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Financial market spillovers around the globe1

Financial market spillovers around the globeThis paper investigates
the transmission of return and volatility spillovers around the globe.
It draws on index futures of three representative indices, namely the
Dow Jones Euro Stoxx 50, the S&P 500 and the Nikkei 225. De-
volatised returns and realised volatilities are modeled separately using
a structural vector autoregressive model, thereby accounting for the
particular sequential time structure of the trading venues. Within this
framework, we test hypotheses in the spirit of Granger causality tests,
investigate the short-run dynamics in the three markets using impulse
response functions, and identify leadership effects through variance de-
composition. Our key results are as follows. We find weak and short-
lived return spillovers, in particular from the USA to Japan. Volatility
spillovers are more pronounced and persistent. The information from
the home market is most important for both returns and volatilities;
the contribution from foreign markets is less pronounced in the case of
returns than in the case of volatility. Possible gains in terms of forecast-
ing precision when applying our modelling strategy are illustrated by a
forecast evaluation.

JEL classification: C32, G15

Keywords: Spillovers; Index Futures; Realized Volatility; Structural
VAR model

I. Introduction

This paper investigates the correlation dynamics of stock index returns and volatil-
ity in the three major financial centres around the globe: Asia, Europe and the
United States. It continues a strand of the literature in empirical finance that goes
back to the seminal papers of Hamao, Masulis, and Ng (1990), Lin, Engle, and
Ito (1994) and Susmel and Engle (1994), if not further, and builds upon the quite

1The authors thank the Economics Graduate School at the University of Tübingen for financial
support. They also thank the participants at the 2007 DGF doctoral seminar for valuable com-
ments.
Any errors and omissions are the sole responsibility of the authors.
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distinctive definition of spillovers developed therein. Unfortunately, there is no
generally agreed upon definition of spillovers in the financial literature and there-
fore, the closely related concepts ‘spillover’, ‘contagion’, ‘interdependence’ and ‘co-
movement’ are often used interchangeably. Gallo and Otranto (2008) provide a
clarificatory discussion of these terms and attempt to establish some practical def-
initions. Following, first and foremost, Hamao, Masulis, and Ng (1990), return
and volatility spillovers are defined in the present study to be effects from foreign
stock markets on the conditional means and variances of daytime returns of sub-
sequently trading markets. As has already been pointed out by Hamao, Masulis,
and Ng (1990), this particular concept of spillovers requires the use of intraday data
to divide daily (close-to-close) returns into daytime (open-to-close) and overnight
(close-to-open) returns. Subsequent work such as that of Baur and Jung (2006) and
Soriano and Climent (2006) stresses the importance of this partitioning.

Classic financial theory, like the (strong-form) efficient market hypothesis, predicts
that return spillovers do not occur, as the information from previously trading
markets should be fully reflected in the overnight returns. However, there is ample
empirical evidence that stock markets do not instantly incorporate all overnight
information into the opening prices, see e.g. Hamao, Masulis, and Ng (1990), Lin,
Engle, and Ito (1994), Baur and Jung (2006) and Savva, Osborn, and Gill (2009).
Explanations for this empirical phenomenon can be found in the literature on asset
valuation models, such as Kyle (1985) and Admati and Pfleiderer (1988), and in
the behavioural finance literature. According to the former body of literature,
traders may not yet perceive the entire information content of previous trading in
foreign markets, and, thus, be unwilling to fully trade their demand schedule and
thereby reveal their share of private information. Therefore, the full incorporation
of newly arriving information might take time and, thus, might cause spillovers
into the daytime returns of the domestic market. In this context, spillovers are
an expression of valuation insecurity, but not market inefficiency and are caused
by the rational actions of agents. The behavioural finance literature has developed
several psychological explanations for the existence of mean spillovers (see Fung,
Lam, and Lam, 2010, and the literature cited therein).

In contrast to mean spillovers, the existence or nonexistence of volatility spillovers
is an issue with regard to which classic financial theory has remained rather silent.
An extensive empirical literature has provided ample evidence of (short-lived) volatil-
ity spillovers from foreign stock markets into domestic ones. The paper by Soriano
and Climent (2006) provides a useful survey, while Melvin and Melvin (2003) dis-
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cuss different sources of volatility spillovers in the context of the closely related
exchange rate markets. Diebold and Yilmaz (2009) and Harrison and Moore (2009)
are recent contributions which investigate international volatility dynamics and
spillovers. While their approaches are quite distinct from ours, their general results,
namely the detection of foreign volatility influences on home market volatility, are
in line with the results of this paper.

On a more general level, the financial economics literature has developed a number
of theoretical foundations with regard to the interdependence of international stock
markets. See, for example, Gębka and Serwa (2007) for an overview and Pritsker
(2001) for an extensive discussion of transmission channels from one market to the
other.

In the present paper we propose separate structural vector autoregressive (SVAR)
models for stock index future returns and a suitable volatility measure which en-
able us to test various hypotheses in the spirit of Granger causality testing. Within
this framework we are able to use impulse response functions to analyse short-run
dynamics in the system of global financial markets. Finally, we are able to adopt
variance decomposition to identify leadership effects in both the mean and volatil-
ity systems. The three major financial centres around the globe are represented
by the Nikkei 225 index future for Asia, the Dow Jones Euro Stoxx 50 future for
Europe and the S&P500 future for the United States. The structure in our model
follows naturally from the timing of the trading in these three markets and requires
us to model returns and volatility separately, as is done by, for example, Diebold
and Yilmaz (2009). As a volatility measure we employ the realised volatilities as
suggested by Andersen, Bollerslev, Diebold, and Labys (2003). To overcome the
widely documented stale quote problem, we base the empirical analysis on index
future data instead of the underlying indices, as is done, for example, by Ryoo and
Smith (2004).

We proceed as follows. Section Two discusses the methodology employed in our
empirical analysis, and Section Three describes the data. Section Four presents the
empirical results, while Section Five provides the results of an illustrative out-of-
sample forecast and, finally, Section Six concludes.
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II. Methodology

The first part of this section describes the generic multivariate modelling frame-
work proposed here for the analysis of return and volatility spillovers, the structure
of which results directly from the opening and closing of the markets considered in
this study. In the second part, details of the specific return and volatility measure-
ment employed are presented.

II.1. Trading Times and the Econometric Model

An analysis of the information transmission between the three financial centres
under scrutiny here is affected by the trading times in the different representative
markets. Figure 1 provides a detailed account of the various opening and closing
times of the markets from which the index futures data have been acquired. Let a
particular trading day t start at 23:00 GMT. In this setting, the first market to trade
on day t is Japan, followed by Europe and then the USA. Trading times between
Japan and any of the two other markets are non-overlapping, while there is up to
three hours overlap between the trading times of the European and US markets.
This setting has important consequences for the analysis of spillovers between the
various markets: European and US trading on day t can influence trading in Asia
only on the following trading day t + 1. Europe on day t + 1 may be influenced
by same-day t + 1 trading in Asia, and US trading that took place on the previous
day t . Similarly, the US market on day t + 1 may be influenced by same-day t + 1
European and Japanese trading.

We therefore suggest a multivariate model with a structure that reflects the chrono-
logical ordering of the financial markets and allows us to analyse the short run
dynamic interactions between the three markets in consideration, numbered 1, 2,
and 3 according to the sequence of opening. The resulting structural vector autore-
gressive model of order p for returns or volatilities, using the generic notation xi ,t ,
i = 1,2,3, is of the following form:

Page 5



Working Papers on Global Financial Markets No. 20

Figure 1: Trading Times
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GMT

CST

SGT

CET

23:55 23:558:006:25 14:30 21:0012:00

SGX SGX

EUREX

CME

7:55 - 10.15
11:15 - 14:25

9:00 - 22.00

8:30 - 15:15

The figure presents the trading times at the different exchanges in Singapore (SGX), Frankfurt (Eu-
rex) and Chicago (CME). GMT is Greenwich Mean Time, CST is Central Standard Time, SGT is
Singapore Time and CET is Central European Time. Trading hours are presented as of 1 January
2006.

⎛⎜⎜⎝
x1,t

x2,t

x3,t

⎞⎟⎟⎠ =
⎛⎜⎜⎝

a1

a2

a3

⎞⎟⎟⎠+
⎛⎜⎜⎝

0 0 0
b21,0 0 0
b31,0 b32,0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

x1,t

x2,t

x3,t

⎞⎟⎟⎠+

+
p∑

l=1

⎛⎜⎜⎝
b11,l b12,l b13,l

b21,l b22,l b23,l

b31,l b32,l b33,l

⎞⎟⎟⎠
⎛⎜⎜⎝

x1,t−l

x2,t−l

x3,t−l

⎞⎟⎟⎠+
⎛⎜⎜⎝
ε1,t

ε2,t

ε3,t

⎞⎟⎟⎠ . (1)

The equivalent matrix notation is given by

x t = a+ B0x t +
p∑

l=1

B l x t−l + εt , (2)

where εt = (ε1,t ,ε2,t ,ε3,t )
′ are assumed to be independent white noise processes.

Note that coefficients of the contemporaneous effects are collected in the matrix B0

whose lower diagonal form with zeros on the main diagonal is a direct consequence
of the sequence of trading in the three markets. The zero elements reflect the fact
that no mean or volatility spillovers can occur on that day between these markets.

Due to the specific form of the matrix B0, we can simply use OLS separately on
each equation to estimate the parameters of the system consistently. As a unified
way to estimate standard errors we use a parametric bootstrap with 1000 bootstrap
replications. In order to trace the dynamic linkages between the three markets, we
perform impulse response analysis and variance decomposition. Impulse response
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analysis provides an easy-to-interpret tool for measuring both the magnitude and
the speed of adjustment of the three markets to a shock in one of these markets.
Variance decomposition (in the sense of Hasbrouck, 1991) allows us to measure the
magnitude of the spillover effect.

A direct consequence of the timing of the opening and closing of the markets cou-
pled with our definition of spillovers inhibits joint modelling of returns and volatil-
ities. Separate modelling is required, in contrast to often employed multivariate
GARCH models where covariance terms would allow counter-clockwise feedback
effects, which are impossible in our framework.

II.2. Return and Volatility Measurement

The daytime returns ri ,t relevant for our analysis are computed as the log-difference
of suitable opening and closing transaction prices. Specific details concerning the
different markets are given in Section III. To account for the presence of condi-
tional heteroskedasticity in the return time series we rely upon so-called ‘devola-
tised returns’, computed as daytime returns ri ,t standardised by the corresponding
realised volatility σi ,t (as defined below), following the recent proposal of Pesaran
and Pesaran (2010). Formally, they are computed as

r̃i ,t =
ri ,t

σi ,t
. (3)

As shown by Pesaran and Pesaran (2010), devolatised return series are approxi-
mately Gaussian and homoscedastic.

We consider two different approaches that may be followed in constructing the
volatility time series: the realised volatility measure as proposed by Andersen,
Bollerslev, Diebold, and Labys (2003), and the daily volatility estimate developed
by Bollen and Inder (2002) (subsequently labelled ABDL and BI, respectively).
Both methods seek to overcome the well-documented market microstructure ef-
fects present in high-frequency financial data when estimating the unobservable
volatility process.

Andersen, Bollerslev, and Diebold (2010) propose that the true underlying volatil-
ity process be estimated by summing squared intraday returns computed over suit-
ably large time intervals Δ. Specifically, they define the daily realised variance on
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day t as

σ2
i ,t =

1/Δ∑
j=1

r 2
i ,t ,Δ j

(4)

where ri ,t ,Δ j
is the return computed over the intraday time interval Δ j and 1

Δ de-
fines the number of intervals used for calculating the volatility measures. Andersen,
Bollerslev, and Diebold (2010) argue that due to market microstructure frictions it
is undesirable to sample returns infinitely often (i.e. Δ→ 0), as would be required
to approach the true underlying volatility. When summing the squared returns,
one would at the same time accumulate the noise present in the market, which
would lead to non-trivial measurement errors. To overcome this issue, Andersen,
Bollerslev, Diebold, and Labys (2003)’s realised volatility is calculated using returns
computed over sufficiently large time intervals Δ. For the subsequent application
we have chosen to use 5-minute returns for the calculation of the realised variance in
Eq. (4), as done, for example, by Andersen, Bollerslev, Christoffersen, and Diebold
(2006). The realised volatility is then given by the square-root of σ2

i ,t .

A drawback of using returns computed over 5-minute intervals is the possible loss
of information contained in the observations within the interval. Bollen and In-
der (2002) therefore propose a VARHAC estimator in order to explicitly account
for the different autocorrelation structures in intraday returns induced by market
microstructure effects. Specifically, they estimate for each trading day t an autore-
gressive model of order qt ,

ri ,t ,Δ j
=

qt∑
l=1

αl ,t ri ,t ,Δ j−l
+ νt ,Δ j

,

where αl ,t denotes the autocorrelation parameter(s) and νt ,Δ j
are iid errors. The

optimal lag length per day qt is chosen by an information criterion. The purpose
of this procedure is to purge the returns of microstructure noise. The estimate of
the daily volatility is then computed as

σ2
i ,t =

RSSi ,t⎡⎣1− qt∑
l=1

α̂l ,t

⎤⎦2
, (5)

RSSi ,t =
nt∑

j=qt+1


ri ,t ,Δ j

−
qt∑

l=1

α̂l ,t ri ,t ,Δ j−l

�2
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and nt is the number of observations per day t . The estimator in Eq. (5) is efficient
in the sense that it utilises the data at the highest available frequency (one minute
for the data set at hand).

To model the volatility transmission between the three major financial centres
around the globe, we follow Andersen, Bollerslev, Christoffersen, and Diebold
(2006), who suggest that the derived volatility time series be treated as if it were
directly observed. This allows the straightforward application of standard estima-
tion techniques.

III. Data Description

The data set on which our analysis is based consists of intraday transaction prices of
the Dow Jones Euro Stoxx 50 future (traded at Eurex), the S&P500 future (traded
at the Chicago Mercantile Exchange, CME) and the Nikkei 225 future (traded at
the Singapore Exchange, SGX2). The datasets were obtained from Olsen Financial
Technologies and are sampled in minutes. Subsequently, we employ the following
acronyms for the future data from these three markets: FESX for the Eurex data,
FSP for the CME data and FNI for the SGX data. The data cover futures contracts
from 1st July 2002 to 31st May 2006, and all futures are denominated in local
currencies. The model is estimated using data up to and including 18th May 2006;
the remaining days are used to evaluate the out-of-sample forecast.

Previous studies dedicated to spillover analysis, such as Lin, Engle, and Ito (1994)
and Baur and Jung (2006), have used indices instead of futures. The use of stock
market indices, however, could entail the so-called stale quote problem (cf. Ryoo
and Smith, 2004). To overcome this problem, it has been proposed that a suitable
proxy be used for the opening quote of the stock index, varying from opening
plus 5 minutes into the trading day up to opening plus 30 minutes. This strategy,
however, might dilute the results in the same way as the stale quote problem: prices
of some underlying stocks might already have changed substantially within these
5 to 30 minutes. The approximate opening quote would then again not reflect the
true opening index value. Using index future data helps to overcome the stale quote
problem without loss of information from the market opening. Index futures are
self-contained securities and, thus, the first transaction in the morning of a new

2We use the Nikkei 225 future as traded at the SGX, as during the time period at hand the SGX was
the market with the highest trading volume of Nikkei 225 futures.
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trading day is driven only by information available to the market at this point in
time. A slight drawback of using futures is that a continuous dataset is not available
for a time horizon greater than nine months. So in order to obtain a continuous
sample, we construct the return and volatility time series for each future contract
and roll to the contract closest to maturity. The last trading day is excluded in
order to avoid the possibility of the settlement having an influence.

Essential for our analysis of spillover effects is the calculation of returns and volatil-
ities based on non-overlapping trading hours. Trading at the SGX starts at 7:55 and
ends at 14:25 Singapore Time (SGT) and did not change throughout the four years
under study. As there is no overlap in trading times between the SGX and the CME
or between the SGX and Eurex (see Figure 1), we compute the log-returns for the
FNI as open-to-close returns and the volatility measures for the full trading day.

The FESX was traded at Eurex from 9:00 to 20:00 Central European Time (CET)
until 20 November 2005. From 21 November 2005 on, Eurex extended trading
hours for OTC-trade from 9:00 to 22:00 CET. The FSP is traded in Chicago from
8:30 to 15:15 Central Standard Time (CST) throughout our sampling period. Thus,
there is an overlap of up to 6.5 hours of trading between the two exchanges.

In order to obtain a clear-cut time structure, we apply the ideas of Menkveld, Koop-
man, and Lucas (2007) and Susmel and Engle (1994), who suggest that the intraday
observation period be restricted according to economically relevant points in time.
We choose to truncate the FESX at 13:30 CET, well in advance of potential macroe-
conomic news announcements made in the USA ahead of trading.3 The reason for
this choice is the assumption that European morning trade should convey informa-
tion which is of interest for the traders in the United States and accounted for as
soon as trading opens. We therefore compute the return and the volatility measures
of the FESX from the market opening to 13:30 CET. The respective measures for
the FSP are computed from the opening to the close of the CME.

The data are sampled such that days where at least one market was closed for trad-
ing are excluded from the dataset. We thus obtain a dataset containing 912 observa-
tions. The upper part of Table 1 provides descriptive statistics for the standardised
return series of the FNI, FESX and FSP based upon the estimation period only,
which comprises 905 observations. The return series are computed as set out in
Eq. (3). As can be seen, the standardisation leaves the time series slightly mesokur-
tic. The Jarque-Bera test indicates that for two of the three series (FNI and FSP)
3We also investigated different cutting times which did not lead to qualitatively different results.
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Table 1: Descriptive Statistics of Devolatised Returns
FNI FESX FSP

Mean 0.0126 −0.0091 0.0428
Median 0.0441 0.0000 0.1207
Maximum 3.0464 2.1968 2.7201
Minimum −3.4388 −2.3782 −2.7335
Variance 1.0659 0.7966 0.8781
Skewness −0.0901 −0.0398 −0.0908
Kurtosis 2.7892 2.4402 2.7276
Jarque-Bera 2.8267 11.9467 3.9531

(0.2433) (0.0025) (0.1385)
QS(10) 5.7550 7.0732 17.2162

(0.8354) (0.7185) (0.0697)
Sample Correlations
FNIt 1.0000
FESXt 0.1098 1.0000
FSPt 0.0295 0.0433 1.0000
FNIt−1 −0.0309 0.0018 0.0614
FESXt−1 0.0241 −0.0539 −0.0236
FSPt−1 −0.1329 −0.0706 −0.0130

The table provides descriptive statistics for the devolatised returns
of the Dow Jones Euro Stoxx 50 future (FESX), the S&P500 fu-
ture (FSP) and the Nikkei 225 future (FNI). The Jarque-Bera test
for normality and the McLeod Li Q-test (QS) for heteroscedas-
ticity using the squared devolatised returns are presented together
with p-values, which are given in parentheses.

the normality assumption can be rejected only at the 1% level. Overall, the stan-
dardisation of the returns leads to time series which are approximately Gaussian.
For illustrative purposes we have also employed McLeod and Li’s (1983) Q-test,
which uses the squared devolatised returns to check for conditional heteroskedas-
ticity. The p-values displayed in Table 1 indicate no rejection of the null hypothesis
of conditional homoskedasticity for all three series. The bottom part of Table 1
presents sample autocorrelations and (lagged) cross-correlations between the FNI,
FESX and FSP returns. It should be noted that FNIt and FSPt−1 as well as FESXt

and FSPt−1 are negatively correlated.

In order to analyse the volatility transmission, we take the logarithm of the volatil-
ity measures which were computed according to Eqs. (4) and (5), respectively. We
build on a result obtained by Andersen, Bollerslev, Diebold, and Labys (2003),
who demonstrate in an empirical study that using ln(σ) should entail approximate
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Table 2: Descriptive Statistics of log-Volatilities (ABDL)
FNI FESX FSP

Mean −0.0700 −0.2152 −0.1006
Median −0.0538 −0.2875 −0.1378
Maximum 0.4223 0.5811 0.6049
Minimum −0.5033 −0.7183 −0.5465
Variance 0.0253 0.0616 0.0287
Skewness −0.2100 0.6667 1.0131
Kurtosis 2.6119 2.5742 4.2168
Jarque-Bera 12.2654 74.2011 213.0982

(0.0022) (< 0.0001) (< 0.0001)
Sample Correlations
FNIt 1.0000
FESXt 0.6144 1.0000
FSPt 0.5506 0.7982 1.0000
FNIt−1 0.7711 0.6030 0.5410
FESXt−1 0.6123 0.8947 0.7800
FSPt−1 0.5403 0.8007 0.8031

The table provides descriptive statistics for the daily volatility mea-
sure as proposed by Andersen, Bollerslev, Diebold, and Labys (2003)
in logarithms of the Dow Jones Euro Stoxx 50 future, the S&P500
future and the Nikkei 225 future. The Jarque-Bera test for normality
is presented together with p-values, which are given in parentheses.

normality, which allows standard estimation techniques to be applied in a straight-
forward manner and guarantees that forecasts of the realised volatility are positive.

Tables 2 and 3 provide descriptive statistics for the two log-volatility time series of
the FNI, FESX and FSP. We find that there is no qualitative difference between the
ABDL and BI volatility measures. It should be noted that negative values of the
mean, median and minimum are direct results of the logarithmic transformation
employed. Skewness and kurtosis measures and the associated Jarque-Bera test, in
particular for the FESX and FSP, show a significant deviation from the normality
assumption. However, for the raw, non-transformed volatility series the associated
measures (not reported) indicated an even stronger deviation from normality.

The bottom part of Tables 2 and 3 presents sample autocorrelations and (lagged)
cross-correlations between the FNI, FESX and FSP log-volatilities. For the volatil-
ity measures they are substantially higher than in the case of the return series (cf.
Table 1), suggesting that the interdependence of the volatilities might be more pro-
nounced than dependence among the returns.
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Table 3: Descriptive Statistics of log-Volatilities (BI)
FNI FESX FSP

Mean −0.0706 −0.2205 −0.1133
Median −0.0544 −0.2862 −0.1482
Maximum 0.4793 0.7597 0.6004
Minimum −0.6945 −0.8541 −0.6237
Variance 0.0263 0.0692 0.0337
Skewness −0.3143 0.6465 0.7846
Kurtosis 3.0510 2.8733 3.6524
Jarque-Bera 15.1287 64.0098 110.0881

(0.0005) (< 0.0001) (< 0.0001)
Sample Correlations
FNIt 1.0000
FESXt 0.5988 1.0000
FSPt 0.5348 0.7860 1.0000
FNIt−1 0.7136 0.5897 0.5183
FESXt−1 0.5857 0.8544 0.7598
FSPt−1 0.5376 0.7852 0.7975

The table provides descriptive statistics of the daily volatility measure
as proposed by Bollen and Inder (2002) in logarithms of the Dow
Jones Euro Stoxx 50 future, the S&P500 future and the Nikkei 225
future. The Jarque-Bera test for normality is presented together with
p-values, which are given in parentheses.
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IV. Empirical Results

In order to estimate the SVAR model in Eq. (1) for the standardised returns and the
volatilities, it is necessary to specify a priori the order in which the three markets
enter our equations. We will set the Asian market as the first market of a specific
trading day t , followed by the European market and the US market, such that in
our generic notation x t =

�
xF N I ,t xF ESX ,t xF SP,t

�′
. Alternative orderings are possi-

ble by setting either Eurex or the CME as the first market on trading day t . The
estimation results obtained from these different models are qualitatively similar.
Subsequently, we therefore report only the results obtained with the specification
where the SGX is ordered first. As a check for robustness of the empirical results
presented below, we additionally split the sample but found no qualitatively differ-
ent results.

IV.1. Modelling daily returns

The first model we consider is the SVAR model for the devolatised returns r̃ using
the three time series in the ordering described above. Raw returns are standardised
using the realised volatility measure proposed by Andersen, Bollerslev, Diebold,
and Labys (2003). Standardisation with the daily volatility measure devised by
Bollen and Inder (2002) does not alter the conclusions. The lag length is set to p = 1
as suggested by an information criterion. The estimation results are presented in
panel 1 of Table 4.

We find a strong and statistically significant negative return spillover from the previ-
ous day’s trading in the United States to the daytime returns of the Nikkei 225 (see
the second column in Table 4). This finding implies that, on average, if CME closes
with a high (positive) return, subsequent trading at SGX realises a substantially
negative return. This result is consistent, however, with the sample correlations
presented in Table 1 and with results reported in other studies, such as Fung, Lam,
and Lam (2010), who attribute the negative correlation to an overreaction of the
Asian markets to US information. In a similar way, the daytime returns from trad-
ing day t in Asia exert a significant positive influence on the returns in the morning
trading in Europe on the same trading day, as can be seen from the third column
in Table 4. To the best of our knowledge, such a result has not been reported else-
where in the literature before. Less surprising and frequently documented is the
result that the only market which does not exhibit significant mean spillovers is the
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Table 4: Model for daily returns

Panel 1: SVAR coefficient estimates
FNI FESX FSP

const 0.0204 −0.0107 0.0440
(0.5438) (0.7483) (0.1920)

FNIt 0.0000 0.0899 0.0245
(-) (0.0073) (0.4495)

FESXt 0.0000 0.0000 0.0401
(-) (-) (0.2322)

FSPt 0.0000 0.0000 0.0000
(-) (-) (-)

FNIt−1 −0.0302 0.0110 0.0595
(0.3480) (0.7455) (0.0667)

FESXt−1 0.0377 −0.0555 −0.0304
(0.2509) (0.0936) (0.3600)

FSPt−1 −0.1469 −0.0523 −0.0077
(< 0.0001) (0.1039) (0.8177)

Panel 2: Long-run variance decomposition
FNI FESX FSP

FNI 0.9817 0.0007 0.0176
FESX 0.0107 0.9846 0.0047
FSP 0.0049 0.0024 0.9930

In panel 1, the table provides the structural VAR estimates for
the return model given in Equation (2), where the variables are
ordered as FNI - FESX - FSP. P-values are given in parentheses.
Panel 2 presents the long-run variance decomposition accord-
ing to Hasbrouck (1991). It is to be read as the proportion of
the forecast error variance of the market in row i that is due to
the variance of the market in column j .
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US market.

We also find support in our results for the often documented negative autocorre-
lation of (index) return series. All coefficient estimates that make up the the main
diagonal of the lag one coefficient matrix B1 are negative, but only one of them is
statistically significant at a conventional level.

Turning to the impulse response analysis, we find that foreign market shocks are
generally weak and die out quickly. Panels 1-3 in Figure 2 present impulse responses
to one-standard-deviation shocks together with bootstrapped two-standard-errors
confidence bounds. The first panel contains the response of FNI (left), FESX (cen-
tre) and FSP (right) to a shock to the FNI. While such a shock will affect the home
market only on the same day and the US market not at all, it does have a significant
impact on the European market’s return variance. On the other hand, innovation
shocks in Europe (second panel) do not have a significant impact on either of the
other two markets. The last panel presents the reaction to a shock in the USA. Its
impact is significantly perceivable in the SGX market, which trades subsequently,
but no longer in the European market.

The fact that the effect of an innovation shock in one market on day t dies out
quickly would also be supported by the cumulative impulse response functions
(which are not provided to save space). The reason is that from t + 1 to t + 2, the
difference is already almost no longer perceptible.

Our analysis allows us to conclude the following. We find small, diminishing and
short lived mean spillover effects from the USA to Japan and from Japan to Europe,
following the chronological ordering as expected. Moreover, the US market turns
out to be robust against return spillovers. A possible explanation may be the dif-
fering speed of information processing in the USA compared to Japan and Europe,
which is compatible with the theoretical models discussed in the introduction.

IV.2. Volatility modelling

The second model we examine is the SVAR model for the two different volatility
measures σ (see Eqs. (4) and (5)), once again using the ordering as set out above. In
order to capture the possible long memory property of the log realised volatility
time series, Andersen, Bollerslev, and Diebold (2007) suggest to resort to the HAR-
RV class of volatility models suggested by Corsi (2009). We find that the long
persistence in our data is described best by a model which includes daily, weekly

Page 16



Working Papers on Global Financial Markets No. 20

Figure 2: Return Model: Impulse Response

The graphs depict the response of the FNI (left column), FESX (middle column), and FSP returns
(right column) to a one standard deviation shock in Singapore (first row), Europe (second row), and
the USA (third row), respectively. The dashed lines are two standard error bounds.
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and half-yearly lags. We therefore specify a VAR which includes lags p = (1,5,120).
The results presented in the following are not altered if the half-yearly lag is, for
example, specified as lag 125 or 130. It also turns out that the estimation results
based on the ABDL and the BI volatility measures are not qualitatively different.
We conclude from this finding that both measures efficiently account for possible
microstructure effects and that our results are robust with respect to the way in
which the volatility series is computed. We therefore limit the presentation and
discussion of the results to those based on the realised volatilities in Eq. (4).

We find significant and substantial volatility spillover effects from the foreign mar-
kets to the home market, which stresses that the dependence of the markets’ volatil-
ities is more pronounced than the interdependence of their returns. This finding
has already been reported in the literature (see, for example, Harrison and Moore,
2009). In general, foreign volatility tends to increase volatility in the home market
(note that the negative parameter estimates are never significant with the only ex-
ception being the intercept of the FESX). Further, the impact is felt immediately,
i.e. both the size of the coefficient estimates and the significance of foreign market
influence are generally weak for lags higher than 1. We also document relatively
strong volatility persistence, which is reflected in the positive and significant pa-
rameter estimates on the main diagonal of the coefficient matrices B l . In short, our
results indicate that volatility spillovers from one market to the next exist which
affect the volatility of the upstream market immediately. When looking back more
than 24 hours, the volatility of the home market dominates the effect on the re-
spective volatility, which supports the notion of volatility persistence.

Considering the relative sizes of the coefficient estimates, in particular those col-
lected in the matrices B0 and B1, we find that volatility in Europe is more sensitive
to influences from foreign market volatility than the other two markets considered.
This may be due to the fact that we only model the volatility in morning trading
in Europe. In particular, volatility from the previous trading day in the US market
seems to exert a strong positive effect on the European market. Also, the European
volatility has a positive and significant impact on the same day volatility in the US
and the next day’s volatility in the Japanese market.

Impulse response (IR) functions for the volatility model based on ABDL realised
volatility are presented in Figure 3 together with bootstrapped two-standard-errors
confidence bands. It is evident from the IR functions depicted that volatility shocks
persist for an extended period of time, as the shocks’ impact in general declines
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Table 5: Model for daily volatilities (ABDL)
Panel 1: SVAR coefficient estimates

FNI FESX FSP

const 0.0090 −0.0360 −0.0239
(0.5381) (0.0147) (0.1086)

FNIt 0.0000 0.0836 0.0501
(-) (0.0194) (0.1574)

FESXt 0.0000 0.0000 0.1703
(-) (-) (< 0.0001)

FSPt 0.0000 0.0000 0.0000
(-) (-) (-)

FNIt−1 0.5441 −0.0165 0.0243
(< 0.0001) (0.6405) (0.4884)

FESXt−1 0.1091 0.4725 0.0566
(0.0004) (< 0.0001) (0.1066)

FSPt−1 −0.0354 0.2519 0.2207
(0.3079) (< 0.0001) (< 0.0001)

FNIt−5 0.1713 0.0221 −0.0440
(< 0.0001) (0.4676) (0.1437)

FESXt−5 −0.0303 0.1640 0.0107
(0.3078) (< 0.0001) (0.7266)

FSPt−5 0.0947 0.0266 0.1095
(0.0095) (0.4703) (0.0015)

FNIt−120 −0.0335 −0.0062 0.0145
(0.2241) (0.8283) (0.6119)

FESXt−120 0.0577 0.0425 −0.0199
(0.0400) (0.1340) (0.4978)

FSPt−120 −0.0337 0.0968 0.0948
(0.3247) (0.0055) (0.0081)

Panel 2: Long-run Variance Decomposition
FNI FESX FSP

FNI 0.9048 0.0711 0.0254
FESX 0.0427 0.8599 0.0991
FSP 0.0309 0.1579 0.8154

In panel 1, the table provides the structural VAR estimates for
the volatility model given in Equation (2), where the volatilities
are calculated as proposed by Andersen, Bollerslev, Diebold, and
Labys (2003) and are ordered as FNI - FESX - FSP. P-values are
given in parentheses. Panel 2 presents the long-run variance de-
composition according to Hasbrouck (1991). It is to be read as
the proportion of the forecast error variance of the market in
row i that is due to the variance of the market in column j .
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slowly. The longest lasting effect is documented for the home market where it takes
up to 15 trading days until a shock is not significantly felt any longer. Otherwise,
the IR analysis underpins the findings discussed above. In particular, it clearly
depicts the significant impact of the European markets morning trading on the US
volatility.

IV.3. Market leadership

Comparing the results of the mean model and the volatility model enables us to
conclude that spillovers are more pronounced in the realised variance of the index
futures than in their returns. This is supported by the decomposition of the long-
run variance based on the approach taken by Hasbrouck (1991). Consider panel 2
in Tables 4 and 5: it emerges that in the long run, 99% of the return variance of a
market is determined by information events in the home market. The contribution
of foreign markets is negligible. This is surprisingly also the case for events taking
place in the United States. As far as the ABDL realised volatilities are concerned,
the contribution of foreign markets to the volatility’s variance in the home market
can be as high as 15.79%, as it is in the case of the FESX’s contribution to the
FSP variance. The Japanese market’s volatility seems to be the least susceptible to
foreign influences with its own contribution being as high as 90.48%. Results based
on BI volatilities suggest the same conclusions.

V. Model Evaluation

An important aspect when deciding to model returns and volatilities separately in-
stead of using, for example, a GARCH model, was Andersen, Bollerslev, Diebold,
and Labys’s (2003) finding that forecasts based on realised volatility were more accu-
rate than those based on other forecast methods. In order to check the forecasting
ability of our model, we, too, perform a simple forecast evaluation. We evaluate
whether an out-of-sample return forecast based on the estimated SVAR models can
compete with a univariate modelling approach forecasting the devolatised return
and the realised volatility separately, and compare these two forecasts to a univari-
ate GARCH(1,1)-model-based forecast, as well as a forecast based on a univariate
AR(1) model. Note that the evaluation is intended to compare a forecast of the log-
returns, not the devolatised returns. We therefore undo the devolatisation when
using the multivariate and univariate models, i.e. we forecast the volatility and the
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Figure 3: ABDL Volatility Model: Impulse Response

The graphs depict the response of the FNI (left column), FESX (middle column), and FSP volatilities
(right column) to a unit shock in Singapore (first row), Europe (second row), or the USA (third row),
respectively. The dashed lines are two standard error bounds.
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standardised returns separately and combine the results according to Eq. (3). In
order to account for distributional aspects of the log-returns, both the GARCH
model and the univariate AR(1) model are estimated by maximum likelihood as-
suming t-distributed errors.

To evaluate the accuracy of the forecast we use the Mean Absolute Error (MAE),
the Mean Absolute Percent Error (MAPE) and the Mean Percent Error (MPE)
measures (e.g. Makridakis, Wheelwright, and Hyndman, 1998) which are defined
as

M AE =
1
s

s∑
t=1

���rt − r �t
��� · 100

M AP E =
1
s

s∑
t=1

�����
rt − r �t

rt

����� · 100

M P E =
1
s

s∑
t=1

rt − r �t
rt

· 100

where s is the forecast horizon and r �t is the forecast of rt .

The evaluation measures are reported in Table 6. Detailed estimation results of
the different models are not reported, but are available from the authors upon
request. We find that the multivariate model always performs better than any of the
univariate models, with the only exception of the FSP two-step-ahead forecast. To
justify the using of our estimation procedure in preference to the GARCH or AR
approaches, consider the differences between these models in the MAPE of the one-
step-ahead forecast. When modelling mean and volatility separately, the forecast of
the FNI based on this approach is better by almost 5 percentage points than the
forecast based on the GARCH model, and still slightly better than the forecast
based on the AR(1)-model. In the case of the FESX forecast, the model is only
slightly worse (by 0.5 percentage points) than the GARCH model and performs
slightly better than the AR(1)-model. In the case of the FSP, the univariate model
performs worse than the GARCH or AR model. However, in the two-step-ahead
forecast this is reversed, and it performs decisively better. Forecasts errors of the
FNI and FESX remain approximately stable in the two-step-ahead forecast.

To summarise the findings of the forecast evaluation, we can state that there are
clearly two advantages in our modelling approach. First, the forecast based on the
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Table 6: Out-of-sample Forecast Evaluation

Panel 1: one-step-ahead forecast
Multivariate Univariate Univariate Univariate

Model Model GARCH(1,1) AR(1)

M
A

E FNI 0.6297 0.7927 0.8280 0.7922
FESX 0.5238 0.5950 0.5921 0.5953
FSP 0.2122 0.3255 0.2803 0.2574

M
A

PE FNI 80.8106 101.7364 106.2602 101.6713
FESX 89.5863 101.7648 101.2663 101.8158
FSP 67.3212 103.2738 88.9394 81.6681

M
PE

FNI 80.8106 101.7364 106.2602 101.6713
FESX 89.5863 101.7648 101.2663 101.8158
FSP 67.3212 103.2738 88.9394 81.6681

Panel 2: two-steps-ahead forecast
Multivariate Univariate Univariate Univariate

Model Model GARCH AR(1)

M
A

E FNI 1.5971 1.6845 1.7073 1.6840
FESX 0.3510 0.3900 0.3895 0.3898
FSP 0.1688 0.1971 0.1911 0.1905

M
A

PE FNI 90.4573 101.1500 103.6133 101.1090
FESX 90.4135 98.2095 98.4466 98.0652
FSP 112.8702 95.0450 108.7223 118.7869

M
PE

FNI 90.4573 101.1500 103.6133 101.1090
FESX 90.4135 98.2095 98.4466 98.0652
FSP 112.8702 95.0450 108.7223 118.7869

The table provides a comparison of the out-of-sample forecast evaluation for the
separate VAR models for mean and volatility (Multivariate Model), their uni-
variate counterpart (Univariate Model), a univariate GARCH(1,1) model with
t-distributed errors (Univariate GARCH(1,1)) and a univariate AR(1) model
with t-distributed errors (Univariate AR(1)). Panel 1 contains the evaluation of
the one-step-ahead forecast, while panel 2 contains the two-steps-ahead forecast.
MAE is the mean absolute error, MAPE is the mean absolute percent error and
MPE is the mean percent error as defined in section V.
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strategy of modelling returns and variances separately pays off in terms of forecast
accuracy, in particular when it comes to longer horizon forecasts. Second, by tak-
ing this approach we avoid the delicate issues that arise when using a multivariate
GARCH model within the context of a structural VAR approach, especially the
issues concerning the identification of a structural GARCH process.

VI. Concluding remarks

Our paper contributes to the fast-growing body of literature in empirical financial
economics dedicated to the investigation of international financial market linkages.
We propose a new modelling strategy designed to capture the short-run daytime
spillover dynamics of the main financial centres around the globe. Specifically, we
employ structural vector autoregressive models for the mean and the volatilities
of the daytime returns, which draw their structure from the natural chronologi-
cal ordering of the trading in the three markets used in our study (Europe, USA
and Japan). This allows us to provide impulse response and variance decomposi-
tion analysis, as well as Granger-type causality testing, within this well-established
framework.

For the mean system, we find only short-lived significant spillovers from the USA
to Japan and from Japan to Europe, albeit in a small order of magnitude. It emerges
that the Japanese market’s returns are the most susceptible to foreign information,
originating essentially from the United States. The European market, on the other
hand, reacts only to information spilling over from the Japanese market. This
indicates that, while the US and European markets are closed, the markets in Asia
efficiently process information which then spill over to Europe, the market which
opens first after Asian markets close. The US market, however, seems to have a
particular position in that we do not find spillovers either from Europe or from
Japan to the USA.

As regards volatility spillovers, we find that all markets react more intensely to the
volatility of the previous market than in the case of the return spillovers. The effect
originating in foreign markets dies out within 2-3 trading days; the influence of the
home market is persistent, however, for approximately 10 days. In contrast to the
findings for the mean model, the timing seems to be less important for volatility
spillovers as it is not always the market which was open directly before that exerts
the greatest influence. Our findings are robust with respect to the way the volatility
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series is computed.

The dynamical systems estimated here can ultimately be employed to trace and
forecast the impact of a shock in one of the world’s leading markets on the other
markets, as well as to generate a forecast of the returns in the markets. We find that
the contribution of the separate modelling approach in the multivariate context is
threefold. First, the multivariate structure allows for a more accurate forecast of
the return series than a univariate approach. Second, the (univariate) separation of
returns and volatilities and their detached forecast turns out to perform, on average,
better than a univariate forecast based on a GARCH model or an AR model. And
finally, the application of structural VARs is econometrically easier to manage than
using multivariate GARCH models within this structural context. All in all, the
model seems able to trace the linkages between international stock markets, and
highlights once again the interdependence of global financial markets.

Page 25



Working Papers on Global Financial Markets No. 20

References

Admati, A. R., and P. Pfleiderer, 1988, A Theory of Intraday Patterns: Volume and

Price Variability. The Review of Financial Studies, 1, 3–40.

Andersen, T. G., T. Bollerslev, P. F. Christoffersen, and F. X. Diebold, 2006, Practi-

cal Volatility and Correlation Modeling for Financial Market Risk Management.

in Mark Carey, and René M. Stulz (ed.), The Risks of Financial Institutions .

chap. 17, pp. 513 – 548, University of Chicago Press, Chicago, Illinois.

Andersen, T. G., T. Bollerslev, and F. X. Diebold, 2007, Roughing It Up: Including

Jump Components in the Measurement, Modeling, and Forecasting of Return

Volatility. The Review of Economics and Statistics, 89, 701–720.

Andersen, T. G., T. Bollerslev, and F. X. Diebold, 2010, Parametric and Nonpara-

metric Volatility Measurement. in Yacine Aït-Sahalia, and Lars Peter Hansen

(ed.), Handbook of Financial Econometrics . pp. 67–138, Elsevier Science Ltd,

Amsterdam.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys, 2003, Modeling and

Forecasting Realized Volatility. Econometrica, 71, 529–626.

Baur, D., and R. C. Jung, 2006, Return and volatility linkages between the US

and the German stock market. Journal of International Money and Finance, 25,

598–613.

Bollen, B., and B. Inder, 2002, Estimating daily volatility in financial markets uti-

lizing intraday data. Journal of Empirical Finance, 9, 551–562.

Corsi, F., 2009, A Simple Approximate Long-Memory Model of Realized Volatil-

ity. Journal of Financial Econometrics, 7, 174–196.

Diebold, F. X., and K. Yilmaz, 2009, Measuring Financial Asset Return and Volatil-

ity Spillovers, With Application to Global Equity Markets. The Economic Jour-

nal, 119, 158–171.

Page 26



Working Papers on Global Financial Markets No. 20

Fung, A. K.-W., K. Lam, and K.-M. Lam, 2010, Do the prices of stock index futures

in Asia overreact to U.S. market returns?. Journal of Empirical Finance, 17, 428–

440.

Gallo, G. M., and E. Otranto, 2008, Volatility spillovers, interdependence and co-

movements: A Markov Switching approach. Computational Statistics & Data

Analysis, 52, 3011–3026.
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