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ABSTRACT 

Linear inverse problems arise throughout a variety of branches of science and engineering. 
Efficient solution strategies for these inverse problems need to know whether a problem is ill-
conditioned as well as its degree of ill-conditioning. In this thesis, a comprehensive theoretical 
analysis of known figures of merit has been done and finally two new figures of merit have been 
developed. Both can be applied in a large variety of linear inverse problems, including 
biomedical applications and nondestructive testing of materials.  

Theoretical considerations of the conditioning of linear inverse problems are applied to two 
examples. The first one is magnetocardiography, where the optimization of magnetic sensors in a 
vest-like sensor array has been considered. When measuring magnetic flux density, usually 
mono-axial magnetic sensors are arranged in an array, perfectly in parallel. It has been shown 
that a random variation of their orientations can improve the condition of the corresponding 
linear inverse problem. Thus, in this thesis a theoretical definition of the case when random 
variations of mono-axial sensors orientations improve the condition of the kernel matrix with a 
probability equal to one is presented. This theoretical observation is valid in general.  

Positions and orientations of magnetic sensors around the torso have been optimized minimizing 
three figures of merit given in the literature and a novel one presented in the thesis. Best results 
have been found for non-uniform sensors distribution on the whole torso surface. In comparison 
to previous findings can be concluded that quite different sensor sets can perform equally well. 

The second application example is nondestructive testing of materials named Lorentz force eddy 
current testing, where the Lorentz force exerting on a permanent magnet, which is moving 
relative to the specimen, is determined. A novel approximation method for the calculation of the 
magnetic fields and Lorentz forces is proposed. Based on the new approximation method, a new 
inverse procedure for defect reconstruction is proposed. A successful reconstruction using data 
from finite elements method analysis and measurements is obtained. 



 

 
 

ZUSAMMENFASSUNG 

Lineare inverse Probleme tauchen in vielen Bereichen von Wissenschaft und Technik auf. 
Effiziente Lösungsstrategien für diese inversen Probleme erfordern Informationen darüber, ob 
das Problem schlecht-gestellt und in welchem Ausmaß dies der Fall ist. In der vorliegenden 
Dissertation wird eine umfassende theoretische Analyse existierender Bewertungsmaße 
durchgeführt. Aus diesen Untersuchungen werden schließlich zwei neue Bewertungsmaße 
abgeleitet. Beide können bei einer Vielzahl linearer inverser Probleme angewendet werden, 
einschließlich biomedizinische Anwendungen oder der zerstörungsfreien Materialprüfung.  

Die theoretischen Betrachtungen zur Behandlung linearer inverser Probleme werden auf zwei 
Beispiele angewendet. Das erste ist die Magnetkardiographie, wo die Optimierung magnetischer 
Sensoren in einem westenähnlichen Sensorfeld untersucht wird. Für die Messungen der 
magnetischen Flussdichte werden üblicherweise monoaxiale Sensoren in einem Feld perfekt 
parallel angeordnet. Eine zufällige Variation ihrer Ausrichtungen kann die Kondition des 
entsprechenden linearen inversen Problems verbessern. Eine theoretische Definition des Falls, in 
dem zufällige Variationen monoaxialer Sensoren den Zustand der Kernmatrix mit einer 
Wahrscheinlichkeit gleich Eins verbessern wird ebenfalls in der Dissertation vorgestellt. Diese 
theoretische Beobachtung ist allgemein gültig. 

Positionen und Orientierungen der Magnetsensoren rund um den Oberkörper wurden mit drei 
aus der Literatur bekannten Bewertungsmaßen und einem neu in dieser Arbeit vorgeschlagenen 
Maß optimiert. Die besten Ergebnisse ergeben sich bei einer unregelmäßigen Verteilung der 
Sensoren auf der Oberfläche des Brustkorbes. Im Vergleich zu früheren Untersuchungsergebnissen 
kann daraus geschlussfolgert werden, dass mit geringfügig abweichenden Sensoranordnungen 
ebenso gute Ergebnisse erzielt werden können.  

Ein zweites Anwendungsbeispiel ist ein Verfahren der zerstörungsfreien Materialprüfung, das 
auch als Lorentzkraft-Wirbelstromprüfung bekannt geworden ist. In dieser Arbeit wird eine neue 
Methode für die kontaktlose, zerstörungsfreie Untersuchung leitfähiger Materialien vorgestellt. 
Dabei wird die Lorentzkraft gemessen, die auf einen Dauermagneten wirkt, der relativ zu einem 
Testkörper bewegt. Es wird eine neue Approximationsmethode für die Berechnung der 
magnetischen Felder und der Lorentzkräfte vorgeschlagen. 
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1 INTRODUCTION 

1.1 Motivations 

The first theories of inverse problems date back to the end of the nineteenth and the beginning of 
the twentieth century. One of the first inverse problems solved in the past was Newton’s 
discovery of forces making planets move in accordance with the Kepler’s laws. Determination of 
the body’s position and shape using the values of its potential presents an inverse problem in 
potential theory. Research regarding the internal structure of the Earth’s crust involved 
electromagnetic fields in the theory of the inverse problems. Nowadays, more and more 
applications deal with the inverse problems. One of them is computerized tomography [1]. It 
determines the function, which is, in most of the cases, density distribution, from the values of its 
line integrals, playing an important role in medical applications and nondestructive testing. 
Solving a heat equation backwards in time presents the class of inverse heat conduction 
problems. Reconstruction of an obstacle or an inhomogeneity from waves scattered by those 
presents inverse problem named an inverse scattering.  

A special class of inverse problems are linear inverse problems. They can be written as bxL  , 
where L  is a linear operator describing the explicit relationship between the Hilbert space x  and 
the Hilbert space b . Minimizing the residual bxL   one could find the best approximate 

solution of the discrete linear inverse problem. In the case of less measurement data b  than 
unknown parameters x , this solution presents minimum norm solution that minimizes x  

among all residual minimizers.  

According to Hadamard [2, 3], a mathematical problem is well-posed if 1) a solution exists, 2) 
the solution is unique and 3) the solution depends continuously on the data. If only one of these 
requirements is violated, the problem is called ill-posed. The last requirement of continuity is 
related to the stability of the solution of the linear inverse problems [4]. Continuity is a necessary 
but not sufficient condition for stability. This means that even if the problem is well-posed it may 
be ill-conditioned. Ill-conditioned problem means that a small change in an initial data leads to 
large changes in the solution. Therefore, when solving linear inverse problems, it is very 
important to investigate the error propagation from the data to the solution.  

Many different measures of conditioning exist, but some of them are not always numerically 
stable. Furthermore, they are usually indicators of the worst conditioned component of the 
solution and therefore overestimate the conditioning of all other solution components. Hence, a 
comprehensive theoretical consideration of measures of conditioning existing in a literature is 
needed and development of novel figures of merit as well. These methods should be applicable 
to linear inverse problems in various fields. 
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When measuring magnetic flux density at a number of points of a scanning plane, magnetic 
sensors are usually equidistantly arranged and oriented in parallel. But, numerical simulations 
show that random variations in the sensor directions can considerably improve the condition of 
the magnetostatic linear inverse problem [5]. This improvement is usually a characteristic of 
very ill-conditioned linear inverse problems, but it is not always the case. For a given source grid 
and magnetic sensor array, we attend to strictly mathematically define the cases when variations 
of sensor orientations lead to an improvement of the condition of the corresponding linear 
inverse problem. The improvement in condition leads consequently to more stable inverse 
solutions.  

Magnetocardiography non-invasively provides information about the electrical activity of the 
heart and is used in Magnetocardiographic Field Imaging (MFI) for the early assessment of heart 
dysfunctions [6]. Although MFI basic research [7, 8] and clinical studies [9] are conducted at a 
number of centers worldwide, it is not yet widely in use. One of the major limitations of the MFI 
until now is that the cryostat restricts the possible location of the superconducting quantum 
interference devices (SQUIDs) based sensors. New room temperature magnetic sensors [10] 
allow for placement of sensors around the body in a vest-like setup. Consequently, the question 
arises of how to place the magnetic field sensors optimally around the torso. In a study [11], Lau 
et al. showed that the optimization of position and orientation of a set of magnetic sensors on a 
plane in front of the torso allows for a reduction of the condition number of the kernel matrix of 
two orders of magnitude compared to a regular grid of sensors placed in front of the torso. The 
objective of the work presented in this thesis is to compare the practical utility of different 
figures of merit in the optimization of vest-like sensor arrangements for magnetocardiography. 
Furthermore, similarities/dissimilarities between the optimized sensor setups have to be found 
and compared to the previous findings.  

Biomedical applications require determination of electrical conductivity of human tissues. There 
are two strategies suitable for electrical conductivity measurements. The first one is invasive, 
making a direct contact with body tissue using electrodes. The second one uses an induction coil 
and induces electrical currents in the tissue. This results in changes of a coil impedance. These 
changes are used for obtaining of an information about the tissue conductivity. This is very 
important since the abnormal or diseased tissue has different electrical properties comparing to 
the normal one.  

Determination of the conductivity and application of a dipole model like in 
magnetocardiography serves as a basic idea for proposing for the first time a new method for 
non-contact, non-destructive evaluation of solid conductive materials, termed Lorentz Force 
Evaluation. In contrast to the magnetocardiography where magnetic flux is measured at the 
points above the heart, here the Lorentz force acting on a permanent magnet moving relative to 
the specimen is measured. Employing a three-dimensional finite volume discretization of the 
specimen and approximating the crack signal with an electric dipole at each voxel, a novel fast 
forward calculation of the Lorentz Force is proposed. This novel forward method serves as a 
basis for proposing a procedure for reconstruction of defects in solid conductive materials.  
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1.2 Thesis outline and contributions 

The subsequent Chapter 2 of the thesis contains theoretical consideration of three measures of 
conditioning of linear inverse problems: condition number with respect to the 2L  norm, Skeel 
condition number and inverse average decay of singular values of a kernel matrix. In order to 
overcome some disadvantages of the well-known and the mostly used condition number with 
respect to the 2L  norm, two new error measures are developed and theoretically considered. The 
first one is the dependency between rows of a kernel matrix in underdetermined linear inverse 
problems, i.e. between columns in overdetermined linear inverse problems. This figure of merit 
has a number of advantages comparing to well-known figures of merit existing in a literature. 
First, it does not require singular value decomposition of the kernel matrix which is usually time 
and memory consuming. Second, it does not essentially depend on the smallest singular value as 
the condition number with respect to the 2L  norm does. Then, it enables comparison of sensor 
arrays consisting of different number of sensors, in contrast to the condition number with respect 
to the 2L  norm, which depends on the dimensions of a sensor array and consequently 
dimensions of a matrix. Since the multiplication of all elements of a row by the same value 
influences only the norm of a row vector, but not the angles to other rows, this error measure is 
unaffected by row scalings. The second new figure of merit also explores the geometrical 
features of a kernel matrix: it measures the dependency between rows of a matrix and columns of 
its pseudoinverse calculating the mean value of the angles between them. This error measure 
does not tell the sensitivity of the worst conditioned component only, but the mean sensitivity of 
all solution components. 

These figures of merit, existing and newly developed, could be applied for optimization of 
sensor arrangements in wide classes of applications, like medical imaging, Lorentz force eddy 
current testing, seismology, geosciences and many others.  

When orientations of sensors in a planar sensor array are randomly varied, numerical simulations 
show that the condition of the corresponding linear inverse problem could be considerably 
improved [5]. This effect is due to the increment of the smallest singular value of a kernel matrix 
and is studied, as a part of the Chapter 3, through the perturbations of this matrix. The chapter 
contains a derivation of a precise mathematical definition of the cases when random variations of 
sensor orientations lead to an increment of the smallest singular value of a corresponding kernel 
matrix. Furthermore, using the two ways of studying perturbations, i.e. perturbations bounds and 
perturbation expansion, new and sharper bounds for singular values of perturbed kernel matrices 
are derived. The new bounds directly depend on the singular value which is perturbed and are 
defined separately for over- and underdetermined linear inverse problems. This could provide 
better predictions of improvements of the condition of linear inverse problems.  

Exclusion of a number of sensors from a sensor array or a number of sources assumed in a grid 
of dipoles decreases the number of rows and columns of a kernel matrix, respectively. This 
change of dimensions of a kernel matrix influences the value of the condition number with 
respect to the 2L  norm. However, this influence is not, according to the author’s knowledge, 
clearly mathematically defined in the existing literature. First, it is found that the 
increment/decrement of the condition number with respect to the 2L  norm is dependent on over- 
or underdetermination of the linear inverse problem. Chapter 3 contains strict mathematical 
conditions under which condition number is improved due to exclusion of a number of sensors in 
a sensor array or a number of sources in a grid of dipoles. These conditions are given through 
three corollaries.  
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The fact that the variations of single-axis sensors orientations could improve the condition 
number with respect to the 2L  norm of the corresponding kernel matrix triggers the question 
whether the variations of orientations of three-axial sensors have the same effect on the condition 
of the linear inverse problem. The mathematical framework presented at the end of the Chapter 3 
gives the answer: if three sensors measuring at one point three orthogonal directions change the 
directions so that they stay mutually orthogonal, then the condition number with respect to the 

2L  norm of the corresponding kernel matrix remains the same.  

One of the applications where solving of the linear inverse problem is needed is 
magnetocardiography. Searching for optimal magnetic sensor setup for measuring of a magnetic 
field of the heart is a topic of a Chapter 4. Positions and orientations of 21 and 32 magnetic 
sensors around the torso in a vest-like design are optimized. Optimization is performed 
minimizing four figures of merit: condition number with respect to the 2L  norm, Skeel condition 
number, inverse average decay of singular values of a kernel matrix and a novel figure of merit 
based on the angles between columns of a kernel matrix and rows of its pseudoinverse, presented 
in the Chapter 2. The optimization is done using a quasi-continuous constrained particle swarm 
optimization approach. Because the solution is not unique, the optimization is repeated 256 times 
for all goal functions. Determination of intrinsic grouping of all sensors positions obtained after 
repeated runs and for each figure of merit separately is done applying a partitional clustering 
procedure. A position of the medoid as the most centrally located object of the cluster is taken as 
a position of the representative sensor of that cluster. The most frequent orientation within each 
cluster is taken as the representative orientation.  

Optimized sensor setups show non-uniform distribution of sensors on the whole torso surface. 
Improvement of the condition of the linear inverse problem is obtained by placing the sensors 
not only on the front of the torso but also on the back. The dominant orientations of the clusters 
for all four figures of merit and both 21 and 32 sensor setups exhibit a mainly radial pattern 
around the heart. Since quite different sensor setups can perform equally well, an optimal 
selection of magnetic sensors for measuring magnetic field of the heart is not unique.  

Detection and localization of anomalies in solid conductive materials can be done using recently 
proposed method named Lorentz force eddy current testing [12]. But, identification and 
assessment of defects are very important aspects of quality assurance. Chapter 5 presents a 
method for reconstruction of defects using measurements of Lorentz forces exerting on a 
permanent magnet moving relative to the specimen.  

A solution of the forward problem is an important component of any method for computing 
some activity of the sources of eddy currents. For the forward solution, a new approximation 
method is proposed. First, in order to simplify calculation of the effect that a crack produces in 
the profile of the Lorentz force, we use a subtraction of the signals of the crack free system and a 
system containing a crack and simulate that difference as a signal produced by a grid of point-
like electric dipoles placed in the defect region. The forward problem involves computing the 
Lorentz forces at a finite set of sensor locations for a given source configuration. Forward 
solution is compared with the finite element computations and the average error is for a 
parallelepipedic subsurface crack smaller than 5%.  

Based on this approximation method, we are able to establish a kernel matrix and to apply a 
linear inverse scheme to estimate the unknown conductivity distributions. Thus, for the first 
time, a method for the reconstruction of crack geometries based on Lorentz force measurements 
is developed, called Lorentz Force Evaluation. Finally, a successful reconstruction using finite 
elements data and measurement data is obtained.  
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This thesis contains a set of own contributions. Chapters 2 and 3 contribute to the theory of 
conditioning of linear inverse problems, providing the relation between linear algebra on one 
side and engineering on the other side. Chapters 4 and 5 contribute to two applications, 
magnetocardiography and Lorentz force eddy current testing, respectively. According to the 
author’s best knowledge of the existing literature, a list of original contributions is presented 
below. 

 

Contribution Chapter Page 

1. New approximation method for a forward solution in  
Lorentz force evaluation 5.2.2 67-69 

2. Development of a method for reconstruction of defect geometries 
in conductive solid materials based on Lorentz force measurement  5.2.3 69-70 

3. Optimal vest-like sensor setups for magnetocardiography   

a) Array consisting of 21 sensors 4.3.2 56-57 
b) Array consisting of 32 sensors 4.3.2 57-58 

4. Introduction of novel figures of merit    

a) RD  2.2.1 17-19 
c)   2.2.2 19-20 

5. Decomposition of a lead-field matrix when magnetic flux density 
is measured 

  

a) Single-axis devices 3.2 26-29 
b) Three-axis devices 3.2 29-30 

6. Mathematical definition of the case when random variations of 
single-axis sensor orientations increase the smallest singular value 
of a kernel matrix  3.5 33-36 

7. Improvement of bounds of one variable in perturbation expansion 
of singular values  3.6 36-39 

8. Influence of excluding sources on condition number with respect 
to 2L  norm in overdetermined linear inverse problems 3.7.2 40 

9. Influence of excluding sensors on condition number with respect 
to 2L  norm in underdetermined linear inverse problems 3.7.3 41 

10. Condition number with respect to 2L  norm of three components 
measurements when all three components of magnetic dipoles are 
unknown is always larger than the condition number with respect 
to 2L  norm of one component measurements and magnetic 
moments of known direction 3.7.4 41-42 

11. Rotation of three-axial sensors at the same point for the same 
angle do not influence condition number with respect to 2L  norm 3.8 42-43 
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2 FIGURES OF MERIT IN LINEAR INVERSE PROBLEMS 

2.1 Existing figures of merit in linear inverse problems   

2.1.1 Introduction 

Matrix methods are very popular and useful for the numerical simulation of physical problems. 
Solving of systems of linear equations can be done by applying many different algorithms. It is 
not easy to select a proper algorithm for a given matrix method. For example, comparing to the 
slower algorithms, fast algorithms require more memory or are less robust. Furthermore, the 
efficiency of the algorithm very much depends on the hardware. For the users of matrix solvers, 
it would be good to know how accurately a solution vector is computed when all matrix elements 
are known with the provided precision. In other words, for anyone solving a system of linear 
equations, it is important to know whether or not the system is ill-conditioned and if it is, to 
know a degree of ill-conditioning. In the case of the extremely ill-conditioned system of 
equations, solution components will be very sensitive to small changes in the initial data and 
therefore it will not be of much practical usage.  

A measure of the effect of small changes in the data on the solution presents a figure of merit of 
a corresponding linear inverse problem. There are lots of different figures of merit depending on 
the ways used in measuring perturbations on the solution. Figures of merit that measure 
perturbations globally using norms are referred to as norm-wise condition numbers. Usage of 
norms is a common practice in sensitivity analysis. These figures of merit usually give an 
information of the worst conditioned component without the information how the perturbation is 
distributed among the data. Therefore they usually overestimate sensitivity especially in cases of 
badly scaled problems. There may exist solution components that are much better conditioned 
than norm-wise condition number can predict. Chandrasekaran and Ipsen [13] have shown by 
numerical experiments that for many classes of matrices the ill-conditioning of the matrix is due 
to a few rows of the matrix inverse only. So, norm-wise condition numbers cannot predict the 
presence of well-conditioned components. Furthermore, they are not capable to accurately assess 
the errors in individual solution components. Norm-wise condition numbers will be discussed in 
details in the following sections.  

Figures of merit that measure the sensitivity of each solution component to perturbations are 
called component-wise condition numbers [13]. Component-wise condition number for square 
matrices is proposed by Rohn [14]. Let the system matrix L  be of dimensions nn  and the 
perturbations of that matrix are chosen so that the elements of a matrix may vary in the way that 
the relative error of the elements cannot exceed a positive real number  . This means that 

 jijiji lll ,,,  for each ji, , where L  is the perturbed matrix. Rohn defined the maximum 

relative error in the ji, -th element of 1L  as: 
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This value depends on the maximal element perturbation value  . In the case of infinitesimally 
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The larger the )(Lc , the more ill-conditioned the matrix L .  

If we have two matrices 1D  and 2D  with positive elements, then )()( 21 LcDLDc  . This means 
that the condition number )(Lc  cannot be reduced by scaling.  

Component-wise measures are particularly meaningful for problems with some structure [15, 
16]. Appropriately chosen component-wise measures are insensitive to diagonal scaling, leading 
mostly to sharper error bounds [17]. 

Both norm-wise and component-wise condition numbers are usually defined for the system 
matrix before applying any type of regularization. But, the linear inverse problems are usually 
highly ill-conditioned or rank deficient, requiring some regularization technique. One of the most 
successful methods is Tikhonov regularization. Norm-wise, mixed and component-wise 
condition numbers and component-wise perturbation bounds for the Tikhonov regularization are 
given in [18].  

When solving physical problems applying matrix methods, a matrix that contains the information 
about the geometry of the problem and connects measurement data and unknown sources, is 
called system matrix or a kernel matrix. When the measurements are magnetic or electric field 
and unknown sources magnetic or electric dipoles, this matrix is usually called lead field matrix. 
Moments of magnetic dipoles are vectors and they are traditionally defined by three orthogonal 
dipoles in each cell of a volume domain. Dipoles positions are generally located on an assumed 
grid covering the domain of interest. The formulation of a lead field matrix based on having a 
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dipole moment of a particular strength in each orthogonal element will be referred to as element-
based lead field matrix [19]. In biomedical engineering, this matrix, for example, maps three 
components of each dipole to magnetic flux density values (magnetoencephalography) or to 
electric potentials at the scalp recording electrodes (electroencephalography).  

On the other hand, when one unknown is associated with one node of a grid assumed in the 
domain of interest, the matrix will be referred to as a node-based lead field matrix. If the number 
of grid points in the reconstruction space is larger than the number of measurement points, then 
the problem with node-based lead field matrix would be much less underdetermined than with 
element-based. The node-based kernel matrix with an electrical conductivity value as unknown 
per one grid point is used in the procedure of crack identification in Lorentz force eddy current 
testing in the section 5.2.3.  

The whole theoretical work presented in the sections 2 and 3 of this thesis can be applied to both 
element-based and node-based kernel matrices. This makes the theoretical findings applicable to 
wide classes of linear inverse problems.  

In this thesis, the theoretical consideration and numerical comparison of five different figures of 
merit is made. Three of them already exist in the literature: the condition number with respect to 
the 2L  norm CN , the Skeel condition number and the ratio of the largest and the mean singular 
value of the kernel matrix  . Two additional are newly developed: dependency between 
rows/columns of a kernel matrix RD  and dependency between rows/columns of a kernel matrix 
and columns/rows of its pseudoinverse  . 

 

2.1.2 Condition number with respect to the 2L  norm 

The determination of the condition number with respect to the 2L  norm CN  of a kernel matrix 
relies on the calculation of its singular values. For a non-singular square matrix L , the condition 
number with respect to the 2L  norm is defined as: 

 minmax
1  LLCN , (2.5) 

where min21max )(...)()()(  LLLL n  are nonincreasingly ordered (real and 

positive) singular values of L . However, significant numerical errors can occur during the 
computation of CN  and CN  essentially depends on the smallest singular value min .  

This figure of merit relates the relative error of 1L  to the relative error of L  as it can be seen 
from the inequality  

 )(1

)()(

1

11

LrCN

LrCN

L

LLL











, (2.6) 

where LLLr )( , [20].  

This definition is generalized to rectangular matrices of full rank into: 

 
 LLCN , (2.7) 

where L  presents the pseudoinverse of the matrix L .  
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This figure of merit has been widely used as an indicator of conditioning of linear inverse 
problems. Estimation of solution accuracy from the kernel matrix in magnetoencephalography in 
[21] relies on the condition number with respect to the 2L  norm. Lee et al. found that the 
condition number CN

 
had a very close relationship with the reconstruction accuracy. Various 

simulation studies demonstrated that the condition number CN  of a kernel matrix could be used 
as a useful a priori index to estimate the reconstruction accuracy before the source 
reconstruction. This method is advantageous because the location accuracy can be estimated 
without solving an inverse problem. It was verified that higher condition number CN

 
relates to 

poorer localization performance.  

The condition number with respect to the 2L  norm was used as an indicator for the stability of 
the inversion process [22] or as a priori accuracy estimator for the inverse problem [23]. 
However, there exists an unexpected observation that it is extremely unlikely to find very 
accurate solutions with low condition numbers [24]. This would mean that there is a high risk 
that a technique that reduces the condition number with respect to the 2L  norm also reduces the 
accuracy of the results. It is a rough measure of conditioning since it assumes that the 
perturbation is small and also does not take into account the perturbation structure [25].  
 
Influence of scaling on the condition number with respect to the 2L  norm 

Let a measure of scaling be defined first. A measure of (ill)scaling of the system bxL 
 
is 

proposed in [26]: 

 
)(min)(max ,

,
,

,
ji

Jji
ji

Jji
ll

 
, (2.8) 

where  0, ,  jiljiJ  . The larger is the magnitude between the largest and the smallest 

absolute values of non-zero entries jil , , the worse scaled is the system. Bajalinov and Rácz [26] 

say that a given system matrix L  is poorly scaled or badly scaled if the magnitude defined in 
(2.8) is larger or equal to 51 E . The aim of scaling is to make a measure (2.8) as small as 
possible. Fulkerson and Wolfe [27] propose a method for finding such scale factors that 
minimize the value (2.8). They state that this number as a measure of scaling is a useful 
condition number. Based on the assumption that the original matrix can be scaled in such a way 
that all matrix elements are of comparable size, Curtis and Reid [28] present an algorithm for 
scaling.  

The influence of scaling on the condition number with respect to the 2L  norm has been studied 
by Golub and Varah [29], Bauer [30], Businger [31], Braatz and Morari [32], McCarthy and 
Strang [33], Watson [34] and Rump [35]. If the condition number of the scaled kernel matrix sL  

can be made considerably smaller than the condition number of the original kernel matrix L , 
then we might expect a more accurate solution obtained by inverting the scaled matrix [36]. This 
is in fact the objective of scaling in [36]. A poor computed solution could be a consequence of 
the disparity in sizes of the elements of the kernel matrix L  [37]. Stewart proposes scaling of 
rows and columns of L so that the matrix becomes balanced.  

The reduction of condition number or normalization of magnitudes of the system matrix 
elements provides a satisfactory explanation of the influence of scaling on partial pivoting in the 
Gaussian elimination algorithm. Scaling can drive or control the selection of pivots for any 
strategy based on the magnitude of matrix elements [38]. This algorithm can also be used to 
calculate the determinant of a matrix, find the rank of a matrix or to calculate the inverse of an 
invertible square matrix. Applying elementary row operations are used in order to reduce a 
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system matrix to a triangular form. An extension of this algorithm, Gauss-Jordan elimination, 
reduces the matrix further in a diagonal form known as reduced row echelon form. The Gaussian 
elimination computes matrix decomposition. Three elementary row operations are used in 
Gaussian elimination: multiplying rows, switching rows and adding multiple of rows to other 
rows. The first part of the algorithm computes the LU decomposition while the second part 
writes the original matrix as the product of a uniquely determined invertible matrix and a 
uniquely determined reduced row-echelon matrix. Studying of positive and negative effects of 
scaling on the selection of pivots based on partial pivoting is done in [38]. Skeel also provides an 
important insight into the subject of scaling [39, 40], showing the effect of scaling on the 
stability of Gaussian elimination. Geometrical analysis of Gaussian elimination is presented in 
[41].  

A motivation for scaling to make pivoting work well is presented by Forsythe and Moler [42]. 
For the system of linear equations bxL  , a pair of nonsingular diagonal matrices ),( FD  
determine the scaling of the system through the following equations: bDyFLD )( , and 

xFy 1 . When the system of equations is solved by Gaussian elimination and the scaling is 
implemented along with partial pivoting, certain ordered pairs ),( FD  produce better solutions 
than those obtained without scaling while some pairs produce worse solutions. There are two 
reasons for this: first, ),( FD  influence the condition number with respect to the 2L  norm of the 
kernel matrix and second, ),( FD  modify the magnitudes of the elements of the matrix L .  

In the case when scaling yields elements of a kernel matrix of approximately the same 
magnitude, this is called equilibration. When matrix F  is the identity matrix, then scaling by a 
pair ),( ID  is called a row scaling, while ),( FI  denotes a column scaling.  

However, a more satisfactory explanation of the positive and negative effects of scaling on 
partial pivoting lies in the orientation of hyperplanes corresponding to the linear system [39]. 
Numerical consequences of orientation of hyperplanes in Gaussian elimination are presented in 
[41]. In the case of a symmetric matrix L  that contains no null rows, Bunch [43] presents an 
algorithm for finding a scaled matrix ELD  which is equilibrated in the  norm.  
 
Sensitivity of the condition number with respect to the 2L  norm 

Computation of the condition number CN  requires computation of the singular values of the 
kernel matrix of a corresponding linear inverse problem. The accurate computation of the 
singular values requires singular value decomposition (SVD) which is in case of very large 
matrices time and memory consuming. Due to the loss of accuracy already in the SVD 
algorithm, computation of the condition number with respect to the 2L  norm is also inaccurate. 
This is especially true for very large condition numbers. Considering the definition of the 
condition number with respect to the 2L  norm (2.5 and 2.7), its accuracy crucially depends on 

the smallest singular value min .  

When computing the condition number with respect to the 2L  norm, it is of high interest to 
know the accuracy of the computations. This problem was investigated by Demmel [44]. He 
showed that for certain fundamental problems in numerical analysis, including matrix inversion, 
“the condition number of the condition number is the condition number”. Higham [17] has 
shown that for the cases of matrix inversion and the solution of linear systems, the sensitivity of 
the condition number is given by the condition number itself. This condition number is called 
level-2 condition number.  
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Equivalent to the condition number with respect to the 2L  norm, but not relying on the singular 
values of a kernel matrix and with a direct geometrical interpretation, Chehab and Raydan [45] 
define the Frobenius condition number. This number is related to the cosine of the angle between 
a given positive definite matrix and its inverse. In fact, bounds for the ratio between the angle 
that a matrix forms with the identity matrix and the angle that the inverse of a matrix forms with 
the identity matrix, are defined in [45].  

Cosine of the angle between two matrices A
 
and B

 
is given in [46] 

 
FF

F,
),(cos

BA

BA
BA


 , (2.9) 

where the definition of the Frobenius inner product is given as  

 
)(, T

F BAtrBA  . (2.10) 

In the case of the cosine of the angle between the matrix and the identity matrix, we have: 

 2/1
F

)(
),(cos

nA

Atr
IA  . (2.11) 

)(Atr  and FA  denote the trace and the Frobenius norm of the matrix A . Based on these 

bounds and requiring only the trace and the Frobenius norm of a matrix, new lower bounds for 
the condition number CN

 
are established [45].  

 

2.1.3 Skeel condition number  

The Skeel condition number is first proposed for square matrices in [39] and then generalized to 
rectangular matrices in [47]. Let the matrix L

 
be a kernel matrix of the system of linear 

equations. When the system is overdetermined (more rows than columns), the Skeel condition 
number is defined as  

 
 LLLSkeel )(  (2.12) 

and is invariant under column scaling, while for underdetermined system of linear equations 
(more columns than rows), it is defined as  

 
LLLSkeel  )(  (2.13) 

and is invariant under row scaling. Scaling here means left multiplication of a matrix by a 
nonsingular diagonal matrix, giving )()( LSkeelLDSkeel  .  

 in expressions (2.12) and (2.13) indicates that all elements of the matrices L  and L  are 

replaced by their absolute values and  denotes the 2L  norm. L is the pseudoinverse of matrix 

L .  

The Skeel condition number is equal to one for any matrix where only the entries iil ,  are 

nonzero. Therefore, an overestimation of the ill conditioning using the condition number CN  in 
the case of a matrix containing non-zero entries only on positions ii,  is overcome using the 
Skeel condition number. This type of a matrix usually does not appear in solving of real physical 
problems.  
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The Skeel condition number cannot be much larger than CN , since [47]: 

 
)()( LCNmLLnLLLSkeel   , (2.14) 

where L  is a rectangular matrix of dimensions mn  and mnLrank )( .  

The Skeel condition number can be much smaller than the condition number with respect to the 

2L  norm. 

Being independent of any row or column scaling, the Skeel condition number better reflects the 
inherent condition of the matrix. Any reordering of the linear equations in the system does not 
change the value of the Skeel condition number. But, reordering of the equations mostly 
influences the solution obtained by applying Gaussian elimination (see section 2.1.2). 
Furthermore, Skeel concluded that a proper way to scale a system matrix depends on the 
properties of the solution of the system [39, 40]. This information is unfortunately usually not 
available.  

The fact that scaling does not influence the Skeel condition number and the observation of Arioli 
et al. [15] about overcoming bad row scaling with iterative refinement, suggest that scaling or 
equilibration may be unnecessary. Hamming [48] and Moler [49] support this position.   

 

2.1.4 Figure of merit   

In order to increase the numerical stability of the evaluation of the condition number with respect 
to the 2L  norm and to reduce its dependency on the smallest singular value of a kernel matrix 

min  , a figure of merit   is proposed as a new condition measure [50]: 
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  represents the ratio between the largest and the mean singular values of the kernel matrix L  as 
it can be seen from the first part of the expression (2.15). The second part of the expression 
(2.15) provides an equivalent interpretation of this measure as the inverse of the average decay 
of the singular values of the kernel matrix L .  

Larger values of  , as of CN , indicate a worse condition of the kernel matrix L  and therefore a 
worse conditioned linear inverse problem.  

This figure of merit is related to the area under the curve representing the slope of singular 
values. The relation is derived below.  

Let us observe the curve representing singular values of a kernel matrix normalized by the 
largest singular value. In order to approximate the total area underneath this curve, the method of 
Riemann sum is used. A left Riemann summation method is presented in the Fig. 2.1. This 
method makes an approximation using the left endpoint of each subinterval.  
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Fig. 2.1 – Left Riemann summation method in calculation the area under the curve of 
normalized singular values of a kernel matrix.  

 

Let the interval ),0( n  be divided into n  subintervals, each of length 1)0(  nn . The 
points in the partition will then be nnn ,)1(,)2(,...,20,0,0  . The curve is 
approximated by the value at the left endpoint. This gives multiple rectangles of one side   and 
the other side )0(  if . Doing this for 1,....,0  ni  and summing up all the subareas, we get: 

))(...)0()0((  nfff , i.e. )...( 111211  n .This is the area under 

the curve representing all singular values normalized by the largest singular value of a kernel 
matrix. Let it be denoted as area . 

When the singular values are simple (there are no two equal singular values), the curve 
representing them is monotonically decreasing function. In that case the left Riemann sum 
amounts to an overestimation of the area under the curve. The right Riemann sum would in that 
case underestimate the area under the curve. 

On the other hand, the inverse value of the figure of merit   (2.15) can be written as: 
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In the case of very small the last singular value, the following holds: 
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The expression (2.19) could be written as: 
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  . (2.18) 

At the end, we have that the inverse of the figure of merit   is approximately equal to: 
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
. (2.19) 
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Since the changes of 1  are accompanied by changes in the area  and the changes are always 

related by use of a constant, this means that 1  is directly proportional to the area . The 

coefficient of proportionality is equal to n1 , where n  represents the number of singular values. 
When comparing two different sensor arrays, a direct comparison of areas under the curves 
makes sense only in the case of the same number of singular values of the kernel matrices. This 
means that in underdetermined problems, only the sensor arrays with the same number of sensors 
can be compared since in this case the number of singular values is equal to the number of 
sensors. Or, if truncation is applied, sensor arrays containing different number of sensors could 
be compared, but the truncation has to be the same, i.e. the number of singular values used for 
the inversion of both kernel matrices. In the case of overdetermined problems, the number of 
singular values is equal to the number of columns of kernel matrices (when matrices are of full 
column rank). This enables comparison of sensor arrays containing different number of sensors 
using the approach of the area under the curve of normalized singular values of a kernel matrix.  

The figure of merit   represents the inverse of area under the curve of singular values of a 
kernel matrix. The larger is the area under the curve, the smaller is the   and consequently the 
better conditioned linear inverse problem.  

A direct visual comparison of the areas under the curves representing the singular values of the 
corresponding kernel matrices makes sense only if the singular values are normalized by the 
largest singular value (in that case both curves start at the same point 111  ).  

The larger area under the curve representing the singular values normalized by the largest one 
corresponds to the smaller steepness of this curve. Minimization of the steepness of the slope of 
singular values is used in optimizing the magnetic sensor arrangements in magnetocardiography 
[51]. In fact, they directly compared singular value decays as a measure of the information 
content of different sensor arrays. When the correlations among the matrix rows in 
underdetermined problems and matrix columns in overdetermined problems are small, then a 
kernel matrix exhibits a low decay of singular values. In this case the rows contain little 
redundant sensitivity information on the sources. So, the information content of measurements 
provided by the modeled sensor array on the considered source distribution is high. 
 

2.2 Newly developed figures of merit in linear inverse problems  

2.2.1 Dependency between rows/columns of a kernel matrix RD  

One of the sources of instability of linear techniques arises from the linear dependency between 
rows of the matrix of a linear system [52]. Izquierdo and Guerra introduced an additional 
strategy to overcome this problem. Their strategy improves the stability and accuracy of the 
linear approach even further while reducing the computational cost. In fact, they proposed a 
method to automatically select the most linearly independent rows in the matrix and to perform 
estimation with these rows only. They show in simulations that the magnitude of the condition 
number with respect to the 2L  norm of the matrix built with the q  most independent rows, is 
minimal comparing to the condition number of the matrix formed by any combination of q  
different rows of the matrix (Fig. 2 in [52]). If one has a planar sensor array containing n  
sensors and wants to select q  of them leading to a minimal condition number with respect to the 

2L norm, he can explore the same idea of q  the most independent rows.  

Here arises a question of how to relate a linear dependency between rows of a kernel matrix and 
its condition number with respect to the 2L  norm. A very convenient criterion to measure the 
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degree of linear dependency is given by the distance of the matrix L  to the closest singular 
matrix [52]. The minimum distance between a given matrix L  and a singular matrix is given by 
the smallest singular value of L  (Lemma 2 in [52]). The proof of this result is given in [53, 
section 2.5.3]. This lemma allows to relate the linear dependency between rows of a matrix and 
the condition number with respect to the 2L norm. The higher is the linear dependency between 
rows of L , the smaller is its smallest singular value and therefore larger the condition number 
with respect to the 2L norm. 

Geometrical interpretation of the linear dependency between a matrix row/column and a space 
spanned by the all other rows/columns have been used before. The angle between a row of a 
matrix and a space spanned by all other rows is employed to estimate the degree of information 
this particular row adds to the other rows of a matrix [54]. If many rows add little or no 
additional information, the matrix is ill-conditioned. An approximate expression for the 
condition number CN  of a well-scaled matrix in terms of the minimum angle between a column 
vector of a matrix and a linear subspace spanned by the remaining columns is derived in [55]. An 
interesting inequality is given in [56], showing that either the columns of a matrix are nearly 
dependent or the kernel matrix is not well-scaled if the CN  is high.  

In order to overcome the same problem, Sabatier [54] suggested ordering the rows with respect 
to the value of the angle the row of a matrix has with the space spanned by all other rows. This is 
the angle describing the independence of each row relative to all other rows. A row with large 
angle contributes to the model. Rows having the small angle are largely responsible for ill 
conditioning of underdetermined linear inverse problems. Sabatier proposed improving the 
conditioning of the system matrix using in inversion only the rows for which this angle is larger 
than some noise-dependent threshold.  

Let  T21 ,...,, nlllL


  be a kernel matrix of an underdetermined problem, where il


 is the ith row 

vector of L  and n  corresponds to the number of sensors. By computing the mean value of the 

angles among all il


, we get a figure of merit of rows dependency, RD : 
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In order to indicate a well-conditioned matrix by a small value, as in the figures of merit 

presented in the section 2.1, a subtraction of each obtained angle from o90  is imposed in 
expression 2.22.  indicates that the absolute values of the angles and of the differences are 

used.  denotes the 2L  norm. o0RD  corresponds to the set of linearly independent rows, 

while a set of parallel vectors is denoted by o90RD . If the problem is overdetermined, i.e. a 
matrix contains more rows than columns, then the angles between columns are measured. In that 
case this figure of merit is referred to as columns dependency CD .  

Calculation of the figure of merit RD  has a few advantages in comparison to the condition 
number with respect to the 2L  norm. First, computation of RD  does not require singular value 
decomposition of a matrix. Second, it enables the comparison of lead field matrices of different 
sizes. Furthermore, condition number with respect to the 2L  norm is dependent on row scaling 
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in the case of underdetermined problems and on column scaling in the case of overdetermined 
problems. We do know that the multiplication of all elements of a row by the same value 
influences only the norm of a row vector, but not the angles to other rows. Thus, RD  is 
independent of row scaling. In the same way, CD  is independent on column scaling. These 
features of the proposed RD  for underdetermined problems and CD  for overdetermined 
problems are promising for further applications.  
 

2.2.2 Figure of merit   

Let us consider a matrix L  of dimensions mn , mn  . Columns of a matrix L  are denoted by 

ia  and the rows of its pseudoinverse L  by ir . Since the norm-wise condition numbers cannot 

predict the well-conditioned components in the solution vector, Chandrasekaran and Ipsen [57] 
proposed component-wise condition number  

 irL  , mi ,...,1 , (2.21) 

where L  represents the 2L  norm of the matrix L  and ir  the length of the vector ir , 

mi ,...,1 . This condition number measures the sensitivity to perturbation of each solution 
component separately.  

In the case of matrix L  of full column rank (Theorem 5 in [57]) 

 
))Cos((1 iii ar  , 22  i , mi ,...,1 . (2.22) 

Now, (2.21) becomes  

 )Cos( iia

L


, mi ,...,1 . (2.23) 

Values ii ra 
 
are known as collinearity indices [58]. According to (2.22) these indices are 

equal to )Cos(1 i . They represent in fact a scaling invariant version of (2.23) [57].  

Based on the component-wise condition number of Chandrasekaran and Ipsen, a novel figure of 
merit, ξ , is proposed:

 
 

 ))Cos(Mean(
ξ

iia

L


 . (2.24) 

In contrast to the condition number with respect to the 2L  norm, this figure of merit does not 
predict the sensitivity on perturbations of the worst conditioned solution component. Similar to 
 , where the largest singular value is divided by the mean of all singular values, a denominator 
in ξ  is equal to the mean of the products of the lengths of the column vectors of the kernel 
matrix L  and cosines of the angles between those vectors and corresponding rows of the 

pseudoinverse L .  

Figure of merit ξ  is directly proportional to the largest singular value of a system matrix L  and 
inversely proportional to the mean value of products of lengths of the vectors representing the 
columns of the system matrix L  and cosines of the angles between the columns of L  and the 

corresponding rows of its pseudoinverse L . The smaller are these products, the smaller is the 
mean and therefore the larger value of ξ .  
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When a linear inverse problem is underdetermined with a kernel matrix L  of dimensions mn , 

nm  , then ia  , mi ,...,1 , represent the rows of L , ir  , mi ,...,1 , are the columns of L , 

while i  are the angles between rows ia  and corresponding columns ir  , mi ,...,1 .  

In contrast to the another proposed novel figure of merit, i.e. the dependency between 
rows/columns of a kernel matrix which can be computed using the data in the matrix only, 
calculation of the figure of merit ξ

 
requires determination of the pseudoinverse of the kernel 

matrix.  
 

2.3 Comparison of figures of merit in a simulation  

In order to study features of three figures of merit already existing in literature and presented in 
section 2.1 and two newly proposed figures of merit described in the section 2.2, and to make a 
comparison between them, numerical simulation has been done. Here, the influence of the 
number of sensors in an array in the case of underdetermined linear inverse problem has been 
investigated. A 1515  grid of three component magnetic dipoles are kept constant. The number 
of sensors are changed from 100  to 144 . Dipoles are placed in the area 

m)22.0m,02.0(),( maxmin xx , m)22.0m,02.0(),( maxmin yy , m05.0  underneath a sensor 

array. All the sensors are uniformly oriented along the z direction and placed in the area 
m)2.0m,0(),( maxmin xx , m)2.0m,0(),( maxmin yy .  

The dependencies of the condition number with respect to the 2L  norm CN , Skeel condition 
number, inverse average decay of the singular values of a kernel matrix   and two newly 
proposed RD  and   , normalized by their values when 124  sensors are used, are presented in 
the Fig. 2.2. 

CN  changes from 52.2661  to 69.2934 , Skeel  from 06.3786  to 11.4695 ,   from 11.7  to 

26.7 , RD  from o05.8  to o32.7  and   from 2.25832  to 3.40170 . All the figures of merit are 
increasing with increasing the number of sensors, except only the RD .  
 

 

 

 

 

 

 

 

 

Fig. 2.2 – Dependence of normalized measures of conditioning of a kernel matrix.  

A theoretical proof that the CN  in the case of underdetermined linear inverse problem increases 
with increasing number of sensors (adding sensors) is done in the section 3.7.3 and therefore is 
expected. Skeel ,   and   behave in the same way. The only different figure of merit is RD . In 
the case of less number of sensors than the number of unknown sources, it is natural that further 
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decreasing of the number of sensors would lead to a worse conditioned linear inverse problem, 
as indicated by RD . This could be very promising for further investigations and application of 
RD .  

Usually, all these figures of merit behave in the same way [59, 60]. In the case of 
underdetermined linear inverse problem, decrement of the number of sensors leads to a 
decrement of all mentioned error measures, but only when keeping the area of sensor array 
constant. When sensors belonging to one sensor array are being excluded one after the other, 
meaning also that the area of sensor array becomes smaller, then figure of merit RD  increases 
while CN , Skeel ,   and   decreases (Fig. 2.2).  

In order to verify that the lower condition number CN
 
could relate to poorer localization 

performance, a reconstruction of magnetic dipole is performed. A magnetic dipole of the 

magnetic moment zm ˆnAm1 2


 
is placed at point m)12.0m,12.0( , m05.0  underneath a sensor 

array. The first reconstruction is performed using a sensor array containing 144n  uniformly 
z oriented sensors placed in the area m)2.0m,0(),( maxmin xx , m)2.0m,0(),( maxmin yy . 

The second reconstruction is performed using a sensor array containing 75n  sensors, obtained 
after exclusion of 69 sensors from the array. An assumed grid of dipoles described in the first 
paragraph of this section is kept the same in both cases. The results of the reconstruction 
procedure applying singular value decomposition of a kernel matrix are presented in Fig. 2.3a 
and 2.3b. Obtained magnetic moments of dipoles are normalized by the largest one and 
presented using a color scale shown in Fig. 2.3c. In the case when 144n  sensors are used, the 
simulated magnetic dipole is reconstructed (red point exactly at the position of simulated dipole). 
On the other hand, reconstruction using an array of 75n  sensors performs well with respect to 
x  coordinate, while y  coordinate is determined within an inaccuracy of m02.0 .  

 

 

0

1

 

a) 144n  b) 75n  c) 

Fig. 2.3 – Representation of normalized magnetic moments of dipoles in an assumed 
dipole grid, obtained by using an array of 144n  sensors (a) and 75n  sensors (b), color-

coded using the color scale (c). Simulated dipole is placed at point m)12.0m,12.0( . 

This reconstruction result confirms well the predicted conditioning of the linear inverse problem 
and a good reconstruction accuracy using the figure of merit RD . It also shows that the lower 
value of the condition number with respect to the 2L  norm is not a priori indicator of a lower 
error in the inverse solution. Or, at least, results confirm once more that a comparison of sensor 
arrays containing different number of sensors cannot be done using the condition number with 
respect to the 2L  norm.  



2. Figures of merit in linear inverse problems 

 - 22 -

2.4 Discussion   

Depending on the way the figures of merit measure the errors in a solution with respect to 
perturbations in the input data, they can be divided into three main groups. The first group are 
norm-wise condition numbers. This kind of condition number measures the size of both input 
perturbations and output errors using some norms. Condition number with respect to the 2L  
norm belongs to this group. As a norm-wise condition measure, it gives the error bound of the 
worst conditioned component in the solution vector and therefore overestimates a condition of a 
kernel matrix.  

A second group of figures of merit can predict the errors in each component of the solution 
vector. These figures of merit are referred to as component-wise error measures. This is 
important when we are intersted in one solution component particularly and there is no risk of 
overestimation of the error. Condition numbers presented by Rohn (formula 2.3) and 
Chandrasekaran and Ipsen (formula 2.21) belong to the group of component-wise condition 
numbers.  

Skeel condition number,   and   are of the mixed type. Mixed type means that the error 
measure takes into acount perturbations in all input elements, but at the end uses some norm to 
predict the error.   for example takes into account all the singular values of the system matrix, 
while   depends on the cosines of the angles between all the columns (rows) of a system matrix 
and rows (columns) of its pseudoinverse. Since they do not calculate the worst conditioned 
component of the solution vector, a system matrix can be better conditioned in a mixed sense 
than in norm-wise sense. The classification of figures of merit is presented by scheme in Fig. 2.4. 
As not using any of norms, the figure of merit RD  is presented as a separate, not belonging to 
any group.  

While calculation of the condition number with respect to the 2L  norm and the inverse average 
decay of singular values requires performing the singular value decomposition, and the Skeel  
and   determination of the pseudoinverse of a kernel matrix, it is not required for condition 
determination using RD . Calculation of RD  relies only on values of kernel matrix elements. 
Furhermore, computed singular values deviate from the true values. In fact, only singular values 
close to the largest one, can be computed with a high relative accuracy. When computing the 
condition number with respect to the 2L  norm, we perform a division by the smallest singular 
value, which is numerically instable [61].  

Figures of merit differ also with respect to the sensitivity on scaling. Generally speaking, one 
system of linear equations should not be affected by bad scaling of a kernel matrix. In that sense, 
using of the Skeel  condition number or dependency between rows/columns RD  should be of 
advantage. But, in real applications, when for example in optimization of sensor positions one 
wants to exclude sensors far away from the source (the signal to noise ratio would be bad 
assuming approximatelly uniform distribution of the noise at all sensors positions), then one 
should use condition number with respect to the 2L  norm,   or  . These figures of merit are 
influenced by scaling.  

Reordering of rows/columns within a kernel matrix does not influence any of figures of merit 
mentioned in sections 2.1 and 2.2. On the other hand, reordering in the most cases influences a 
solution obtained by Gaussian ellimination. With respect to the reordering of rows/columns and 
when applying Gaussian elimination, none of these measures is of advantage.  
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3 PERTURBATIONS OF SINGULAR VALUES OF A KERNEL 
MATRIX 

3.1 Introduction 

Measuring of magnetic field has a very diverse range of applications, including locating objects 
such as submarines, hazards in coal mines, heart beat monitoring, anti-locking brakes, 
archaeology, mineral exploration, in spacecrafts or eddy current testing of materials. The 

magnetic field is characterized by the magnetic flux density, measured in 2mWb . 
Magnetometers can be, depending on what they measure, divided into two basic groups. The first 
one are so called scalar magnetometers that measure the total strength of the magnetic flux 
density, but not its direction. The second group consists of magnetometers that have a capability 
to measure the component of the magnetic flux density in a particular direction. They are 
referred to as vector magnetometers. If the vector magnetometers measure only one component 
of the magnetic flux density, they will be referred to as single axis devices. On the other hand, it 
is possible to combine three axis sensors to get three flux density measurements at one point. 
These sensors are referred to as three-axis devices.  

When an array of single component vector magnetometers is used, sensors are usually uniformly 
oriented i.e. they measure the same component of magnetic flux density at all the points of an 
array. But, numerical simulations have shown that random sensor variations of single component 
vector magnetometers could lead to a better conditioned linear inverse problem [5]. The effect of 
sensor orientations variations on the condition of corresponding linear inverse problem will be 
studied through the perturbations of kernel matrix.  
  

3.2 Additive and multiplicative perturbations of a kernel matrix  

Let a kernel matrix of dimensions nm  be denoted as L . In the theory of perturbations, there 
are two different perturbation models:  

 Additive perturbations that represent perturbed matrix as EL  , where matrix E  
has same dimensions as L ; and 

 Multiplicative perturbations that represent perturbed matrix as LD ; matrix D  can 
be a square matrix leading in that case to the perturbed matrix of the same 
dimensions as L  or a rectangular matrix increasing/decreasing the number of 
rows of the resulting perturbed matrix with respect to the number of rows of 
original matrix L .  
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In case of linear inverse problems, where matrix L  represents a kernel matrix, variations of 
sensor orientations will be represented as additive and multiplicative perturbations of a kernel 
matrix, separately defined for single axis and three-axis devices. Theoretical considerations will 
be done for three component magnetic dipoles as unknown sources and single axis and three-axis 
devices measuring the magnetic flux density. Nevertheless, the theory is general and holds for 
any kind of single axis or three-axis measurements and any kind of unknown sources.  
 

Single axis devices  

Let the number of single axis sensors be n  and the number of magnetic dipoles m . There is no 
assumption about the orientation of magnetic dipoles: there are three unknown magnetic 
moments per each dipole.  

Position and direction of the thi  single axis sensor are expressed as: 

 
zdydxdd iziyixi ˆˆˆ 


, ni ,...,1 , (3.1) 

 
zryrxrr iziyixi ˆˆˆ 


, ni ,...,1 , (3.2) 

Position vector of the thj  magnetic dipole is:  

 
zRyRxRR jzjyjxj ˆˆˆ


 , mj ,...,1 , (3.3) 

having a magnetic moment:  

 
zmymxmm jzjyjxj ˆˆˆ 


, mj ,...,1 . (3.4) 

Magnetic flux density b


 at the position of the thi  single axis sensor produced by the thj  
magnetic dipole is described by the well-known formula (3.5): 
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, ni ,...,1 , mj ,...,1 . (3.5) 

Magnetic flux density ijb


 is then decomposed into three components corresponding to 

projections of vector ijb


 on three mutually orthogonal axes of Cartesian coordinate system: 

 
zbybxbb ijzijyijxij ˆˆˆ 


, ni ,...,1 , mj ,...,1 , (3.6) 

where  

 
 jxijjxixijijx mqRrpb  )(3

4

μ0


, (3.7) 

  jyijjyiyijijy mqRrpb  )(3
4

μ0


, (3.8) 

  jzijjzizijijz mqRrpb  )(3
4

μ0


, (3.9) 
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In other words, each component of the magnetic flux density depends on all three components of 
the magnetic moment of the magnetic dipole. Dependence of x  component is represented by 
formula (3.12): 

 jzijxzjyijxyjxijxxijx mBmBmBb  , ni ,...,1 , mj ,...,1 , (3.12) 

where  
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represent x  component of magnetic flux density vector depending on x , y  and z  component of 
magnetic dipole moment respectively.  

Dependence of y  component is presented by formula (3.16): 

 jzijyzjyijyyjxijyxijy mBmBmBb  , ni ,...,1 , mj ,...,1 ,  (3.16) 

where  
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represent y  component of the magnetic flux density vector depending on x , y  and z  
component of the magnetic dipole moment respectively.  

In a similar way, the dependence of the z  component of the magnetic flux density can be written 
using the expression (3.20): 

 jzijzzjyijzyjxijzxijz mBmBmBb  , ni ,...,1 , mj ,...,1 , (3.20) 

where  
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represent z  component of the magnetic flux density vector depending on x , y  and z  
component of the magnetic dipole moment respectively.  

Note that a component g ,  zyxg ,, , of the magnetic flux density vector depends on a 

component h ,  zyxh ,, , of magnetic dipole moment in the same way as the the component h  
of the magnetic flux density vector depends on component g  of the magnetic dipole moment.  

Separation of information on orientations of single component magnetometers is done by 
placement of that information into one matrix. This is achieved through the factorization of 
kernel matrix L  into the product of matrix B  that contains information on positions of both 
magnetometers and magnetic dipoles and matrix D  that models sensor orientations.  

Based on these notations, kernel matrix mnL 3  can be written as a product of two matrices, D  

and B , where matrix D  contains information only on sensors orientations and matrix B  
contains information on dipoles and sensors positions: 

 
      mnnnmn BDL 3333   , (3.24) 

where  
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Elements of matrix B  are defined in formulas (3.13)-(3.15), (3.17)-(3.19) and (3.21)-(3.23). 
Note that matrix B  in decomposition (3.24) corresponds to the kernel matrix of the linear 
inverse problem using three-component measurements performed at the same points as single 
component measurements.  

Besides multiplicative, perturbations of a kernel matrix in case of single component 
measurements could also be studied as additive. Kernel matrix could be according to (3.24) 
written as BDL  . After variations of sensors orientations, kernel matrix becomes BDL  , 
clearly showing the source of perturbations already in a notation. Perturbation matrix L  in this 
case is BDBDDBDBDLLL  )( .  
 

Three-axis devices  

When measuring three orthogonal components x , y  and z  of magnetic flux density b


, 
produced by magnetic dipoles of no assumed orientation (three unknowns per one dipole), the 
kernel matrix corresponding to this linear inverse problem can be decomposed in the following 
way: 

 
      mnnnmn BDL 333333   , (3.27) 

where matrix B  is defined in (3.26) and matrix D  is of the diagonal form: 
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and 1...111  nznynxzyx dddddd . Matrix D  is an identity matrix and the expression 

(3.27) becomes     mnmn BL 3333   . Lack of measurement of a certain component results in 

placing a zero in an appropriate place in the matrix D , further producing a zero row in kernel 
matrix and thus excluding of this row from the matrix.  

Let us observe counterclockwise rotations of sensors directions by an angle xθ , yθ  and zθ , 

respectively around x , y  and z  axis of the right Cartesian coordinate system. One directional 

vector zdydxdd zyx ˆˆˆ 


 becomes after rotations zdydxdd zyx ˆˆˆ 


, where  

)sinθsinθcosθsinθ(cosθ)sinθcosθcosθsinθ(sinθcosθcosθ zxzyxzzxzyxyzyxx dddd  , 

)sinθsinθcosθcosθsinθ()sinθsinθsinθcosθ(cosθsinθcosθ zyxzxzzyxzxyzyxy dddd   

and 

 yxzyxyyxz dddd cosθcosθcosθsinθsinθ1  .  
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We might choose a differently oriented set of mutually perpendicular sensors. For that purpose, 
we rotate three component sensors at one point for the angles xθ , yθ  and zθ , respectively 

around x , y  and z  axis of the right Cartesian coordinate system. This rotation can be simply 
written as a left preconditioner of a kernel matrix in form of a rotational matrix R  of dimensions 

nn 33   and of the form: 
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where  
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ir θsinθcosθcosθsinθsin21  , 

i
z

i
y

i
x

i
z

i
x

ir θsinθsinθsinθcosθcos22  , i
y

i
x

ir θcosθsin23  ,  
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z

i
x

i
z

i
y

i
x

ir θsinθsinθcosθsinθcos31  , i
z

i
y

i
x

i
z

i
x

ir θsinθsinθcosθcosθsin32  , 

i
y

i
x

ir θcosθcos33  . 

Now, the kernel matrix becomes         mnnnnnmn BDRL 33333333   , and taking into 

account that matrix D  is an identity matrix, the kernel matrix after rotations is simplified to:  

 
      mnnnmn LRL 333333   , (3.30) 

allowing rotations to be directly used as preconditioners. Matrix R  defined by (3.29) is a unitary 
matrix.  

Additive perturbations are in this case defined through the matrix L  and can be written in the 
following form: LIRLLRLLL  )( .  

Representation of a kernel matrix as a product of two matrices enables to apply special 
algorithms for computing the singular value decomposition of a product of two matrices without 
explicitly forming the product [62]. The algorithm produces results which are similar in accuracy 
to those obtained by explicitly forming the product of matrices and applying the standard 
algorithm. With respect to the accuracy of computing very small singular values, the algorithm 
presented in [62] shows the superiority comparing to the standard procedure. As a useful 
alternative for computing the SVD of a product of two matrices, it is to be preferred when 
explicit formation of the product would cause a serious loss of information in finite precision 
arithmetic. The algorithm is based on the Jacobi-like method according to Kogbetliantz [63] and 
uses plane rotations applied to two matrices separetely. A proof of the product singular value 
decomposition is provided in [64].  
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Furthermore, influencing the sensitivity of linear inverse problems solution can be done through 
the scaling and equilibration (see section 2.1.2). Scaling can be done by simple preconditioning 
of a kernel matrix. Decomposition of a kernel matrix in case of single component devices given 
by formula (3.24) enables the left preconditioning relying just on the orientations of single 
component measurements. However, a very specific structure of matrix D  (at most three 
elements in a row are nonzero (formula 3.25)) has to be taken into account when performing 
preconditioning in case of single component measurements.  

The concept of preconditioning using orientations of single component measuring devices can 
also be used to achieve diagonal dominance in a system of linear equations. Strictly diagonally 
dominant matrices are usually well-conditioned and the solution of linear systems with such 
matrices as kernel matrices is stable [36]. If a matrix is strictly row diagonally dominant, then 
that matrix is nonsingular (Lévy-Desplanques Theorem). Furthermore, Gaussian elimination is 
stable for the inverse of diagonally dominant matrix [65]. Also computation of singular values of 
diagonally dominant matrices, including zero ones if any, can be performed with high relative 
accuracy [66]. Besides the diagonally dominant matrix, using the orientations of single 
component measurements, a block diagonal dominance property can be achieved. The features 
of these matrices are described in [67].  

In all the cases, orientations of single component measuring devices are directly used as left 
preconditioners.  
 

3.3 Perturbation bounds for singular values 

Variations of single axis or three-axis measurement devices do not affect dimensions of a kernel 
matrix, but only its elements. Therefore, it is possible to view variations in sensors orientations 
as kernel matrix perturbations. These perturbations cause the perturbations in singular values of a 
kernel matrix. It is therefore important to be able to assess the effects of matrix perturbations on 
singular values and singular vectors.  

One way of studying perturbations of singular values of a matrix includes perturbation bounds. A 
perturbation bound gives an upper bound on the difference between the perturbed singular value 

iσ  and its original iσ  in terms of a norm of a perturbation matrix.  

Let L  be an mn  matrix of full column rank, mn  . Its singular values are  

 mσ...σσ 21  . (3.31) 

If matrix L  is perturbed, its singular values are 

 mσ...σσ 21  , (3.32) 

and according to Weyl’s theorem [68] 

 2σσ Eii  , mi ,...,1 . (3.33) 

In this theorem, there is no restriction for the error size. The theorem is true for any perturbation 
matrix E . According to this theorem, no singular value can change more than the 2L  norm of its 
perturbation matrix.  

This theorem has one disadvantage: the same bound holds for all singular values. This means 
that this bound could be very broad and imprecise for very small singular values.  
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Starting from this theorem and using the inequalities of singular values of product of matrices 
[69], Di Lena et al. derive a general theorem of relative perturbation bounds [70].  

If nLrank )(  (Theorem 1.1 in [70]), then  

 
ELiii  σσσ , mi ,...,1 , (3.34) 

and if mLrank )( , then 

 
 LEiii σσσ , mi ,...,1 . (3.35) 

In contrast to Weyl (3.33), Di Lena et al. give two different definitions of perturbation bounds 
for under and overdetermined linear inverse problems. As being dependent on the singular value 
that is being perturbed, the bounds (3.34) and (3.35) are defined for each singular value 
individually. Furthermore, they depend not only on the perturbation matrix, but also on the 
pseudoinverse of the original matrix, too.  

Another theorem that holds for the sum of perturbations of all singular values of a matrix is 
Mirsky’s theorem [71]: 

 F
2)σ(σ E

i
ii  , mi ,...,1 , (3.36) 

where index F denotes the Frobenius norm of a perturbation matrix E . Like the Weyl's theorem, 
this theorem has also no restrictions for the perturbation matrix E . It is less precise than Weyl's 
theorem, but is very useful since the Frobenius norm is easy to calculate.  

 

3.4 Perturbation expansion of singular values 

Besides the perturbation bounds, perturbation expansion is another way of studying the 
perturbations of singular values. A perturbation expansion provides an approximation of the 
perturbed singular value and is proposed in [72]. Let L  be an mn  matrix of full column rank, 

mn  . Its singular values are as in (3.31). If ELL   is a perturbed matrix then its singular 
values are as in (3.32). 

A perturbed singular value can be represented using the following expansion: 

 
222 η)ε(σσ iiii  , mi ,...,1 , (3.37) 

where 

 
EPi ε ,  (3.38) 

 
EPIEPI i  )(η])inf[( ,  (3.39) 

and P  denotes the orthogonal projection onto the column space of L ;  EPI  )(inf  is the 

smallest singular value of the matrix EPI  )( . Projection matrix P  is equal to  LLP . In 

the case of linearly independent columns projection matrix becomes TT )( LLLLP   , where 
T  denotes the transpose of a matrix. Projection matrix P  satisfies two properties: it is 

idempotent ( PP 2 ) and symmetric ( PP T ). Difference of the identity matrix and the 
projection matrix , PI  , projects onto the left nullspace of L  (space perpendicular to the 
column space of L ).  



3. Perturbations of singular values of a kernel matrix 

 

 - 33 -

If we suppose that iσ  is very small approaching zero, then the perturbed singular value will be 

22 ηεσ iii  . As m  grows, 2εi  will on the average be of order unity, while 2ηi  will be of order 

m . Instead of a zero singular value, we will have a nonzero singular value that tends to grow as 

m . So, small singular values tend to increase under perturbation and the increment is 

proportional to m  [72].  

In case of kernel matrix L  of dimensions mn  and full row rank, nm , EP   in (3.38) and 
(3.39) is replaced by RE  , where R  is the orthogonal projection onto the row space of L . 
  

3.5 Mathematical definition of the case when random variations of single-axis 
sensor orientations increase the smallest singular value of a kernel matrix 
with the probability equal to one 

Random variations of sensor orientations can provide a better condition for the linear inverse 
problem and, consequently, more stable inverse solutions [5]. Sensor arrays with varied sensor 
directions are compared with arrays using perfectly in parallel aligned sensors. Let a sensor array 
consist of 1212  equidistantly placed single-axis sensors in the area m)2.0,0(),( maxmin xx  and 

m)2.0,0(),( maxmin yy  . The source grid consists of 1010  dipole sources of no predefined 

direction, in the area m)22.0,02.0(),( maxmin xx  and m)22.0,02.0(),( maxmin yy , mm9  below 

the sensor array as in [5]. When sensor directions are randomly varied, relative changes of the 
condition number with respect to 2L  norm are denoted by )()( LCNLCNCN  , where 

)(LCN  is the condition number for the default sensor directions without variations and )(LCN   
is the condition number of a lead field matrix with randomly varied sensor directions. Random 
variations are done for the angles of 05.0 , 5.0 , 1 , 5.2 , 5 , 10 , 15 , 20  and 25  away 
from the z  axis in any direction with respect to the projection in xy  plane. Mean values of 

CN  obtained in 100 runs for different angles of variations are presented in Fig. 3.1a. Fig. 3.1b 
presents the behavior of )(σ)(σσ maxmaxmax LL  and )(σ)(σσ minminmin LL  in 

blue and red respectively. This figure shows that that the decrement of the condition number 
with respect to the 2L  norm is mostly due to the increment of the smallest singular value, while 
the largest singular value has negligible variations and practically no influence on changes of the 
condition number with respect to the 2L  norm.  

Besides the variations in orientations, small variations of sensors z  positions of planar mono-
axial arrays lead to a better condition of a linear inverse problem [5]. Any change in a position or 
orientation of single-axis sensors in sensor arrays can be considered as perturbation in a kernel 
matrix of the corresponding linear inverse problem.  

It is not always the case that the perturbations in sensor orientations increase the smallest 
singular value and therefore lead to a better conditioned linear inverse problem. Therefore, it is 
needed to strictly mathematically define the case when random variations of single-axis sensor 
orientations increase the smallest singular value of a kernel matrix with the probability equal to 
one.  
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 a) b) 

Fig. 3.1 – Mean values of CN  in logarithmic representation obtained in 100 runs (a) and 

maxσ  and minσ  in blue and red respectively (b) for different angles of single-axis sensor 

directions variations about the z  axis. 

 

When applying perturbation expansion (3.37) to the smallest singular value of a matrix, then a 
perturbed minimal singular value can be represented using the following expansion:  

 
22

min
2

min ηε)(σσ  ,  (3.40) 

where EP ε  and EPIEPI  )(η])inf[( . Matrix E  denotes a perturbation matrix 

defined as LLE  , where L  denotes a kernel matrix when all the sensors are aligned 
perfectly in parallel and L  a kernel matrix when orientations of sensors are randomly varied. 
Matrices L , L  and E  are of dimensions mn , mn  . Projection matrix P  is equal to 

 LLP  and satisfies conditions of idempotence and symmetry. A difference PI   projects 
onto the space perpendicular to the column space of L .  

Expansion (3.40) represents a circle in ηε  coordinate system characterized by a radius minσ  

and a center at )σ,0( min . Assuming that 0σmin  , center of a circle belongs to the negative 
part of  axis. The absence of changes in a singular value after perturbations is presented by the 
circle of the radius minσ  (see Fig. 3.2). Since   could be either positive or negative and η  only 
positive (assuming that singular values of the matrix EPI  )(  are larger or equal to zero), then 
only the first and second quadrant are considered, Fig. 3.2.  

 
 

Fig. 3.2 – Representation of perturbation expansion (3.40) in the ηε  coordinate system.  
The area where we can expect the increment of the smallest singular value is hatched.  
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With respect to the formula (3.40) and Fig. 3.2, the increment of the minimal singular value after 

perturbations corresponds to the area outside the circle 22
min

2
min ηε)(σσ   (hatched area). 

The perturbed minimal singular value will be smaller than the corresponding singular value 

before perturbations in the area inside the circle 22
min

2
min ηε)(σσ  .  

There are two possible cases:  

Case I : EPEPI  ))inf((  

In this case, in order to get the increment of the smallest singular value with the probability equal 
to one, the minimal singular value of unperturbed matrix has to satisfy the following condition: 

 
))inf((σmin EPI  . (3.41) 

A very small minimal singular value of kernel matrix corresponds to the case of very ill 
conditioned linear inverse problem. It is expected that in these cases random variations of sensor 
orientations always improve the condition of linear inverse problems. 

 

 

Fig. 3.3 – The case of increasing the smallest singular value with the probability equal to 
one, when EPEPI  ))inf(( . 

 

Case II : EPEPI  ))inf((  

In order to get the probability of increasing the smallest singular value equal to one, the minimal 
singular value has in this case to satisfy the following condition (triangle ABC

 
in Fig. 3.4): 

 
  ))((infσσ 22

min
2
min EPIEP  . (3.42) 

After simple mathematical calculations, this condition becomes  

 EP

EPIEP








2

))((inf

2
σ

2

min . (3.43) 

When kernel matrix L  is of dimensions mn , nm , then the perturbation expansion (3.40) is 
valid for the bounds (3.38) and (3.39), where matrix product EP   is replaced by RE  . R  
denotes an orthogonal projection onto the row space of L .  
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Fig. 3.4 – Case of increasing the smallest singular value with the probability equal to one, 
in case of EPEPI  ))inf(( . 

 

3.6 Improving bounds of one variable in perturbation expansion of singular 
values  

As mentioned, there are two ways of studying perturbations of the smallest singular value, 
including use of perturbation bounds and perturbation expansion. Perturbation bounds give lower 
and upper bounds for the singular value after perturbation, without information about its 
structure. The perturbation expansion yields an approximation of the perturbed singular values of 
the matrix. Perturbation bounds can be used for improving the accuracy of perturbation 
expansion. Derivation of sharper perturbation bounds in perturbation expansion enables more 
precise calculation of the probability of obtaining increments or decrements in the smallest 
singular value after random perturbations in elements of a kernel matrix.  

Let L  be an mn  matrix of full column rank, mn  . Its singular values are mσ...σσ 21  . 

Matrix L  is additively perturbed to a matrix L , ELL  . Singular values of the perturbed 
matrix are mσ...σσ 21  . The absolute perturbation bound is given by Weyl’s theorem [68], 

miEii ,...,2,1,σσ 2  . This inequality is valid for any matrix E . Relative perturbation 

bounds are given by Di Lena et al. [70]: if nLrank )( , then (3.34) and if mLrank )(  by 
(3.35).  

Studying perturbations of singular values using perturbation expansion is proposed in [72]. A 
perturbed minimal singular value can be represented using the expansion (3.40), where ε  and η  

satisfy the conditions (3.38) and (3.39) respectively and P  denotes the orthogonal projection 
onto the column space of L ;  EPI  )(inf  is the smallest singular value of the matrix 

EPI  )( .  
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Expansion (3.40) represents a circle in ηε  coordinate system characterized by a radius minσ  

and with its center at )σ,0( min  (see Fig. 3.5).  

 

Fig. 3.5 – Representation of perturbation expansion (3.40) in the ηε  coordinate system. 

 

According to [72], the maximal perturbation of the singular value minσ  is 

 
22

min1maxmin )()(σσ EPIEP  , (3.44)  

corresponding to the upper right-hand corner of the rectangle in Fig. 3.5. According to the 
relative perturbation bound (3.35), the maximum of the perturbed minimal singular value is 

 
)1(σσ min2maxmin

 LE . (3.45)  

Maximal perturbation corresponds to the right-hand side of the ηε  coordinate system (see Fig. 
3.5), where values of ε  are positive. Therefore, and with respect to (3.45), the upper bound of ε , 

maxε , has to satisfy  

 
 LEminmax σε . (3.46)  

The upper bound (3.46) is smaller or equal to the upper bound given in [72] if the perturbation 
matrix satisfies  

 
ELLE   . (3.47)  

Proof. Perturbation matrix satisfies condition (3.47). Multiplication of both sides by 
0)(σmin L  yields  

 
)(σ)(σ)(σ)(σ maxminmaxmin ELLLEL   . (3.48)  

Let us now consider two matrices A  and B  of dimensions mn  and lm , respectively. If 
mn  , then the minimal singular value of matrix A , the maximal singular value of matrix B  

and the maximal singular value of the product BA   satisfy the inequality [73, their page 616] 

)(σ)(σ)(σ maxmaxmin BABA  .  

Since the matrix L  satisfies the condition mn  , the same inequality holds for LA   and 

ELB   . Therefore, we obtain 

 
))((σ)(σ)(σ maxmaxmin ELLELL   . (3.49) 
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Since the matrix product is associative, ELLELL   )()( , inequality (3.47) becomes 

))((σ)(σ)(σ maxmaxmin ELLELL   . Since LL  is a projection matrix onto a column 

space of L ,  LLP , we obtain  

 
)(σ)(σ)(σ maxmaxmin EPELL   . (3.50) 

Combining inequalities (3.48), (3.49) and (3.50), we obtain EP maxε . This ends the proof.  

For a matrix L  of dimensions mn , nm , the perturbation expansion (3.40) is valid for the 
bounds (3.38) and (3.39), where matrix product EP   is replaced by RE   and R  is the 
orthogonal projection onto the row space of L .  

According to the relative perturbation bound (3.34), the perturbed singular value is maximal in 
this case, 

 
)1(σσ min3maxmin EL   , (3.51) 

allowing the value of maxε  to reach  

 
EL  

minmax σε . (3.52) 

The upper bound (3.52) is smaller or equal to the upper bound given in [72] if the perturbation 
matrix satisfies  

 
  LEEL . (3.53) 

Proof. Perturbation matrix satisfies condition (3.53). Multiplication of both sides by 
0)(σmin L  yields  

 
)(σ)(σ)(σ)(σ maxminmaxmin

  LELELL . (3.54) 

Let us observe two matrices, A  and B , of dimensions mn  and lm , respectively. If ,lm   
the maximal singular value of matrix A , the minimal singular value of matrix B  and the 
maximal singular value of the product BA   satisfy the inequality [73, their page 616] 

)(σ)(σ)(σ maxminmax BABA  .  

Matrix L  has a larger number of columns than rows, so the same inequality holds for 
 LEA , LB . As a consequence, we obtain 

 
))((σ)(σ)(σ maxminmax LLELLE   . (3.55) 

Since the matrix product is associative, )()( LLELLE   , inequality (3.55) becomes 

))((σ)(σ)(σ maxminmax LLELLE   . Since LL   is a projection matrix onto a row space 

of L , LLR   , we obtain 

 
)(σ)(σ)(σ maxminmax RELLE   . (3.56) 

Inequalities (3.60), (3.61) and (3.62) result in RE maxε . This ends the proof. 

Since random variations of sensor orientations produce random perturbations in elements of a 
kernel matrix, and therefore perturbations in its singular values, they can improve or worse the 
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condition of corresponding linear inverse problem. Changes in the condition number with respect 
to 2L  norm are usually due to the changes in the smallest singular value. Therefore, calculation 
of probability of obtaining increments or decrements in the smallest singular value after random 
perturbations in elements of a kernel matrix becomes crucial. It can be done by means of 
geometric probability. The area where we expect an increment belongs to the rectangle but 
outside a circle (hatched area in Fig. 3.2). This area directly depends on the bound of  . Hence, a 
derived sharper perturbation bounds contributes to the more precise calculation of probability of 
increasing the smallest singular value after random perturbations in elements of a kernel matrix.  

In case of non-uniform distribution of variables   and  , parameters of their distribution 
functions can be determined after equalizing probabilities obtained by means of geometrical 
probability taking into account assumed distribution functions and probabilities obtained using 
the numerical simulations.  
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3.7 Perturbation of singular values due to deleting a column or a row of a 
kernel matrix  

3.7.1 Introduction 

Changing dimensions of a kernel matrix influences its condition number with respect to the 2L  
norm. When performing numerical simulations, one can see that a change in one dimension 
(number of rows or columns) of a kernel matrix can sometimes increase and sometimes decrease 
the condition number with respect to the 2L  norm. Furthermore, this increment/decrement of the 
condition number is dependent on over- or underdetermination of the linear inverse problem. It is 
therefore worth strictly deriving the conditions under which the condition number is improved. 
The following three corollaries define these conditions.  
 

3.7.2 Influence of excluding sources on CN  with respect to the 2L  norm in 
overdetermined linear inverse problems  

Source grid parameters are adapted to improve the condition of the magnetostatic linear inverse 
problem of estimating nanoparticle distributions [50]. Numerical simulations show that if a 
sparse source grid with equal or fewer sources can be practically applied, then the condition can 
be considerably improved by further reducing the number of sources. A relevance of this finding 
for various linear inverse problems in magnetic and other applications is derived in this 
corollary.  

Let us observe a lead field matrix mnL  , mn  . Its singular values are ordered as  

 mσ...σσ 21  . (3.57) 

A matrix L  resulting from the deletion of a column k , mk 1 , have singular values 

121 σ...σσ  m .  

These values interlace with those of L , Theorem 5.12, [74]: 

 mm σσ...σσσσ 12211   . (3.58) 

Condition number with respect to the 2L  norm of a lead field matrix L  is mCN σσ1 . The 

condition number of a matrix L  is 11 σσ  mNC . According to (3.58) 1111 σσσσ   mm  

and CNmm   σσσσ 111 , we derive that the condition number with respect to the 2L  norm 

of the lead field matrix L  resulting from the deletion of column k  of matrix L  is always 
smaller or equal to the original condition number: 

 
CNNC  . (3.59) 

Corollary 1: In overdetermined linear inverse problems, decreasing number of sources leads to a 
smaller condition number with respect to the 2L  norm. In the limiting case, this condition 
number can remain the same.  

The same effect on the inverse average decay of singular values of a kernel matrix is shown in 
the results of numerical simulations in [50].  
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3.7.3 Influence of excluding sensors on CN  with respect to the 2L  norm in 
underdetermined linear inverse problems  

Let a lead field matrix L  be of dimensions mn , mn  . Let a matrix L  be obtained from L  by 
deleting n~  rows of L . Now matrix L  has nnn ~  rows and mm   columns. Define k  as a 
rank of a matrix L , nk  . Let 0σ...σσ 21  k  denote the singular values of a matrix L . 
According to the rectangular Cauchy interlacing theorem (Theorem 23 in [75]), we have: 

 
 jj σσ   for kj ,...,1 . (3.60) 

Furthermore, the number of positive singular values of L  is bounded from below by: 

 
 nrnmrl ~)~~(  , (3.61) 

where r  is a rank of L , nr  . Consequently, kl  , and if 1l , the first l  singular values of L  
satisfy the lower bounds: 

 
 iril   11 σσ  for li ,...,1 . (3.62) 

The condition number with respect to the 2L  norm of the original matrix L  is nCN σσ1 . The 

condition number of a matrix L  is nnnNC   σσσσ 1~1 . Taking into account (3.60) one 

could write  

 
 nn   σσσσ 11 . (3.63) 

Using 1i  in (3.62) we have rl σσ   and taking nnnnrl  ~~  from (3.61) and nr   we 

derive the following inequality  

 
 nn σσ   . (3.64) 

Now, (3.63) becomes nnn σσσσσσ 111   . This ends the proof that CNNC  .  

Corollary 2: In underdetermined linear inverse problems, decreasing number of sensors leads to 
a smaller condition number with respect to 2L  norm. In the case of overdetermined problem, a 
general statement cannot be derived: it depends on the singular values of matrices L  and L .  
 

3.7.4 Condition number with respect to the 2L  norm of three components 
measurements when all three components of magnetic dipoles are unknown is 
always larger than the condition number with respect to the 2L  norm of one 
component measurements and magnetic moments of known direction (one unknown 
per one dipole). This is valid for both under and overdetermined problems. 
 

Let a lead field matrix L  be of dimensions mn . Let a matrix L  be obtained from L  by 
deleting n~  rows and m~  columns of L , while mn ~~  . Now matrix L  has nnn ~  rows and 

mmm ~  columns. Define k  as a rank of a matrix L : nk   if mn   and mk   if mn  . 
Let 0σ...σσ 21  k  denote the singular values of a matrix L . According to the rectangular 

Cauchy interlacing theorem (Theorem 23 in [75]), we have: 

 
 jj σσ   for kj ,...,1 . (3.65) 

Furthermore, the number of positive singular values of L  is bounded from below by: 

 
 nrnmrl ~2)~~(  , (3.66) 
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where r  is a rank of L , nr   if mn   and mr   if mn  . Consequently, kl  , and if 1l , 
the first l  singular values of L  satisfy the lower bounds: 

 
 iril   11 σσ  for li ,...,1 . (3.67) 

The condition number with respect to 2L  norm of the original matrix L  is nCN σσ1  for 

mn   and mCN σσ1  if mn  . The condition number of a matrix L  is 

nnnNC   σσσσ 1~1  when mn   and mmmNC   σσσσ 1~1  when mn  . Taking into 

account (3.65) for 1j  one can write  

  
 nn   σσσσ 11 , mn   and (3.68) 

 
 mm   σσσσ 11 , mn  . (3.69) 

Using 1i  in (3.67) we have rl σσ   and taking nnrl  ~2  for mn   or mnrl  ~2  for 

mn  , we derive the following inequalities  

  
 nn σσ    , mn   and (3.70) 

 
 mm σσ    , mn  . (3.71) 

Now, (3.68) becomes nnn σσσσσσ 111    for mn   and (3.69) becomes 

mmm σσσσσσ 111    for mn  . This ends the proof that CNNC   for both under and 

overdetermined linear inverse problems.  

Corollary 3: In both under and overdetermined linear inverse problems, the condition number 
with respect to the 2L  norm of three components measurements, when all three components of 
magnetic dipoles moments are unknown, is always larger than the condition number with respect 
to the 2L  norm of one component measurements and magnetic moments of known direction 
(one unknown per one dipole).  

 

3.8 Theoretical proof that the condition number with respect to the 2L  norm 
of the kernel matrix remains the same after rotations of three-axial sensors at 
the same point for the same angle  

It is already discussed from both numerical and theoretical aspects that variations of single-axis 
sensors orientations could improve the condition number with respect to the 2L  norm of the 
corresponding kernel matrix. This triggers the question if the variations of orientations of three-
axial sensors have the same effect on the condition of the linear inverse problem.  

Let the lead field matrix of vectorial measurements be   mnL 33   defined by (3.27). After 

performing rotations of vectorial sensors for the angles xθ , yθ  and zθ , respectively around x , 

y  and z  axis of the right Cartesian coordinate system, while the sensors at one point remain 
mutually perpendicular, and denoting rotations by the rotation matrix (3.29), then a lead field 
matrix can be written in the form         mnnnnnmn BDRL 33333333   . Taking into account 

that the matrix D  is an identity matrix, the lead field matrix after rotations is simplified to the 
form (3.30),       mnnnmn LRL 333333   . 
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Matrix R  defined by (3.29) is a unitary matrix, so 
1 IRR T  what gives IIRR T   11)(  

i.e.  

 
 IRRT   11)( . (3.72) 

Matrix R  is invertible, so TT RR )()( 11   . Putting this into (3.72), we get  

 
 IRRRR TT   1111 )()( . (3.73) 

From (3.73) follows that 1R  is also unitary matrix.  

Applying the Theorem (3.1) from [76] and the statement that this identity also holds for 
multiplication by the unitary matrix on the right, we get  

 
 

22

1   LRL . (3.74) 

Since matrix R  is invertible, (3.74) could be written in the form 

 
 

22
  LRL . (3.75) 

Let us now consider two matrices );,( KnmMA  and );,( KpnMB . If  

 A  has orthonormal columns ( n
T IAA  ) or 

 B  has orthonormal rows ( n
T IBB  ) or 

 A  is of full column rank and B  is of full column rank, then  

 

 
   ABBA )( . (3.76) 

In our case matrix R  has orthonormal columns, i.e. IRRT  , we can write   RLLR )( . 
Now, (3.75) becomes 

 
 

22
)(   LRL . (3.77) 

If we multiply the equality (3.77) by the 2L  norm of a lead field matrix L , 2L , we have 

 
 

2222 )(   LLRLL . (3.78) 

According to the Theorem 3.1 from [76], 22 LLR  , (3.78) becomes 

 
 

2222 )(   LLRLRL . (3.79) 

Since RLL  , expression (3.79) can be written as 

 
 

2222
)(   LLLL , (3.80) 

or in a compact form  

 
 )()( LCNLCN  . (3.81) 

This completes the proof.  

Hence, if three sensors measuring at one point three orthogonal directions change the directions 
so that they stay mutually orthogonal, then the condition number with respect to the 2L  norm of 
the corresponding kernel matrix remains the same.  
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4 APPLICATION EXAMPLE I: OPTIMIZATION OF SENSOR 
ARRANGEMENTS IN MAGNETOCARDIOGRAPHY  

4.1 Introduction  

Biomagnetometers based on superconducting quantum interface device (SQUID) magnetic 
sensors are at this moment the most sensitive and the most widely used devices for 
magnetocardiography (MCG) [77, 78, 79]. SQUID is in fact used for measurements of magnetic 
flux density. There are two types of SQUIDs: RF SQUID that has one Josephson junction and 
the DC SQUID containing two Josephon junctions in parallel. There are two phenomena that 
occur when the material of SQUID becomes superconducting: flux quantization and the 
Josephson effect. Operation of SQUID sensors is based on these phenomena. Flux inside the 
SQUID ring cannot change continuously but only in multiples of flux quantum 0 , 

215
0 Tm1007.2e2h  . But, superconductivity shows up only at a very low temperature, 

and therefore the SQUID detector must be cooled for proper operation. Liquid helium is used as 
cooling fluid to reach a temperature of 4.2K. A critical part of every instrument is a cryostat 
enclosing a probe. It has to satisfy severe requirements: first, the material used for fabrication has 
to be nonmagnetic, second, the magnetic noise has to be less than the noise of the sensors and 
third, the distance of the detection coils from the subject must be as small as possible.  

Besides the SQUID sensors, an optical spectroscopy of controlled atomic ensembles confined in 
vapor cells enables very precise measurement of magnetic fields [10, 80]. These sensors have a 
big advantage compared to SQUID sensors: they do not need to be cooled to cryogenic 
temperatures. Therefore, their operation costs less. Furthermore, when used in 
magnetocardiography application, these room temperature sensors allow for their placement 
around the body in a vest-like setup. Consequently, the question arises of how to place the 
magnetic field sensors optimally around the torso.  

Optimal selection of leads in estimation of body surface potential maps in electrocardiography 
has been done already in the 1970’s. Relying on data obtained from 132 human subjects 
including some with the normal electrocardiograms (ECG) as well as some with abnormal 
ECG’s, Lux et al. [81] developed an algorithm for optimal selection of a limited number of leads. 
Estimation of body surface potentials from limited leads is based on three criteria: root mean 
square error, mean correlation coefficient between limited and total lead maps and error to signal 
power ratio. They concluded that 30-35 selected leads yield low enough error values. 
Furthermore, they found that the unique optimal sensor setup does not exist, i.e. different sensor 
sets can perform equally well.  

Selection of the number and positions of measuring locations for electrocardiography is done in 
[82] as well. Applying principal component analysis followed by a minimum root mean square 
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estimation method, Bar at al. found that 24 out of 150 leads are sufficient for consistently 
acceptable accuracy. Studying of body surface potential maps is also done in [83], where the 
authors conclude with 32 leads being sufficient to provide an acceptable level of reconstruction 
performance.  

Optimization of magnetic sensors arrangements has been done more recently. In order to 
determine an optimized MCG sensor arrangement, Nalbach and Dössel [51] use an initial 
configuration of 990 magnetometers on a grid of 15 elliptical layers with 66 magnetometers each 
and on the basis of information content they reduce the number of sensors. The information 
content is based on the slope of singular values. They found that the dense package of sensors 
right above the heart and the placement of some channels on the back of the patient would 
already lead to an increase of the information content.  

Jazbinšek et al. studied the influence of limited lead selection on source localization in 
magnetocardiography and encephalography in [84]. Their results show that optimally selected 
limited lead system always performs better than random ones. Furthermore, the localization 
accuracy is not significantly improved if more than 20 optimal leads are selected.  

An optimal arrangement of sensors for a 52-channel MCG system measuring tangential 
components of the cardiac magnetic fields is discussed in [85]. Using the confidence region 
method, they verified that their design of the sensor array is enough to obtain adequate 
information from the heart. They concluded that the tangential component MCG measurements 
are more suitable to an MCG system than the normal component measurements since they can 
localize deep current dipoles better than normal component MCG system. The main finding is 
that for tangential sensors 99% of the spatial spectral power at distance z  from the source in 
z direction is below z21

 
. This means that the sampling width of z  is sufficient. Since the 

heart lies at least cm3  from the torso surface and the cryostat requires another cm1 , they 
approximate z  with cm4 . Their resulting sensor setup is a regular grid with cm4 width.  

Assessing given sensor setups is proposed in a number of studies. The gain in reconstruction 
robustness by considering all three vectorial components of the field instead of just one is 
proposed in [86] and [87]. Di Rienzo et al. used the root mean square error, the mean correlation 
coefficient and lower error bounds as evaluation criteria. A theoretical lower error bound for 
comparative evaluation of sensor arrays in magentostatic linear inverse problems is proposed in 
[86]. Rouve et al. propose a more theoretic optimization of sensor positions [22]. They use 
spherical harmonic representation to identify the magnetic multipolar sources associated to a 
given item, by measuring the near field around it. A genetic algorithm is used to find the 
optimum location for five sensors by minimizing the condition number with respect to the 2L  
norm of a kernel matrix. The sensor search space is a sphere around the source.  

We aim to optimize a distribution of 21 and 32 magnetic sensors around the torso in a vest-like 
design by minimizing four figures of merit. A solution of optimization is not unique; therefore 
we sample the solution space of optimized sensor setups by optimizing repeatedly with random 
initialization and then clustering the sensor positions to elicit generalizable patterns. We 
determine the representative sensor of each cluster and obtain the orientation as the most 
frequent orientation among the orientations of sensors belonging to that cluster. Optimized 
sensor setups obtained by minimizing different goal functions are then compared and a behavior 
of minimizations functions is assessed as well. 

Some results of optimized sensors setups and analysis of behavior of different figures of merit 
are presented in [88-91].  
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4.2 Methods  

4.2.1 Experimental setup  

A 72 years old male person serves as a test person. He had coronary artery disease with a 50% 
stenosis of the R. interventricularis anterior and a 70% stenosis of the R. circumflexus. An MCG 
of five minutes duration is made with the Argos200 System (Advanced Technologies 
Biomagnetics, Pescara, Italy). An MRI (T1) of the complete torso is made (resolution mm1 ). A 
patient positioning unit consisting of three coils arranged in a right-angle triangle on a non-
magnetic base is placed on the test person. These landmarks can be identified in the MCG and 
MRI and both data sets can be mapped geometrically.  

Segmentation of both lungs, blood volume inside the heart and the aortic arch is done using 
Curry Version 4.6 (NeuroScan Compumedics, El Paso, USA). The surfaces were triangulated 
with a triangle side length of mm6  for the blood mass (1413 nodes), mm10  for the both lungs 
(889+843 nodes) and mm14  for the torso (2600 nodes). This resolution is found to be a good 
compromise between computational speed and reconstruction accuracy [92]. A homogeneous 
conductivity of mS2.0

 
is assumed for a torso including the heart muscle, mS04.0  for lungs 

and mS6.0  for the blood mass [92].  

The source model of the cardiac field consists of 13 dipoles, Fig. 4.1. Dipole orientations are 
determined by performing a rotating dipole fit: a minimum norm with L-curve regularization and 
sLORETA [93, 94] noise normalization using Curry 4.6 over the averaged heart beat (PQRST) 
using all three components of the magnetic flux density. The resulting dipole orientations (Fig. 
4.1) are mostly tangential, but they also have radial components. Dipole amplitudes at the first 
R-peak are shown in Fig. 4.2. Septal and posterior regions contain dipoles of the strongest 
amplitudes.  
 

 

Fig. 4.1 – Dipole model consisting of 13 dipoles around the left ventricle. Orientations are fitted 
with minimum norm, L-curve regularization and sLORETA noise normalization. The figure is 

taken from [95].  
 

In our optimizations we assume a sensor with a spherical outer bound of diameter 1cm. This is 
about the size of optical magnetometers [96] and approximately the size of current integrate 
SQUIDs ( mm88

 
in the Argos200 system). The sensor is assumed to pick up the field 

component in normal direction to the coil area.  
 



4. Application example I: Optimization of sensor arrangements in magnetocardiography  

 

 - 48 -

 

Fig. 4.2 – Current density distribution at the R-peak using the 13 dipoles model presented in Fig. 
4.1 The figure is taken from [95].  

 

The search volume is derived from the torso surface and it looks like a vest [95], Fig. 4.3. There 
are 19759 possible positions which are in fact the nodes of triangulation (side length mm4 ) of 
the dilated torso surface (triangle side length of the torso triangulation is mm14 ). Directions are 

discretized with o30 , allowing 62 orientations per position. One has to be aware that these are 

31 different orientations since the two of opposite direction ( o180  angle between them) are in 
fact the same.  
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Fig. 4.3 – Search sensor space containing 19759 positions on the vest. Connections to arms, neck 
and lower body are omitted.  

 

An optimization of positions and orientations of 21 and 32 sensors using a quasi-continuous 
constrained particle swarm optimization approach [97, 98] is done. Five parameters are 
optimized for each sensor: three Cartesian coordinates for the position and two spherical angles 
for the orientation. This technique optimizes a problem by having a population of candidate 
solutions (particles) and moving these particles in the search space according to the simple 
formula over the particle’s position and velocity. Movement of each particle is influenced by its 
local best known position. This technique is much more robust against local minima or 
disturbances in a goal function. The algorithm is implemented as an extension of the software 
toolbox SimBio [99].  
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Because the calculation of the lead field matrix in every iteration is computationally too 
expensive, the sensor space is finely discretized and the kernel matrix for all possible sensor 
positions and orientations is pre-computed.  

Two constraints are imposed in this optimization process: first, sensor positions are restricted to 
the outside of the body, i.e. to the vest surface and second, the sensors have a certain physical 
size, which implies a minimum distant constraint to the sensor positions. The magnetic sensors 
are modeled as coils with a single turn and a diameter of cm1 . This implies a minimum distance 
of cm1  between them.  
 

4.2.2 Goal functions  

In our optimization procedure, we minimize four goal functions: condition number with respect 
to the 2L  norm CN , Skeel condition number Skeel , inverse average decay of singular values of 
a kernel matrix   and a figure of merit based on the angles between columns of a lead field 
matrix and rows of its pseudoinverse ξ , described respectively in sections 2.1.2, 2.1.3, 2.1.4 and 
2.2.2 of this thesis. The goal functions are implemented as an extension of the software [95]. 
Because the solution of this problem is not unique, we repeat the optimization for all four goal 
functions 256 times using random initial sensor configurations. This allows sampling of solution 
space and eliciting generalizible patterns.  
 

4.2.3 Clustering procedure  

The optimization procedure run 256 times gives as a result a set of 5376 and 8192 sensors for the 
21 and 32 sensors setup respectively. A determination of the intrinsic grouping of these sensors 
into 21 and 32 groups is done applying a clustering procedure.  

Cluster analysis divides data into groups (clusters) that are meaningful and useful. It plays an 
important role in a wide variety of fields: psychology and other social sciences, biology, 
statistics, pattern recognition, information retrieval, machine learning and data mining. The most 
commonly discussed distinction among different types of clustering is whether the set of clusters 
is nested or nonnested, or hierarchical or partitional. A partitional clustering is a division of a set 
of data objects into non-overlapping subsets (clusters) such that each data object is in exactly one 
subset. If it is permitted that clusters have subclusters, then the clustering is hierarchical, which 
is, in fact, a set of nested clusters that are organized as a tree. Each cluster in the tree is the union 
of its subclusters and the root of the tree is the cluster containing all the objects. In our clustering 
procedure, separation of sensors into non-overlapping clusters provides clear optimized sensor 
setups.  

In the case of non-constrained optimization, sensors belonging to the edge of the vest would be 
outside of the vest surface and inside the body. Therefore, before performing the clustering, 
sensors positioned at the edge of the vest i.e. at the lower part of the torso, around neck and 
around left and right shoulder are rejected, Fig. 4.4. Rejected positions of the lower part of the 
torso satisfy the condition mm150z , around the left arm they belong to the volume of the 
sphere of the center mm)55mm,20mm,258(  and radius mm140 , around the right arm they 
belong to the volume of the sphere of the center mm)55mm,20mm,258(  and radius mm140 , 
and around the neck to the volume of the sphere of the center mm)6.165mm,94.10mm,56.1(  
and radius mm95 .  
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Fig. 4.4 – Rejected sensors positions: at the lower part of the torso, around neck and around left 
and right shoulder. These positions are marked in red.  

The remaining sensors are then partitioned into 21 or 32 clusters depending on the number of 
sensors in a sensor setup that is being optimized. In the clustering process, variables for 
clustering have to be selected. For this application, the three position variables obtained for each 
sensor using particle swarm optimization, have been chosen as variables which the partitioning 
clustering will rely on. Partitioning is done using the Partitioning Around Medoids (PAM) 
algorithm implemented in Mathematica 8.0. The medoid of the cluster is the sensor with the 
smallest average distance to all other sensors in that cluster.  

The PAM algorithm is developed by Kaufman and Rousseeuw [100]. This algorithm is very 
similar to K-means algorithm, because both are partitional algorithms, i.e. both break the datasets 
into groups and both work trying to minimize the error. The difference is that PAM works with 
medoids, that are an entity of data set that represent the group. K-means works with centroids 
that are artificially created representing the center of the cluster. Our input in the algorithm are 
5376

 
or 8192  sensor positions obtained in particle swarm optimization, and the number of 

clusters is 21 or 32. The algorithm works with a matrix of dissimilarity, where its goal is to 
minimize the overall dissimilarity between the representants of each cluster and its members. 
The algorithm consists of two phases: the build phase and the swap phase. In the build phase, the 
algorithm chooses a certain number of entities to become the medoids, calculates the 
dissimilarity matrix and assigns every entity to its closest medoid. In a swap phase, algorithm 
searches in each cluster if there exists the entity of the cluster that lower the average dissimilarity 
coefficient. If such entities exist, then the entity that lower this coefficient the most is taken as a 
medoid for the cluster. If the medoid from at least one cluster has changed, then every entity is 
again assigned to its closest medoid. In the case of no changing of medoids, the procedure ends. 
In Mathematica 8.0, the »Optimize« method is based on partitioning around medoids. It starts by 
building a set of desired representative objects, and clustering around those, iterating until a 
(locally) optimal cluster is found. In our simulations, the PAM converged in less than 10 
iterations in all cases. FindClusters in Mathematica treats pairs of elements as being less similar 
when their distances are larger and by default uses a squared Euclidian distance.  
 

4.2.4 Determination of the cluster representative sensor position 

When calculating the position of cluster center as a mean value of positions of all sensors 
belonging to that cluster, it could likely happen that the center of the cluster does not belong to 
the searching space that is in this case the vest or it could even happen that the center appears 
inside the body. This is especially the case for clusters whose space has a high curvature, i.e. 
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these are the clusters under the arms extending to the front or back of the torso and around the 
shoulders.  

Therefore, instead of using the mean point as the center of the cluster, the clustering procedure 
used in the partitioning takes an actual sensor in the cluster to represent its center. So, the 
position of the medoid, as the most centrally located object of the cluster, is taken as a position 
of the representative sensor of that cluster.  
 

4.2.5 Determination of the cluster representative sensor orientation 

As a result of the optimization procedure, we get not only the sensor positions but also their 
orientations. Each cluster contains a set of sensors, i.e. a set of orientations. Here arises a 
question of determination of the representative orientation from a set of directions.  

In the case of plane vectors, the main direction of a set of directions can be calculated by 
summing up the cosines and sines of all the angles and applying then the inverse tangent. But, as 
a result of our optimization procedures there are two difficulties: first, the obtained sensor 

directions are in a space and second, two directions that form an angle of 180  have to be treated 
as the same direction (SQUID sensors oriented in those two directions measure the same 
magnitude of magnetic flux density). A solution of this particular problem is found in exploring 
of a procedure of finding of the most frequent orientation within each cluster.  

Sensor orientation is presented by a unit vector, completely defined by the inclination and 
azimuth. All the orientation vectors belonging to one cluster are put in a unit sphere (Fig. 4.5a). 
The head of each vector belongs to the surface of a unit sphere. The number of appearances of 
each orientation within a cluster is then counted and a corresponding head of each orientation 
vector is colored using the color scheme presented in Fig. 4.5b (no appearance of the orientation 
corresponds to zero and is colored blue, while the most frequent orientation within a cluster 
corresponds to one and is colored red). For each orientation vector, its opposite vector is 
counted, too. This allows for equal treatment of opposite SQUIDs orientations.  
 

 

 

                      a)                    b) 

Fig. 4.5 – Representative orientation vector of the cluster (marked by red arrow) is chosen as the 
most frequent orientation within a cluster (a). Orientations are colored using a scale (b).  
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4.3 Results  

4.3.1 Sensor clusters 

21 sensors setup 

The results of clustering procedure described in section 4.2.3 for the 21 sensors setup are 
presented in Figs. 4.6 – 4.9. These results are obtained after minimization of CN , Skeel ,   and 
  respectively.  

 

 

(a) 

 

(b) 

Fig. 4.6 – Color-coded sensor clusters for the 21 sensors array displayed on the triangulated torso 
for the CN from the front (a) and from the back (b).  

 

 

(a) 

 

(b) 

Fig. 4.7 – Color-coded sensor clusters for the 21 sensors array displayed on the triangulated torso 
for the Skeel from the front (a) and from the back (b).  
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(a) 

 

(b) 

Fig. 4.8 – Color-coded sensor clusters for the 21 sensors array displayed on the triangulated torso 
for the  from the front (a) and from the back (b).  

 

 

(a) 

 

(b) 

Fig. 4.9 – Color-coded sensor clusters for the 21 sensors array displayed on the triangulated torso 
for the  from the front (a) and from the back (b).  
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32 sensors setup 

The results of the clustering procedure presented in the section 4.2.3 for the 32 sensors setup are 
presented in Figs. 4.10 – 4.13 obtained after minimization of CN , Skeel ,   and   respectively.  
 
 

 

(a) 

 

(b) 

Fig. 4.10 – Color-coded sensor clusters for the 32 sensors array displayed on the triangulated 
torso for the CN

 
from the front (a) and from the back (b).  

 

 

(a) 

 

(b) 

Fig. 4.11 – Color-coded sensor clusters for the 32 sensors array displayed on the triangulated 
torso for the Skeel from the front (a) and from the back (b).  
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(a) 

 

(b) 

Fig. 4.12 – Color-coded sensor clusters for the 32 sensors array displayed on the triangulated 
torso for the  from the front (a) and from the back (b).  

 

 

(a) 

 

(b) 

Fig. 4.13 – Color-coded sensor clusters for the 32 sensors array displayed on the triangulated 
torso for the  from the front (a) and from the back (b).  
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4.3.2 Cluster medoids 

Optimized sensor set-ups consisting of 21 sensors obtained after minimization of CN , Skeel ,   
and   are presented in Figs. 4.14-4.17 respectively. Optimized sensor set-ups consisting of 32 
sensors obtained after minimization of CN , Skeel ,   and   are presented in Figs. 4.18-4.21, 
respectively.  
 

 
(a) (b) 

Fig. 4.14 – Optimized 21 sensors set-up obtained minimizing the CN
 
from the front (a) and 

from the back (b).  

 

   

(a) (b) 

Fig. 4.15 – Optimized 21 sensors set-up obtained minimizing the Skeel
 
from the front (a) and 

from the back (b).  
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(a) (b) 

Fig. 4.16 – Optimized 21 sensors set-up obtained minimizing the 
 
from the front (a) and from 

the back (b).  
 

 

(a) (b) 

Fig. 4.17 – Optimized 21 sensors set-up obtained minimizing the 
 
from the front (a) and from 

the back (b).  
 

 
(a) (b) 

Fig. 4.18 – Optimized 32 sensors set-up obtained minimizing the CN
 
from the front (a) and 

from the back (b).  
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(a) (b) 

Fig. 4.19 – Optimized 32 sensors set-up obtained minimizing the Skeel
 
from the front (a) and 

from the back (b).  
 

 

(a) (b) 

Fig. 4.20 – Optimized 32 sensors set-up obtained minimizing the 
 
from the front (a) and from 

the back (b).  
 

 

(a) (b) 

Fig. 4.21 – Optimized 32 sensors set-up obtained minimizing the 
 
from the front (a) and from 

the back (b).  



4. Application example I: Optimization of sensor arrangements in magnetocardiography  

 

 - 59 -

4.3.3 Clusters and FOMs characteristics  

Number of sensors after exclusion of edge sensors and percentage of the vest area covered by 
sensors 

21 sensors setup 

If the applied optimization procedure were not constrained, the sensors at the edge of the vest 
would be outside the vest surface and inside the body. Therefore sensors at the lower part of the 
torso, around neck and around left and right shoulder are rejected (section 4.2.3). In 21 sensors 
setup, from the pooled set of 5376 optimized sensor positions, we have excluded from the further 
analysis 43.3%, 40.5%, 36.4% and 53.4% of sensors obtained by minimizing CN , Skeel ,   and 
 , respectively. The remaining sensors had 2406, 2158, 2352 and 2140 different positions, 
covering 15.5%, 13.9%, 15.2% and 13.8% of vest area, respectively for CN , Skeel ,   and  . 
Minimization of the figure of merit   provides the largest number of sensors belonging to the 
vest surface of interest (not belonging to any of the vest edges). The largest number of different 
locations is achieved minimizing the CN . Minimization of the figure of merit 

 
covers the 

smallest surface of the vest area, while CN
 
the largest. The corresponding data is presented in 

the Table 4.1. 
 

Table 4.1. Number of excluded sensors as belonging to the edge of the vest, number of different 
locations and percentage of the vest area covered by sensors for 21 sensor setup and different 

figures of merit.  

 

Number of 
sensors when 

edges are 
excluded 

Number of different 
locations 

Percentage of the 
vest area [%] 

CN  3048 2406 15.5 

Skeel  3196 2158 13.9 

  3421 2352 15.2 

  2504 2140 13.8 

 

32 sensors setup 

From the pooled set of 8192 optimized sensor positions, we have excluded from the further 
analysis 47.2%, 46.9%, 40.3% and 53.3% of sensors obtained by minimizing CN , Skeel ,   and 
 , respectively. Regarding the percentage of the excluded sensors, figures of merit are in the 
same order as in the sensor array containing 21 sensors. The remaining sensors had 3220, 2814, 
3222 and 3106 different positions, covering 20.8%, 18.1%, 20.8% and 20.0% of vest area, 
respectively for CN , Skeel ,   and  . Minimization of the figure of merit   provides the 
largest number of sensors belonging to the vest surface of interest (not belonging to any of the 
vest edges). Figure of merit   provides the largest number of different locations, only two more 
than CN  does. This could likely be changed performing the larger number of runs. Minimization 
of the figure of merit Skeel

 
covers the smallest surface of the vest area, while CN  and   cover 

the equal largest part of the vest. The corresponding data is presented in the Table 4.2. 
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Table 4.2. Number of excluded sensors as belonging to the edge of the vest, number of different 
locations and percentage of the vest area covered by sensors for 32 sensor setup and different 

figures of merit.  

 
Number of sensors 

when edges are 
excluded 

Number of different 
locations 

Percentage of the 
vest area [%] 

CN  4325 3220 20.8 

Skeel  4345 2814 18.1 

  4893 3222 20.8 

  3827 3106 20.0 

 

Median distances between sensor cluster medoids and single sensors  

21 sensors setup 

Cluster members in the 21 sensor array have the median distance to their medoids mm7.36 , 
mm2.34 , mm2.33  and mm1.40 , respectively for the CN , Skeel ,   and  . Number of 

sensors versus distance to their cluster medoid for the 21 sensor array is presented in Fig. 4.22.  

Table 4.3 presents median and maximal distance between sensor cluster medoids and single 
sensors.  
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Fig. 4.22 – Number of sensors versus distance to their cluster medoid for 21 sensor array for 
CN , Skeel ,   and  .  

Table 4.3. Median and maximal distance between sensor cluster medoids and single sensors for 
21 sensor setup and different figures of merit.  

 

Median distance between 
sensor cluster medoids 

and single sensors [mm] 

Maximal distance 
between sensor cluster 

medoids and single 
sensors [mm] 

CN  36.7 161.7 
Skeel  34.2 131.4 
  33.2 123.4 
  40.1 119.3 
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Clusters obtained using the figure of merit   have the highest cluster density compared to those 
obtained with other figures of merit (Fig. 4.22). This figure shows that the maximal sensor 
distance is the largest in the case of minimization of the CN  ( mm7.161  as indicated in the 
Table 4.3). The most common distance to the respective medoid is approximately mm32 , 

mm23 , mm17  and mm37  for CN , Skeel ,   and   respectively (Fig. 4.22). This indicates an 
average equivalent cluster diameter of mm64 , mm46 , mm34  and mm74 .  

The median distance between sensor cluster medoids and single sensors is the smallest after 
minimization of the  .  
 

32 sensors setup 

Cluster members in the 32 sensor array have the median distances to their medoids mm8.30 , 
mm9.27 , mm6.29  and mm2.34 , respectively for the CN , Skeel ,   and  . Number of 

sensors versus distance to their cluster medoid for 32 sensor array is presented in Fig. 4.23. Table 
4.4 presents median and maximal distances between sensor cluster medoids and single sensors 
for 32 sensor array and different figures of merit.  
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Fig. 4.23 – Number of sensors versus distance to their cluster medoid for 32 sensor array for 
CN , Skeel ,   and  .  

 

Table 4.4. Median and maximal distance between sensor cluster medoids and single sensors for 
32 sensor setup and different figures of merit.  

 

Median distance between 
sensor cluster medoids 

and single sensors [mm] 

Maximal distance 
between sensor cluster 

medoids and single 
sensors [mm] 

CN  30.8 108.1 
Skeel  27.9 110.8 
  29.6 131.3 
  34.2 108.3 

 

Clusters obtained using the figure of merit   have the highest cluster density compared to those 
obtained with other figures of merit (Fig. 4.23). This figure shows that the maximal sensor 
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distance is the largest in the case of minimization of the   ( mm3.131  as indicated in the Table 
4.4). The most common distance to the respective medoid is approximately mm27 , mm22 , 

mm12  and mm32  for CN , Skeel ,   and   respectively (Fig. 4.23). This indicates an average 
equivalent cluster diameter of mm54 , mm44 , mm24  and mm64 . 

The median distance between sensor cluster medoids and single sensors is the smallest after 
minimization of the Skeel . The smaller median of sensors distances to the respective medoids in 
the case of 32 sensors indicates a higher cluster density comparing to the 21 sensors setup and 
therefore no overpopulation with 32 sensors. 

The maximal sensor distance to the medoid is smaller in case of 32 sensors compared to the case 
of 21 sensors, except for the  .  
 

Values, mean values and standard deviations of FOMs 

Since the figures of merit used as minimization functions in the particle swarm optimization 
process rely on different features of the lead field matrix, they have different absolute values: the 
numbers range from single digit to the tens of thousands. In order to show the order of the 
number that different figures of merit have and to show the distribution of those numbers during 
256 optimization runs, the histograms of values of figures of merits are presented in Fig. 4.24.  

Mean values and standard deviations of values of all FOMs obtained after particle swarm 
optimization process, for both 21 and 32 sensors setups, are presented in Table 4.5.  
 

 Table 4.5. Mean values and standard deviations of values of CN , Skeel ,   and   for 21 and 
32 sensors setups.  

 Mean value Standard deviation 

 21 sensors 32 sensors 21 sensors 32 sensors 

CN  21.46 19.05 1.53 1.15 
Skeel  26.52 26.21 1.29 1.21 
  2.53 2.51 0.056 0.054 
  24072.0 27079.6 3458.84 3291.55 

 

On one hand, as shown in Fig. 4.24, histograms of values of CN , Skeel ,   and 
 
for 32 

sensors seem to be more Gaussian than for 21sensors. On the other hand, the standard deviation 
is smaller for 32 sensors for all figures of merit (Table 4.5). This means that the different particle 
swarm optimization runs converge better to a set of solutions for higher number of sensors 
leading to a better posed optimization problem in the case of 32 sensors comparing to the setup 
of 21 sensors.  

The mean values of CN , Skeel  and   are lower for 32 than 21 sensors setup. 

The highest standard deviation of the figure of merit   in both 21 and 32 sensors setups 
indicates that its values are spread out over the largest range of values. 

The smaller standard deviation and the more Gaussian distribution might be taken together as an 
indicator for the not yet existing loss of generalisability in case of 32 sensors. This would mean 
that there is no overpopulation with 32 sensors in these noise free simulations. 
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a) 
 

b) 

Fig. 4.24 – Values of CN , Skeel ,   and   obtained after minimization applying particle swarm 
optimization for 21 sensors setup (a) and 32 sensors setup (b).  
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4.4 Discussion 

Optimized sensor setups obtained after minimization of all four figures of merit show non-
uniform distribution of sensors on the whole torso surface. Placement of sensors on the back of 
the torso but not only on the front improves the condition of the linear inverse problem, that is in 
this case calculation of the sources in the heart from the extracorporeal magnetic field 
measurements. The same finding has been obtained in [51, 84, 101]. Nalbach and Dössel in [51] 
optimize magnetic sensor composition maximizing its information content, i.e. minimizing the 
steepness of the slope of singular values of the corresponding kernel matrix. Explanations on the 
correlation between the steepness of the slope of singular values and the figure of merit   used 
for the optimization of sensor array in this thesis can be found in the section 2.1.4. 

Different to   and  , minimization of CN  and Skeel  produce more sensors on the front than on 
the back of the torso in both the 21 and 32 sensors setups. This in on one hand in line with the 
findings in [51] and [101]. On the other hand CN  and Skeel

 
are better correlated to the 

excitation pattern exemplified by the reflection of the Wilson lead sequence.  

Minimization of CN  and Skeel  leads to a denser package of front sensors in the area above the 
heart comparing to the minimization of   and  . These more densely distributed sensors above 
the heart likely lead to an increase in information content in [51].  

While in [84] the magnetic sensors on the back of the torso are mostly positioned on its left part, 
optimized sensor arrays in this thesis contain magnetic sensors also on the back right side (except 
in the case of minimization of the CN  and 21 sensor array where only one sensor is on the right 
side of the back of the torso). Minimization of CN , Skeel  and   provides more evenly 
distributed sensors on the back of the torso, while   has a higher concentration of sensors over 
the heart on the back side of the torso.  

Based on the sampling theory, the distance of tangential magnetometers on a regular grid was 
estimated by Kim et al. [85]. They propose a grid spacing of 4 cm, which coincides the best with 
our inter-sensor distance of mm46  and mm44  above the torso front in the case of minimization 
of the Skeel  for 21 and 32 sensor setups respectively.  

The dominant orientations of the clusters for all four figures of merit and both 21 and 32 sensor 
setups exhibit a mainly radial pattern around the heart. The most frequent orientation among all 
the orientations of the sensors belonging to one cluster presents the representative orientation of 
the cluster. But, this way of determining the representative orientation has two drawbacks. The 
first one is regarding the difference in appearing of that orientation relative to all other belonging 
to the same cluster. Namely, it could happen that a very little difference determines the 
orientation of the representative sensor of the cluster. Furthermore, orientations of all the sensors 
belonging to the cluster are put into the position of the medoid of the cluster. But, positions of 
the sensors of one cluster cover some area of the torso. This means that an orientation vector of 
one sensor position is the same when put at the position of medoid with respect to the 
corresponding three dimensional coordinate system, but not with respect to the surface of the 
torso. This uncertainty is present in the cluster orientation analysis. So, one has to be aware of 
the possible uncertainties and therefore of the finding of mainly radial orientations of sensors 
around the heart.  

Taking into account all the similarities/dissimilarities between the optimized setups in this thesis 
and also the comparison to the setups presented in [51, 84, 101], one can conclude: the “optimal” 
sensor selection is not unique; quite different sensor sets can perform equally well. This is in 
agreement with the finding of Lux et al. in [81].  
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5 APPLICATION EXAMPLE II: 
LORENTZ FORCE EVALUATION   

5.1 Introduction 

Non-destructive material testing and evaluation is a vast interdisciplinary field as well as a 
challenge due to the variety of applications. Whereas the focus of non-destructive testing (NDT) 
is to detect and localize anomalies within a specimen, the reconstruction of defect properties 
(dimensions, shape, structure, composition) and their influence on the material´s usability is the 
focus of non-destructive evaluation (NDE). Defect identification and assessment are very 
important aspects of quality assurance.  

Non-destructive material testing is understood as the non-invasive examination of any type of 
specimen without changing or altering the properties of the body under test to check whether the 
specimen contains anomalies. Anomalies are any type of defect or change in the material 
properties that can be of natural or artificial origin, influencing the usefulness or serviceability of 
that object [102].  

Non-destructive testing has turned from a rather empirical procedure dependent on the 
experience of the examiners into a more quantitative measurement technique that serves to 
determine the influence of material anomalies on the structural health of the object [103]. To 
classify the existing non-destructive testing techniques according to their limitations and not only 
according to the employed physical phenomenon, a separation in visual, surface and volumetric 
methods was proposed [104]. However, often these methods have been classified as either 
electromagnetic or acoustic [105-111].  

Recently, a new approach for non-destructive testing of conductive materials was proposed, 
called Lorentz force eddy current testing (LET) [12]. In contrast to the conventional eddy current 
testing technique, the magnetic field of a permanent magnet generates eddy currents in 
electrically conductive specimens, as the specimen is moved with respect to the magnet. The 
magnetic field caused by the eddy currents yields Lorentz forces, which try to slow down this 
motion. According to Newton’s third axiom, the Lorentz force (LF) is exerted on the permanent 
magnet in the opposite direction. Material anomalies, such as changes in conductivity, defects, 
cracks or inclusions, distort the eddy current distribution in the object under test and, 
consequently, the Lorentz forces measured at the magnetic system. Thus, any defect in the 
conductive material produces perturbations in the Lorentz force signals. The direct relationship 
between changes in force and material anomalies can be used to detect defects.  

Due to the fact that the computation of transient field problems including the conductor 
movement is still a complicated and time consuming task, reconstruction of defects in laminated 
conductive materials based on Lorentz force measurements remains a challenge. The effects on 
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the Lorentz force profile caused by a defect can be described by a subtraction of the forces acting 
on the permanent magnet in the defect-free system and the system containing a defect. We call 
the received difference of force components as the defect response signal (DRS). For the 
calculation of the defect response signal, we propose a new approximation method (forward 
solution). First, we introduce a grid of point-like current dipoles placed in the defect region. 
Next, we calculate the sum of Lorentz forces acting on the current dipoles. This calculated sum 
directly represents the defect response signal. Based on the approximation method, we are able 
to formulate a reconstruction algorithm (inverse problem) of a single defect in a laminated bar, 
i.e. to establish a kernel matrix and to apply a linear inverse scheme to estimate the unknown 
conductivity distribution in the region of interest (similarly to the approach given in [112]). 
Thus, for the first time, a method for the reconstruction of the defect geometry based on Lorentz 
force measurements is developed. This approach has been called Lorentz Force Evaluation 
(LFE). In this paper, we introduce the forward computation and the inverse solution, compare the 
new approach to standard finite element computations and apply finally the new technique to 
both simulated and measured data. 
 

5.2 Methodology 

5.2.1 Problem description  

We assume that the permanent magnet described by the magnetization zMM ˆ


 can be replaced 
by a single equivalent magnetic dipole with the magnetic moment zMVzmm ˆˆ 


 [113]. The 

dipole is located at the center of gravity (COG) of the magnet zzyyxxr ˆˆˆ 0000 


, where V  is 

the volume of the magnet and x̂ , ŷ  and ẑ  represent the unit vectors in a Cartesian coordinate 
system. A conductive specimen located below the magnetic dipole is moving with a constant 
velocity xvv ˆ


. The conductive specimen is approximated by a set of thin Aluminum sheets 

containing a single parallelepipedic defect (Fig. 5.1). Two types of parallelepipedic defects with 
respect to the direction of movement of the laminated conductive bar are investigated, a long 
defect and a wide defect as presented in Fig. 5.1.  
 

 

 

Fig. 5.1 – The laminated conductive bar - a package of thin Aluminum sheets moving with 
constant velocity below the permanent magnet together with a long and a wide defect used in the 

analysis. 
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Simulation I: The first simulation is performed for a conductive laminated bar with a long 
subsurface parallelepipedic defect of dimensions mm12mm2mm2  lhw . The defect is 
located at the depth mm2d  below the top surface of the bar and is positioned longitudinally 
parallel to the direction of the bar motion (Fig. 5.1). The bar is mm50  wide (W ), mm50  high 
( H ) and mm250  long ( L ), made of Aluminum with an electrical conductivity of 

mMS41.20σ  , is placed mm10  below a magnetic dipole (magnetic moment 

zm ˆAm5.3 2


). The magnetic moment is equal to the equivalent magnetic moment of the 
permanent magnet used in the experiment (section 5.3). The bar moves with the velocity 

xv ˆsm16.0


.  

Simulation II: The second simulation is carried out for a wide subsurface defect of the same 
dimensions as the long defect ( mm12mm2mm2  lhw ) but located perpendicularly to 
the direction of the bar movement. Further setup parameters are the same as in the first 
simulation, i.e. the defect depth mm2d , the conductivity of the bar mMS41.20σ  , the bar 

size mm250mm50mm50  LHW , the moment of the magnetic dipole zm ˆAm5.3 2


, 

its position above the bar mm100 h , and the velocity of the moving bar xv ˆsm16.0


. 

 

5.2.2 Forward problem - approximation method  

We will consider two systems, a system with and a system without defect. Lorentz forces exerted 

on the magnetic dipole due to induced eddy currents in the moving bar are equal to NF


 and WF


 

for the defect-free system and the system with defect, respectively. Then, the influence of a 

defect on the Lorentz force profile can be calculated as WN FFF


 . The subtraction F


 is 

called the defect response signal.  

  

 

Fig. 5.2 – Modeling of DRS with a set of voxels with current dipoles (approximation method). 

The DRS calculation will be restricted to the use of the weak reaction approach (WRA), i.e. the 
velocity of the moving bar has to be rather small. In this case, the influence of the magnetic field 
produced by induced eddy currents on the primary field (the field produced by the magnetic 
dipole) can be neglected [114]. We additionally assume that the electrical conductivity of the 
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defect equals 0σd  , i.e. we consider only ideal defects without eddy currents flowing inside the 

defect region. The eddy currents distribution in the system with defect can be modeled by 
superimposing the eddy currents in the system without defect and the distribution of eddy 
currents in the defect region with changed conductivity dσ  flowing exactly in opposite 

direction. Thus, we can conclude that the eddy currents located in the defect region are 

responsible for the defect response signal F


.  

In the defect region we define a uniform grid of conductive volumetric elements (voxels) with 
conductivity   (Fig. 5.2). 

Since in this study are only considered parallelepipedic defects whose walls are parallel to the 
walls of the bar, the voxels are small cuboids of volume 0000 zyxV  . In each voxel of 

volume 0V  and conductivity   flows an induced eddy current described by a current density kj


. 

Thus, the continuous distribution of eddy currents is replaced by a set of point current dipoles 

0Vjp kk


  located at the centers of gravity of the corresponding voxels. Taking the WRA into 

account, the eddy current density kj


 in the k th voxel of the defect region can be calculated with 

the help of the Ohm’s law for moving conductors, i.e. )( kkkk Bvj


 , where k  is 

an electric potential, kB


 is the magnetic flux density produced by the magnetic dipole located at 

0r


:  
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and zzyyxxr kkkk ˆˆˆ 


 denotes the COG of the k th voxel.  

To determine the electric potential k  , we assume that the z component of induced eddy 

currents in the conductive bar vanishes. This assumption is motivated by the fact that in the 
laminated bar, which is a package of conductive sheets (Fig. 5.1), the vertical conductivity zz  
of the whole package is usually much lower than the conductivity of a single sheet. This enforces 
a dominant eddy currents flow in  yx planes. Using 0zkj  which results in 

ykk Bvz  , we find k  at the COG of the k th voxel as:  
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The Lorentz force exerted on all electric dipoles representing a defect is equal to  

   
 



d 1 1
0d d

V

K

k

K

k
kkkk BpBjVVBjF


, (5.3) 

where dV  is a defect volume, 0V  is a voxel volume, kp


 is a current point dipole located in the 

COG of k th voxel and K  is the number of voxels located in the defect area.  

The force equal to the Lorentz force (5.3) but of opposite directionality is exerted on the 
magnetic dipole representing the permanent magnet. The components of this force are given by 
expressions (5.4) to (5.6).  
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where 2/12
0

2
0

2
00 ))()()(( zzyyxxrr kkkk 


 is the distance between the k th 

electric dipole and the magnetic dipole. These components present DRS.  

Changing the position of the magnetic dipole 0r


 according to the measurement grid points 

),...,1,}{:( T NizyxP ii 


 and taking ixx 0  as well as iyy 0 , we can calculate a set of 

approximated Lorentz force profiles describing the forward defect response signals. 

 

5.2.3 Inverse problem – reconstruction algorithm  

We understand the defect reconstruction as the estimation of its size and the position of its center 
of gravity with respect to the coordinate system assigned to the conductive specimen. Using the 
idea of relation between defect response signals and the distribution of current dipoles presented 
in section 5.2.2, we define a region of interest (ROI) with unknown distribution of electrical 
conductivity where the reconstruction of the defect will be performed. In this study, the ROI is a 
part of the conductive bar and is defined arbitrary as a fixed cuboidal region in the vicinity of the 
region where the distortion of measured signals due to an artificial defect is observed. Then, a 
uniform mesh of volumetric elements (voxels) of constant volume ( zyxV  ) is generated 
in the ROI (Fig. 5.3).  

 

 

Fig. 5.3 – The region of interest – a set of volumetric elements (voxels) where the defect 
reconstruction algorithm is applied. 
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There are no restrictions for the definition of the mesh of voxels in the ROI with respect to the 
position of defect walls, i.e. voxels can fit or not to the real defect. Unknown constant electrical 
conductivities k  are prescribed to each voxel. The set of all voxel conductivities in the ROI 

forms a vector T},...,1:{}{ Kkk  , where K  is the total number of voxels in the region. If 

we would like to reconstruct a defect, we first have to find the conductivity vector }{  in the 
ROI. Once }{  is known, we apply various conductivity thresholds Th to find the truncated 

conductivity distribution }{ Th  and to visualize the corresponding cluster of voxels which we 

interpret as the reconstructed defect. Calculating the weighting average of centers of gravity of 
voxels in the cluster, we can estimate the position of the defect, with a conductivity k  as a 

weighting factor. Similarly, we can find the size of the reconstructed defect. 

The components of the Lorentz force (5.4)-(5.6) are linearly dependent on the conductivity k  

associated with the corresponding voxel. Thus, the Lorentz force exerted on the magnetic dipole 
at N  different positions above the conductive bar and conductivities of the K  voxels from the 
region of interest are linearly related as:  

      T
13111

T
1213 ......

 
NNzNyNxzyxKKKN FFFFFFL , (5.7) 

where   KNL 3  is the kernel matrix. This matrix is 
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where  
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Kk ,...,1 , Nn ,...,1  and 2/1222 ))()()(( nknknknk zzyyxxrr 


 is the distance 

between the COG of the k th voxel and the n th position of the magnetic dipole above the bar.  
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Equation (5.7) can be written in matrix form as:  

 
    FL  . (5.12) 

where    is a vector containing unknown conductivities associated with voxels from the ROI, 

 F  is a vector of three-component Lorentz forces measured/calculated at N measurement points 

above the conductive bar, and  L  denotes a kernel matrix.  

To find the unknown voxel conductivities, we apply the singular value decomposition of the 
matrix  L :  

 
       T3333 KKKNNNKN VSUL   , (5.13) 

where the columns of  U  and the columns of  V  are the left and right singular vectors of  L , 

respectively. The diagonal entries of  S  are the singular values of the kernel matrix  L .  

The unknown voxel conductivities    can be found by minimizing the difference between the 
forward calculated data, which is obtained after applying our approximation method, and the 
measured Lorentz forces at N  points above the specimen. This solution is a minimum norm 
least squares solution and is obtained using the expression:  

 
     FL  , (5.14) 

where       TUSVL    is a pseudoinverse of the kernel matrix  L . 

Like most inverse problems, this problem suffers from a lack of stability in the solution: the 
solution is very sensitive to both noise and a priori information used in the inverse analysis. To 
overcome the loss of stability, we use truncated singular value decomposition (TSVD) of the 

kernel matrix  L  approximating it with the matrix  L
~

 under the constraint that:   rLrank )
~

( , 
i.e. ignoring as many small singular values as necessary. The truncation level r in this study is 
chosen as the value which corresponds to the minimum of the normalized root mean square 
deviation (NRMSD) which is measure of the differences between the force signal calculated for 
the truncated  Th  distribution approximating the defect and the measured signal. A variety of 

other methods for estimating r  can be found in the literature [115-117]. They are mostly suitable 
for continuous, but not truncated distributions which we use in the interpretation of the 
reconstructed defect. By taking into account r  singular values, we form the pseudoinverse 

matrix  S
~

 and calculate unknown conductivities as: 

 
         FUSV T~ 

 . (5.15) 

If the conductivity values calculated from (5.15) are negative it means that the real current 
density vector in the voxel is in the opposite direction with the respect to the assumed one in kp


. 

Therefore, we take as a solution the absolute values of voxel conductivities obtained by (5.15). 
Additionally, we normalize them using the maximum conductivity found in the ROI yielding 
finally to a range of conductivities from 0 to 1.  

 

When only one scanning plane with measurement data is available, one can try to solve the 
inverse problem in a fully three-dimensional source space (ROI). However, this reconstruction 
approach might require the use of high computational resources, including large memory space 
and long computation time. To avoid the inversion of very large kernel matrices, we split the 
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defect reconstruction into three steps. In Step I, we take the x  and z components of the 
Lorentz forces (DRS) along the symmetry line of the bar (the y component of the LF equals 

zero if the defect is located symmetrically in the bar) to find the depth iz  corresponding to the z-

position of the intermediate plane of the defect. In this case, we use a rectangular grid of voxels 
distributed on  zx plane. The density of voxels grid in the z direction is higher than the 
density in the x direction to assure a good z localization of the intermediate plane of the 
defect. In Step II, using the same set of DRS as in Step I and the found iz  position of the 

intermediate plane, we look for the x-size of the defect. In this step, we use only voxels regularly 
distributed on the line izz  , 0y . In Step III, we use all three components of DRS 

measured/simulated at the scanning plane and perform the defect reconstruction on the 
 yx plane using rectangular grid of voxels uniformly distributed at izz  .  

 

5.2.4 Reference forward solution 

To obtain a reference solution for the direct problem, we apply the finite element method (FEM). 
The reference solution is computed for two different defects (see section 5.2.1) and serves as a 
benchmark for the new approximation method. To efficiently model the relative motion between 
the magnet and the conductor, we apply the logical expression approach (LEA), which enables 
fast 3D simulations on fixed computational grids [118]. Using LEA, the spatial coordinates of 
the moving parts are modeled with time-dependent logical expressions (LE). The shapes of the 
moving parts are determined on the fly by calculating the constraints given by LE and selecting 
the finite elements within the domains in which the logical expressions are introduced. Because 
we are only interested in the Lorentz force perturbations caused by defects, we use LEA to 
model the defect motion. In the moving defect implementation of LEA, the global coordinate 
system is fixed to the magnet, and LEs are used to model the motion of the defect (Fig. 5.4).  

Implementation of the moving defect approach requires a definition of the moving domain 
within the conductor, where movement of the defect is realized. The moving domain is defined 
by the size of the defect (wxhxl), its depth (d), and its initial position startX  (Fig. 5.4). To 

simulate the defect motion, the electrical conductivity assigned to the moving domain is 
modified as )1(σσ~ cLE , where cLE  is the logical expression used to model the 

parallelepipedic defect [118]:  
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. (5.16) 

Omitting displacement current and using the magnetic vector potential A


 ( AB


 ), the 
following magnetic field equation applies in the reference frame associated with the permanent 
magnet 
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, (5.17) 

where   is the electric scalar potential, M


 is the magnetization vector of the permanent magnet, 

][  is a diagonal conductivity tensor of the conductor, and 0μ  is the permeability of the 

vacuum. We use the diagonal tensor ][  with xx ,  yy  and 0zz  instead of scalar 

conductivity  , for modeling the laminated conductive bar and to force vanishing of the 
z component of induced eddy currents in the conductive bar. Instead of using both potentials 
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A


 and  , it is more efficient to use the modified vector potential defined as   tAA d* 
. In 

this case, the electric scalar potential   can be excluded from (5.17), [119]. Additionally, for 
small velocities, the time derivative in (5.17) can be neglected. Thus, the transient problem is 
transformed into a quasi-static one leading to a reduced simulation time [118]. 

The lateral position of the permanent magnet y  is changing during the simulation to perform 
the scan of the whole area of the conductor in the  yx plane (Fig. 5.4). 

 

 

Fig. 5.4 – Implementation of the moving defect approach. x  is the mesh size in the 
moving direction, and t  is the simulation time step.  
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5.3 Experiment 

For the validation of the calculations, a model experiment is considered. The permanent magnet 
is attached to a commercial multi-component force sensor (ME-Meßsysteme GmbH, 
Hennigsdorf, Germany) [120] and stays in a fixed position. The movement of the set of 
aluminum thin sheets mounted in a special holder is realized by a linear belt-driven drive. The 
experimental setup is presented in Fig. 5.5 (see [121] for details). 

 

(a) (b) 

Fig. 5.5 – The experimental setup, comprised of a linear belt-driven drive, a multi-
component force sensor, a package of Al-sheets, a y-z-positioning stage and a data acquisition 

unit (not shown) (a). The package of Al-sheets in the vicinity of the permanent magnet (NdFeB, 
Ø15mm25 mm) attached to the multi-component force sensor (b).  

 

The multi-component force sensor, with a measurement range of 3N in x and y direction and 
10N in z direction, works on the basis of strain gauges that indicate the deflection of the 3D 
deformation body caused by the acting force (Lorentz force in our case). The voltage change 
produced by the force sensor is recorded with a real-time PXI-system (National Instruments 
Corporation, Austin, Texas) at a sampling rate of kHz10 . The lift-off distance between the 
permanent magnet and the specimen is adjusted using a microscope table as a planar positioning 
stage with an accuracy of better than nm50 . 

A conductive specimen of dimensions mm250mm50mm50  LHW  consists of 25 
aluminum sheets with a thickness of mm2  each. This allows us to introduce artificial defects in 

easy way in any of the sheet positions. The specimen moves with a constant velocity of sm5.0  
below the permanent magnet. We place a defect of dimensions mm12mm2mm2  lhw  
(long defect) in the second sheet, parallel to the direction of motion of the sheet package and 
with the center in the  yx plane coinciding to the center of the bar surface area. The 
permanent magnet is positioned 1mm above the specimen. We scan the specimen for different 
lateral positions of the permanent magnet. The scanning area contains 39 lines in the y interval 

mm8mm8  y with 601 measurement positions per line. The concentration of measurement 

points along xlines is much higher in the area above the defect than in the rest region (Fig. 5.6).  
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Fig. 5.6 – The scanning area mm1z  above the specimen without a defect and 
containing a long subsurface defect.  

 

5.4 Results 

5.4.1 Comparison of the forward computed defect response signals  

First, we have performed the comparison of the Lorentz forces calculated for the conductive 
laminated bar containing a long defect (Simulation I). The reference forward solution was 
obtained using FEM, as indicated in section 5.2.4. The approximated defect response signals 
were calculated applying our approximation method on a grid of voxels, regularly distributed in 
the cuboidal defect region with mm1x , mm1.0y  and mm5.0z  used as voxels 

densities. The scanning plane was located at mm100  zh  above the conductive bar. All 

three components of the LF were calculated using both methods for non-uniformly distributed 
points of the scanning area presented in Fig. 5.7a. The density of measurement points was 
chosen larger in the central part of the scanning plane than in the rest region, i.e. in the vicinity 
of the region where the defect was expected, to assure a good resolution of the defect response 
signals recording.  
 

a) 

 

b) 

Fig. 5.7 – Scanning area at mm10  above the conductive specimen for the long 
crack (a) and wide crack (b). Each dot represents one force calculation point.  

Normalized reference defect response signals for the long subsurface defect (Simulation I) are 
calculated as ))(max()( WNWN FFFFF   , },,{ zyx . NF  and WF  are 

components of the LF calculated with the FEM for the conductive bar without and with the 
defect, respectively. Normalized defect response signals obtained by the approximation method 
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are calculated as )max(
~

  FFF , },,{ zyx . Distributions of F  and F
~

along one 

scanning line are presented in Fig. 5.8a-c. F  and F
~

, },,{ zyx , in the region above the 

long subsurface defect are presented in Fig. 5.9a-c and Fig. 5.9d-f, respectively.  
 

  
a) 

 

 
b) 

 

 
c) 

Fig. 5.8 – The distributions of the normalized subtraction of the Lorentz forces in the case of 
long inner defect predicted by our approximation method (blue line) and computed in COMSOL 
(red line) of its x  component on the line 0y  of the scanning plane (a), y  component on the 
line mm1y  of the scanning plane (b) and z  component on the line 0y  of the scanning 

plane (c).  
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Fig. 5.9 – Simulation I - distributions of reference ( F ) and approximated ( F
~

 ) normalized 

defect response signals evoked by the long subsurface defect.  

The defect response signals obtained by FEM and predicted by our method were in acceptable 
agreement: the normalized root-mean-square deviations across all field calculation points in the 
scanning area are equal to 4.8%, 2.6% and 2.6% for the x , y  and z components, 
respectively. 

The second computation of the Lorentz forces was performed for the case of a wide defect 
(Simulation II). A reference solution was again obtained by FEM. The approximated defect 
response signals of the wide defect was simulated by applying our approximation method on a 
voxel grid created with density mm1.0x , mm1y , and mm5.0z . All three 
components of the LF for the FEM and the approximation method were calculated at non-
uniformly distributed points of the scanning plane located at mm100  zh  above the 

conductive bar (Fig. 5.7b). Normalized reference defect response signals of the wide defect 
calculated as ))(max()( WNWN FFFFF   , },,{ zyx  are presented in Fig. 

5.11a-c in the region above the wide defect. The distributions of the predicted DRS obtained by 

our approximation method, calculated using )max(
~

  FFF , },,{ zyx  are presented in 

Fig. 5.11d-f. Distributions of F  and F
~

, },,{ zyx , along one scanning line are presented 

in Fig. 5.10a-c. 
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a) 

 

 
b) 

 

 
c) 

Fig. 5.10 – The distributions of the normalized subtraction of the Lorentz forces in the case of 
wide inner defect predicted by our approximation method (blue line) and computed in COMSOL 
(red line) of its x  component on the line 0y  of the scanning plane (a), y  component on the 
line mm1y  of the scanning plane (b) and z  component on the line 0y  of the scanning 

plane (c).  
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Fig. 5.11 – Simulation II - distributions of reference ( F ) and approximated ( F
~

) normalized 

defect response signals evoked by the wide subsurface defect.  

The DRS obtained by FEM and our method are in the acceptable agreement: the normalized 
root-mean-square deviations across all field calculation points in the scanning area are equal to 
5.9%, 1.7% and 6.7% for the x , y  and z components, respectively. 
 

5.4.2 Reconstruction of a simulated long subsurface defect  

We use the three steps reconstruction algorithm described in section 5.2.3 to reconstruct the long 
subsurface defect in the conductive laminated bar. 

Step I: The x  and z components of the Lorentz forces along the symmetry line ( 0y ) 
obtained from FEM (Simulation I) for 65 non-uniformly distributed measurement points located 
in the interval mm50mm50  x  at mm10z  above the bar, are used to define the 
reference forward solution.  

The region of interest contains 2420 voxels in the rectangular area mm60mm60  x , 
0mm10  z .  

Setting threshold Th  for the normalized conductivity in the ROI to 50%, we have found for the 
truncated singular value decomposition the truncation level equals 45r  corresponds to the 
minimum of the normalized root mean square deviation between DRS produced by the truncated 
conductivity distribution and the reference DRS. The corresponding truncated conductivity 
distribution }{ 50  is shown in Fig. 5.12. Conductivity distributions are in all figures color-coded 

using the scale shown in Fig. 5.12c.  
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(a) 

 

 
(b) 

 

0 1 
(c) 

Fig. 5.12 – Step I – plane zx  , distribution }{ 50  of normalized conductivities for 

the long subsurface defect (conductivity threshold %50Th ),  
spurious solution (a), filtered solution (b). 

Normalized conductivities are color-coded using the color scale (c). 
 

We observe spurious solutions (artifacts) at the first line of grid of voxels (Fig. 5.12a) i.e. at the 
line closest to the top surface of the bar. The artifacts can be easily filtered if we use a priori 
information that only one subsurface defect is sought. The rescaled filtered conductivity 
distribution is shown in Fig. 5.12b. The cluster of voxels with a color other than blue can be 
interpreted as a representation of the reconstructed defect in the  zx  plane. Using 
conductivities from the found cluster in the weighting averaging of voxels COGs, we estimated 
the z position of the intermediate z plane of the long defect as mm78.2iz . This depth 

position is used in the next two steps.  

Step II: We take the same DRS as in the Step I. At mm78.2iz , we generate a uniform grid of 

voxels in the range mm50mm50  x . The ROI consists of 200 voxels. Similarly to Step I, 
we set the threshold Th  for the normalized conductivity in the ROI to 50%. The found truncation 
level in TSVD is equal to 8r . Fig. 5.13 shows the truncated normalized conductivity 
distribution }{ 50 .  

Taking into account only voxels with a color other than blue, the x length of the defect is 
estimated as mm5.11e l  which is almost the length of the real defect. We did not observe any 

artifacts in the solution. 
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Fig. 5.13 – Step II – distribution }{ 50  of reconstructed normalized conductivities for the long 

subsurface defect along x line at mm78.2iz . The real defect is indicated as a black line 

segment. 
 

Step III: All three components of the Lorentz force at 4019 measurement points non-uniformly 
distributed on the plane mm10  above the bar in the rectangular region mm25mm25  x , 

mm4mm4  y , are used as DRS. The grid of voxels used for the reconstruction contains 
800 voxels uniformly generated in the rectangle mm20mm20  x , mm10mm10  y at 

the depth mm78.2iz . Applying the TSVD procedure with a truncation level 38r  found 

for the conductivity threshold %50Th , a good reconstruction of the defect region in the 
 yx plane at the depth of mm78.2iz is provided (Fig. 5.14). 

 

 

Fig. 5.14 – Step III – plane yx  , distribution }{ 50  of reconstructed normalized 

conductivities for the long defect at mm78.2iz . The real defect is marked with the black 

rectangle.  
 

The reconstruction of the defect in the  yx plane is satisfactory, i.e. the length el  and the 

width ew  of the defect have been found with an acceptable error: mm9e l , mm3e w . The 

lateral position corresponding to the COG of the defect was precisely determined. 
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5.4.3 Reconstruction of a simulated wide subsurface defect  

Reconstruction of the wide subsurface defect was performed using the same steps as in section 
5.4.2. 

Step I: The x  and z components of the Lorentz forces along the symmetry line ( 0y ) 
obtained from FEM (Simulation II) for 65 non-uniformly distributed measurement points located 
in the interval mm50mm50  x  at mm10z  above the bar are used to define the reference 
forward solution (normalized defect response).  

The uniform grid of voxels contains 2420 voxels in the rectangular ROI mm60mm60  x , 
0mm10  z , below the scanning line ( 0y ). Applying the reconstruction scheme 

presented in section 5.2.3 with the TSVD truncation level 33r  found for the conductivity 
threshold %50Th , we obtain the defect shape in the  zx plane shown in Fig. 5.15 after 
filtering surface artifacts.  
 

 
 

Fig. 5.15 – Step I – plane zx  , distribution %50Th  of color-coded reconstructed 
normalized conductivities for the wide defect - filtered solution. 

 

Although the reconstructed conductivity }{ 50  smeared around the real position of the defect in 

the area twice larger than the real defect, the found weighted iz  position of the intermediate 

plane equals mm11.2iz  is in acceptable range of error.  

Step II: We calculate the DRS at the same points as in the Step I. At the depth mm11.2iz , in 

the interval mm60mm60  x , 0y , we generate a uniform grid of 364 voxels. Applying 
the reconstruction scheme presented in section 5.2.3 (with the TSVD truncation level 45r  
found for the conductivity threshold %50Th ), the defect length of mm98.1  in the 
x direction is successfully determined (Fig. 5.16). 

 

 

Fig. 5.16 – Step II – distribution }{ 50  of reconstructed normalized conductivities for 

the wide defect along x line at mm11.2iz . The real defect is indicated as a black line 

segment. 
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Step III: All three components of the Lorentz force at 4129 measurement points non-uniformly 
distributed on the plane mm10  above the bar in the rectangular region ( mm21mm21  x , 

mm5.8mm5.8  y ) are used as DRS. The grid of voxels used in the reconstruction contains 
1120 voxels uniformly generated in the rectangle mm21mm21  x , mm14mm14  y at 

the depth mm11.2iz . 

The best reconstruction was obtained using in the TSVD procedure a truncation level 40r  
corresponding to the conductivity threshold %50Th . The found reconstruction of the defect in 
the  yx plane is presented in Fig. 5.17.  

 

 

 Fig. 5.17 – Step III – plane yx  , distribution }{ 50 of reconstructed normalized 

conductivities for the wide defect at mm11.2iz . The real defect is marked with the black 

rectangle outline.  
 

The reconstruction of the defect in the  yx plane with mm3e w  and mm11e l is 

satisfactory, with similar errors as for the long defect. 
 

5.4.4 Reconstruction of a long subsurface defect using the measurement data  

The reconstruction algorithm presented in the previous sections has to be verified in the presence 
of noise. Therefore, we have performed reconstructions of the long subsurface defect using 
measurement data recorded by the system described in section 5.3. 

Step I: As the reference forward solution we take the x  and z components of the Lorentz 
forces along the symmetry line ( 0y ) at 69 uniformly distributed points in the interval 

mm50mm50  x , mm1  above the bar extracted from the measurement data (section 5.3). 
The normalized defect response signals are calculated according the following formulae: 
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where xN  and yN  are the numbers of measurement positions in the x  and y direction, 

respectively.  

The region of interest contains a grid of 2420 voxels defined in the rectangle 
( mm60mm60  x , 0mm10  z ). The filtered truncated conductivity distribution 

}{ 85 , found for the truncated TSVD level 46r , is shown in Fig. 5.18.  

  

 
 

Fig. 5.18 – Step I – plane zx  , distribution }{ 85  of color-coded normalized 

conductivities representing the long defect reconstructed from the measurement data - filtered 
solution. 

 

The distribution }{ 85  forms a highly concentrated cluster of voxels with high conductivities 

around the center of the defect. Although the x length of the reconstructed defect is much too 
short, the depth of the defect represented by the position of the intermediate plane 
( mm0.3iz ) is found correctly.  

Step II: We used the same normalized DRS as in the Step I. Using estimated position of the 
intermediate plane, mm0.3iz , we generate new grid of 261 regularly distributed voxels 

along the line: 0y , mm50mm50  x . Applying the reconstruction scheme presented in 
section 5.2.3 (with a truncation value 5r  for the conductivity threshold %85Th ), we 
obtained the defect of mm12  length but with a center shifted about mm5.0  to the left 
comparing the original position of the defect (Fig. 5.19). 
 

 

Fig. 5.19 – Step II – distribution }{ 85  of reconstructed normalized conductivities for 

the long defect along x line at mm0.3iz  (measurement data). The real defect is 

indicated as a black line segment. 
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Step III: Here, we use as reference signals the DRS calculated according (5.18)-(5.19) for all 
three components of the Lorentz force at 4081 measurement points non-uniformly distributed 
on the plane mm1  above the bar in the rectangular region mm25mm25  x , 

mm4mm4  y .  

The region of interest is located at mm0.3iz and consists of a rectangular grid of 800 voxels, 

uniformly distributed in the area mm20mm20  x , mm10mm10  y . The TSVD 
procedure (with a truncation level 2r  found for the threshold %85Th ) produces a defect 
map presented in Fig. 5.20.  
 

 
 

Fig. 5.20 – Step III – plane yx  , distribution }{ 85 of reconstructed normalized 

conductivities for the long defect at mm0.3iz  (measurement data). The real defect is 

marked with the black rectangle. 
 

This step, applying the truncation level 2r , provides a truncated conductivity distribution 
which is regularly smeared around the defect ( mm13e l , mm5e w ). The found truncation 

level ( 2r ) shows that the reference DRS is influenced by noise. The use of only a very few 
singular values in the reconstruction algorithm would enable a proper interpretation of 
reconstructed conductivity distribution. 
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5.5 Discussion 

We have demonstrated the application of a novel fast forward method for the computation of the 
eddy current and magnetic field distribution in a laminated conductor which has been moving 
with respect to a fixed permanent magnet. This new approach has further been used to introduce 
a new inversion scheme for the Lorentz force evaluation based on the analysis of simulated and 
measured data.  

The quality of defect reconstruction has been found to depend on parameters of the defect under 
consideration, in particular on the position of the defect with respect to the moving direction of 
the specimen and the signal-to-noise ratio of the data. Using a priori information of the defect 
(i.e. assuming only a single, subsurface defect), it was possible to find a conductivity threshold 
which together with an artifacts filter gave an appropriate interpretation of the estimated 
conductivity distributions. The corresponding truncation level used in TSVD has been 
determined using the minimum normalized root mean square deviation criterion calculated for 
the truncated conductivity distribution. This approach has been found to work more effective in 
our problem than for example the L-curve technique which can be found in the literature [117]. 

Reconstructions in the  zx plane have been qualitatively correct, i.e. the subsurface defect has 
been found in the proper region. The reconstruction quality strongly depends on the position of 
the defect with respect to the moving direction of the bar. For long defects, we have received 
focal concentrations of voxels representing the defect which x size was much smaller than the 
original defect length. However, the defect intermediate plane position calculated as a weighted 
average of voxels COGs has been estimated correctly for simulated as well as for measurement 
data. In contrary, for the wide defect, the estimated conductivity distribution was smeared around 
the original defect covering much more area than the original defect. In this case, the position of 
a defect intermediate plane has been determined with less accuracy and was shifted towards the 
surface of the bar. Generally, it is significantly harder to determine the depth of a defect than to 
locate its lateral position when only measurement values in one plane above the specimen are 
available. The reason is the difficulty to dissect the effect of depth from that of source strength. 
In the future, scanning in more than one plane will be performed. The other problem which 
should be study in details is the use of depth weighting techniques which compensate a bias 
toward superficial sources. They can be applied to those reconstructions where the defect is 
localized close to the bar surface (wide defect) to correct the positioning of the intermediate 
reconstruction plane. 

The length of the defect in the x direction was successfully determined (Step II of the 
reconstruction algorithm) in all three cases although the used conductivity threshold strongly 
depends on the noise level (Th = 50% for simulated, 85% for measured data). 

Reconstructions in the  yx plane using simulated data (long and wide defect) were correct, 
fitting almost perfectly to the defect shape. For the measured data, the use of a high threshold 
conductivity (85%) combined with a small number of singular values in TSVD has produced a 
smeared  yx distribution of voxels representing the long defect. This is the result of a 
relatively high noise in the measured signals. The noise yields a form of oscillations of DRS with 
amplitudes of about 20% of the useful signals. The reason for these oscillations has not been 
found so far. 

The regions of interest (ROI) used in the reconstructions have been chosen using an information 
about the position of DRS in the recorded/simulated signals and their duration. The size of ROI 
and the density of voxels are set in arbitrary way. In the future, it is necessary to study the 
influence of these parameters on the quality of the reconstruction as well. 
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6 CONCLUSIONS AND OUTLOOK 

Linear inverse problems arise in a wide range of applications. These problems are usually ill-
conditioned, i.e. solution components are very sensitive to small changes in the initial data. The 
existence of a proper figure of merit is an imperative for a successful measuring of ill-
conditioning of linear inverse problems. In this thesis, theoretical aspects of three existing 
measures of ill-conditioning are considered and two new measures are proposed.  

The most widely used indicator of ill-conditioning is a condition number with a respect to the 

2L  norm. As a norm-wise condition measure, it gives the error bound of the worst conditioned 
component in the solution vector and therefore overestimates a condition of a kernel matrix. 
Computation of the condition number with respect to the 2L  norm requires computation of the 
singular values of the kernel matrix of a corresponding linear inverse problem. This measure of 
conditioning strongly depends on the smallest singular value of a matrix.  

When solving linear inverse problems, engineers and scientists are aware of changing of the 
condition number with respect to the 2L  norm with matrix dimensions. But, it is found that the 

increment/decrement of the condition number with respect to the 2L  norm is dependent on over- 
or underdetermination of the linear inverse problem. Namely, exclusion of sensors from a sensor 
array decreases the condition number with respect to the 2L  norm only in the case of 
underdetermined linear inverse problem. Similarly, when the problem is overdetermined, 
exclusion of sources from a grid of dipoles decreases the condition number with respect to the 

2L  norm. Influence of changing of a number of sensors in overdetermined problems and number 
of sources in underdetermined problems depends on particular singular values of the 
corresponding kernel matrix.  

Skeel condition number is the second considered measure of conditioning. When used in 
ovedetermined linear inverse problems, it is invariant under column scaling. Row scaling of a 
matrix does not affect the Skeel  condition number in underdetermined linear inverse problems. 
The Skeel  condition number cannot be much larger, but can be much smaller than the condition 
number with respect to the 2L  norm. Scaling of a matrix and reordering of linear equations in 
the system do not change the value of the Skeel condition number.  

Reduction of the dependency on the smallest singular value and increment in the numerical 
stability of the evaluation comparing to the condition number with respect to the 2L  norm, is 
achieved through the inverse average decay of singular values,  . A relation between   and the 
steepness of the slope of singular values is derived.   represents the inverse of area under the 
curve of singular values of a kernel matrix. The larger is the area under the curve, the smaller is 
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the   and consequently the better conditioned linear inverse problem. This measure of 
conditioning is not invariant under scaling.  

Based on geometrical properties of rows/columns of a kernel matrix, two new error measures are 
developed. The first one measures dependency between rows of a kernel matrix in 
underdetermined linear inverse problems and is referred to as rows dependency RD . When used 
in overdetermined linear inverse problems, it measures a dependency between columns of a 
matrix and is referred to as columns dependency CD . Different from the condition number with 
respect to the 2L  norm, computation of RD  does not require singular value decomposition of a 
matrix. Because a size of a matrix does not influence the value of RD , this figure of merit 
enables comparison of kernel matrices of different sizes. We do know that the multiplication of 
all elements of a row by the same value influences only the norm of a row vector, but not the 
angles to other rows. Thus, RD  is independent of row scaling. In the same way, CD  is 
independent on column scaling. This error measure allows for selecting the most linearly 
independent rows and performing the estimation with these rows only. This reduces 
computational costs and improves a stability of linear inverse solution.  

The second developed figure of merit ξ  is based on the mean of the products of the lengths of 
the kernel matrix column vectors of an overdetermined linear inverse problem and cosines of the 
angles between those vectors and corresponding rows of a matrix pseudoinverse. When used in 
underdetermined linear inverse problems, it uses the lengths of row vectors of a kernel matrix and 
angles between these vectors and corresponding rows of a pseudoinverse of a kernel matrix. 
Different from the condition number with respect to the 2L  norm, it does not predict the sensitivity 
on perturbations of the worst conditioned solution component. In contrast to the another 
proposed novel figure of merit, i.e. the dependency between rows/columns of a kernel matrix 
which can be computed using the data in the matrix only, calculation of the figure of merit ξ

 requires determination of the pseudoinverse of the kernel matrix. By a proper selection of a 
scaling matrix, this figure of merit can be considerably reduced.  

Numerical stability, indication of the worst conditioned component or of a mean conditioning of 
all components, requirement for pseudoinverting of a matrix, affection by scaling or by matrix 
dimensions, make one of the figures of merit favorable for measuring of conditioning of the 
linear inverse problem.  

Monoaxial sensors are usually equidistantly and in parallel arranged in sensor arrays. Random 
variations of sensor orientations usually increase the smallest singular value of the kernel matrix, 
while the largest singular value remains almost unperturbed. But, it is not always the case that 
random variations of monoaxial parallel sensors increase the smallest singular value and improve 
the condition of the linear inverse problem. Therefore, a strict mathematical condition, under 
which random variations of perfect in parallel sensor orientations lead to an increment of the 
smallest singular value of a kernel matrix, is derived. The condition relates the smallest singular 
value of a kernel matrix, perturbation matrix and a projection matrix onto the column/row space 
of a kernel matrix in over/underdetermined linear inverse problems .  

When random variations of sensor orientations do not a priori lead to an increment of the 
smallest singular value of a kernel matrix, one could attempt to calculate the probability of 
getting an increment. A contribution to a better prediction of improvements in the condition of 
linear inverse problems for randomly varied sensor orientations and other random changes in the 
inverse problem setup is given through a derivation of sharper perturbation bounds in 
perturbation expansion of the smallest singular value. Bounds are specifically defined for over- 
and underdetermined linear inverse problems. Since the derivation can be applied to all singular 
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values of the matrix, an insight into a change not only of the condition number with respect to 
the 2L  norm, but also of the figure of merit  , can be provided.   

Theoretical considerations of conditioning of linear inverse problems are applied to two 
examples: magnetocardiography and Lorentz force eddy current testing. Optimization of 21 and 
32 magnetic sensors in a vest-like sensor setup is done minimizing four different figures of 
merit: condition number with respect to the 2L  norm, CN , Skeel condition number, inverse 
average decay of singular values 

 
and a novel figure of merit 

 
. Optimized sensor setups 

obtained after minimization all four figures of merit show non-uniform distribution of sensors on 
the whole torso surface. Placement of sensors on the back of the torso but not only on the front 
improves the condition of the linear inverse problem. Different to   and  , minimization of CN  
and Skeel  produce more sensors on the front than on the back of the torso in both the 21 and 32 
sensors setups. Setups obtained minimizing CN  and Skeel

 
are better correlated to the excitation 

pattern exemplified by the reflection of the Wilson lead sequence. Furthermore, minimization of 
CN  and Skeel  leads to a denser package of front sensors in the area above the heart comparing 
to the minimization of   and  . These more densely distributed sensors above the heart likely 
lead to an increase in information content. While in [74] the magnetic sensors on the back of the 
torso are mostly positioned on its left part, optimized sensor arrays in this thesis contain 
magnetic sensors also on the back right side. Minimization of CN , Skeel  and   provides more 
evenly distributed sensors on the back of the torso, while   has a higher concentration of sensors 
over the heart on the back side of the torso.  

The dominant orientations of the clusters for all four figures of merit and both 21 and 32 sensor 
setups exhibit a mainly radial pattern around the heart. Taking into account all the 
similarities/dissimilarities between the optimized setups in this thesis and also the comparison to 
the setups presented in literature, one can conclude that quite different sensor setups can perform 
equally well. In other words, the optimal sensor selection is not unique.  

This work considers only the kernel matrix, without solving the corresponding linear inverse 
problem. A continuation of this work could be an insight into localization accuracy when 
different magnetometer arrays are used, obtained by minimizing of different figures of merit.  

Based on the determination of conductivity and on a dipole model like in magnetocardiography, 
a new method for non-contact, non-destructive evaluation of solid conductive materials, termed 
Lorentz force evaluation, is introduced. Relative motion between a permanent magnet and a solid 
conductive specimen produces eddy currents inside the bar. When a bar has a defect, a 
distribution of eddy currents can be modeled as a superposition of eddy currents in the system 
without defect and the distribution of exactly opposite eddy currents flowing in the defect region 
with changed conductivity (equal to the conductivity of the bar in the case of zero conductivity 
of the defect). So, an influence of a defect with changed conductivity on a Lorentz force profile 
exerted on the magnetic dipole due to eddy currents is equal to the subtraction of the Lorentz 
forces coming from a defect-free system and the system with a defect. This signal is called defect 
response signal. A novel forward computation of the defect response signal is introduced. It 
employs a three-dimensional finite volume discretization and approximates a defect with an 
electric dipole in each voxel. Approximate solution is compared with the solutions from detailed 
finite element models. A difference in Lorentz force ranges between 1.7% and 6.7%, indicating a 
sufficient performance of the novel method.  

Based on this novel forward computation, a method for the reconstruction of defect geometries 
based on Lorentz force measurements is developed. Method is applied in reconstruction of 
subsurface long and wide parallelepipedic cracks using the forward solutions from the finite 
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element model and of a subsurface long defect using measurement data. Solving of an inverse 
problem in a fully three-dimensional source space might require the use of high computational 
resources, including large memory space and long computation times. In order to avoid the 
inversion of very large kernel matrices, a defect reconstruction is split into three steps: 
determination of a depth of the intermediate plane of a defect, determination of the length of a 
defect in a moving direction of a specimen and as a third step, reconstruction in  yx plane, 
parallel to the upper surface of the bar and the scanning plane as well.  

Determination of the depth of the long defect was precisely determined using both measurement 
and data obtained by finite elements method. In the case of wide defect, a depth of its 
intermediate plane is slightly moved towards the surface, but still being in an acceptable range of 
error (less than mm1 ). When determining a depth of an intermediate plane of a subsurface 
defect, an a priori knowledge has to be employed. One should know that only one defect exists 
in the specimen and also the type of the crack (surface/subsurface). A length of a defect in a 
direction of movement of a solid bar was successfully determined in all three cases. There is only 
a shift to the left of a center of a long defect when inverting measurement data of about mm5.0 . 
Reconstruction in the  yx plane is satisfactory too. Long subsurface defect using FEM data 
shows an error of mm1  in y direction and mm3  in x direction. Wide defect has an error of 
just mm1  in both directions. Reconstructed conductivities in the case of long subsurface defect 
obtained using measurement data are regularly smeared around the defect and with an acceptable 
error.  

Applying this novel forward and inverse methodology, Lorentz Force Evaluation can be used to 
reconstruct defect geometries in conductive materials. Nevertheless, application of different 
inversion algorithms, regularization techniques or usage of a number of permanent magnets 
instead of just one could improve reconstruction accuracy in Lorentz Force non-destructive 
technique.  
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