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Zusammenfassung

Essei A C X eine prakompakte Teilmenge eines Banachraums X. Dann ist bekannt-
lich auch die reelle absolutkonvexe Hiille aco(A) von A, gegeben durch

aco(A) = {271: i a;

=1

HEN,GZ'GA,AZ'GR,Z|)\1;| Sl},

=1

prikompakt, das heif3t
A prakompakt impliziert aco(A) prakompakt. (0.0.1)

Gegenstand dieser Arbeit ist es zu untersuchen, wie sich die Prikompaktheit beim
Ubergang von A zur reellen absolutkonvexen Hiille aco(A) verindert. Dazu benétigt
man ein Maf} fiur Prakompaktheit. An diese Stelle treten die Entropiezahlen einer
Menge; die Konvergenzrate der Entropiezahlenfolge kann als ein Maf fiir Prakom-
paktheit aufgefasst werden. In der Sprache der Entropiezahlen liest sich Implikation
(0.0.1) als

lim £,(A) =0 impliziert ~ lim &,(aco(A)) = 0.

n—oQ

Es soll erforscht werden, auf welche Weise die Konvergenzrate der Entropiezahlen
en(A) von A die Konvergenzrate der dyadischen Entropiezahlen e, (aco(A)) von
aco(A) beeinflusst. Dieses Problem wurde in allgemeiner Form erstmals von Dud-
ley [D87] studiert; seine Forschung war durch Anwendungen im Bereich der em-
pirischen Prozesse motiviert. Allerdings fithrte die Untersuchung von Operatoren,
die von einem [;—Raum in einen Banachraum abbilden, auch schon frither zu solchen
Problemen. In den vergangenen Jahren wurde die Entropie absolutkonvexer Hiillen
unter verschiedenen Aspekten intensiv studiert. Die Resultate héngen wesentlich
vom

o zugrunde liegenden Banachraum X und

o dem Grad der Prikompaktheit von A, ausgedriickt durch die Konvergenzrate
der Entropiezahlen von A,

ab. Der Hilbertraumfall ist bereits weitgehend erforscht. Unser Interesse gilt vor-
wiegend dem Fall, dass X ein Banachraum vom Typ p ist. Einige Autoren haben
die Entropie absolutkonvexer Hiillen auch fiir beliebige Banachraume studiert. Was
die Konvergenzrate der Entropiezahlen von A betrifft, interessieren wir uns fiir die
folgenden typischen Félle:
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o polynomiell: £,(A) < n= 4" (log(n + 1))~ mit r > 0, B € R,
o logarithmisch: e, (A) < n~"/" (log(n 4+ 1))™% mit r > 0, 3 € R.

Zusétzlich betrachten wir den Fall, dass die (dyadischen) Entropiezahlen von A zu
einem Lorentz-Folgenraum [, ; mit 0 < 7,5 < 0o gehoren. Wenn es sich anbietet,
werden wir von Entropiezahlen zu den eng verwandten Uberdeckungszahlen wech-
seln. Allerdings muss auch die Struktur der Menge A beachtet werden. Wir sprechen
vom sogenannten diagonalen Fall, wenn A von der Form

A={z,/neN} CX

mit ||z,| < o, fir alle n € N ist, wobei 01 > 09 > ... > 0 und lim,, ., 0, = 0. Es
liegt hier also eine Folge von Vektoren abnehmender Lange vor. Wir beschéftigen uns
in dieser Arbeit hauptséichlich mit dem nicht-diagonalen Fall, indem A eine beliebige
priakompakte Teilmenge von X ist und keine Informationen zur konkreten Struktur
von A vorliegen. Natiirlich ist der diagonale Fall im nicht-diagonalen Fall enthalten.
Jedoch kann es vorkommen, dass sich die Entropie der absolutkonvexen Hiille aco(A)
im diagonalen Fall von der im nicht-diagonalen Fall unterscheidet, obwohl in beiden
Fallen die Entropiezahlen von A das gleiche asymptotische Verhalten aufweisen.

Die vorliegende Arbeit gliedert sich wie folgt. In Kapitel 1 geben wir einen detail-
lierten Uberblick iiber bereits bekannte Resultate, neue Erkenntnisse und offene
Fragen. Das erste Kapitel kann in diesem Sinne als erweiterte Einleitung verstanden
werden. Trotzdem wollen wir im Folgenden die Hauptresultate dieser Arbeit kurz
zusammentragen. Wir verwenden dabei die verallgemeinerten Lorentz-Folgenraume
lp.q., aus Abschnitt 2.3.

Fir prakompakte Teilmengen A C X eines Banachraums X vom Typ p, 1 < p < 2,
gelten die folgenden Aussagen:

e (Theorem 1.3.4) Wenn (en(A)) €l.,fir 0 <r <p und 0 < s < 0o, dann
gilt (en(aco(A))) € ly s, mit p(n) = (log(n + 1))1/%1/,,/,1/5‘

Dieses Resultat erweitert das von Steinwart aus [St04, Th. 1.3]. Der Fall s = oo
wurde bereits in [CKP99] betrachtet.

o (Theorem 1.3.5) Sei p’ < r < 00, 0 < s < 0o und ¢ eine langsam variierende
Funktion. Dann gilt (en(A)> € I, genau dann, wenn (en(aco(A))) € sy

Der Fall s = oo ist implizit in [St00, Cor. 3| enthalten.

e (Theorem 1.3.6) Wenn (en(A))n € ly s fiir p < s < oo, dann gilt e, (aco(A4)) <
n= " (log(n + 1))=Y/,
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Der Fall 0 < s < p ist ein offenes Problem. Unter einer zusitzlichen Regu-
laritdtsannahme kann ein Ergebnis fir 1 < s < p erzielt werden (Proposition
1.3.7). Der Fall s = oo wurde bereits in [CrSt02] betrachtet.

¢ (Theorem 1.3.8) Wenn e, (A) < n~ /7 (log(n + 1))~!, dann gilt e, (aco(A)) <
n~1/?" loglog(n + 3).
In Theorem 1.3.9 zeigen wir, dass diese Abschétzung fiir eine gewisse Teilmenge
von [, asymptotisch optimal ist.

Um einen Uberblick iiber den derzeitigen Stand der Forschung zur Entropie absolut-
konvexer Hiillen zu geben, wurden die wichtigsten Resultate in Form von Ubersichten
zusammengefasst. Diese befinden sich auf Seite 17 (diagonaler Fall), Seite 18 und
21 (nicht-diagonaler Fall, Hilbertraum) und auf Seite 30 (nicht-diagonaler Fall, Ba-
nachraum vom Typ p).

Im zweiten Kapitel definieren wir relevante Begriffe und Groflen und erldutern
diese néher. Im Mittelpunkt stehen verstandlicherweise Entropiezahlen von Mengen
und Operatoren, Banachrdume vom Typ p und absolutkonvexe Hiillen. Dartiber hin-
aus betrachten wir langsam variierende Funktionen und benutzen sie zur Einfiihrung
von verallgemeinerten Lorentz-Folgenrdumen [, , .

In Kapitel 3 beweisen wir einige technische Ungleichungen fiir langsam variierende
Funktionen. Diese Ungleichungen werden im Rahmen der verallgemeinerten Lorentz-
Folgenrdume, aber auch fiir die Beweise im vierten Kapitel, eine wichtige Rolle
spielen.

Das fiinfte Kapitel fallt nur scheinbar aus dem Rahmen, denn hier beschaftigen
wir uns mit den Entropiezahlen eines Operators T'D, : [, — Y, wobei D, : [, —
l, ein Diagonaloperator und 7" : [, — Y ein linearer, beschréankter Operator ist.
Als Spezialfall ergeben sich jedoch neue Erkenntnisse zur Entropie absolutkonvexer
Hiillen im diagonalen Fall (Korollar 5.0.7).

Schliellich befasst sich das sechste und letzte Kapitel mit einer Anwendung der
Ergebnisse zur Entropie absolutkonvexer Hiillen. Wir fithren zunéchst wichtige Be-
griffe und Kenngrofien fiir C'(M)—wertige Operatoren ein, wobei C' (M) der Raum der
stetigen Funktionen auf einem kompakten metrischen Raum (M, d) ist. Das Studium
der Entropiezahlen von C'(M)-wertigen Operatoren ist insofern interessant, da die
Entropiezahlen eines kompakten Operators T : X — Y zwischen Banachrdumen
X und Y bis auf Konstanten mit denen eines Operators S : X — C(M) zusam-
menfallen (siche [CS90, S. 159]). In diesem Sinne kénnen C'(M)-wertige Opera-
toren stellvertretend fiir alle kompakten Operatoren betrachtet werden. Wir unter-
suchen zunéchst Operatoren Ty : X — C(M) definiert durch abstrakte Kerne
K € C(M,X’) und zeigen, wie die Entropiezahlen des Bildes des Kerns K die
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Entropie- und Kolmogorovzahlen des Operators Tk beeinflussen (Abschnitt 6.1). Die
Ergebnisse lassen sich auch fiir abstrakt definierte Operatoren Tk : X — [ (M) an-
wenden (Abschnitt 6.2). Anschliefend betrachten wir den Spezialfall eines schwach
singuléren Integraloperators von L,[0, 1] nach C|0, 1] naher. Fiir typische Kernfunk-
tionen £ : (0,1] — R der Form

k(r) =27 (co —Inz)™? (co +1In(cy — In x)) !

mit 0 < 7 < 1/p/, 6,7 € R und ¢y > 0 erhalten wir fir 2 < p < oo Entropie-
abschétzungen von Ty : L,[0,1] — C[0,1], die in allen nicht-kritischen Féllen
scharf sind (Proposition 6.3.6). Im Hilbertraumfall p = 2 kénnen wir sogar die
Kolmogorovzahlen des schwach singuldren Integraloperators Tk : L0, 1] — C[0, 1]
scharf abschétzen (Theorem 6.4.1). Dartiber hinaus gehen wir in Abschnitt 6.4 auch
auf den Fall ein, dass das Bild von Tk nicht in C0, 1], sondern in L,[0,1] mit
1 < ¢ < oo liegt. Wir enden mit Abschitzungen der Entropie des klassischen
Riemann-Liouville Operators.

Teile dieser Dissertation werden in [CHR12] und [CR13] veréffentlicht.



10

Introduction

Let us consider a precompact subset A C X of a Banach space X. Then it is common
knowledge that also the real absolutely convex hull aco(A) of A, given by

aco(A) = {En: i a;

1=1

TLEN,GZ'GA,AZ'GR,ZP\A Sl},

=1

is precompact, i.e.
A precompact implies aco(A) precompact. (0.0.2)

The aim of this dissertation to investigate how the precompactness of A changes
when passing from A to the real absolutely convex hull aco(A). For this purpose
we need a measure of precompactness. This place is taken by the entropy numbers
of a set; the rate of decay of the entropy numbers of a set can be considered as a
measure of precompactness of the set. Implication (0.0.2) can be reformulated in the
language of entropy numbers as

dim £,(A) =0 implies  lim e, (aco(A)) = 0.

We want to investigate this implication in more detail and ask, how the rate of decay
of the entropy numbers €,(A) of A affects the rate of decay of the dyadic entropy
numbers e, (aco(A)) of aco(A). This problem was first treated in a general form by
Dudley [D87]; his research was motivated by applications in the field of empirical
processes. However, it should be noted that the study of operators acting from an
l,—space into a Banach space led to such a problem much earlier. In recent years, the
entropy of absolutely convex hulls has been intensively studied in different settings.
Results essentially depend on

o the underlying Banach space X and

o the degree of precompactness of A, expressed by the rate of decay of the
entropy number sequence (&,,(A))p.

The problem of estimating the entropy of the absolutely convex hull aco(A) has
already been examined thoroughly in the Hilbert space case. This work mainly
deals with the case that X is a Banach space of type p. Some authors also studied
the setting where X is an arbitrary Banach space. As far as the decay of the entropy
numbers of A is concerned, we are interested in the following common cases:
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« polynomial decay: ¢,(A) < n~'/" (log(n + 1))~% with r > 0, 3 € R,
o logarithmic decay: e,(A4) < n~"/" (log(n 4+ 1))7? with r > 0, 3 € R.

In addition, we consider the case where the (dyadic) entropy numbers of A belong
to some Lorentz sequence space [, ;s for 0 < r,s < oo. Due to technical reasons, we
will sometimes switch from entropy to covering numbers and vice versa. However,
we must also take account of the structure of the set A. We speak of the so-called
diagonal case if A is of the form

A={z,/neN}CX

with ||z,|| < o, for all n € N, where 01 > 09 > ... > 0 and lim,, ., 0,, = 0. Hence,
in this setting we have a sequence of vectors of decreasing length. This work mainly
deals with the non-diagonal case where A is any precompact subset of X and no
further information about the structure of A are given. Of course, the diagonal case
is contained in the non-diagonal case. However, it may appear that the entropy of
aco(A) in the diagonal case differs from the entropy of aco(A) in the non-diagonal
case, although the entropy numbers of A have the same asymptotic behavior.

This work is structured as follows: In chapter 1 we give a detailed overview on
already known results, new insights and open questions. Hence, the first chapter
can be considered as an extended introduction. However, in the following we briefly
summarize the main results of this work using the generalized Lorentz sequence
spaces [, , , from section 2.3.

If A C X is a precompact subset of a Banach space X of type p, 1 < p < 2, then
the following statements hold:
e (Theorem 1.3.4) If (en(A)) €l.sfor 0 <r <p and 0 < s < oo, then we
have (en(aco(A))) € by vy with @(n) = (log(n + 1))/ 1/#' Vs,

This result extends Theorem 1.3 of Steinwart [St04]. The case s = 0o has been
considered in [CKP99).

o (Theorem 1.3.5) Let p/ < r < 00, 0 < s < oo and ¢ be a slowly varying
function. Then we have (en(A)> €l if and only if (en(aco(A))) €lrsyp.

The case s = oo is implicitly contained in [St00, Cor. 3.

e (Theorem 1.3.6) If (en(A)) € ly s for p < s < oo, then we have e,(aco(A4)) <
n~ Y (log(n + 1)) -1/,
The case 0 < s < p is an open problem. However, under an additional regu-

larity assumption we can prove a result for 1 < s < p (Proposition 1.3.7). The
case s = oo has been considered in [CrSt02].
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o (Theorem 1.3.8) If e,(A) < n~'/?" (log(n + 1))~!, then we have e, (aco(A)) <
n~'/?" loglog(n + 3).
In Theorem 1.3.9 we show that this estimate is asymptotically optimal for a
certain subset of the sequence space [,,.

In order to give an overview of the present state of research on the entropy of
absolutely convex hulls, the most important results are summarized in tables. The
latter can be found on page 17 (diagonal case), page 18 and 21 (non-diagonal case,
Hilbert space) and on page 30 (non-diagonal case, Banach space of type p).

In the second chapter we define relevant notions and concepts and explain them.
Of course, entropy numbers of sets and operators, Banach spaces of type p and
absolutely convex hulls are of particular interest. In addition, we consider slowly
varying functions and use them to introduce generalized Lorentz sequence spaces

lp,q,(p *

In chapter 3 we prove some technical inequalities for slowly varying functions.
These inequalities will become helpful not only when dealing with generalized Lor-
entz sequence spaces, but also for the proofs in the fourth chapter.

The fifth chapter seems to get out of line, because here we investigate the entropy
numbers of a composition operator T'D, : [, — Y, where D, : [, — [, is a diagonal
operator and T : [, — Y is a linear bounded operator. However, as a special case of
this setting we get new insights into the entropy of absolutely convex hulls in the
diagonal case (Corollary 5.0.7).

Finally, in the sixth and last chapter, we deal with an application of entropy
and Gelfand numbers of absolutely convex hulls. We start with recalling important
notions and concepts for C'(M)-valued operators, where C'(M) is the space of con-
tinuous functions on a compact metric space (M, d). Studying entropy numbers of
C'(M)—valued operators is interesting in so far as the entropy numbers of a compact
operator T' : X — Y between Banach spaces X and Y are always shared by the
entropy numbers of a compact operator S : X — C(M) (cf. [CS90, p. 159]). In
this sense, C'(M )—valued operators can be considered representative for all compact
operators. First, we study operators Tx : X — C(M) defined by abstract kernels
K € C(M,X') and show how the entropy of the image of the abstract kernel K
affects the entropy and Kolmogorov numbers of such an abstract kernel operator
Tk (section 6.1). The results can also be applied to operators T : X — [ (M) de-
fined by abstract kernels (section 6.2). Afterwards we consider the special case of a
weakly singular integral operator from L, [0, 1] in C0, 1]. For typical kernel functions
k:(0,1] — R of the form

-

k(r)=2""(cg—Inx)™”? (co +In(cop — In :Jc))
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with 0 < 7 < 1/p/, 8,7 € R and ¢y > 0 we obtain, for 2 < p < oo, entropy
estimates of Tk : L,[0,1] — C]0,1]. These estimates are sharp in all non-critical
cases (Proposition 6.3.6). In the Hilbert space setting p = 2 we can even give sharp
estimates of the Kolmogorov numbers of the weakly singular integral operator Tk :
Ly]0,1] — C'[0,1] (Theorem 6.4.1). In addition, section 6.4 deals with the case that
the image of T belongs to L,[0,1] with 1 < ¢ < co. We end with entropy estimates
of the classical Riemann-Liouville operator.

Parts of this dissertation will be published in [CHR12] and [CR13].
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1 History and results

In the following, we are going to give an overview of the present state of research
on the entropy of real absolutely convex hulls. This will not only provide us with a
historical background but also reveal gaps and open questions which this work will
be investigating in more detail. Before we start, let us recall some well-known facts.

The entropy numbers of the real absolutely convex hull of a bounded subset A of
a Banach space X can be expressed in terms of entropy numbers of operators. For
this purpose, let T4 : [1(A) — X be the operator defined by

Ta(€) :==>_&t, &= (&)rea

teA

where [;(1) denotes the Banach space of all summable families (&;);c; of real numbers
over the index set I, equipped with the norm

(&) eerll = > 18-

tel
Then it holds that aco(A) C Ta(By,a)) C cl (aco(A)) and, consequently,
en(aco(A)) =en(Ta : h(A) — X), neN.

This is an easy but important step, because now we can take advantage of the useful
properties of entropy numbers of operators (cf. section 2.4). In this context, we also

define the n-th Gelfand number of aco(A) by
cn(aco(A)) :=c,(Th: L(A) — X), nelN. (1.0.1)

For a geometrical interpretation of Gelfand numbers (of operators) and a comparison
with Gelfand widths we refer to [CHR12]. Considering the dual operator of T4 :
l1(A) — X, we observe that (T2')(t) = (t,2’) for 2’ € X’ and t € A. Consequently,
T : X' = l(A) is a 1-Holder-continuous operator, which in fact maps into C'(A)
(cf. section 6.1). Hence, by duality of entropy numbers (cf. section 2.5), the problem
of estimating the entropy of absolutely convex hulls is embedded in the problem of
estimating the entropy of 1-Hélder-continuous operators 7' : £ — C(K).
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1.1 The diagonal case
As mentioned above, in the diagonal case the set A is given by
A:{Zlfl?l’g,.]?gg,...} cX (111)

with ||z,| < o, for all n € N, where (0,), is a monotone decreasing null sequence. In
this setting, we have that €,,(A) < o, foralln = 1,2, 3, . ... Furthermore, the entropy
numbers of the absolutely convex hull of A coincide with the entropy numbers of
the operator SD, : l; — X (cf. [CE03, p. 400]),

en(aco(A)) = e,(SDy, : 1 — X), neN, (1.1.2)

where D, : l; — [y is the diagonal operator generated by the sequence (o), and S
is defined on the canonical unit vector basis {e,}, of l; by

Sl X e {xn/% on >0,

0, o, = 0.

Hence, the problem of estimating entropy numbers of the absolutely convex hull
in the diagonal case is embedded into the more general problem of estimating the
entropy numbers of a composition operator SD, : l; — X, where D, : l; — [y is
a diagonal operator generated by a sequence (0,), and S : [; — X is an arbitrary
operator. In Chapter 5 we will have a closer look at this and similar problems.

Apart from the papers by Marcus [M74] and Oloff [O78], the first result in the
diagonal case has been given by Carl [C81b] for the sequence space [,. Note that a
generalization to symmetric Banach spaces was given by Schiitt [Sch84]. Curiously
enough, a result in the field of function spaces was obtained by Birman and Solomjak
[BS67] even much earlier (see also [Tr75, Ho80, C81c]). Consider the set

A={o,e,lneN}Cl,, 1<p<oo, (1.1.3)

where {e, }, denotes the canonical unit vector basis of [,. In this setting, we have
that
en(aco(A)) =e,(Dy 1 lh — 1,), neN,

with D, being the diagonal operator generated by the sequence (,),,. Hence, accord-
ing to [C81b, Th. 2], the statement

(02)n € Ly implies  (en(aco(A))) €1y

holds true for all 0 < r < oo and all 0 < s < oo, where ¢ is given by 1/¢ = 1/r+1/p'.
In this context, every estimate on entropy numbers of diagonal operators D, : [ — [,
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can also be considered as an estimate of entropy numbers of absolutely convex
hulls in the diagonal case (1.1.3). Among others, Kiithn intensively studied entropy
numbers of diagonal operators between [, spaces (cf. [Kii01, Ki05]).

Using quasi-norm techniques and interpolation, Carl [C82] studied entropy num-
bers of composition operators SD : [y — X with D : [; — [; being a diagonal
operator and S : [y — X being an arbitrary operator with image in a Banach space
X of type p. One of the main results of [C82] reads as follows:

Theorem 1.1.1. [C82] Let S € L(l1,X) be an operator with image in a Banach
space X of type p. Suppose that D, € L(l1,11) is a diagonal operator generated by a

sequence (0y,)n € b5 for 0 <r < oo, 0 <s < oo. Then for the composition operator
SD, :l; — X we have that

(en(SDy 1y = X)) €1,

for1/q=1/r+1/p.
As mentioned above, from Theorem 1.1.1 we get results for the general diagonal
case (1.1.1) with X being a Banach space of type p; we see that the implication
(On)n € 15 implies (en(aco(A))> €lys (1.1.4)

holds true for all 0 < 7 < oo and all 0 < s < oo, where ¢ is given by 1/q = 1/r+1/p'.
In particular, in the case of polynomial decay we have that

|2,|| < n~Y" implies e, (aco(A)) g n~ /Y (1.1.5)

for all » > 0. A direct proof of (1.1.5) has been given by Ball and Pajor [BP90, Th.
1] (see also [Ta93, p. 522|) in the Hilbert space case, where p = p’ = 2. We remark
that (1.1.4) also holds in a more general context: If 0 < r < 00, 0 < s < o0 and ¢
is slowly varying function, then

(0n)n € lrs, implies (en(aco(A)))/ €lys (1.1.6)
for 1/¢ = 1/r+1/p’. More detailed information and a proof of this fact can be found
in Chapter 5.

Next we focus on the case of logarithmic decay, i.e. o, = (log(n+1))~"/" for some
positive r. It turns out that this case is more complicated then the case (1.1.5) of
polynomial decay. For X being a Hilbert space, Ball and Pajor [BP90] showed that
for all 0 < r < 2 it holds that

]| < (log(n +1))™"" implies e, (aco(A)) < n~/2 (log(n + 1))/>71/".
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Due to Talagrand [Ta87], this estimate remains true also for r = 2, i.e.
|z,]| < (log(n 4+ 1))"Y%  implies e, (aco(A)) < n=1/2,

A very general result was obtained by Li and Linde [LLO00, Th. 5.1] in the Hilbert
space case. They proved that if (log(n + 1))/? o, is increasing, then

en(aco(A)) % oan. (1.1.7)

Furthermore, if (log(n + 1))'/? o, is decreasing and (o), satisfies the doubling con-
dition o,, < 09,, then

en(aco(A)) < n~Y2 (log(n +1))Y2 a,,. (1.1.8)

Both estimates remain true if the dyadic entropy numbers e, (aco(A)) of aco(A) are
replaced by the Gelfand numbers ¢, (aco(A)) of aco(A). As a consequence of these
estimates, we have complete knowledge about the behavior of entropy and Gelfand
numbers of aco(A) in the case of logarithmic decay with X being a Hilbert space.

Hilbert space, logarithmic decay: Let (s,,) stand either for the Gelfand numbers (¢;,)
or for the dyadic entropy numbers (e,). Then it holds that

|zn]l < (log(n + 1))_1/T (loglog(n +3))™" implies s,(aco(A)) < f(n,r, /),

where f(n,r, () =

n~Y2 (log(n + 1)Y27V" (loglog(n + 3))™#, 0<r <2, B €R, (1.1.9)
n~Y% (log(n + 1)), r=2 8<0, (1.1.10)
n~Y2 (loglog(n + 3))~? r=24>0, (1.1.11)
n= " (log(n 4 1))7# 2<r<oo BER, (1.1.12)

All these estimates are asymptotically optimal (cf. [LLOO, p. 44]). This complements
the results from Talagrand and Ball/Pajor given above. We observe that the asymp-
totic behavior of Gelfand as well as dyadic entropy numbers of the absolutely convex
hull significantly changes if the parameter r crosses the point r = 2. Furthermore,
for fixed r = 2, a sudden jump occurs if the parameter J crosses the point 3 = 0.
An alternative proof of Li and Linde’s results (1.1.7) and (1.1.8) can be found in
[CE03, Prop. 4]. Until now, no results for the diagonal case have been published in
the case that X is a Banach space of type p and (o,,), decreases logarithmically.
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1.2 The non-diagonal case — Hilbert space

In the non-diagonal case, we study the entropy of the real absolutely convex hull
aco(A) of a precompact set A knowing only the entropy behavior of A but nothing
on the norms of the extremal points. The first results have been obtained for X
being a Hilbert space. In 1987, Dudley proved that in the case of polynomial decay
the implication

en(A) < n~ /" implies e, (aco(A)) 5 n~ /Y20

holds true for every r > 0, where ¢ > 0 is arbitrary (cf. [D87, Th. 5.1]). Due to Carl
[C97, Th. 3], this result remains true even for § = 0, i.e.

en(A) < 07" implies e, (aco(A)) g n~V/r1/2 (1.2.1)

for all » > 0 and this estimate is asymptotically optimal (see [CKP99, Prop. 5.1]).
However, it should be noted that, from today’s perspective, the result (1.2.1) was
already contained in a dual version in [CHKS88, Th. 1]. By establishing a sharp
inequality for the case of polynomial decay, Steinwart was able to extend (1.2.1).
His result [St00, Th. 6] implies that

en(A) < n Y (log(n+ 1)) implies e, (aco(A)) < n~ "V (log(n + 1))~°

for all » > 0 and all # € R. The estimate is best possible and remains true also for
the Gelfand numbers ¢,(aco(A)) of the absolutely convex hull. Finally, in the year
2004, it was also Steinwart [St04, Th. 1.2] who proved that

(6n(A)) €l.s implies (en(aco(A))) €lys (1.2.2)
for all 0 < r, s < 0o, where ¢ is given by 1/q = 1/r + 1/2. We remark that if
27 ¢, 11(A) < e,(A) forallm €N, (1.2.3)

then implication (1.2.2) remains true for the Gelfand numbers ¢, (aco(A)) of the
absolutely convex hull (cf. [St99, Remark 3.7, 4.17]). We conjecture that condition
(1.2.3) is superfluous, but cannot prove it. However, it should be noted that Stein-
wart’s techniques also work in the more general case of a Banach space of type p.
We will deal with this setting in more detail in the next section. In the following, we
summarize the results for the case of polynomial decay in the Hilbert space setting.

Hilbert space, polynomial decay: Let (s,) stand either for the Gelfand numbers (c;,)
or for the dyadic entropy numbers (e, ). Furthermore, let A C H be a precompact
subset of a Hilbert space H. Then for all 0 < r < oo and all § € R it holds that

en(A) < V" (log(n +1))™°  implies s, (aco(A)) < n~"Y2 (log(n + 1)) 7.
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Furthermore, we have that
(En(A))n € l., implies (en(aco(A)))n € lys

for all 0 < r,s < oo, where ¢ is given by 1/¢ = 1/r + 1/2. All these estimates are
asymptotically optimal.

The paper [CKP99] has been the starting point of a comprehensive and systematic
study of the entropy behavior of absolutely convex hulls in Hilbert and Banach
spaces. Using a refined version of a Sudakov-type inequality, the authors proved
striking results in the Hilbert space case. The following inequalities connect the
covering numbers of a subset A of a Hilbert space with the Gelfand and covering
numbers of its absolutely convex hull.

Theorem 1.2.1. [CKP99]

(i) There is a universal constant ¢ > 0 such that for each precompact subset A of
the unit ball of a Hilbert space H and for all natural numbers n € N we have

1
n'? ¢, (aco(A)) < ¢ iI>lg (// (log N(A, s))/? ds + n'/? g) , (1.2.4)
€ e/4
Furthermore, the inequality
e 1/2 ’
log N(aco(A),e) < ¢ z—:// (log N(A,s))”" ds (1.2.5)
e/4

holds true.

(i) There is a universal constant ¢ > 0 such that for each precompact subset A of
a Hilbert space H and for all k,n € N we have

en(A)
kY2 ¢ n(aco(A)) < c/ (log N (A, s))"/* ds. (1.2.6)
0

A probabilistic proof of (1.2.5), which is due to Lifshits, can be found in [KI112b,
Prop. 8]. Using (1.2.4) and (1.2.6), Carl et. al showed that (cf. [CKP99, Prop. 5.5])

n~% (log(n + 1)V2"Vr 0<r<2,

en(A) < n~ Y7 implies e, (aco(A)) <

(4) P (aco(A)) {n_l/r, 2 <r < oo.
Both estimates are asymptotically optimal and remain true if e, (aco(A)) is replaced
by ¢,(aco(A)). The critical case r = 2 was left open; however, it should be noted
that, from today’s point of view, the answer was implicitly contained in (1.2.5) (cf.
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[CE03], [K112b)). Indeed, if e,(A) < n~'/? then log N(A,e) < 72 for ¢ — 0+.
Applying inequality (1.2.5) gives log N(aco(A),e) < 2 (log1/¢)? for ¢ — 0+ and
this means that e,(aco(A)) < n~'/? log(n + 1). Hence, we see that in the Hilbert
space setting the implication

en(A) < n Y2 implies e, (aco(A)) < n Y% log(n + 1) (1.2.7)

holds true. It was Gao [GO1] who first obtained this result using, however, a different
approach as outlined above. He also invented an ingenious example of a set to
prove that (1.2.7) is the best possible result. Remarkably, comparing the upper
estimate of e,(aco(A4)) from (1.2.7) to that from (1.1.10) for § = 0 reveals an
additional logarithmic term. Hence, in the diagonal case we get a better upper
estimate than in the non-diagonal case, although in both cases the dyadic entropy
numbers of A have the same asymptotic behavior: e, (A) < n~'/2. Interestingly, such
a phenomena does not appear when e,,(A) < n~'/" for r # 2. This is one reason why
£n(A) < (log(n +1))~Y2 can be considered as the critical case of logarithmic decay
in the Hilbert space setting.

Since covering numbers and entropy numbers are strongly related, it is not very
surprising that an integral of covering numbers can be transformed into a sum of
entropy numbers. Indeed, Carl and Edmunds [CEO03] reformulated (1.2.4) and (1.2.6)
as follows.

Theorem 1.2.2. [CE03] Let A be a precompact subset of a Hilbert space H. Then
the following inequalities hold:

(i) For alln € N we have that
n'? ¢, (aco(A)) < c(1+ ||A]]) <1 + Y kY2 ek(A)> ) (1.2.8)
k=1

where ¢ > 0 is an absolute constant.

(i1) For all k,n € N we have that

A)
kY2 ¢ (aco(A log(n + 1 1/25n )+ 2 ,
cn(aco(4)) < | (log(n + 1) PO
(1.2.9)
where ¢ > 0 is an absolute constant. In particular, it holds that
22 ¢on(aco(A)) < ¢ (n1/2 en(A) + Zj_l/z ej(A)) (1.2.10)
j=n

forn € N, where ¢ > 0 is an absolute constant.
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The inequalities (1.2.8)-(1.2.10) are very strong and can be seen as the key to
the Hilbert space case. Precompactness of the set A, expressed in terms of (dyadic)
entropy numbers of A, is transformed into upper estimates of Gelfand numbers
of the absolutely convex hull aco(A). By using well-known connections between
Gelfand numbers and dyadic entropy numbers of operators (cf. Theorem 2.1.1, see
also [CKP99, Lemma 5.6] [CHP11, Th. B]), this leads to the desired estimates of
the entropy of aco(A).

With the help of (1.2.8), Carl and Edmunds established sharp inequalities for the
case of logarithmic decay (cf. [CE03, Prop. 1, 2|, see also [St00, Th. 4], [CrSt02, Th.
1.3]). The Gelfand numbers of the absolutely convex hull of a precompact subset of
a Hilbert space are estimated in terms of finitely many entropy numbers of A. Their
results imply that

n='% (log(n + 1))Y2747 (loglog(n + 3)) ™,  0<r <2, BER,
cn(aco(A)) < < n~2 (log(n + 1))'=7, r=2 0<1,
n~" (log(n + 1))74, 2 <r<oo, fBER,

for e, (A) < n~Y/" (log(n +1))~? (cf. [CE03, Prop. 3]). The estimates are asymptot-
ically optimal. The case r = 2, 1 < [ < oo was left open; from today’s perspective,

(1.2.8) gives the optimal estimate for § = 1 and the case § > 1 is contained in
(1.2.9).

The paper [CHP11] filled the remaining gaps in the case of logarithmic decay.
Based on (1.2.8) and (1.2.10), the authors established sharp inequalities which imply
complete knowledge about the behavior of both entropy and Gelfand numbers of the
absolutely convex hull aco(A) in the case of logarithmic decay as well as in the case
that (en(A)> €l.s for 0 <r s < oo (cf. [CHP11, Th. 1.1, Th. 1.4]). Very recent
results of Gao show that all these estimates are asymptotically optimal (cf. [G12]).
In the following, we summarize these results.

Hilbert space, logarithmic decay: Let (s,) stand either for the Gelfand numbers (c,)
or for the dyadic entropy numbers (e, ). Furthermore, let A C H be a precompact
subset of a Hilbert space H. Then it holds that

en(A) 7Y (log(n +1))"  implies sp(aco(A)) < f(n,r, 3),
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where f(n,r,[3) =

n~'2 (log(n 4+ 1)27V" (loglog(n +3))™®, 0<r<2, 8eR, (1.2.11)

n~'2 (log(n + 1)), r=28<1, (1.2.12)

n~Y% loglog(n + 3), r=20=1, (1.2.13)

n~Y2 (loglog(n + 3))* 7, r=20>1, (1.2.14)

n=" (log(n + 1)), 2<r<oo,feR. (1.2.15)

Furthermore, we have that (6n(A)> € I, s implies

lose, 0<r<20<s<oo, (1.2.16)

(sn(aco(A))) € looops, T=2,0<s<00, (1.2.17)

lrs, 2<r<oo,0<s< oo, (1.2.18)

where 1(n) = (log(n + 1))Y/7=1/2=1/s and p,(n) = (log(n + 1))™n401/5=1} " Al these
estimates are asymptotically optimal.

As in the diagonal case, we see that the behavior of Gelfand and entropy numbers
of aco(A) suddenly changes if the parameter r crosses the point » = 2. This is why
we call €,(A) < (log(n + 1))~/2 the critical case of logarithmic decay. In addition,
if » = 2 is fixed, then a sudden jump occurs if the parameter ( crosses the point
B = 1. Consequently, we can consider €,(A4) < (log(n + 1))~/2 (loglog(n + 3))~*
as the super-critical case of logarithmic decay. However, if we compare the results
above with the results (1.1.9)—(1.1.12) from the diagonal case, we observe the same
behavior in the case r # 2, but a drastically different behavior in the critical case
r = 2. Hence, the difference between the diagonal and the non-diagonal case can be
quite large.

We remark that also Kley [Kl12a, K112b] intensively studied the Hilbert space
setting using a purely probabilistic approach. He dealt with polynomial as well as
logarithmic decay. Kley’s methods are based both on the theory of small deviations
of Gaussian processes and inequality (1.2.5). In the cases (1.2.11)—(1.2.15), Kley
computed the same sharp upper bounds for the entropy of aco(A) as [CHP11] did.

1.3 The non-diagonal case — Banach space of type p

In the non-diagonal case, the setting of a Banach space of type p was first studied in
the seminal paper [CKP99]. The authors developed techniques to handle both the
case of polynomial and logarithmic decay. They obtained asymptotically optimal
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results except in the so-called critical case of logarithmic decay, that is €,(A) <
(log(n 4 1))~'/?". We start with recalling that in the case of polynomial decay the
implication

en(A) g n7Y" implies e, (aco(A)) g n Y (1.3.1)

holds true for all > 0 (cf. [CKP99, Prop. 6.1]). The result is asymptotically optimal
for certain subsets of [,. Furthermore, Carl et al. [CKP99, Prop. 6.2, 6.4] proved that
en(A) < 7Y implies

n VY (log(n + 1I)YP -V 0<r <y, (1.3.2)
nr P <r< oo, (1.3.3)

en(aco(A)) < {

The critical case r = p’ of logarithmic decay was left open.

In the following, it was Steinwart [St00] who published further results. Building
on the ideas of [HK85] and [CHKS8S], Steinwart developed a delicate decomposition
technique for 1-Holder-continuous operators T : E — C(K). The latter was used to
investigate how the entropy numbers of the underlying compact metric space K and
the geometry of the Banach space E affect the entropy behavior of such an operator
T. As an application, Steinwart established universal inequalities relating finitely
many (dyadic) entropy numbers of A with finitely many dyadic entropy numbers of
aco(A). Steinwart’s methods are very strong and lead, consequently, to sharp results
extending (1.3.1), (1.3.2) and (1.3.3). In the following, we give an overview of his
results.

Theorem 1.3.1. [St00] Let X be a Banach space of type p, 1 < p < 2. Define

L sup{||z|| : = € A}
: (A )

Then the following statements hold true.

(i) For all ™ > 0 and all § € R there exists a constant ¢ = c(p,r,3,X) > 0 such
that for all n € N and all precompact subsets A C X the inequality

sup kY™ (log(k + 1)) ex(aco(A)) < ccq sup kY7 (log(k 4 1))? ex(A)
1<k<n 1<k<an

I

holds, where a, = n'tv. If X is a Hilbert space and p = p' = 2, then this is
also true for the Gelfand numbers cx(aco(A)) of the absolutely convex hull.
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(ii) For 0 <r <p let0<o<1/r—1/p and f :]0,00) — (0,00) be a function
satisfying
a”? f(x) < flazx) < a” f(z)
for all a,x > 1. Then there exists a constant ¢ = c(p,r, f, X) > 0 such that
for alln € N and all precompact subsets A C X the inequality

sup kY7 (log(k + 1))Y"~Y%" f(log(k + 1)) ex(aco(A))
1<k<n
<ccy sup KV f(k)er(A)
1<k<an
holds, where a,, = N2 log(n+1). If X is a Hilbert space and p = p' = 2,
then this is also true for the Gelfand numbers ci(aco(A)) of the absolutely
convex hull.

(iii) For all v with p' < r < oo there exists a constant ¢ = ¢(p,r, X) > 0 such that
for allmn € N and all precompact subsets A C X the inequality

sup kY7 ep(aco(A)) < ceq sup kY7 en(A)
1<k<n 1<k<n

holds. If X is a Hilbert space and p = p' = 2, then this is also true for the
Gelfand numbers ci(aco(A)) of the absolutely convex hull.

The inequalities of Steinwart listed above imply the following asymptotically
optimal estimates (cf. [St00, Cor. 3, 4, 5]). In the case of polynomial decay, we have
that

en(A) < n V" (log(n + 1)) implies e, (aco(A)) < n~ Y"1V (log(n + 1))7?
(1.3.4)

for all » > 0 and all § € R. Furthermore, in the case of logarithmic decay it holds
that e, (A) < n~/" (log(n + 1))~% implies

en(aco(A)) < n~ VP (log(n + 1))Y7 =Y (loglog(n + 3)) ™

for 0 < r < p/ and 8 € R. Moreover, it turns out that in B-convex Banach spaces
the subsets A and aco(A) surprisingly have the same entropy behavior, whenever
(en(A)) or (en(aco(A))> decrease slow enough. More precisely, if p’ < r < oo and

(an)n is a positive sequence such that (n'/"a,), is monotone increasing, then
en(A) < a, if and only if e,(aco(4)) <X a,

and
en(A) ~a, if and only if e,(aco(A)) ~ a,.
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Steinwart also considered the critical case of logarithmic decay. He proved that (cf.
[St00, p. 327])

en(A) < n”'7" implies ¢, (aco(A)) < n " (log(n + 1)) /7",

We would like to remark that this result can also be obtained by adapting the proof
of Prop. 6.4 in [CKP99]. However, it is not the best possible estimate; the latter is
due to Creutzig and Steinwart [CrSt02]. Extending Gao’s ideas [GO1] from Hilbert
spaces to B-convex Banach spaces, they proved the following inequality.

Theorem 1.3.2. [CrSt02] Let X be a Banach space of type p, 1 < p < 2, and
let —oo < 3 < 1. Then there is a constant ¢ = ¢(p, 3, X) > 0 such that for every
precompact A C X and alln € N we have

sup kYP (log(k +1))"Lep(aco(A)) < cea sup kY7 (log(k +1))? ex(A),
1<k<n 1<k<an

where a, == ——"—— +1 and cy =

_ sup{la[J: ze A}
(log(n+1)) :

e1(A)
As a consequence of this result, we see that in the critical case of logarithmic
decay the implication

en(A) 077 (log(n+ 1)) implies e, (aco(A)) < =7 (log(n + 1))
(1.3.5)

holds true for all —oo < 3 < 1. Creutzig and Steinwart also showed, that this result

is asymptotically optimal whenever X is an infinite dimensional Banach space of
optimal type p (cf. [CrSt02, Th. 1.5]).

The next major step forward was achieved in [St04]. By refining the decomposition
techniques of [CKP99, St00], Steinwart established an inequality which estimates the
entropy numbers of aco(A) in terms of finitely many entropy numbers of A.

Theorem 1.3.3. [St04] Let X be a Banach space of type p, 1 < p < 2, and let
0 <t < oo. Then there exists a constant c(t) > 0 such that for all integers n > 2,
all integers ap < anp < ... < ay, and all bounded symmetric subsets A C X we have

eam(aco(A)) < c(t) m~ VMY sup iVtei(A)
i<min{m!+t/?’;a;}
n 1/p

+237,(X) 27/ <Z <2W iznljcsm(A)Y) ,

k=1

where m = {2”4“2 i 2 % log <2k;# + 3)J + 2.
k=2
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Steinwart’s inequality can be used to prove various known results on entropy
numbers of absolutely convex hulls in Banach spaces of type p (cf. [St04]). The main
problem is to find a suitable choice of integers ay; the latter has to be adapted to
the decay of entropy numbers of A. In the following, we will heavily use Theorem
1.3.3 to prove new results.

We start with recalling the following result of Steinwart [St04, Th. 1.2]: For all
0 < r,s < oo the implication

(gn(A))n €l implies (en(aco(A)))n € lgs

holds true, where ¢ is given by 1/q¢ = 1/r + 1/p’. The result is the best possible one
whenever X has optimal type p. Moreover, Steinwart proved a similar implication
for subsets A with logarithmically decreasing entropy numbers (cf. [St04, Th. 1.3]):
Let 0 < s < oo and define r by 1/r = 1/p' + 1/s, then

(en(A))n €l,, implies (en(aco(A)))n € ly s (1.3.6)

However, since the choice of s fixes the parameter r, this result does not have the
desired generality. The following theorem closes this gap.

Theorem 1.3.4. Let X be a Banach space of type p, 1 < p < 2. Suppose that
0<r<yp and 0 < s < oo. Then for all precompact subsets A C X we have that

(en(A))n €l.s implies (en(aco(A)))n €lyse

where o(n) = (log(n + 1))Y/7=1/P' =1/ The result is optimal in the following sense:
If (n) = (log(n + 1))? with 8 > 1/r — 1/p' — 1/s, then there exists a precompact
subset A C 1, such that (en(A)) €l and (en(aco(A))> & Ly sy

Observe that Steinwart’s result (1.3.6) is contained in Theorem 1.3.4 as a special
case. Moreover, (1.3.2) can be considered as the limit case s = oo of Theorem 1.3.4.

As already mentioned above, in the case of slow logarithmic decay of ¢,(A) the
subsets A and aco(A) surprisingly have the same entropy behavior. Using Theorem
1.3.1 (u7) and some inequalities of Hardy-type, we will show that this is also true
when considering summability properties.

Theorem 1.3.5. Let X be a Banach space of type p, 1 < p < 2. Suppose that
p<r<oo,0<s<ooandp isa slowly varying function. Then there exists a
constant ¢ = c(p,r, s,, X) > 0 such that for all N € N and all precompact subsets
A C X we have that

N

(¢(n))*n*/"" (en(aco(A4)))” < ccfy ;mmf /" (en(A))

n=1
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and
sup @(n)n'/"e,(aco(A)) < cca sup @(n)n'/"e,(A),
1<n<N 1<n<N
where cy 1= W. In the context of Lorentz sequence spaces, these inequalities
imply that
(en(A)> €lrsy if and only if (en(aco(A))) €l (1.3.7)

forp <r < oo, 0<s< oo andy being a slowly varying function.

We would like to remark that [St00, Cor. 3| gives (1.3.7) for s = oc.

Also in the critical case of logarithmic decay, Steinwart’s inequality from Theorem
1.3.3 turns out to be a useful tool. We will use the latter to give an alternative proof
of (1.3.5) for —oo < < 1/p (cf. also [St04, Ex. 1.6]). Furthermore, we prove a

partial result in the critical case that (en(A)) €lysfor0<s < oo.
n

Theorem 1.3.6. Let X be a Banach space of type p, 1 < p <2, and let A C X be
a precompact subsets of X. Then for all —oo < § < 1/p we have that

en(A) 077 (log(n+ 1)) implies en(aco(A)) < n~ 7 (log(n + 1)) 7.
Furthermore, if p < s < oo then
(en(A)) €ly, implies ey(aco(A)) < n V7 (log(n +1))17°.

The results are optimal in the following sense: If X is an infinite dimensional Banach
space of optimal type p € (1,2] and —oo < < 1, then there exists a subset A of X
satisfying both

en(A) < n Y7 (log(n +1)™% and e,(aco(A)) = n~ " (log(n + 1)), (1.3.8)
Furthermore, if 1 < s < oo and 3 > —1+1/s then there exists a subset A of X with

(en(A))n €lys and sgg n*? (log(n + 1))? e, (aco(A)) = oc.

Moreover, for 0 < s < oo there exists a subset A C l, of the sequence space l,,
1 < p <2, satisfying both

(en(A))n €lys and (en(aco(A)))n & Ly

for 0 <t < oo.
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What is left open is the case that (en(A)) € lys for 0 < s < p. Here we
conjecture that

lpoc, 0<s<1, 1.3.9
(en(aco(A))> € lp’ | < ; )
n b 000 s < p, (1.3.10)

with ¢(n) = (log(n+1))~'*'/*. Theorem 1.3.6 shows that both results would be the
best possible ones. We remark that in order to prove (1.3.9) it is enough to show
the implication

(en(A4)) €lys implies (en(aco(A))) € by .

Observe that, in the Hilbert space case, this implication is a consequence of in-
equality (1.2.8). Hence, it would be sufficient to prove an analogon of (1.2.8) for
Banach spaces of type p. Of course, such an analogon would be of great help also
in other cases; however, we cannot prove it. As far as (1.3.10) is concerned, we can
give a proof under an additional regularity condition. This is the subject of the next
proposition.

Proposition 1.3.7. Let A C X be a precompact subset of a Banach space X of
type p, 1 < p < 2. Suppose that 1 < s < oo and (nl/p, en(A)) s monotonically
decreasing. Then there exists a constant ¢ = ¢(p, s, X) > 0 such that

n 1/s
sup (log(k + 1)Y* L EYP ep(aco(A)) < ceq (Z io/P' =t (ei(A))s> ,
1<k<n i=1

where cy = %. In particular, we have that

(en(A)) €ly, implies e,(aco(A)) < n 7 (log(n + 1))1/¢
for1l < s < oo.

Finally, let us deal with the remaining case
en(A) g V7 (log(n 4+ 1) for > 1.

So far, no results have been obtained. However, we would like to remark that The-
orem 1.3.2 implies the (weak) estimate

en(aco(A)) < n V% (log(n +1))°, (1.3.11)

where ¢ is an arbitrary positive number. In view of the Hilbert space results (1.2.13)
and (1.2.14), it is reasonable to conjecture that the asymptotically optimal estimates
are given by

n~Y" loglog(n + 3), 6 =1, (1.3.12)

en(aco(4)) = {n_l/p, (loglog(n +3))'%, B> 1. (1.3.13)
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Pushing the technique used for the proof of [CrSt02, Prop. 2.1] to its limit, Kley
was able to show (1.3.12) in the Hilbert space setting (cf. [K112b, Sec. 4.2]). It turns
out, that Kley’s proof can be modified to work also in our more general framework,
leading to the following result.

Theorem 1.3.8. Let X be a Banach space of type p, 1 < p < 2. Furthermore, let
A C X be a precompact subset of X satisfying

/ 1\
logN(A,e) g e7? <10g> , 0<e<1/2
£

Then for all 0 < e < 1/5 it holds that

/

/ 1\?
log N(aco(A),e) e P <10g log 5) :
In the language of entropy numbers this means that

en(A) 077 (log(n+1))""  dmplies  e,(aco(A)) < n~ Y% loglog(n + 3).
(1.3.14)

The next theorem shows that (1.3.14) is asymptotically optimal for certain sub-
sets of the sequence space [,,. The proof builds on ideas of Gao [G12] originally given
in the Hilbert space setting.

Theorem 1.3.9. For every 1 < p < 2 there exists a subset A C I, of the sequence
space l,, satisfying both

/

/ / 1 _p
log N(A,g) < 2% 277 <log 5) for all0 < e < 1/2 (1.3.15)

and

/

, 1\? 1 /15\YP i
log N(conv(A),e) > ¢(p)e® <10g log 5) for all0 < e < 5 <212) 272"
(1.3.16)

where c(p) = 157" 27160 /p='=11 [ terms of entropy numbers this means that
en(A) 07V (log(n+ 1)) and e,(conv(A)) = n"Y" loglog(n + 3).

Unfortunately, we cannot give a proof of (1.3.13). Hence, if A is a precompact
subset of a Banach space of type p satisfying e,(A) < n~ /" (log(n + 1))~# with
1 < 8 < o0, then the exact entropy behavior of aco(A) remains an open problem.
To handle this case we would need, for example, an analogon of (1.2.9) or (1.2.10).
However, we can at least prove that there is no better estimate than (1.3.13).
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Theorem 1.3.10. Let 1 < p < 2. Then for every 1 < 3 < oo there exists a subset
AP C 1, of the sequence space 1, satisfying both

, ;o 1\~
log N (A%, ) <227 (B+ 1) &P (log E) Jorall0<e<1/2 (1.3.17)

and

1\P(1-5)
5) for all 0 < e < ¢(P),

(1.3.18)

log N(conv(Aﬁ), 5) > 97125 o7 <10g log

where ¢(f) < 272" s a positive constant depending on 3. In terms of entropy num-
bers this means that

en(AP) g 7V (log(n 4+ 1) and en<conV(A5)) =n"" (loglog(n+3))"".

Finally, let us summarize the present state of research on the entropy of absolutely
convex hulls in Banach spaces of type p.

Banach space of type p, polynomial decay: Let A C X be a precompact subset of a
Banach space X of type p, 1 < p < 2. Then for all 0 < r < co and all # € R it holds
that

en(A) < n V" (log(n + 1)) implies e, (aco(A)) < n~ Y™V (log(n + 1)) 7.
(1.3.19)
Furthermore, we have that
(5n(A))n €l,s implies (en(aco(A)))n €lys (1.3.20)
for all 0 < r, s < 0o, where ¢ is given by 1/¢ = 1/p' + 1/r.
Banach space of type p, logarithmic decay: It holds that
en(A) <" (log(n + 1))~ implies e, (aco(A)) < f(n.p, . B),
where f(n,p,r,3) =
n~7 (log(n 4+ 1)Y7 =V (loglog(n + 3)) ™, 0<r <y, BeR, (1.3.21)
n~7 (log(n 4 1)), r=p, 3 <1, (1.3.22)
n~ V" loglog(n + 3), r=p,0=1, (1.3.23)
open problem, r=p,3>1, (1.3.24)
n~ " (log(n + 1)) 77, p<r<oo,feR. (1.3.25)
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Furthermore, we have that (en(A)> € l, s implies

Ly s.o1s 0<r<p,0<s<o0, (1.3.26)

open problem, r=7p, 0<s<p, 1.3.27

(en(acolA))) € pen p g p ( )
n Ly o009 r=p,p<s<oo, (1.3.28)

lrs, P <r<oo, 0<s< oo, (1.3.29)

where @1(n) = (log(n + 1))//""/¥"1/* and @a(n) = (log(n + 1))/*"".

1.4 Remarks and addenda

We want to point out that some authors studied the entropy of absolutely convex
hulls in arbitrary Banach spaces. Carl et al. dealt with the case of very fast decreasing
entropy numbers of A, ie. £,(A) < 27707 for some v,0 > 0; they obtained
asymptotically optimal estimates of the entropy of aco(A) (cf. [CKP99, Cor. 4.2]).
Furthermore, the authors gave optimal results for the case that the entropy numbers
of A form a non-rapidly decreasing sequence. More precisely (cf. [CKP99, Prop. 4.5]),
if (a,), is a positive decreasing sequence satisfying the doubling condition a,, < as,
and if A C X is a precompact subset of a Banach space X then

en(A) < a, implies e,(aco(A)) <X ay.

The estimate is asymptotically optimal for certain subsets of [;. In particular, in the
setting of a general Banach space we have that

en(A) < n Y (log(n+ 1)) implies e, (aco(A)) < n~Y" (log(n 4 1))7#

for all » > 0, § € R. Now comparing this result to (1.3.4) where X is a Banach
space of type p, we observe a difference which is on the polynomial scale. However,
both results are the best possible ones. Note that the difference is caused by the
fact that [y is not B-convex. This shows how strong the underlying Banach space X
affects the entropy of the absolutely convex hull. Considering an arbitrary Banach
space and logarithmic decay of the entropy numbers of A, it turns out that e, (A) <
n~Y" (log(n +1))~* implies

en(aco(A)) = (log(n + 1))_1/7" (loglog(n + 3))_5

for all » > 0, § € R. Hence, the entropy numbers of the absolutely convex hull of
A show a drastically different behavior than in the setting of a B-convex Banach
space (1.3.21)-(1.3.25), where we have critical and super-critical cases.
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Until now, in the setting of an arbitrary Banach space no results have been
published for the case that the entropy numbers of A belong to some (generalized)
Lorentz sequence space. The following theorem, which is based on [CKP99, Prop.
4.4], closes this gap.

Theorem 1.4.1. Suppose that 0 < r;s < oo and ¢ is a slowly varying function.
Then there exists a constant ¢ = ¢(r,s,p) > 0 such that for all Banach spaces X,
all precompact subsets A C X and all integers N € N the inequalities

N

> (p(m) ! (enaco(4)))” < ey 3o(e(m)*n"! (=n(4))°
and
sup @(n)n'/"ey(aco(A)) < ceq sup p(n) n'/" e, (A)

1<n<N 1<n<N

hold, where c4 = %. In the context of Lorentz sequence spaces, these in-

equalities imply that

(én(A)> €l.s, implies (en(aco(A))) €lrsy (1.4.1)
for0 <r <oo, 0<s < oo andp being a slowly varying function.

Consider the set A = {o,e,|n € N} C [}, where {e,}, denotes the canonical
unit vector basis of [; and (o,,), is a positive non-increasing sequence satisfying the
doubling condition s,, < S2,. Then from [CKP99, Remark 4.6] we know that

en(A) <o, and en(aco(A)) ~ ay,.

This shows that (1.4.1) is the best possible result.

In his thesis, Steinwart studied the case of very slow decreasing entropy numbers
of A. Recall that a positive null sequence (a,), is said to be reqular, if there is a
constant ¢ > 1 such that a, < casy, and a,, < ca, for all 1 < n < m. Steinwart
proved the following result (cf. [St99, Prop. 4.7]): Let X be an arbitrary Banach
space and (a,), be a regular sequence with a, ~ agn, then for every precompact
subset A of X we have that

en(A) < a, ifand only if e,(aco(A)) <X a,
and
en(A) ~a, if and only if e,(aco(A)) ~ a,.

As we can see, it turns out that A and aco(A) surprisingly have the same entropy
behavior. An example of a regular sequence (a,), satisfying a,, ~ ag» can be found,
for instance, in [St99, Ex. 1.3].
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Finally, we remark that Hildebrandt [Hi03] studied p-convex hulls of countable
point sets in Hilbert spaces. The entropy of absolutely convex hulls of finite sets
was studied by Kyrezi [Ky00]. Furthermore, Gao [G04] established some general
inequalities to estimate the metric entropy of the absolutely convex hull of a set in
terms of covering numbers of the set.

1.5 Open problems
This section is devoted to open problems which, in our opinion, are of great interest.

Of course, the following list does not claim to be exhaustive.

Problem 1: Consider the diagonal case with X being a Banach space of type p. Is
there an analogon of (1.1.7) and (1.1.8)7 In particular, does the implication

on < (log(n+1))"Y"  implies e, (aco(A)) < n~ ¥
holds true?

Problem 2: Let A C H be a precompact subset of a Hilbert space H. For 0 < r < oo
define ¢ by 1/¢ = 1/r +1/2. Does for all 0 < s < oo the implication

(&?n(A)>n €l,, implies (cn(aco(A)))n €lys
holds true?

Problem 3: Are there analoga of (1.2.4) - (1.2.6) for Banach spaces of type p?

Problem 4: Let A C X be a precompact subset of a Banach space X of type p. Is it
true that

en(A) < n Y (log(n +1))™  implies e, (aco(A)) < n~ V7 (loglog(n + 3))*~*
for 1 < g < o0?

Problem 5: Let A C X be a precompact subset of a Banach space X of type p. Does
for all 0 < s < p the implication

(en(A))n € ly s implies (en(aco(A)))n € ly oo
with ¢(n) = (log(n + 1))™n{%/s=1} holds true?

Problem 6: Let X be an infinite dimensional Banach space of optimal type p. Is
there a subset A of X satisfying both

en(A) xn V" (log(n+1))"' and  ey,(aco(A)) = n~ " loglog(n + 3) ?

Problem 7: Let X be an infinite dimensional Banach space of optimal type p and
let 1 < 8 < o0. Is there a subset A of X satisfying both

en(A) < n Y7 (log(n+ 1)) and e, (aco(A)) = n~7 (loglog(n + 3))'° ?
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2 Preliminaries

Before proving the results stated in the previous chapter, let us fix some notations
and conventions. After that, using slowly varying functions we generalize the classical
Lorentz sequence spaces. Finally, since we want to deal with the entropy of absolutely
convex hulls in B-convex Banach spaces, it seems to be reasonable to take a closer
look at entropy numbers, Banach spaces of type p and the absolutely convex hull of
a set.

2.1 Basic notations

Unless otherwise stated, in the following X, X, Y and Y denote real or complex
Banach spaces. The closed unit ball of X is denoted by Bx and By stands for the
open unit ball of X. The dual Banach space of X is denoted by X’. Furthermore,
L(X,Y) denotes the Banach space of all linear bounded operators acting between
X and Y, equipped with the operator norm

IT: X —=Y| =|T| :=sup{||Tz| : * € Bx}.

Moreover, IC(X,Y') stands for the closed subspace of all compact operators from X to
Y. Given a linear bounded operator 7' € L(X,Y), the dual operator 7" € L(Y’, X’)
is defined by

(x, Ty = (Tx,yy, ze€ X,y eV

A linear and surjective operator T': X — Y is said to be a metric isomorphism if it
preserves the norm, i.e. || Tz|| = ||z| for all z € X. This concept can be weakened by
dropping the surjectivity or the preservation of the norm. In the first case, a linear
operator J : X — Y satisfying ||Jz| = ||z|| for all z € X is called metric injection.
An important example of a metric injection is given by the canonical embedding
Kx : X — X" of a Banach space X into its bidual space X",

(', Kxx) = (z,2"), ze€X, 2 eX.

In the second case, a linear operator ) mapping X onto Y is called a surjection.
We speak of a metric surjection if the open unit ball of X is mapped onto the open
unit ball of Y, i.e. Q(Bx) = By. For every closed subspace N of Y, the quotient
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map QY : Y — Y/N is a metric surjection. Moreover, Ix or id : X — X stands for
the identity operator on a Banach space X.

We are interested in the following s-numbers associated with an operator T' €
L(X,Y) (cf. [P87, CS90]):

the n-th approximation number of T, defined by

an(T) :=inf {||T — Al : A e L(X,Y) with rank A < n
() , ,

o the n-th Gelfand number of T, defined by
cn(T) := inf {HTIE(H : E subspace of X with codim(F) < n} ,

where I3 is the natural embedding of E into X,

o the n-th Kolmogorov number of T, defined by
d,(T) := inf {HQ?TH : I subspace of Y with dim(F') < n} ,

where QY. : Y — Y/F is the usual quotient map,

o the n-th symmetrized approximation number of T, defined by

to(T) = a,(JyTQx),

where (Qx is the canonical quotient map from [;(By) onto X and Jy is the
canonical embedding of Y into [ (By-) (cf. [CS90, p. 52, 60]).

Recall that t,(T) = ¢,(TQx) = d,(JyT), t,(T) < c,(T),d,(T) < a,(T) and
to(T) = t,(T") holds true for all operators T' € L(X,Y) (cf. [P74, CS90]). The
following inequality relates the entropy numbers of an operator (see Section 2.4)
to the above-mentioned s-numbers (cf. [C81a, Th. 1], [CS90, Th. 3.1.1], see also
[CKP99, Th. 1.3]).

Theorem 2.1.1. [C8la] For every 0 < o < oo there exists a constant c(a) > 1
such that for every operator T € L(X,Y) between arbitrary Banach spaces X and
Y and all n € N we have

sup k% (T) < c(a) sup k%t (T).

1<k<n 1<k<n
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Let (X, d) be a metric space, then
Bx(c,r) :=={z € X :d(z,c) <r}

denotes the closed ball in X with radius » > 0 and center ¢ € X. A subset A of X
is called bounded if the diameter of A,

diam(A) := sup{d(z,y) : z,y € A},

is finite. Furthermore, c¢l(A) denotes the closure of the set A. For a subset A C X
of a normed space X we define

[A]l == sup{]|z] - = € A}.

It is clear that A is bounded if and only if ||A| < oo. The subset A is called
symmetric, if A = —A. Moreover, the convex hull of A is denoted by conv(A) and
aco(A) stands for the real absolutely convex hull of A. In section 2.7 we will consider
the latter in more detail.

For 1 < p < oo we define the so-called conjugated exponent p’ by the Holder
condition 1/p+1/p’ = 1. By log(x) we denote the binary logarithm, i.e. the logarithm
with base 2, and In(x) stands for the natural logarithm with base e. Furthermore,
for a real number x € R the largest integer not greater than z is given by |z] =
max{z € Z | z < z}. Note that |z| <z < |z|+1 holds true for all z € R. Moreover,
we define (z); := max{z;0}.

In order to compare positive sequences (Z,)n, (Yn)n We introduce the following
notations: We write x,, < v,, if there exists a constant ¢ > 0 such that z, < cy,
for all natural numbers n € N. Furthermore, z,, ~ v, means that both x,, < v, and
yTL < xn'

2.2 Slowly varying functions

In 1930, Karamata introduced the class of slowly varying functions (cf. [Ka30]). In
the following section we will use such functions to generalize the classical Lorentz
sequence spaces. This is reason enough to have a closer look at the subject. We start
with the definition.

Definition. A positive and continuous function ¢ defined on some neighborhood
[D, 00) of infinity is said to be slowly varying (at infinity) if for all A > 0 we have

that \
lim o(\x)

=1
z—00 90(3;)
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In the following, we may assume that a slowly varying function ¢ is defined on
the whole interval (0,00), for instance, by taking ¢(z) = ¢(D) on (0, D). Trivial
examples of slowly varying functions are given by positive constant functions. More
general, a positive and continuous function ¢ satisfying lim, . ¢(x) = ¢ with 0 <
¢ < o is slowly varying. An important non-trivial example is given by the logarithm
function ¢(x) = log(x). Next, let us prove some elementary properties of slowly
varying functions.

Lemma 2.2.1. For slowly varying functions, the following results hold:

(i) If ¢ varies slowly and o € R, then (gp(x))a varies slowly.

(ii) If v1, 2 vary slowly, then o1 + o and @1 - o vary slowly.

(iii) If o1, ..., pn vary slowly and r(xy,...,z,) is a rational function with positive
coefficients, then r(gpl(x), . ,gpn(x)) varies slowly.

Proof. The proof of (i) is obvious. To prove (ii), we just observe that

P1(A7) + pa(AT) _ pa(AT) <902(M) B %(M) p2(2)
@1(

p1(z) + o2(x)  pr(a) pa(z) o1(z) x) + pa(x)

Finally, (iii) is a consequence of (i) and (i7). |

Next, we recall Karamata’s uniform convergence theorem for slowly varying func-
tions (cf. [Ka30], [BGT87, Section 1.2]). This fundamental result states that we have
uniform convergence in A on every compact subset of (0,00).

Theorem 2.2.2. [Ka30] If the function ¢ is slowly varying and 0 < a < b < oo,

then \
lim gp( x) =
T—00 QO(IL')

uniformly for all X € [a,b].

In Lemma 2.2.1 we have seen that slowly varying functions behave well under
addition, multiplication and exponentiation. But what can be said about the com-
position of slowly varying functions? This is the subject of the next lemma.

Lemma 2.2.3. If @1, v vary slowly and lim, .., po(x) = 00, then 1 o @y varies
slowly.

Proof. Let A > 0 be arbitrary. We have to show that

. (w2(M2))

=1.
o <P1<902(90))
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To this end, choose an arbitrary ¢ € (0,1). Since @y varies slowly, there exists a
positive number x( such that for all > xy the estimate

(1 =) pa(z) < pa(Az) < (1+€) ()
holds. Hence, for a fixed = > xq, we have that
wa(Ax) = ppo(z) with pe [l —e,1+¢].
According to the uniform convergence theorem, we know that

fim PLY)

v=o0 p1(y)

uniformly for all u € [1 —¢,1 + ¢]. Consequently, we can find a positive number 7,
such that for all y > yo and all p € [1 — &,1 4 €] we have that

(1=e)ei(y) <pr(uy) < (1+¢e)ei(y). (2.2.1)

Since pg(x) — oo for  — oo, we can find a number z; > xy such that @o(x) > yo
for all x > x1. Hence, applying (2.2.1) with y = ¢o(x) leads to

(1—2) o1 (pa(2) < @1 (p2(M0)) < (1+2) 1 (pa(a))
for all x > ;. This finishes the proof. [ |

Using Lemma 2.2.1 and 2.2.3 we can give various examples of slowly varying
functions. For instance, for every choice of «, 6 € R, the function

p(x) = (log(z + 1))* (loglog(x + 3))”

varies slowly. However, slowly varying functions can behave quite surprisingly; there
exist slowly varying functions satisfying both

liminf p(z) =0 and limsup p(z) = co.

T—00 T—00

An example is given in [BGT87, p. 16].

The following lemma can be found in [BGT87, Prop. 1.3.6]. Roughly speaking,
it states that a slowly varying function ¢(z) is dominated by %, a > 0.

Lemma 2.2.4. Let ¢ be a slowly varying function. Suppose that o > 0 is arbitrary,
then it holds that

lim 27 %¢(z) =0 and lim 2® (x) = oco.

r—00



2.3 Spaces of vectors and sequences 39

In this context, we also recall the following fact (cf. [BGT87, Th. 1.5.3, 1.5.4]).

Lemma 2.2.5. If ¢ is a slowly varying function, then for every a > 0 there exists
a non-decreasing function ® and a non-increasing function W with
™ p(z)

. 2%() :
| =1 d 1 — 2 =1.
ey o(z) ana. - L U(x)

Finally, we deal with slowly varying functions and integration up to infinity.
The following result, which can be found in [BGT87, Prop. 1.5.10], will be of some
importance for our later work. Roughly speaking, it states that ¢(f) can be taken
out of the integral as if it were p(z).

Lemma 2.2.6. If ¢ is a slowly varying function and o < —1 then

l.a+190(x)
P (a1,
o e - @ty

Remark 1. For further information about slowly varying functions we refer to the
monograph [BGTS87].

2.3 Spaces of vectors and sequences

First, we want to recall the classical spaces of vectors and sequences. Let the symbol
K stand for the field of real or complex numbers, then for 1 < p < oo the expression

n 1/P
nmf{zm@ i (6. E) K" 23.1)
k=1

is a norm on the vector space K". The normed space [K", -] ] resulting from this
will be denoted by I3} (K) or simply 7. The expression in (2.3.1) makes also sense for
0 < p < 1; however, in this case it is a p-norm. Moreover, the symbol /7 stands for
K" equipped with the norm

||£C||oo = 112]?§}%|§k|7 T = (517-”7€n) e K".

Note that for 0 < p < ¢ < oo and z € K" the inequalities [lzf[, < [zf[, <
nt/P=la || z|| , hold true. For the unit balls of these spaces this means that

By, C Bjp C nl/pfl/qug for 0<p<qg<oo.
Furthermore, it turns out that

2]l = plggo [zf|, for zeK"
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Next we have a look at sequence spaces. For 0 < p < oo we define the vector
space [, of p-summable sequences by

b =1,(K) = {(fk)k (& €K, i 1€kIP < 00},
P

where addition and scalar multiplication are given coordinate-wise. For 1 < p < oo,
the expression

(e} 1/1’
], = (z w) e (0
k=1

is a norm on [, and it turns out that [, is complete with respect to this norm. For
0 <p<1,[l,|[,] is a p-Banach space. Moreover, the Banach space of all bounded
scalar sequences equipped with the supremum norm

7|l ==sup [&|, == (&),
keN

is denoted by /..

In the following we recall the classical Lorentz sequence spaces, which can be seen
as a generalization of the above mentioned [/, spaces. To this end, we will need the
non-increasing rearrangement, of a bounded sequence. The idea is to rearrange the
sequence of absolute values such that this rearrangement is monotonically decreas-
ing.

Definition. For a bounded sequence = = (&) € I of real or complex numbers we
define the so-called non-increasing rearrangement s(x) = (sn(x)) of = by

sn(w) = et S, [S3F

If © = (&) is a sequence such that & > |&| > ... > 0, then s,(z) = |&,]| for
all natural numbers n. By the very definition, the non-increasing rearrangement of
a bounded sequence is monotonically decreasing, but we point out that, in general,
it is no rearrangement of the sequence of absolute values. For example, consider
the sequence = given by & = 1 — 1/k, then s,(z) = 1 for all natural numbers n.
However, if z is a null sequence, then s(x) is a rearrangement of (|£n|)n In addition,
we also have an additivity and multiplicativity in the following sense: Let n,m € N
be natural numbers and z,y € [, be bounded sequences, then

Snam—1(T + 1) < $p(2) + sm(y)  and  Spim-1(zy) < $0(2) sm(y).

Here, xy = (&mi )k for o = (&)k, ¥ = (M )k-
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Now, for 0 < p < oo and 0 < g < oo, the classical Lorentz sequence space
l,q consists of all bounded sequences x € [, which satisfy (nl/p’l/ 1 sn(x)) € ly.
Clearly, we have that [, , = [, for all 0 < p < co. A detailed explanation of Lorentz
sequence spaces can be found, for instance, in Section 2.1 of Pietsch’s monograph
[P87].

However, for our purposes, classical Lorentz sequence spaces are not sufficient.
As pointed out in the introduction, given a precompact set A, we want to study the
entropy behavior of the absolutely convex hull aco(A) with respect to the entropy
behavior of A. In this context, it is obvious to ask for the entropy behavior of aco(A)
under the assumption that the dyadic entropy numbers of A belong to a certain 1/,
space. To give an example, if A is a precompact subset of a Hilbert space with
(€”<A)>n € [y, then Carl et al. proved that (cf. [CHP11, Th. 1.1])

Z log(n 4 1))"Y2n=Y2 ¢, (aco(A)) < oco.

As we can see, it may happen that the sequence (en(aco(A))) is beyond the scope
n

of classical Lorentz sequence spaces. Therefore, our next step is to generalize the

concept of classical Lorentz sequence spaces.

Definition. Let 0 < p < 00, 0 < ¢ < oo and let ¢ be a slowly varying function.
Then the bounded sequence =z € [, belongs to the generalized Lorentz sequence
space l, .., if and only if ((p(n) nt/p=1/a sn(x)) €l ie.

> (p(m)?n7 (5,(2))7 <00, 0<q< o0,
. . =
x € lpq, if and only if wap o(n) nl7 s, (2) < oo, /= o
neN

Note that we get the classical Lorentz sequence spaces for ¢ = 1. Following
Pietsch’s monograph [P87], we now take a closer look on generalized Lorentz se-
quence spaces. It turns out that well-known results for classical Lorentz sequence
spaces can be carried over to generalized Lorentz sequence spaces in the above-
mentioned sense. Hence, slowly varying functions seem to be a good choice to gen-
eralize the classical [, ,—spaces. Unless otherwise stated, we assume in the following
that 0 < p < 00, 0 < ¢ < o0 and ¢ is a slowly varying function. We start to show
that [, ,, has a vector space structure.

Proposition 2.3.1. The generalized Lorentz sequence space lp, 4, becomes a vector
space under coordinate-wise addition and scalar multiplication.

Proof. Let x,y €, 4, and a € K. Since for all natural numbers n € N we have that

sn(ax) = |af sn(2),
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we see that ax € [, ,,. Now let n be an arbitrary natural number. To show that
x + y also belongs to [, 4., we first observe that

Son (T +Y) < Son-1(2 4+ y) < su(2) + 50 (y).
Furthermore, if p > ¢ then
(2n)1/p—1/q < (2n — 1)1/p—1/q < pl/r=1/a
and in the case p < ¢ we obtain

(2n — 1)1/p—1/q < (Qn)l/p—l/q — ol/p=1/a n1/p=1/q

In addition, due to Lemma 3.0.5 from Chapter 3, we can find a constant c¢(¢) > 0
such that p(2n — 1) < ¢(p) p(n) and p(2n) < c¢(p)@(n) for all n € N. Hence, for
0 < ¢ < 0o, we obtain

S [elm) w7 15,5 + )]

n=1
:Z[go(Qn—l) (2n — 1) VP Vag,, x+y} +3 [ (2n)V/P=Ya g, (a:+y)}q
n=1 n=1
<2(c()? (max {2779, 1}1)" 3 [p(n) P71 (s0(2) + su(y)) | < oc.
n=1
The case ¢ = oo can be proved analogously. [ |

In order to decide whether a given sequence belongs to some generalized Lorentz
sequence space it is enough to consider the odd indices. This is the subject of the
next lemma.

Lemma 2.3.2. For generalized Lorentz sequence spaces the following equivalence
holds:

x €lyqg, if and only if (sgn,l(a:))n € lp g
Proof. First, observe that

sn((s2-1(2))r) = 201 ().

Hence, the only-if-part is a direct consequence of s, 1 () < s,(z). The proof of the
if-part is analogous to that of Proposition 2.3.1. For 0 < ¢ < oo we obtain

> [ty 15, )

:Z[ (2n —1) (20— )P0 5y, (2)]" + i[ (2n) /7711 5y, ()|
<2(e(p))? (max{21/p’1/q, 1})q i [(p(n) nt/r-1/d SQn—l(I)}q7

n=1
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which yields the assertion. The case ¢ = oo can be proved analogously. [

Next we give a simple but important dyadic characterization.

Lemma 2.3.3. For generalized Lorentz sequence spaces the following equivalence
holds:
T € lpgy if and only if (@(zn) 2n/r 52n($)) € L.

Proof. Let 0 < ¢ < oo. For m =0,1,2,... define
Up:={ne€N:2" <n< 2"}

Then, |U,,| = 2™ and for all natural numbers n € U,, we have that s,,(z) < som(2)
and n/P~1 < ¢ (p,q) 2m(a/p=1) " Furthermore, due to Lemma 3.0.5 from Chapter 3,
we can find a constant ca(p) > 0 such that p(n) < ca(p) p(2™) for allm =0,1,2,...
and all n € U,,. Hence, we obtain

00
q

() n 1 (s,(@))" = 32 3 (plm) 7 (5, ()

n=1 m=0neU,,
— m m q
< cs(p, g, 9) D (9(2M)7 277 (sym(w))”. (2.3.2)
m=0
Consequently,

(30(2”) 2P §om (x)) €l, implies = €l

Conversely, for m = 0,1,2,... we consider V,, :== {n € N : 2™ < n < 2™}
Analogously to above we find that

S ) e (s,@) = 3 3 () n ! (5,())"

> cip0.) (o2 2 (s (1)
= alp.0.9) D (P12 (s (). (283)

3
Il

Hence,
T €lpg, implies (<p(2") on/p Szn(ﬂf))n el,

Now let us deal with the case ¢ = co. On the one hand, we trivially have

sup p(n)n'’? s, (r) > sup @(2) 2™ sym ().
neN meNg
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On the other hand, it holds that

sup ¢(n) nl/p sp(x) = sup  max  p(n) nl/p Sn(x)
neN meNy 2m<n<2m+l

< cs(p,p) sup p(2™)2™P som ().

meENy

This finishes the proof. [ |

The next result is a consequence of the Hardy-type inequalities given in Chapter
3 (cf. Lemma 3.0.8, 3.0.9).

Lemma 2.3.4. Let 0 <t < p <00, 0 < q < o0 and let p be a slowly varying
function. Then

| 1/t
x €lyq, if and only if ((n Z(sk(x))t> ) € lpgo-

k=1 "

1/t
Proof. First, observe that the sequence ((;L Zzzl(sk(x))t) / ) is non-increasing and

non-negative. The if-part is a direct consequence of the monotonicity of (sn(aj)) :
n
For all natural numbers n € N we have that

n

(o) < (1 3G "

=1
To prove the only-if-part we apply Lemma 3.0.8 and 3.0.9 with o,, = s,(z). [ ]

As a simple conclusion we get the following result.

Lemma 2.3.5. For generalized Lorentz sequence spaces the following equivalence

holds: y
z€l,,, if and only if ((H sk(x)> ) € lygep-
k=1

n

Proof. First, observe that ((HZ:1 si(z))Y ”) is a non-increasing and non-negative
n
sequence. Again, the if-part is a consequence of the monotonicity: We have that

i< (11 sk<x>)m

for all natural numbers n € N. The only-if-part follows from the inequality of means.
Indeed, fix t > 0 with ¢ < p to obtain

1/t

(H sk<x>)w < (3 ]gi;(sk(x»f) ,
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which yields the assertion due to Lemma 2.3.4. |

As a consequence of Lemma 3.0.10 and 3.0.11 from Chapter 3 we get further
insights into generalized Lorentz sequence spaces.

Lemma 2.3.6. Let 0 < p <1, 0 < qg < 00 and let ¢ be a slowly varying function.
Then

x €l implies <Z Sk($)> €lige

k=n

with 1/t = 1/p — 1.

Now, we ask what can be said about the product of two sequences belonging to
a generalized Lorentz sequence space. In this context, the above-mentioned dyadic
characterization will turn out to be helpful.

Lemma 2.3.7. Let 0 < p1,p2 < 00, 0 < q1,q2 < 00 and let 1, s be slowly varying
Junctions. If x € ly, g1.01 and y € lp, 40 0y, then xy € 1, 4, where

1 1 1 1 1 1
—=—4+—, —=—+4+— and ¢ =P
p P P2 q9 q1 4

Proof. According to Lemma 2.3.3 it holds that
(<p1(2”) 2/PL 5o (m))n €l, and (<p2(2”) 2172 4, (y))n €ly,.
Hence, from Holder’s inequality we conclude that
(S01(2n) 2P o0 () (o (27) 27172 Szn(?/))n € ly-

Moreover, from the multiplicativity and monotonicity of the non-increasing rear-
rangement we obtain the estimate

Son (2y) = Sgn-149n-1(2Y) < Son-1(T) Sgn-1(y)

for all natural numbers n € N. Since ¢ = ;- varies slowly, we can find a constant
c1(¢) > 0 such that for all n € N we have that

p(2") < ailp) p(2"7).
Consequently, we have that

e(2") 2"/P 590 (xy) < p(2") on/p Son-1(x) Sgn-1(Yy)
< er(p) 27 (277 1) 2 D/P o (1) sgna (y)
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for all n € N. This yields

(227 s3u(a))_€1,
and finishes the proof due to Lemma 2.3.3. [ ]

Finally, we study inclusions within the 3-parameter scale of generalized Lorentz
sequence spaces.

Lemma 2.3.8. For generalized Lorentz sequence spaces the following inclusions
hold:

(i) If 0 < p1 < py < 00, then for any 0 < q1,q2 < oo and any slowly varying
functions 1, ps we have that

[

P1,91,%¥1 C lp27Q27<P2‘

(i) If 0 < q1 < go < 00, then for any 0 < p < oo and any slowly varying function
© we have that

lp,ql,go - lP7Q2,<P'
(iii) If o1, 9o are slowly varying functions satisfying po(2") < p1(2™), then for any
0<p<ooandany 0 < g < oo we have that

lpvqﬁol - lp7q7§02'

Proof. Again, we use the dyadic characterization given in Lemma 2.3.3 for the proof
of this result. To prove (i), let © € I, 4,.0,- Then

(901(2n) /Pt g, (:l:))n €l Clx.

Hence, we can find a constant ¢ > 0 such that for all natural numbers n € N the
estimate
san(2) < e (pa(2)H 27

holds true. Consequently, we obtain

902(277’) 2n/p2 82n (LC) S C M 2n/p2—n/p1

p1(2)
for all n € N. Define a := (1/p; — 1/p2)/3 > 0. Due to Lemma 2.3.3 it is enough to

show that
<<P2(2n)
©1(27)

ro) i,
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According to Lemma 2.2.4, we have

lim % ¢y(z) =oc0 and  lim 27 py(z) = 0.

Consequently, there exists a natural number ng such that
29" p1(2") > 1 and 27 y(2") <1
for all n > ng. This leads to

()02(2 ) 2—3an < 22an 2—30m — 9—an
p1(2)

for all n > ny. Since a > 0, we see that (27°"), € [,, and this shows x € 1, 4, -
The second assertion is a consequence of the fact that [, C l,, for 0 < ¢; < g2 < o0.
Finally, the proof of (ii7) is obvious. |

Next, we want to give some examples. To this end, we prove the following useful
lemma.

Lemma 2.3.9. Let a > 0 and let ¢ be a slowly varying function. Suppose that the
sequence x is given by x = (n_aw(n)) . Then it holds that

se(x) ~ k™ (k).
Proof. According to Lemma 2.2.5, there exists a non-increasing function ¥ with

Lo Y(n)
TR

This yields
n=*¢(n) ~ ¥(n)

and, therefore,

su(x) = si (™ 0(n))n) ~ sk ((T(n))n) = W(k).
This finishes the proof. |

Example 1. Let 0 < p < 0o and let ¥ be a slowly varying function. Consider the
sequence x = (&,), given by

En =n"YPeh(n).
Then, for any 0 < ¢ < oo and any slowly varying function ¢, we have that x € [,,, ;.
for 0 < py <pand x €, 4, for p < ps < oo. In the critical case, we can say that if

(p2M)0(2")) €y then @ € by g

This example shows that the inclusion in Lemma 2.3.8 (7) is strict.
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Proof. Let 0 < p; < p. From Lemma 2.3.9 we obtain that
P22 son(2) ~ p(27) H(27) 27/

Define o := (1/p1 — 1/p)/2 > 0. Since ¢ - ¢ is a slowly varying function, Lemma
2.2.4 tells us that

lim 2% p(x) P(x) = oo.
Hence, there exists a natural number ny such that
2" p(2") p(27) = 1
for all n > ng, which gives

@(Qn) ¢(2n) 2n/p1—n/p — @(271) ¢(2n) 220m Z gan

for all n > nyg. Since (2°"),, & 1, we conclude that (@(2") 2n/P1 szn(:v)) ¢ l. Hence,
T & Ly, 4.0 Now let p < py < co. This time, we define a := (1/p—1/p2)/2 > 0. Then

lim ™% p(z) ¥ (x) = 0.

r—00

Consequently, there exists a natural number ny such that
27 o(2%) Y(27) < 1
for all n > ny. This yields
P(27) P(2) 2P = p(27) p(27) 27 < 27
for all n > ng. Since a > 0, we have that (27*"),, € ;. From
P2 2 () ~ p(27) p(2") 27/

we conclude that also x € [, ;. Finally, from

P(2") 2P son () ~ (27) 1(2")

we see that (p(2")¥(2")), € [, implies z € [, . -
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2.4 Entropy numbers

Let us start with recalling a definition: A subset A C X of a metric space (X, d) is
called precompact if and only if for every ¢ > 0 there exist z1,...,x, € X such that

Ac | Bx(z,e).
i=1
The set {x1, 2, ...,2,} C X is called e-net for A. If the underlying metric space X
is complete, then A is precompact if and only if cl(A) is compact. When intending
to quantify precompactness the following two questions naturally arise:

(i) Given a fixed radius € > 0, what is the least natural number n such that n
balls in X with radius € cover the set A?

or, vice versa,

(ii) Given a fixed natural number n, what is the least radius ¢ such that n balls
in X with radius € cover the set A?

These questions lead to the following definitions.

Definition. Let (X, d) be a metric space and A C X a precompact set. For £ > 0,
the e-covering number of A is defined by

N(A,¢) :=min {n € N‘Elxl,...,xn eX:Ac|/ Bx(xi,s)}.
i=1
The concept of covering numbers goes back until 1932, see Pontrjagin and Schni-
relman [PS32, p. 156]. Given a precompact set, we are interested in the asymptotic
behavior of N(A,¢) as ¢ — 0+. To handle the case when covering numbers increases
exponentially as ¢ tends to zero, Kolmogorov suggested (cf. [K56], [KTi61]) to con-
sider the logarithm of the covering number with respect to the base 2, called the

melric entropy of A:
H(A,e) :=logN(A,e), e>0.

Definition. Let (X, d) be a metric space and A C X a bounded set. For a natural
number n, the n-th entropy number of A is defined by

en(A; X) = inf{a > O‘Elxl, o, e X AC U BX(CL’i,E)}.
i=1
Moreover, the n-th dyadic entropy number of A is given by

en(A; X) i=eon1(A; X), n=1273,....

If there is no risk of confusion, we write £,(A) instead of ¢, (4; X).
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Remark 2. Given a precompact subset A of a metric space (X,d) it is common
knowledge that there is a finite e-net for A consisting of elements of X if and only
if there is a finite e-net for A consisting of elements of A. In general however, the
cardinality of the e-net depends on whether the elements of the net are taken from
X or from A. As a consequence, the entropy numbers €,(A4; X) and ¢,(A; A) may
differ. However, we remark that if A is a precompact subset of a metric space (X, d)
then
en(A; X) <en(A;A) <2e,(A4;X), n=12,....

Covering numbers and entropy numbers are, in a sense, inverse functions. It
follows directly from the definitions that

(i

(ii) N(A,e) <n implies ¢g,(A) <g,

) en(A) < implies N(A,e) <n
)
i)
v)

(iii) e,41(A) <e implies log N(A, ) <n,

(i

Hence, it is possible to switch between both quantities, for example it holds that

log N(A,e) <n implies e,1(A) <e.

N(A,e) e ifand only if £,(A) < n~V°.

The following lemma deals with this topic in more detail. The proof is inspired by
the proof of Proposition 5 in [K112a].

Lemma 2.4.1. Let (A, d) be a precompact metric space. Let F : (0, cp] — (0,00) be
a decreasing and continuous function with lim._y F(g) = o0o. Furthermore, let G :
[cq,00) — (0,00) be a decreasing and continuous function with lim,_., G(n) = 0.
Then the following statements hold:

(i) If for every natural number k there exists a constant Cy, = C(k,G) > 0 such

that
G(n) < Cy G(kn) for all large n € N
and if
€
limsup —— < o©
e—0+ G( ( ))
then

log N(A,e) < F(e) implies e,(A) < G(n).
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(i1) If for every v > 0 there exists a constant C, = C(, F') > 0 such that
F(~0) < C,F(0) forall smalld >0

and if

lim sup < 00

_n

n—o F(G(n))
then

en(A) X G(n) implies logN(A,e) < F(e).

Both statements remain true if e,(A) and log N(A,¢) is replaced by €,(A) and
N(A,e), respectively.

Proof. Let us start with the proof of (7). According to the assumption there exists a
constant ¢; > 0 such that

log N(A,e) < ¢y F(e) forall 0 <e <cp.
Let n > max {cg; F'(cp)} be a natural number. Then there is an €(n) > 0 satisfying
n < F(e(n)) <n+ 1
From the monotonicity of G' we conclude that
G(F(e(n)) < G(n).
Furthermore, it holds that
log N(A,e(n)) <ci F(e(n)) <ci(n+1) < mn,

where m = m(c;) is a suitable natural number. Hence, we have that
Emn+1 (A) < E(n) = AN

Observe that (n) — 0+ as n — oo. Taking into account that

lim sup < 00

e—0+ G(F(e))

we finally get
emn+1(A) < ca G(n)
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for all n > max{cqg; F(cr)}, where m = m(c;) is a natural number and ¢y =
co(F,G) > 0 is a constant. Now let 7 be a (sufficiently large) natural number. Then
there is an n > max {cq; F'(cp)} with

mn+1<j<mn+1)+1<2mn.
We conclude that
e;(A) < emnt1(A) < caG(n) < ¢y Cop G(2mn) < ¢y Cop, G(7).

This shows that
en(A) < G(n).

Now let us deal with (77). Since lim, .., G(n) = 0 there exists a natural number
ng > c¢g such that G(n) < cp for all n > ng. Furthermore, according to the
assumption there is a constant c3 > 0 with

en(A) < c3G(n) forall n > cq.
Now let ¢ > 0 with ¢ < G(ng). Then we can find a natural number n(e) > ng

satisfying
’ G(n(e) +1) <e < G(n(e)).

Since G(n(e)) < G(ng) < cp, we can conclude that
F(G(n(e))) < F(e).
Furthermore, it holds that
n(e)+1(A) < esG(nle) +1) <cse

and consequently we obtain

log N (A, s €) < n(e) = &) pe) <

But £ — 0+ implies n(e) — oo and therefore it holds that
log N(A,c3¢e) < ¢y Fle)

for all 0 < ¢ < G(ng), where ¢3 and ¢y = ¢4(F, @) are positive constants. Now let
d > 0 be sufficiently small. Then, with € = §/c3, we have that

log N(A,0) =log(A,cse) < cqa F(d/c3) < ca Ce F(9).
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This shows that
log N(A,e) < F(e)

and finishes the proof. The case of ¢,,(A) and N(A,¢) can be proved analogously. B

Usually, the functions F' and G mentioned above are given by
Fle)=c"f(e7") and G(n)=n"g(n),

where o, 3 > 0 and f, g are powers of the logarithm function or other slowly vary-
ing functions. In the following we give connections between covering numbers and
entropy numbers in the most common cases (cf. [Kl12a, Prop. 5]).

Corollary 2.4.2. Let (A,d) be a precompact metric space and let o > 0. Further-
more, suppose that 3,~v € R. Then the following statements hold true:

(i) N(A,e) < e (log 1)*? (loglog 2)*7 if and only if
en(A) < n7V (log(n + 1))% (loglog(n + 3))7.

(ii) log N(A,e) < e (log 2)*? (loglog 1)* if and only if

en(A) < n7e (log(n + 1)) (log log(n + 3))7.

Now let us take a closer look on entropy numbers. The following properties con-
cerning the entropy numbers of a bounded subset A of a metric space are easy to
verify:

(i) Monotonicity: e1(A) > e3(A) > ... > 0 and €,(A) > 5 diam(A).

1

2

(ii) Characterization of precompactness: A is precompact if and only if €,,(A) — 0
for n — oc.

(iii) If B C A then £,(B) < e,(A) for all n € N.
(iv) For all natural numbers n € N we have that ¢, (A) = 6n<cl(A)).

Furthermore, if A and B are bounded subsets of a normed space, we can say the
following;:

(v) The inequality £1(A) < ||A]| holds and if A is symmetric then &;(A) = [|A4]|.

(vi) Homogeneity: For all scalars o € K and all natural numbers n € N we have
that e, (aA) = |a| e, (A).

(vii) Additivity: For all natural numbers n, m € N it holds
enm(A+ B) < e,(A) +e,(B),
where A + B denotes the Minkowski sum of A and B.
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The n-th entropy number of a bounded set has been defined as an infimum and
in general this infimum is not attained. However, for a bounded subset of a finite-
dimensional Banach space it is attained.

Lemma 2.4.3. Let A be a bounded subset of a finite-dimensional Banach space X .
Then there exist vectors xy,...,x, € X such that

AcC QBX(% en(A)).

Proof. The proof rests on the well-known Bolzano-Weierstrass theorem. By the def-
inition of entropy numbers, for every natural number £ € N we can find vectors
xgk), ...,#%®) € X such that

Ac Lnj Bx (21", en(A) + 1/k) .

i=1

7

end, for & € N choose a vector az(»k) € AN Bx (:cgk),en(A) + 1//<z) We may assume
that this intersection is not empty, otherwise the ball Bx <x(k), en(A)+1/ k) would

Fix i € {1,2,...,n}. First we show that the sequence (a:(k))k is bounded. To this

%

not help to cover the set A. Then, for all £ € N, we obtain the estimate

which proves the boundedness of the sequence. The Bolzano-Weierstrass theorem
provides us with a convergent subsequence with limit x; € X. For the sake of
simplicity, we denote this subsequence again by (xl(k)>k In this way we obtain vectors

A <]

2

o — al| + o] < en(A) + 1/E + Al < 2 | 4] +1,

2

x1,...,x, € X and we claim that they form an ¢,(A)-net for A. To see this, choose
a € A arbitrarily and observe that, for all £ € N,
: (k)
in Ha — H <en(A)+1/k.
Letting k — oo leads to

12111%171 la — ]| < en(A)

due to continuity. This finishes the proof. [ |

Note that the entropy numbers allow us to quantify precompactness; the rate of
decay of (en(A)> can be interpreted as a degree of precompactness of the set A.
Hence, it is possi%le to classify the precompactness of sets by classifying the rate
of decay of their entropy numbers. The next step is defining entropy numbers of
operators in a reasonable way. To this end, observe that linear bounded operators
acting between Banach spaces are closely connected with bounded sets. Indeed, a
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linear bounded operator T' € £(X,Y’) maps bounded sets in X into bounded sets in
Y. In particular, T'(By) is a bounded subset of Y and, therefore, has well-defined
entropy numbers. Recalling the fact that an operator T' € L(X,Y') is called compact
if and only if T'(By) is precompact in Y, motivates the following definition.

Definition. Let X,Y be Banach spaces and T" € £(X,Y’). Then, for n € N, the
n-th entropy number of the operator T is defined by

en(T: X -Y):=¢,(T(Bx),Y).
Furthermore, the n-th dyadic entropy number of T is given by
en(T: X -Y)=cuma(T: X -Y), n=1,23,....
If there is no risk of confusion, we write ¢,(7") or e, (T) for short.

According to the definition, the operator T is compact if and only if ,,(T') — 0 for
n — oo. Again, we can measure the compactness of an operator by considering the
rate of decay of its entropy numbers. In addition, the entropy numbers of operators
have some useful properties listed below. For a proof we refer to [CP76], [P78], [CS90]
and [ETr96].

(i) Monotonicity: For all operators T' € £(X,Y") it holds that

1Tl = &1(T) > ex(T) > ... > 0.

(ii) Additivity: For all operators S, T € £(X,Y') and all natural numbers m,n € N
the inequality
5nm(T + S) < 5n(T) + 5m(5)

holds. In particular, for n € N we have that

en(T'+5) < en(T) + 5]

(iii) Multiplicativity: For all operators S € L(Xo, X), T € L(X,Y) and R €
L(Y,Yy) and all natural numbers m,n € N it holds that

Enm(TS) < en(T) em(S).
In particular, for n € N we have that

en(RT'S) < |[R en(T) |[S]-
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(iv) Surjectivity and injectivity: For all operators T € L£(X,Y) and all metric
surjections ) : Xy — X it holds that

en(TQ) =¢,(T), n=1,23,....
Furthermore, if J : Y — Y} is a metric injection, then we have
en(JT) < e (T) <2e,(JT), n=1,2,3,....
Note that both inequalities are sharp (cf. [CS90, p. 125]).

(v) Continuity: For all operators S,7 € £(X,Y) and all natural numbers n € N
it holds that
|5n(5> - Z':n(T‘)| < ||S - TH :

In terms of dyadic entropy numbers, we obtain the following results for natural
numbers n,m € N and linear bounded operators S, T

(i) Monotonicity: ||T|| = e1(T) > ex(T) > ... >0
(i) Additivity: epym—1(T +5) < en(T) + en(S)
(iii) Multiplicativity: ep1m-1(T'S) < €,(T) €, (S)
(iv) Surjectivity: e,(TQ) = e,(T), if Q) is a metric surjection
(v) Injectivity: e, (JT') < e,(T) < 2e,(JT), if J is a metric injection

Note that the dyadic entropy numbers of an operator behave very much like an
additive and multiplicative s-number sequence in the sense of Pietsch (cf. [P87]).
Next, we consider the entropy numbers of the identity operator on a Banach space,
i.e. the entropy numbers of the closed unit ball.

Lemma 2.4.4. For the unit ball Bx of a normed space X the following statements
hold:

(i) If dim(X) =m < oo, then £1(Bx) = -+ = €,(Bx) = 1.
(ii) Let dim(X) =m < oo. If X is real, then it holds
nw <en(Bx)<3(m+1)"m, n=123,...,
and, if X is complex, then we have

nmm <en(Bx) <3412, n=123,....
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(iii) If X is an infinite-dimensional normed space, then

en(Bx) =1 foralln €N.

Proof. The proof of (i) rests on Riesz’s Lemma. Trivially, we have that ¢;(Bx) = 1.
Due to the monotonicity of entropy numbers, it is enough to show that €,,(Bx) > 1.
Given ¢ > ¢,,(Bx) arbitrary, we can find vectors x1, ..., x,, € X such that

Bx C U Bx(ﬂfi,E).

i=1

We assume that 0 < ¢ < 1 and show that this leads to a contradiction. To this

end, consider span{zi,...,z,,_1} as a proper subspace of X. According to Riesz’s
lemma, there exists a vector #* € X such that ||z*]| = 1 and ||z — z*|| > 1 for all
x € span{xy,...,&y,_1}. In particular, for all i = 1,...,m — 1 we have that

|le; — 2| > 1 and ||z; — (—2")] > 1.

Hence, * and —z* do not belong to U™,' Bx(z;,¢), but both z* and —z* are
elements of the unit ball of X. Consequently, we see that

¥, —x" € Bx(Tpm,€)

and this is a contradiction since ||z* — (—z*)|| = 2. Hence, we obtain ¢ > 1 and,
therefore, ¢,,(Bx) > 1.

The proof of (ii) is based on volume arguments. In [CS90, pp. 8-10] one can find a
proof which shows that (7i) holds true with constant 4 instead of 3. It goes back to
a lecture of Carl (see also [Rul0, Prop. 1]) that the constant 4 can be improved to
3. Finally, (ii7) is again a consequence of Riesz’s lemma. |

Lemma 2.4.4 has some immediate consequences: First of all, it shows that the
identity operator on a Banach space X is compact if and only if X is finite-
dimensional. Furthermore, we see that every bounded subset of a finite-dimensional
Banach space is precompact. Moreover, it turns out that covering numbers of a
bounded set can be infinite. For example, if X is an infinite-dimensional Banach
space, then N(Bx,1/2) = oco. In contrast to that, entropy numbers of a bounded
set are always finite.

In view of Lemma 2.4.4 (i), we remark that €,,,1(Bx) can be the first entropy
number which is strictly smaller than 1. To give an example, it is easy to see that
e3(Bem) < ? < 1. In contrast to that, e3(Bj2_r)) = 1. More precisely, Richter and
Borner showed that

1
enn(Big®) = enni1(Big®) = - = e@rym-1(Bizw) =
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for arbitrary natural number n,m € N (cf. [RB97, Th. 3]). In particular, we have
that

1

52’"—1(313(11{)) =1 and E:‘Qm(Blgé(R)) = 57

which shows that the estimate from below given in Lemma 2.4.4 (i) is best possible.
We do not know, whether the constant 3 of the estimate from above can be improved
to 2.

The next lemma gives lower estimates of the entropy of certain subsets of I, (cf.
[CKP99], [CHP11, Lemma 2.4]). Such estimates will become important when dealing
with the optimality of results.

Lemma 2.4.5. Let 01 > 05 > ... > 0 be a non-increasing sequence of non-negative
real numbers. For 1 <p <2, let

A={onu, | neN} Cl,

where {uy,uy, ...} denotes the canonical unit vector basis of the sequence space l,,.
Then for alln € N we have

en(A) <0, and ey(aco(A)) > ¢ max{n " (log(n + 1))" 0,2; 09n },
where ¢ = ¢(p) > 0 is a constant only depending on p.

Proof. Since ||oyuy, | || = o < 0, for all k > n, it is obvious that ¢,(A) < g,. To
estimate the entropy numbers of the absolutely convex hull of A, we consider the
sections

Ay = aco{ogup |n <k <m}, m,neNm>n.

A monotonicity argument shows that
en(aco(A)) > en(Apm) = omen(id : 177" — l;”_”)
and by a result of Schiitt [Sch84] (see [CPa88] for a generalization) it holds

S men —n log(m/n 1
en(id 1" = 1) > ¢ <(n/)> ,

where ¢ > 0 is an absolute constant. By putting m = n? and m = 2", respectively,
the assertion follows. |

Finally, we want to point out that entropy numbers are known to be very helpful
for eigenvalue estimates. For example, due to Carl’s observation as a special case of
the Carl-Triebel-inequality, we have that

An(T)] < V2e,(T).
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Here the eigenvalues A\, (T") of the compact operator T': X — X are ordered by non-
increasing absolute values and counted according to their algebraic multiplicities.
This is one example illustrating that it is worthwhile studying the concept of entropy
numbers, further examples will follow. We will not look at the Carl-Triebel-inequality
in more detail. Interested readers are recommended to consult [C81a], [CTr80] or

Chapter 4 in [CS90].

2.5 Duality of entropy numbers

A fundamental theorem of Schauder says that a linear bounded operator T': X — Y
is compact if and only if its dual operator 7" : Y" — X’ is compact (cf. [Sch30]). In
the language of entropy numbers this means that
lim e, (T) =0 if and only if ~ lim e, (T") = 0.

Now it is only natural to ask whether 7" and 7" share the same asymptotic entropy
behavior. A strong interpretation of this question would be the following: Does
there exist a natural number & and a constant ¢ > 1 such that for all linear bounded
operators T': X — Y between Banach spaces X, Y and all natural numbers n the
estimate

exn(T") < cen(T) (2.5.1)
holds? Note that this would imply e, (T) < 2ce, (T") since
em(T) < 2e,(KyT) =2¢,(T"Kx) <2e,(T"), m=1,2,3,....

It has become one of the most interesting problems of operator theory whether
(2.5.1), or maybe a weaker duality relation, is true. Although a full solution is still
missing, some excellent results have been already obtained in the cases that one of
the Banach spaces X and Y is a Hilbert space (cf. [To87], [AMSO03], [AMS04]) or
B-convex (cf. [BPST89], [AMST04], see also [MO07] for a review article). In addition,
Koénig, Milman and Tomczak-Jaegermann considered the entropy duality problem
for an operator with fixed finite rank (cf. [K6MS86], [KoMTS86], [Pi89, Cor. 8.11]).
Furthermore, we would like to highlight the case of T : H — K being a linear
bounded operator between Hilbert spaces H and K. Here we have e,(T) = e,(T")
as a consequence of the polar decomposition theorem (cf. review of [EE86], [ETr96,
Section 1.3.]).

For our purpose it is sufficient to work with the following striking result of Bour-
gain, Pajor, Szarek and Tomczak-Jaegermann, which can be found in [BPST89, Th.
3, Remark (2) after Th. 1].
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Theorem 2.5.1. [BPST89] Let X and Y be Banach spaces such that one of them is
B-convex. Then for every 0 < a < oo there exists a constant ¢ > 0 depending on «
and the type constant of X (resp. Y ) such that for all compact operators T : X —'Y
and alln € N we have

¢t osup k%, (T) < sup k% (T") < c sup k%x(T).
1<k<n 1<k<n 1<k<n

As a consequence of Theorem 2.5.1 and some Hardy type inequalities given in
Chapter 3 (cf. Lemma 3.0.8, 3.0.9), we get insights into the duality of entropy num-
bers in the context of Lorentz sequence spaces.

Proposition 2.5.2. Let X and Y be Banach spaces such that one of them is B-
conver and let T € K(X,Y'). Then for all0 < p < oo, 0 < ¢ < 00 and any slowly
varying function ¢ we have that

(en(T))n € lpgy if and only if (en(T'))n € lpgp-

Proof. Choose a constant ¢t with 0 < ¢t < p. Using Theorem 2.5.1 and the monotonic-
ity of entropy numbers gives

" 1/t
nVe,(T) < sup kY'ep(T) < ei(t. X) sup KV en(T") < ei(t, X) (Z (q(T/))t)

1<k<n 1<k<n =

Hence, we have that

For 0 < ¢ < oo this yields

N N n . q/t
S ()l (ea(1))" € (0. X) 3 ) (i > (/1) ) .

j=1

Consequently, applying Lemma 3.0.8 from Chapter 3, we see that

(en(T’)>n €l,,, implies (en(T))n € Ly g

The remaining implication can be proved analogously. In the case ¢ = oo we apply
Lemma 3.0.9 instead of Lemma 3.0.8. [ |

We state another consequence of Theorem 2.5.1. The proof uses a trick due to
Carl (cf. [C85, p. 106]) and can be found in [St99, Cor. 1.19].
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Proposition 2.5.3. [St99] Let X and Y be Banach spaces such that one of them
is B-convexr and let T € K(X,Y). If (a,), s a reqular sequence (see p. 32 for a
definition), then we have that

en(T) S an if and only if e,(T") < a,

and
en(T) ~ a, if and only if e, (T") ~ ay.

2.6 Banach spaces of type p

For a natural number i € N, the i-th Rademacher function r; : [0,1] — R is given
by '
r;(t) := sign(sin(2'nt)).

In order to get an understanding of these functions we draw the graphs of the
Rademacher functions rq, 79 and rs.

1 1 - - — —
0 L L, 1
-1 S | -1 - — — —

Figure 2.1: Graphs of the Rademacher functions ry, ro and r3

The Rademacher functions play a key role in the following definition of Banach
spaces of type p (cf. [DPR72, Ho74, MaPi76]).

Definition. A Banach space X is said to be of type p, p > 0, if there exists a
constant o > 0 such that for all K € N and all z1,..., 2, € X

/

The type p constant 7,(X) is the smallest constant p satisfying the above inequality.

k

Zr,(t) ZT;

i=1

1
P

k
dt < o (Z ||:cz»||”>
=1
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We recall that for any p, g with 0 < p, ¢ < oo there exists a constant K (p,q) > 0

for which
1 p 1/19 1‘ q 1/(1
( / dt) < K(p,q) ( / dt) :

0 0
regardless of the choice of a Banach space X and of finitely many vectors x4, ..., x;
from X. This result is known as Kahane’s Inequality (cf. [Ka68], [DJT95, 11.1]).
Obviously, we have K(p,q) = 1 for p < ¢. However, if p > ¢ then we only know
that K(2,1) = /2 is the best possible constant (cf. [LO94]). In the special case,
if (X,||] =[R,|-]]andp=2,0< g <ooor0<p< oo, q=2then Kahane’s
Inequality is also known as Khintchine’s Inequality. Here Haagerup found the best
constants K (2,¢q) and K(p,2) (cf. [Ha82]).

We would like to point out that

1
1
/ d=o 2
0

(e1y-ek)E{—1,1}F
As a consequence of Kahane’s Inequality, the L;—Rademacher average can be re-
placed, at the expense of a constant, by the corresponding L,—average for any choice
of 0 <r < 0.

k

i=1

7

k
=1

ri(t) x;

k
=1

k
Z Eixil| -

i=1

7

Let us now collect some well-known facts about Banach spaces of type p. As a
consequence of the triangle inequality of the norm, every Banach space is of type 1.
Furthermore, a Banach space of type p is also of type ¢ for any 0 < ¢ < p. Moreover,
it X 2 {0} is a Banach space of type p, then p < 2. These facts explain why type p
of Banach spaces is only considered for 1 < p < 2. For X being a Banach space let

px :=sup{p: X is of type p}.

We remark that the supremum need not be attained so that X is not necessarily of
type px. In this context we say that X has optimal type q, if X is of type ¢ but of
no greater type than ¢. Furthermore, a Banach space is said to have no type if it
is of optimal type 1. Moreover, we say that a Banach space is B-convez, if it is of
some type p > 1. Hence, X is not B-convex if and only if X is of optimal type 1.

Due to Lindenstrauss and Rosenthal’s principle of local reflexivity (cf. [LR69]),
a Banach space and its bidual space have the same type. Moreover, a Banach space
is B-convex if and only if its dual is (cf. [Pi73a, Pi73b], [DJT95, 13.7]), but note
that this does not mean that both spaces have the same type. As an immediate
consequence of the parallelogram identity, Hilbert spaces are of type 2. In order to
give further examples of Banach spaces of type p, we introduce £,-spaces. Roughly
speaking, a Banach space is an £,-space if its finite dimensional subspaces are con-
tained in slightly distorted copies of []’s.
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Definition. Let 1 < p < oo and A > 1. The Banach space X is said to be an £, -
space if every finite dimensional subspace E of X is contained in a finite dimensional
subspace F' of X for which there is an isomorphism 7" : ' — I9™F with || T'||-[| 7] <
A. We say that X is an £,-space if it is an £, y-space for some \ > 1.

We would like to recall that an infinite dimensional £,-space has optimal type
min{p; 2} for 1 < p < co. An L-space has no type, provided it is infinite dimen-
sional. A proof of these facts can be found in [DJT95, Cor. 11.7]. We point out that
the classical Lebesque function and sequence spaces are L,-spaces: If (€, %, p) is
any measure space and 1 < p < oo, then L,(u) is an £, y-space for all A > 1. It is
commonly known that (cf. e.g. [MaPi76], [C85, Lemma 3])

Tmin{p;2} (LP(M)) < K(p,2)<\p

for 1 < p < 0o, where K(p,2) denotes the constant in Khintchin’s inequality. Fur-
thermore, if K is a compact Hausdorff space, then C(K) is an L y-space for all
A > 1. For a proof we refer to [DJT95, Th. 3.2]. Finally, we recall a deep theorem
due to Maurey and Pisier (cf. [MaPi76, Th. 2.1], see also [MS86, Th. 13.2]) which
gives insights into the local structure of infinite dimensional Banach spaces.

Theorem 2.6.1. [MaPi76] Let X be an infinite dimensional Banach space. Then
the sequence space 1, is finitely representable in X . This means that for every e > 0
and for every finite dimensional subspace E of 1, there is a subspace F' of X and
an isomorphism T : E — F with |T| - ||T7Y < 1+e.

Corollary 2.6.2. Let X be an infinite dimensional Banach space of optimal type p,
1 < p < 2. Suppose that € > 0 is arbitrary. Then for all natural numbers n € N there
are subspaces X, of X and isomorphisms T,, : I? — X,, with ||T,| - | T, '] < 1+e.

For what follows we need so-called local estimates of entropy numbers. In this
context, we recall an unpublished result of B. Maurey (cf. [Pi81]). We use the for-
mulation given in [CKP99, Th. 1.7].

Theorem 2.6.3. (Maurey) Let X be a Banach space of type p, 1 < p < 2. Then
for all integers k,n with 1 < k <n and all operators S € L(I7, X) the estimate

log (241 o
(S 11— X) < e(p) () (g(,€+)> Is|

is satisfied, where c¢(p) > 1 is a constant depending only on p.

We also need the following inequality due to Maurey and Pisier [MaPi76] (see
also [Ho74]).
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Theorem 2.6.4. [MaPi76] If X is a Banach space of type p and Yi,...,Y, are
independent X -valued random variables with finite p-th moment then the inequality

n

S (Y; - EY))

i=1

n 1/10
. <an () (ZE ||m||p)
=1

holds.

2.7 The absolutely convex hull

The real absolutely convex hull aco(A) of a precompact subset A of a real or complex
Banach space plays a key role in this work. However, we would like to point out that
it is also feasible and reasonable to consider the complex absolutely convex hull of a
subset of a complex vector space. Therefore, in the following we introduce acog(A)
as the absolutely convex hull of A with respect to the field R of real numbers or the
field C of complex numbers. In this sense we have that aco(A) = acog(A). The aim
of this section is to present elementary properties of the absolutely convex hull. We
start with recalling some basic definitions.

Definition. Let K stand for the field R of real numbers or the field C of complex
numbers. A subset A C V of a (real or complex) vector space V is called

(i) convew, if for all vectors a,b € A the line segment connecting a and b is in A,
i.e. for all A € [0, 1] one has that Aa + (1 — A\)b € A.

(i) K-balanced, if for all vectors a € A and all scalars A € K with |[A\| <1 it holds
that Aa € A.

(iii) K-symmetric, if A = XA for all A € K with [A\| = 1.

Furthermore, the smallest convex set that contains A is called the conver hull of A
and is given by

conv(4) = B:{im

BDA, =1
B convex

nEN,aiEA,)\i ZO,Z)\Z:1}

i=1
Moreover, bag(A) stands for the K-balanced hull of A which is defined by

bag(A):= (| B={la]acANeK, |\ <1},

BDA,
B K-balanced
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Obviously, a K-balanced set A is K-symmetric and for every a € A the line
segment connecting a and —a is in A. Furthermore, we would like to point out that

A is K-symmetric if and only if A = U AA.
AeK: |A=1

If a set is both convex and K-balanced, then it is called K-absolutely convez. In the
following, we give an equivalent definition.

Definition. A subset A C V of a (real or complex) vector space V is called K-
absolutely convez if for any vectors a, b € A and any scalars A\, u € K with [A|+|u| < 1
the absolutely convex combination Aa + pb belongs to A.

The intersection of any collection of K-absolutely convex sets is again a K-
absolutely convex set. Hence, every subset A of V' is contained in a smallest K-
absolutely convex set, called the K-absolutely convex hull of A, which is given by
the intersection of all K-absolutely convex supersets of A, i.e.

acog (A) := N B.

BDA,
B K-absolutely convex
This concept is well-known from introducing the convex hull and the balanced hull
of a set. First, let us collect some alternative representations of the K-absolutely
convex hull. By mathematical induction one can shows that acok(A) is the set of all
finite absolutely convex combinations, i.e.

acog (A) = {Z \iai

i=1

neNageANeEK D |\ gl}.

i=1

Furthermore, the K-absolutely convex hull of A is the convex hull of the K-balanced
hull of A, i.e.
acog (A) = conv (baK(A)).

In this context, note that
bag (conv(A)) C acog(A4)
and, in general, this inclusion is strict. Another representation is given by
acog (A) = conv ( U )\A) . (2.7.1)
AEK: [A=1

In particular, for K-symmetric sets the K-absolutely convex hull and the convex hull
coincide. Next, we ask what can be said about the K-absolutely convex hull of the
Minkowski sum of sets. This is the subject of the following lemma.
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Lemma 2.7.1. Let A, B be subsets of a (real or complex) vector space V.. Then
acog (A + B) C acog(A) + acok(B)

and this inclusion can be strict. However, if one of the sets A and B is K-symmetric,
then
acog (A + B) = acog(A) + acog(B).

Proof. Since the Minkowski sum of two K-absolutely convex sets is again an K-
absolutely convex set, we have that acox(A) + acog(B) is an K-absolutely convex
superset of A 4+ B. Hence, it follows from the very definition that acox(A + B) C
acog (A) + acog(B). Finally, let A be a K-symmetric set and B an arbitrary set.
It is enough to show that, in this setting, acox(A) + acox(B) C acox(A + B). To
this end, we use the the connections between the convex hull and the K-absolutely
convex hull mentioned in (2.7.1) and the well-known additivity of the convex hull.
First, observe that

AeK: |A]=1 AeK: [A]=1

acog (A) + acog(B) = conv(A) + conv ( U AB) = conv (A + U )\B) :

Furthermore, for every scalar A € K with |A\| = 1 we have that
A+ AB=XA+ B = XA+ B) C acox(A + B).

Hence, we see that

conv (A + U /\B) C acog(A+ B),

AEK: [A|=1

which proves the statement. [ ]

As already mentioned in the introduction, a subset of a normed space is precom-
pact if and only if its K-absolutely convex hull is precompact. At first glance, this
may surprise since, in general, the K-absolutely convex hull of a set is much larger
than the set itself. In the following, we give an elementary proof of this fact.

Lemma 2.7.2. Let X be a (real or complex) normed space and let A be a subset of
X. Then A is precompact if and only if acox(A) is precompact.

Proof. Choose € > 0 arbitrary. Since A is precompact we can find a finite £/2-net
{z1,29,...,2,} C X for A, hence we have that

A C{xy,m9,...,2,} + Bx(0,¢/2) C acog{x1,xa,...,x,} + Bx(0,6/2).
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From the very definition of the K-absolutely convex hull of A we conclude that
acog (A) C acog{z1, T2, ..., x,} + Bx(0,e/2).

The next step is to show that acox{z1,xs,...,z,} is a compact set. To this end,

consider .
Dol < 1}

=1

BliL(K) - {()\1, “ e ,)\n) E Kn

and the mapping f : Bk — X given by (Ar,..., A,) = X7, Aiz;. Observe that
Binx) is compact and [ is a continuous mapping, therefore also

f(Bl?(K)) = aCOK{xh T2, .. 7xn}

is compact. Consequently we can find vectors yi, 4o, . .., ym € X such that

acog{x1,Ta, ..., 20} C{Y1,Y2, -, Ym} + Bx(0,e/2),

which leads to

aCOK(A) C {917?/27 s aym} + BX(Oa€/2) + BX(07€/2) = {91,1/27 s 7ym} + BX(()?E)

and finishes the proof. [ |

Things change dramatically when considering quasi-normed spaces instead of
normed spaces. Indeed, even the convex hull of a precompact subset of a quasi-
normed space is not bounded in general. To give an example, we consider the se-
quence space [, with 0 < p < 1 and the subset

A :={o,e, | n e N} U{0},

where {eq, €9, ...} denotes the canonical unit vector basis of [, and (o,), is a non-
increasing null sequence. Since €,(A) < 0, and o,, — 0 for n — oo, we have that A
is precompact. Now we show that the convex hull conv(A) of A is not bounded if the
sequence (0,), decreases slow enough. To this end, consider the convex combination

n
r = Z)\kakek

k=1

with Ay, > 0 and >°}_; Ax < 1. The norm of x is computed as

n
2 | )P = > Xk,
k=1
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hence it suffices to find a summable sequence (\;)x such that Y32, A} of = oo. In

—1
order to do this, choose r with p < r <1 and put A\ = ( ;?‘;1]'_1/”) k=17, Then

we obtain
n

0o -p
o 17 = (zj—l/r) S i o,
=1

k=1
which tends to infinity if, for instance, oy, = (log(k + 1))” with 3 < 0.

This consideration shows that in quasi-normed spaces it may happen that
en(A) — 0 but en(acog(A4)) 4 0

for n — oo. Hence, in the setting of a quasi-normed space the problem of estimating
en(acog(A)) in terms of €,(A) makes only sense with some additional information.
We will not deal with this topic in more detail.
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3 Inequalities of Hardy-type

In order to prove some generalized inequalities of Hardy-type, we first collect some
technical lemmata dealing with slowly varying functions.

Lemma 3.0.3. Given a slowly varying function ¢ and a real number q > 1, there
exists a constant ¢ = c(p,q) > 0 such that for all natural numbers n € N it holds
that

n

> e " <c-p2) g

k=0
Proof. Define a := %log(q) > 0. According to Lemma 2.2.5, there exists a non-
decreasing function ® with

- a%p(x)
lim

Consequently, we can find positive constants ¢y, co depending on ¢ and ¢ such that

for all K =0,1,2,... we have that

a1, q) 27 ©(2F) < p(2") < ea(ip, q) 27 @(2%).

=1.

Hence, the estimate

n n n

Y 02" < ealp.q) Y27 0(2%) ¢F < e, q) 2(27) Y (279)"

k=0 k=0 k=0

holds. From 27%¢ > 1 we conclude that

(2%t < gag_1 2 "0 =a@2"
k=0

which gives

> (M) ¢" <calp )27 B(27) "
k=0
Finally, for all n =0, 1,2, ... we have that
1

(g, q)

27 P(2") < o(2"),

which yields the assertion. [ |



3 Inequalities of Hardy-type 70

Lemma 3.0.4. Given a slowly varying function @ and a real number q with 0 < q <
1, there exists a constant ¢ = c(p,q) > 0 such that for all natural numbers n € Ny
it holds that

p(2%) ¢" < e p(2Y)q".

k=n

Proof. The proof is analogous to that of Lemma 3.0.3. This time, we define o :=

s1og(1/q) > 0. According to Lemma 2.2.5 there exists a non-increasing function ¥

with ()
. T %p(x
lim — "/
2o U(x)

Hence, there exist constants c;,co > 0 depending on ¢ and ¢ such that for all

k=0,1,2,... we have that

=1

c1(p, )T (2%) 2" < (2%) < ealp, )W (2°) 2%,

This leads to the estimate

S 0@ ¢ < ealona) 3 T2 (220 < ealipr ) W) S0 (2%,
k=n k=n k=n

Since 0 < 2%¢ < 1, the summation formula for the geometric series gives

- c n « n n an .n
Y o) < . 22a W(2") (2%q)" = c3(e0,q) ¥(2") 27" ¢".
k=n - q
Finally, the estimate
P (27 9on S © on
( ) 61(907 Q) ( )
finishes the proof. [ |

As a consequence of the uniform convergence theorem of slowly varying functions
(cf. Theorem 2.2.2) we get the following useful lemma.

Lemma 3.0.5. Let ¢ be a slowly varying function and 0 < a < b < oo. Then there
exist positive constants ci,co depending on ¢, a and b such that for all x > 1 and
all y with ax <y < bx we have that

crp(e) < ply) < ().
Proof. Since
lim p(\) =
R o)

uniformly for all A € [a,b], we can find a positive number zy such that for all
r > xy and all A € [a,b] it holds that 1/2 < o(Ax)/¢(z) < 3/2. Furthermore,
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since ¢ is positive and continuous, we can find positive constants ¢, co depending
on ¢, a and b such that for all x with 1 < 2 < xy and all A € [a,b] the estimate
1 < p(Az)/p(z) < ¢y holds. Hence, for all > 1 and all A € [a, b] we have that

p(Ar)
p(z)

The assertion follows. [ |

min{1/2;¢,} < < max{3/2; e }.

Next, we state a corollary of Lemma 3.0.3.

Corollary 3.0.6. Let ¢ be a slowly varying function and o > —1. Then there exists
a positive constant ¢ = c(p, ) such that for all natural numbers n € N we have that

> (k) k* < c-p(n)nt.
k=1

Proof. For m = 0,1,...,|log(n)] we define U,, := {k € N|2™ < k < 2™"'}. Then
|Un| = 2™ and for all natural numbers k € U, we have that k% < ¢ ()2
Furthermore, due to Lemma 3.0.5, we can find a constant cs(¢) > 0 such that
(k) < ca(p) p(2™) for all m =0,1,2,... and all k € U,,. Hence, we obtain

n Llog(n)] log(n)] .
Sk k< S S ek kY <eslpa) 3 e(2m) (271)7
k=1 m=0 keUm m=0

Now applying Lemma 3.0.3 with ¢ = 297 > 1 yields

i (k) k* < ea(ip, o) o (2U0]) (241 Log(m)]
k=1

Observe that for all natural numbers n it holds that

ollog(m)] <y < 9. gllee(m)]

Hence, according to Lemma 3.0.5, we can find a constant c;(¢) > 0 such that
p (205)) < e5(0) o(n)

for all n € N. Consequently, we obtain

" N a1 log(n)] N
> olk) b < ealp, @) p(n) (227) 5 < el ) p(m) ot
k=1

which finishes the proof. |

In view of Lemma 3.0.4, we can state the following corollary.
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Corollary 3.0.7. Let o be a slowly varying function and o < —1. Then there exists
a positive constant ¢ = c(p, a) such that for all natural numbers n € N we have that

> (k) k™ < c-p(n)n*t.
k=n

Proof. For m = [log(n)], [log(n)| +1, ... we define U, := {k € N|2™ < k < 2m*1},
Clearly, |U,,| = 2™ and for all natural numbers k € U, we have that k* < 2%™,
Furthermore, due to Lemma 3.0.5, we can find a constant ¢;(¢) > 0 such that
o(k) < c1(p) p(2™) for all m = |log(n)], |log(n)] +1,... and all k € U,,. This leads
to the estimate

Sel k< Y Y ek <aly) S e (22"
k=n m=|log(n)| k€U m=/log(n)]

Since 0 < 2%t < 1, we can apply Lemma 3.0.4 to obtain

[log(n)]

Zso )k < eaip, ) p(21°) (271 ) T < (i, @) o (200800

Finally, according to Lemma 3.0.5 we can find a constant ¢4(¢) > 0 such that

p (205) < () p(n)
for all n € N. This finishes the proof. [ |

Now we are well prepared to prove some generalized Hardy-type inequalities,
which will become useful in the context of generalized Lorentz sequence spaces.

Lemma 3.0.8. Let 0 <t <r <00, 0<s < oo and ¢ be a slowly varying function.
If o1 > 09 > ... > 0 is a non-increasing sequence of non-negative real numbers, then

N n s/t
1
Z S0(n) ns/r—l ( Z O';;) < c Z <p s/r 1
n=1 =
for all N € N, where ¢ = c(t,r,s,) > 0 is a constant depending on t,r,s and ¢.

Proof. The idea of the proof goes back to the paper [CHP11, Lemma 2.3], where
the result of Lemma 3.0.8 was proved for the special case of ¢(x) = (log(z + 1)),
ac R

Define g by the equality 1/q := 1/t+1/s and choose a number v with 1/r < u <
1/t. Due to the monotonicity of the sequence (o,,), we have that

(<Y
j=
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for all k =1,2,...,n and using Holder’s inequality we get
n 1/q n 1/q
(z)ﬁ) (2:[ )7k (k)R g <ka>”ﬂ)
k=1 k=

1

n 1/t n 1/s
(z_: t/sk ut) (Z [(w(k))l/sku—l/so_k}ska};>

Hence, the estimate

k=1

holds. Since —ut > —1, Corollary 3.0.6 yields

n 1t
(Z(@(k))t/sk“t> < er(uyt, @, 8) (p(n)) Vs puti/t

k=1

and, consequently, we obtain
1 1/t n 1/s
(23at) < amtins) o (Lo o)
=1 k=1

This leads to the estimate

N n s/t
> pn)nr (iZUZ) < (cr(u,t, 9, 5) Zns/r e Zs@ k) kg
n=1 k=1

and changing the order of summation on the right-hand side gives

N 1 s/t N
Z ©(n) n/! (n Z U}i) < (c1(u,t, 0,8 Z o(k kUS—IUZ Z s/T—1-us
n=l1 k=1

n==k
Since s/r — 1 —us < —1, we can continue with
Zns/rlus<zns/rlus<ks/r1us+/ s/rlusdl,

n=~k n=~k
ks/r—us

1
_ k,s/r—l—us + < k,s/r—us (1 + >
us — s/r us — s/r

= calr, s, u) 7,

which gives the assertion. [ |
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Lemma 3.0.9. Let 0 < t < r < oo and let ¢ be a slowly varying function. If
01> 09 > ... >0 is a non-increasing sequence of non-negative real numbers, then

1 n l/t
sup (n < Z%) <c sup @(n)n'" o,

1<n<N n - 1<n<N
for all N € N, where ¢ = c(t,r, ) > 0 is a constant depending on t,r and .
Proof. Clearly, we have that

> 0% Z KT (p(R) K o <
k=1 k=1
Since —t/r > —1, we can apply Corollary 3.0.6 to obtain

3ok <t ) (o) 0 s (o) K,

1<k<n

n

k,t/r t/r
1p (¢ P 2

su
1<k _

which yields
(w(n))tnt/r -~ Z o < alt,r,e) sup (p(k) k" o
n.3 1<k<n
Hence, we get
1 1/t 1/t
e (237 0t) < fcaltor o sup (o) 4 )

= CQ(t7Ta 90) sup @(k) k.l/r Ok

1<k<n

for all natural numbers n € N. Taking the supremum with respect to 1 < n < N
completes the proof. [ |

Lemma 3.0.10. Let 0 < r < 1 and 0 < s < oo. Furthermore, let ¢ be a slowly
varying function. If o1 > g9 > ... > 0 is a non-increasing sequence of non-negative
real numbers, then there exists a constant ¢ = c(r,s,p) > 0 such that

00
ng< s(l/r 1)— (Z Uk) < CZSO s/r 1
n=1

Proof. From (2.3.2) and the monotonicity of the sequence (,,),, we obtain

s(1/r—1)—1 m\ oms(1/r—1)
k
Z<P (ZU) <afrsg) Y ¢2m)2 (Z@)

m=0 k=2m
<ci(r,s,p) Y p(2m)2mst/r=h (Z 2k02k> :
m=0

(3.0.1)
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Now choose a constant « with 0 < a < 1/r — 1. First we show that there exists a
constant co(a, s) > 0 such that

00 s 00
(Z 2* 02k> < eofa, ) 27 Y7 ksl 65, (3.0.2)
k=m

k=m

In the case 0 < s < 1 the desired estimate follows immediately from |[|-||] < [|-]|%:

[eS) S [e'¢)
<Z 2k: O'2k> < Z 2—cxsk 2ks(a+1) s <92- asm Z 2k‘s (a+1) 2 '
k=m

k=m k=m

For 1 < s < oo we apply Holder’s inequality with the pair of conjugated exponents
s and s’ to obtain

e’ s [e'] s e f S/SI 0 s
(Z ok O'2k> _ <Z 9—ak ok(a+1) O'2k> < (Z (27041{) ) Z (Qk(aJrl) O'2k) _
k=m k=m k=m k=m
Using the summation formula for the geometric series results in

o) ) s 2—as/m s/8" oo k(1)
2 < - 2 s(a+
(S2on) < (gee) T2

N —s/s o >
— (1 _ 2—as) g—asm Z 2ks(a+1) o
k=m

Combining (3.0.1) and (3.0.2) we get

Z 90 s(1/r=1)—1 <Z Uk;) < C3 IS, 0, Z SO(Qm) 2ms(1/r—1—a) Z 2ks(a+1)0_

n=1 m=0 k=m

Changing the order of summation on the right hand sight and applying Lemma 3.0.3
yields
k

Z s(1/r—1)— (Z Uk) < 03 TS, Q0 szs (a+1) O'Sk Z g0<2m> 2ms(1/r717a)

m=0
< cu(r,s,0,0) Z p(2) 257 a3
k=0

Finally, using (2.3.3) from the proof of Lemma 2.3.3, we obtain

Y2528 o5 < p(1) 05 +es(rs,0) Y p(n)n oy
k=0 n=2

[e.e]

< (L+es(rs,9) Y pn)n /' os.

n=1

This completes the proof. [ |
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Lemma 3.0.11. Let 0 < r < 1 and let ¢ be a slowly varying function. If o1 >
oy > ... >0 is a non-increasing sequence of non-negative real numbers, then for all

natural numbers n € N the estimate

p(n)n*" 1S oy < e sup (k) kY oy
k=n k>n

holds true, where ¢ = ¢(r,p) > 0 is a constant depending on r and p.

Proof. The proof is straightforward. First observe that

p(n)n'/m! i_o: oy < (sup p(k) kT Uk) p(n)n'/! i_oj(w(/f))1 KU

k>n

Since —1/r < —1, Corollary 3.0.7 implies that

o0

S (k)R < erlr, @) (p(n)

k=n

This finishes the proof. [ |
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4 Proof of the results

4.1 Proof of Theorem 1.3.4

The proof uses techniques and ideas from the proof of [St04, Th. 1.3]. Let us first
assume that A is symmetric. We choose a constant a with % < a < 1 and define

ap = {2”2‘1(#% for k =1,2,...,n, then 2" = a; < as < ... < a,. Furthermore
with
n 2k+2 {2n2a(k_l)J
m = [2"7*Y 27" log o +3]| +2
k=2
it holds
n
m > gn+2 Z 9=k log (2k+2 n(2n2a(k 1) 1)) > gn+2 Z 9=k log (2k+2—n ana(zﬁn_l)
k=2 k=2

_ 2n+2 Z 2—k <k‘ +14 n<2a(k—1) _ 1)) > 2n(3 + n(Qa _ 1)) > n2"
on the one hand and

m < 2+ 2n+2 Z 2~ klog (2k+2 n 2n2a(k 1) + 3) < 2+ 2n+2 Z 2~ klog (2k+3 2n2ak)

k=2 =
<2+2"+222 k+3+n2“k)<2+2"+223n2“ hE < epn2”
k=2 k=2

on the other hand, where ¢q, ¢y > 0 are constants depending on a. We may assume
that ¢, is a natural number. Since gln2etY ] < {2"261(7'_% for © € N, we have that

€a;(A) < €[ nzeti-) | +1(A). Consequently, we obtain the estimate

n

et 4 LTLQa(i_l)J‘i'I(A) Z 2k‘/p/

=1 k=1

< c3 Z 27 €| n2ati- 1>J+1( )

=1
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where c3 > 0 only depends on p. Hence, Theorem 1.3.3 yields

€9eynan (aco(A)) < ey, (aco(A))

< o (n2) Y 1S i1 A) +es 27 2i/p/€{n2a(%l>j+1<f4)
<i<an i=1

for all n > 2 and all t € (0,00), where ¢4,c5 > 0 do not depend on n and A. The
next step is to obtain an estimate for es.,on (aco(A)). Given n > 2, choose | € N such
that 2! < 2n2" < 241 Then, clearly, it holds that n < [ < 2n and consequently
l !
n > 227 > % Furthermore, we observe that eLn2a(H>J+1<A) < eLlQ‘l(i*U*lJ—Q—l(A)'
Hence we get the estimate
9l —1/t=1/p'

€cyoi+1(aco(A)) < egepnan(aco(A)) < ¢y () sup i/'e;(A)

2 i< 2[;‘,»1

21 -1/p" o,
+ C5 <2l> Z 21/}7 eLl2a(i,1),1J+1 (A).

i=1

Note that if 2@ < 2n2" < 211 then 21 < 2(n + 1)27*F! < 2143, Hence, there are
constants cg, c; > 0 independent of n and A such that

n

€epon (aCO(A)) < 6 27 sup iy (A) + e nt/P oY ZQi/p/eana(i,D,lJH(A)
1<i<on =

for alln > 2 and all ¢ € (0, 00). According to Lemma 2.3.3 the assertion is equivalent
to

(n“ on/v’ €2n(aCO(A)))n el, a=-————=< 7

and it suffices to show (no‘ 2n/ p/€2022n(aC0(A))) € l;. To this end we check that

n

(1) (no‘2_”/t sup il/tsz-(A)> €l

1<4<2n

(2) <na+1/p/ ;zi/pletn2a(i,1),1J +1(A)> € lS

for a suitable t € (0, 00).

First let us deal with (1). Since (en(A)) € lys C lroo, there exists a constant

cg > 0 such that €,(A) < cg(log(n + 1))~ for all n € N. We fix t € (0,r] and

obtain y e _
sup 1/'¢;(A) <cg sup — < cgn /2™,
1§iSp2n ( ) =8 1§i§p2" (lOg(Z + 1))1/T =
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Hence we have that

n® 27" sup i''e;(A) < conTV = cgn VP
1<i<on

which yields
> <n“ 27 sup il/tsi(A)> < Zn_s/p/_l < 00.
n 1<i<on -
The proof of (2) is more technical. Let ¢ > 0 be arbitrary. First of all we show that
(Z 2/ €| n2ati--1| +1(A)> < C10 Z 2% (6 | n2eG-D-1 ] +1(A)> ’
i=1 i=1

where b := (1 —1—5)1% and ¢;op > 0 only depends on s and p. In the case 0 < s < 1 this
is obvious since

(Z 2i/p’eLn2a<il>1J+1<A)> < ;Qis/p' <€Ln2“(i1>lJ+1(A>> .

i=1

If 1 < s < 0o we use Holder’s inequality to see that

(z: 27 ) ppatn +1(A)>S = (zn: (Qis/p'ib it (e (nzet--1] +1(A))S>1/S>S

=1
n s=1 n ®
< <Z olis/p —lb)/(3_1)> Z 21 (6 |_n2a(i—1)—1J 41 (A)> :

Since (s/p’ —b)/(s — 1) < 0, we obtain the desired result. Consequently, we get
N L ’ al - ib °
Z (naﬂ/p Z 9i/p eanaU—l)—lJH(A)) < ¢10 Z ns/m1 Z ot (e ana(i—1>—1j+1(‘4)>
n=1 i=1 n=1 i=1
N N s
= ¢10 Z oib Z ns/r—1 (e LnQG‘(il)lJ"Fl(A)) .
=1 n=i
In a last step we check that

N N s N 00
Z 2ib Z ns/r—l <€ |_n2“("—1>—1J +1(A)> < e Z Qib—ias/r Z ns/r—l (€n(A)>S,
i=1 n=t 1=1 n=1

where ¢1; > 0 is a constant independent of A and N. For the sake of simplicity
we introduce the notation a; := a(i — 1) — 1. First observe that there exists a
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constant Cy(r,s) > 0 such that for all n,i € N with n > i it holds (n2%)*"! <
Cy(r,s) ([n29 ] + 1)*"". Hence, we have that

N N
S (e (A)) =2 S 020 (epur ()

N
< COy(r, s) 9—tals/r=1) Z ([n2%] + 1)8/"'_1 <€Ln2aiJ+1(A)) .

n=t

Next, due to the monotonicity of the entropy numbers, we have that

(BL(n—1)2%‘J+1 (A))s + (6L(n—1)2“iJ+2(A))S + ...+ (eLnQGiJ—I—l(A))
[n2% | — [(n—1)2% | +1

s

(6Ln2aiJ+1(A))S <

and from
[n2%| — [(n — 1)2%| +1 > n2% — (n — 1)2% = 2%
we conclude

[n29:

(eLnQ“iJ—i-l (A))S < 9 (<€L7L2%J+1(A))S + Z (ek(A))s> .

k=[(n—1)2% |+1
In addition we trivially have

[n2%i

> (aa)

k=|(n—1)2% |+1

IA

(egnzeij1(A))°

and putting both estimates together leads to

[n29i

(epmesia()) <27 3 (el(4))]

k=[(n—1)2% |+1
[n2ei

<G Y ()

k= (n—1)2% |+1

where C5 > 0 is an absolute constant. Consequently, we get

N " N s
Z ¢ Z ns/rfl (e ana(ifl)ﬂJ_H (A))
1 n=t

1=

N N
< Co(r,s) Y207/ N7 (2% | 4 1) (eanaiJ+1(A))

i=1 n=i
N N [n2% |

< Culrs) Y2ty S (2] + 1) (ex(4))

i=1 n=i k=|(n—1)2% |+1
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Now we claim that there exists a constant Cj(r,s) > 0 such that for all n,i € N

with n > 4 it holds (|n2% | + 1)*/"™" < Cs(r,s) k"L If s/r — 1 < 0 then this is

obvious since k < [n2%] + 1. To handle the case s/r — 1 > 0 we observe that
|n2%] 4+ 1 - n2% +1 n 1

-1z ] +1= (n-120  n—1 -1z ="

for all n > 2 and all 7 € N. Therefore, we obtain
Ak >4([(n —1)2%| +1) > [n2%] +1 (4.1.1)

and hence the assertion for all n > ¢ > 2. Thus, left open is the case + = 1. Since
2% = %, we have to show that

(In/2] + 1)/ < Co(r, ) k™, s/r—1>0,

for all n € N, where L(n —1)/2] +1 < k < |n/2]. However, this is clear since
k> |(n—1)/2] +1> 1 (|n/2] + 1) for all n € N. Hence, we conclude that

=1 n=1u
[n2e |

< 07 7,, S ZQZb zas/rz Z k.s/r—1<ek(A))s

n=i k=[(n—1)2% |+1

< 07 T S Zsz ias/r Z ms/r 1( (A))i
m=1
which is the desired estimate.
Therefore, putting all these estimates together we find that

N n ’
Z <n°‘+1/p/ Z 2i/p/€Ln2a<i-1)—1J+1(A)> < G2 Z A Z /! (6”(A))

n=1 i=1 =1

s

with a constant c;3 > 0 independent of A and N. Recall that 1 < a < 1 and
b= (1+¢);; with € > 0 arbitrary. Now fix € > 0 such that (1 + 6) < 1. Then we
can choose a as a constant satisfying both <a<landa > (1—|—5) . Consequently,
we have b — as/r < 0, which yields the abbertlon

For an arbitrary precompact subset A of X we define the symmetrization of A
by As := AU (—A). Obviously, Ag is a precompact and symmetric subset of X
satisfying e,1(As) < e,(A) for all n € N and aco(Ag) = aco(A). Hence, we get

(en(4) €ls = (ealds)) €l = (en(aco(A))) €ly e
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This finishes the proof.

Finally we deal with the optimality of the result. Let ¢(n) = (log(n + 1)) with
8 >a==— = —=. Choose v with vs > 1 and consider

A={ou, |neN}Cl,

with o, = (log(n + 1))~/"(loglog(n + 3))™". Taking Lemma 2.4.5 into account, we
obtain
en(A) < o9n1 < Cs(r,8)n~ Y7 (log(n + 1))

and hence it holds

>t en(4))” < Cilrs) Yo (log(n+ 1)) 7

Since the latter series is convergent, we see that (en(A))n € [, 5. Furthermore,
Lemma 2.4.5 yields
en(aco(A)) > Cy(p,r,s)n~ P (log(n + 1))Y7 =" (loglog(n + 3)) ™
and consequently we have
S (log(n + 1)) ns/P' - (en(aco(A)))

5(p, 1, s Z n~! (log(n 4 1))* PP =17 (log log(n + 3)) ™

s

5(p, s Zn (log(n + 1))*?=~ (loglog(n + 3)) 7 = oo,

which means (en(aco(A)))n = [

4.2 Proof of Theorem 1.3.5

The proof is based on Theorem 1.3.1 (%) in combination with the Hardy-type
inequalities from Chapter 3. Choose a constant ¢ with p’ < ¢t < r. Then according
to Theorem 1.3.1 (74) it holds

nte,(aco(A)) < sup kYte(aco(A)) < ¢ ca sup ke (A),

where ¢; > 0 only depends on p, ¢t and X. In addition, due to the monotonicity of
the entropy numbers we have that

sup kMtey(A) < (fj (ek(A))t> v

1<k<n P
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and this gives the estimate

ealaco(A)) < ¢1ca (i 3 (el A))t>

k=1
Consequently, in the case 0 < s < oo we obtain

N N n A o/t
300 7 el ) <t ety (23 ()

n=1 n=1

and since t < r, we can use Lemma 3.0.8 to get

> (p(n)* " (en(aco(4))) < eacy 3 (p(m)) ! (ea(4)),

n=1
where co > 0 is a constant depending on p,r, s, p and X. The second inequality can
be treated analogously using Lemma 3.0.9. [ |

4.3 Proof of Theorem 1.3.6

Let A C X be a precompact subset of a Banach space X of type p satisfying
en(A) < n7VP (log(n +1))77 with —co < 8 < 1/p. We may assume that A is
symmetric. For n > 2 and k =1,2,...,n we define oy := 22* and

n 2k‘+2
m = {2’”2 > 2% log <2nak + 3>J +2.

k=2
Then the estimates

& 3 4
> gn+2 9=k Jog (QkFT2+2F—n) _ on+t2 n. o *
m > ;;2 og ( ) 5T5  om

=2n2"+6-2" — 16 > 2n2"

and

- 3 4
m <2+ gn+2 Z 9~k log <2k+2+2k) — 9 4 gn2 (n + = - n;; >
k=2

=4n2" 4+6-2" —4n — 14 < 6n2"

hold. Consequently, applying Steinwart’s inequality from Theorem 1.3.3 with ¢ = p/
yields

e12n2n (aco(A)) < egp(aco(A))

< ai(p, B) (n2") 27 4 oo(X, p) 2777 (é <2k/p’ Z:]; o A)>p> v
(4.3.1)
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for all n > 2. Observe that
Eai(A) = ez (A) s 27770 7F.
Hence, since 5 < 1/p, applying Lemma 3.0.4 and Corollary 3.0.6 gives

k=1 i=k
n 1/p
< (Z kﬁp) < nl/P=8.
k=1
Consequently, we get

612n2n(aCO(A)) < (p, ﬁ) (712”)_2/]3/ + 03(X7P, 5) 2"/ pt/p=h

for all n > 2. Changing from 12n2" to 2" gives

: 2m 1Y
exn(aco(A)) < ca(p, ) (") + e5(X,p, ) (n) nV/p=p

= c4(p, B) 2727 4 5(X,p, B) 27/P 2P
< cs(X,p, B) 277 7P

for all n > 7. This shows that
en(aco(A)) < n~ V7 (log(n + 1))7.

The optimality statement (1.3.8) was proved by Creutzig and Steinwart in [CrSt02,
Th. 1.5].

Now let us deal with the case (en(A)) € ly s with p <'s < oo. According to
Lemma 2.3.3 it is enough to prove that

ean(aco(A)) g 27 pl=ls,
From (4.3.1) we know that

n!*t (2P ergnan (aco(A)) < ei(p, B) n!/s P 2T (4.3.2)

n n p 1/1”
+ ey(X,p) /e (z (W zemm)) )
k=1 i=k

for all n > 2. It is clear that the sequence (nl/s’l’l/”/ 2’”/”/) tends to zero and
thus is bounded. Now let us consider the second summand. Since p < s it holds that

=k 1=k
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Let « be a positive constant which will be specified later. Using Holder’s inequality
we obtain

n s n s n n s/s’
(Sent) = (Seatn) =3 (eeata) (Se)

< ci(a, s) 27 i 215 <€2i(A))S

i=k
and therefore
n n s\ 1/s n n 5 1/s
(Z <2k/p/ Zgai(A)> > < (Z oks(1/p'—a) 22’58& (621(14)) ) .
k=1 i=k k=1 i=k
Changing the order of summation gives
n n s 1/s n L i 1/s
(Z oks(1/p'—a) ZQisa (€2i<A)) > _ <Z gisa <€2i<A)) Z 2k5(1/p’a)> ]
k=1 i=k i=1 k=1
Now choose « as a constant satisfying 0 < o < 1/p’. Then
Z oks(1/p'~a) < e (a, s,p) 9is(1/p'—a)
k=1
and, consequently, we obtain
n ) s i 1/s n ) s 1/s
(Z gisa (621(14)> Z 2k8(1/p’_a)> < <Z 218/]9/ (eW(A)) ) '
i=1 k=1 i=1
Hence, we have found out that

n n p\ 1/p n 1/s
pl/s=1/p <Z <2k/p’ Zgai (A)) ) < (Z ois/p’ (622’(A))S>

k=1

and (en(A)) € ly s implies the boundedness of the sequence on the left hand side

(cf. Lemma 5.3.3). In view of (4.3.2) we see that the sequence

(nl/s_l (n2m) /' 612n2n(aC0(A))>

n

is bounded, i.e.

e12n2n (aco(A)) < c(a, s,p, X) (n2”)_1/p, ni-1/s
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for all n € N. Finally, choosing o = 1/(2p’), for example, and changing from 12n2"
to 2" gives
ean(aco(A)) < &(s,p, X) 27V pl=l/s

and finishes the proof.

Now let us deal with the remaining optimality statements. Let 1 < s < oo and
B > —1+1/s. Choose a constant v satisfying 1/s < v < min{1; 5+ 1}. According
to (1.3.8) we can find a precompact subset A of X satisfying both

(en(A))n < n~ VP (log(n+1))™7 and e, (aco(A)) = n~? (log(n + 1))'

Since vs > 1, we conclude that (en(A)) € ly s. Furthermore, since 8 +1 — v > 0,
it holds that

supn'/? (log(n + 1))° ea(aco(A)) 3= sup (log(n + 1)) = oo,
neN neN

Finally, we deal with the last statement. Let 0 < s < oo and choose v such that
sy > 1. For 1 < p <2, consider the subset

A= {o,u,|neN} Cl,
with ¢, = (log(n + 1))~"* (loglog(n + 3))~7. Then applying Lemma 2.4.5 yields
en(A) < ogn1 < V7 (log(n + 1))

and
en(aco(A)) = n~Y" (log(n + 1))Y7 6,2 = n~Y? (loglog(n + 3)) ™

Hence, we compute that

Zns/p/_l ( ) <> n ' (log(n+1))7 < o0

n

and, for 0 <t < oo,
Znt/p ( aco(A ) = > n~ " (loglog(n + 3)) 7" = cc.

This shows (en(A)) € ly s but (en(aco(A))) ¢ 1y, for 0 <t < oo. |

Remark 3. Unfortunately, the proof presented above does not work in the remain-
ing case (en(A)) € ly s for s < p. Looking back, the crucial step of the proof was
to show the boundedness of the sequence

(o (3 (2 Senin)) )

n
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where a; = 22'. However, for s < p it appears that, in general, this sequence is not
bounded. To give an example, we consider a precompact subset A with e, (A) ~
n~2/?"_ Then we have that

Zns/p/_l (en(A))® ~ Zn‘s/p/_l < 00
and this shows (en(A)> € ly s. Furthermore, from

€a; (A) = 62i+1(14) ~ 2—2z’/p/

we conclude that

n n p\ 1/p n n p\ 1/p
(S0 sew) ) (S (i)
k=1 i=k k=1 i=k

1/p
~ < Q—kp/p'> ~ 1.

n n p\ 1/p
n\/s=1/p (Z <2k/p’ 3 e, (A)) ) ~ pl/sml/p
i=k

k=1
and shows that the sequence is not bounded for s < p.

This yields

4.4 Proof of Proposition 1.3.7

Since 1 < s < 0o, we can apply Theorem 1.3.2 with 5 = 1/s to obtain
sup kY7 (log(k + 1))Y* L e (aco(A))

1<k<n

<ci(p,s, X)ca sup kY7 (log(k +1))/* ex(A).

1<k<n

Due to the monotonicity of (nl/ 4 en(A)) we have that

<§; i (ei(A))8>

1/s

k . 1/s k 1/s
= <Z: i1 (il/p’ ei(A)) ) > L/ ek(A) <Z i_1>

i=1

> ¢y(s) KY7 (log(k + 1))Y% ex(A).

This gives

n /s
sup (log(k + 1))Y* L kYP e (aco(A)) < es(p, s, X) ca (Z is/pl_l(ei(A))s>

1<k<n i=1

and finishes the proof. [ |
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4.5 Proof of Theorem 1.3.8

For short we write f(¢) := &7 (log é)_p . Let ¢ > 0 be a constant such that
InN(A,e) <cfle)

for all 0 < e < 1/2. For fixed v € [1/2,2/3] and n € N we define gy := 727". By the
definition of covering numbers there exist 72 %-nets N, C X of A with cardinality

‘Nk‘ SeXp [Cﬂf<72_k)] ) k= 1727'-'an~
We define sets D; := N; and
Dyi={z€Ny—=Neoy: ||z <3927}, k=2,3,....n.

Then
|Del < INGlINit| < exp 260/ (5279)], k=2.3,....m,

and for D) := Dy U (—Dy) U {0} we obtain

Dl < 3IDi| < Bexp 200f(127H)], k=1,2,....n.

Observe that there is a constant ¢; = c¢;(p) > 2c¢o with log(3) + 2cof(727%) <
cif(727%) for all k =1,2,...,n. Consequently, we have that

Dyl <explef(27h)], k=12....n (4.5.1)

Now we define sets
Cy :=conv(Dy) = aco(Dy) and E,:=» Cj.
k=1

The next step is to show that N, is a subset of E,. To this end, let & > 2 and
Nk € Ni. Choose an element a € A with ||, — a| <~27*. Since Nj,_; is a 42~ *~1-
net of A, there is an element 7,_; € Nj_; with ||, — al| < 727*~D. By triangle
inequality we get

e — s || < 27F 427D = 3427F,

Hence, n, — mx—1 € Dy. Now let 0, € N,. According to the above-mentioned con-
siderations we can find elements 7,_1,7,_2,...,7; such that n, — m_1 € Dy for
k=n,n—1,...,2. Hence we have that

M =M — M1+ M-1—---F+p—m+meD, +Dp1+...+ Dy
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and this shows N,, C FE,. Since N,, is an gp-net of A, we also have that E, is an
go-net of A. Since F, is absolutely convex, it is also an eg-net of aco(A). Hence, any
go-net of £, is also an 2gg-net of aco(A). We conclude that

log N(aco(A), 250> <log N(E,,¢0).

Define the set . .-
M = {Z L Zd]” d]“ € Dk}
k=1 "% i=1
where my, ..., m, are natural numbers which will be specified later. Using an prob-
abilistic argument due to Maurey (cf. [Pi81]) we will show that M is an gy-net of £,,.
Denote the elements of Dy \ {0} with zf,... 2% . Fix z € E, and write z = ¥0_; 2
with z, € C%. Then each z, can be represented by

dyg
Zal x¥ where af > 0 and Zafgl.

=1

Define a random variable Z; with values in D;. by

d
P(Zy=af)=af for i=1,....dy and P(Z,=0)=1-> al.

i %
1=1

We compute that EZ, = Y%, afrk = z,. Moreover, take independent random
variables Z1 1,..., Zimys -3 Znis- - s Lnm, Where Zy 1, ..., Zy m, is distributed like
Zyfor k=1,...,n. With Y}, := mikZ;“ and Theorem 2.6.4 we obtain

n 1 mp n mg n mg

Z_Z ZZkz - ZZY]CZ - ZZ ]EYkz Yk:z
k=11i=1 k=11i=1
n mg 1/p
< i, () (szwk,inp) (452)
k=11i=1

n 1 1/p
<129 7,(X) (Z p_lz’fp> :
k=1 T
Now the crucial step is the choice of the natural numbers my. From ¢y < 27" we

conclude that ) )
kP (log(n + 1))P'/»

/
ef 2k

>1

for all £ = 1,...,n. Hence, for each k = 1,2,...,n there is a natural number m
satisfying

kP’ =1 (] 1))?'/p EP' =1 (1 1)) /p
T gk ) R (log(n £ 1)

/ —_— /
<2 ok o1 ok

Y
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where ¢, := (8 7,(X))?. Using ijl = i and (p' —1)(p — 1) = 1 we can continue at
(4.5.2) with

noo] ™ 127 7,(X oo A\
Elz=Y —> Z; Sm%(log(n-ﬁ-l)) 1/p <Zkz 1>
k=1 "% i=1 Cy k=1
3
< Eo?7 < €

Here we used that >-7_, k= < log(n + 1) for n € N. Since >-}_, mik Stk Zg; only
takes values in the set M, there exists an element m € M with ||z — m|| < gy. This
shows that M is an ep-net of E,. Consequently, by the very definition of covering

numbers we obtain
log N(E,, o) < log|M].

It remains to estimate the cardinality of M. In view of (4.5.1) we get

n n C n _
log [M] < log (H |D;|mk) = S g log(1D4) < 1 mif(y2)
k=1 k=1 In2 /=

< c3(p, X) 66”/ (log(n + 1))17’/17 Z L1
k=1
< c3(p, X) 66”/ (log(n + 1)):0’

/

p

) 1
< calp, X) 55" (loglog — )
0

This shows

/

p

/ 1
log N(aco(A), 250) <elp, X)ey? <10g log )
€0
for eg = 427" with 1/2 <~ <2/3 fix and n € N.

Now let 0 < € < 1/10 be arbitrary. Then there exists a natural number n with
727" < e < 427" We conclude that

/

/ 1\’
log N( aco(A), 25) <log N( aco(A), 272_"> <c(p, X)(y27")7P <log log 72_71)

, 1\*
< cs5(p, X)(2e)77 <10g log 2)
€

This finishes the proof of Theorem 1.3.8. |

Remark 4. Working with the real absolutely convex hull is crucial for the proof of
Theorem 1.3.8. Indeed, the presented proof does not work for the complex absolutely
convex hull. Let us discuss this in more detail: For the finite set D, we defined
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Dy, := Dy U (—Dy) U{0}. It is clear that also Dj, is finite and |Dyj| < 3|Dg|. We
concluded that
aco(Dy) = conv(Dy).

Note that this is a purely real argument, see (2.7.1) in Section 2.7. When dealing
with the complex absolutely convex hull, the set D) has to be modified as follows:

D,= |J ADw
AeC: |A=1

However, this leads to a massive problem: It is not clear how to estimate the number
of elements in Dj,. We do not know how to treat the complex case.

4.6 Proof of Theorem 1.3.9

We cannot help the fact that the proof is very technical. We start with the definition
of disjoint index sets

I, = {Z € N:exp (2",(7’“_1)) < i < exp (2”%)}, k=1,2,....

Furthermore, we define subset A, of [, by
Ay = {(l{:2k)_lei = ]k} u{o}, k=1,2..,

where {e;};°, denotes the canonical unit vector basis of the sequence space l,,. Finally,
we define
A=A +A+ -+ A+ Clp,

First, we prove that A satisfies (1.3.15). For any 0 < ¢ < 1/2 there exists a natural
number n > 2 with
-1
(2" <e<|(m—-1)2" (4.6.1)
For S, .= A1 + Ay + --- + A,, we compute that
op'(n+1) _ 2p/>

n n n
1Sul < T 1Akl < ] exp (2p/k> = exp (Z 2”/’“) = exp (,
k=1 k=1 k=1 20 —1

o' (n+1) ,
S exp (2]7/1 = exXp (217 n+1>.

Furthermore, we claim that S, is a (n2") !'-net for the set A. To see this, let a =
a1 +as+ - +a,+ap+ - € Awith a, € Ag. For s, == a1 +as+---+a, €5,
we compute that

o= sall, <3 lamssll, <z[n+;2”ﬂ] <3 (n2) 7 = (2!

7j=1 7j=1



4.6 Proof of Theorem 1.3.9 92

Hence, we have that S, is a (n2")"'-net for A consisting of at most exp (27’/"*1)
elements. In view of (4.6.1), we conclude that

log N(A,e) <log N(4, (n2")™") <

Finally, since ¢ < [(n — 1)2"1]7" <4 (n2")" and L <n2m < 22" we obtain

/

/ ]_ p / / / / /
e? (log ) log N(A,g) <47 (n2™)™P (2n)P 2P'"H2 = 23742,
£
This finishes the proof of (1.3.15). Now let us deal with (1.3.16). The first step is to

prove the following statement.

Lemma 4.6.1. For every natural number k > 9 and any § with
exp ( - 2p/(k_1)_1) < § < ETUP gmkA (4.6.2)
there ezists a subset U, C conv(Ay) with

15 , 15\ /7
> exp (=2 ! 5—p> d - () KUp s
|Uy| > exp <128 and |lu — [, > 556

for all u,u’ € Uy, u # u'.

Proof of Lemma 4.6.1. At first we estimate the number of elements in the index set
I;,. Observe that x — 22 " > x'/2 for > 4. Using this estimate with = = exp (21"’“)
we conclude that

|| = exp (27%) —exp (2771 = exp (27%7). (4.6.3)
Now define
ro= | (k207 (4.6.4)
In view of (4.6.2) we compute that

k2R g7 < pop'k gkt — g (4.6.5)

and this yields (/{;219%617')71 > 16. Hence, we have that r > 16. Furthermore, the
estimate

kor'k 57’ > 57 > exp ( — 2p’(k_1)_1p’) > exp ( — 2p/’“_2)
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holds true. Here we used that p’ < 27'~!. Taking (4.6.3) into account, we obtain
r< (k2% 67) T < exp (275°2) < |1V (4.6.6)

Now define the set

Vj, 1= { 20—k 5 Z vie; - v; € Ny, Z v <71
i€l i€y,
First, we show that V, C conv(Ay). Let v = 20'~Dk ' Yier, Viei € Vi, be an element
of V.. Then
/ / _1
V= Z [k or'k §p vi} (k2k) €;
i€l

and

ST k2R v < k2PR S <1
From 0 € Aj we conclude that v € conv(Ag). Now we estimate the number of
elements in V;. A combinatorial argument shows that

Vo (Ml 7Y QD) B+ [
g | T | 7! rl

Furthermore, in view of (4.6.6) we have that r! < r" < |I]"/2. Consequently, we
arrive at |Vi| > |[I;|"/2. Choose a natural number [ with /16 < [ < r/8. For fixed
v € V},, consider the neighborhood

Bi(v') = {v € Vi : o —v'||; < 127Dk}

We claim that
| By(v")| < |1

To see this, let v/ = 20" =Dk 57/ Yiern, Vie; € Vi and v = 20" =Dk 5p' Yier, Vi€i € Bi(v').
Since [[v — v'||, < 12~V 67" we have that ¢, |v; —v]| < 1. With d; == |v; —v]| €
Ny, there are ('ﬁ’}LTﬁ possible choices of d;’s with }7,c; d; < [. Of course, the number
of nonzero d;’s is less or equal to [. The corresponding v;’s can take at most two

values, namely v; = v} + d; or v; = v} — d;. Hence, we see that

E B I PR CIES EHUTES

28 < ([T + )" 2" < (4]L))" < |1
Consequently, for each v’ € Vj, the neighborhood B;(v") C Vj, contains no more than
|I,|* elements. But this means that there exists a subset Uy C V;, of V} with

‘Ik’T/Z uk|r/2
|[k’21 — ‘[k|r/4

U > — |5 (4.6.7)
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and
Ju— ||, > 12F D% 67" for all u,u' € Uy, u # u'.

Let u = 20’ —Dk 57 Yier, uie; and u' = o' =1k 5o’ Yier, wie; € Uy, with u # o', Then
it holds that >;c;, |u; — uj| > [ and from |u; — u}| € Ny we conclude that
S w =P > |ug—uy > L

i€}, 1€l

Consequently, we get

1/p
lu — ||, = 2"~k 5 (Z |u; — u;|p) > o' =Dk gp' 1/, (4.6.8)

i€y,
In order to estimate ['/? we compute with (4.6.5) that

re (ko) 1 12 (2t o)™ (4.6.9)

and this yields

1
ll/p Z (’T‘) 1/p 2 <15> /p (k 2p/k 5p/>—1/p.
16 256

Consequently, we can continue (4.6.8) with

o -0k s 11 < (N o1k st
J[u =, > 2 o P> T k= P2 J

= (15) p Eir s,
256

The last step is to estimate the number of elements in Uj. In view of (4.6.3), (4.6.7)
and (4.6.9) we get

15 15
64 128

This finishes the proof of Lemma 4.6.1. |

/

In |Uy| > £1n|1k| > 22 (b gy tophot — 0 gt g
Next, for m € N we define
E,, = conv(Agm-1,1) + conv(Agm-1,9) + -+ + conv(Agm)

and prove the following statement.
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Lemma 4.6.2. For every natural number m > 4 and any 0 with

2m+1

eXp (_2p/2m—1_1) S 5 S 2_
there exists a subset QQ,, C E,, with

15 15 \ /P
2o (Z57) wi la-dl, > (22)"
|@m| > exp (512 > and g = ¢ll, > { ;50

forallq,q' € Qum, q# 4.

Proof of Lemma 4.6.2. Fix a natural number m > 4 and ¢ in the range described
above. In what follows, let k € {2m~ ! +1,2m"1 +2 ... 2™} We want to apply
Lemma 4.6.1 for all these k’s but with the same § given above. Consequently, the
first step is to check that

mkax exp ( — 21’/('“_1)_1) << mkin kv g—k=4/y

To this end, we compute that
_ op'(k—1)-1Y\ _ _op/2mT1l1
m}gxexp( 2 )—exp( 2 )§(5

and

mkin L—Up 9—k=4/p" _ o=m/p' 9=2"—4/p" _ o9—(m/p'+4/p'+2™) > 9—2mH! > 6.

Consequently, for each k € {2m~1 4+ 1,2m~1 42 .. 2™} by Lemma 4.6.1 there

exists a subset Uy C conv(Ay) with |Ug| > exp (%k‘l 5"”) and

15\ /P
Ju— ||, > (2556) k7P s for all u,u! € Ug,u # 4. (4.6.10)

We assume that all these subsets U, have the same cardinality
15 / 15 ,
'm i= 1Mi — k! _p) = (2"” _p>.
Cnm min exp (128 o exXP | 15¢ )

Define
Rm = Ugm—1+1 + Umel+2 + -+ U2m C Em

Let r = Tom-141 + Tom—-149 + -+ + T'gm and ' = T;mfl_i_l + 71/2777,71_*_2 + e+ T/Qm with
T, 7, € Uk be elements of R,,. Let the Hamming-distance of r and r’ be given by

hir,r"y = [{k :rp # r}
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For fixed 7" € R,, we consider the neighborhood
By(r') == {r € Ry, : h(r,1") < 2m_4}.
We estimate the cardinality of By,(r’) by

| B ()| = ]; {r € Ry, : h(r,7") =k} < Z_: <2";— ) (C)E.

From the elementary inequalities

it follows that

2m—1 e2m—1 k L 2m—4 k 2m—4
()= ) mer () =er ()

Hence, we obtain the estimate

[Ba(r)] < 2%:4 (27:4> (8¢ C,)* < (8e Cp )™ 2%; <2ﬂ;—4>

k=0

= (166 C,)*" " < (C)*" .

Consequently, for each ' € R, the neighborhood By (') C R,, contains no more
than (C’m)me3 elements. But the set R,, contains exactly (Cm)me1 elements, because
all subsets Uy have the same cardinality C,, and the index sets [ are disjoint. We
conclude that there exists a subset @,,, C R, of R,, with

(Om)2m_1 om—2 ( 15 _ /)
|Qm| - (Cm)zm—s - (Om) eXp 512 6

and h(q,q") > 2™ for all ¢,¢' € Qu, ¢ # ¢ Let ¢ = qom-141 + qam-149 + -+ + qom
and ¢ = Ghm-1.1 + Gym-1,9 + -+ Gom € @, be elements of @Q,, with ¢ # ¢'. Since
qr and ¢, are elements of Uy, we obtain with (4.6.10) that

p om

- 15 15
le=dllp=| > (@-a)| = > la—dqly>2"" 527" = 0"
P o L k=2 P 256 4096
This finishes the proof of Lemma 4.6.2. |

Finally, for a natural number n > 4 we define m, := E log nJ and my := |logn|
and consider the set

Epy + Epji1+ -+ Ep, Cconv(A).

The last step is to show the following statement.
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Lemma 4.6.3. For every natural number n > 26 it holds that

1 /15\ P p o—2n 15 om
lOgN Em1 + Em1+1 4+ -+ Emzv 5 (216> (log n) 2 Z m 2 lOg n.

Proof of Lemma 4.6.3. Fix a natural number n > 2!6. In what follows, m is a natural
number with m; < m < msy. We want to apply Lemma 4.6.2 for all these m’s with
§ = 272", We check that

§ = 97 — g2 gamatt i 92
m
Furthermore, we have that m > log(y/n) — 1 and, therefore, we obtain
max exp (—2”'2%1’1) < exp (—2p/2log(ﬁ)_2*1) = exp (—2”/2_2 ‘/ﬁ’l) <27 — 3§,

Here we used that
gV 27Vl 5 927 Vil > Iy (2) 2p,

holds true for n > 2°. According to Lemma 4.6.2 with § = 272", for each m with
my1 < m < mo there exists a subsets @), C F,, with

15 joprm / 15 \YP o
|Qum| = exp <5122 > and |q—g¢q Hp > <4096> 2 (4.6.11)

for all ¢,¢" € Qum, ¢ # ¢'. Now define
D::Qm1+Qm1+1+"'+Qm2 CEm1+Em1+1+”'+Em2'

At first we estimate the cardinality of D. This this end, observe that
1 1
me —my + 1 > log(n) — {2 lognJ > ) log n.

Consequently, we obtain

15 o, \]me il 15 5
|D| = {exp (51222P ”)} > exp <51222p "1 log n) )

Now let d = dpn, +dpy 41+ +dp, and d' = d), +d;, +---+d,, with d,,, d;, € Qp,
be elements of D. For fixed d’ € D, consider the Hamming-neighborhood

By(d):={d € D:h(d,d) < |27"logn| +1}.
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Then, analogously to the above, the cardinality of By (d’) can be estimated by

L2*4lognJ+1
| Bu(d')| = kZ {d e D:h(d,d) =k}
=0
[27%logn | +1 o — 4 1 15 1k
s oo (15
= k 512
_ ~4lo nJJrl
15 / |.2 4lognJ +1 |‘2 s Mo — M1 + 1
() ),
512 = k

Furthermore, from

k k “Aloon, k
<m2—Zzl+1> < (e(mg —km1+1)> < <elcl){gn> < (16@)’“ ({2 1 i J—i—l)

< (160" ([2—4 loinJ + 1)

we conclude that

D

k=0

LQ*“ lognJ-H
<m2 - Zh + 1) < (326) L2*4 lognJ+1_

Hence, we obtain the estimate

1 ’ L274 log nJ +1 1 / L274 log nJ +1
B8] < [326 e (57527 < [oxp (552
15 omir\12 8" 15
<low(527")] = ow (52" osn)

where we used that {2_4 log nJ +1 < 273logn for n > 2%, Consequently, for each

d' € D the neighborhood By (d’) C D contains no more than exp <51T5222p'”_2 log n)
15

elements, but D contains exp ( 512221’/"_1 log n) elements. This means that there
exists a subset C' C D of D with

exp (%227’/”_1 log n) < 15

= exp [ —=2%""2 log n>
exp (5%221”'”—2 log n)

512

and h(c,c) > 274 ogn for all ¢, € C, ¢ # . Now let ¢ = ¢,y + Coyp1 + **+ + Congy
d=c, +cn 1+ +a,, €Cwith ¢ # ¢. Since ¢, and ¢, are elements of @,



4.6 Proof of Theorem 1.3.9 99

we obtain with (4.6.11) that

ma p m2
le=dllp =22 (=) = > llew =<l
k=m1 p k=m1
15 15
_4 —2pn __ —2pn

Hence, we see that C'is a subset of E,,,, + E,,, 41+ - -+ E,,, which consists of at least

, 1
exp (%221) "2 Jog n) elements and it holds that [[c — /||, > (21%) & (logn)/P2-2n

for all ¢, € C, ¢ # /. But this means that

115\
log N (Eml +En i+ By, o < > (logn)'/P 2_2”>

2\ 216
1 /15\P
> log N (C, 5 (216) (logn)'/? 2_2">
1 15 / 15 ,
> 7722p n—2 1 > 722pn 1
= 2512 98T = 5048 o8
and finishes the proof. [ |

Now we are well prepared to prove (1.3.16). For every e satisfying 0 < ¢ <

1
: (21152> /921" {ere exists a natural number n > 216 with
1/ 15\ Com 1 /15\YP o
5 <216) (log(n -+ 1))1/})2 2(nt1) <é€ S 5 <216> (10g n)l/pQ 2 .
Using Lemma 4.6.3 we get

log N(COHV(A), 5) > log N(Eml + B 1+ + Eny, 8)

115\ P p o2
2108 N ( By + Byt +++ 5 (5) - (logm)r2
15

> =2 oW ooy
= 2048 ogn

1
Observe that ¢ > 273 (%) v (logn)'/? 272" and, therefore, we have that

2p'n —3p’ E p//p —p/ ' /p
2P > 2 516 e P (logn)P/*. (4.6.12)

Furthermore, from é < 2"* we conclude that

1
log log B < 2logn. (4.6.13)
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Combining (4.6.12) and (4.6.13), we finally obtain

15 15 (15N :
log N(COHV(A), 5) > = 9% g > 93P <) e (log n)? P+

~ 2048 2048 216
15 L/ 15N\P'/P ,

— 9=3p (> —r'(] p
2048 o) € " (logn)

15 L/ 15N\P'/P 1\"
= 2048 916 ) 198967
/ / / / 1 p/
= 157 2710 /Py =1L <log log ) .
g

This finishes the proof of Theorem 1.3.9. [ ]

4.7 Proof of Theorem 1.3.10

In order to prove Theorem 1.3.10 we slightly modify the construction used in the

proof of Theorem 1.3.9. Fix 8 > 1. For k = 1,2,..., let the subsets A; of [, be
defined as in the proof of Theorem 1.3.9. Now, let

AP = kPAL,L k=12,
and
A= AT A+ A,
The first step is to show that A” satisfies (1.3.17). To this end, let 0 < & < 1/2 be
arbitrary. Then there exists a natural number n € N with

(n+1) P2 <e<n Pl (4.7.1)

Let a = ay 4+ ag+ - + ap + apgy + - - - € A% be an element of A? with a; € AY. For
Sp = ai + as + - - - + a, we compute that

la = snll, < > axll, < SN kP2t < (n+1)” Z 27F=(n+1)P2" <
k=n-+1 k=n-+1 k=n-+1

Hence, we see that S7 := A} + AJ + --- + AP is an e-net for A®. As in the proof of
Theorem 1.3.9, we get that
1S5] < exp(2P™T).

Consequently, we conclude that
2p’ n+1

< 2p’n+2'
In2 —

log N(AB, 6) <
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Finally, in view of (4.7.1) we have that 2" <2n %' and £ < (n+1)72" < 270HD,
This implies log 2 < n (3 + 1). Hence, we see that
/ 2 2 / / / 2 / / / 1 _ﬂp/
op'nt2 < 92ty n PP op < 9%tp (ﬁ-l— 1)ﬁp g P (log 6)
and this gives the desired estimate
8 24/ Bp' —p' 1 w4
log N(A” ) <27 (B4 1)P 7P <log) :
€

Now let us deal with (1.3.18). For m € N, let E,, be defined as in the proof of
Theorem 1.3.9. At first we show that for m € N, m > 4 and

exp (_2p/2m71_1> S 6 S 2_2m+1
it holds that
log N (Ep,27'%) > 272677 (4.7.2)

According to Lemma 4.6.2 there exists a subset ), C E,, with

15 15 \!/r
iz o (2550w lamgl, > (22"
Qul = exp (575077) and g =l > (505
for all ¢,q¢' € Q.n, ¢ # ¢'. We conclude that

1/ 15 \YP 1 15 ,
logN | E,, = [ —— > _— = 5P >95577
o8 ( ™Y (4096) 5) “ sz’ =200

1
Furthermore, it holds that % (ﬁ) v > 8}—32 > 2710 and this yields the assertion.
Now for m € N we define

Efn = conv (Agm,“rl) + conv (Agm,lJrQ) + -+ 4 conv <Agm)

and prove that 2"(=9) F c ES. To this end, fix a natural number m and let
2m=t 41 < k < 2™. First, observe that for every k in the range described above it
holds that 2709 conv(Ay) C k' conv(Ay). Hence, we get

2m 2771,
2N E, = 3 2P conv(Ay) € > kP conv(4y)
k=2m—141 k=2m-141
2m

= Y conv (Af) = EP.

k=2m—-111
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Since E’ C conv (Aﬁ), we conclude that
log N( conv(A?), fy) > log N(Eﬁb, fy) > log N(2m(1_ﬁ) E,, ’y)
=log N (Ep, 2" 5) (4.7.3)

for v > 0. The next step is to apply (4.7.2) with § = 2'92™(5~D . However, the
crucial step is to find the right choice of m and . First, observe that there exists a
number ng > 2 which depends on 3, such that

2% (logn)?1 272" <n™? for all n > ng. (4.7.4)

Now let 0 < & < 272" = ¢(f8) be arbitrary. Then there exists a natural number
n > ng with 27201 < ¢ < 272" Let m = |loglogn| > 4 and v = 272", In view of
(4.7.4) we compute that

§ = 2109m1) 5 < 910 (Jog )Pt 272 < 72 < 9 2T g2
Hence, applying estimate (4.7.2) with § = 2102m(=1) 2727 giyeg
log N(Em, gm(A-1) 2—2”) > 9100/ =5 gmp/ (1) 92p'n.
Next, from e < 272" and (4.7.3) with v = 272" we obtain that
log N(conv(Aﬁ), 5) > logN(conv(Aﬁ), 2_2”) > 97 10P' =5 gmp'(1=5) 92p'n
Finally, from 22" > 272¢7 and 2™ < logn < loglog { we conclude that

, , , , p'(1-8)
omp'(1=-0) 92p'n > 97w P (log log 1) .
€

This yields the desired estimate

5 o5 1 p'(1-5)
log N( conv(A”), 5) > 2 € log log
£

and finishes the proof of Theorem 1.3.10. [ |

4.8 Proof of Theorem 1.4.1

We may assume that A consists of more than one element. Let 0 < t < oo be
arbitrary. Applying [CKP99, Prop. 4.4] with b, = n'/! gives

sup kY ep(aco(A)) < e (t) <||A|| + 2V sup kM? 5k(A)>

1<k<n 1<k<n
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for all n € N. Next, we observe that

jaj = A
81(14)

AL
A) < ke (A
R A

and 1 < E”i”. Hence, we conclude that
1(4)

A
JAl+ 2 sup ke ep(a) < (1 4+ 29 T4 g pe ),
1<k<n €1 )1§k§n

Consequently, for all natural numbers n € N we obtain the estimate
sup kYt eg(aco(A)) < ey(t)

Al 1
sup ke (A),
1<k<n o e1(A) 1;1271 #(4)

where cy(t) = (14 2Y%) ¢, (t) is a constant only depending on t. Now adapting the
proof of Theorem 1.3.5 or Proposition 2.5.2 yields the assertion. [ |
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5 Operators factoring through
general diagonal operators

This chapter is devoted to the study of entropy numbers of operators S which admit
a factorization

L 5 Y
N
L

where D, : [, — [, is a diagonal operator generated by a sequence (o), and
T : 1, — Y is an arbitrary operator. A special case of this setting was considered
by Carl in [C82]. We are interested in the case that the sequence (o,), belongs to
some generalized Lorentz sequence space [, 4. Assuming a local entropy estimate
associated with the operator T, we want to determine the entropy behavior of the
composition operator T'D, : [, — Y. We start with formulating the main result of
this chapter.

Y

Theorem 5.0.1. Let 1 < u,v < oo and let ¢ be a slowly varying function. Suppose
that Dy, : 1, — 1, is a diagonal operator generated by a sequence (0,,), € lyt,
where 0 < r < oo, 1/r > (1/v — 1/u); and 0 < t < oo. Furthermore, suppose
that T : 1, — Y is an arbitrary operator with image in a Banach space Y. If there
are constants T, > 0 and § € R such that for all natural numbers n € N and all
operators R : ;) — [, the entropy estimate

n

ex(TR: 1" —Y) <7k (log <k

B
FU)ITIIRL, 1k<n (5.0)
is satisfied, then
(en(TDa ly — Y)) €lsyp for 1/s=1/r+1/u—1/v+a.

For the proof of Theorem 5.0.1 we make use of the so-called quasi-norm-technique;
we do not need interpolation theory. For s > 0 and 7" € £(X,Y) we define

L (T) = sup k'/* e, (T)

,00
keN
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and
LOX,Y):={T e LX,Y): LEL(T) < oo} .

The propert1es of entropy numbers imply that L ) defines a quasi-norm on the vec-
tor space £¢)_(X,Y) with quasi-norm-constant Q = 21/ Due to Aoki and Rolewicz

(cf. [Ao42], [Ro57]), every quasi-norm ||-|| with quasi-norm-constant ) is equivalent
to the p-norm
n 1/p n
e = in (Z uwkup) =S o n=12. b
k=1 k=1

where p is given by the equation @ = 2'/7~1. Consequently, there exists a constant
¢ > 0 such that for all natural numbers m € N the estimate

1/p
L, (Z Tk> <c (Z (L (T3)" )
k=1
is satisfied, where p is given by the equation 2% = 2771 ie. 1/p =14 1/s.

In preparation for the quasi-norm-technique, let us introduce some lemmata first.
For the proofs we use ideas and techniques from [C81a|, [C81b] and [C82] (see in
particular [C81a, Lemma 1], [C81b, Th. 1], [C82, Lemma 2]).

Lemma 5.0.2. Let X, be a (real or complex) normed space with dim(X,,) =n < oo.
Then for all s > 0 there exists a constant ¢ = c(s) > 0 such that

1O, (1) < ¢ ¥,
Proof. Taking Lemma 2.4.4 (ii) into account, we get

sup k% ex(Ix,) < 3 sup k/* 2~ T < 3. 2% sup kM2
keN keN keN

Observe that the function f(z) = 272, z > 0, attains a maximum value of

s-e ln( )"
Hence, we conclude that
m 1/s 1/s
Y e(Iy,) <320 | ——— <3 —_— s
ilellgl er(lx,) < ’ <s : e-ln(2)> V2 (5 e- ln(2)> "
which finishes the proof. [ |

In order to prove the next lemma, we need the following fact: Given o > 0 and
B € R, there exists a constant ¢ = ¢(a, 3) > 0 such that for all natural numbers
n € N it holds that

n 8
sup k“ <log <k + 1)) <c-n” (5.0.2)

1<k<n

The proof is straightforward, and so is omitted.
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Lemma 5.0.3. Let X,, be a normed space with dim(X,) = n < oo and let Y be
a Banach space. Suppose that T € L(X,,Y) is an operator satisfying the entropy
estimate

B
s Xo =) <70 (log (T +1)) 7]

for all natural numbers k with 1 < k < n and some constants T, > 0 and § € R.
Then for all s with % > « there exists a constant ¢ = c¢(«, 3,s) > 0 such that

LT : X, = Y) < c-mal*~|T).

Proof. Since 1/s — a > 0, applying (5.0.2) gives

n B
sup kY ep(T: X, = Y) <71 |T| sup k¥ <log < + 1))

1<k<n 1<k<n k
<o, Bs) Tt |7

The next step is to estimate sup k/* e;(T'). To this end, we first observe that
k>n

sup k' ep(T: X, = V) =sup (n+ k)Y e, 1 (T : X,, = Y)
k>n keN

<en(T: X, —Y)sup(n+k)ep(lx,)
keN

<oYse (T:X, —Y) sup [nl/sek(lxn) + kl/sek(lxn)}
keN
<2 e,(T: X, = Y) [n!* + LY (Ix,)] -
Applying Lemma 5.0.2 yields

sup kS ep(T: X, = Y) < co(s) en(T : X — Y)n* < ey(s) Tnt*= ||| .

k>n

Hence, for all natural numbers £ € N we have that
kYo (T : X, —»Y) < max {ci(a, 3,5),ca(s)} 7nt/*= ||T)|.

This finishes the proof. |

Lemma 5.0.4. Let 1 < u,v < oo. Then for all s with 1/s > (1/u — 1/v)y there
exists a constant ¢ = c(u,v,s) > 0 such that

L (id : 17— 1) < ¢ n}/sH /e,
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Proof. Let us start with the case 1 < u < v < 0o. According to Schiitt (cf. [Sch84])
the entropy estimate

n 1/u—1/v
en(id : 1" — 1) < ¢ (u, v) k~A/v=1/v) (log <k n 1))

holds true for all natural numbers k& with 1 < k£ < n. Hence, applying Lemma 5.0.3
with X, =", Y =" T=id: ! =1 and a« = = 1/u — 1/v gives

Lgego(zd Sy — l:}) < 02(% v, S) pl/s+1/v=1/u

for all s with 1/s > 1/u—1/v.
Now let us deal with the case 1 < v < u < oo. From ||id : I — ["|| = nl/v=1/v
and the multiplicativity of entropy numbers we obtain

sup k' e (id : 1 — 17) < n'/v7V sup kS ey () = n*/vm e Lgfoo(lm).
keN keN

Taking Lemma 5.0.2 into account yields the desired estimate
LE(id : 17— 1) < eys) nt/oHH/o=1

in the case 1 < v < u < oo, where s > 0 is arbitrary. This finishes the proof. [ |
Now we are well prepared to prove Theorem 5.0.1.

Proof of Theorem 5.0.1. In what follows, ¢, co, ... denote positive constants which
may depend on u, v, ¢, r, t, a and F. Without loss of generality we may assume
that |o1| > |o9| > ... > 0. First, for £ = 0,1,2,... we define canonical operators
Qr € L(L,12"), Dy € L(12°,12") and J, € L(1,1,) by

Qk(gla 527 .- ) = (€2k7§2k+17 v 7£2k+1—1>7

Di(&, -5 &or) 1= (0281, Ogrrt 16r)
and

Jk(él,...,&Qk) = (O, ,0,517...,£2k,0,...>.
——
2k—1

Clearly, it holds that ||Qx|| = || Jk|| = 1 and || Dx|| < |ogr|. Furthermore, the identity
operator from lik into lgk is denoted by I. For the sake of clearness, we present the

following diagram:
Do

22—
u u
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We have that D, = 3272 Jil, D@ and, therefore,

TDy =Y TJIp DiQx.
k=0

Define Ay := TJ I, D;Q. In order to estimate the entropy of the operator T'D,
it seems convenient to estimate the entropy of A, first. To this end, choose sg
with 1/s9 > « and s; with 1/s; > (1/u — 1/v); and let 1/s = 1/sg + 1/s3 >
a+ (1/u —1/v)4. Then the multiplicativity of entropy numbers yields

e s k k
L (AR <2V L (T T 12 =Y ) L (L 12— 127) | Dill (| Qe
< 2U/s ) OO(TJk 2= Y) LD (I 12— 12 owel.
Taking Lemma 5.0.3 into account gives

L (TJk 12 — Y) <arT (Qk) ||T|| | J ]

50,00

and Lemma 5.0.4 shows that

LO (I 12— 2) <oy (26) 70

S1,00

Hence, we obtain the estimate
L (Ay) < egr 2800t /ume) g T (5.0.3)

for 1/s > a+(1/u—1/v); and k € N. Next we split the operator T'D,, into S,, and
R,,, where

m—1 00
Sm = Z Ak and Rm = Z Ak
k=0 k=m

First let us deal with the case 0 < t < oo. For this purpose, let 0 < ¢ < oo be a
positive constant defined later. Choose s¢ such that 1/so > a+ (1/u—1/v); +1/q.
Since ng{oc is equivalent to an p = p(sy) norm, it follows with (5.0.3) that

m—1 1/p
ENENER O (TR
k=0
m—1 » 1/p
< st ||T) (Z (2k(1/so+1/v—1/u—a) |02k|> ) ] (5.0.4)
k=0

Next we estimate the sum on the right hand side. Obviously, for all 0 < k < m it
holds that

. 1/t . 1/t
2V oo | < <Z2ﬁ/q’02j|t> < (ZQﬁ/q|02j|t) :

J=0 J=0
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This yields

m—1 » 1/p
<Z (2k(1/so+1/v71/ufa) |O'2lg|) )

m—1 1/p
_ <Z (2k(1/so+1/v—1/u—a—1/<1) 9k/q ’0'2k-|)p>

k=0

m 1/t m—1 1/p
< (Z oit/q |02j|t) <Z <2k(1/50+1/v—1/u—a—1/q))p> ,

j=0 k=0

Since 1/sg+ 1/v —1/u —a —1/g > 0, we obtain

m—1 1/p
(Z <2k(1/50+1/v—1/u—a—1/q))p> < ce 2m(1/50+1/v—1/u—o¢—1/q)'
k=0

Consequently, we arrive at

. 1/t
W>@ws@wmuMWMW“HHM(Z?me).

$0,00
Jj=0

Finally, observe that
2m=1/50 ¢ 1(Sy,) < L (Spy)

50,00

and therefore
. 1/t
eom-1(Sm) < cs7 ||T| gm(1/v=1/u—a=1/q) (Z 2it/a |02j|t) . (5.0.5)
j=0

Now let us estimate the entropy of the remainder R,,. First, choose ry such that
1/r > 1/rg > (1/v — 1/u)4. In addition, choose s; > 0 with a + (1/u — 1/v); <
1/sy < a+1/rg+1/u—1/v. Using the p = p(s1) norm property of L and (5.0.3)
we obtain

oo

1/p
mgmmz@(z(ﬁgmmﬁ

k=m
o » 1/p
<o HT“ <Z (2k(1/s1+1/v71/u7rx) |02k‘) ) _ (5.0.6)
k=m

Obviously, for all £ > m we have that

o 1/t
2k/7‘0 ’UQk‘ < (Z 2jt/7“0 |02j|t)

Jj=m
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and, therefore,

1/p
(2k(1/31+1/v—1/u—a) |O'2k |)p>

(
-

{

Since 1/sy + 1/v — 1/u — o — 1/rg < 0, the summation formula for the geometric
series gives

e [

1/p
(2k(1/31+1/v—1/u—a—1/7'0) 2k/7-0 |O'2k |>P>

m

NE

1/t o0 1/p
2jt/ro |O'2j |t) (Z (2k‘(1/81+1/U—1/u—0!—1/7‘()))p) )

k=m

Il
3

o] 1/p
(Z (Qk(1/31+1/v—1/u—a—1/T0))p> <en gm(1/s1+1/v=1/u—a=1/ro)

k=m

Hence, we obtain that

§1,00

o 1/t
Lo (Rn) < erg 7 [T 270/ttt ) (Z 20/ mv)
Jj=m

and consequently
- 1/t
eom-1(Ry) < c137 ||T|| 2m/v=1/uma=1/m) (Z 27t/ |02j|t) . (5.0.7)
j=m

The additivity of entropy numbers and the estimates given in (5.0.5) and (5.0.7)
lead to

€om (TD0‘> S €2m—1 (Sm) + €2m—1 (Rm>

1/t
m
<cuT ||T|| gm(1/v=1/u—a=1/q) (Z th/q|02j|t>
=0

o 1/t
+ 2m(1/v—1/u—a—1/ro) (Z 2jt/r0 |O'2j |t)
j=m

According to Lemma 2.3.3 it is enough to show that (@(2’") 2m/s eQm(TDC,)> be-
longs to l;, where s is given by the equality 1/s = 1/r 4+ 1/u—1/v+ «. To this end,
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we first observe that

00 A\ U
(Z (p(27) 27" e (TD,)) )

m=0
<asT T (Z(SO(?m))t A I
m=0 7j=0

o 1/t
+ Z 2mt (1/r—=1/70) Z 2]t/r0 |0_ |t) )

j =m

Changing the order of summation gives

(X (w2 enirn,)') !

m=0

< 57 || (Z?t/q o9 | Z th(l/r 1/q)

7=0 m=j

1/t
+22Jt/ro ‘O’ ’ Z th(l/T 1/7“0)) _

Finally, we choose ¢ such that 0 < ¢ < r. Then Lemma 3.0.4 gives

Z (@(Qm))t th(l/r—l/q) < 16 (¢(2j)>t Qﬁ(l/?‘—l/Q)‘

m=j

Furthermore, recall that 1/r > 1/ro. Hence, taking Lemma 3.0.3 into account, we

obtain ,
J

Z (¢(2m))t th(l/r—l/ro) < cpn (90(23))15 2jt(1/r—1/r0)‘

m=0

Consequently, we arrive at

s 1/t o 1/t
t
(Z (w(2™) 27 esn(T D)) ) <esT T (Z Cleabt) ) ,
m=0 7=0
which shows that

(on)n € Lyt implies (en(TD(,))n € lsiy

and finishes the proof. For the sake of completeness, we sketch the proof for the case
t = oo. This time, choose sy such that 1/so > a+ (1/u —1/v);+ + 1/r. Then, using
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(5.0.4), we obtain

m—1 1/p

¢ s v—1/u—a p
Lgo?oo(Sm) <ecsT |7 (Z (Qk(l/ o+1/v-1/ )|02k|) )

k=0
<cs7 ||T|| sup @(2’“) ok/r |oor | X
keNp

m—1 ) 1/p
« <Z (((p(Qk))_l 2k(1/so+1/’u—l/u—a—l/'r’))p> '

k=0

Applying Lemma 3.0.3, the sum on the right hand side can be estimated by

—1 1/p
<mz: ((90(216))—1 2k(1/so+1/v—1/u—a—l/r)>p> < 1o (¢(2m))—1 2m(1/so+1/v—1/u—a—1/r).
k=0

Hence, we get

eam-1(Sm) < eoo 7 ||T|| (p(2m))~t 2m(t/vt/umal/n) sup @(28) 25/ | o
0

Now consider the remainder R,,. This time choose s; such that a + (1/u—1/v); <
1/s1 <a+1/r+1/u—1/v. Then, using (5.0.6), we obtain

00 1/p
e S v—1l/u—« p
Lgl),oo(Rm) <7 ||T <Z (Qk(l/ 1+1/v-1/ )|02k]) )

k=m

< 107 || T|| sup ¢(29) oh/T o9k | X
keNg

S 1/p
X (Z ((@(Qk))_l 2k(1/31+1/v—1/u_a_1/r))p> ‘

k=m
From Lemma 3.0.4 we know that

> 1/p
<Z ((¢(2k>)—1 2k(1/51+1/v—1/u—a—1/7~))P) < gy (@(Qm))—l om(1/s1+1/v—1/u—a=1/r)

k=m

and this yields

eam-1(Rpy) < oo 7 ||T|| (p(2m))~F 2m(t/omt/umazi/r) sup ©(2%) 267 | oy .
0

Finally, we arrive at

©(2™) 2% eym (T'Dy) < ©(2™) 2% egm-1(Sm) + ©(2™) 2™ egm-1(Ry)
< eo37 ||| sup ©(2%) 257 |o .
keNy
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This shows that
(0n)n €l implies (en(TDg)) € Lsoowp

with 1/s =1/r +1/u — 1/v + « and finishes the proof of Theorem 5.0.1. |

Remark 5. The entropy estimate (5.0.1) is essential for Theorem 5.0.1 to hold.
However, we can always estimate the entropy of an operator TR : [ — Y by

enTR: 1" = Y)<||IT| |R|, 1<Ek<n.

Hence, we have (5.0.1) with 7 = 1 and o = § = 0. This can be seen as a setting of
Theorem 5.0.1 where we have no additional entropy information. Carefully reading
the proof of Theorem 5.0.1 shows that the assertion of Theorem 5.0.1 remains true
in this case, i.e.

(en(TD(7 ty — Y))n €l with 1/s=1/r+1/u—1/v.

Now we consider the special case of Theorem 5.0.1 where Y = [, and T = id :
l, — l,. Then the composition operator T'D,, is nothing but the diagonal operator
D, : 1, — l,. Hence, with the help of Theorem 5.0.1 we can get insights into the
entropy behavior of diagonal operators. The following result extends an earlier result
of Carl given in [C81b, Th. 2] (see also [O78]) by adding slowly varying functions.

Corollary 5.0.5. Let 1 < u,v < 0o and let ¢ be a slowly varying function. Suppose
that 0 <r < oo, 1/r> (1/v—1/u)y, 0 <t <oo and 1/s=1/r+1/u—1/v. Then
we have that

(On)n € by if and only if (en(D(7 1, — l”)>n € ls i

Proof. To prove the only-if-part we apply Theorem 5.0.1 with Y =1, and T = I,.
Using the trivial estimate ey ([;,R : I} — [,) < ||[R]|,ie.7=1and a =0 =0
(cf. Remark 5), leads to the desired assertion. The proof of the if-part is analogous
to the proof of Proposition 1 in [C81b]. Without loss of generality we assume that
|o1| > |o2| > ... > 0. Obviously, if there exists an index k such that o, = 0, then the
statement is true. So assume that |oy| > |oo| > ... > 0. For n € N, define canonical
operators J,, € L(I7,1,) and Q,, € L(l,,1}) by

u’

Jn(Sl?"'afn) = (517"'757170707"‘)

and

Qn(§1,§2, e ) = (gla s 7571)‘
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Clearly, we have that ||.J,|| = ||@Qn| = 1. Furthermore, define D,, € L(I*,1) by
Dn(£17 c. 7571) = (51/0'17 c. 7£n/0n)

and observe that ||D,|| < |o,|™!. Then the identity operator I,, : I", — [} can be

factorized as
In

la Iy
I i Tfff)
" — l, —=I" :

Dy w JIn u Dy Qn

where I{V and I{?) denote the respective identity operators. From [P78, 12.2.1.] we
know that e,(I, : I — I) > 5-. Hence, the multiplicativity of entropy numbers
yields
n
— <e,(l, : 12 Iy

< |12 = 12| 1Qull en(Do) Il 1Dl |10 < 12, — 12

u
S nl—l/v Gn(DJ) |O_n|—1 nl/u‘

Consequently, we obtain the estimate
lon| < 2ent/*Yv e (D,)

for all n € N and, therefore,

Z [(p(n) pl/r=1/t !%!T < (2¢)" Z [90(”) pl/rH1/u=1/v=1/t en(DO'):|t
n=1 n=1
= (2¢)" > [ap(n) nt/st/t en(DU)]t < 00.
n=1
This implies (0,,), € Lyt [ ]

We would like to highlight the special case of Corollary 5.0.5 where ¢ = co. Here
we get, for 1/r > (1/v —1/u)y and 1/s = 1/r + 1/u — 1/v, that

—1/r

on <n Y p(n) if and only if e,(Dy : 1, — 1,) < n Y p(n), (5.0.8)

where ¢ is an arbitrary slowly varying function. Note that the only-if part of (5.0.8)
can also be obtained from [Kii05, Th. 2.2] (see also [Kii01, Th. 2]).

Next, let us consider the special case
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where Y is a Banach space of type p. This setting was studied by Carl in [C82, Th.
2]. By adding slowly varying functions, we will extend Carl’s results.

Corollary 5.0.6. Let 1 < u < oo and let ¢ be a slowly varying function. Suppose
that Dy : 1, — 1y is a diagonal operator generated by a sequence (0,), € L.y, where
0<r<oo, 1/r>1—1/uand 0 <t < oo. Furthermore, suppose that T : 1y — Y is
an arbitrary operator with image in a Banach space Y of type p, 1 < p < 2. Then
for the composition operator T'D, it holds that

(en(TDg 2l — Y)) €lsry with 1/s=1/r+1/u—1/p.
Proof. Applying Theorem 5.0.1 with v =1 and o = = 1—1/p (cf. Theorem 2.6.3)

immediately yields the assertion. |

Finally, we return to entropy estimates of absolutely convex hulls in the diagonal
case and prove the statement given in (1.1.6).

Corollary 5.0.7. Let A = {x1,xs,...} C X be a precompact subset of a Banach
space X of type p, 1 < p < 2. Suppose that 0 < r < o0, 0 < s < 00 and ¢ is a
slowly varying function. Furthermore, suppose that ||z,| < o, for all n € N, where
(0n)n s a monotone decreasing null sequence with (oy,), € ly.5.,. Then we have that

(en(aco(A)))n €lysy for 1/g=1/r+1/p.

Proof. Due to (1.1.2) we have that e, (aco(A)) = e,(SD, : l; — X). Hence, applying
Corollary 5.0.6 with © = 1 immediately yields the assertion. [ |
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6 Applications of entropy and
Gelfand numbers of convex hulls

We start with studying C(M )-valued operators T defined by abstract kernels K.
Using a general approach, we show how entropy and Kolmogorov numbers of such
abstract kernel operators are connected to the entropy of the image of the abstract
kernel. We consider the important case of a weakly singular integral operator T :
L,[0,1] — C[0,1] generated by a convolution kernel. Here, the Hilbert space case
p = 2 is of particular interest. In addition, we also investigate the case when Tk :
Ly]0,1] — L,[0,1] for 1 < ¢ < oco. Finally, we deal with entropy estimates of the
classical Riemann-Liouville operator in different settings. In all these applications
we need sharp estimates of entropy and Gelfand numbers of absolutely convex hulls.

6.1 Operators with values in C(M)

As already mentioned in the introduction, the entropy behavior of a compact ope-
rator is reflected by that of a C(M)-valued operator on a compact metric space
(M, d). Thus, when studying entropy numbers of compact operators, C'(M )-valued
operators are universal. Following the monograph [CS90] we first recall some basic
concepts related to C'(M)-valued operators.

The modulus of continuity w(f;9) of a bounded scalar-valued function f on a
metric space (M, d) is defined by

w(f;0) = sup {[f(t) = f(s)] : s,t € M, d(s,1) < 0}

for0 <0 <oo. If T: X — C(M) is an operator from a Banach space X in the space
C(M) of all continuous scalar-valued functions on a compact metric space (M, d),
then the modulus of continuity w(T};0) of the operator T is defined by

w(T;6) :== sup w(T'z;0).

$€BX

This canonical definition in fact makes sense for all § > 0 since

w(T;0) <2 [T
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From the Arzela-Ascoli theorem we know that an operator 7' : X — C(M) is
compact if and only if the limit relation

ali%aw(T; 9)=0 (6.1.1)
is fulfilled (cf. [CS90, Prop. 5.5.1]). In analogy to Hélder-continuous functions, a

compact operator T': X — C'(M) is called Hdlder-continuous of type a,, 0 < v < 1,
if

T;0
|T|a::supw( ’ )<oo
5>0  0“

Note that a Holder-continuous operator T of type « actually maps X into the
space C“(M) of Holder-continuous scalar-valued functions of type a on M. In the
special case a = 1, a Holder-continuous operator of type 1 is said to be Lipschitz-
continuous. The vector space Lip, (X ,C(M )) of all operators from X into C'(M)
which are Holder-continuous of type a becomes a Banach space under the norm

Lip (T) := max {||T : X — C(M)||,|T|.}-
For the space of all Lipschitz-continuous operators 7' : X — C(M) we simply write
[cz’p(x, C(M)) : Lip] = [,Cipl (X, O(M)) , Lipl} :

By changing the metric d on M to d*, 0 < a < 1, we reduce a Hoélder-continuous
operator of type a to a Lipschitz-continuous operator, i.e.

Lipo (X, C((M,d))) = Lip(X,C((M,d*))).

Now we represent compact and Holder-continuous C(M)-valued operators by
abstract kernels. To this end, let us introduce the vector space C(M, Z) of all con-
tinuous Z-valued functions on a compact metric space (M, d), where Z is an arbi-
trary Banach space. It is clear that C'(M, Z) is a Banach space with respect to the
supremum norm

K| := sup [ K(s)] ;-
seM
Just as for scalar-valued functions on M we define a modulus of continuity by
wz(K;0) :==sup{||K(s) — K(t)||,:s,t € M,d(s,t) <4}

for 0 < 0 < o0o. Since wz(K;9) < 2 || K|, holds true for all 6 > 0, this is well defined
for arbitrary bounded Z-valued functions K on M. From the fact that a continuous
function on a compact set is uniformly continuous, we see that a bounded Z-valued
function is continuous if and only if

él_iglerZ(K;(S) = 0. (6.1.2)
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A stronger condition than the limit relation in (6.1.2) is that of Hélder-continuity.
The continuous function K € C(M, 7) is said to be Hdélder-continuous of type a,
0<a<l,if
|K| 7.6 := sup wz(£:9) < 0.
7 5>0  0”
As a direct consequence of this definition, we see that wz(K;d) < |K|z, 0% holds
for all 6 > 0. Consequently, for all s,t € M we have

K (s) = K(t)]l 7 < K|z (d(s,1))"
and this implies N
en(Im(K)) < |K|za (2a(M))

for all n € N. The vector space C*(M, Z) of all Holder-continuous Z-valued functions
of type a on M turns out to be a Banach space with respect to the norm

1K1 7 := max {|[K][ ., [K]za} -

If Z is a dual space, i.e. Z = X’ for some Banach space X, then an element
K € C(M, X") gives rise to an operator Tk : X — C(M) according to the rule

(Tkz)(s) = (x,K(s)), € X,s€ M, (6.1.3)

where (-,-) denotes the duality pairing between X and X’. The function K is called
the abstract kernel of the operator Tyk. Obviously, Tk is a linear operator and an
easy computation shows that it is also bounded:

IThc : X — C(M)][ = sup sup | (z, K(s)) | = sup [[K(s)[| x = [| Kl < 0.
IS

x€Bx seM

Moreover, we have that
w(Tk;d) = wx/ (K;6), (6.1.4)

hence, by combining (6.1.1) and (6.1.2), we observe that the operator Tk : X —
C(M) is compact. It does not surprise that stronger conditions on the kernel K are
reflected in the properties of the generated operator Tk. Indeed, if the kernel K is
even Holder-continuous of type «, then Tx : X — C(M) is a Hélder-continuous
operator of type a.

On the other hand, any compact or even Holder-continuous operator 7' from X
into C'(M) can be generated by an appropriate kernel in the sense of (6.1.3). More
precisely, we define the abstract kernel K : M — X’ by

K(s) = T's,, (6.1.5)
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where 0, is the Dirac functional on C(M) given by (L,ds) := L(s) for s € M,
L € C(M). An easy computation shows that

K|l =1T:X—=CM)|| and wx/(K;0)=w(T;0).

On the one hand, this implies K € C(M, X’) for T € IC(X, C(M)), on the other

hand we see by the very definition that |K|x/ o = |T|a. Hence, if T € Lip, (X, C(M))
is Holder-continuous of type a, 0 < o < 1, then for the kernel K given in (6.1.5)
it holds that K € C*(M, X') and || K|y, , = Lip,(T"). Moreover, for z € X and
s € M, we have

(Txx)(s) = (z, K(s)) = (z,T'05) = (Tx, 65) = (Tx)(s),

which means that the original operator T' coincides with the operator Tk generated
by the kernel K as given in (6.1.3). Summarizing the above-mentioned facts we
arrive at the following well-known statement (cf. [CS90, Prop. 5.13.1]).

Proposition 6.1.1. [CS90] Let (M,d) be a compact metric space and let X be a
Banach space. Then the map @ : K(X,C(M)) — C(M,X") defined by

O(T)(s) = T'6,, s€ M,

is a metric isomorphism from IC(X,C(M) onto C(M,X") as well as a metric

isomorphism from the subclass Lip,, (X,C’(M)) of IC(X, C’(M)) onto the subclass
C*(M, X") of C(M, X"), for 0 < a < 1.

Finally, in order to apply our previous results to C'(M )-valued operators Ty gen-
erated by abstract kernels in the sense of (6.1.3), we have to find a link to absolutely
convex hulls of precompact sets. To this end, let S : [;(M) — X’ be the operator
defined on the canonical basis (€g)seps of 11 (M) by Se; = K (s). Furthermore, let J
be the canonical embedding from C(M) into (M) and let Kx be the canonical
metric injection from X into the bidual X”. It follows directly from the definitions
that

JoTx = S'Kx (6.1.6)
and
en(S) = en<aco(1m(K))) and ¢, (9) = cn(aco(hn(K))). (6.1.7)

From (6.1.6) and the injectivity of the entropy numbers up to the factor two, we
conclude that

en(Tk) < 2en(JoTk) = 2¢e,(S'Kx) < 2e,(5").
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The next step is to connect the entropy numbers of Tk with the entropy numbers of
the absolutely convex hull of Im(K’) by using duality relations. To this end, assume
that X is a B-convex Banach space and that the abstract kernel K : M — X’ is
continuous. Since also X’ is B-convex, the operator S maps into a B-convex Banach
space. Furthermore, due to (6.1.7), the operator S is compact. Hence we can use
Theorem 2.5.1 to relate the entropy numbers of S with the entropy numbers of 5.
According to the previous considerations, this relates the entropy of the compact
operator Tx : X — C(M) to the entropy numbers of the absolutely convex hull
of Im(K') as a precompact subset of X’. In addition, the entropy numbers of Tk
can also be related to the Gelfand numbers of aco(Im(K')) by using well known
properties of the symmetrized approximation numbers. Indeed, by Theorem 5.3.2 in
[CS90] and in view of (6.1.6) and (6.1.7) we have that

dn(Tk) = ta(Tk) = ta(JTk) = ta(S'Kx) < 1,(S") = t,(5)
< cn(S) = cn(aco(lm(K))) (6.1.8)

and applying Theorem 2.1.1 to the operator Tk leads to the assertion. Note that we
do not need the B-convexity of X in this case. Let us summarize these results in the
following lemma.

Lemma 6.1.2. Let X be a B-convex Banach space. Then for every 0 < a < oo
there exists a constant ¢ = c(a, X') > 0, such that for the compact operator Tk :
X — C(M) with kernel K € C(M,X'") and all n € N we have

sup k% (Tx) < c¢ sup k:o‘ek(aco(lm(K))).

1<k<n 1<k<n
In the case of an arbitrary Banach space X, this statement remains true if one
replaces ek<aco(1m(K))> on the right hand side by ck(aco(lm(K))).

As a consequence of Lemma 6.1.2 and the Hardy-type inequalities given in Lemma
3.0.8 and 3.0.9 we obtain the following result. The proof is analogous to that of
Theorem 1.3.5 or Proposition 2.5.2.

Corollary 6.1.3. Let X be a B-convexr Banach space and let 0 < r,s < 0o. Suppose
that ¢ is a slowly varying function. Then there exists a constant ¢ = ¢(r, s, , X') > 0
such that for the compact operator Ty : X — C(M) with kernel K € C(M, X") and
all N € N it holds

2 (p(n)* n*/"=* (en(Tx)) < c ; (p(n))* n*/"~ (en(aco(Im(K))))"

and
sup p(n)n'"e,(Tx) < c sup @(n)n/" en<aco(1m(K))).

1<n<N 1<n<N
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In particular, we see that

(en(aco(lm(K))))n €lys, tmplies (en(TK))n € sy

for all0 < r < oo, 0 < s < o0 and any slowly varying function ¢. In the case
of an arbitrary Banach space X, the same holds true for the Gelfand numbers
c,,L(aco(Im(K))) instead of en(aco(lm(K))).

Now we are well prepared to give entropy estimates of Lipschitz-continuous ope-
rators Tk : X — C(M) with kernel K € C'(M, X") (cf. [CHKS88], [CS90, Th. 5.10.1],
[CKP99], [St99], [St00], [CE01], [CHP11]).

Theorem 6.1.4. Let M be a compact metric space with the property that there are
constants 7,0 > 0 and v € R such that for all n € N it holds

(a) en(M) < 7n 7 (log(n+1))"7 or
(b) en(M) <71n 7 (log(n+1))" .

Furthermore, let X be a Banach space such that the dual Banach space X' is of type
p, 1 < p < 2. Moreover, let K € CY(M, X') be a Lipschitz-continuous kernel and let
Tk : X — C(M) be the corresponding induced operator given by (6.1.3). Then in
the case (a) we have the entropy estimate

en(Tx) < en™ 7 (log(n + 1)) [|K] x4
forallm =1,2,3,... and in the case (b) it holds

n=? (log(n + 1)) K]y, , o<1/p,v€ER,
o (T) < ¢ n_i;j(log(n + 1))11/j""(10g(10g(n +3)) T Ky, o>1/p v ER,
n= P (log(n+ 1)) | K|l o=1/p,v <1,
n~ 7 loglog(n +3) || K|y, o=1/py=1,
for alln =1,2,3,..., where c is a constant which may depend on T,0,7v,p and the

type constant of X'. Furthermore, if 0 < r,s < 0o, then
(sn(M))n €l,s implies (en(TK))n €lys
with 1/q = 1/p' + 1/r. Moreover, we have that (en(M)) € l,.s implies

lp/’S’SON 0<7”<p/, 0<s< oo,
(en(TK)>n c lp/70075027 r = pl7 P S s < 00,
lr,s, pl<7'<OO,O<S<OO7

where p1(n) = (log(n + 1)Y/"=17=1/s and py(n) = (log(n + 1))/ 1.
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Proof. First observe that for all n € N it holds that &, (Im(K)) < [[K|| ., €,(M). In
a next step, we use the results from (1.3.19) - (1.3.29) to estimate the dyadic entropy

numbers of aco(Im(K)). Finally, we carry over these estimates from e, ( aco(Im (K )))
to e,(Tk) by using Corollary 6.1.3. [ |

Remark 6.

(i)

(i)

(iii)

Let (M,d) and X be as in Theorem 6.1.4, but assume that K : (M,d) — X’
is a Holder-continuous kernel of type o, 0 < o < 1. Then the estimates in the
cases (a) and (b) of Theorem 6.1.4 remain true if we replace the exponents
o and v by ac and a7, respectively. For example, the estimate of the dyadic
entropy numbers of Tk in the case (a) reads as

en(T) < en™ Y7 (log(n + 1)) || K = (M,d) — X'||x.,,

foralln=1,2,3,.... To see this, change the metric on M from d to d*. Then
K : (M,d*) — X' is a Lipschitz-continuous kernel,

K= (M, dY) — Xl”X’,l = [|K: (M,d) — X,HX’,ON
and applying Theorem 6.1.4 with (M, d*) yields the assertion due to

en(M,d*) = (2.(M,d))".

The assertion of Theorem 6.1.4 remains true for Lipschitz-continuous operators
T € Eip(X, loo(M )) where (M, d) is a precompact metric space satisfying
the entropy condition of Theorem 6.1.4. This is due to the fact that there

exists a compact metric space (M, d) and a Lipschitz-continuous operator S €
£ip<X, C(M)) such that

en (M,d) <ey(M,d) <2, (M,d)
and
en(T: X = 1oo(M)) < 6, (S: X = C(M)) < 26,(T : X — loo(M))
for all n € N.

Consider an operator T : [;(M) — X, where (M,d) is a precompact metric
space and X is a Banach space. Such an operator is said to be Lipschitz-
continuous, if its dual 7" belongs to Ez'p(X’, ZOO(M)) (cf. [CEO1, Section 3]).
Theorem 6.1.4 remains true for Lipschitz-continuous operators 17" : i1 (M) — X,
where X is a Banach space of type p, 1 < p < 2, and (M, d) is a precompact
metric space satisfying the entropy condition of Theorem 6.1.4.
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(iv) For later use, we highlight the special case of Theorem 6.1.4 where X = L,
for 1 < ¢ < co. Here we have in the case (a)

en(TK) S cn—a—min{l/Q§1/2} (log(n + 1))_7 ||K||X/,1

for all n = 1,2,3,... and in the case (b) we obtain for all n = 1,2,3,... the
estimates

en(Tk) < en”? (log(n +1))77 [[K|lx ,
for o <min{1/q;1/2}, v € R,
en(Tx) < en” T2 log(n + 1)y t/a/227 (log log(n + 3)) ™ 1K lx,
for 0 > min{1/q;1/2}, v € R,
en(T) < en™ ™2 (log(n + 1) || K|,
for 0 = min{1/¢;1/2}, v < 1 and
enl(Tic) < en™ /2 loglog(n +3) 1K) .,

for 0 =min{1/¢;1/2}, v = 1.

This is due to the fact that (L,)’ = Ly is of optimal type min {¢’; 2}, where ¢’
is given by the Holder condition 1/q +1/¢ = 1.

6.2 Abstract and integral operators

Let M be an arbitrary set and let K : M — X’ be a bounded function from M into
the dual X’ of a Banach space X, i.e.

K], = sup [|K(s)[|x, < .
seM

Then K can be considered as an abstract kernel which gives rise to an operator
Tk : X — lo(M) from X into the space l.(M) of bounded scalar-valued functions
on M by the rule

(Tkx)(s) :=(x,K(s)), zeX,s€ M, (6.2.1)

where (-,-) denotes the duality pairing between X and X’. An easy computation
shows that
[Tx = X = loo(M)|| = [[ K| -
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Let us define a pseudo-metric on M by
d(s,t) = ||K(s) — K(t)|lx, s,t€ M.
Next, we introduce the cosets
[t] . ={se M :d(s,t) =0}, teM,
and the family of cosets N
M :={[t]:te M}.

Observe that if s1,s9 € [s] and t1,ts € [t] then d(sy,t1) = d(se,t2). Hence, it makes
sense to define a metric d on M by

~

d([s], [t]) := d(s,t).
It turns out that the entropy numbers of (M, d) and (M, d) coincide,
en(M,d) = ,(M, d).

Usually, there is a natural metric d given on M. If the entropy numbers of M
with respect to the metric d are known and if there is a relationship between d and
the pseudo-metric d, then it is generally easy to compute the entropy numbers of
M with respect to the pseudo-metric d and, therefore, the entropy numbers of M
with respect to the metric d. As an example, consider the case M = [0, 1] with the
natural distance d(s,t) = |s — t| and entropy numbers

en((0, 1], d) = (2n)~".

If d(s,t) ~ ®(|s — t|) for some continuous strictly increasing function ® : [0, 1] —
[0, 00) with ®(0) = 0, then we obtain

en([0,1],d) ~ ®((2n)7").

Our aim is to give entropy estimates of the operator Tk : X — (M) mentioned

—

above in (6.2.1). To this end, define the operator Sk : X — [ (M) by

(Sxa)([s]) = (Txx)(s), =€ X,[s] € M,

—

so that €,(Txk : X — lo(M)) = e,(Sk : X — l(M)) for n € N. Then, for z € X
and [s], [t] € M, it holds

|(Sk)([s]) = (Sx)([t)] = [(Tkw)(s) = (Tra) ()] = [ (z, K(s) = K(1)) |

o~

< [lzllx [K(s) = KOl x = llzllx d(ls], [t]),
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which means that Skz is a continuous function on the metric space (]\7 ,J) and,
moreover, that Sg : X — loc(]w ) is a Lipschitz-continuous operator. Now, given
that the metric space (]\//T , J) is precompact, we can use Theorem 6.1.4 (cf. Remark
6 (ii)) to give entropy estimates of the operator Sk and, consequently, of the operator
TK.

In concrete cases, the Banach spaces X and X’ are function spaces over some
measure space (€2, 1) such that the duality is given by integration with respect to p,

(f,9) = /f z)dp(z) for fe X,ge X'

The kernel K is given as a function K : M x 2 — R such that K(s) = K(s,-) € X',
s € M. Then the generated operator Ty : X — l(M) is given as a kernel integral
operator by

(Tif)(s) = [ K(s,2) f(@) dpz).

To specialize even further, let us now assume that X = L,(£2, u) for some o-finite
measure space (€2, ) with 1 < p < oo. Then X' = L,(€2, 1) has optimal type 2, if
1 < p <2 and optimal type p/, if 2 < p < oo. In this case, the crucial distance on
M is given by

, 1/p'
d(s,t) = ( [ |K(s.2) - K(t, )P d,u(:v)) |

6.3 Weakly singular integral operators from L,[0,1] to
C'0, 1] generated by convolution kernels

In this section we give entropy estimates for weakly singular integral operators and
weakly singular integral operators of Volterra-type generated by convolution kernels.
We consider non-negative kernels K on ([0, 1] x [0,1]) \ {(0,0)} so that Tx maps a
function f on [0, 1] to the function

1
(Th)O) = [ K(ta)f(@)de, te0,1)
In the remainder of this section we distinguish between the cases

k(t — f <t
V) K= MO e
0, for x > t,

of a weakly singular kernel (W.S) and a Volterra-kernel (V'), respectively. Here k :
(0,1] — R is a non-negative, continuous and strictly decreasing function with a
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singularity at 0, i.e.
lim k(z) = oc.

r—0+

Actually, it would be enough to assume that k is strictly decreasing only in a neigh-
borhood of 0. Furthermore, we fix ¢ with 1 < ¢ < oo and assume that k € L,[0, 1].
These are standing assumptions in all of the results to follow.

The following lemma is the key to several examples.

Lemma 6.3.1. Let A C [0,1] be a subset of the interval [0, 1]. Denote by €, (A) the
n-th entropy number of A with respect to the absolute value | - |. Under the stated
assumptions (cf. p.126)

1 1/q
d(s.t) = ([ 1K (s,2) = K (t,2)|"do )
0
defines a pseudo-metric on [0,1]. In the case (WS) we have
Js—t] 1/q
d(s,t) < 4%/ (/ (k(u))? du> for0 <s,t <1,
0

and
en(A) 1/q
en(A,d) < 411 (/ (k:(u))qdu> forn=1,2,3,....
0

and in the case (V') it holds

( / |S_t(k:(u))qdu> < d(s.t) < 21/a ( /

and y
en(A q
(/O w (k:(u))qdu>

form=1,2,3,....

1/q |s—t|

1/q
(k(u))? du) for 0 <s,t <1,

1/q

< en(A,d) < 20 (/O 8n(A)(k:(u))qdu>

Proof. In order to estimate the pseudo-metric d let s > t. From the inequality
la — 0] <a? —b?| for a,b>0andq>1,

we obtain the estimate

(s, 0" = [ 18 () = K(ta)frde < [0, 0)7 = (K (1,2)7] da

~ Jo |(k(|s — 2]))? — (k(|t — z]))?| d.
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A natural way to proceed is to decompose the integration region. To this end, put
1
1= /0 |(E(ls —z|)?— (k(|t — x|))!|de = I, + I, + I3,
t
L= [ 1(k(ls = 2]))? = (k(Jt = 2[))| dz = /0 [(k(t —2))" = (k(s — 2))"] dz
s s—1 s

_ q _ q _ q _ q

(k) du— [ (k) du= [ (k(w))*du— [ (k(w)*du,

t

s rS rs—t

= | (k(s—2)?de+ | (k(x—1t))dx =2 ‘ (k(u))?du

and
L= [ 1060 = )7 — (ke — e = [ (ol — )"~ (bt — 1)) da
_ /1 s qdu—/slj(k‘(w)qdu:/Os_t(k(u))qdu—Allt(k(u))qdu‘
We obtain

d(s, )1 <I=1+1,+ I
<4/” qdu—{/ts(k(u))qdw

<4/ )4 du

for all 0 < ¢ < s < 1. This implies the desired estimates in the case (IWS) of a
weakly singular kernel. In the case (V') of a Volterra-kernel

1-t

(k(u))? du}

1-s

k(t —x), for = < t,
0, for x > t,

K(t,x):{

we get, for s > t, that
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Thus, similarly as before, we obtain the estimates
/ts(k(s _2))?dz < (d(s,1))"
/ [(k(t — 2))7 — (k(s — 2))7] dx+/ s —2))dz
—2/ qdu—/ts(k:( )¢ du
and therefore o _t
/0 (k(u))? du < (d(s, 1) q<2/ w)? du
for all 0 <t < s < 1. This yields the statement and finishes the proof. [ |

Now we treat several important examples of weakly singular kernels.

Lemma 6.3.2. Let A C [0,1] be a subset of the interval [0, 1]. Denote by €, (A) the
n-th entropy number of A with respect to the absolute value | - |. Under the stated
assumptions (cf. p.126) the following statements hold:

(i) If the function k : (0,1] — R is defined by
_ 1
k(z)=x"", 0<7<-,
q
then we have in the case (WS)
d(s,t) < Js — 1777 and 2,(A,d) < (eu(4)7,
and in the case (V') it holds
d(s,t) ~ |s — 177 and en(A,d) ~ (en(4))".
(i) If the function k : (0,1] — R is defined by
1
k() =2"Y9(cg — Inz) =7, p < B,
where ¢y is a positive constant, then we have in the case (W.S)
d(s.t) < (co—In|s — )40 and c,(Ad) < (co—In sn(A))l/ .
and in the case (V') it holds

d(s,t) ~ (co—In|s —t)Y9P and e,(A,d) ~ (Co _ 1115”(14))1/(]_’6‘
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Proof. Due to Lemma 6.3.1 it is enough to compute the expression

|s—t| 1/q
(/ (k(u))qdu> for 0 < st <1.
0

In the case (i), we have that

1/q

js—t]
(/ (k(u))? du) = (1 —qr) Vs — |97 for 0 <s,t<1.
0

Now let us turn to the case (i7). Observe that for any ¢y > 0 the function k is an
element of L,[0,1] and is strictly decreasing in a neighborhood of 0. The technical
assumption that k is strictly decreasing on the whole interval (0, 1] is ensured if we
choose ¢y large enough, e.g. ¢y > [3q. However, keep in mind that the upcoming
results are true for any ¢y > 0. For the corresponding integral we get

|s—t| /g
</ (k(u))? du) = (Bg— 1) (co—In|s — )98 for 0 < s,t < 1.
0

This finishes the proof. [ |

Now we are well prepared to prove the following theorem. Since convolution
operators from L,[0, 1] into C[0, 1] are, in a sense, closely related to certain diagonal
operators from [, into [, we may expect sharp estimates of entropy numbers of
convolution operators only in the case where 2 < p < oo. This is the reason why we
restrict our applications to this case.

Theorem 6.3.3. Under the stated assumptions (cf. p.126) the following statements
hold:

(i) If the function k : (0,1] — R is defined by
E(x) =277, 2<p<oo, 0<7’<l/,
p

then Ty maps L,[0, 1] into C[0,1] and in the cases (WS) and (V') the entropy
estimate
en(Tx @ L,[0,1] — C[0,1]) < n™ !

holds.
(i7) If the function k : (0,1] — R is defined by

, 1
k(z) = /P (co —lnx)_ﬁ, 2<p<oo, ? < B, cg >0,
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then Tx maps L,|0,1] into C|[0, 1] and in the cases (W.S) and (V') the following
entropy estimates hold:

nl/p,_ﬂ7 ]‘/p, < /6 < 17
en(Tk : Lp[0,1] — C[0,1]) < S n~ P (log(n + 1))'7, 1< < o0,
n~Y? log(n + 1), g =1.

Proof. The results follow from Lemma 6.3.2 with A = [0, 1], ¢ = p’ and Remark 6
(iv) after Theorem 6.1.4 with ¢ = p. For the proof of (i) we apply Theorem 6.1.4 (a)
with X = L,[0,1], 0 = 1/p’ — 7 and v = 0. The proof of (ii) follows from Theorem
6.1.4 (b) with X = L,[0,1], c =3 —1/p’ and v = 0. |

We can even go a step further and consider more general kernels given by kernel
functions

1
kE(z) =x"p(1/x), 0<7<—-,0<z<1,
q

where ¢ is a slowly varying function defined on [1, 00). Note that such kernel func-
tions always have a singularity at 0 (cf. Lemma 2.2.4). Furthermore, Lemma 2.2.5
tells us that k is up to multiplicative constants equivalent to a decreasing function.
This enables us to apply analogous reasoning as before.

First we present an analogon of Lemma 6.3.2.

Lemma 6.3.4. Under the stated assumptions (cf. p.126) the following statements
hold. If the function k : (0,1] — R is defined by

k(r) =x""p(1/x), 0<71<1/q,
then we have in the case (WS) the estimates
d(s,t) < s — 17 (s — 1Y) and £,((0,1],d) < 0" (2n)
and in the case (V') it holds
d(s,t) ~|s —t|"9 " o(|ls —t|™Y)  and £,([0,1],d) ~ n"V9p(2n).

Proof. Again, it is enough to compute

(/Or(k(u))q du) v for 0 <r < 1.

According to the definition, we have

/Or(]{;(u))q du = /07’ W (p(1/u))? du = /Oo T2 (p(2)) dz.

1/r
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Now it follows from Lemma 2.2.6 that
[ 2 )z~ 1/ (1)
1/r

Note that the arising constants depend on 7, ¢ and the function ¢. Hence, we obtain

(/Or(k‘(u))q du>1/q ~ T (1)),

which yields the assertion. [

The resulting version of Theorem 6.3.3 then reads as follows. The proof is based
on Theorem 1.3.1 (i) with X = L,/[0, 1] and Corollary 6.1.3.

Theorem 6.3.5. Under the stated assumptions (cf. p.126) the following statements
hold. If 2 < p < 0o and the function k : (0,1] — R is defined by

1
k(x)=2"Tp(l/z), 0<71< pt

then in the cases (WS) and (V') the following entropy estimate holds: For all § € R
there exists a constant ¢ = ¢(p, 7, p,3) > 0 such that for all n € N we have

n'" (log(n + 1))? e, (Tk : L,[0,1] — C[0,1]) < ¢ sup (log(k + 1))? (2k),

1<k<an

/
p —1
+1—p/7—'

1
where a, = n

Finally, let us treat an important example by considering a double-logarithmic
term.

Example 2. Under the stated assumptions (cf. p.126) the following statements
hold. If the function k : (0,1] — R is defined by

- 1
k(z) =27 (cg — Inx)™”? (co + In(co — lnx)) 7, 0<7<—,06,7v€R,
q

where ¢ is a positive constant, then we have in the case (W.S) the estimates

d(sat) < f(sataTaﬁafyaCan) and gn([()? 1]7d> # g(n77—75777Q)

and in the case (V') we obtain the asymptotic behavior

d(87t) Nf(s7t77—7/8777007q) and 6774([07 1]?d) Ng(n77—7/67’77q>7
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Where f(87t7T7 ﬂ,V,CO,Q) =
ls —t|Y9 " (cg —In|s —t]) P (co+In(co —In|s —t]))?, 7<1/q,3€R,v€R,
(co —In s — )7 (co + In(co — In|s — t[)) ™7, T=1/¢,8>1/q,7 €R,
(co+In(co — In|s — t[))/977, T=0=1/q,v>1/q,
and g(n,7,5,7,q) =

A (log(n + 1))_5 (loglog(n+3))™7, 7<1/q, BER, veR,
(log(n + 1))1/‘7_5 (loglog(n +3))77, T=1/q,8>1/q, v € R,
(loglog(n + 3))"/*°7, T=0=1/q,7>1/q

For this example, the resulting version of Theorem 6.3.3 reads as follows.

Proposition 6.3.6. Under the stated assumptions (cf. p.126) the following state-
ments hold. If 2 < p < oo and the function k : (0,1] — R is defined by

- 1
k(x) =277 (co — Inz)™? (co + In(co — lna:)) o<r< e 8,7 €R, ¢og >0,
then in the cases (W.S) and (V') the following entropy estimates hold:

en(Tk - LP[O’ 1] - C[O’ 1]) < f(n,7,8,7,p),

where f(n,7,[3,7,p) =

n™ (log(n+1))? (loglog(n +3))™7, 0<7<1/p,3eR, veR, (6.3.1)
n*? =P (log(n +1))77, T=1/p,1/p<B<1,veER, (6.3.2)
n~ VP (log(n + 1))*? (loglog(n +3))™, 7=1/p, 3> 1, v €R, (6.3.3)
n~Y? (log(n +1))'77, r=1/p,8=1,v<1, (6.3.4)
n~Y? loglog(n + 3), T=1/p, =1 v=1, (6.3.5)
n~ VP (log(n +1))°, T=1/p,8=1,v>1, (6.3.6)
(log(n + 1))/7' =7, T=0=1/p,v>1/p, (6.3.7)

and 0 in (6.3.6) is an arbitrary positive number.

Remark 7. The estimate (6.3.6) of Proposition 6.3.6 is a consequence of (1.3.11).
We use this weak estimate since we do not have precise entropy estimates of abso-
lutely convex hulls in this critical case.
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Finally, let us deal with the optimality of the results in the Volterra-kernel case
(V). In order to prove lower bounds of the entropy of Ty : L,[0,1] — C]0,1] we
construct suitable distance nets in T (By,o,1). The proofs are inspired by unpub-
lished works of Linde and Lacey in the Hilbert space case p = 2 (cf. [Lif10, p. 1807],
[K112a, Prop. 38]). However, it turns out that their techniques also work in a more
general framework.

Let us start with (6.3.1), i.e. 0 < 7 < 1/p’. Consider the 2" functions
fe(l’) = Zé‘i ]l[(l_l)/n,l/n](x), £ = (81, R 7571,) c {—]., 1}n .
i=1

Then f. € By, o4 for every choice of ¢ € {—1,1}". Now we estimate the mutual
distance of the images of f. under Tk in the Volterra-kernel case (V). To this end,
let €,6 € {—1,1}" with € # &. Let j be the least index such that ¢; # ;. Then

ITich. ~ Ticfolas > T )G /m) — (T g /m) =2 [ K(z) e

Hence, we have found a distance net consisting of 2" elements of Tk (B Lp[071]) and
therefore

enl T+ Lyl0,1] = €0, 1)) 2 e 1Ty L,[0,1] — €10, 1)) > [ Y (@) da

Using Lemma 2.2.6 we compute that

1/n 1/n
/ k(x)dx = / 277 (cg — Inz)™’ (co +1In(co — In a:)) " da
0

0
= [ 2% (co+Inz)” (co +1In(co + In z))i7 dz

=n"" (co+1nn)" (co +1In(co + In n)) !
and conclude
en(Tx @ L,y[0,1] — C[0,1]) = n"* (log(n + 1))~ (loglog(n + 3)) 7.

This shows that estimate (6.3.1) is best possible.

Now let us deal with optimality in the case 7 = 1/p’. The idea is to construct a
suitable distance net by using the kernel function k£ € L,[0, 1]. To this end, define
functions

1 _ / ,
f](l') = ?(k(.]/m_x))p/p]l[(]fl)/m,j/m)(l‘% J=12,....m, (638)

m
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where

i = ( / Y () dx)l/p.

Then f; € By, for every j = 1,2,...,m. Furthermore, for 1 <i < j < m, we
obtain

1Tk fi = Tic fill o = (Tk fi)(i/m) — (T f3)(i/m)| = - Um(k(Z))p/ dz = ap .

QA JO

Hence, we have that

em_1(Tx : L,[0,1] — C[0,1]) > ;agl.

Now let 7= 1/p/, > 1/p’ and v € R. Using Lemma 2.2.6 we compute that

1/m ) ! 1/
(/ (co— Inax)=PP (CQ + In(cyg — In 93)) dx)
0

o0 , 1/p'
/ (co+1Inz)7"P dz)

0+1nm

= (co + Inm)Y/P =P (co + In(co + lnm)) !
Consequently, putting m = 2"~! + 1, we get
en(Tk = Ly[0,1] — C[0,1]) = n*? =7 (log(n + 1))~

This shows that estimate (6.3.2) is best possible. Moreover, we see that in the critical
case 7 = 1/p’ and = 1 the estimate

en(Trk = Ly[0,1] — C[0,1]) = n~YP(log(n + 1))
holds for v € R, cf. (6.3.4).

Now let us deal with the case 7 = =1/p’ and 7 > 1/p’. Here we have

aP = (yp — 1)’1/”/ (co +1In(co + In m))l/p -

m

and therefore
en(Tk - Lp[O, 1] — C[0,1]) = (log(n + 1))1/10’_“/_

This shows that estimate (6.3.7) is best possible.
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Finally, we show that also estimate (6.3.3) is best possible. To see this, we consider
suitable means of the functions f; defined in (6.3.8). For J C {1,2,...,m} define

falz) =17V fi(w).

jed

Then f; € By, for every choice of J C {1,2,...,m}. Let m > 1 be a square
number and define

By = {fs:J C{1,2,...,m} with |J| = /m}.

Then it holds that

log [y, | = log <\/mm> > log ((\7%) ﬁ) = ;x/ﬁ log(m).

Let f;, fr € ®,, with J # L and let i be the least element in the symmetric difference
(JUL)\ (JNL). Then, for 7 =1/p', 8 > 1/p" and v € R, we have

Tics = TicSull > 1T ) ifm) — (T i) ifm)
= ot [ k) as

)—l/p Oél;n_l

AR
23

)72 (o + Inm) /PP (Co + In(co + In m)) !
1-p

log(m))_l/p <log (\/ﬁlog(m) + 1) ) X
log log (\/ﬁ log(m) + 3) )_W

s

3

(

X

N

Hence, we have found at least 93V log(m) elements in Tx(B Lp[o,u) with mutual dis-
tance (up to some constant) at least

~1/p 1-8 2
(x/ﬁ log(m)) (log (\/Elog(m) - 1) > (log log (\/ﬁ log(m) + 3) ) :
where m > 1 is an arbitrary square number. Therefore,
en(Ti = Lp[0,1] — C[0,1]) = n™ '/ (log(n + 1))~ (log log(n + 3))

and this shows that estimate (6.3.3) is the best possible.
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6.4 Weakly singular integral operators from 1,0, 1] to
C10,1] and L,[0, 1] generated by convolution
kernels

Given a precompact subset A of a Banach space X of type p, we do not have exact
entropy estimates of aco(A) in the critical case that

en(A) < n Y (log(n +1))°  with g > 1.

In contrast to that, in the Hilbert space case we have such estimates (cf. (1.2.14))
and very recent results of Gao [G12] show that they are asymptotically optimal.
Consequently, some of our estimates of e,(Tx) from the previous section can be
refined in the Hilbert space case. This fact and the general importance of the Hilbert
space case motivates this section.

In (6.1.8) we related the Kolmogorov numbers d,(Tk) of the operator Tk to
the Gelfand numbers cn(aco(lm(K ))) of the absolutely convex hull of Im(K). This

relationship leads to fruitful results in the Hilbert space case. Indeed, we can use
(1.2.11)-(1.2.15) to relate the entropy numbers of Im(K’) to both en(aco(lm(K))>

and ¢, ( aco(Im(K ))) Hence, in the Hilbert space case we can estimate not only the
dyadic entropy numbers e, (7Ty) but also the Kolmogorov numbers d,,(Tx) of the
operator Ty. In the Hilbert space setting, the resulting version of Proposition 6.3.6
reads as follows.

Theorem 6.4.1. Let (s,) stand for the Kolmogorov numbers (d,,) or for the dyadic
entropy numbers (e,). Under the stated assumptions (cf. p.126) the following state-
ments hold. If the function k : (0,1] — R is defined by

1
k(z) =27 (cg—Inx)™"? (co + In(co — lnx)) 0<r< 2 G,7v€E€R, cg>0,
then in the cases (W.S) and (V') the following estimates hold:

Sn(TK : LQ[O’ 1] - 0[07 1]) < f(n,T,ﬁ,’Y),
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where f(n,T,[3,7) =
n™ ' (log(n +1)) 7 (loglog(n +3))™", 0<7<1/2, R, vyER, (6.4.1)
n*?78 (log(n +1))77, T=1/2,1/2<8<1,y€R, (6.4.2)
n='% (log(n 4+ 1)) (loglog(n +3))™, 7=1/2, 3> 1,7 €R, (6.4.3)
n~Y2 (log(n + 1)), T=1/2,8=1,v<1, (6.4.4)
n~'? loglog(n + 3), T=1/2,8=1,7=1, (6.4.5)
n~2 (loglog(n + 3))' 7, T=1/2,8=1,v>1, (6.4.6)
(log(n + 1))/277, T=03=1/2,v>1/2. (6.4.7)

According to Theorem 6.4.1, the behavior of entropy numbers as well as Kol-
mogorov numbers of the operator Tk : L0, 1] — C0, 1] differs significantly between
the cases 0 < 7 < 1/2, 7 =1/2, 8 > 1/2 and 7 = § = 1/2. Furthermore, we see
that for fixed 7 = 1/2 a sudden jump occurs if the parameter [ crosses the point
B = 1. In addition, for fixed 7 = 1/2 and § = 1, we recognize a sudden jump if the
parameter 7y crosses the point v = 1.

We already know from the previous section that the entropy estimates given in
(6.4.1), (6.4.2), (6.4.3) and (6.4.7) are the best possible. In the critical case (6.4.4),
Lifshits [Lif10, Th. 3.2] proved that, for v = 0,

en(Tk : Ly[0,1] — C[0,1]) g n~ Y2,

Hence, in the critical case, our general approach using absolutely convex hulls does
not lead to a sharp upper estimate. We do not know whether the upper estimates
given in (6.4.5) and (6.4.6) are the best possible. Furthermore, we would like to
point out that Linde [Lin08] proved the lower estimate

en(Tk = Ly[0,1] — C[0,1]) = n~ Y% (log(n + 1))¥/275

in the case where 7 =1/2, > 1/2 and v = 0.

The estimates (6.4.1), (6.4.2), (6.4.3) and (6.4.7) of the Kolmogorov numbers of
Tk are also optimal. This can be derived from the optimality of the entropy estimates
in this cases by using Theorem 2.1.1 in combination with a trick given in [C85, p.
106]. The following lemma deals with this subject.

Lemma 6.4.2. Let T € L(X,Y) be an arbitrary operator and s € {a,c,d,t}. Sup-
pose that there exist constants ¢, co > 0 such that

en(T) > cn %p(n) and s,(T) < can “p(n)
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for all n € N, where a > 0 and ¢ is a slowly varying function. Then there exists a
positive constant C' = C(a, p, c1,c2) such that

sp(T) > Cn~%p(n) for alln € N.

Proof. We restrict ourselves to prove the assertion for a« > 0. The proof in the
case a = 0 is analogous. According to Lemma 2.2.5 the function 2% ¢(z) is up to
multiplicative constants equivalent to an increasing function ®, i.e.

Ci(a, ) (k) < kp(k) < Cola, ) (k)
for all £ € N. Consequently, we get

sup k**ep(T) > ¢y sup k% @(k) > ¢y Cp ®(mn) > G

1<k<mn 1<k<mn 2

(mn)® g(mn),

where m is a natural number which will be defined later. Taking Theorem 2.1.1 into
account we obtain

C
DL (mn)*p(mn) < sup K ex(T) < Cya) sup K sy(T)
02 1<k<mn 1<k<mn
< Cs sup k*s,(T)+Cy sup K s,(T).
1<k<n n<k<mn

According to the assumption, we have that

C
sup k** s,(T) < ¢y sup k¥ p(k) < ¢y Cy ®(n) < 22
1<k<n 1<k<n 1

n® p(n).

Furthermore, the monotonicity of (s, (7)), gives

sup  k** si(T) < (mn)** s,(T).

n<k<mn

Hence,we conclude that

C c, C
S () p(mn) < 22220 o(n) + Cs (mn)>* s, (T).
Cy Cy
For notational simplicity we define
c Oy and c2 Oy Cy
= n =

Al Cy 2 c;
and obtain

o o o e(mn)

Sn(T) > 4! (mn) gp(mn) —Yan @(n) — n—a QO(TL) Tm p(n) 72 )

- C3 (mn)?« C3 m?®
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Choosing
1/a
1
m = <72 i > +1
!
we check that (mn) (mn)
mn mn
yim® > (p+1)? — 72
p(n) p(n)
Since ¢ varies slowly, we have that
. p(mn)
lim (72 + 1) — 7 =1
n=o0 p(n)
The assertion follows. |

In contrast to Theorem 6.4.1 we now study entropy and Kolmogorov numbers of
convolution operators from Ls[0, 1] into L,[0, 1] for 1 < ¢ < oco. It turns out that
the asymptotic behavior of those numbers significantly changes in the critical cases.
This demonstrates the difficulties of estimating entropy and Kolmogorov numbers
of convolution operators.

Let us start with recalling the [-norm of an operator T': X — Y (or absolutely
~v-summing norm in [LP74]). Let I} be the n-dimensional Euclidean space and S :
l3 — 'Y an operator, then the [-norm of S is defined by

1) = ([ 152l a@) "

where 7, is the canonical Gaussian probability measure of R". For an operator
T:X — Y we define

U(T):=sup{l(TA):||[A: 1} - X|| <1,n € N}.

If A: Xg— X and B : Y — Y are operators acting between Banach spaces, then [
has the ideal property (cf. [LP74])

(BT A) < ||BI ((T) [ All-

Furthermore, we need a refined version of a Sudakov-type inequality. The following
theorem is due to Pajor and Tomczak-Jaegermann.

Theorem 6.4.3. [PT86] There is a constant ¢ > 1 such that for all operators
T:X — H from a Banach space X into a Hilbert space H and alln € N,

n? e, (T) < - U(T). (6.4.8)
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By Gordon [Go88] we know that ¢ < v/2.

For our purposes, we need an additional version of Pajor and Tomczak-Jaeger-
mann’s inequality (see also [CE03, Lemma A]). In order to formulate it we introduce
the approximation numbers with respect to the [-norm. For an operator T': X — Y
acting between Banach spaces X and Y the approzimation numbers with respect to
the l-norm are defined by

an(T;1) :=inf{l(T — A): A€ L(X,Y) with rank A <n}, n=1,2....

Analogously, we define a,,(7;11,) as the approzimation numbers with respect to the
absolutely q-summing norm (cf. [P87]). We remark that the approximation numbers
with respect to the [-norm were used for some time in functional analysis with
different notations (cf. e.g. [Pi89, Th. 9.1]). They also play a role in probability
theory since they describe the approximability of Gaussian processes by finite sums
(cf. e.g. [LL99]).

Lemma 6.4.4. (i) For an operator T : H — X from a Hilbert space H into a
Banach space X with [(T) < oo we have the inequality

YAy (T) < V2an(T31)  for k,n € N.

(ii) Let 1 < q < oo, then for all absolutely q-summing operators T : H — X from
a Hilbert space H into a Banach space X we have the inequality

kY2 dy 0 1(T) < V2q a,(T;10,)  for k,n € N,

Proof. Since [(T') < oo, the operator T': H — X is compact (cf. [Pi89, Th. 5.5))
and, therefore, we have that d,,(T") = ¢,(T") (cf. [P78, 11.7.7], [CS90, Prop. 2.5.6]).
Furthermore, it holds that 7" = KxTK ", where K is the canonical metric injection
from a Banach space Z into its bidual Z”. We conclude that [(7") < I(T") and taking
(6.4.8) into account gives

n'2d,(T) = n'?c,(T') < V2UT") < V2UT), neN.

Now let A: H — X be an operator with rank(A) < n. Due to the additivity and
rank property of the Kolmogorov numbers, we get

diin1(T) < dp(T — A) + dp(A) = dp(T — A)
for all k,n € N. Hence, we obtain

kY2 dy 1 (T) < KM2di (T — A) < V2UT — A)
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for all k,n € N and all operators A : H — X with rank(A) < n. This yields the
assertion

Yy (T) < V2a,(T; 1) for k,n e N.

Now let us deal with the proof of (ii). By Linde and Pietsch [LP74] we have for an
absolutely ¢g-summing operator T': H — X the estimate

I(T) < by 11, (T),

where
1/2“%1)
by = max q1;2 1 <Vq 1<g<oo.
L'(3)
Combining this estimate with (i), we get the desired assertion. |

Now we are well prepared to prove the following theorem.

Theorem 6.4.5. Let k : (0,1] — R be a kernel function as stated on page 126 with
k € Ly[0,1]. Then for the weakly singular integral operator Tk : Ly[0,1] — L0, 1],
1 <q < o0, given by

()0 = [ (it~ al) fa) do

the inequality

1/n 1/2
n'2d,(Tx : Ly[0,1] — L,[0,1]) < c/q (/0/ (k(u))zdu> , neEN,

holds true, where ¢ > 1 is an absolute constant.

Proof. By Lemma 6.3.1 we have with

1 1/2
d(s,t) = (/ K (s, 7) — K(t,x)mx)
0
the estimate
1/2n 1/2
£,([0,1],d) <2 (/ (k:(u))Qdu> forn=1,2,3,....
0

Using [CS90, Th. 5.6.1] (see also [RS96]) we get

1/2

an—f—l(TK : LQ[O, 1] — C[O, 1]) S 57‘:,([0» 1], d) S 2 (/01/2n(/{7(u))2 dU)
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Moreover, for the identity operator id : C[0,1] — L,[0, 1] we have that II,(id) = 1
(cf. [P87, 1.3.8]). Using the inequality

i1 (Tic = Lof0, 1] — Ly[0,1]:IL,) < TL(id : C[0, 1] — L,[0,1])x
X any1(Tk @ L[0,1] — C]0,1])

we arrive at

1/9n 1/2
i (Tie = Laf0,1] — L,[0,1];11,) < 2 (/D/ (k:(u))2> .

Combining this estimate with Lemma 6.4.4 (i7) we finally obtain

1/2n 1/2
Y2y (Ti © Lo[0,1] — L,[0,1]) < 2v/2g < /O ! (k(@)?)

for k,n € N. Putting £k = n and k = n — 1, respectively, we get with a new absolute
constant ¢ > 1 the desired estimate

1n 1/2
n'2d, (Tx : Ly[0,1] — L,[0,1]) < c\/q (/0 (k(U))2>

forn=1,2,.... [ |

Now we give the corresponding result to Theorem 6.4.1 for weakly singular con-
volution operators from L,[0, 1] into L,[0, 1] for 1 < p < oo.

Theorem 6.4.6. Let (s,,) stand for the Kolmogorov numbers (d,,) or for the dyadic
entropy numbers (e,). Under the stated assumptions (cf. p.126) the following state-
ments hold. If the function k : (0,1] — R is defined by

k(z) =277 (co — Inz)™” (Co +In(co — lna:)) o< r< ;, B,7 €R, ¢og >0,
then in the cases (W.S) and (V') the following estimates hold for all 1 < q < oo:
sn(Tk = L2[0,1] = Lg[0,1]) < ¢(5,7) Va f(n, 7. 5,7),
where f(n,7,5,7) =

n™ ! (log(n + 1)) (loglog(n + 3)) 7, 0<7<1/2,eR, yeR, (6.4.9)
n~% (log(n + 1))"?7% (loglog(n +3))™", 7=1/2,>1/2,v€R,  (6.4.10)
n~2 (loglog(n + 3))"/*77, T=0=1/2,v>1/2. (6.4.11)
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Proof. Using Theorem 6.4.5 we obtain the desired estimates for the Kolmogorov
numbers of Tk . By applying Theorem 2.1.1 we get the same asymptotic estimates
also for the dyadic entropy numbers of Tk. |

If we compare the estimates of entropy and Kolmogorov numbers of weakly sin-
gular convolution operators from L»[0,1] into C|0, 1] given in Theorem 6.4.1 with
those of Theorem 6.4.6 for the same convolution operator considered from L0, 1]
into L,[0, 1] we observe a significant difference in the critical case 7 = 1/2, § > 1/2,
v € R and in the super-critical case 7 = § = 1/2, v > 1/2. In the critical case
the difference is on the logarithmic scale, in the super-critical case it is even on the
polynomial scale. In particular, we see that the estimates given in Theorem 6.4.1
are not the limiting case ¢ — oo of the estimates in Theorem 6.4.6.

6.5 Riemann-Liouville operators

This section deals with entropy and Kolmogorov numbers of the famous Riemann-

Liouville operator . t
(Raf)(0) = iy ) (0= 2" (@) da

for 0 <t <1 and o > 0. Singular numbers (= approximation numbers) of these
operators between Hilbert spaces have been extensively studied by many authors
in the literature (cf. e.g. [Bu07, DM97, D093, D095, FM8&6, M01]). Our results ex-
tend and complement results in the literature, especially of Lomakina and Stepanov
[LS06], Li and Linde [LL99] and Linde [Lin04]. We start with recalling the fact that
the classical Riemann-Liouville operator satisfies the semigroup property

R(){(Rﬁf) - ROH—Bf? Oé,ﬁ > 0.

Furthermore, we need the following result for a general Volterra integration operator.

Lemma 6.5.1. Let k : (0,1] — R be a kernel function defined as on page 126 with
k € L1]0,1]. Then for the Volterra-operator

(Tih)0) = [ bt =) (@) da

we have that
Ty @ Ly[0,1) — L,[0,1], 1<p<oo0,

and for all 0 < § < 1 the estimate

I(Tx (- +0) = (Tre ) ()L [0, 1 < 2 [1F1 L, [0, 1]} /Oak(S) ds

holds true.
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Proof. Using the triangle inequality in L, we see that

I(Tx ) +60) = (T )OI,

1/p
(Tx )t +6) = (T ) dt)

0| t40

/ k(t+ 0 — ) f(z) do — / k(t — 2) f(2) dz

P 1/p
dt)
t+6

k(t+ 6 — ) — k(t — 2)) f(z)do + / k(t+ 6 — o) f(z) dz

t

P 1/p
dt)
1-6 P 1/p
0

Now we estimate the first integral I;. Applying Minkowski’s integral inequality (cf.
[HLP88, Th. 202]) we obtain
p 1/p
dt)

5 1-5 o« 1p
(/|k5+5 (8)]|f(t =) Lpy(s )d8> dt)
120 /19 1/p

</ </|k8+6 (P17 - )Ipdt) s

1-46 1/p
= / k(s + ) — k(s)] (/ |f(t—8)|pdt) ds

<Ifll, [ k(s +6) = k()] ds.

P 1/p
dt)

o—_

IN

o7 O\Z o7 O\E

/ k(t+ 6 — 2) — k(t — 2)] f(z) de

t+46
/ k(t+ 6 — 2)f(z)de

t

/t k(s +0) —k(s)] f(t —s)ds
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Since k is non-negative and decreasing we can continue with
1—§ 1-6 1-0
/ k(s + 8) — k(s)] ds:/ k:(s)ds—/ k(s + 6) ds
0 0

0
5 5 5
= / k(s)ds —/ k(1 —s)ds < / k(s)ds.
0 0 0
Hence, we have that
5
L<|f, [ k(s)ds.

Finally we deal with the second integral ;. Using again Minkowski’s integral in-
equality we see that

1-6 /6 P 1/p
I < (/ (/k(é—s)\f(s+t)|ds) dt)

0

< /(;S (/01_5(/{(5— s))p|f(s+t)|pdt>1/pds

d

0
<IIfll, [ k@ =s)ds = Ifl, [ k(s)ds.
The assertion follows. |

Analogously to the above, also differences of higher order can be estimated. Now
we are able to give upper entropy estimates of the classical Riemann-Liouville ope-
rator.

Proposition 6.5.2. Let 1 <p,q < oo and (1/p—1/q)+ < a < 1. Then
en(Ro 0 Lp[0,1] — L,[0,1]) g n™.

Proof. Applying Lemma 6.5.1 with the kernel function k(z) = ﬁx‘“l gives

2
al'(a)
for all & > 0. Hence, if 0 < av < 1, then the image R, (L,[0,1]) belongs to the Besov
space By [0,1] (cf. [Di03, Th. 3.18]). For a > (1/p — 1/q)4 let J; : By [0,1] —
BY1[0,1] be the natural embedding. Then [C81c, Th. 2] (see also [ETr96], [K686])
gives

[(Baf)(- +0) = (Raf) ()| Lp[0,1]]] < 0% [ /1Ly [0, 1] -

en(J1: By oo[0,1] — Bg,l[o, 1)) ~n™2

Furthermore, the Besov space By ,[0,1] is continuously embedded in L,[0,1] (cf.
[Tr10, Prop. 2.5.7]). Denote this embedding by J, und let I, , := JoJi : By ([0, 1] —
L,[0,1]. Then for all &« > (1/p —1/q)+ we get

en(Lpg B;“’OO[O, 1] = L,[0,1]) g n™*.
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Now, for (1/p —1/q)+ < a < 1 we factorize the Riemann-Liouville operator R, :
Ly[0,1] = Lg[0,1] as Ry = 1,4 RE, where R} : L,[0,1] — BS _[0,1] is the operator
R, with values in the Besov space. This yields the assertion due to the boundedness
of the operator RZ. |

In a next step, using Proposition 6.5.2 we give a complete overview about the
entropy behavior of the classical Riemann-Liouville operator. Our results extend
those of [LS06, Th. 2.2] from integers to positive real numbers.

Theorem 6.5.3. Let 1 <p,q<oc and (1/p—1/q)y < a < oo. Then
en(Ra : Lp[0,1] — Ly[0,1]) ~ n=c.

Proof. The upper estimate is a consequence of Proposition 6.5.2 and [LS06, Th.
2.2] in combination with the semigroup property of the Riemann-Liouville operator.
First, let 1 < p,q < oo. In view of Proposition 6.5.2 and [LS06, Th. 2.2] it is enough
to consider the case @ > 1 and a ¢ N. We write a = |a] +a, 0 < a < 1. Due to
[LS06, Th. 2.2] we have

en(Ria) : Lp0,1] — L,[0,1]) < n~
for 1 < p,q < oo and Proposition 6.5.2 gives
en(Ry : Ly[0,1] — L,[0,1]) x n™
From the multiplicativity of entropy numbers we conclude that
eon—1(Ra) = eon—1(Rja)Ra) < en(Rla)) en(Ra) S n-lelpTe =pe

for all n = 1,2,.... This yields the desired upper estimate for 1 < p,q < oo.
It remains to deal with the cases p € {l,00}, 1 < ¢ < 0 and 1 < p < o0,
q € {1,00}. Let, for example, p =1 and 1 < ¢ < co. For a > 1, we write « = a + b
with b > 1 and 0 < a < 1. Choose r > 1 such that 1 — 1/r < a and consider
R, @ L41]0,1] — L,[0,1] and Ry, : L,[0,1] — L4[0,1]. Due to Proposition 6.5.2 we
have that e,(R, : Li[0,1] — L,[0,1]) < n~® and we have already proved that
en(Ry : L,[0,1] — L,[0,1]) < n~t. Hence,

ean—1(Ra : L1]0,1] — L,[0,1]) < n™¢ nt=n"o

The other cases can be treated similarly.

In order to prove the lower estimate we use [LLS06, Th. 2.2] and the upper estimate
of e,(R,) we have already proved. First, let 1 < p,q < co. For a > (1/p — 1/q)+
and o ¢ N we choose 0 < a < 1 such that |a] + 1 = a + a. Then [LS06, Th. 2.2]
gives

en(Riapi  Lyl0,1] = L,[0,1)) 3= 1)



6.5 Riemann-Liouville operators 147

Consequently, applying Proposition 6.5.2 we obtain

T S eon 1 (Riajsr ¢ Lp[0,1] — L,[0, 1])
<en(Ry: L,y[0,1] — L,[0,1]) en(Rs = L]0, 1] — L,[0, 1])
<n %en(Ry: L0, 1] — Ly[0,1])
and conclude that

en(Ro = Ly[0,1] — L,[0,1]) 5= n-lel=1te = o

The remaining cases p € {l,00}, 1 < ¢ <ooand 1 < p < o0, q € {1,00} can be
treated analogously. [ |

Remark 8. Similar statements as in Theorem 6.5.3 can be obtained for a multi-
plicative s-number sequence (s,), if the s-numbers of the embedding

Lyg: By ool0,1] — B9 [0,1], 1<pg<oo, a>(1/p—1/q),
are known.

Finally, we deal with entropy and Kolmogorov numbers of weakly singular integral
operators Tk : L,[0,1] — C(A) for 2 < p < oo, where A C [0, 1] is a compact subset
of the interval [0, 1]. The inequalities of the following theorem are modifications of
the inequalities given in Theorem 1.2.2 and 1.3.1.

Theorem 6.5.4. Let 2 < p < oo and A C [0,1] be a compact subset of the interval
[0,1]. Suppose that k : (0,1] — R is a kernel function as stated on page 126 with
k € L,[0,1]. Then for the weakly singular integral operator Tk : L,[0,1] — C(A),

1
(Tuf)t) = [ k(lt—al) f(z)de, te 4,
the following inequalities hold true:
(i)

sup kYR (log(k + 1)) ey (TK : Lp[0,1] — C(A))

1<k<n
<clp,r,8,K) sup K" (log(k + 1))’ £x(A, d)
1<k<n'™?h
forv >0, 3 € R and n €N, where =,(4,d) < 47" (5D (k(w))? du) " n

the case p = 2 the inequality holds also for the Kolmogorov numbers d, (TK :
Ly]0,1] — C’(A)) of the operator Tk .
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(i)
n*?d, (TK : L]0,1] — C(A)) < ¢o(K) (1 + f; k™12 e (A, d))

k=1
and

k' 2dy (T« Lo[0,1] — C(A))

<c ((log(n + 1) 2 e, (A, d) + i gj(4,d) )

jmi1 J (log(j +1))1/2

for natural numbers k,n € N, where ¢,(A,d) < 2( (;-:n(A)(kw))Q du>1/2 und
en(A,d) = egn-1(A,d). In particular, we have that

22 dy (T : Lo[0,1] — C(A)) < ¢ (n1/2 en(A,d) + 3" 572 e4(A, d))

j=n
forn € N.

Proof. From Theorem 1.3.1 and Corollary 6.1.3 we get the desired estimate () (see
also Lemma 6.3.1). Furthermore, (6.1.8) gives d,,(Tx) < cn(aco(lm(K))), where the
kernel K : A — L,[0,1] maps A into L, |0, 1]. In the Hilbert space case p = 2, we
use the inequalities of Theorem 1.2.2 to obtain the desired result (7). [

Theorem 6.5.4 is the key to several estimates of entropy and Kolmogorov numbers
of weakly singular integral operators. In the following, we complement results for
the classical Riemann-Liouville operator given in [Lin04].

Proposition 6.5.5. Let A C [0,1] be a compact subset of the interval [0,1] with
en(A) < n0(log(n + 1)) for 6 > 1 and § € R (note that since A C [0,1] we
necessarily have @ < 0 for d = 1). Then for the classical Riemann-Liouville operator
R, : L,0,1] = C(A), 2 <p < oo, o> 1/p, we have the estimate

€n (Ra : Lp[O, 1] — C’(A)) < n—1/p=d(a=1/p) (log(n + 1))9(a_1/p)
and in the case p =2, a > 1/2, we also obtain

dn(Ra : Lo[0,1] — C’(A)) < n~1/2-6(a=1/2) (log(n + 1))9(a—1/2).

«

Proof. For the kernel function k(x) = ﬁx 1 a>1/p, we get

et < 0 ([t a0 " @ (77 " )

< n 0@ VP) (log(n + 1))%@1/P),
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Now we apply Theorem 6.5.4 (i) with 1/r = §(av — 1/p) and 8 = —60(av — 1/p) to
obtain the desired estimate

en(Ra : Ly[0,1] = C(A)) < n=/P=0@1n) (log(n 4 1))e=1/7),

In the case p = 2 we get the corresponding estimate also for the Kolmogorov numbers
of Ry : Ls[0,1] — C(A). |

In order to illustrate the generality of the inequalities given in Theorem 6.5.4 we
prove an analogon of Theorem 6.4.1 for the limiting case 7 = 1/2 and 1/2 < § < o0.

Proposition 6.5.6. Let A C [0,1] be a compact subset and Ty : L[0,1] — C(A)
the weakly singular integral operator generated by the kernel function

k(z) =2 (co—Inz)™”, 1/2 < < 00, ¢ > 0.

Furthermore, let (s,) stand for the Kolmogorov numbers (d,) or for the dyadic en-
tropy numbers (e,). Then the following statements hold true:

(i) If e,(A) ~n=° for § > 1 then

n/?=8. 1/2<p<1,
Sn(TK : L,]0,1] — C(A)) <sn Y2 log(n+1), B=1,
n~ Y2 (log(n+ 1)7, 1< < 0.

(ii) If en(A) ~ e for 6 > 0 then
. (TK : LQ[O, 1] _ C(A)) < n—1/2-6(8-1/2)
Proof. Both results follow from Theorem 6.5.4. At first, we compute that

1/2-p

e (A) 1/2
en(A,d) <2 (/ (k(u))2du> < (co —Inen(4))
0
Consequently, in the case (i) we obtain &,(A,d) < (log(n + 1))Y2% and e, (A, d) <

n'/?=8_ Applying the inequalities of Theorem 6.5.4 (i7) leads to the desired estimates
for the Kolmogorov numbers of Tk. For example, if 1/2 < < 1 then

STk ep(Ad) x Y kP gt
k=1

and this yields
' d, (T : Ly[0,1] — C(A)) g n' 7,
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The other cases can be treated similarly. Using Theorem 2.1.1 we obtain the same
asymptotic estimates also for the dyadic entropy numbers of Tk. In the case (i7)
we get £,(A,d) < n?1/278) Consequently, applying Theorem 6.5.4 (i) with 1/r =
—0(1/2 — ) and 8 = 0 yields

su(Tx + La[0,1] — C(A)) < 0 /2400/20)
and finishes the proof. -

Remark 9. The upper estimates given in Proposition 6.5.6 (i) are the same as for
the whole interval A = [0, 1] (cf. Theorem 6.4.1). The parameter ¢ only affects the
constant.

We can also prove an analogon of Theorem 6.4.5.

Theorem 6.5.7. Let k: (0,1] — R be a kernel function as stated on page 126 with
k € L5[0,1]. Furthermore, let A C [0,1] be a compact subset of the interval [0, 1]
and 1 a Hausdorff measure on A. Then for the weakly singular integral operator
Tk : Lo[0,1] — Ly(A, p), 1 < q < oo, given by

(Th) ) = [ klle = o) f(a) do

the estimate

en(A)

1/2
nl/ngn(TK s Lo[0,1] — Lq(A,u)) < c(u(A)Y1\/q (/0 (k(u))? du) , neN,

holds true, where ¢ > 1 is an absolute constant. In particular, for k(x) = ﬁx"‘_l ,

a > 1/2, we obtain that
d2n<TK : Le[0,1] — Lq(A,,u)> < n—1/2 (E?n(A))a_l/Q,

Proof. The proof is analogous to that of Theorem 6.4.5. This time we use that

1/2

ani1 (L200,1] = C(A)) < a(A,d) < 2 ( [ kwy? du)

and

M, (1 C(A) — Ly(A, 1)) < (u(A)Y7, 1< g < o0,
If the kernel function is given by k(x) = ﬁxa_l with a > 1/2, then we compute
that

(o) i (522527)

The assertion follows. [ |
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