion matrix [10]. 

90 



Acknowledgements. We thank Patrick Schweizer from the Transcriptomo Analysis Group 
at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, and 
Katharine Goellner from the Molecular Plant Microbe Interarctions Group at the Max Planck 
Institute for Plant Breeding Research, Cologne, for providing the image material. This work was 
supported by the German Ministry of Education and Research (BMBF) under grant 0312706A. 

A Perpendicular Distance to a Quadratic Surface 

The distance computation problem regarding quadratic curves and surfaces is extensively treated 
by LENNERZ [11, 12]. To find the distance of a query point p to the quadratic functional 
xTAX + 2aTx + ao = 0, two main steps are required: First, the quadric the has to be transformed 
into the normal form (the query point has to be transformed as well) before actually the distance 
is calculated by solving a 6th-order polynomial. 

A . l Transforming t h e Q u a d r a t i c Funct iona l t o t h e N o r m a l F o r m 

A quadric is in normal form if the matrix A is diagonal and Aa = 0. To transform the arbitrary 
quadric into normal form [12], first B is diagonalized to 

(15) 

where R is a rotation matrix, obtained by the eigenvalue decomposition of B. This coordinate 
transformation is applied in terms of x = R r y which gives the surface equation 

After this rotation, a translation of the coordinate system by the vector t is introduced. There­
fore, x is substituted by x + t, yielding the surface equation 

Choosing the elements of the vector t according to 

(16) 

makes the condition Dd = 0 to hold. 

A.2 Dis tance Calcula t ion 

Given the quadratic surface in normal form, i.e., A is diagonal and 
Aa = 0, then the distance of a query point p to the surface is calculated [11] by finding the 
roots of the 6th-order polynomial 

(17) 

with p,v = p - aa and dj = 1 + aAi (Ai is the itth diagonal element of A). 
Then, 

(18) 

gives the intersection points of the surface and the lines standing perpendicular on the surface 
and passing through p. Finally, out of the maximum 6 real-valued solutions, 

(19) 

gives the perpendicular distance between the quadratic surface and the query point p. 
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B Derivation of t he Decision Boundary Between Two Classes 

The adaptive color space is based on the distance of a color sample x to the quadratic decision 
boundary which is formed between the two normally distributed classes. For convenience, we 
quote the derivation of the decision boundary equation given in [7]: 
According to Bayes' Theorem a sample x should be assigned the class k which maximizes 

(20) 

given the class a priori probability Pk and the class parameters 
Since the denominator is equal for all classes, it does not have to be calculated explicitely. It is 
enough to choose the class which maximizes 

(21) 

or which minimizes3 

(22) 

which actually represents a generalized distance of a data sample to the "distribution cloud". 
To derive the equation of the decision boundary between two classes i and j , one starts with 
the fact that on this decision boundary the generalized distances Df and £>| are equal. 

(23) 

Since covariance matrices are always symmetric, can be written as 

(24) 

Collecting the constants of (23) gives 

(25) 

which further simplifies (23) to 

(26) 

(27) 

(28) 

Finally, the decision boundary turns out to be a quadratic surface 

(29) 

with the parameters 

(30) 

(31) 

(32) 

3To come from (21) to (22) take the natural logarithm, multiply with —2 and omit d ln(2pi). 
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Figure 1: A greenish-blue dyed plant cell surrounded by discolored cell tissue* 

Figure 2: Class clusters in RGB. f Figure 3: Ellipsoids and resulting quadratic 
Blue: "background", red: "object of interest", decision boundary (one-sheet hyberboloid).* 

b ) Euclidean distance to linear decision boundary 

d) Nonlinear transformation of c) to approximate a) 

Figure 4: Results as pseudocolor representation and probability distribution. 

*This image was provided by Patrick Schweizer from the Transcriptome Analysis Group at the Leibniz Institute 
of Plant Genetics and Crop Plant Research (IPK), Gatersleben. 

TThe colored plane (Maxwell triangle) is drawn for illustrating the attribution of the RGB cube's vertices. 
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C) Algebraic distance to quadratic decision boundary 

a ) Perpendicular distance to quadratic decision boundary 



Figure 5: Dark hyphae growing on a plant leaf surrounded by discolored cell tissue* 

Figure 6: Class clusters in RGB* Figure 7: Ellipsoids and resulting quadratic 

Blue: "background", m\: "object of interest", decision boundary (ellipsoid).* 

Figure 8: Results as pseudocolor representation and probability distribution. 

*This image was provided by Patrick Schweizer from the Transcriptome Analysis Group at the Leibniz Institute 
of Plant Genetics and Crop Plant Research (IPK), Gatersleben. 

^The colored plane (Maxwell triangle) is drawn for illustrating the attribution of the RGB cube's vertices. 
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a.) Perpendicular distance to quadratic decision boundary b ) Euclidean distance to linear decision boundary 

c) Algebraic distance to quadratic decision boundary d ) Nonlinear transformation of c) to approximate a) 



Figure 9: Dyed hyphae growing on a plant leaf surrounded by discolored cell tissue* 

Figure 10: Class clusters in RGB* Figure 11: Ellipsoids and resulting quadratic 
Blue: "background", red: "object of interest", decision boundary (two-sheet hyberboloid).* 

a ) Perpendicular distance to quadratic decision boundary b ) Euclidean distance to linear decision boundary 

C) Algebraic distance to quadratic decision boundary d ) Nonlinear transformation of c) to approximate a) 

Figure 12: Results as pseudocolor representation and probability distribution. 

**This image was provided by Katharina Goellner from the Plant Microbe Interactions Group at the Max 
Planck Institute for Plant Breeding Research, Cologne. 

•The colored plane (Maxwell triangle) is drawn for illustrating the attribution of the RGB cube's vertices. 
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