
 
 

The control of plant defense responses and seedling growth during 
interactions with beneficial and non-beneficial organisms 

 

 

 

 

 

Dissertation 

 

zur Erlangung des akademischen Grades doctor rerum naturalium  

(Dr. rer. nat.) 

 

 

 

 

 

 

 

 

vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der  

Friedrich-Schiller-Universität Jena 

 

von Stefan Schuck (Diplom-Biologe) 

 

geboren am 27.08.1982 in Sulzbach am Main 



 
 

Gutachter: 

 

1. Prof. Dr. Ian Baldwin 

    Max-Planck-Institut für chemische Ökologie 

    Hans-Knöll-Str. 8 

    07745 Jena 

 

2. PD Dr. Axel Mithöfer 

    Max-Planck-Institut für chemische Ökologie 

    Hans-Knöll-Str. 8 

    07745 Jena 

 

3. Prof. Dr. Karl-Heinz Kogel 

    Justus-Liebig-Universität Giessen 

    Heinrich-Buff-Ring 26-32 

    35392 Giessen 

 

 

 

 

 

 

 

 

Datum der öffentlichen Verteidigung: 27. August 2013 



 

 
 

Table of contents: 

 

Chapter 1: General Introduction ..................................................................................................... 1 

Chaper 2: Manuscript overview .................................................................................................... 10 

Chapter 3: Manuscript 1................................................................................................................ 14 

Revealing complexity and specificity in the activation of lipase-mediated oxylipin 

biosynthesis: A specific role of the Nicotiana attenuata GLA1 lipase in the activation of 

JA biosynthesis in leaves and roots .................................................................................. 14 

Chapter 4: Manuscript 2................................................................................................................ 44 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the 

oomycete Phytophthora parasitica var. nicotianae .......................................................... 44 

Chapter 5: Manuscript 3.............................................................................................................. 120 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the 

fungus Piriformospora indica ......................................................................................... 120 

Chapter 6: Manuscript 4.............................................................................................................. 156 

HSPRO acts via SnRK1-mediated signaling in the regulation of Nicotiana attenuata 

seedling growth promoted by Piriformospora indica ..................................................... 156 

Chapter 7: Discussion ................................................................................................................. 161 

Chapter 8: Summary ................................................................................................................... 180 

Chapter 9: Zusammenfassung ..................................................................................................... 182 

Chapter 10: References ............................................................................................................... 184 

Acknowledgements ..................................................................................................................... 215 

Curriculum vitae ......................................................................................................................... 216 

Selbstständigkeitserklärung ........................................................................................................ 220 

 

 



Chapter 1: General Introduction 
 

1 
 

Chapter 1: General Introduction 

 

The wild tobacco species Nicotiana attenuata Torrey ex S. Watson 1871 is an annual desert 

model plant germinating from long-lived seed banks in monoculture-like populations after 

wildfires (Preston & Baldwin, 1999). As a consequence of growing in that post-fire environment, 

these N. attenuata monocultures then have to face a variety of herbivores and pathogens which 

also need to re-establish in the burnt habitat, a circumstance (amongst others) that makes it hard 

for this plant species to anticipate the occurrence of its natural enemies (Bossart & Gage, 1990; 

Baldwin & Ohnmeiss, 1993; Baldwin et al., 1994; Baldwin, 2001; Rayapuram et al., 2008). 

These hostile organisms require adequate defense responses of N. attenuata to either tolerate 

damage/losses caused by the attackers (by compensatory mechanisms) or to resist the attackers 

(by reducing the attacker´s performance) (Strauss & Agrawal, 1999; Diezel et al., 2009; 

Medzhitov et al., 2012). It appears that selection favors the evolution of a mixed strategy of 

defense allocation to both resistance and tolerance mechanisms and that plants trade off between 

those (Strauss & Agrawal, 1999; Nunez-Farfan et al., 2007). Tolerance allows for a 

compensatory regrowth with only relatively low Darwinian fitness costs compared to an 

undamaged state and might be mediated by special protection or reactivation of meristem tissue, 

resource bunkering into storage organs (e.g. roots) or an increase in photosynthetic capacity, the 

reconfiguration of primary metabolism and nutrient uptake (Kessler & Baldwin, 2002; 

Schwachtje et al., 2006; Schwachtje & Baldwin, 2008). For example, in N. attenuata the 

regulatory subunit (GAL83) of a heterotrimeric kinase complex (SnRK1; sucrose 

non‐fermenting‐1‐related protein kinase 1) mediates tolerance to insect herbivory by regulating 

the carbon allocation to the roots (Schwachtje et al., 2006). Besides tolerance mechanisms, 

plants possess also a huge arsenal of resistance mechanisms being distinguished in constitutive 

and inducible ones (Kempel et al., 2011). Constitutive resistance mechanisms of N. attenuata 

against herbivores include trichomes and the chemical compounds contained therein (Weinhold 

& Baldwin, 2011; Weinhold et al., 2011), and a relatively thick cuticle helps this plant species to 

protect itself from pathogen attack (Dominguez et al., 2011; Hettenhausen et al., 2012). In order 

to minimize defense-associated fitness costs and most efficiently tailor defense responses to 

specific attackers, N. attenuata has evolved an enormous set of inducible resistance mechanisms, 
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too (Baldwin et al., 1998; van Dam et al., 2000; Kessler & Baldwin, 2002; Hui et al., 2003). 

Inducibility of defense responses allows for adaptive phenotypic plasticity as an evolutionary 

favored mechanism enabling a plant to cope with changes in its environment (Agrawal, 1999; 

Baldwin, 1999). Plant resistance increases Darwinian fitness in case of pathogen/herbivore 

attack, but at the same time it is also costly because the production of defense metabolites 

consumes limited nutrient resources that could have been used for growth and reproduction 

instead and some defense compounds might even exhibit autotoxicity potential (Baldwin & 

Callahan, 1993; Baldwin, 1998; Baldwin et al., 1998; van Dam & Baldwin, 2001). The 

consequences of fitness costs associated with plant resistance are even more pronounced if 

competition is involved, and intraspecific competition in monoculture-like populations as formed 

by N. attenuata in post-fire environments is typically one-sided/asymmetric, therefore causing 

huge differences in Darwinian fitness between conspecifics (Weiner & Thomas, 1986; Preston & 

Baldwin, 1999; Meldau et al., 2012). Besides resource consumption and autotoxicity, also other 

factors contribute to plant resistance being costly, for example negative side effects on 

mutualistic interactions like pollination (Kessler & Baldwin, 2002; Kessler & Baldwin, 2007). 

For instance, the N. attenuata herbivore species Manduca sexta specialized on solanaceous host 

plants is a serious threat in form of its nearly insatiable larvae and at the same time an important 

pollinator (Yamamoto & Fraenkel, 1960; Euler & Baldwin, 1996; Kessler & Baldwin, 2007; 

Kessler et al., 2010). Thus, N. attenuata plants need to trade off evading herbivory against being 

pollinated by this lepidopteran species, leading to a herbivore pressure-regulated shift in the ratio 

of two types of flowers differing in opening time and emission of the pollinator-attracting flower 

volatile benzyl acetone (Kessler et al., 2010). In addition, N. attenuata copes with this herbivory-

pollination dilemma by increasing nectar levels of the defense metabolite nicotine in case of 

herbivory or mechanical damage independently from the benzyl acetone emission pattern, while 

the regulation of nectar nicotine levels and benzyl acetone emission are otherwise coordinated in 

a diurnal way to synchronize with the nocturnal pollination activity of M. sexta moths to 

maximize flower advertisement and minimize pollinator deterrence (Euler & Baldwin, 1996). 

Vice versa to the disruption of mutualism by activation of resistance mechanisms, mutualistic 

interactions can also negatively affect a plant’s ability to defend itself, as demonstrated for the 

reduced defensive power of N. attenuata against M. sexta herbivory after being colonized by the 
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two closely related plant growth promoting root endophytic fungi Piriformospora indica and 

Sebacina vermifera (Barazani et al., 2005). 

N. attenuata’s defense responses comprise direct as well as indirect strategies (Keinanen 

et al., 2001; Kessler & Baldwin, 2001; van Dam et al., 2001; Kessler & Baldwin, 2002; 

Rayapuram et al., 2008). Direct defenses comprise mechanical structures like above mentioned 

trichomes as well as chemical compounds with toxic or antinutritive function, whereas indirect 

defenses protect the plant by the aid of the attacker´s natural enemies (War et al., 2012). Nicotine 

and 17-hydroxygeranyllinalool diterpene glycosides are probably the best examples for inducible 

toxic defense metabolites (Steppuhn et al., 2004; Steppuhn & Baldwin, 2007; Heiling et al., 

2010), while trypsine proteinase inhibitors are exemplary for inducible antinutritive compounds 

(van Dam & Baldwin, 2003; Zavala et al., 2004). And a pathogen-inducible PR-13/thionin 

protein protects N. attenuata from infection by phytopathogenic bacteria of the genus 

Pseudomonas (Rayapuram et al., 2008). Certain phenolic compounds (e.g. chlorogenic acid and 

rutin) are thought to be broad-spectrum plant defense metabolites and some of those are 

inducible by insect herbivory (i.e. chlorogenic acid and its polyamine conjugates), however the 

extent to which they are really toxic to the herbivore seems to heavily depend on the tested 

herbivore species (Isman & Duffey, 1982; Bi et al., 1997; Keinänen et al., 2001; Steppuhn et al., 

2004; Rayapuram & Baldwin, 2008). Well-known examples for induced indirect defenses of N. 

attenuata against insect herbivores are “green leaf volatiles”, as well as mono- and 

sesquiterpenoid volatiles and branched-chain aliphatic acids emitted and attracting the herbivor’s 

predators, either by the damaged plant itself or the feeding herbivore after metabolization of 

plant-derived precursors (Kessler & Baldwin, 2001; Allmann & Baldwin, 2010; Stork et al., 

2011). 

Inducibility of defenses is typically not found to be homogenous across all plant parts, 

but rather highly variable depending on the respective plant organ or tissue examined, and the 

relative value of the Darwinian fitness thereof (“optimal defense theory”) (Ohnmeiss & Baldwin, 

2000; McCall & Fordyce, 2010; Diezel et al., 2011; Meldau et al., 2012). Young metabolic sink 

tissues and reproductive organs are generally better defended than senescing metabolic source 

leaves, as demonstrated by the correlation between basal and inducible levels of defensive 

compounds in a certain plant part with the fitness value thereof (Meldau et al., 2012). 
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Even though they might provide in general good protection against generalist herbivores, 

certain defense metabolites might be ineffective against a specialist herbivore, as it is the case 

with the nicotine-tolerant specialist M. sexta (van Dam et al., 2000; Steppuhn et al., 2004; 

Govind et al., 2010). The occurrence of such host specialists is generally favored in 

monoculture-like populations as typically formed by N. attenuata (Preston & Baldwin, 1999; 

Fried et al., 2010). In case of being attacked by an adapted specialist herbivore, plant 

counteractions might be even exploited by the attackers for their better performance, e.g. by 

sequestration of defense metabolites toxic to potential predators and parasitoids or by using such 

metabolites as oviposition and host plant location cues (Thorpe & Barbosa, 1986; Bentz & 

Barbosa, 1992; Kahl et al., 2000; del Campo et al., 2001). However, plants do not only need to 

distinguish specialists from generalist herbivores, but also between different feeding behaviors 

(chewing vs. phloem-feeding) (Heidel & Baldwin, 2004; Ali & Agrawal, 2012). Chewing insects 

typically cause extensive tissue damage and induce rather the defense-related phytohormones 

jasmonic acid (JA) and ethylene (ET), whereas phloem-feeders typically cause only minor tissue 

damage with a preferential induction of another defense-related phytohormone, salicylic acid 

(SA) (Ali & Agrawal, 2012). A good example for this specific plant signaling mechanisms is 

provided by the N. attenuata-M. sexta interaction. Distinct elicitors occuring in the oral secretion 

(OS) of M. sexta larvae such as the fatty acid-amino acid conjugate (FAC) N-linolenoyl-L-

glutamate (18:3-Glu) induce a plant reaction in form of a rapid and transient burst of JA and ET 

and changes in plant secondary metabolism mediated by the signaling of these phytohormones 

(Halitschke et al., 2001; Voelckel & Baldwin, 2004; Diezel et al., 2009). After perception of M. 

sexta presence, JA biosynthesis is initialized within only few minutes in N. attenuata by the 

release of linolenic acid out of chloroplast membrane lipids catalyzed by one major glycerolipase 

A1, GLA1 (Kallenbach et al., 2010). Since M. sexta is already adapted to nicotine which is much 

more effective against non-adapted generalist herbivores, its inducibility by JA is attenuated by 

ET, a mechanism to avoid wasting energy and costly resources for the production of defensive 

compounds that would be anyway rather ineffective against M. sexta (Lynds & Baldwin, 1998; 

Kahl et al., 2000; Winz & Baldwin, 2001). In contrast to nicotine, other JA-inducible secondary 

metabolites, such as trypsine proteinase inhibitors, 17-hydroxygeranyllinalool diterpene 

glycosides and terpenoid plant volatiles retain their JA-inducibility after M. sexta OS elicitation 

(Kahl et al., 2000; Keinänen et al., 2001; van Dam et al., 2001; Lou & Baldwin, 2003). 
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Similar to their importance in defense against herbivorous insects, JA, ET and SA also 

play a crucial role in pathogen defense signaling. If plants are attacked by biotrophic and 

hemibiotrophic pathogens, they typically react by activation of the SA signaling pathway and a 

localized cell death (hypersensitive reaction) to restrict pathogen spread, while necrotrophic 

pathogens that could potentially even benefit from a hypersensitive cell death rather activate the 

JA signaling pathway (Glazebrook, 2005; Takemoto et al., 2005; Kliebenstein & Rowe, 2008). 

The activation of the SA signaling pathway after pathogen attack is involved in the establishment 

of systemic acquired resistance (SAR), a mechanism that mediates long-lasting and broad-

spectrum protection of distal uninfected plant parts after a local infection event (Pieterse et al., 

2012). In contrast, another form of systemic resistance (induced systemic resistance, ISR) 

induced by the interaction with plant-growth-promoting organisms such as rhizobacteria and P. 

indica is SA-independent and leads to the priming of JA-dependent defenses (Waller et al., 2006; 

Molitor & Kogel, 2009). 

However, these signaling pathways implicated in plant defense responses can be 

exploited by certain pathogens to even promote disease progression, by herbivores to suppress 

host defense responses, and by mutualists to facilitate early host colonization (Zhao et al., 2003; 

Diezel et al., 2009; Thatcher et al., 2009; Jacobs et al., 2011; Pieterse et al., 2012). For example, 

the plant growth-promoting fungus P. indica suppresses plant innate immunity via the JA 

signaling pathway during early root colonization, a mechanism probably contributing to the 

abilty of this fungus to colonize plants of a very large host-range (Jacobs et al., 2011). However, 

plants are able to control the extent of P. indica colonization and thereby ensure the beneficial 

outcome of the interaction via ET signaling and by indole-3-acetaldoxime-derived products 

(Camehl et al., 2010; Nongbri et al., 2012). An example for manipulation of host phytohormone 

signaling is the interaction of N. attenuata with the generalist herbivore Spodoptera exigua 

(Diezel et al., 2009). Although being – like M. sexta – a chewing lepidopteran herbivore known 

to typically induce a JA and ET response in the attacked plant, S. exigua contains enhanced 

glucose oxidase (GOX) activity in its oral excretion compared to M. sexta and therefore elicits a 

relatively high SA burst, at the same time attenuating JA and ET levels (Diezel et al., 2009; Ali 

& Agrawal, 2012). Since SA signaling antagonizes JA signaling, this can be interpreted as the 

attempt of a generalist which is less adapted to host plant-specific defenses to suppress those 

inducible by JA signaling (Ali & Agrawal, 2012). Numerous examples for phytohormones and 
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effectors produced by phytopathogens to manipulate host plant defense are known from literature 

(Jones & Dangl, 2006; Tsavkelova et al., 2006; de Jonge et al., 2011; Schmidt & Panstruga, 

2011; Cheng et al., 2012; Nowicki et al., 2012). For instance, Phytophthora capsici elicitor 

treatment of transgenic Arabidopsis plants ectopically expressing the Phytophthora sojae 

effector Avh331 revealed a role of this protein in suppressing the defense-related mitogen-

activated protein kinase signaling pathway (Cheng et al., 2012). 

Phytopathogen effectors have evolved as virulence factors typically as consequence of an 

arms race between pathogens and host plants, a process leading to selection pressure on the 

pathogen side towards host specialization (van der Does & Rep, 2007; Ellis et al., 2009; 

Stergiopoulos & de Wit, 2009; Antonovics et al., 2013). These effectors are produced to counter 

basal plant resistance mediated by the recognition of pathogen/microbe-associated molecular 

patterns (PAMPs/MAMPs) which results in the activation of plant defense responses (PAMP-

triggered immunity, PTI) (Dangl & Jones, 2001; Jones & Dangl, 2006). The so-called “elicitins” 

form a special effector class probably restricted to the oomycetes Phytophthora and Pythium 

(Panabieres et al., 1995; Panabieres et al., 1997; Avrova et al., 2004; Jiang et al., 2006; Kamoun, 

2006). However, plants can evolve the ability to recognize pathogen effectors, not only directly 

by plant resistance (R) proteins encoded by the respective R genes, but according to the “guard 

hypothesis” also indirectly via complexes formed by pathogen effectors with their plant protein 

targets (Dangl & Jones, 2001; Jones & Dangl, 2006). R protein activation then leads to effector-

triggered immunity (ETI) of the plant and specific resistance (Dangl & Jones, 2001; Jones & 

Dangl, 2006; Murray et al., 2007). ETI is a stronger and accelerated version of PTI and therefore 

both, basal and specific resistance mechanisms, share certain pathway components (Dangl & 

Jones, 2001; Jones & Dangl, 2006; Murray et al., 2007). During evolution, pathogens can 

overcome ETI by developing either novel effectors to regain host susceptibility (effector-

triggered susceptibility) or by down-regulation of expression/the loss of effector-encoding genes 

(Rouxel & Balesdent, 2010). For example, the tobacco-specialized pathogen Phytophthora 

parasitica var. nicotianae (Ppn) down-regulates in planta the expression of the elicitin 

parasiticein to evade host recognition and therefore rather prevents than manipulates the 

elicitation of plant defense responses (Colas et al., 2001). 
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In analogy to pathogen recognition via PAMPs/MAMPs and the resulting PTI, 

researchers proposed similar plant perception mechanisms also with respect to herbivore attack, 

i.e. the recognition of herbivore-associated molecular patterns (HAMPs) such as FACs and GOX 

leading to the activation of according plant defense responses and HAMP-triggered immunity 

(Truitt et al., 2004; Mithofer & Boland, 2008; Hogenhout & Bos, 2011). PAMP/MAMP and 

HAMP perception is complemented by the recognition of damage-associated molecular patterns 

(DAMPs) providing the plant with information on cell integrity (Boller & Felix, 2009; Heil, 

2009). 

A special protein without known catalytic function, Hs1pro-1 from the wild beet Beta 

procumbens is supposed to be a member of a novel, atypical class of R proteins contributing to 

resistance against the plant pathogenic nematodes Heterodera schachtii in sugar beet and 

Heterodera glycines in soybean (Cai et al., 1997; Ellis & Jones, 1998; Thurau et al., 2003; 

Schulte et al., 2006; McLean et al., 2007). While Hs1pro-1 plays a role in specific nematode 

resistance, an Arabidopsis ortholog of this protein, HSPRO2, was demonstrated to be involved in 

basal resistance against Pseudomonas syringae pv. tomato (Murray et al., 2007). For Arabidopsis 

it was further shown that HSPRO2 and its paralog HSPRO1 are able to interact with a regulatory 

subunit of plant SnRK1 complexes in vitro and in planta (Gissot et al., 2006). Plant SnRK1 

enzymes are central regulators of energy metabolism, development, growth and stress tolerance, 

including plant tolerance to herbivory (Schwachtje et al., 2006; Baena-Gonzalez et al., 2007; 

Cho et al., 2012). Thus, in addition to basal and R gene-mediated resistance, a role in plant 

growth and development as well as plant tolerance to herbivores has to be considered for those 

Hs1pro-1 homologs, too. In view of these differences in function, it is tempting to speculate that 

Hs1pro-1and its homologs either underwent a process of drastic functional diversification during 

speciation events, or – which is even more plausible – play a very basic role in the overlapping 

part of basal and specific resistance pathways, maybe functioning even in a junction point 

between resistance and tolerance. 

Taken all this informations on N. attenuata’s arsenal of different responses to herbivore 

and pathogen attack together, this plant species needs to possess a very smart and complex 

signaling system to a) perceive the individual attackers, b) integrate and trade off this 

information input against other factors relevant to the plant’s Darwinian fitness, c) initialize an 
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adequate and well-orchestrated response tailored to the particular attacker and d) minimize 

response-associated fitness costs and negative side effects for plant mutualists. During this thesis, 

I focused mainly on the function of two genes, GLA1 and HSPRO, in these complex plant 

signaling and trade-off processes. 

In manuscripts 1 and 2, I analyzed in detail the role of the N. attenuata lipase GLA1 

in oxylipin-mediated signaling processes occurring during M. sexta herbivory and infection 

by phytopathogenic microorganisms, in particular Phytophthora parasitica var. nicotianae. 

I demonstrated a central yet distinct role in the biogenesis of oxylipins during insect attack 

and pathogen infection.  

In manuscripts 3 and 4, I demonstrated that HSPRO, the N. attenuata homolog of 

Beta procumbens Hs1pro-1, controls seedling growth promotion during the mutualistic 

interaction between P. indica and N. attenuata. I proposed that HSPRO acts via SnRK1 

signaling, a mechanism that could help integrating HSPRO in the tolerance responses to M. 

sexta herbivory in N. attenuata plants. 
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Objectives of this thesis: 

 

1) Understand the biochemical mechanisms underlying the activation of oxylipin  

    biogenesis in plants during insect attack. Particular emphasis was put on the study of the  

    interaction between N. attenuata plants and M. sexta larvae. 

 

2) Understand the biochemical mechanisms underlying the activation of oxylipin  

    biogenesis during infection of plants by fungi and oomycete pathogens. Particular  

    emphasis was put on the study of the interaction between Phytophthora parasitica var.  

    nicotianae and N. attenuata plants. 

 

3) Understand the role of the insect-induced HSPRO gene in the interaction of N.  

     attenuata plants with insect herbivores and beneficial and pathogenic microorganisms.  

     Particular emphasis was put on the study of the interaction of N. attenuata plants with  

     M. sexta and the broad host-range mutualistic fungus P. indica. 
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Chaper 2: Manuscript overview 

 

Manuscript 1: 

 

Revealing complexity and specificity in the activation of lipase-mediated oxylipin 
biosynthesis: A specific role of the Nicotiana attenuata GLA1 lipase in the activation of 
jasmonic acid biosynthesis in leaves and roots 

 

Gustavo Bonaventure, Stefan Schuck and Ian T. Baldwin  

 

Published in Plant, Cell & Environment, Vol. 34, No. 9, pp. 1507-1520 (2011) 

 

In manuscript 1, I demonstrated that NaGLA1 is the major lipase specifically supplying substrate 
(linolenic acid) for the biosynthesis of the phytohormone jasmonic acid (JA). Therefore I 
performed experiments with transgenic Nicotiana attenuata genotypes stably silenced in the 
expression of NaGLA1 by inverted-repeat technique. In those experiments I analyzed the 
production of JA and other oxylipins produced from different biosynthetic pathways as well as 
the accumulation pattern of lysolipids in response to various stimuli inducing either NaGLA1 
expression [infection by phytopathogenic fungi such as Phytophthora parasitica var. nicotianae 
(Ppn)] or NaGLA1 activation [wounding and treatment with the Manduca sexta elicitor N-
linolenoyl-L-glutamate (simulated insect herbivory)]. As a result, this study revealed that 
NaGLA1 is able to use multiple lipid classes as substrate and rather specifically feeds the JA 
biosynthetic pathway in response to wounding and N-linolenoyl-L-glutamate treatment in N. 
attenuata leaves. However, NaGLA1 also affects early divinyl ether production and the 
expression of divinyl ether biosynthetic enzymes upon Ppn attack. 

Stefan Schuck and Dr. Gustavo Bonaventure planned and performed the experiments, 
analyzed the data and wrote the manuscript. Prof. Dr. Ian T. Baldwin participated in 
experimental design and writing of the manuscript. 

 

Jena, 21.01.2013         ………………………………………………………… 

       Prof. Dr. Ian T. Baldwin
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Manuscript 2: 

 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the 
oomycete Phytophthora parasitica var. nicotianae 

 

Stefan Schuck, Mario Kallenbach, Ian T. Baldwin and Gustavo Bonaventure 

 

Will be submitted to Plant, Cell & Environment 

 

In manuscript 2, I focused on NaGLA1’s role during the infection of Nicotiana attenuata with 
Phytophthora parasitica var. nicotianae (Ppn) encouraged by the strong inducibility of its 
transcriptional expression during Ppn infection revealed in manuscript 1. The monitoring of 
disease progression (Ppn abundance and symptom strength), oxylipin and metabolic profiling, as 
well as lysolipid and microarray analysis comparing Ppn-infected N. attenuta wildtype and 
genotypes stably silenced in NaGLA1 expression revealed that NaGLA1 is probably involved in 
the generation of some signaling compounds. This hypothesis is supported by the differential 
regulation of a huge number of stress responsive genes differentially regulated between wild-
type and NaGLA1-silenced N. attenuata plants and the NaGLA1-dependent release of specific 
lysolipid species and oxylipins in response to Ppn infection. 

Stefan Schuck and Dr. Gustavo Bonaventure planned and performed the experiments, 
analyzed the data and wrote the manuscript. Dr. Mario Kallenbach developed the method for 
extraction and analysis used for oxylipin profiling and participated in writing the manuscript. 
Prof. Dr. Ian T. Baldwin participated in experimental design and writing of the manuscript. 

 

Jena, 21.01.2013         ………………………………………………………… 

       Prof. Dr. Ian T. Baldwin 
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Manuscript 3: 

 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the 
fungus Piriformospora indica 

 

Stefan Schuck, Iris Camehl, Paola A. Gilardoni, Ralf Ölmüller, Ian T. Baldwin and Gustavo 
Bonaventure 

 

Published in Plant Physiology, Vol. 160, No. 2, pp. 929–943 (2012) 

 

In manuscript 3, I characterized NaHSPRO, the Nicotiana attenuata homolog to the putative 
nematode resistance protein Hs1pro-1 from Beta procumbens. NaHSPRO was originally identified 
in a SuperSAGE transcriptomic analysis because it is differentially induced in leaves by 
treatment of N. attenuata with the elicitor N-linolenoyl-L-glutamate from the specialist insect 
herbivore Manduca sexta. In addition, I could show that its expression is also inducible by the 
phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000 in leaves and the 
mutualistic fungus Piriformospora indica in roots. These transcriptional expression results 
suggested an involvement of NaHSPRO in N. attenuata’s interaction with these organisms. To 
test hypotheses based on this assumption, transgenic N. attenuata plants had been generated 
stably silenced in NaHSPRO expression by inverted-repeat technique and were used together 
with wild-type N. attenuata plants for various experiments. No ecological relevance could be 
demonstrated for NaHSPRO in N. attenuata’s defense against M. sexta and P. syringae, however 
I found that it acts as negative regulator of P. indica-mediated plant growth promotion. 

Stefan Schuck, Dr. Iris Camehl and Dr. Gustavo Bonaventure planned and performed the 
experiments, analyzed the data and wrote the manuscript. Dr. Paola A. Gilardoni participated in 
the identification of the full-length NaHSPRO cDNA sequence, was involved in generating the 
N. attenuata plants stably silenced in NaHSPRO expression and helped writing the manuscript. 
Prof. Dr. Ralf Ölmüller and Prof. Dr. Ian T. Baldwin participated in the design and coordination 
of experiments and writing of the manuscript. 

 

Jena, 21.01.2013         ………………………………………………………… 

       Prof. Dr. Ian T. Baldwin
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Manuscript 4: 

 

HSPRO acts via SnRK1-mediated signaling in the regulation of Nicotiana attenuata 
seedling growth promoted by Piriformospora indica 

 

Stefan Schuck, Ian T. Baldwin and Gustavo Bonaventure 

 

Published online (Vol. 34, No. 9; e23537) in Plant Signaling & Behavior on 18.01.2013 

 

In manuscript 4, I followed up on the hypothesis emerging from manuscript 3 that NaHSPRO 
controls Piriformospora indica-mediated growth promotion in Nicotiana attenuata seedlings 
through SnRK1signaling. To test this hypothesis, transgenic N. attenuata plants stably silenced 
in NaHSPRO expression were crossed with those stably silenced in the expression of NaGAL83, 
a regulatory subunit of the SnRK1 kinase complex. By comparing seedling weight gain in 
presence of P. indica using those transgenic N. attenuata crosses and appropriate controls, I 
could show that NaGAL83 functions as much as a negative regulator of P. indica-mediated 
growth promotion as NaHSPRO, indicating that the observed effect might be indeed due to 
SnRK1 signaling. 

Stefan Schuck and Dr. Gustavo Bonaventure planned the experiments and wrote the 
manuscript. Performance of the experiments and data analysis was done by Stefan Schuck. Prof. 
Dr. Ian T. Baldwin participated in experimental design and writing of the manuscript. 

 

Jena, 21.01.2013         ………………………………………………………… 

       Prof. Dr. Ian T. Baldwin 
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Abstract 

The expression of the Nicotiana attenuata GLYCEROLIPASE A1 (NaGLA1) gene was 

shown to be drastically induced during infection with the phytopathogenic oomycete 

Phytophthora parasitica var. nicotianae (Ppn) (Bonaventure, Schuck & Baldwin 2011). 

NaGLA1 catalyzes the initial step in the biosynthesis of the phytohormone jasmonic acid (JA) as 

a response to insect herbivory and wounding. In contrast, Ppn-inducible JA production does not 

depend on NaGLA1 expression, suggesting a different role for NaGLA1 during Ppn infection 

(Bonaventure et al. 2011). To assess whether NaGLA1 significantly contributes to the Ppn-

inducible increase in total lipase A activity occurring during the infection process, leaf samples 

from N. attenuata wild-type  (WT) and transgenic plants stably silenced in the expression of 

NaGLA1 (ir-gla1) were subjected to a lipase activity assay with radiolabeled phosphatidyl-

choline as substrate. The results showed that NaGLA1 did not contribute significantly to total 

lipase A activity. However, we showed that this enzyme participates in the specific formation of 

lysolipids derived from phosphatidylglycerol, phosphatidylcholine and galactolipids and in the 

release of oleic, linoleic and linolenic acids. Moreover, the formation of 9-hydroxy-linoleic acid 

and three additional oxylipins was reduced in Ppn-infected leaves of ir-gla1 plants. Gene 

expression profiling of leaves revealed that 4192 genes were differentially affected in their 

expression in infected ir-gla1 plants compared to WT.  Metabolic profiling of infected leaves 

demonstrated that these changes in metabolic gene expression were strongly reflected in changes 

in the accumulation of several secondary metabolites, including phenylpropanoids, polyamines, 

and terpenoids.
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Abbreviations: 

 

HPLC: high performance liquid chromatography 

LC: liquid chromatography 

MS: mass spectrometer 

n: sample size (number of biological replicates) 

SD: standard deviation 

SE: standard error 

TLC: thin-layer chromatography 

ToF: time-of-flight detector 

UPLC: ultraperformance liquid chromatography 

 

Fatty acid moieties are abbreviated as follows: (number of carbon atoms:number of carbon-

carbon double bonds in the molecule); e.g. (18:3) stands for linolenic acid because the molecule 

contains 18 carbon atoms, of which six are connected by three double bonds.
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Introduction 

 

Land plants and their pathogens share a long history of common evolution proven by 

fossil evidence of plant defense against fungal endophytes dated back to 400 million years ago 

(Kemen & Jones 2012; Krings et al. 2007). Despite a preservation potential considered as very 

low, fossil records exist suggesting that a considerable number of plant endophytic oomycetes 

existed at least by the  Carboniferous (Krings, Taylor & Dotzler 2011). Among those, the 

majority were probably rather saprotrophic. The first oomycete fossil with haustoria indicative 

for plant parasitism stems from Combresomyces williamsonii found in the cortical tissue of a 

seed fern species (Lyginopteris oldhamia) and is approximately 315 million years old (Krings et 

al. 2011; Strullu-Derrien et al. 2011). Since that geological period, oomycetes and land plants 

had plenty time to coevolve following the “zigzag” model proposed by Jones & Dangl (2006) 

(Burdon & Thrall 2009; Jones & Dangl 2006). According to that model, plants perceive microbe-

associated molecular patterns (MAMPs) which elicit a defense response (pathogen-triggered 

immunity, PTI). In order to avoid this PTI, pathogenic (virulent) microbes produce effectors to 

regain susceptibility of their host plant (pathogen-triggered susceptibility, PTS). However, these 

effectors might become recognizable by the plant via receptor proteins mediating resistance (R-

gene products) and then induce defense responses again (effector-triggered immunity, ETI). In 

this case, the effectors are called avirulence (Avr) proteins which are encoded by corresponding 

Avr genes. During evolution pathogens can develop effectors targeting this R-gene-mediated host 

recognition and these novel effectors can then become recognizable by the plant by new 
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receptors in a “gene-for-gene resistance” manner, a mechanism leading to an evolutionary arms 

race between pathogens and their host plants (Keen 1990; Van der Biezen & Jones 1998). A 

typical example for gene-for-gene resistance is the tomato Cf-9 receptor which recognizes the 

Avr9 peptide from the fungal pathogen Cladosporium fulvum (Rowland et al. 2005). Gene-for-

gene resistance explains also the observed differences in resistance of various tobacco cultivars 

to specific races of the oomycete Phytophthora parasitica var. nicotianae (Ppn), the causal agent 

of black shank disease and huge economic losses, and the variable resistance of several 

Nicotiana rustica accessions to Ppn race 0 (Nifong et al. 2011; van Jaarsveld, Wingfield & 

Drenth 2002). Already several years ago, a resistance gene from the tobacco cultivar Coker 371-

Gold designated “Ph” was identified which confers resistance to Ppn race 0 (Carlson et al. 

1997).  As additional mechanism to the production of novel effectors in order to maintain 

virulence, certain Ppn strains down-regulate in planta the expression of parasiticein, a small 

secretory protein belonging to the so-called “elicitin” family, to avoid host recognition of these 

fungal proteins and, as a consequence, the elicitation of plant defense responses (Colas et al. 

2001). In case of a hemibiotrophic phytopathogen like Ppn, these plant responses typically 

comprise a hypersensitive response to spatially restrict pathogen growth (Takemoto, Hardham & 

Jones 2005). This hypersensitive response is in susceptible (“compatible” interaction) tobacco 

preceded by a biphasic reactive oxygen species (ROS) and ethylene burst after Ppn infection 

(Wi, Ji & Park 2012). Two different NADPH oxidase isoforms mediate this biphasic ROS burst, 

the first one being transient and weak and the second one being rather massively (Wi et al. 

2012). Studies using tobacco cell culture treated with cryptogein, a proteinaceous elicitor from 

Phytophthora cryptogea, and ergosterol, a typical fungal sterol, revealed further that these 
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oomycete elicitors are able to induce plant cell acidification and the production of ROS, as well 

as signaling processes in which Calcium ion release from internal reservoirs, phospholipase C 

and phospholipase A2 are involved, ultimately leading to an increased production of the 

sesquiterpenoid phytoalexin capsidiol and the stimulation of the biosynthesis of 

phenylpropanoid-derived cell wall constituents (Amelot et al. 2012; Kasparovsky, Blein & 

Mikes 2004; Kasparovsky et al. 2003; Lebrun-Garcia et al. 2002). Furthermore, signaling 

processes mediated by mitogen activated kinases seem to be involved in tobacco defense 

response to Phytophthora sp. (Liu et al. 2003; Takemoto et al. 2005; Zhang & Klessig 2000). 

After treatment of cultured potato cells with elicitors from Phytophthora infestans, the 

transcriptional expression and enzymatic activity of a 9-lipoxygenase (9-LOX) is induced 

accompanied by an increase in phospholipase A activity, leading to the release of 

polyunsaturated fatty acids from membrane lipids as substrates for the formation of oxidized 

fatty acid products (oxylipins) such as the divinyl ethers (DVEs) colneleic and colnelenic acid 

(Gobel et al. 2001). A study in Arabidopsis suggests that oxylipins derived from the 9-LOX 

pathway (including colneleic and colnelenic acid) play a role in cell wall modification essential 

for lateral root development and pathogen arrest (Vellosillo et al. 2007). Supporting an 

involvement in plant defense against pathogens (including Phytophthora sp.), several oxylipins 

were shown to possess antimicrobial activities in vitro, including the above mentioned DVEs 

(Fammartino et al. 2007; Prost et al. 2005; Weber et al. 1999). Even though the transcriptional 

expression of a 13-LOX is also induced in potato cells after Phytophthora infestans-elicitor 

treatment, levels of products derived from this pathway, e.g. jasmonic acid (JA), remained only 
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very low, suggesting that those play only minor roles (if at all) during the potato-Phytophthora 

interaction (Gobel et al. 2001). 

In order to tailor their response to specific pathogens most efficiently, plants use a very 

complex signaling network including various phytohormones such as the already mentioned 

ethylene and JA, but also salicylic acid, to regulate the expression of defense-related genes 

accordingly (Kunkel & Brooks 2002).  Ppn, as well as another phytopathogenic fungus, 

Fusarium oxysporum, are known to strongly induce transcript levels of a gene encoding for a 

glycerolipase A1 (GLA1) in leaves of the wild tobacco Nicotiana attenuata (Bonaventure et al. 

2011). In this plant species, GLA1 was originally identified to be the major lipase activated after 

wounding and insect herbivory and to initialize the biosynthesis of JA by the release of linolenic 

acid out of chloroplast membrane lipids within only few minutes (Bonaventure et al. 2011; 

Kallenbach et al. 2010). Most interestingly and despite the strong inducibility of GLA1 

expression upon Ppn infection, it does not affect JA levels during the infection process in N. 

attenuata leaves. Even though no changes in the final levels of another group of oxylipins - the 

Ppn-inducible DVEs - could be demonstrated in this previous study, transcript levels encoding 

for the two enzymes catalyzing DVE production from polyunsaturated fatty acids, N. attenuata 

lipoxygenase 1 and DVE synthase, were altered in a GLA1-regulated manner during Ppn 

infection. Therefore it was hypothesized that GLA1 is involved in the generation of a signal after 

Ppn infection leading to the observed transcriptional changes (Bonaventure et al. 2011). 

However, the nature of this signal remained mysterious and therefore it was the objective of this 

study to unravel the role of GLA1 during this plant-oomycete interaction in more detail.
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Material and Methods 

 

Plant growth 

Seeds of the 31st inbred generation of Nicotiana attenuata Torrey ex S. Watson 1871, 

derived from seeds originally collected in 1988 from a native population in Washington County, 

Utah, were used for all experiments as wild-type genotype (WT). In addition to WT, two 

genetically independent transgenic N. attenuata plant lines stably reduced in the expression of 

NaGLA1 by inverted-repeat silencing technique (ir-gla1) were used (Bonaventure et al. 2011). N. 

attenuata seeds were germinated on Gamborg’s B5 medium (Duchefa, Haarlem, the 

Netherlands) as previously described in Krugel et al. (2002) and maintained in growth chambers 

(Snijders Scientific, Tilburg, the Netherlands) at a day/night cycle of 16 h light (155 µmol s-1 m-

2) at 26°C and 8 h darkness at 24°C. 10 days after germination seedlings were transferred to 

TEKU pots (Pöppelmann GmbH & Co. KG, Lohne, Germany) containing sand and grown in the 

glasshouse for 14 days under high-pressure sodium lamps (Philips, Eindhoven, the Netherlands, 

200-300 µmol s-1 m-2 light) with a day/night cycle of 16 h (26-28°C)/8 h (22-24°C) and 45 to 

55% relative humidity. After 10 days in TEKU pots, plantlets were transferred to 400 mL-pots 

filled with sand and transferred for experiments to a growth chamber with a day/night cycle of 16 

h (22°C)/8 h (22°C) and 65% relative humidity, in which the experiments were performed after 

giving the plantlets 4 days to adjust to the new environment. 



Chapter 4: Manuscript 2 
 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the oomycete 
Phytophthora parasitica var. nicotianae 

 

53 
 

Plant inoculation with Phytophthora parasitica nicotianae 

Phytophthora parasitica Dastur 1913 var. nicotianae (van Breda de Haan 1896) Tucker 

1931 (Ppn) was obtained from the DSMZ (German Collection of Microorganisms and Cell 

Cultures, Braunschweig, Germany) and grown on potato dextrose agar (PDA) (Sigma, 

Taufkirchen, Germany) at 26°C in the dark. Inoculation of 24 days old N. attenuata plants (early 

rosette stage with ~ 4-5 leaves) with Ppn was performed by putting a PDA plug (5 mm diameter) 

containing a two weeks old Ppn culture onto a wounding site generated by pricking with a sterile 

needle into the hypocotyl. To facilitate infection, a high humidity environment was generated by 

covering the wounding site and the agar plug with a wet piece of cotton and the trays were 

covered with a plastic lid for one day. As a control, a similar procedure was done with a pure 

PDA plug, except for the microarray experiment where untreated plants served as control. At 

different time points, shoots were harvested and immediately frozen in liquid nitrogen for 

subsequent analyses. Recording of disease progression based on morphological changes was 

done by taking photographs from Ppn-infected and control plants at 0, 2.5 and 4 days after 

inoculation (dai). 

 

Quantitative real-time PCR 

For quantification of Ppn infection rates, DNA was extracted from Ppn-infected (n=14-

19) and non-infected (n=3) N. attenuata shoots (WT and two ir-gla1 lines) at 2.5 and 4 dai by the 

CTAB method (Schuck et al. 2012). Quantitative real-time PCR (qPCR) was performed with a 

Mx3005P Multiplex qPCR system (Stratagene, La Jolla, CA) and the qPCR Core kit for SYBR® 

Green I (Eurogentec, Liege, Belgium) with 20 ng of isolated DNA as template. The copy number 
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of the Ppn TRANSLATION ELONGATION FACTOR 1 ALPHA (PpnEF1A) gene relative to the 

20 ng of total sample DNA was used to quantify colonization rates of Ppn by Ct-value 

comparison. For quantification, the primers Ppn_EF1a_fwd 5´-GGCGGTATTGGCACGGTA-3´ 

and Ppn_EF1a_rev 5´-GCCGACGTTGTCACCAGG-3´ were used. Those were designed based 

on EF1A sequence specificities of Ppn compared to N. attenuata and N. tabacum (Supplemental 

Figure S1 A) and amplification specificity to PpnEF1A was tested against N. attenuata EF1A 

using standard PCR with similar reaction conditions as in the qPCR (Supplemental Figure S1 B). 

All reactions were performed using the following qPCR conditions: initial denaturation step of 

95°C for 30 s, followed by 40 cycles each of 95°C for 30 s and 60°C for 1 min, with a final 

extension step of 95°C for 30 s and 60°C for 1 min. 

 

Abscisic acid and salicylic acid quantification 

Shoots from Ppn-infected and control plants (WT and two ir-gla1 lines) were harvested at 

0 (n=6-7), 4 (n=3-4), 24 (n=3-4) and 96 (n=5-8) hours after inoculation and immediately frozen 

in liquid nitrogen. 200 mg of each shoot were homogenized to a fine powder with a 

Geno/Grinder 2000 (BTC and OPS Diagnostics, Bridgewater, USA) in the presence of liquid 

nitrogen. One mL of ethyl acetate spiked with 40 ng of each [²H6]-ABA and [2H4]-SA as internal 

standard was used for extraction. After centrifugation for 15 min at 12,000g (4°C), the upper 

organic phase was transferred into a fresh 2 mL tube and the residual phase was re-extracted with 

0.5 mL ethyl acetate, thereafter both organic phases were pooled. Then samples were evaporated 

to dryness under reduced pressure. The dry residue was reconstituted in 0.2 mL of 70/30 (v/v) 

methanol/water for analysis by LC-MS (liquid chromatography-mass spectrometry; Varian 1200 
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Triple-Quadrupole-LC-MS system; Varian, Palo Alto, California, USA). From each sample, ten 

microlitres were injected onto a ProntoSIL column (C18-ace-EPS, 50 x 2 mm, 5 mm, 120 Å; 

Bischoff, Leonberg, Germany) connected to a pre-column (C18, 4 x 2 mm; Phenomenex, 

Torrance, California, USA). As mobile phases, 0.05% formic acid in water (solvent A) and 

methanol (solvent B) were used in a gradient mode with the following conditions: 

time/concentration (min/%) for B: 0.0/15; 2.5/15; 4.5/98; 10.5/98; 12.0/15; 15.0/15; time/flow 

(min/mL): 0.0/0.4; 1.5/0.2; 1.5/0.2; 10.5/0.4; 15.0/0.4. Compounds were detected in the ESI 

negative mode and multiple reaction monitoring (MRM) according to the parameters described 

in Bonaventure et al. (2011). Quantification was made based on peak area comparison with the 

internal standards. 

 

Lysolipid analysis 

Four days after inoculation, shoots from Ppn-infected and control plants (WT and two ir-

gla1 lines; n=3-5) were harvested and immediately frozen in liquid nitrogen. Approximately 500 

mg of frozen sample was transferred into ice-cold 8 mL glass tubes (Corning, Schiphol-Rijk, 

Netherlands) filled with 2 mL 2-propanol and incubated at 80 °C for 10 minutes to inactivate 

lipases. While cooling on ice, 3.75 mL of 2/1 (v/v) methanol/chloroform containing internal 

standards [200 ng of each, lysophosphatidylglycerol-17:1 (LPG-17:1), lysophosphatidyl-

ethanolamine-14:0 (LPE-14:0), lysophospatidic acid-17:0 (LPA-17:0), lysophosphatidylinositol-

13:0 (LPI-13:0) and lysophosphatidylcholine-17:0 (LPC-17:0) (Avanti Polar Lipids, Alabaster, 

Alabama, USA)] were added. After adding 1.25 mL of chloroform and 1 mL of water and 

mixing thoroughly, the samples were centrifuged for 25 min at 800g (4°C). The lower organic 
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phase was transferred into a fresh glass tube and the remaining material re-extracted with 3 mL 

chloroform. The organic phases were pooled and evaporated under a stream of nitrogen. The 

dried residual was reconstituted in 0.4 mL of methanol/water/chloroform 70/20/10 (v/v/v). 

Lysolipids were analyzed by LC–MS3 (Varian 1200 Triple-Quadrupole-LC-MS system). 10 µL 

of the sample were injected onto a ProntoSIL C8 column (C8 ace EPS; 5 µm, 50 x 2 mm, 120 Å, 

Bischoff). As mobile phases, 0.05% formic acid in water (solvent A) and methanol (solvent B) 

were used in gradient mode with the following conditions: time/concentration (min/%) for B: 

0.0/15, 1.5/15, 5.0/98, 18.0/98, 22.0/15, 25.0/15; time/flow (min/mL): 0.0/0.4, 1.0/0.4, 1.5/0.2, 

22.0/0.2, 22.5/0.4, 25.0/0.4. Lysolipids were detected using MRM after CID with argon gas. For 

ionization, the needle was set at 5000 V and the drying gas (nitrogen) at 300°C and 20 psi 

(housing 50°C). The detector was set at 1800 V. Lysolipids were analyzed in positive and 

negative ionization mode (see Supplemental Table S2 for details). Quantification of LPC, LPG, 

LPA, LPI and LPE species was made according to the description in Bonaventure et al. (2011) 

based on the peak areas of the internal standards added. DGMG was quantified using the LPC-

17:0 added and an estimated response factor of 900 applied to the peak area corresponding to 

DGMG. 

 

Oxylipin analysis 

Shoots from Ppn-infected and control plants (WT and ir-gla1 line 1; five biological 

replicates per genotype and treatment) were harvested at 4 dai, immediately frozen in liquid 

nitrogen and thoroughly ground to fine powder. About 500 mg of this frozen sample was 

transferred into ice-cold 8 mL glass tubes filled with 5 mL of an extraction solvent (2-
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propanol/chloroform 1/1 (v/v) containing 0.0025% 2-butyl-6-hydroxy toluene and as internal 

standards 250 ng [2H2]-dihydro-jasmonic acid, 50 ng [2H4]-salicylic acid, 50 ng [2H6]-abscisic 

acid and 50 ng isoleucyl-[13C6]-jasmonic acid). After intensive mixing for 30 seconds, samples 

were centrifuged at 4 °C and 720g for 10 minutes and the supernatant transferred into a fresh 

pre-cooled glass tube with a Pasteur pipette. Then the sample volume was reduced under a gentle 

nitrogen stream and samples were transferred with a Pasteur pipette on Supelclean LC-NH2 solid 

phase extraction columns (Supelco, Sigma-Aldrich, Munich, Germany) preconditioned with ice-

cold 2-propanol/chloroform (1/1; v/v). After loading the sample, columns were first washed with 

two column volumes (~ 2 mL) 2-propanol/chloroform (1/1; v/v) and eluted with three volumes 

(~3 mL) methanol/acetic acid (98/2; v/v) into a 4 mL-glass vial. The eluent was dried under a 

gentle nitrogen stream and samples re-dissolved in 0.2 mL methanol. Oxylipins were separated 

and analyzed on an UPLC system (Dionex) connected to a Micro-ToF-Q mass spectrometer 

(Bruker Daltonics). Two microliters of extract were injected onto a C8 column (Kinetex C8; 2.6 

µm, 50 x 2.1 mm, 100 Å, Phenomenex). As mobile phases, 0.1% (v/v) acetonitrile and 0.05% 

(v/v) formic acid in water (solvent A) and 0.05% (v/v) formic acid in acetonitrile (solvent B) 

were used in gradient mode with the following conditions: time/concentration (min/%) for B: -

5/20, 0/20, 20/98, 25/98 using a constant flow of 0.4 min mL-1. The MS detection was performed 

in negative ionization mode with the following instrument settings: capillary voltage 4500 V, 

nebulizer gas pressure 1.4 bar, dry gas temperature 180°C; dry gas flow 10 L min−1, mass range 

50-1000 m/z. For MS/MS spectra collection, the instrument was run in MS²-Auto mode 

collecting MS-MS spectra from the 3 most abundant precursor ions at each retention time using a 

collision energy of 35V. Sodium formate clusters [a 10 mM solution of NaOH in 50/50% (v/v) 
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2-propanol/water containing 0.2% formic acid] were used for internal mass calibration. Sum 

formulas were calculated using the SumFormula tool integrated in the Data-Analysis software 

(Bruker Daltonics) with respect to isotopic patterns and logical fragmentations. If standards were 

available, oxylipins were identified by comparing their retention times and mass spectra with the 

according standard. 

 

Quantification of PLA activity in leaf extracts 

Phospholipase A activity in leaf extracts was determined by thoroughly grinding with a 

plastic pestle 0.8-mm-leaf discs (weighed with a microbalance) from control and Ppn-infected 

WT and ir-gla1 N. attenuata plants (4 dai) in 1.7 mL plastic tubes containing 50 µL reaction 

buffer (50 mM aqueous K-phosphate [pH=6.5], 0.2% (v/v) Triton X-100/water). After 

centrifugation at 16,000g for 5 min at 4ºC, 50 µL of the supernatant were transferred into 4 mL 

glass vials containing 1.2 mL of reaction buffer and 0.3 µCi of [14C-1]-L-α-dipalmitoyl-

phosphatidylcholine (114 µCi µmol-1; Perkin Elmer, Rodgau, Germany). Two biological 

replicates per plant genotype and per treatment were used. The reactions were carried out at 

room temperature. 0.2 mL aliquots were taken at 0, 15, 30, 60 and 120 min and immediately 

mixed with 1 mL 2/1 (v/v) chloroform/methanol in 2 mL screw-cap glass vials. After phase 

separation, the upper aqueous phase was removed and the organic phase evaporated under a 

stream of argon. The samples were reconstituted in 0.1 mL of 2/1 (v/v) chloroform/methanol and 

loaded on Partisil® K6 silica plates (Whatman, Dassel, Germany) which were 1/3, 2/3 and fully 

developed with 25/10/1 (v/v/v) chloroform/methanol/water. After air drying, the TLC plates 

were exposed to radioactivity sensitive screens for different times and the screens were scanned 
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with a FLA-3000 scanner (Fujifilm, Duesseldorf, Germany). Band intensities corresponding to 

radiolabeled free palmitic acid, lyso-PC and PC were quantified (as percentage of total activity) 

with the Aida Image Analyzer v3.11 software (Fujifilm). 

 

Microarray analysis 

Shoots from Ppn-infected and non-infected ir-gla1 1 and WT N. attenuata plants were 

harvested at 2.5 dai and used for microarray analysis (3 biological replicates per genotype and 

treatment and six arrays in total; see Accession numbers in Material and Method section). This 

time point was chosen as a compromise to cover genes expressed in both Ppn infection stages 

(the early as well as the late phase), i.e. before the first visible disease symptoms started to 

appear (~3-4 days after inoculation) but when GLA1 expression was already highly induced 

(Bonaventure et al. 2011). Total RNA was extracted using the method described by Kistner & 

Matamoros (2005) and RNA quality was checked by spectrophotometry (NanoDrop, 

Wilmington, DE). Genomic DNA contaminations were removed by DNAse treatment following 

commercial instructions (Turbo DNase; Ambion, Europe) and the resulting RNA was cleaned up 

with RNeasy MinElute columns (Qiagen, Hilden, Germany). Afterwards RNA quality was 

checked with the RNA 6000 Nano kit (Agilent, Santa Clara, CA) using an Agilent 2100 

Bioanalyzer. Labeled cRNA was generated from total RNA with the Quick Amp labeling kit 

(Agilent) following commercial specifications and the cRNA yield was determined 

spectrophotometrically (NanoDrop). Hybridization of the labeled cRNA was done using the 

Gene Expression Hybridization kit (Agilent) following commercial instructions onto a 44K 

custom designed 60mer N. attenuata Agilent microarray as previously described (Kallenbach et 
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al. 2011). Hybridization, washing and analysis were performed according to Kallenbach et al. 

(2011).  Data was extracted using the Agilent Feature Extraction software (version 9.5) and 

analyzed with the SAM (Significance Analysis of Microarrays) software from Multiexperiment 

Viewer (MeV v4.8) (http://mev.tm4.org/) (Tusher, Tibshirani & Chu 2001). The q-values for 

each gene corresponded to a computed false discovery rate (FDR) of less than 5%. Changes in 

gene expression were considered to be significant when the log2 of the fold change in signal 

intensity (ir-gla11 vs. WT) was greater than 1 or smaller than -1. Gene annotation was done with 

Blast2Go software (http://www.blast2go.com/ b2glaunch). 

 

Metabolic profiling of Ppn-infected shoots 

Shoots from Ppn-infected and ir-gla1 1 and WT N. attenuata plants were collected at 2.5 

dai for metabolic profiling (5 biological replicates per genotype and treatment). Shoot tissue was 

ground with a Geno/Grinder 2000 in the presence of liquid nitrogen and extracted with 1 mL of 

40% (v/v) methanol/50 mM aqueous sodium acetate buffer (pH=4.8) per 100 mg of shoot tissue 

by thoroughly mixing. Samples were centrifuged at 12,000g for 20 min at 4°C and their 

supernatant was transferred into fresh 1.5 mL tubes. To ensure removal of all residual particles, 

samples were centrifuged again at 12,000g for 20 min at 4°C. 200 μL of the supernatant were 

transferred into 2 mL glass vials with insert for analysis by UPLC-ToF-MS (ultra-pressure-

liquid-chromatography time-of-flight mass spectrometry) similar to the method previously 

described (Gilardoni et al. 2011). Two microliters of extract was injected onto a C18 Acclaim 

column (Dionex, 2.2 μm particle size, 150 × 2.1 mm inner diameter) and separated using an 

RSLC system (Dionex). Solvent A was 0.1% (v/v) acetonitrile (Baker, HPLC grade) and 0.05% 
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(v/v) formic acid in deionized water and solvent B was acetonitrile and 0.05% (v/v) formic acid. 

The following gradient conditions were used [time/concentration (min/%) for B]: -3/10, 0/10, 

0.5/80, 6.5/80 with a flow rate kept at 400 μL min−1. Ions generated from eluting compounds 

with an electrospray ionization source in positive and negative ion mode were detected with a 

MicroToF mass spectrometer (Bruker Daltonics). The following instrument settings were used: 

capillary voltage, 4500 V; capillary exit 130 V; dry gas temperature 200°C; dry gas flow, 8 liters 

min−1. Sodium formate clusters [10 mM solution of NaOH in 50/50% (v/v) 2-propanol/water 

containing 0.2% formic acid] were used for mass calibration. Data sets were analyzed within a 

retention time range from 125 to 550 s and a mass (m/z) range from 90 to 1400. As previously 

described by (Gaquerel, Heiling, Schoettner, Zurek & Baldwin 2010) raw data files were 

converted to netCDF format using the export function of the Data Analysis version 4.0 software 

(Bruker Daltonics) and processed using the R (www.r-project.org) packages XCMS 

(Tautenhahn, Bottcher & Neumann 2008) and CAMERA (http://www.bioconductor.org/ 

biocLite.R). For peak detection by centWave method (Tautenhahn et al. 2008) the following 

parameter settings were used in XCMS: ppm = 20, snthresh = 10, peak width = 5 to 20 s. 

Parameter settings used for retention time correction were minfrac = 1, bw = 60 s, mzwid = 

0.1D, span = 1, and missing = extra = 0 (Gaquerel et al. 2010). 

 

Multiple sequence alignment 

DNA and protein sequences were aligned using the Geneious 5.5.7 software (Biomatters, 

Auckland, New Zealand) with default parameters. For alignment of nucleotide sequences from 

TRANSLATION ELONGATION FACTOR 1 ALPHA (EF1A), three different NCBI database 

http://www.bioconductor.org/biocLite.R
http://www.bioconductor.org/biocLite.R
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entries were used for Ppn (EF418929, GU191189 and EU080678), one for N. attenuata 

(sequence will be submitted to NCBI) as well as one from N. tabacum (D63396). For protein 

alignment of N. attenuata GLA1 (ACZ57767) with its full-length homolog from N. tabacum, 

NtACRE14 (AAV92888), a previous alignment with genome sequences of tobacco obtained 

from the solgenomics website (http://solgenomics.net/tools/blast/index.pl) became necessary 

because the original NtACRE14 sequence was available at the NCBI database only in a truncated 

version. Therefore it was blasted (blastn) against two databases (“N. tabacum Methylation 

Filtered Genome TGI:v.1 Contigs” and “N. tabacum Methylation Filtered Genome TGI:v1 

Processed Reads”) available on the solgenomics website and the best hits were used for 

alignment and full-length protein sequence retrieval of NtACRE14 (Supplemental Figure S3). 

 

Statistical analysis 

Microarray data was analyzed using MeV v4.8 (http://www.tm4.org/mev/), oxylipin and 

metabolic profiling data was analyzed using Metaboanalyst 2.0 online software 

(http://www.metaboanalyst.ca/MetaboAnalyst/faces/Home.jsp). One-way analysis of variance 

(ANOVA) and mean value comparison by the Tukey post-hoc test were calculated using the 

SPSS Statistics software version 17.0 (SPSS, Chicago, Illinois, USA). 

 

Accession numbers 

Data from this article can be found under the following accession numbers: NaEF1a (will 

be submitted to NCBI), Agilent Chip platform (GPL13527; NCBI GEO database), microarray 

data (will be submitted to NCBI GEO database).
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Results 

 

NaGLA1 has no impact on black shank disease progression 

To test whether GLA1 directly affects N. attenuata defense against Ppn, disease symptom 

progression (darkish discoloration and beginning necrosis) was monitored and documented 

photographically in N. attenuata wildtype (WT) and two ir-gla1 lines (stably silenced in GLA1 

expression). In addition, the relative abundance of Ppn TRANSLATION ELONGATION FACTOR 

1 ALPHA genomic DNA in infected and non-infected N. attenuata WT and ir-gla1 (two lines) 

plants was quantified by qPCR to assess Ppn growth rates in these genotypes, considering the 

possibility that symptom development does not necessarily have to correlate with pathogen 

abundance. GLA1 did not influence disease progression in N. attenuata plants infected with Ppn, 

neither morphologically as documented in Figure 1 since the first visible disease symptoms 

occurred simultaneously in WT and ir-gla1 genotypes at 4 dai, nor in form of fungal 

performance, since qPCR quantification of Ppn abundance at 2.5 and 4 dai did not show any 

difference between WT and ir-gla1 lines (Supplemental Figure S4). 

 

GLA1-mediated changes after Ppn infection associated directly to its lipase function 

A previous publication focused on the influence of GLA1 on the production of the 

phytohormone jasmonic acid (JA) and the divinyl ethers colneleic and colnelenic acid during 

Ppn infection, revealing no impact of GLA1 at the final levels of these oxylipins at 4 days of Ppn 
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infection (Bonaventure et al. 2011). Therefore a less biased approach was taken focusing on 

GLA1´s enzymatic function as a glycerolipase A1 (Bonaventure et al. 2011; Kallenbach et al. 

2010). Because it is known that Ppn increases lipase A activity (Roy et al. 1995; Scherer et al. 

2002), a lipase activity assay with Ppn-infected N. attenuata WT and ir-gla1 (2 lines) leaf tissue 

was performed at 4 dai to assess a potential GLA1 contribution to total lipase A activity 

increased by Ppn. As shown in Figure 2 A, total lipase A activity is not influenced in a GLA1-

dependent manner. In agreement to the literature, total lipase A activity was induced by Ppn 

compared to controls about 4-5 fold, however no difference between WT and ir-gla1 lines could 

be observed. To further investigate GLA1´s role as a lipase and whether it could be involved in 

the production of distinct lysolipids in response to Ppn that possess potential signaling function 

(Canonne et al. 2011; Munnik & Testerink 2009), lipids were extracted from Ppn-infected shoots 

of WT and two ir-gla1 lines and various lysolipid species were quantified by LC-MS. Several of 

those were increased upon Ppn infection at 4 dai (DGMG-18:3, LPC-16:0, LPC-18:0, LPC-18:2, 

LPC-18:3, LPE-16:0, LPE-18:2, LPI-16:0, LPI-18:2, LPI:18:3, LPG-16:0, LPA:18:2), however 

without significant differences between WT and both ir-gla1 lines (Supplemental Figure S5). 

The only lysolipid species inducible by Ppn (~4-fold in WT) and the induction of which 

specifically relied on GLA1 expression (almost no difference in ir-gla1 plants after Ppn infection 

compared to controls) turned out to be palmitoleoyl-physphatidylglycerol (LPG-16:1) (Figure 2 

B). A strong trend for a GLA1-mediated reduction in levels of Ppn-inducible lysolipids could be 

also observed for several phosphatidylcholine-derived lysolipids (LPC-16:0, LPC-18:2 and LPC-

18:3), as well as monolinolenoyl-digalactosylglycerol (DGMG-18:3), at least for one of the two 

tested Ppn-infected ir-gla1 N. attenuata lines compared to WT (Supplemental Figure S5). 
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GLA1-dependent changes in oxylipin levels upon Ppn infection 

To assess whether Ppn induced the production of oxylipin species different from JA and 

DVE (Bonaventure et al. 2011), another untargeted approach was used to analyze molecules 

carrying a free carboxyl group. Shoot extracts from Ppn-infected WT and ir-gla1 plants (4 dai)   

were enriched in carboxyl-group containing molecules and analyzed by UPLC-qTOF-MS/MS. 

Already the chromatograms of samples from both genotypes revealed the presence of various 

ions inducible by Ppn and specifically regulated in a GLA1-dependent manner, including three 

ions that represent unsaturated C18-fatty acids (oleic acid, linoleic acid and linolenic acid), one 

ion representing 9-hydroxy-linoleic acid and three other ions likely representing additional 

oxylipins (Figure 3).  Characterization and identification of those compounds was done based on 

MS/MS-data and by help of commercial standards (Figure 4). 

 

GLA1 has drastic effect on gene expression during Ppn infection 

To further explore the role of GLA1 during the infection response to Ppn, a microarray 

analysis was performed at 2.5 dai using shoot tissue of one N. attenuata ir-gla1 line and WT. 

Gene expression changes were evaluated with an Agilent custom-array containing 43,533 N. 

attenuata probes and representing approximately 70 to 80% of the N. attenuata transcriptome 

(Gase & Baldwin 2012; Gilardoni et al. 2011). When log2[fold-change (FC) in normalized signal 

intensity of ir-gla1 vs. WT probe] was larger or equal to 1, or smaller or equal to -1, respectively, 

and the q-value was lower than 0.05 (corresponding to a false discovery rate (FDR) less than 

5%), the respective gene was considered as differentially regulated. The microarray data analysis 
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revealed that constitutive gene expression between non-infected WT and ir-gla1 differed only 

very little (54 genes differentially regulated) with 47 genes up- and 7 down-regulated (Figure 5 

A). This difference is however by orders of magnitude smaller compared to that observed during 

Ppn infection (4192 differentially regulated genes between WT and ir-gla1) (Figure 5 B). The 

majority of those genes (2497) were down- and 1695 genes were up-regulated in ir-gla1 

compared to WT. Only six genes (one encoding for vacuolar processing enzyme 1, another 

encoding for a NBS-LRR type of disease resistance protein, and four more genes that could not 

be annotated) were in both treatments differentially up-regulated in N. attenuata ir-gla1 vs. WT 

shoots. Additional six genes (encoding for senescence-associated protein 13, a NAC domain 

protein, a beta-1,3-glucanase, a homogentisate-dioxygenase, a tropinone reductase homolog and 

another gene that could not be annotated) were differentially up-regulated in untreated controls 

and down-regulated in ir-gla1 vs. WT during Ppn infection (Figure 5 C). Classified based on 

Gene Ontology numbers encoding for biological processes in which those genes are involved 

(Figure 5 D), a major portion of genes differentially regulated after Ppn infection turned out to be 

implicated in response to stimuli and signaling (22.5%), and another 2% were involved in the 

regulation of transcription, supporting the hypothesis of a potential signaling role of GLA1 

products. While analyzing the microarray data (Supplemental Excel File and Supplemental 

Tables S6 and S7) in more detail, several genes involved in phytohormone biosynthesis, 

perception and response were found to be differentially regulated between ir-gla1 and WT 

during Ppn infection (Supplemental Table S6), e.g. auxin-inducible genes were up-regulated as 

well as a gene encoding for an auxin-influx transporter, while those that are repressed by auxin, 

or encode for proteins which remove auxin out of the cell (auxin efflux facilitator) or inactivate 
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auxin by conjugation to amino acids were down-regulated.  In addition, ethylene biosynthesis 

genes and ethylene-responsive genes were down-regulated in ir-gla1 compared to WT during 

Ppn infection, as it could be found also for gibberellin biosynthesis and responsive genes. Genes 

involved in SA, JA and ABA signaling were affected after Ppn infection in a GLA1-dependent 

manner, too.  Also many genes supposed to be involved in defense response to Ppn and other 

fungal phytopathogens were differentially regulated between Ppn-infected WT and ir-gla1 N. 

attenuata plants (Supplemental Table S7), such as genes playing a role in cell acidification 

(Lebrun-Garcia et al. 2002; Mathieu et al. 1996), mitogen activated protein kinase signaling 

(Lebrun-Garcia et al. 2002; Liu et al. 2003; Zhang & Klessig 2000), peroxidation processes and 

reactive oxygen species production (Able, Guest & Sutherland 2000; Groten & Barz 2000; 

Lherminier et al. 2009; Simon-Plas, Elmayan & Blein 2002; Yoshioka et al. 2003), regulation of 

defense-related secondary metabolism such as phytoalexin production (Bohlmann et al. 2002; 

Yu 1995), cell wall fortification (Day & Graham 2007; La Camera et al. 2004), direct antifungal 

defense (e.g. chitinases) (Lan et al. 2000; Liu, Ekramoddoullah & Zamani 2005) and genes 

known to be elicited in the Avr9/Cf-9 system (Rowland et al. 2005). In general, such defense-

related genes were rather down-regulated in Ppn-infected ir-gla1 compared to WT, providing a 

good argument for higher susceptibility of ir-gla1 plants to Ppn compared to WT which was not 

confirmed by disease progression monitoring (Figure 1 and Supplemental Figure S4). 

Interestingly, the expression of several photosynthesis-related genes (Supplemental Excel File) is 

differentially up-regulated in Ppn-infected ir-gla1 compared to WT which can be interpreted as 

higher WT susceptibility to Ppn compared to ir-gla1, since it is known for Phytophthora 

infestans that it negatively effects the expression of photosynthetic genes (Gyetvai et al. 2012; 
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Koch, Noga & Strittmatter 1994; Restrepo et al. 2005; Schnabel, Strittmatter & Noga 1998) and 

for Phytophthora ramorum that it reduces photosynthetic capacity (Manter, Kelsey & Karchesy 

2007). 

 

Abscisic and salicylic acid induction upon Ppn is GLA1-independent 

A previous publication focused on the influence of GLA1 on the production of the 

phytohormone jasmonic acid (JA) and the divinyl ethers colneleic and colnelenic acid during 

Ppn infection, revealing no impact of GLA1 at the final levels of these oxylipins at 4 days of Ppn 

infection (Bonaventure et al. 2011). Consistent with those previous measurements and in order to 

extend the knowledge gained from them, and because several genes involved in abscisic (ABA) 

and salicylic acid (SA) signaling were found to be differentially regulated by GLA1 after Ppn 

infection (Supplemental Table S6), the influence of GLA1 on the levels of these phytohormones 

was also studied in a Ppn infection experiment comparing WT and two ir-gla1 lines. As shown 

in Supplemental Figure S8, levels of ABA and SA are induced by Ppn at 4 dai. In non-inoculated 

plants and in early Ppn infection stage (4 and 24 hours after inoculation) levels of both 

phytohormones were close to the detection limit. Only at 4 dai ABA levels increased up to ~4 

nmol per gram fresh weight (gFW-1) and that of SA up to ~10 nmol gFW-1 in Ppn-infected 

plants. However, the levels observed in WT do not differ from those of ir-gla1 lines, 

demonstrating that the levels of those phytohormones are not altered in a GLA1-dependent 

manner. 
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GLA1 affects secondary metabolites produced after Ppn infection 

To check whether the changes in gene expression observed in the microarray analysis 

(Supplemental Exel File and Supplemental Tables S6 and S7) are translated into changes of polar 

secondary metabolite levels, a metabolic profiling approach was chosen to quantify differentially 

(WT versus ir-gla1 line 1) regulated ions at 2.5 days of Ppn infection using UPLC-microTOF-

MS. The time point of 2.5 dai was chosen in consistency to the microarray experiment to allow 

direct comparison between transcriptomic and metabolomic differences between ir-gla1 1 and 

WT. After separation by retention time via UPLC, metabolites eluting from the column between 

125 and 550 seconds and having a mass-to-charge (m/z) ratio between 90 and 1400 were ionized 

by electrospray ionization (ESI) and analyzed in negative and positive detection modes (see 

Materials and Methods for a more detailed description). For data processing, ions were 

considered as differentially regulated when their abundance differed significantly (t-test; p<0.05) 

between sample sets (n=5) from Ppn-infected WT and ir-gla1 1 N. attenuata shoots and this 

fold-change (FC) in ion abundance (ir-gla1 1 vs. WT) was either equal or greater than 2 or equal 

or smaller than 0.5 (see Vulcano plots in Figure 6 C and D). As a result, 81 ions were found to be 

differentially regulated, of which 39 were up- (2.42<FC<12.44) and 42 down-regulated 

(0.05<FC<0.32) in ir-gla1 1 compared to WT (Figure 6 A-D and Supplemental Table S9). 

Approximately half of the GLA1-regulated ions could not be annotated by m/z value 

(considering the potential error in accuracy as ± 0.02) and retention time comparison with entries 

from public and custom databases (Gaquerel et al. 2010). The other half of GLA1-regulated ions 

could be assigned to the categories lipid derivatives, diterpene glycosides, flavonoids, 

phytohormones and their derivatives, polyamines and their derivatives, alkaloids, amino acids, 
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and two categories (phenolic compounds and organic acids) comprising the residual compounds 

not assignable to other categories (see Figure 6 A and B and Supplemental Table S9). As an 

overall pattern, dimalonylated diterpene glycosides were found to be down-regulated in ir-gla1 

vs. WT, as well as the majority of polyamine derivatives, whereas flavonoids were up-regulated 

(Supplemental Table S9).
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Discussion 

 

Impact of GLA1 on Ppn performance on N. attenuata 

As shown in Bonaventure et al. (2011), NaGLA1 transcription is induced by the 

phytopathogens Fusarium oxysporum and Ppn. During analysis of NCBI blastx results, NaGLA1 

turned out to be highly homolog to the NtACRE14 (Nicotiana tabacum Avr9/Cf-9 rapidly 

elicited protein 14) sequence, the transcription of which was previously shown to be rapidly 

elicited in transgenic tobacco Bright Yellow-2 cells expressing the tomato Cf-9 receptor capable 

of perceiving the Avr9 peptide from the phytopathogenic fungus Cladosporium fulvum 

(Supplemental Figure S10) (Rowland et al. 2005). Thus it was tempting to hypothesize for 

GLA1 a rather general role in plant defense against fungal pathogens. To get a first impression 

on whether GLA1 really plays a major role in N. attenuata´s interaction with Ppn, symptomatic 

disease progression was compared between N. attenuata WT and ir-gla1 plants (Figure 1), 

resulting in no difference between both genotypes. This simultaneous symptom development 

could have been caused by similar growth rates of Ppn in infected WT and ir-gla1 plants. 

Therefore Ppn abundance was quantified by qPCR to test whether this assumption applies or not 

(Supplemental Figure S4). Indeed Ppn growth rate was similar between WT and ir-gla1. 

However, a biological relevance of GLA1 in N. attenuata´s interaction with Ppn or other 

phytopathogenic fungi cannot be ruled out. As described in the method section, a rather harsh 

“needle-prick” method was chosen to inoculate N. attenuata with actively growing Ppn culture, 

almost forcing the pathogen to enter the plant and causing it to die within only a few (5-7) days. 
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This artificial experimental setup did not reflect nature at all, where Phytophthora spores are 

usually disseminated by wind or water (Granke et al. 2009) and need to overcome tough physical 

plant barriers (Judelson & Blanco 2005). Besides, such moist and cool growth conditions are not 

that common in desert environments like the natural habitat of N. attenuata during its growing 

season. Unfortunately, no appropriate pathosystem exploitable for experiments with 

phytopathogenic fungi and N. attenuata had been established so far. Pilot experiments also with 

other phytopathogenic fungi (Fusarium oxysporum, Botrytis cinerea, Alternaria brassicicola, 

Alternaria alternata and a Phoma sp.) and other inoculation methods (spore suspension instead 

of  actively growing mycelium; different plant developmental stages; application by dipping 

roots or spraying plantlets with spore suspension) turned out to be even less suitable, hinting to a 

great basal or a quite early occurring age-related resistance of N. attenuata similar to that 

observed with Phytophthora infestans-attacked Nicotiana benthiamana (Shibata, Kawakita & 

Takemoto 2010), at least regarding the fungal pathogens tested (personal observations). 

Therefore and despite its disadvantages, the use of Ppn and the “needle-prick” method appeared 

still most appropriate for the experiments performed in this study. Besides, a recent study on 

metabolite production during early Ppn infection (1 hour and 2 days after inoculation) of tobacco 

used a similar inoculation method (Ppn plug directly on plant) and similar plant developmental 

stage (shoots having 4-5 leaves) for their experiment (Cho et al. 2012). The establishment of a 

proper N. attenuata pathosystem using native fungal pathogens suitable for lab experiments was 

subject of another study in which also N. attenuata ir-gla1 genotype was compared to WT, 

revealing that GLA1 indeed has big impact on disease progression of certain phytopathogens 

(data not shown; manuscript in preparation). A lot of defense-related genes could be observed to 
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be down-regulated in Ppn-infected N. attenuata ir-gla1 compared to WT plants (Supplemental 

Table S7), meaning that their transcription relies on GLA1 expression induced by Ppn. These 

differentially down-regulated genes are known to be either directly involved in biotic stress-

mediated signaling processes (including also mitogen activated protein kinases and WRKY 

transcription factors) (Dellagi et al. 2000; Skibbe et al. 2008; Zhang & Klessig 2000), active 

plant defense against fungal pathogens (e.g. genes encoding chitinases) (Lan et al. 2000) or 

rather passive defense mechanisms (e.g. genes involved in phenylpropanoid biosynthesis 

pathway necessary for lignification or participating in cutin biosynthesis, thereby leading to cell 

wall enforcement) (Cho et al. 2012; La Camera et al. 2004). These changes in gene expression 

were partly reflected in secondary metabolism (Figure 6 and Supplemental Table S9). For 

instance, ions assigned to the phenolic compound sinapoyl malate as well as the majority of ions 

representing phenylpropanoid-derived polyamine conjugates (phenolamides) were found to be 

differentially down-regulated in Ppn-infected ir-gla1 plants compared to WT. However, ions 

assigned to shikimic acid as metabolic precursor for phenylalanine biosynthesis [and therefore 

lignin components produced via the phenylalanine ammonia-lyase (PAL) pathway] were 

differentially up-regulated in ir-gla1 compared to WT, as well as flavonoids which are not 

implicated in cell wall enforcement (Saedler & Baldwin 2004), indicating that GLA1 controls 

rather specifically the up-regulation of genes and secondary metabolites involved in 

lignifications after Ppn attack. In other words, silencing GLA1 expression results after Ppn attack 

in the accumulation of initial amino acid precursers that could have been used for the 

biosynthesis of lignin and phenolamides and which are now better available for flavonoid 

biosynthesis. The differential down-regulation of ions representing phenolamides in Ppn-infected 
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ir-gla1 plants compared to N. attenuata WT suggests an enhanced pathogen susceptibility of ir-

gla1 not only because of a potentially reduced cell wall fortification, but also because of a 

potential lack of direct fungitoxic effects caused by some of these compounds (Bassard et al 

2010). Besides, conjugation to phenylpropanoid-derived moieties can alter the polyamine 

homeostasis by removal of free polyamines, and also the ratio between individual polyamines 

(e.g. spermidine, spermidine and putrescine) (Bassard et al. 2010). The ratio of spermine 

together with spermidine compared to putrescine is critical for the decision on cell fate during 

pathogen attack (undergoing programmed cell death in form of hypersensitive response or 

starting a rescue attempt by activation of other defense responses) (Bassard et al. 2010). 

Spermine and Spermidine catabolism produces H2O2 and triggers hypersensitive response by 

significant contribution to the second phase of an oxidative burst, a process antagonized by 

putrescine (Bassard et al. 2010). In comparison to free polyamines, phenolamides possess also 

by far higher reactive oxygen species scavenging capabilities leading to cell protection (Edreva, 

Velikova & Tsonev 2007). As shown in Supplemental Table S9, the majority of phenolamides 

differentially down-regulated in Ppn-infected N. attenuata ir-gla1 vs. WT could be annotated to 

spermidine conjugates, while free putrescine was differentially up-regulated, therefore it would 

be tempting to speculate that ir-gla1 plants tend more to the activation of alternative defense 

responses and less to hypersensitive cell death, an idea that could not be confirmed by 

morphological observations following symptomatic disease progression (Figure 1). In addition, 

the metabolic profiling after Ppn infection revealed dimalonylated 17-hydroxygeranyllinalool 

diterpene glycosides (HGL-DTGs) as differentially down-regulated in ir-gla1 plants after Ppn 

infection. The malonylation of these anti-herbivore defensive metabolites was shown to depend 
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on jasmonate and a hydroxyprolin-rich systemin glycopeptide (ppHS) in N. attenuata (Heiling et 

al. 2010). Since jasmonic acid (JA) levels are known not to differ during Ppn infection in N. 

attenuata ir-gla1 and WT lines (Bonaventure et al. 2011), it might be possible that GLA1 

influences the activation of ppHS or other processes involved in HGL-DTG malonylation 

independently from JA. Nothing is published on a potential antimicrobial role of HGL-DTGs so 

far, therefore it can be only speculated about a possible defensive function in N. attenuata 

against Ppn or other phytopathogens. 

 

Influence of GLA1 on phytohormone balance during Ppn infection 

Previous studies demonstrated a role of GLA1 in the production of jasmonic acid upon 

herbivory and wounding, however not during Ppn infection (Bonaventure et al. 2011; 

Kallenbach et al. 2010). This could be explained either by compensation due to high activity of 

residual GLA1 enzyme levels in GLA1-silenced N. attenuata plants, or by the action of 

redundant lipases activated during Ppn infection, similarly as already described for GLA1-related 

lipases from Arabidopsis in response to the bacterial pathogen Pseudomonas syringae pv. tomato 

DC3000 (Ellinger, Stingl, Kubigsteltig, Bals, Juenger, Pollmann, Berger, Schuenemann & 

Mueller 2010). There was also no GLA1-mediated difference detectable in abscisic (ABA) and 

salicylic acid (SA) levels during Ppn infection (Supplemental Figure S8). However, genes 

involved in either the biosynthesis of or the response to those phytohormones (JA, ABA and SA) 

were differentially regulated at 2.5 days after Ppn infection between N. attenuata WT and ir-gla1 

(Supplemental Table S6), indicating that there may exist differences in the levels of those 
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phytohormones at least in this time gap (between 1 and 4 days after Ppn infection) which was not 

covered by the phytohormone analysis. Regarding expression of genes involved in ABA, SA and 

JA biosynthesis it is also necessary to consider that not all changes in transcription translate to 

changes in protein and metabolism. And regarding the responsiveness of genes induced by those 

phytohormones it has to be taken also into account that the expression of many stress responsive 

genes is regulated by multiple different stimuli (Atkinson & Urwin 2012; Walley et al. 2007; 

Xiong, Schumaker & Zhu 2002). The microarray analysis revealed also differences in gene 

expression between Ppn-infected ir-gla1 and WT pointing to reduced ethylene and gibberellin 

and increased auxin levels in ir-gla1 vs. WT. Unfortunately those had not been quantified during 

Ppn infection and therefore it can be only speculated whether those change in a GLA1-dependent 

manner. 

 

GLA1-specific changes in oxylipin and lysolipid production during Ppn infection 

Focusing more on GLA1´s known enzymatic function (Bonaventure et al. 2011; 

Kallenbach et al. 2010), it was hypothesized that it could be an important lipase A contributing 

to the described increase in activity for this lipase type detected after Phytophthora infection 

(Roy et al. 1995; Scherer et al. 2002). This study demonstrated that this is not the case (Figure 2 

A). Furthermore a potentially important role of GLA1 in lipid recycling during plant autophagy-

like processes which would have most likely lead to substantial changes in lipase activity in Ppn-

infected ir-gla1 and WT N. attenuata plants can be also ruled out (Hong et al. 2000; Moreau 

1987; Munnik & Testerink 2009; Talbot & Kershaw 2009). A GLA1-dependent impact on 
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chloroplast membrane fluidity and lipid composition during N. attenuata´s defense against Ppn 

important for proper chloroplast function has to be considered, too (Yamamoto, Ford & Barber 

1981). In this case the changes could be rather minute but specific and therefore barely 

detectable in the total lipase A activity analysis in which other lipases, i.e. patatin-like lipases, 

are likely to be the dominant contributors to total lipase A activity (La Camera et al. 2005; La 

Camera et al. 2004). Indeed GLA1 appears to regulate quite specifically the release of very 

distinct lysolipids as demonstrated for palmitoleoyl-lysophosphatidylglycerol (LPG-16:1) 

(Figure 2 B), probably extendable to several lysophosphatidylcholine species (LPC-16:0, LPC-

18:2 and LPC-18:3) as well as monolinolenoyl-digalactosylglycerol (DGMG-18:3) 

(Supplemental Figure S5), and maybe including also lysolipid species that had not been 

quantified. This is especially interesting regarding the relative abundance and distribution of 

phoshphatidylcholine and galactolipids in the chloroplast as the compartment to which GLA1 is 

localized (Kallenbach et al. 2010). The galactolipids digalactosyl-diacylglycerol (DGDG) and 

monogalactosyl-diacylglycerol (MGDG) constitute up to 80% of all chloroplast lipids, 

emphasizing the potential of GLA1 by being able to generate detectable differences in DGMG-

18:3 levels from these highly abundant lipid species as substrate (Nakamura et al. 2003). In 

contrast to galactolipids, phosphatidylcholine is restricted to the outer surface of the chloroplast 

envelope membrane (Dorne et al. 1985). The lysolipid data (Supplemental Figure S5) therefore 

suggests that GLA1 has either direct access to the chloroplast envelope membrane or indirectly 

leads to the production of lysophosphatidylcholine, e.g. by controlling other lipases. 

Lysophosphatidylcholines are known to be important signaling molecules in plants leading to 

cytoplasmic acidification upon elicitor-activation of a phospholipase A2 (Viehweger, Dordschbal 
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& Roos 2002), a process occurring also during the tobacco response to Phytophthora elicitation 

(Kasparovsky et al. 2004). In a previous study on GLA1’s influence on lysolipid levels in leaves 

during early JA biosynthesis after wounding and simulated insect herbivory, substrates for GLA1 

were found to be recruited mainly from the same lipid classes mentioned also as potential GLA1 

substrates in this study, i.e. galactolipids, phosphatidylglycerol and phosphatidylcholine 

(Bonaventure et al. 2011). That pevious study showed also that occurrence of distinct lysolipid 

products associated with the early JA burst allowing for conclusions on sn-1 or sn-2 lipase 

specificity of GLA1 (Bonaventure et al. 2011). The obtained data gave rise to the hypothesis that 

GLA1 possesses – despite its in vitro demonstrated sn-1 specificity (Kallenbach et al. 2010) – 

either both, sn-1 and sn-2 lipase activities in planta and has access to the chloroplast envelope 

membrane, or indirectly changes the activity of other lipases with sn-2 activity, therefore 

suggesting that these alternative scenarios might apply also for GLA1’s role during the N. 

attenuata-Ppn interaction (Bonaventure et al. 2011). 

Apart from the production of lysolipids, GLA1 participates in the release of oleic, linoleic 

and linolenic acid, as well as the biogenesis of 9-hydroxy-linoleic acid (Figures 3 and 4), 

compounds known to be inducible in plants by Phytophthora elicitors (Cho et al. 2012; Gobel et 

al. 2002; Kachroo & Kachroo 2009; Shah 2005). Depending on the tested pathogen and the used 

concentration those compounds exhibit antifungal activity in vitro (Cantrell et al. 2008; Walters 

et al. 2004), however at least linoleic and linolenic acid seem to be – in contrast to 9-hydroxy-

linoleic acid – ineffective against Ppn (Prost et al. 2005). And in vitro observed inhibition of 

mycelial growth and spore germination not necessarily reflect the in planta situation (Fauconnier 

et al. 2008). Besides the ability of linoleic and linolenic acid to inhibit mycelial growth of several 
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fungal phytopathogens in vitro, the exogenous application of those is known to induce systemic 

resistance in potato against Phytophthora infestans as additional defense mechanism against 

phytopathogenic fungi (Cohen, Gisi & Mosinger 1991). Although the mechanism is unclear, 

systemic resistance is induced probably not by the fatty acids themselves, but possibly via 

signaling compounds produced by the plant in response to the interaction of the fatty acids with 

the plasma membrane (Cohen et al. 1991). 

Taken together, the unsaturated C18-fatty acids, the oxylipin species and the lysolipids 

differentially regulated between Ppn-infected WT and ir-gla1 N. attenuata plants (or other 

second messengers induced thereof) could have a signaling function, explaining also the large 

number of genes differentially regulated between N. attenuata WT and ir-gla1 after Ppn 

infection (Figures 5 and Supplemental Excel File) partly reflected in secondary metabolite 

changes (Figure 6 and Supplemental Table S9). This hypothesis is briefly summarized in the 

model illustrated in Figure 7. However, it has to be considered that the observed results could 

have been also caused not directly by GLA1 activity, but mediated also indirectly, e.g. by the 

action of other lipases stimulated by the release of free fatty acids by GLA1 and the products 

derived thereof (Kachroo & Kachroo 2009; Cohen et al. 1991). Referring back again to the 

observed increase of total lipase A activity after Ppn infection, it is noteworthy that at least two 

members of the dominating patatin class lipases in tobacco possess both, sn-1 and sn-2 lipid 

cleavage site activity (La Camera et al. 2004), whereas GLA1 exhibits – at least in vitro – sn-1 

specificity (Kallenbach et al. 2010). This is important because Cho et al. (2012) found for Ppn-

infected tobacco that oxidation of phospholipid-esterified fatty acids occurs preferentially at the 

sn-2 position and the authors further assumed based on their data that those oxidized fatty acids 
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are more likely to be hydrolyzed from phospholipids by lipases. If these findings from tobacco 

also apply to its wild relative N. attenuata, the sn-1 specific GLA1 would be less likely the lipase 

directly responsible for the production of 9-hydroxy-linoleic acid and other oxylipins, but more 

of a regulator of the activity from other lipases hydrolyzing lipids at the sn-2 position, suggesting 

once more a rather indirect role of GLA1 during N. attenuata´s defense signaling against Ppn.  
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Tables 

Supplemental Table S2. Applied detection parameters for lysolipid quantification. 

ESI mode Lysolipid species Retention time (min) Q1 (m/z) Q3 (m/z)  
Positive 
 DGMG-18:3 10.187 699 537  
 LPE-14:0 10.508 448 405  
 LPC-18:3 10.518 518 184  
 LPE-18:3 10.752 498 455  
 LPC-18:2 11.184 520 184  
 LPE-18:2 11.291 500 457  
 LPE-16:0 11.826 476 433  
 LPC-16:0 11.857 496 184  
 LPC-18:1 11.961 522 184  
 LPC-17:0 12.348 510 184  
 LPC-18:0 13.185 524 184  
Negative      

 LPG-16:0 13.043 483 255  
 LPG-16:1 12.525 481 253  
 LPG-18:2 12.496 507 279  
 LPG-18:3 11.587 505 277  
 LPG-17:1 12.824 495 267  
 LPA-16:0 13.458 409 152.5  
 LPA-18:1 13.852 437 152.5  
 LPA-17:0 14.285 423 152.5  
 LPI-13:0 10.340 529 213  
 LPI-16:0 12.953 571 255  
 LPI-18:2 12.055 595 279  
 LPI-18:3 11.248 593 277  
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Supplemental Table S6. List of selected genes involved in phytohormone signaling 
differentially regulated in Ppn-infected ir-gla1 1 vs. WT plants. 

Gene ID Annotation Fold-
change a 

q- 
value 
(%)a  

Accession No. b E-value 
b 

Auxin 
Na_06053 Auxin efflux facilitator SlPIN5 0.39 2.95 NP_001234192.1 5E-133 
Na_04970 Auxin influx transport protein 3.01 3.10 ABN81351.1 0 
Na_31254 Auxin-induced protein 6B 8.26 2.46 XP_002510511.1 6E-42 
Na_28305 Auxin-induced protein 15A 6.18 4.69 XP_002270504.1 2E-43 
Na_16486 Auxin-induced protein 5NG4 3.86 3.42 XP_002270961.1 8E-138 
Na_26355 Auxin-induced protein 5ng4-like 3.57 4.80 XP_002280062.1 2E-58 
Na_26447 Auxin-induced SAUR-like protein 5.03 4.34 AAM12778.1 5E-43 
Na_13604 Auxin-repressed protein 0.01 1.97 AAS75891.1 2E-46 
Na_15940 IAA-amino acid hydrolase 4 0.44 2.87 XP_002322806.1 3E-113 
Na_17784 Indole-3-acetic acid-amido synthetase GH3.1 0.08 3.10 XP_002283886.1 6E-132 
Na_07460 Indole-3-acetic acid-amido synthetase GH3.6 0.27 2.78 XP_002533739.1 0 
Na_25231 Putative auxin growth promotor protein 2.77 4.91 AAK84479.1 3E-51 
Na_23043 Putative auxin-induced SAUR-like protein 6.06 2.96 AAM12777.1 2E-42 

Ethylene      
Na_10292 1-aminocyclopropane-1-carboxylate synthase 0.17 3.46 AER35095.1 1E-17 
Na_01349 ACC oxidase ACO3 0.46 4.80 ABO32691.1 0 
Na_11867 ACC oxidase 0.09 2.75 AAB05171.1 0 
Na_02452 EIL4 0.28 3.19 AAP04000.1 0 
Na_03087 EIL5 0.45 3.25 AAP04001.1 0 
Na_09485 Ethylene receptor 0.35 4.69 ACC78614.1 0 
Na_14761 Ethylene-responsive transcription factor 2 0.37 3.25 Q9LW50.1 2E-137 
Na_18678 Ethylene-responsive transcription factor 4 0.20 2.80 Q9LW49.1 4E-125 
Na_10937 Ethylene-responsive transcriptional coactivator 0.08 3.61 NP_001234468.1 3E-67 

Gibberellin 
Na_07352 GAST-like protein 0.11 2.85 ACJ02356.1 6E-34 
Na_11901 Gibberellin 2-oxidase 2 0.09 2.68 BAD17856.1 2E-149 
Na_29056 Gibberellin 2-oxidase 5 0.45 2.80 ABO70986.1 9E-57 
Na_05065 Gibberellin receptor GID1 0.22 3.07 XP_002518790.1 2E-120 
Na_03457 GID1-like gibberellin receptor 0.30 2.92 NP_001234767.1 0 
Na_41184 RGL2-2 0.39 3.14 AFN25702.1 1E-37 

Salicylic acid 
Na_37835 Salicylic acid binding catalase 0.31 2.79 AAC48918.1 1E-17 
Na_00040 Salicylic acid-binding protein 0.37 3.01 P49319.2 0 
Na_19175 Salicylic acid-induced protein 19 0.05 2.66 AAQ75123.1 1E-98 

Na_42358 S-adenosyl-L-methionine:benzoic acid/salicylic acid 
carboxyl methyltransferase 6.19 4.82 AFD28989.1 1E-21 

Na_07568 Methyl salicylate esterase 0.16 2.94 Q6RYA0.1 3E-130 
Na_12995 NPR1 0.47 2.87 ABH04326.1 5E-99 

Jasmonic acid 
Na_01883 Jasmonate ZIM domain protein b 2.40 3.34 AFL46166.1 4E-105 
Na_05998 Jasmonic acid 2 0.16 2.84 NP_001233972.1 6E-108 
Na_05069 Jasmonic acid-amino acid-conjugating enzyme 0.49 2.67 ABC87760.1 0 
Na_04090 Lipoxygenase 0.27 3.25 AAP83138.1 2E-179 

Abscisic acid 
Na_02669 ABA 8'-hydroxylase CYP707A1 0.21 3.46 ABA55732.1 0 
Na_24577 Abscisic acid receptor PYL2-like 3.11 4.69 XP_003545372.1 3E-65 
Na_30330 homeodomain 20 transcription factor 0.01 1.60 ADI50265.2 6E-83 
Na_03585 Protein phosphatase 2C ABI2 homolog 0.27 2.78 NP_001234686.1 0 

a ir-gla1 1 vs. WT 
b top NCBI hit (blastx result) 
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Supplemental Table S7. List of selected defense-related genes differentially regulated in 
Ppn-infected ir-gla1 1 vs. WT plants. 

Gene ID Annotation Fold-
change 

a 

q- 
value (%)a  

Accession No. b E-value 
b 

Na_06696 H+/Ca2+ exchanger 2 0.30 3.46 BAA75232.1 0 
Na_03977 Na+/H+ antiporter 0.38 4.88 AAX37333.1 0 
Na_23981 sodium/proton exchanger 0.16 2.87 AAK27314.2 8E-72 
Na_10210 Mitogen-activated protein kinase kinase 1 0.17 2.78 ADT91696.1 0 
Na_03517 Mitogen-activated protein kinase 0.42 3.34 AAQ83971.2 0 
Na_08214 MAP kinase 0.33 2.79 AFP20223.1 0 
Na_00928 Alpha-dioxygenase 2 0.40 2.46 ADM21465.1 0 
Na_00674 Germin-like protein 0.29 2.77 AAR97545.1 2E-155 
Na_30907 Hydrogen peroxide-induced 1 2.11 4.68 ACK38177.1 8E-15 
Na_01233 Pathogen-inducible alpha-dioxygenase 0.15 2.99 AAG59584.1 0 
Na_01376 Peroxidase 0.05 4.34 BAD98313.2 0 
Na_03825 Peroxidase 0.17 2.90 NP_001234644.1 0 

Na_40170 Probable phospholipid hydroperoxide 
glutathione peroxidase 0.16 4.88 Q9FXS3.1 1E-72 

Na_11346 WRKY3 0.25 4.70 AAS13439.1 1E-943 
Na_14052 WRKY6 0.10 4.82 AAS13440.1 8E-129 
Na_12114 Anthocyanidin synthase 1 0.21 3.00 AFM52334.1 0 
Na_03026 Caffeoyl-CoA 3-O-methyltransferase 5 0.15 4.80 AAB80931.1 2E-173 
Na_00286 Cinnamyl alcohol dehydrogenase 1 0.38 2.77 AFP43763.1 0 
Na_00381 Cinnamoyl-CoA hydratase-dehydrogenase 0.27 2.96 AFS41246.1 0 
Na_01677 Cinnamoyl-CoA reductase 0.30 4.06 NP_001234612.1 0 
Na_06408 Dihydroflavonol 4-reductase 0.12 3.47 AFD28990.1 0 
Na_18171 Flavonol synthase/flavanone 3-hydroxylase 0.26 2.58 XP_002516897.1 5E-106 
Na_00178 Phenylalanine ammonia-lyase 1 0.24 2.81 ABG75910.1 0 
Na_00451 Putrescine n-methyltransferase 1 0.39 3.10 AAK49870.1 0 
Na_03285 Threonine deaminase 0.06 2.50 AAG59585.1 8E-92 
Na_04212 5-epiaristolochene 1,3-dihydroxylase 0.04 3.34 Q94FM7.2 0 
Na_08733 EDS1-like protein 0.42 4.68 AAL85347.1 0 
Na_11320 Phytoalexin-deficient 4-1 protein 0.19 2.87 AAW82883.1 8E-96 
Na_03840 Acidic endochitinase Q 0.05 3.14 P17514.1 2E-155 
Na_16045 Endochitinase 4 0.39 2.94 P52406.1 5E-70 
Na_15501 Beta-1,3-galactosyltransferase 7-like 0.14 3.07 XP_003523469.1 2E-84 
Na_32560 Disease resistance protein RGA2 0.35 2.79 XP_002277479.1 7E-25 
Na_11290 Enhanced disease resistance 2 protein 0.23 2.66 NP_001119010.1 2E-178 
Na_15078 Pathogen-related protein 0.05 2.82 XP_002285489.1 5E-125 
Na_24888 Pathogenesis-related protein 1B 0.07 3.09 P07053.1 1E-104 

Na_08431 Putative PR-10 type pathogenesis-related 
protein 3.06 2.56 BAJ25785.1 3E-59 

Na_37159 Avr9/Cf-9 induced kinase 1 0.22 4.82 AAP03880.2 2E-27 
Na_07538 Avr9/Cf-9 rapidly elicited protein 65 0.22 1.35 AAG43557.1 2E-27 
Na_08098 Avr9/Cf-9 rapidly elicited protein 75 0.12 3.61 AAG43558.1 1E-62 
Na_21463 Avr9/Cf-9 rapidly elicited protein 146 0.45 2.64 AAG43551.1 2E-110 
Na_26036 Avr9/Cf-9 rapidly elicited protein 151 0.19 2.50 AAV92901.1 3E-22 
Na_14933 Avr9/Cf-9 rapidly elicited protein 276 0.49 4.69 AAP03882.1 0 
Na_31614 Avr9/Cf-9 rapidly elicited protein 284 0.25 3.33 AAP03883.1 5E-77 

a ir-gla1 1 vs. WT        
b top NCBI hit (blastx result) 
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Supplemental Table S9. List of annotated ions from Ppn-infected WT vs. ir-gla1 1 at 2.5 

dai. 

 Mass 
over 
charge 
m/z 

Retention 
time [s] 

Fold-change 
ir-gla1 1/WT 

P-value (t-test; 
Tukey post-
hoc test; n=5) 

Ion type Ion annotation 

Alkaloid   
 377.11 291.25 0.22 0.040 [M+K]+ Nicotine glucuronide 
Amino acid   
 235.17 275.57 4.04 0.046 Positive dimer Valine 
 135.12 265.91 4.40 0.024 NH4+ adduct Valine 
Diterpene glycosides   
 963.41 277.23 0.12 0.040 [M-H]- Dimalonylated lyciumoside II 
 964.41 277.23 0.12 0.040 Monoisotopic mass Dimalonylated lyciumoside II 
 982.44 277.69 0.20 0.040 NH4+ adduct Dimalonylated lyciumoside II 
 947.41 297.92 0.12 0.045 [M-H]- Nicotianoside II 
 948.42 297.90 0.12 0.046 Monoisotopic mass Nicotianoside II 
 966.45 298.08 0.18 0.043 NH4+ adduct Nicotianoside II 
 971.40 298.55 0.20 0.043 Na+ adduct Nicotianoside II 
 1109.47 272.88 0.13 0.040 [M-H]- Nicotianoside VII 
 1110.47 273.08 0.14 0.041 Monoisotopic mass Nicotianoside VII 
 1128.49 274.12 0.22 0.040 NH4+ adduct Nicotianoside VII 
Flavonoids   
 289.07 213.60 4.24 0.011 [M+H]+ Dihydrokaempferol 
 611.16 148.49 4.86 0.039 [M+H]+ Rutin 
 319.13 133.14 12.44 0.000 [M+H-2H2O]+ Trihydroxy-methyl-prenyl-flavanone 
Lipid derivatives   
 614.36 266.41 4.51 0.030 [M+K]+ LPC-22:2 
 492.25 298.09 0.22 0.042 [M+K]+ LPE-16:0 
 514.23 265.04 4.21 0.037 [M+K-2H]- LPE-18:2 
 123.12 266.41 4.46 0.016 [M+H-H2O]+ Nonadienol/nonenal 
 501.26 129.99 0.05 0.000 [M+Na-2H]- PA-(10:0/10:0) 
 429.18 213.81 2.42 0.042 [M+K-2H]- PA-(16:0/0:0) [cyclic] 
 435.31 263.62 4.33 0.035 [M+H-H2O]+ PC-(O-14:1/0:0) 
 547.25 151.62 0.14 0.042 [M+K-2H]- PG-(18:1/0:0) 
 983.44 277.69 0.21 0.040 [M+H-2H2O]+ PIP2-(18:3/18:1) 
Organic acid   
 163.00 120.88 3.48 0.026 [M+2Na-H]+ Succinic acid 
Phenolics   
 139.04 443.80 2.95 0.027 [M+H-2H2O]+ Shikimic acid 
 139.04 419.46 4.56 0.004 [M+H-2H2O]+ Shikimic acid 
 341.09 291.55 0.23 0.040 [M+H]+ Sinapoyl malate 
Phytohormones and derivatives   
 306.18 178.47 0.23 0.042 NH4+ adduct IAA-Ile 
 337.19 275.19 6.68 0.040 [M-H]- JA-Gln 
 419.20 267.90 4.12 0.045 Na+ adduct JA-Trp 
 139.04 468.10 3.88 0.040 [M+H]+ Salicylic acid 
 359.10 291.25 0.21 0.040 Acetate adduct Salicylic acid-O-glucoside 
 396.12 291.45 0.23 0.040 [M+2Na-H]+ Zeatin-riboside 
Polyamines and derivatives   
 482.22 171.14 0.23 0.040 [M+H]+/ 

Formeate adduct 
Dehydro-Caffeoylferuloylspermidine/ 

Dicoumaroylspermidine 
 514.22 155.48 0.15 0.043 Formeate adduct Dicaffeoylspermidine 
 528.23 148.39 0.23 0.042 Acetate adduct/ 

Formeate adduct 
Dicaffeoylspermidine/ 

Feruloylcaffeoylspermidine 
 501.24 151.97 0.16 0.046 Monoisotopic mass Dihydrohydroxyferuloylcaffeoylspermidine 
 501.24 152.21 0.22 0.043 Monoisotopic mass Dihydrohydroxyferuloylcaffeoylspermidine 
 501.24 151.93 0.22 0.041 Monoisotopic mass Dihydrohydroxyferuloylcaffeoylspermidine 
 597.30 213.17 0.16 0.043 Monoisotopic mass/ 

NH4+ adduct/ 
Monoisotopic mass 

Hexanoyl-caffeoyl-sinapylspermidine/ 
Hexenoyl-caffeoyl-feruloylspermidine/ 

Hexanoyl-diferuloylspermidine 
 538.23 457.72 2.81 0.040 K+ adduct Hydrated diferuloylspermidine 
 672.30 247.44 4.01 0.041 Acetate adduct N,N´-Biscoumaroyl-N´´-feruloylspermidine 
 147.12 238.87 3.85 0.048 Acetate adduct Putrescine 
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Figure legends 

 

Figure 1. Nicotiana attenuata morphology during infection with Phytophthora parasitica 

var. nicotianae. 

24 days old N. attenuata plants (WT and two ir-gla1 lines) were infected with P. parasitica var. 

nicotianae (Ppn) and photographed at 0, 2.5 and 4 days after infection (dai). Plants treated with 

PDA served as medium control. White squares in the pictures of Ppn-infected plants at 4 dai 

indicate a plant region (5-fold magnified below) in which disease symptoms (necrosis and 

darkish discoloration) started to become visible. 

 

Figure 2. Lipase activity and release of palmitoleyl-lysophospatidyl glycerol (LPG-16:1) 

after Ppn infection. 

24 days old N. attenuata plants (WT and two ir-gla1 lines) were infected with Ppn (control: 

PDA) and at 4 dai shoots were harvested and either extracted to measure lipase activity using 

14C-labeled phosphatidyl choline as substrate (A; two biological replicates) or to quantify LPG-

16:1 levels (B) by LC-MS/MS. The LPG-16:1 data was analyzed using one-way-ANOVA and 

Tukey-post hoc test (n=3-5). Bars denote SD (A) or SE (B). 
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Figure 3. Differential induction of oxylipins in ir-gla1 1 compared to WT after Ppn. 

24 days old N. attenuata WT and ir-gla1 1 plants were inoculated either with PDA as control or 

Ppn for 4 days and and their shoots extracted for oxylipin analysis. A Total ion chromatographic 

profiles of control and Ppn infected WT (black) and ir-gla1 1 (red) plant extracts analyzed by 

UPLC-ESI-ToF-MS in negative ionization mode. For identification, commercially available fatty 

acid and oxylipin standards were analyzed analogous to plant extracts. Numbers indicate 

oxylipins differentially regulated in ir-gla1 1 compared to WT after Ppn infection, letters 

indicate standards analyzed (B, see Fig. 4 for details). 

 

Figure 4. Seven fatty acids and oxylipins differentially regulated in ir-gla1 1 compared to 

WT after Ppn infection.  

A-G Oxylipins from control and Ppn-infected WT and ir-gla11 were measured by UPLC-ToF-

MS and seven compounds were found to be differentially induced in infected ir-gla1 1 plants 

compared to WT plants (Bars representing normalized peak areas, mean ± SE, n= 5, different 

letters represent statistical significance, one-way ANOVA, p< 0.5). For identification, 

compounds were compared with commonly available standards with respect to their retention 

times (RT) and MS/MS spectra. Chromatograms represent the extracted ion chromatogram (EI) 

of m/z= [M-H]- of an extract of WT infected with Ppn. MS/MS spectra were obtained at the 
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mean RT of each compound. If available the EI spectra of the identical standard was integrated 

and the structure with the fragmentation pattern is shown. 

 

Figure 5. Microarray and Gene Ontology (GO) analysis of differentially expressed genes in 

Ppn-infected shoots of ir-gla1 1 and wild-type plants. 

A. Distribution of fold-changes (FC) of genes expressed differentially in shoots of untreated 

(control) ir-gla1 1 vs. wild type plants. B. Distribution of FC of genes expressed differentially in 

shoots of Ppn-infected ir-gla1 1 vs. wild type plants. C. Venn diagram of the number of genes 

differentially expressed in control and Ppn-infected shoots of ir-gla1 1 compared to wild type. 

The numbers in the intersection represent the genes differentially expressed at both conditions. 

Downward pointing arrows indicate differential down-regulation, upwards oriented ones up-

regulation. Arrows next to the numbers in the intersection indicate the differential regulation in 

controls (left) or Ppn-infected plants (right). D. Annotated genes differentially expressed in Ppn-

infected shoots of ir-gla1 1 were categorized based on biological processes using the Blast2Go 

software. The summed up percentages (%) of genes from the stimuli response/signaling (RS) and 

from the transcription regulation (T) category are given on the right. 
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Figure 6. Comparison of the polar secondary metabolite profiles between Ppn-infected WT 

and ir-gla1 1 at 2.5 dai. 

The pie charts show the percentage of ions belonging to a certain group of metabolites based on 

their annotation that are either up- (A) or down-regulated (B) in ir-gla1 1 vs. WT. The absolute 

number of differentially regulated ions belonging to a certain metabolite group are given in 

brackets next to the according pie chart section. For generating the pie charts, ions obtained from 

the negative as well as the positive mode were annotated and further analyzed together. Before 

the annotation process, Pareto-normalized data sets from both ion modes were analyzed 

individually using the MetaboAnalyst 2.0 online software tool. The Vulcano plots (C and D) 

show all ions differentially (FC ir-gla1 1 vs. WT either > 2 or < 0.5) and significantly (t-test; 

p<0.05) regulated in pink. 

 

Figure 7. Model summarizing the role of GLA1 during N. attenuata infection with Ppn. 

Infection with Ppn is perceived by the plant cell which induces GLA1 expression. After 

translation, GLA1 protein is transported into the chloroplast, where it could function – either 

directly or indirectly – in the generation of potential signaling compounds (e.g. certain lysolipids, 

free unsaturated fatty acids and oxylipins or products derived thereof). The release of the 

proposed signaling molecules could then lead to further changes in gene expression in the 

nucleus mediating the plant’s response to pathogens like Ppn. 
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Supplemental Figure S1. Specificity of the qPCR-primers designed for quantification of the 

relative PpnEF1a gene abundance. 

A. Alignment of the ELONGATION FACTOR 1 ALPHA (EF1a) nucleotide sequences of three 

different Ppn isolates (Ppn_ EF418929, Ppn_GU191189 and Ppn_EU080678; GenBank 

accession No. EF418929, GU191189 and EU080678) with those from Nicotiana attenuata 

(Na_EF1a; sequence will be submitted to NCBI) and Nicotiana tabacum (Nt_D63396; GenBank 

accession No. D63396) using the Geneious 5.5.7 software tool using default parameters. The 

primer binding sites of Ppn_EF1a_fwd (5’-GGCGGTATTGGCACGGTA-3’) and 

Ppn_EF1a_rev (5’-GCCGACGTTGTCACCAGG-3’) flank a 159 bp amplified region. 

B. Result of a PCR to test the Ppn_EF1a fwd/rev qPCR primers under standard PCR conditions. 

Lane 1: 1-kb size standard; lanes 2&3: N. attenuata wildtype templates + Ppn_EF1a fwd/rev; 

lanes 4&5: Ppn templates + Ppn_EF1a_fwd/rev; lane 6: Ppn-infected N. attenuata wildtype 

template + Ppn_EF1a_fwd/rev. 

 

Supplemental Table S2. Applied detection parameters for lysolipid quantification. 

 

Supplemental Figure S3. Comparison of NtACRE14 nucleotide sequence with blastn hits 

obtained from http://solgenomics.net/tools/blast/index.pl. 

In order to identify the full length protein coding nucleotide sequence of N. tabacum ACRE14 

(NtACRE14; Genbank: AY775029.1) it was blasted (blastn) against two different databases from 
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http://solgenomics.net/tools/blast/index.pl. The blast against the “N. tabacum Methylation 

Filtered Genome TGI:v.1 Contigs” resulted in “processed_tobacco_genome_sequences_ c19207 

(99% identity, E-value=0) and another blast against “N. tabacum Methylation Filtered Genome 

TGI:v1 Processed Reads” gave CHO_OF4571xi05f1.ab1 (99% identity, E-value=0) and 

CHO_OF4768xf12r1.ab1 (99% identity, E-value=0) as best hits. All sequences were aligned 

using the Geneious 5.5.7 software with default parameters. Nucleotides identical between all 

sequences are displayed in black within the sequences and highlighted in green above the 

alignment. 

 

Supplemental Figure S4. Quantification of Ppn abundance by qPCR. 

Genomic DNA was extracted from shoots of 26-28 days old WT and ir-gla1 N. attenuata plants 

infected with Ppn (n=14-19) at 2.5 dai and 4 dai. Plants treated with PDA (n=3) served as 

control. The relative abundance of the Ppn-EF1a gene in 20 ng of DNA template was quantified 

by qPCR. ND: not detected. Bars denote  ± SE. 

 

Supplemental Figure S5. Levels of DGMG-18:3, lysolipids derived from PC, PE, PI and PG 

and phosphatidic acid in WT and ir-gla1 shoots after Ppn infection. 

24 day old N. attenuata plants (WT and two ir-gla1 lines) were infected with Phytophthora 

parasitica var. nicotianae (Ppn) and shoots were harvested at 4 dai for lysolipid analysis by LC-
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MS/MS. Plants treated with PDA (medium) served as control. Data was analyzed using one-

way-ANOVA and Tukey-post hoc test (n=3-5). Bars represent ± SE. 

 

Supplemental Table S6. List of selected genes involved in phytohormone signaling 

differentially regulated in Ppn-infected ir-gla1 1 vs. WT plants. 

 

Supplemental Table S7. List of selected defense-related genes differentially regulated in 

Ppn-infected ir-gla1 1 vs. WT plants. 

 

Supplemental Figure S8. Accumulation of abscisic and salicylic acid after Ppn infection. 

Shoots of 24 days old N. attenuata plants (WT and two ir-gla1 lines) infected by Ppn (control: 

PDA) were harvested at different time points after infection (0, 4, 24 and 96 h) and the levels of 

abscisic (A) and salicylic acid (B) were quantified by LC-MS/MS. ND: not detected. Bars denote 

± SE (n=6-7 for 0 h, n=3-4 for 4 and 24 h and n=5-8 for 96 h after infection). 

 

Supplemental Table S9. List of annotated ions from Ppn-infected WT vs. ir-gla1 1 at 2.5 

dai. 
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Supplemental Figure S10. Comparison of NaGLA1 with NtACRE14 protein sequence. 

The protein sequences of N. attenuata GLA1 (NaGLA1; Genbank: ACZ57767) and N. tabacum 

ACRE14 (NtACRE14; Genbank: AAV92888; full length sequence obtained by blastn against the 

“N. tabacum Methylation Filtered Genome TGI:v.1 Contigs” at http://solgenomics.net/tools/ 

blast/index.pl; Supplemental Figure S3) were aligned using the Geneious 5.5.7 software using 

default parameters. Amino acids identical between both proteins are displayed in black within 

the sequences and highlighted in green above the sequence alignment. 

 

Supplemental Exel File SIa. List of genes changing expression in uninfected (control) 

shoots of ir-gla1 1 compared to WT Nicotiana attenuata plants. 

n = 3 (biological replicates per genotype) 

* FC (fold-change; ir-gla1 1 vs. WT) 

** q-value calculated with SAM (Statistical Analysis of Microarrays) using Multiexperiment 

Viewer (MeV v4.8) software (http://mev.tm4.org/) 

§ Analysis performed with Blast2Go software (http://www.blast2go.com/b2glaunch) 

 

Supplemental Exel File SIb. List of genes changing expression in Phytophthora parasitica 

var. nicotianae-infected shoots of ir-gla1 1 compared to WT Nicotiana attenuata plants. 

n = 3 (biological replicates per genotype) 

* FC (fold-change; ir-gla1 1 vs. WT) 
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** q-value calculated with SAM (Statistical Analysis of Microarrays) using Multiexperiment 

Viewer (MeV v4.8) software (http://mev.tm4.org/) 

§ Analysis performed with Blast2Go software (http://www.blast2go.com/b2glaunch) 

# q-value > 5% and data therefore excluded from further microarray analyses 

 



Chapter 4: Manuscript 2 
 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the oomycete 
Phytophthora parasitica var. nicotianae 

 

107 
 

 



Chapter 4: Manuscript 2 
 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the oomycete 
Phytophthora parasitica var. nicotianae 

 

108 
 

 



Chapter 4: Manuscript 2 
 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the oomycete 
Phytophthora parasitica var. nicotianae 

 

109 
 

 



Chapter 4: Manuscript 2 
 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the oomycete 
Phytophthora parasitica var. nicotianae 

 

110 
 



Chapter 4: Manuscript 2 
 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the oomycete 
Phytophthora parasitica var. nicotianae 

 

111 
 

 



Chapter 4: Manuscript 2 
 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the oomycete 
Phytophthora parasitica var. nicotianae 

 

112 
 



Chapter 4: Manuscript 2 
 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the oomycete 
Phytophthora parasitica var. nicotianae 

 

113 
 



Chapter 4: Manuscript 2 
 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the oomycete 
Phytophthora parasitica var. nicotianae 

 

114 
 



Chapter 4: Manuscript 2 
 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the oomycete 
Phytophthora parasitica var. nicotianae 

 

115 
 



Chapter 4: Manuscript 2 
 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the oomycete 
Phytophthora parasitica var. nicotianae 

 

116 
 



Chapter 4: Manuscript 2 
 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the oomycete 
Phytophthora parasitica var. nicotianae 

 

117 
 



Chapter 4: Manuscript 2 
 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the oomycete 
Phytophthora parasitica var. nicotianae 

 

118 
 



Chapter 4: Manuscript 2 
 

Analysis of the role of NaGLA1 in Nicotiana attenuata defense responses against the oomycete 
Phytophthora parasitica var. nicotianae 

 

119 
 

 

 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

120 
 

Chapter 5: Manuscript 3 

 

HSPRO controls early Nicotiana attenuata seedling growth during interaction 

with the fungus Piriformospora indica 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

121 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

122 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

123 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

124 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

125 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

126 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

127 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

128 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

129 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

130 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

131 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

132 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

133 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

134 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

135 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

136 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

137 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

138 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

139 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

140 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

141 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

142 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

143 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

144 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

145 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

146 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

147 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

148 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

149 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

150 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

151 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

152 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

153 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

154 
 



Chapter 5: Manuscript 3 
 

HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus 
Piriformospora indica 

155 
 

 



Chapter 6: Manuscript 4 
 

HSPRO acts via SnRK1 signaling in the regulation of Nicotiana attenuata seedling growth 
promoted by Piriformospora indica 

 

156 
 

Chapter 6: Manuscript 4 

 

HSPRO acts via SnRK1-mediated signaling in the regulation of Nicotiana 

attenuata seedling growth promoted by Piriformospora indica 

 



Chapter 6: Manuscript 4 
 

HSPRO acts via SnRK1 signaling in the regulation of Nicotiana attenuata seedling growth 
promoted by Piriformospora indica 

 

157 
 



Chapter 6: Manuscript 4 
 

HSPRO acts via SnRK1 signaling in the regulation of Nicotiana attenuata seedling growth 
promoted by Piriformospora indica 

 

158 
 



Chapter 6: Manuscript 4 
 

HSPRO acts via SnRK1 signaling in the regulation of Nicotiana attenuata seedling growth 
promoted by Piriformospora indica 

 

159 
 



Chapter 6: Manuscript 4 
 

HSPRO acts via SnRK1 signaling in the regulation of Nicotiana attenuata seedling growth 
promoted by Piriformospora indica 

 

160 
 



Chapter 7: Discussion 

161 
 

Chapter 7: Discussion 

 

Nicotiana attenuata responds specifically to its individual attackers 

As already extensively described in the introduction, N. attenuata plants are - as a 

consequence of germinating from long-lived seed banks in a post-fire environment - challenged 

by herbivore and pathogen communities unpredictable regarding their species composition 

(Baldwin & Morse, 1994; Preston & Baldwin, 1999). Therefore it is especially important for this 

plant species to recognize its individual attackers to react most efficiently (Diezel et al., 2009). 

At least it needs to differentiate between herbivores with different feeding modes 

(biting/chewing or piercing/sucking), polyphagous generalists and oligo-/monophagous 

specialists as well as between different pathogens with varying degrees of biotrophy/necrotrophy 

in their lifestyle and specialization to a certain host plant (Kirchner & Roy, 2002; Glazebrook, 

2005; Ali & Agrawal, 2012). This means the reaction needs to be tailored to the attacker in a 

very sophisticated way that a) Darwinian fitness costs due to resource investments are 

minimized, b) direct (e.g. autotoxicity of defense chemicals) or indirect (e.g. damage of 

mutualists) detrimental side effects for the plant are avoided and c) the taken countermeasures 

indeed negatively affect the attacker and do not result in the opposite (i.e. the attacker’s benefit) 

(Baldwin & Callahan, 1993; Euler & Baldwin, 1996; Baldwin et al., 1998). Ali & Agrawal 

(2012) proposed in their excellent review an evolutionary scenario that could explain why the 

plant’s ability to distinguish between specialist and generalist herbivores might be of great 

adaptive value. According to that model there might be more selection pressure on generalist 

chewing herbivores compared to specialist ones to develop mechanisms which suppress elicited 

plant defense responses (in case of chewing herbivores typically mediated by JA signaling) 

because the generalists are less likely to have adapted to the JA-mediated defenses of a particular 

host plant during evolution (Ali & Agrawal, 2012). With respect to N. attenuata and its 

lepidopteran herbivores, this model is in full agreement with the demonstrated tolerance of the 

specialist M. sexta to the JA-inducible plant defense compound nicotine and the suppression of 

JA-mediated defenses by the generalist S. exigua (Wink & Theile, 2002; Diezel et al., 2009). 
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GLA1 is the major lipase involved in JA burst formation after wounding and M. sexta 
herbivory 

After N. attenuata elicitation by wounding, treatment with M. sexta OS or with the FAC 

18:3-Glu as a defined constituent of this OS, JA production is initialized within only a few 

minutes, leading to a peak in JA content at approximately 40-60 minutes after stimulus 

application which is then reduced back to basal levels within four hours after elicitation (Schittko 

et al., 2000; Halitschke et al., 2001; Kallenbach et al., 2010; manuscript 1). Additional 

application of M. sexta OS or FACs to wounding sites – to simulate M. sexta herbivory – leads to 

a drastic JA burst amplification compared to wounding alone (3-4-fold higher JA peak levels) 

(Schittko et al., 2000; manuscript 1). Kallenbach et al. (2010) demonstrated by using a transient 

gene silencing approach (virus-induced gene silencing) that GLA1, a chloroplastic glycerolipase 

A1, is the major lipase in N. attenuata responsible for initialization of this transient JA burst. As 

shown in manuscript 1, this finding could be confirmed with N. attenuata genotypes stably 

silenced in GLA1 expression and extended to the entire JA burst duration. GLA1 catalyzes the 

hydrolysis of trienoic fatty acids (hexadecatrienoic or linolenic acid) from various chloroplastic 

lipid classes (galacto- and phospholipids) and the free fatty acid substrates are then further 

metabolized by several other enzymes to JA (summarized in form of a model in manuscript 1) 

(Schaller & Stintzi, 2009; Bonaventure et al., 2011). Even though this vital role of GLA1 for the 

JA burst was proven only for wounding and 18:3-Glu elicitation and not for the complex M. 

sexta OS, GLA1 is likely to contribute to a similar extent also to the M. sexta OS-induced JA 

burst as it does after 18:3-Glu elicitation, since it is known that FAC application is fully 

sufficient to obtain the full intensity of the JA response observed after M. sexta OS treatment 

(Halitschke et al., 2001; Kallenbach et al., 2010; manuscript 1). However, it remains unclear 

whether GLA1 retains its important role also on a larger temporal scale and throughout the entire 

M. sexta herbivory process in which JA production is repeatedly elicited (Stork et al., 2009). 

Other lipases with redundant function might get activated over time which could contribute to 

gradually increasing basal JA levels and compensate for – in case of any GLA1 deficiency – the 

function of this lipase (Stork et al., 2009; Ellinger et al., 2010). An experiment in which M. sexta 

larvae performance and plant JA contents are monitored over time on wild-type and GLA1-

silenced N. attenuata plants would probably help answering the question regarding GLA1´s 

actual biological relevance during M. sexta herbivory. The additional integration of larvae from 
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the generalist herbivore S. exigua in such an experiment together with the use of transgenic N. 

attenuata crosses deficient in both, SA accumulation and GLA1 expression, could be interesting 

to evaluate the Darwinian fitness benefit resulting from SA-mediated suppression of the JA burst 

by S. exigua. For sure GLA1 is essential for the JA burst formation in N. attenuata after single-

elicitation events (manuscript 1). In contrast to DAD1 and DGL lipases from Arabidopsis which 

are highly similar to N. attenuata GLA1 (protein sequence identity 46% and 37%, respectively), 

it neither plays any role in fertility (anther dehiscence, flower opening and pollen viability) nor 

development of N. attenuata and therefore seems to be specifically relevant only for N. attenuata 

responses to distinct stress stimuli like wounding or insect herbivory (Hyun et al., 2008; 

Kallenbach et al., 2010; manuscript 1). N. attenuata infection by the phytopathogenic oomycete 

Ppn also leads to slight JA induction in leaves, even though the quantified JA levels are very 

minor compared to those observed after wounding or FAC elicitation and in view of the huge 

induction of other phytohormes like SA and abscisic acid (see manuscripts 1 and 2). However, 

there was no difference in this Ppn-induced JA levels between wild-type and GLA1-silenced N. 

attenuata plants which might be explained either by compensation via high activity of residual 

GLA1 protein in GLA1-silenced N. attenuata plants or the action of redundant lipases (Ellinger 

et al., 2010; manuscript 1). For the latter case being true, a GLA1 involvement in Ppn-inducible 

JA production can be ruled out, emphasizing the stimulus-specificity of this lipase. The rapid 

conversion of free fatty acid substrates provided by GLA1 into their 13-hydroperoxides by a 13-

lipoxygenase (LOX3) specifically feeding the JA biosynthesis pathway suggests a tight 

association of both enzymes (substrate channeling) (Bonaventure & Baldwin, 2010; manuscript 

1). Considering the rapid initialization of JA biosynthesis, its regulation by de novo GLA1 

protein biosynthesis appears rather unlikely (Bonaventure & Baldwin, 2010; Kallenbach et al., 

2010). Indeed, GLA1 transcriptional gene expression is even down-regulated by FAC elicitation 

(Kallenbach et al., 2010). Therefore it can be concluded that the initiation of wounding- and 

FAC-inducible JA biosynthesis is regulated most likely by elicitor-mediated changes in GLA1 

(and maybe also LOX3) protein activity e.g. by posttranslational modification explaining the 

observed rapid accumulation of 13-hydroperoxy fatty acids and the different lysolipid 

accumulation patterns after FAC treatment compared to wounding (Bonaventure & Baldwin, 

2010; Kallenbach et al., 2010; manuscript 1). To test this hypothesis, changes in GLA1 or LOX3 

protein masses resulting from potential posttranslational modification events could be identified 
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by using a 2-D gel electrophoresis and MALDI-ToF approach. The down-regulation of GLA1 

expression (lack of de novo GLA1 protein biosynthesis) and/or the inactivation of GLA1 protein 

by posttranslational modification-based mechanisms or accelerated GLA1 protein degradation 

could then – in addition to JA metabolism – explain the observed decline in JA levels up to basal 

levels within a few hours after elicitation (Stitz et al., 2011). 

 

GLA1 generates potential signaling molecules in response to Ppn infection 

In contrast to elicitation by wounding and 18:3-Glu treatment, GLA1 expression is 

drastically up-regulated in N. attenuata leaves after infection by the phytopathogenic fungi Ppn 

and Fusarium oxysporum (manuscript 1), indicating a second function of GLA1 different from 

JA biosynthesis in N. attenuata´s interaction with those fungi. As shown in manuscript 1, GLA1 

is also not involved in fatty acid substrate supply to a lipoxygenase (LOX1) feeding the pathway 

for divinyl ether (DVE) biosynthesis, since final levels of DVE after Ppn and F. oxysporum 

infection were not different between wild-type and GLA1-silenced N. attenuata leaves. However, 

for the early infection stage (one day after inoculation), GLA1-dependent differences in the 

expression of LOX1 (after Ppn infection) and the gene encoding for divinyl ether synthase (after 

F. oxysporum infection) could be observed in N. attenuata leaves, as well as an accelerated 

initial reduction in divinyl ether levels in Ppn-infected GLA1-silenced vs. wild-type N. attenuata 

plants, giving rise to the hypothesis that GLA1 could play a role in the generation of certain 

signaling molecules (different from JA) affecting gene expression and early DVE metabolism 

(manuscript 1). This hypothesis was supported by microarray and metabolic profiling data 

presented in manuscript 2 revealing GLA1-dependent changes in the expression of 4192 genes 

after Ppn infection which are reflected in secondary metabolite levels including 

phenylpropanoids, polyamines and terpenoids. Both, transcriptomic as well as metabolomic data, 

suggest a role of GLA1during Ppn infection in regulating the flux of metabolic precursors in the 

phenylalanine-ammonia-lyase pathway towards the production of lignin precursors (being 

fungitoxic or used for cell wall enforcement) and phenolamides, whereas flavonoid and free 

polyamine levels decrease (La Camera et al., 2004; Edreva et al., 2007; Bassard et al., 2010; 

manuscript 2). Thereby it could influence N. attenuata´s polyamine homeostasis and the decision 

regarding plant cell fate upon Ppn infection, i.e. programmed cell death in form of a 
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hypersensitive response or induction of other defense responses (Bassard et al., 2010). GLA1 

plays also a role in regulating the levels of dimalonylated 17-hydroxygeranyllinalool diterpene 

glycosides (HGL-DTGs) known to be JA-inducible anti-herbivore defense metabolites (Heiling 

et al., 2010). To my knowledge, so far no information on a potential antimicrobial function of 

HGL-DTGs is available in literature. Even though in vitro inhibition assays not necessarily 

reflect the in planta situation, a mycelial growth inhibition test with pathogenic fungi like Ppn 

and the application of HGL-DTGs in various concentrations could give a first impression on a 

potential antifungal role of these metabolites. In addition, infection assays with pathogenic fungi 

and transgenic N. attenuata plants silenced in the gene encoding for geranylgeranyl diphosphate 

synthase having reduced levels of HGL-DTG precursors could help answering this question 

(Heiling et al., 2010). Since JA levels during Ppn infection do not depend on GLA1 expression, 

GLA1 might indirectly control the malonylation of HGL-DTGs (Heiling et al., 2010; manuscript 

2). The analysis of lysolipid and oxidized fatty acid product (oxylipin) levels between Ppn-

infected N. attenuata wildtype and GLA1-silenced leaves identified galactolipid-, 

phosphatidylglycerol- and phosphatidylcholine-derived lysolipids, as well as free oleic, linoleic 

and linolenic acid, 9-hydroxy-linoleic acid and three not further characterized oxylipins as 

potential candidates for the proposed signaling molecules (manuscript 2). External application of 

those compounds to N. attenuata wildtype plants and comparison of gene expression patterns 

and metabolic profile changes with those observed in GLA1-dependent manner during Ppn 

infection could be useful to test whether or not these candidates are indeed important signaling 

molecules regulated by GLA1. The increase of total lipase A activity occurring during Ppn 

infection remained unaffected by GLA1 expression, arguing against a rather unspecific potential 

role of GLA1 during plant autophagy-like processes (Moreau, 1987; Roy et al., 1995; Hong et 

al., 2000; Scherer et al., 2002; Talbot and Kershaw, 2009; manuscript 2). Lysolipid data from 

manuscript 1 and 2 suggests that GLA1 has direct access to the outer chloroplast envelope 

membrane because this is the only chloroplast compartment containing phosphatidylcholine and 

GLA1 was shown to participate in the production of lysophosphatidylcholine after elicitation by 

wounding, 18:3-Glu treatment or Ppn infection (Dorne et al., 1985; manuscript 1 and 2). 

Alternatively, GLA1 could be also involved indirectly in lysophosphatidylcholine production by 

regulating the activity of other lipases having access to phosphatidylcholine (Cohen et al., 1993; 

Kachroo and Kachroo, 2009; manuscript 1 and 2). This hypothesis is supported by results from 
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Cho et al. (2012) showing that in Ppn-infected tobacco oxylipins are preferentially produced 

from oxidized fatty acid precursors esterified to lipids in the sn-2 position, and GLA1 possesses 

at least in vitro sn-1 specificity, suggesting that GLA1 might regulate the production of 9-

hydroxy linoleic acid and three other oxylipins after Ppn infection via changes in activity of 

other lipases which are able to hydrolyze fatty acids at the sn-2 position (Kallenbach et al., 2010; 

manuscript 2). Lysolipid data from manuscript 1 allowing for conclusions on sn-1 or sn-2 lipase 

specificity of GLA1 further supports this possibility. However it cannot be excluded that GLA1 

may possess in planta both sn-1 and sn-2 activities (manuscript 1). In contrast to the situation in 

leaves, GLA1 expression is down-regulated in N. attenuata roots after Ppn and F. oxysporum 

infection, however relative GLA1 transcript abundance is constitutively approximately fourtimes 

higher in roots compared to leaves (manuscript 1). Therefore it is tempting to speculate about 

contrasting functions of GLA1 in leaves and in roots during pathogen infection. Alternatively, 

factors resulting from pathogen infection might specifically lead to the down-regulation of GLA1 

expression in N. attenuata roots. The relatively higher basal GLA1 expression in roots compared 

to leaves might be explained by a constitutively stronger exposure of belowground plant parts to 

microbial pathogens compared to aerial parts. This hypothesis is consistent with the organ-

specific accumulation pattern of certain metabolites associated to plant defense response against 

pathogenic fungi reported in literature: relatively high basal levels in roots without inducibility of 

biosynthesis (constitutive protective function), while basal levels in leaves are relatively low, but 

biosynthesis is inducible upon elicitation (defense on demand) (Bohlmann et al., 2002). As an 

example for such tissue-specific differences in inducibility, the antimicrobial sesquiterpenoid 

phytoalexin capsidiol is constitutively produced in N. attenuata roots to protect those from 

pathogen attack. In shoots, capsidiol is inducible by microbial pathogens, at least in the N. 

attenuata-related plant species Nicotiana tabacum (Bohlmann et al., 2002). Interestingly, in 

shoots from N. attenuata, transcription of the capsidiol biosynthetic enzyme 5-epi-aristolochene 

synthase is induced also by insect herbivory (Bohlmann et al., 2002). Surprisingly all the GLA1-

mediated changes induced in N. attenuata observed in response to Ppn infection which are listed 

above did not influence the symptomatic disease progression or Ppn performance, maybe a result 

from the chosen experimental design (see discussion section in manuscript 2 for details). Another 

possibility is that Ppn is so well-adapted to the defense responses of its Nicotiana host plant 

species that the GLA1-regulated changes are not effective enough against this specialized 
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pathogen to successfully reduce Ppn growth performance and its detrimental effects caused to 

the plant (Kamoun et al., 1994; Ponchet et al., 1999; Colas et al., 2001). However, unpublished 

infection assay data using another fungal pathogen, Fusarium brachygibbosum isolated from leaf 

samples of diseased N. attenuata plants which were collected from the natural habitat of this 

plant species, revealed that GLA1-silenced N. attenuata plants were far more susceptible to F. 

brachygibbosum than N. attenuata wildtype (unpublished data). This indicates that GLA1 may 

have indeed huge influence on disease progression and plant mortality in the interaction of N. 

attenuata with other pathogenic microorganisms than Ppn. The direct comparison of 

transcriptomic and metabolomic changes induced by Ppn and F. brachygibbosum (and maybe 

additional phytopathogen species) in N. attenuata wildtype and GLA1-silenced plants could lead 

to the identification of GLA-dependent responses common for N. attenuata´s response to both 

fungi (and therefore add strength to conclusions made on GLA1´s function in N. attenuata´s 

defense against phytopathogens in general).  

Figure 1 summarizes changes of GLA1 expression and GLA1 functions in N. attenuata´s 

response to wounding, M. sexta herbivory and Ppn function which are illustrated more detailed 

in figure 2 (wounding and M. sexta herbivory) and figure 3 (Ppn infection). 
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Figure 1. Organ- and stimuli-specific changes in GLA1 transcription and GLA1 function in 

N. attenuata.   

Upon elicitation of N. attenuata leaves by wounding or simulated herbivory by M. sexta (18:3-

Glu treatment), GLA1 is rapidly activated and initializes the production of JA. At the same time, 

the transcriptional down-regulation of GLA1 gene expression might contribute to the reduction of 

JA levels back to basal levels after reaching a peak, resulting in a rapid and transient JA burst. In 

contrast, GLA1 transcription increases drastically in N. attenuata leaves during infection with the 

phytopathogenic oomycete Ppn and leads to big transcriptional and metabolic changes probably 

by the generation of signaling molecules (other than JA) by GLA1. During Ppn infection relative 

GLA1 transcript abundance is reduced in N. attenuata roots, but it can be only speculated about 

GLA1´s role in this plant part. 
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Figure 2. Function of GLA1 during wounding and M. sexta herbivory in N. attenuata. 

GLA1 is constitutively expressed in leaves of N. attenuata. Being localized to the chloroplast, 

where it is rapidly activated after perception of wounding or herbivory by M. sexta, GLA1 

hydrolizes chloroplastic membrane lipids (galactolipids, phosphatidylcholine and 

phosphatidylglycerol) into the respective lysolipid and trienoic fatty acids (linolenic or 

hexadecatrienoic acid). These fatty acids then serve as substrates for a series of other enzymes 

leading to the formation of JA. Activation of the JA signaling pathway then ultimately leads to 

changes in the expression of genes responsive to the applied stimuli (wounding or M. sexta 

herbivory) and the according (stimulus-dependent) changes in levels of JA-inducible secondary 

metabolites. 
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Figure 3. Function of GLA1 during infection with the phytopathogenic oomycete Ppn in N. 

attenuata. 

GLA1 gene expression in N. attenuata leaves is induced by Ppn infection. Considering the lipase 

activity of GLA1, this enzyme is involved in the production of several membrane lipid-derived 

potential signaling molecules (lysolipids and oxylipins). Those potential signaling compounds 

could then affect the expression of numerous genes involved in the plant´s pathogen response 

which is also reflected in the levels of several secondary metabolites. 
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HSPRO negatively regulates P. indica-mediated growth promotion via SnRK1 signaling 

JA not only plays an essential role in plant signaling processes related to wounding, 

herbivory by chewing herbivores and infection by necrotrophic phytopathogens (Glazebrook, 

2005; Halim et al., 2006; Ali & Agrawal, 2012). It is also of immense importance for plant 

interactions with mutualists. One example mentioned already in the introduction is the 

interaction of N. attenuata with the root endophytic fungus P. indica: JA signaling pathway 

components are required for broad spectrum suppression of plant innate immunity necessary for 

successful root colonization by P. indica and the establishment of induced systemic resistance to 

pathogens, one major benefit for P. indica-colonized plants mediated by the fungus besides 

enhanced abiotic stress tolerance and plant growth promotion (Stein et al., 2008; Molitor & 

Kogel, 2009; Jacobs et al., 2011). In addition to JA signaling pathway components, antimicrobial 

divinyl ethers like colneleic acid inducible by P. indica in roots may also contribute to plant 

resistance against pathogens such as that observed for P. indica-colonized barley against 

Fusarium graminearum (Deshmukh & Kogel, 2007; manuscript 3). An experiment in which P. 

indica-colonized and non-colonized wild-type N. attenuata plants and transgenic N. attenuata 

genotypes reduced in the expression of divinyl ether biosynthetic enzymes are challenged by 

fungal pathogens like Fusarium brachygibbosum would be suitable to test this hypothesis. For N. 

attenuata it is well documented that P. indica and another fungus species belonging to the same 

family (Sebacinaceae), Sebacina vermifera, are both able to enhance plant growth probably 

independent from changes in the plant´s nutritional status but rather by impairing N. attenuata in 

its ethylene production (Barazani et al., 2005; Barazani et al., 2007). This reduced ability to 

biosynthesize ET results in a decreased ET burst that usually co-occurs with the JA burst elicited 

by chewing herbivores like M. sexta and, as a consequence thereof, in a impaired herbivore 

resistance (Barazani et al., 2005; Barazani et al., 2007; Ali & Agrawal, 2012). In other words, P. 

indica-mediated growth promotion of N. attenuata is caused on the expense of defensive 

capability (Barazani et al., 2005). This thesis could show that P. indica-mediated growth 

promotion of N. attenuata seedlings is negatively regulated – via SnRK1 signaling – by HSPRO, 

the N. attenuata ortholog of B. procumbens Hs1pro-1 (manuscript 3 and 4): Stable silencing of 

HSPRO expression in N. attenuata even enhances P. indica-mediated increase in both, shoot and 

root fresh biomass, by approximately 30% compared to non-transformed wildtype plants 

(manuscript 3). A grafting experiment with HSPRO-silenced and wild-type N. attenuata 



Chapter 7: Discussion 

172 
 

seedlings revealed further that silencing of HSPRO expression in roots – the interaction site with 

P. indica and plant organ in which HSPRO expression is induced by P. indica colonization – is 

fully sufficient to obtain the observed differential increase in growth promotion mediated by 

HSPRO-silencing throughout the entire seedling (manuscript 3). The mechanism behind the 

function of HSPRO as negative regulator of P. indica-mediated growth promotion was shown to 

be not related to the efficiency of N. attenuata to utilize carbon dioxide (or other growth-

promoting volatiles released by the fungus), nor the pattern of P. indica root colonization, the 

relative P. indica abundance, root morphology and the extent of P. indica-inducible cell death 

reported to occur in root cortex cells of barley during P. indica colonization (manuscript 3; 

Deshmukh et al., 2006; Zuccaro et al., 2011). A microarray analysis using P. indica-colonized 

and non-colonized wild-type and HSPRO-silenced N. attenuata seedling roots revealed HSPRO-

dependent changes in the expression of 417 genes during the N. attenuata-P. indica interaction 

(manuscript 3). Among these genes, some are involved in phytohormone (e.g. JA, ET, auxin and 

cytokinin) signaling which could possibly contribute to the regulation of P. indica-mediated 

growth promotion by HSPRO (manuscript 3). However, at least ethylene and JA levels were 

demonstrated not to be influenced by HSPRO during P. indica colonization (manuscript 3). The 

majority of the 417 genes (61%) turned out to be involved in metabolic processes (manuscript 3). 

Taken together with data from a metabolic profiling analysis of P. indica-colonized wild-type 

and HSPRO-silenced N. attenuata seedling roots showing a lack of major differences between 

both genotypes, this data suggests accelerated metabolic flux rates in HSPRO-silenced seedlings 

compared to WT (manuscript 3). Thus, the mechanism by which HSPRO restricts P. indica-

mediated growth promotion of N. attenuata seedlings involves probably changes in metabolic 

fluxes (manuscript 3). To similar extent as HSPRO, plant SnRK1 signaling is involved in the 

negative regulation of P. indica-mediated seedling growth promotion in N. attenuata (manuscript 

4). As already briefly mentioned in the introduction, SnRK1 enzymes are heteromeric protein 

kinase complexes and central regulators of energy metabolism, development, growth and stress 

tolerance able to interact via their regulatory subunit with proteins homologous to B. procumbens 

Hs1pro-1 (Gissot et al., 2006; Cho et al., 2012). A plant growth promotion experiment with P. 

indica and crosses of transgenic N. attenuata genotypes stably silenced in the expression of 

HSPRO, GAL83 (encoding for N. attenuata regulatory SnRK1 β-subunit) or both and N. 

attenuata wildtype could demonstrate that both proteins are indeed – from a genetic point of 
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view – likely to act in the same pathway (manuscript 4). Thus, the negative regulation of P. 

indica-medited growth promotion of N. attenuata seedlings probably occurs via changes in 

SnRK1 activity by protein-protein interaction with HSPRO, resulting in major metabolic flux 

changes and the restriction of seedling growth enhanced by P. indica colonization (manuscript 4; 

Halford et al., 2003; Gissot et al., 2006; Cho et al., 2012). The additional plant resources not 

used for enhanced growth could then be available for the plant to invest into tolerance or induced 

resistance mechanisms also mediated by P. indica to optimize the benefits resulting for the plant 

from this interaction on multiple levels, thereby perhaps even partially compensating for the 

defensive disadvantages regarding herbivore resistance caused by the fungus (Stein et al., 2008). 

In addition to metabolic flux changes, SnRK1 signaling could influence the extent of seedling 

growth promotion in the N. attenuata-P. indica interaction – without affecting the root 

colonization pattern – by controlling the availability of root carbon for the fungus (i.e. changes in 

carbon allocation), since it is known from a study on P. indica-colonized barley roots that P. 

indica produces proteins involved in carbon uptake and metabolism which appear relevant for a 

switch from a biotrophic to a necrotrophic lifestyle of P. indica and therefore potentially affect 

the extent of the beneficial outcome for N. attenuata in this plant-fungus mutualism (manuscript 

4; Schwachtje et al., 2006; Zuccaro et al., 2011). 

 

HSPRO might regulate the resistance vs. tolerance trade-off in N. attenuata in response to 
M. sexta herbivory and infection by P. syringae pv. tomato DC3000 

The involvement of HSPRO in SnRK1 signaling provides also a plausible explanation for 

a potential role in N. attenuata´s response to M. sexta herbivory or P. syringae pv. tomato 

DC3000 infection, i.e. a role in tolerance to herbivores and pathogens (manuscript 3; Schwachtje 

et al., 2006; Schwachtje & Baldwin, 2008). 

In the mutualistic interaction, both proteins are supposed to act together non-

antagonistically to restrict P. indica mediated growth promotion (manuscript 4). It is known that 

HSPRO expression is induced by P. indica in N. attenuata seedling roots, and that GAL83 

expression as well as the expression of the gene encoding for the catalytic α-subunit SNF1 are 

constitutively relatively high in roots of flowering N. attenuata plants compared to other plant 

tissues (manuscript 3;Schwachtje et al., 2006). The assumption that HSPRO, GAL83 and SNF1 
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are all highly expressed in N. attenuata roots during the interaction with P. indica further 

supports the proposed model by which HSPRO modulates SnRK1 function (manuscript 4). 

However, whether or not GAL83 and SNF1 expression change in N. attenuata roots during P. 

indica colonization is not known thus far. Quantification of transcript levels of GAL83 and SNF1 

by qPCR in P. indica-colonized and non-colonized N. attenuata seedling roots could probably 

answer this question. 

HSPRO expression is also induced in N. attenuata leaves by simulated M . sexta 

herbivory and P. syringae pv. tomato DC3000 infection, GAL83 expression however is – at least 

after simulated M. sexta herbivory – down-regulated in N. attenuata leaves (Schwachtje et al., 

2006; manuscript 3). Supposed both proteins interact non-antagonistically also in N. attenuata 

leaves, it might appear at first glance not reasonable that their expression is regulated differently. 

The reduced GAL83 expression (resulting probably also in lower SnRK1 activity) observed in 

leaves after simulated M. sexta herbivory leads to an increase in carbon allocation to roots as 

tolerance response to herbivory (Schwachtje et al., 2006). The simultaneous increase in HSPRO 

expression could have the purpose to retain high activity of residual SnRK1 enzyme to attenuate 

the tolerance response to M. sexta. Thus, HSPRO could play an important role in a tolerance-

resistance trade-off (Kessler & Baldwin, 2002; Heil, 2010; Stowe et al., 2000). Indeed, M. sexta 

is a well-adapted specialist herbivore and could therefore cause much bigger damage on N. 

attenuata compared to a less adapted insect herbivore species that might suffer already stronger 

from e.g. basal defense metabolite contents in N. attenuata. Therefore less adapted herbivores 

are likely to perform relatively worse on N. attenuata or maybe even migrate to other less 

defended plant species in the neighborhood, whereas the specialist M. sexta is restricted to host 

plants from the Solanaceae plant family, thus having only a limited choice to evade to 

neighboring plants (Schittko et al., 2000; del Campo et al., 2001; Wink & Theile, 2002; Paschold 

et al., 2007). In such a scenario the expected defoliation damage would be higher in case of 

herbivory by the well-adapted specialist compared to that of a less adapted generalist herbivore 

and compensation for herbivore-caused tissue losses (herbivore tolerance) would be more costly, 

making resource investment into resistance rather than tolerance mechanisms relatively more 

attractive to the plant. This is consistent with HSPRO expression data from N. attenuata leaves 

elicited with oral secretions (OS) from the specialist M. sexta, the generalist S. exigua, and the 

FAC elicitor 18:3-Glu found in the OS of both lepidopteran species (Diezel et al., 2009), or just 
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wounding without any additional leaf treatment (manuscript 3). Though being a rather unspecific 

stimulus that could result from herbivory as well as from mechanical damage, wounding alone 

already stimulates HSPRO expression (manuscript 3). FAC treatment and S. exigua OS induce 

HSPRO expression both to a similar, higher extent than that observed for wounding alone, which 

can be interpreted as the plant´s response to the definite presence of herbivores and a bigger 

investment in resistance compared to tolerance mechanisms in anticipation of further damage in 

near future (manuscript 3; Diezel et al., 2009). Treatment with M. sexta OS even amplifies the 

induction of HSPRO expression described for S. exigua OS and FAC treatment, supporting the 

hypothesis that the induction of resistance compared to tolerance mechanisms might be even 

more pronounced in case the plant perceives the presence of a well-adapted specialist herbivore 

like M. sexta on N. attenuata (manuscript 3). According to this hypothesis, the transient increase 

in HSPRO transcripts in treated N. attenuata leaves also appears very plausible: Systemic 

induction of herbivore resistance traits to protect distal tissues are induced quite rapidly after 

elicitation, and once the aerial plant parts have been eaten up almost completely by the 

herbivore, there are not too many carbon resources in form of photoassimilates left to bunker into 

the root (Halitschke et al., 2001; Schwachtje et al., 2006). To support the above mentioned 

model an experiment could be performed (using wild-type, HSPRO-silenced and GAL83-

silenced N. attenuata plants) in which transcript levels of certain SnRK1-regulated genes 

(indicative for nuclear SnRK1 activity) and activities of SnRK1-regulated enzymes (indicative 

for cytosolic SnRK1 function) could be quantified after plant treatment with wounding or 

wounding plus additional S. exigua or M. sexta OS application. Such an experiment would not 

only be useful to figure out whether or not gradual differences in HSPRO expression caused by 

these treatments really translate into gradual differences in SnRK1 activity, but it would also 

allow to distinguish whether the cytosolic or nuclear function of SnRK1 is modulated by HSPRO 

(or maybe even both functions). This is particular interesting because Gissot et al. (2006) 

propose for the Arabidopsis homologs of HSPRO a cytosolic localization since an interaction of 

these proteins with SnRK1 could be demonstrated exclusively for this cellular compartment. 

Data from a transient transfection assay using Arabidopsis protoplasts expressing the N. 

attenuata HSPRO gene revealed a cytosolic localization also for HSPRO, however leaving the 

possibility open that HSPRO might be additionally localized to the nucleus (manuscript 3). Thus, 
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the proposed experiment could be used to further specify the modulating function of HSPRO in 

the fine-tuning process of SnRK1 activity on the subcellular compartment level. 

Similar to herbivore damage, infection by pathogenic microbes like P. syringae pv. 

tomato DC3000 (Pst DC3000) could lead to a HSPRO/SnRK1-mediated redirection of N. 

attenuata´s metabolism towards defense responses at the infection site (Biemelt & Sonnewald, 

2006). This hypothesis would then also explain the up-regulation of HSPRO expression in N. 

attenuata by Pst DC3000 and the reduced basal resistance against Pst DC3000 observed in 

Arabidopsis knockout mutants unable to express one of their HSPRO homologs (Murray et al., 

2007; manuscript 3). However, performance assays with M. sexta larvae and P. syringae pv. 

tomato DC3000 on N. attenuata wildtype and HSPRO-silenced plants did not result in any 

HSPRO-specific difference in plant resistance (manuscript 3). Maybe these results are due to 

glasshouse artifacts because under the controlled conditions used in these experiments 

intraspecific competition and nutrient availability – in contrast to the situation in nature – did not 

play a major role. An experiment in which HSPRO-silenced and wild-type N. attenuata plants 

grown in competition and low-fertilizer conditions are challenged by M. sexta larvae and Pst 

DC3000 would probably allow to drive more solid conclusions on HSPRO´s impact on the 

Darwinian fitness of insect herbivores and pathogenic bacteria. 

 

HSPRO might be involved in the control of metabolic sink/source strength and/or post-
pollination senescence in flowers 

The involvement of HSPRO in SnRK1 signaling could also explain the constitutively 

high HSPRO, GAL83 and SNF1 expression in N. attenuata flower organs compared to other 

plant tissues (manuscript 3; Schwachtje et al., 2006)). From literature it is known that SnRK1 

modulates the metabolic sink/source relationship, and flowers as reproductive tissues with high 

Darwinian fitness value are important metabolic sink organs that require constitutively high 

protection (McKibbin et al., 2006; Jain et al., 2008; Meldau et al., 2012). It is also known that 

SnRK1 influences senescence processes (Cho et al., 2012). Therefore HSPRO could be involved 

in the induction of senescence of N. attenuata flower component (particularly the corolla) after 

pollination (von Dahl et al., 2007). However, no role of HSPRO in flower-associated resistance 

traits could be demonstrated thus far for N. attenuata and changes in corolla senescence were 



Chapter 7: Discussion 

177 
 

also not observed (manuscript 3). Therefore it can be only speculated regarding HSPRO´s 

function in flowers. A 11CO2–pulse feeding experiment might be used to investigate a potential 

role of HSPRO in the regulation of metabolic sink/source strength regulation in flowers. Another 

experiment using excised flowers from N. attenuata wildtype, GAL83- and HSPRO-silenced 

genotypes with and without exogenous sugar supply (causing a delay in ethylene signaling-

mediated senescence processes) could contribute to elucidate a potential role of HSPRO in 

flower senescence via SnRK1-controlled sugar signaling (van Doorn, 2004; Rolland et al., 2006; 

Tripathi and Tuteja, 2007; von Dahl et al., 2007 ; Yang et al., 2008).  

Figure 4 summarizes HSPRO´s function in different plant tissues with respect to its role 

in the interactions with P. indica, M. sexta and P. syringae pv. tomato DC3000. In figure 5, 

HSPRO function is illustrated on cellular level. 
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Figure 4. Organ-specific changes in HSPRO transcription and HSPRO function in N. 

attenuata. 

Colonization of N. attenuata seedling roots by P. indica induces HSPRO expression. HSPRO 

then negatively regulates P. indica-mediated growth promotion via SnRK1 signaling, maybe to 

control the beneficial character of N. attenuata´s mutualism with P. indica. N. attenuata leaf 

elicitation by simulated M. sexta herbivory and P. syringae pv. tomato DC3000 infection also 

leads to the induction of HSPRO expression. In contrast, simulated M. sexta herbivory reduces 

GAL83 transcript abundance which encodes for a regulatory SnRK1 β-subunit. HSPRO could 

function in the stabilization of residual SnRK1 activity in a resource investment trade-off 

between resistance and tolerance mechanisms. HSPRO expression is constitutively high in 

flower organs where it could be involved via SnRK1 signaling in post-pollination senescence 

processes and/or the modulation of metabolic source/sink strength. 
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Figure 5. Function of HSPRO during N. attenuata´s interaction with P. indica, M. sexta and 

P. syringae pv. tomato DC3000.  

Upon elicitation by P. indica, M. sexta or P. syringae pv. tomato DC3000 HSPRO transcription 

is induced. After being translated into protein, HSPRO interacts with a heteromeric SnRK1 

kinase containing GAL83 as regulatory β-subunit. SnRK1 represses the expression of genes 

involved in energy and primary metabolism and the control of resource allocation and reduces 

the activity of key metabolic enzymes, leading to a reduced flux in primary metabolism, 

diminished plant growth and reduced resource investment into M. sexta/ P. syringae pv. tomato 

DC3000 tolerance (relative to resistance). 
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Chapter 8: Summary 

The wild tobacco species Nicotiana attenuata germinates synchronized from long-lived 

seed banks in a post-fire environment and forms monoculture-like populations which are 

attacked by unpredictable herbivore and pathogen communities. In order to tailor its defense 

responses most efficiently it is particularly important for this plant species to distinguish its 

individual attackers and to possess a sophisticated signaling system capable of indicating the 

presence of their enemies accordingly. 

One of these signaling components is the phytohormone jasmonic acid (JA) which is 

produced by N. attenuata in response to e.g. wounding or Manduca sexta herbivory in form of a 

rapid and a transient burst. This burst is initialized by the chloroplastic glycerolipase NaGLA1 

which hydrolizes trienoic fatty acids (linolenic and hexadecatrienoic acid) from membrane lipids 

resulting in lysolipids as byproducts. The free fatty acids provided by NaGLA1 are then rapidly 

used as substrates by a lipoxygenase (NaLOX3) to form 13-hydroperoxy-fatty acids which are 

further oxidized by a series of other enzymes to finally form JA. In general, these and other 

oxidized fatty acid products are termed as “oxylipins”, a structurally diverse group of molecules 

comprising not only compounds being involved in within-plant-signaling processes, but also 

molecules possessing a function in direct or indirect plant defense. Transgenic N. attenuata 

genotypes stably silenced in NaGLA1 gene expression were generated by inverted-repeat 

technique (ir-gla1) to address a series of questions regarding the role of NaGLA1 during 

wounding, M. sexta herbivory and the interaction with phytopathogenic fungi such as 

Phytophthora parasitica var. nicotianae (Ppn). By comparing N. attenuata wildtype and ir-gla1 

genotypes – elicited and non-elicited by according stimuli (wounding, simulated M. sexta 

herbivory and Ppn infection) – it could be shown in this thesis work that NaGLA1 does not 

supply other known N. attenuata lipoxygenases with free fatty acid substrates and is therefore 

quite specific for the JA-biosynthesis pathway. Further it could be shown that NaGLA1 is the 

major lipase in N. attenuata involved in JA biosynthesis after wounding and simulated M. sexta 

herbivory, however not during Ppn infection. During Ppn infection NaGLA1 participates in the 

generation of potential signaling molecules (different from JA) having huge impact on N. 

attenuata´s expression of pathogen defense-associated genes which is reflected also in the plant´s 

metabolome. 
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NaHSPRO, a putative nematode resistance protein, was found to be rapidly and 

transiently upregulated in its transcriptional expression upon simulated M. sexta herbivory in N. 

attenuata. Therefore it was thought to be a potential regulator of early N. attenuata responses to 

M. sexta herbivory. To test this hypothesis, transgenic N. attenuata genotypes stably silenced in 

NaHSPRO expression by inverted-repeat technique (ir-hspro) were generated and compared to 

N. attenuata wildtype regarding its response to simulated and real M. sexta herbivory. Because 

literature reported also a role of a NaHSPRO-homologous protein from Arabidopsis in resistance 

against Pseudomonas syringae pv. tomato DC3000, this phytopathogenic bacterium was used in 

experiments with N. attenuata wildtype and ir-hspro plants, too.  Besides the induction of 

NaHSPRO gene expression in response to M. sexta and P. syringae pv. tomato DC3000 

elicitation, no involvement of NaHSPRO in N. attenuata´s resistance to those organisms could 

be demonstrated. However, it is well possible that NaHSPRO plays a role in N. attenuata 

tolerance rather than resistance or in the trade-off process between these defense mechanisms. 

Plant tolerance is mediated by SUCROSE-NON-FERMENTING 1-RELATED PROTEIN 

KINASE 1 (SnRK1), a central regulator of primary and energy metabolism, growth and 

development. It is known from literature that NaHSPRO homologs from Arabidopsis are able to 

interact with a regulatory subunit of plant SnRK1. This thesis work could show that NaHSPRO 

negatively regulates growth promotion of N. attenuata seedlings mediated by the mutualistic 

fungus Piriformospora indica via SnRK1 signaling and this finding supports other hyptheses 

based also on SnRK1-involving mechanisms and dealing with a potential NaHSPRO function in 

plant defense against M. sexta and P. syringae pv. tomato DC3000. 
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Chapter 9: Zusammenfassung 

 

Der wilde Tabakart Nicotiana attenuata formt durch das synchrone Auskeimen aus 

langlebigen Samenlagern in verbranntem Umfeld Monokultur-artige Populationen, die von 

unvorhersehbaren Herbivor- und Pathogengemeinschaften heimgesucht werden. Um sich 

möglichst zielgerichtet und effizient zu verteidigen ist es für diese Pflanzenart daher besonders 

wichtig, die einzelnen Angreifer zu unterscheiden und ein ausgeklügeltes Signaltransduktions-

System zu besitzen, welches es ihnen ermöglicht, die Anwesenheit von Feinden entsprechend zu 

erkennen. 

Eine dieser Signaltransduktions-Komponenten ist das Phytohormon Jasmonsäure (JA), 

welches von N. attenuata rasch und in explosionsartig ansteigender Menge (jedoch auf ein 

bestimmtes Zeitintervall beschränkt) gebildet wird, beispielsweise als Antwort auf Verwundung 

oder Herbivorie durch Manduca sexta. Dieser rapide Anstieg wird durch die in Chloroplasten 

lokalisierte Glycerolipase NaGLA1 eingeleitet, welche Membranlipide hydrolysiert und dabei 

dreifach ungesättigte Fettsäuren (Linolen- und Hexadekatriensäure) und als Nebenprodukt 

Lysolipide freisetzt. Die durch NaGLA1 erzeugten freien Fettsäuren werden dann rasch von 

einer Lipoxygenase (NaLOX3) als Substrat für die Produktion von 13-Hydroperoxiden der 

jeweiligen Fettsäuren genutzt, die dann von einer Reihe weiterer Enzyme letztlich zu JA 

weiteroxidiert werden. Allgemein werden diese und andere Fettsäure-Oxidationsprodukte als 

„Oxylipine“ bezeichnet, eine strukturell sehr diverse Molekülgruppe, die nicht nur Verbindungen 

mit einer Rolle in Signaltransduktionsprozessen innerhalb der Pflanze umfasst, sondern auch 

Moleküle mit einer Funktion in der direkten und indirekten pflanzlichen Abwehr. Um eine Reihe 

von Fragen beantworten zu können, welche sich auf die Rolle von NaGLA1 während 

Verwundung, M. sexta-Herbivorie und der Interaktion mit phytopathogenen Pilzen wie z.B. 

Phytophthora parasitica var. nicotianae (Ppn) beziehen, wurden stabil transformierte N. 

attenuata-Genotypen erzeugt, die mittels „inverted-repeat“-Technik eine reduzierte Expression 

des NaGLA1-Gens (ir-gla1) aufweisen. Durch Vergleich von N. attenuata Wildtyp mit ir-gla1 

Genotypen – durch entsprechende Stimuli (Verwundung, simulierte M. sexta-Herbivorie und 

Ppn-Infektion) elizitiert bzw. nicht elizitiert – konnte in dieser Doktorarbeit gezeigt werden, dass 

NaGLA1 keine weiteren für N. attenuata bekannten Lipoxygenasen mit Fettsäure-Substraten 
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versorgt und daher recht spezifisch für den JA-Biosyntheseweg ist. Des weiteren konnte gezeigt 

werden, dass NaGLA1 bei Verwundung und M. sexta-Herbivorie die Haupt-Lipase in der JA-

Biosynthese ist, allerdings nicht während Ppn-Infektionen. Während einer Ppn-Infektion ist 

NaGLA1 an der Produktion potenzieller Signalmoleküle (nicht JA) beteiligt, die große 

Auswirkung auf die Expression Abwehr-relevanter Gene in N. attenuata haben, ein Sachverhalt, 

der sich auch im Metabolom dieser Pflanze widerspiegelt. 

NaHSPRO, ein vermeintliches Nematodenresistenz-Protein, erwies sich in N. attenuata 

auf  Transkriptebene als rasch und zeitlich beschränkt hochreguliert nach simulierter M. sexta-

Herbivorie. Daher wurde angenommen, es sei ein potenzieller Regulator früher Reaktionen von 

N. attenuata auf M. sexta-Herbivorie. Um diese Hypothese zu testen, wurden stabil 

transformierte N. attenuata-Genotypen hergestellt, die mittels „inverted-repeat“-Technik in der 

Expression von NaHSPRO reduziert sind (ir-hspro), und bezüglich ihrer Reaktion auf simulierte 

M. sexta-Herbivorie mit N. attenuata Wildtyp verglichen. Weil laut Literatur ein zu NaHSPRO 

homologes Arabidopsis-Protein für die Resistenz gegen Pseudomonas syringae pv. tomato 

DC3000 eine Rolle spielt, wurde dieses bakterielle Phytopathogen ebenfalls für Experimente mit 

N. attenuata Wildtyp und ir-hspro-Pflanzen verwendet. Trotz der Induzierbarkeit der NaHSPRO-

Genexpression durch Elizitierung mit M. sexta und Pseudomonas syringae pv. tomato DC3000 

konnte keine Beteiligung von NaHSPRO an einer Resistenz von N. attenuata gegen diese 

Organismen nachgewiesen werden. Allerdings ist es sehr gut möglich, dass NaHSPRO in N. 

attenuata eher eine Rolle für die Toleranz als für die Resistenz oder in einem Abwäge-Prozess 

zwischen beiden Abwehrmechanismen spielt. Toleranz wird in Pflanzen vermittelt durch  

„SUCROSE-NON-FERMENTING 1-RELATED PROTEIN KINASE 1“ (SnRK1), einem 

zentralen Regulator des Primär- und Energiestoffwechsels, des Wachstums und der Entwicklung. 

Laut Literatur können NaHSPRO-Homologe von Arabidopsis mit einer regulatorischen 

Untereinheit von pflanzlichem SnRK1 interagieren. Diese Doktorarbeit konnte zeigen, dass 

NaHSPRO durch SnRK1-Signaltransduktion als negativer Regulator der durch den 

mutualistischen Pilz Piriformospora indica hervorgerufenen Wachstumsförderung fungiert und 

dieser Sachverhalt unterstützt weitere Hypothesen, die ebenfalls auf SnRK1-Signaltransduktion 

basieren und sich mit einer potenziellen Funktion von NaHSPRO in der pflanzlichen Abwehr 

gegen M. sexta und P. syringae pv. tomato DC3000 befassen. 
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