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Erklärung über frühere oder laufende Promotionsverfahren 89

iv

Demo Version, http://www.verydoc.com and http://www.verypdf.comDemo Watermark



List of Figures

1.1 Essential fatty acids . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Glycerolipids . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Phospholipids . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 cis and trans fatty acid . . . . . . . . . . . . . . . . . . . . . 8

1.5 Macrolide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Mayolene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Jasmonic acid . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Volicitin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.9 Ecdysone-22-fatty acyl ester . . . . . . . . . . . . . . . . . . 17

1.10 Steculic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Survival rates of two heliothines on minimal diets: Trial 1 . . 35

2.2 Performance of two heliothines on minimal diets: Trial 1 . . 36

2.3 Survival rates of two heliothines on minimal diets: Trial 2 . . 37

2.4 Performance of two heliothines on minimal diet series: Trial 2 38

2.5 FA composition of pinto bean diets . . . . . . . . . . . . . . 39

2.6 Survival rates of larvæ on pinto bean diets . . . . . . . . . . 40

2.7 Pupal weights of two heliothines on pinto bean diets . . . . . 41

2.8 FA composition of H. virescens reared on pinto bean diets . 42

2.9 FA composition of H. subflexa reared on pinto bean diets . . 43

3.1 FA composition of H. virescens and corresponding eggs . . . 51

3.2 Relationship between FA composition of mother and egg . . 52

3.3 Effect of timing of α-18:3 acquisition . . . . . . . . . . . . . 53

v

Demo Version, http://www.verydoc.com and http://www.verypdf.comDemo Watermark



3.4 Accumulated α-18:3 and successful eclosion of H. virescens . 53

4.1 Fatty acid composition of tomato leaves. . . . . . . . . . . . 58

4.2 Mean relative growth rates of larvæ on tomato plants . . . . 60

4.3 Final weights of larvæ grown on tomato plants . . . . . . . . 60

4.4 Survival rates of of larvæ on tomato plants . . . . . . . . . . 62

4.5 Performance of larvæ on tomato plants . . . . . . . . . . . . 63

5.1 Synthesis of 2-fluorolinolenic acid methyl ester . . . . . . . 68

vi

Demo Version, http://www.verydoc.com and http://www.verypdf.comDemo Watermark



List of Tables

2.1 Composition of standard pinto bean diet . . . . . . . . . . . 30

2.2 Composition of corn soy blend diet . . . . . . . . . . . . . . 31

2.3 Composition of minimal diet . . . . . . . . . . . . . . . . . . 31

vii

Demo Version, http://www.verydoc.com and http://www.verypdf.comDemo Watermark



Acknowledgements

I would like to thank:

• David Heckel for the opportunity to pursue my PhD degree, for the

freedom to try unconventional approaches in solving my research prob-

lems, and for always sharing his vast knowledge of the field.

• Yannick Pauchet for keeping me motivation, focused, and in good spir-

its, even during stressful times.

• Bianca Ulitzsch for technical and moral support.

• Xiangfeng Jing for valuable advice in preparing the insect diets.

• Lisa Knolhoff for help with statistics, for looking over manuscripts,

and for moral support.

• Juliette Courtiade and Maripaz Celorio for moral support.

• Crystal Snyder and Myron Zalucki for valuable critical advice on manuscripts.

• Ariadne Tan-Kristanto for her keen eye for detail and her help in proof-

reading manuscripts.

• Katrin Salzmann-Bohmer and Ramona Taubert for their help with

getting me settled in Jena as well as with numerous administrative

tasks.

• Ellen Hascher for helping to improve my German language skills.

viii

Demo Version, http://www.verydoc.com and http://www.verypdf.comDemo Watermark



• Regina Seibt for overseeing the insect rearing.

• Kim Freese, Stephanie Fuhr, and Alexander Wallman for their help

with insect rearing and lending a hand with large experiments.

• Gregg Howe for useful discussion and for providing plant material.

• John Hunt and Andrew Davis for their help and advice with statistical

analyses.

• Sybille Lorenz and Michael Reichelt for assistance with GC-MS anal-

ysis and Birgit Schulze for helpful advice in interpreting the data.

• Astrid Groot and Ollie Ingalls for their help in arranging shipping of

insects and diet ingredients.

• Paulina Dobrowska for helping me feel at home in Jena, and for advice

on chemical synthesis.

• Fabio Rui and Guillermo Jimenez-Aleman for their help with chemical

synthesis.

• Henriette Ringys-Beckstein and Domenica Schnabelrauch for miscel-

laneous technical assistance.

• My fellow students from the ENT group, in particular Kirsten Evertz,
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Abstract

Awareness of the nutritional benefits of alpha-linolenic acid (α-18:3) has

increased over the last few decades, although there is less widespread recog-

nition of the importance of this and other polyunsaturated fatty acids to

Lepidoptera. Like most insects, Lepidoptera cannot synthesise α-18:3, and

it must therefore be obtained from dietary sources. Linolenic acid deficiency

typically has little effect on larval growth, but leads to abnormalities in

pupation and adult eclosion.

Species may, however, differ in their α-18:3 requirements and in order to

compare those of Heliothis virescens (a generalist) and Heliothis subflexa (a

specialist on Physalis), two types of artificial diet, with varying concentra-

tions of α-18:3 were prepared. Developmental characteristics (i.e., pupation

and eclosion rates) as well as the fatty acid (FA) content of the adults were

monitored. Although H. virescens and H. subflexa responded differently to

alterations in α-18:3 content, it remains essential for both species. Thus, in

contrast to a previous report, the specialist H. subflexa does indeed require

dietary α-18:3.

The role of the timing of α-18:3 acquisition in the development of H. virescens

was further investigated. Larvæ were reared on a range of α-18:3 supple-

mented diets. A positive correlation was found between the α-18:3 content

of the mother and the molar composition of the eggs she produced. This

suggests the passive transfer of α-18:3 from females to their eggs. Addition-

ally, larvæ were started on α-18:3 containing diet and transferred to a defi-
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cient diet, or transferred to α-18:3 containing diet after being initially raised

on deficient diet. Insects obtaining α-18:3 later in development performed

better than those obtaining α-18:3 earlier in development. Although the

maternally transferred α-18:3 may be sufficient for the growth of neonates,

the α-18:3 acquired during later stages appears to be more important to

successful development and pupal emergence.

In order to investigate differences in α-18:3 in a natural diet, Helicoverpa

armigera larvæ were reared on the leaves of wild type tomato plants, jas-

monic acid (JA) insensitive plants, and plants with reduced levels of α-18:3

as a result of mutatation in the leFAD7 gene. On the wild type plants, larvæ

had a reduced growth rate, and none survived to pupation. Larvæ on the

JA insensitive plants performed better (i.e., higher growth rate, higher pupal

weights, and decreased time to pupation and eclosion) than those reared on

the α-18:3 deficient plants. While decreased α-18:3 contents may offer the

plants some protection against herbivory, the inherent JA induced defences

are likely to be more effective.

Finally, as part of a multidisciplinary approach to the investigation of the

functions and requirements of α-18:3 in Lepidoptera, we describe the facile

synthesis of 2-fluorolinolenic acid using readily available thyme seed oil as a

starting material.

xi
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Zusammenfassung

Obwohl die ernährungsphysiologische Relevanz der Linolensäure (α-18:3)

in den letzten Jahrzehnten an Bedeutung gewonnen hat, gibt es für Lep-

idopteren deutlich weniger Anerkennung der Relevanz von α-18:3 und an-

derer mehrfach ungesättigter Fettsäuren. Die meisten Insekten sind nicht

imstande α-18:3 herzustellen und müssen sie daher durch die Ernährung

aufnehmen. Ein α-Linolensäuremangel hat nur geringe Auswirkung auf das

Larvenwachstum, führt jedoch zu Abnormalitäten beim Verpuppen bzw. bei

der Imago.

Verschiedene Arten können einen unterschiedlichen Bedarf an Linolensäure

besitzen. Um den Linolensäurebedarf von Heliothis virescens, ein General-

ist, mit dem Bedarf von Heliothis subflexa, einem Spezialist auf Physalis, zu

vergleichen, wurden zwei Arten künstlicher Ernährung mit unterschiedlichen

Mengen an α-18:3 hergestellt. Verschiedene entwicklungsbedingte Merk-

male, wie die Verpuppungs- und Schlüpfungsanteile der Larven sowie die

Fettsäureprofile der Adulten wurden kontrolliert. Obwohl H. virescens und

H. subflexa unterschiedlich auf Änderungen im α-Linolensäuregehalt der

Nahrung reagieren, bleibt die Fettsäure trotzdem essentiell für beide Arten.

Im Gegensatz zu einem früheren Bericht, ist der Linolensäurebedarf von

H. subflexa nicht niedriger als der Bedarf von H. virescens und kann weit-

erhin den niedrigeren Anteil der Fettsäure-Aminosäure-Konjugate in den

Oralsekrete im Vergleich zu H. virescens nicht nachweisen.

Zudem wurde der Einfluss des Zeitpunkts der Linolensäureaufnahme auf die

xii
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Entwicklung von H. virescens erforscht. Larven wurden auf α-Linolensäure

angereicherter Nahrung gezüchtet, die sich in den Gehalten der α-Linolensäure

unterschied. Eine positive Korrelation zwischen dem α-Linolensäuregehalt

des Muttertiers und des α-Linolensäureprofils der entsprechenden Eier kon-

nte festgestellt werden. Daraus lässt sich schließen, dass α-18:3 passiv von

Weibchen zum Ei transferiert wird. Zudem wurden die Larven, welche mit

einer α-Linolensäurearmen Ernährung gefüttert wurden auf eine mit α-18:3

angereicherte Ernährung umgestellt oder umgekehrt. Die Larven, die α-18:3

in den späteren Entwicklungsstadien erhielten, waren leistungsfähiger in der

weiteren Entwicklung als die Larven die α-18:3 in den früheren Entwick-

lungsstadien erhielten. Schlussfolgern lässt sich feststellen, dass maternal

übertragene α-18:3 für das Anfangswachstum der Neugeborenen ausreicht,

jedoch später erhaltene α-18:3, zum erfolgreichen Verpuppen und Schlüpfen

der Larven benötigt wird.

Um Unterschiede in Linolensäuregehalten auf natürlicher Ernährung zu un-

tersuchen, wurden Helicoverpa armigera Larven auf Blättern einer Wildtyp

Tomate sowie auf Jasmonsäure-unempfindlichen Pflanzen, und Pflanzen mit

einem verringerten Linolensäuregehalt, die durch eine Mutation des Genes

leFAD7 entstand, gezüchtet. Auf den Wildtyppflanzen hatten die Larven

eine niedrigereWachstumsrate und es fand keine Verpuppung statt. Die Lar-

ven auf den Jasmonsäure-unempfindlichen Pflanzen hatten eine bessere Leis-

tungsfähigkeit als die, die auf die Linolensäure-reduzierten Pflanzen gezüchtet

wurden. Obwohl verringerte Linolensäuregehalte die Pflanzen etwas gegen

Herbivorie geschützt werden, sind die inhärente Jasmonsäure-induzierte Vertei-

digungen voraussichtlich effektiver.

Schlussendlich, als Teil eines fachübergreifenden Ansatzes um die Funktion

und Bedarfs der Linolensäure in Lepidopteren zu erforschen , beschreiben

wir die einfache Herstellung des 2-fluorolinolensäure Methylesters, indem

man Thymiamsamen als Ausgangsmaterial benutzt.

xiii
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Chapter 1

A review of fatty acid

metabolism and function in

Lepidoptera and current and

future applications

1.1 Introduction

Awareness of the nutritional benefits of polyunsaturated fatty acids (PUFAs)

has increased over the last few decades; however, there is less widespread

recognition of the importance of PUFAs, particularly alpha-linolenic acid

(α-18:3) (Figure 1.1), to Lepidoptera. Alpha-linolenic acid is essential for

successful development; when larvæ consume insufficient amounts, pupæ are

deformed and adults that do fully emerge often have malformed wings.

De Moraes and Mescher (2004) published a study comparing two closely

related species, Heliothis virescens (tobacco budworm), a generalist, and

Heliothis subflexa, a specialist, and suggested that unlike H. virescens and

most other Lepidoptera, H. subflexa does not have a dietary requirement for

α-18:3. If confirmed, these results would make H. subflexa unique among

1
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1.1. Introduction

Lepidoptera in being able to synthesise its own α-18:3, and would have

considerable implications with respect to the prevailing understanding of

lepidopteran FA requirements. This issue will be further explored in Chapter

2.

Although Lepidoptera, especially those from the family Noctuidæ can be se-

rious agricultural pests, the study of FAs and their metabolism in this order

remains a relatively small niche and has, at times, stagnated. Recent tech-

nological advances have facilitated resurgences in the field and invalidated

previous doctrines. For example, it was once thought that there were no

long chain PUFAs in Lepidoptera. More sensitive analytical tools (e.g., GC-

MS), have allowed for the detection of FAs and derivatives that, although

only present in low concentrations, play a substantial role in lepidopteran

physiology.

As in other insects and animals, the FA profile of Lepidoptera is largely influ-

enced by diet. Levels of FAs can vary substantially throughout development,

and are heavily influenced by environmental factors.

As Parnova (1986) was the last to review insect FA in great depth, an up-to-

date review of lepidopteran FAs is overdue. This review intends to fill that

gap. Fatty acid metabolism, various metabolites, and their putative roles in

Lepidoptera, as well as the factors that affect them, will be described.

While linoleic acid (18:2) (Figure 1.1) is also considered essential to Lepi-

doptera, discussion will centre on α-18:3 and the absolute requirements of

Lepidoptera. Where relevant, knowledge of α-18:3 metabolism and function

in other insect orders, as well as in other animals, will be included.

Potential applications of increased knowledge of lepidopteran FAs will be

described. The majority of these involve developing more effective pest

control strategies, since resistance towards insecticides is a growing concern

for many species. FAs derived from Lepidoptera also have implications in

industry and health.

2

Demo Version, http://www.verydoc.com and http://www.verypdf.comDemo Watermark



1.2. Fatty acid structure and nomenclature

Although substantial progress has been made, some fundamental questions

remain unresolved, most importantly if there are species that indeed have

little or no requirement for α-18:3, or have retained/evolved the genes allow-

ing them to synthesise α-18:3 de novo. This review will therefore conclude

with a discussion of where FA research in Lepidoptera should head in the

decades to come.

1.2 Fatty acid structure and nomenclature

In order to properly discuss their differing properties, the nuances among

the structures and nomenclature of FAs, both in their free and esterified

form (i.e., glycerolipids, and glycerophospholipids) will first be discussed.

1.2.1 Fatty acids

Fatty acids are long chain carboxylic acids and are named according to the

number of carbon atoms, which is generally even. The carbon contained

in the carboxyl group is referred to as the delta (∆)-carbon, while the car-

bon at the opposite end is referred to as the omega (ω) or the n-carbon.

Fatty acids may include one or more double bonds and are referred to as

monounsaturated FAs (MUFA) and PUFAs respectively. The double bonds

of most naturally occurring FAs are in the cis- configuration. The major

PUFAs in lepidopteran tissues are 18:2 and α-18:3. Unsaturated FAs are

often grouped according to the position of the first ω- bond (i.e., n-3, n-6,

or n-9 FAs). Lepidopteran FAs may include further modifications including,

but not limited to, branching and hydroxylation.

3
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1.2. Fatty acid structure and nomenclature

HO

O
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Δ1 carbon
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Figure 1.1: Essential fatty acids
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1.3. Lipid metabolism in Lepidoptera

R3

R2

R1

sn-1

sn-3

sn-2

Figure 1.2: Glycerolipids. Monoacylglycerol: R1=fatty acyl, R2= R3=OH
Diacylglycerl: R1= R2=fatty acyl, R3=OH Triacylglycerol R1= R2=
R3=fatty acyl

1.2.2 Esterified fatty acids

Glycerolipids (Figure 1.2) are FA esters of glycerol. Mono-, di-, and tri-

substituted glycerol are referred to respectively as monoacylglycerol (MAG),

diacylglycerol (DAG), and triacylglycerol (TAG). Glycerolipids often include

stereochemical numbering, or (sn) notation to differentiate each of the three

carbons in the glycerol backbone.

Phospholipids (PL) (Figure 1.3) are glycerolipids that contain a phosphoric

acid derivative at the sn-3 position. Phospholipids with only a single FA

moiety at either the sn-1 or sn-2 position are referred to as lysophospholipids.

1.3 Lipid metabolism in Lepidoptera

The fate of dietary FAs, including hydrolysis and mobilisation, will be de-

scribed. As Lepidoptera are also able to synthesise FA de novo, the fun-

damental differences in Lepidoptera, particularly with respect to desaturase

specificity, will be considered.
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Figure 1.3: Phospholipids. R1, R2 = fatty acyl

1.3.1 Metabolism of dietary fatty acids

Most lepidopteran larvæ are phytophagous. Turunen and Chippendale (1989)

suggest that insects that feed on photosynthetic tissues (i.e., leaves) are

adapted to use FA from polar lipids (i.e., PLs). Triacylglycerols, found

in seed oil, tend to be less efficiently hydrolysed. Alpha-linolenic acid is

the most abundant FA absorbed (Turunen, 1990), partially because it is the

most abundant FA found in plant lipids. Fatty acids are absorbed by midgut

cells and converted to DAG and TAG (Canavoso et al., 2004). The acyl-

transferases responsible for DAG and TAG synthesis tend to be selective,

and certain classes of FAs therefore tend to be found at certain positions of

the glycerol backbone. For example, the sn -2 position of TAG is dominated

by 18:2 and α-18:3, while the sn -1/3 positions tend to be dominated by

saturated FAs (Yeboah and Mitei, 2009).

Fatty acids are stored primarily as TAGs in the fat body. During times
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1.3. Lipid metabolism in Lepidoptera

of energy demand (i.e., flight and metamorphosis), FAs are transferred via

the hæmolymph as sn-1,2-DAG. Several pathways for sn-1,2 DAG formation

were postulated, but it was elucidated that TAG is first hydrolysed by fat

body lipases, which preferentially cleave FAs in the sn-1 and 3 positions to

form sn-2-MAG (Ryan and van der Horst, 2000). An acyl group is then

transferred to the sn-2-MAG to generate the sn-1,2-DAG, a reaction that is

catalysed by the enzyme monoacylglycerol acyltransferase (MGAT) (Arrese

et al., 1996).

1.3.2 Lipogenesis

Fatty acid synthesis

Starting from acetyl-CoA (2:0), two carbons at a time are added in a se-

quence of elongation steps that is catalysed by fatty acid synthase (FAS).

As a result, lepidopteran tissues contain even chained saturated FAs (SFAs)

including palmitic acid (16:0) and stearic acid (18:0). Essentially all insects

are thought to have FAs containing up to 20 carbons. Fatty acids contain-

ing more than 20 carbons have been detected, although these may only be

present in relatively low proportions (Stanley-Samuelson and Dadd, 1983).

Propionyl-CoA (3:0) may also serve as a building block for FA biosynthesis,

resulting in odd-carbon-chained FAs including 15:0 and 17:0. Propionyl-CoA

may result from the oxidation of odd-chained FAs, or from the breakdown

of amino acids.

Fatty acid desaturation and elongation

Desaturases catalyse the introduction of double bonds into FAs and are

particularly important with respect to pheromone biosynthesis. Both ∆-9

and ∆-11 desaturases have been studied extensively. For example, Rodriguez

et al. (2004b) have characterised the genes for both enzymes in the African
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1.3. Lipid metabolism in Lepidoptera

cis-tetradecenoic acid 

HO

O

HO

O

trans-tetradecenoic acid 

Figure 1.4: Fatty acids with double bonds in the cis and trans configuration

cotton leafworm (Spodoptera littoralis). Some lepidopteran desaturases are

capable of generating both the cis and trans isomers (often referred to as the

Z and E isomers, respectively in pheromone related literature). Liu et al.

(2002) characterised a desaturase in red-banded leafroller moth (Argyrotænia

velutinana) that produces both the cis and trans isomer of 11-tetradecanoic

acid (Figure 1.4).

Unlike plant desaturases, lepidopteran desaturases are unable to introduce

double bonds at the ∆-12 or ∆-15 carbons. Consequently, Lepidoptera

are unable to synthesise 18:2 and α-18:3 de novo, which is why they must

obtain these FAs from the diet. Some insects, including the cricket Acheta

domesticus (Cripps et al., 1990) and the cockroach Periplaneta americana

(de Renobales et al., 1987) do express a ∆-12 desaturase, which allows them

to synthesise 18:2(n-6) de novo from 18:1. Crickets were grown under axenic

conditions, which rules out the possibility of microbial 18:2 biosynthesis

(Borgeson and Blomquist, 1993).

To date, ∆-12 desaturase activity has not been reported in Lepidoptera.

There have, however, been reports of desaturases with bifunctional activity.

Serra et al. (2006) reported a bifunctional ∆-11 desaturase in S. littoralis.

Palmitic acid (16:0) is converted into trans -10, cis -12 16:2 by desatura-
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1.4. Function of fatty acids in insects

tion and migration of the double bonds. In Thaumetopœa pityocampa, the

processionary moth, Abad et al. (2007) found an enzyme that catalyses the

desaturation of both the ∆-11 and ∆-13 carbons. The possibility of a bi-

functional lepidopteran enzyme that catalyses the desaturation of the ∆-15

carbon can therefore not be ruled out.

Lepidopteran desaturases do, however, facilitate the introduction of double

bonds closer to the ∆-carbon. Most species can therefore elongate and

desaturate dietary 18:2 and α-18:3 to form FAs of 20 carbons or more.

1.4 Function of fatty acids in insects

In addition to universal functions such as energy storage, signalling and

membrane structure, lepidopteran FAs have several unique functions, which

are relevant at all stages of development.

1.4.1 Protection

Fatty acids, either in free form, or as wax esters, are major components of

cuticular wax, which prevents moisture loss and protects the insect against

fungal and bacterial infection (Gibbs, 1998). Golebiowski et al. (2008) pro-

vide evidence that dietary 16:0, 18:0, 18:1, 18:2 were able to protect Galleria

mellonella (Greater Wax Moth) larvæ from fungal pathogens. These FAs

tended to fluctuate during the final instar, and larvæ were more susceptible

to infection when the FAs were present at decreased levels. Hoch et al. (2002)

found that in Lymantria dispar (gypsy moth) larvæ infected by fungi, the

hæmolymph levels of the same FAs, plus α-18:3, were significantly reduced.

Unsaturated FAs may also protect insects against other plant derived tox-

ins including 2-undecanone, which is found in the trichomes of wild tomato.

Farrar et al. (1992) found that increasing the dietary concentration of several
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1.4. Function of fatty acids in insects

FAs, including α-18:3, in Helicoverpa zea, the tomato fruitworm, was highly

effective in reducing pupal mortality normally caused by 2-undecanone. Far-

rar et al. (1992) suggest that 2-undecanone affects FA transport, particularly

that of α-18:3 itself, and is likely not a competing substrate.

A number of insects, including ants and cockroaches, recognise conspecific

dead using unsaturated FA (i.e., 18:1 and 18:2) as “necromone” cues. Yao

et al. (2009) predicted that Lepidoptera would do the same and subsequently

found that both tent caterpillars (Malacosoma americanum) and fall web-

worms (Hyphandria cunea) avoided branches that were treated by 18:1 and

18:2.

1.4.2 Phagostimulator

Li and Ishikawa (2004) tested common bluebottle (Graphium sarpedon nip-

ponum) larvæ on leaf extracts isolated from its host, the camphor tree

(Cinnamonum camphora), and found that these stimulated feeding. Alpha-

linolenic acid was identified as the bioactive agent. The larvæ also showed

increased feeding response when given α-linolenic acid standards compared

with controls and γ-linolenic acid (cis -6, cis -9, cis -12 18:3). The feeding

activity of the larvæ was also tested on other leaves, including Japanese

Orixa (Orixa japonica), which does not contain α-18:3. The larvæ could

feed on all the plants except for O. japonica.

1.4.3 Energy stores

Fatty acids obtained by the larva provide energy for functions later in devel-

opment. Unsaturated FAs in TAG, including α-18:3, are mainly used as a

flight energy source. Murata and Tojo (2002) found that the ratio of α-18:3

in Spodoptera litura TAG decreased with increasing flight duration.

In some species, such as Homona coffearia, the tea tortrix, both 18:2 and
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1.5. Fatty acid metabolites in Lepidoptera

α-18:3 have been thought to be critical for successful emergence (Sivapalan

and Gnanapragasam, 1979). When these FAs were given in suboptimal

levels, the moths only emerged partially.

1.4.4 Oviposition deterrent

Females respond to various cues in order to avoid occupied oviposition sites,

thus reducing intraspecific competition for limited resources. Gabel and

Thiry (1996) found that application of egg extracts from the European grape

vine moth (Lobesia botrana) resulted in a reduced number of eggs laid by

conspecific females. The active compounds were identified as 16:0, 16:1, and

18:1. A similar response was seen when esters of these FA were used. Li et al.

(2001) found that when the female Helicoverpa armigera (cotton bollworm)

contacts the oviposition substrate with her tarsi, a blend of 16:0 and 16:1 are

left behind, which deters other females from laying eggs. Similarly, Li and

Ishikawa (2004) found that the larval frass of Ostrinia species prevented

conspecifics from ovipositing. The bioactive extracts consisted mainly of

FAs, namely 16:0, 18:0, 18:1, 18:2, and α-18:3. Synthetic mixtures of these

FAs also produced significant oviposition deterring effects.

1.5 Fatty acid metabolites in Lepidoptera

Both 18:2 and α-18:3 can be further elongated and desaturated to long chain

PUFAs, which in turn may be precursors to eicosanoids and prostaglandins

(PG). Fatty acids may also be substrates for FA conjugates, pheromones, or

FA esters.
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1.5. Fatty acid metabolites in Lepidoptera

1.5.1 Linoleic acid metabolites

Linoleic acid is important to insects as it is a precursor to dihomo-γ-linolenic

acid, 20:3(n-6), and arachidonic acid, 20:4(n-6), which in turn are precursors

for biologically active eicosanoids. Stanley-Samuelson et al. (1988) propose

the following pathway for n-6 FA biosynthesis in insects:

18:0 → 18:1(n-9) →18:2(n-6) →18:3(n-6) → 20:3(n-6) → 20:4(n-6)

In mammals, 20:4(n-6) may be converted via one of three pathways: 1)

the cyclooxygenase pathway, which results in PGs and thromboxanes; 2)

the lipoxygenase pathway, which results in hydroperoxyeicosatetraenoic and

hydroxyeicosatetraenoic acids (HPETEs and HETEs, respectively); and 3)

the epoxidase pathway, where cytochrome P450 enzymes produce epoxye-

icosatrienoic acids. The function of PGs has been explored in several species.

For example, PGs signal ovarian follicle development in the silkworm, Bom-

byx mori (Machado et al., 2007). Hagan and Brady (1982) suggested that

PGs regulate reproductive behaviour in Trichoplusia ni. To date, no metabo-

lites of the epoxidase pathway have been described in insects (Stanley, 2011).

1.5.2 Linolenic acid metabolites

In insects, as in animals, α-18:3 is converted into long chain PUFA. The

PUFA conversion pathway in animals was outlined by Sprecher et al. (1995):

18:3(n-3) → 18:4(n-3) → 20:4(n-3) → 20:5(n-3) → 22:5(n-3) → C24 PUFA

→ 22:6(n-3)

In G. mellonella, α-18:3 was elongated and further desaturated to give

eicosapentaenoic acid (EPA) (Stanley-Samuelson and Dadd, 1984). Mat-

suoka et al. (2008) identified metabolites 20:3 (n-3), and 22:3 (n-3) in the

wasp moth, Syntomoides imaon. Sushchik et al. (2003) investigated the

FA compositions of several benthic invertebrates including caddisflies (Tri-

choptera, which is closely related to Lepidoptera) and found intermediates
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1.5. Fatty acid metabolites in Lepidoptera

O O

(cis-9,11S)-octadec-9-en-11-olide 

Figure 1.5: A macrolide derived from α-18:3

of the Sprecher pathway.

The compound eyes of B. mori also contain considerable amounts of 20:5(n-

3) (Eguchi et al., 1994). Eicosapentaeonic acid is found in high amounts

in the reproductive tissues of the cabbage white, Pieris brassicæ, although

the amounts found in the diet are negligible. The majority of this was

incorporated into phosphatidylinositol.

An unusual α-18:3 metabolite is the macrolide (cis -9,11S)-octadec-9-en-11-

olide (Figure 1.5), which has been observed in the scent glands of the Costa

Rica longwing butterflies, Heliconius cydno and H. pachinus (Schulz et al.,

2007).

Small white (Pieris rapæ) larvæ have glandular hairs that secrete mayolenes

(Figure 1.6), compounds derived from 11-hydroxylinolenic acid. Smedley

et al. (2002) found that these mayolenes are a potential deterrent towards

other insects as shown in bioassays with the ant, Chrematogaster lineolata.

Another derivative of α-18:3 is jasmonic acid (JA)(Figure 1.7). This well-

known phytohormone can be found in substantial amounts in the eggs and

neonates of at least nine species of Lepidoptera (Tooker and de Moraes,

2005). While some of this may have accumulated from the diet, Tooker

and de Moraes (2005) suggest that JA may also be synthesised de novo as

unfed neonates contained significantly higher amounts of JA than the eggs.

While JA initiates plant defence responses, the physiological role of JA in

Lepdioptera has yet to be determined.
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Figure 1.6: Mayolene. R1 = fatty acyl
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Figure 1.7: Jasmonic acid
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Figure 1.8: Volicitin ((N-hydroxylinolenoyl)-L-glutamine)

1.5.3 Fatty acid conjugates

The oral secretions of several species contain FA conjugates (FACs) consist-

ing of a FA (or derivative thereof) and an amino acid, namely glutamine or

glutamic acid. One of the best known is volicitin, or (N-hydroxylinolenoyl)-

L-glutamine (Figure 1.8) (Alborn et al., 1997). Through labelling studies,

Paré and Tumlinson (1999) determined that the FA component was plant

derived, although the glutamine originates from the insect. Furthermore,

they determined that the hydroxylation and conjugation reactions are car-

ried out in the insect. Volicitin triggers defence responses in plants including

the release of volatiles that attract parasitic wasps to attack their larval prey.

Another common FAC is N-linolenoyl-L-glutamine. Spiteller et al. (2004)

also found FAC-containing phosphorylated FA derivatives.

These FACs, however, are also thought to benefit the insect, acting as a

surfactant to aid digestion (Spiteller et al., 2000) or allowing the insect to

store glutamine, which is crucial in nitrogen metabolism (Yoshinaga et al.,

2010). Although glutamine-containing FACs have been studied in consider-

able depth, little is known about the physiological function of glutamic acid

containing FACs (Mori and Yoshinaga, 2011).
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1.5. Fatty acid metabolites in Lepidoptera

1.5.4 Pheromones

Lepidopteran pheromones either originate from saturated fatty acyl com-

pounds synthesised by the insect de novo and are subsequently modified by

other reactions (i.e., desaturation, elongation, reduction, and chain shorten-

ing), or are derived from dietary FAs (Wei et al., 2004). Most FA-derived

pheromones may be classified into various functional groups, which include

sex, aggregation, dispersal, alarm, recruitment, and maturation (Tillman

et al., 1999).

Several pheromones are derived from α-18:3. In addition, bombykol linole-

nate (Yamaoka et al., 1985) was found in the hæmolymph of B. mori. This

ester may function as a trap to prevent the inappropriate release of bom-

bykol. Alpha-linolenic acid may also be reduced to produce linolenal or

elongated to give cis -11, cis -14, cis -17 20:3 and cis -13, cis -16, cis -19 22:3

(Tillman et al., 1999). Ding et al. (2011) recently found that in the winter

moth (Operopthera brumata), cis -11, cis -14, cis -17 20:3 is also further de-

saturated at the terminal carbon, which is atypical, to give cis -11, cis -14,

cis -17, 19 20:4. These in turn are further modified (e.g., decarboxylated,

oxidised) to produce other pheromones.

1.5.5 Fatty acid esters

The FA esters found in Lepidoptera generally function as pheromones, al-

though esters are also present at other developmental stages. Bergmann

et al. (2007) identified a number of FA derivatives, including docecyl ac-

etate and cis -5, cis -13 tetradecadienyl acetate in larvæ of the butterworm

(Chilecomadia valdiviana). None of the compounds were found in the pupæ

suggesting that biosynthetic pathways may differ in various developmental

stages.
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Figure 1.9: Ecdysone-22-fatty acyl ester. R1 = fatty acyl.

Kayser (1975) identified several FA diesters and monoesters of lutein in the

fat body of P. brassicæ. In the insects that were reared on natural diets (i.e.,

plants), linolenate was the predominate ester. During adult life, a strong

increase of the diesters was noted.

Ecdysteroids are insect moulting hormones that signal the insect to shed

its rigid exoskeleton, enabling further growth. To defend against insect her-

bivory, many plants produce phytoecdysteroids, which are identical to ecdys-

teroids normally produced by the insects. The phytoecdysteroids, however,

are produced in substantially higher amounts, thereby causing premature

moulting. The resistance of H. virescens larvæ to phytoecdysteroids (i.e.,

ecdysone, or 20-hydroxyecdysone) has been attributed to the formation of

ecdysteroid acyl esters, which are thought to facilitate the rapid excretion of

these hormones (Zhang and Kubo, 1992). The enzyme responsible for their

formation, 22-O-acyltransferase, has been located in the gut epithelia (Kubo

et al., 1994). Whiting and Dinan (1988) have observed esters of linolenate

and ecdysone (Figure 1.9) in A. domesticus.

Plants also release large quantities of methanol in response to herbivore

attack. To protect against intoxication, FA methyl esters (FAMEs) may be

produced by the insect. Guo et al. (2010) found increased levels of FAMES
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1.6. Factors affecting fatty acid metabolism

in the Asian corn borer (Ostrinia furnacalis), which had been exposed to

methanol-containing diets.

1.6 Factors affecting fatty acid metabolism

The lipid content of Lepidoptera is not fixed, and can be influenced by

various factors including the presence of symbionts, developmental stage,

environmental conditions, and diet.

1.6.1 Symbionts

The insect gut is inhabited by numerous microorganisms, which may either

directly provide FAs to their host (Breznak and Brune, 1994), or produce en-

zymes that modify lipids already present. Visotto et al. (2009) investigated

bacterial contribution to lipase activity in Anticarsia gemmatalis, the vel-

vetbean caterpillar. Lipase activity was significantly reduced by tetracycline,

although this had little effect on developmental success. Insect microflora

are also partly responsible for the synthesis of FACs (Ping et al., 2007).

Parasites may influence insect FA composition. Hoch et al. (2002) investi-

gated the hæmolymph of larvæ of L. dispar, that were infected with Vairi-

morpha sp. , which are microsporidian parasites, and found that the levels

of 16:0, 18:0, 18:1, 18:2, and 18:3 were decreased. The same effects were

not evidenced when Lymantria were infected with Endoreticulatus (Hoch

et al., 2006). Likewise, no effect on FA composition was observed by Nurul-

lahoglu et al. (2004) in their study of the lesser wax moth (Achoria grisella

) parasitised by Apanteles galleriae.
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1.6.2 Developmental stage

Lepidopteran eggs necessarily contain a large amount of FAs that are es-

sential for embryonic development. Thiery et al. (1995) investigated FA

in codling moth (Cydia pomonella) eggs. The amount of FA in the eggs

increased until the eggs were four days old, and then decreased prior to

hatching. Oocytes are able to synthesise TAG and PL, but the amount of

FAs synthesised de novo is negligible.

While neutral lipid (i.e., TAG) FA composition remains relatively constant

during metamorphosis, that of PL changes (reviewed in Khani et al. (2007)).

Wang et al. (2006) investigated the total FA profiles of the Peleides blue

morpho, Morpho peleides, before and after metamorphosis, and found that

there was a “bioenhancement” of PUFA from larvæ to adult. Conversely,

Cookman et al. (1984) found that regardless of diet (plant or artificial), the

newly eclosed A. gemmatalis adults exhibited a decrease in the percentage

of α-18:3 when compared to that of the larvæ.

There are differences between FA utilisation in males vs. females. In P.

brassicæ, males utilised their FA stores more evenly, while females lost un-

saturated FAs including α-18:3 during adulthood (Turunen, 1974).

1.6.3 Environmental conditions

Fatty acid composition can change in order to facilitate cold acclimation. In

general, a decrease in temperature results in an increase in PUFA content,

mainly in membrane PL. For example, Izumi et al. (2009) noted that in last

instar larvæ of the Asiatic rice borer Chilo suppressalis, the proportion of

unsaturated FA in PE (mainly 18:1) increased as temperatures decreased.

The increase in membrane PUFA stabilises membrane viscosity and allows

for the maintenance of function regardless of temperature.

During extreme conditions, insects enter a physiological state of dormancy,
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or diapause, which is often marked by changes in FA composition. Atapour

et al. (2007) found that in C. suppressalis larvæ 16:1 content increased

until the onset of diapause. Shimizu (1992) compared the FA compositions

of diapause and non-diapause eggs of B. mori and found that, while the

composition of TAG had a similar pattern in both eggs, the PC of diapause

eggs had a higher proportion of α-18:3.

1.6.4 Diet

Lepidopteran FA composition tends to reflect that of the diet (Cookman

et al., 1984), particularly in generalists. Major lipid classes ingested by

phytophagous Lepidoptera include triacylglycerols (TAGs), PLs, and glyco-

glycerolipids. The predominant FAs found in plant lipids include 16:0, 18:0,

18:1, 18:2 and α-18:3 in addition to some longer chain SFAs and MUFAs.

Turunen (1974) suggest that some insects can also modify dietary lipids

(e.g., elongation or desaturation).

Lepidoptera have different mechanisms for responding to differences in FA

availability. P. brassicæ larvæ reared on artificial diets deficient in α-18:3

responded with increased synthesis of 16:1, suggesting that the larvæ were

attempting to compensate for the lack of essential FAs. “Nutrient self se-

lection” is the ability to select an optimal diet by combining two or more

different food sources. Fifth instar H. zea larvæ were able to select from both

of two experimental diets, one deficient in lipid, and the other in vitamins

(Schiff et al., 1988). Similar results were obtained by Stockhoff (1993) in L.

dispar .

After feeding H. virescens a defined diet and analysing the frass, Dikeman

et al. (1981) suggested that PUFAs, in particular α-18:3 and 18:2, may

be selectively absorbed. Cookman et al. (1984) also found that the α-18:3

composition of A. gemmatalis larvæ was four times higher than that of the

diet that it was reared on.
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It is generally thought that Lepidoptera obtain most of their required FAs

during the larval stage in order to establish energy reserves for metamor-

phosis, flight, and oogenesis. Bauerfeind et al. (2007), however, argue that

in some species, adult acquired lipids may also be of great importance to

fecundity, although they were not able to detect any beneficial effect of

adult-derived PUFAs or cholesterol.

Fatty acids present in the diet can also affect de novo FA synthesis. Horie

and Nakasone (1971) found that when Manduca sexta (tobacco hornworm)

larvæ received increased dietary FA, the rate of FA synthesis decreased,

suggesting that FA synthesis is regulated via negative feedback.

Other components in the diet can affect the rate of FA synthesis metabolism.

Horie and Nakasone (1968) found that M. sexta larvæ reared on diets de-

ficient in biotin had reduced levels of 18:1. The levels of 18:2 and 16:1,

however increased. One explanation for this effect is that acetyl-CoA car-

boxylase, an enzyme involved in FA synthesis, requires biotin as part of its

prosthetic group. The rate of FA synthesis in M. sexta also increased after

increasing dietary sucrose (Horie and Nakasone, 1971).

1.7 Absolute linolenic acid requirements

Artificial diets are useful for measuring the FA requirements of Lepidoptera.

Vanderzant (1965) outlined the minimal amounts of nutrients and minerals

required for successful insect growth. In addition to α-18:3, these included

cholesterol (Ritter and Nes, 1981), inositol, and choline.

When rearing Bertha armyworm, Mamestra configurata, on an α-18:3 defi-

cient artificial diet, Bracken (1982) noticed that, in comparison to insects

reared on leaves, a large proportion developed “pupal syndrome” whereby

the pupæ failed to shorten. The occurrence of pupal syndrome was reduced

upon addition of α-18:3 to the diet.
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Ritter and Nes (1981) found that removal of wheat germ and corn oil and

replacement with 18:2 and α-18:3 did not have an effect on maturation or

fecundity of H. zea, although the growth rate was reduced and pupal weight

was decreased.

Rock (1985) investigated dietary FA requirements in Platynota idaeusalis,

the tufted apple budmoth. Larvæ were reared on artificial diets containing

no FAs, corn oil, 18:1, 18:2, α-18:3, or 20:4(n-6). Corn oil, 18:2, and α-18:3

were able to fully alleviate wing deformities. Arachidonic acid was also

partially successful in alleviating deformities.

The bioavailability of α-18:3 may have a significant effect on successful insect

development. In studies by Bracken (1982), more α-18:3 was sequestered by

M. configurata when it was fed on leaves than when it fed on the artificial

diet (23% vs. 16.3% respectively). A possible explanation for this could

be that in the leaves the major form of α-18:3 was MGDG, DGDG, and

PL while the artificial diet contained either free FA or α-18:3-containing

TAG. Turunen (1979) suggested that PUFAs contained in PL may be more

digestible.

1.8 Applications for insect lipids

An increased knowledge of lepidopteran FAs and their metabolism has many

potential applications. Fatty acids and derivatives can be directly extracted

from insects for industrial purposes. The insect’s metabolism can also be

manipulated to increase nutraceutical FAs or, conversely, to decrease the

biosynthesis of FAs or metabolites in a manner detrimental to survival.
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1.8.1 Industrial applications

Insect FAs also have many industrial applications, for example in soap pro-

duction (Sreekantaswamy and Siddalingaiah, 1981). Chrysalis oil from M.

sexta, which is rich in α-18:3, is highly valued as a drying oil (Majumder

and Sengupta, 1979). Drying oil is an essential component of oil paints and

varnishes, allowing them to harden upon exposure to oxygen. α-18:3 is par-

ticularly suited to this purpose as it contains a high number of double bonds

available for oxygen insertion.

1.8.2 Health and nutrition

In many developing countries, edible insects are an important food source,

and their rearing has been considered a strategy for achieving global food

security. Although entomophagy has generally been a taboo in Western

culture, the practice is gaining increased acceptance. For example, the mo-

phane caterpillar (Imbrasia belina) is gaining increased recognition as a food

source in southern Africa (Yeboah and Mitei, 2009). Aside from being rich

in high quality proteins, phytophagous insects are rich in essential FAs such

as 18:2(n-6) and α-18:3.

Park et al. (2006) systematically increased the conjugated linoleic acid (CLA)

content of B. mori by feeding mulberry leaves sprayed with increasing amounts

of the cis -9, trans -11 isomer, which is known to confer various beneficial

properties including anticarcinogenic activity (Ip et al., 1991). Mentang

et al. (2011) tested the effects of B. mori chrysalis oil, also rich in α-18:3,

and suggest that it can prove conditions such as hyperglycermia in rats.

These results suggest that silkworm oil can compete with other nutraceuti-

cal oils such as fish oil and flax seed oil.

Law and Wells (1989) argued that insects, including M. sexta, may be valu-

able biochemical models, as there are many similarities to mammalian sys-
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O

HO

Figure 1.10: Sterculic acid

tems. Insects can be easily reared in large numbers and are generally not

subject to legal regulations imposed on other vertebrate test species. Many

prevalent human diseases arise from irregularities in FA biosynthetic path-

ways that are also present in insects.

1.8.3 Pest control

The cyclopropene FA, sterculic acid (Figure 1.10) is an analogue of oleic

acid (cis -9 octadecenoic acid or 18:1(n-9)) and can competitively inhibit ∆-

9 desaturase, an integral enzyme in insect pheromone biosynthesis (Al Du-

layymi et al., 1996). Similarly, cyclopropenol analogues inhibited desat-

urases involved in the pheromone biosynthesis in S. littoralis, (Rodriguez

et al., 2004a). One isomer of CLA, trans -10, cis -12 octadecadienoic acid,

has also been known to inhibit ∆-9 desaturase (Choi et al., 2000). European

corn borer moth (Ostrinia nubilalis) larvæ were fed diets supplemented with

this isomer (Gereszek et al., 2008). A decrease in unsaturated FAs in pupal

and adult tissue along with concurrent decreases in survival rate were noted.

Strategic application of these FAs may potentially aid in pest control, re-

stricting mating and propagation of many pest species. Field testing is,

however, required to confirm that they do not interfere with FA desatura-

tion of other species.
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1.9 The future of insect lipid research

While the last decades have seen some important contributions to insect lipid

research, information about the exact function of α-18:3 remains sparse. It

may be prudent to further consider the role of this FA in other animal

species, as there are likely to be other parallels to insects. Tinoco (1982)

provides a comprehensive review of the function of α-18:3 in a broad range

of species.

In humans, EPA is converted into PGs. Pärnänen and Turunen (1987) sug-

gest that the same may occur in P. brassicæ, where α-18:3 is a precursor of

EPA. Dabrowska et al. (2009) identified an enzyme in S. littoralis and H.

armigera that converts 12-oxophytodienoic acid (cis -OPDA) to iso -OPDA.

This reaction resembles PG transformation in mammals. This suggests that

insects may have additional enzymes for PG metabolism. If such transfor-

mations are essential, this may provide an additional target for pest control.

Büyükguüzel et al. (2011) explored inhibiting eicosanoid synthesis in G.

mellonella and found that it influenced development to a small extent, al-

though the inhibitors also reduced the production of its parasitoid’s (Bracon

hebetor) eggs.

While α-18:3 can be elongated and further desaturated to produce EPA and

DHA, perhaps the major metabolic route of α-18:3 is β-oxidation (Pan and

Storlien, 1993). In rats, the greater the proportion of PUFA, the higher the

rate of α-18:3 β-oxidation. Another route of α-18:3 metabolism is carbon

recycling. When labelled α-18:3 is fed to animals, a substantial portion of the

label can be found in SFA and MUFA (Cunnane et al., 1995). Lambremont

et al. (1976) reared boll weavils (Anthonomus grandis) on diet containing

labelled 18:0 and found that the label was incorporated into 16C FAs. This

suggests that the same may be possible for α-18:3 in Lepidoptera.

Many plants are abundant in cis -7, cis -10, cis -13 hexadecatrienoic acid,

or 16:3(n-3). Cunnane et al. (1995) demonstrated that rats are able to

25

Demo Version, http://www.verydoc.com and http://www.verypdf.comDemo Watermark



1.9. The future of insect lipid research

convert 16:3( n-3) to α-18:3. Insects may be capable of performing the

same conversion. It would be worthwhile to assay for such enzyme activity,

although this is made difficult by the limited availability of unusual labelled

substrates such as 16:3 (n-3).

Some earlier studies (e.g., Municio et al. (1971)) suggest that aphids were

able to synthesise α-18:3 from labelled acetate, although it is likely that

there was co-migration of labelled 18:1(n-9). The silverleaf whitefly, Bemisia

argentifolii, appears to be able to convert labelled acetate to α-18:3 (Buckner

and Hagen, 2003). This would most likely require ∆-15 desaturase activity.

As yet, ∆-15 desaturase has not been observed in insects. In the nematode,

Cænorhabditis elegans, and some species of Artemia (brine shrimp) (Ito and

Simpson, 1996), there is also evidence of endogenous α-18:3 biosynthesis.

To a large extent, only the effects of individual dietary FA have been studied

in insects. Studies in rats have shown that the ratio of ω-3 to ω-6 FA can also

be of importance (Lee et al., 1989). Perhaps this is also the case in insects

— the absolute amount of dietary α-18:3 may be less important than the

ratio in relation to other FAs.

Insect FAs have only been studied at the ecological/nutritional level. Fur-

ther insight into the chemical and physical properties of insect FAs is likely

to provide a greater understanding of their physiological properties. For

example, the position of double bonds can have a substantial effect on the

physical properties of FAs. Ehringer et al. (1991) compared the properties

of PL bilayers containing α-18:3 or γ-18:3 and found that α-18:3 provided

enhanced permeability. With the help of technological advances in a range

of scientific fields, a complete and multi-disciplinary understanding of insect

FAs is obtainable.
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Chapter 2

Nuances in the dietary

alpha-linolenic acid

requirements of generalist and

specialist Heliothinæ

2.1 Introduction

Lepidoptera, like most animals, are neither able to synthesise α-linolenic

acid α-18:3) nor linoleic acid (18:2) de novo. These essential fatty acids

(FAs) must therefore be obtained via their diet. Without sufficient dietary

α-18:3, most larvæ are unable to successfully complete development. A low

proportion reach the pupal and adult stages, and individuals that eclose are

often malformed (Bracken, 1982).

Exceptions may exist. The de novo synthesis of 18:2 in cricket (Acheta do-

mesticus) via a ∆-12 desaturase has recently been reported (Cripps et al.,

1990). Furthermore, labelled α-18:3 was detected in silverleaf whiteflies (Be-

misia argentifolii) that were fed labelled acetate, thereby suggesting the pos-

sibility of de novo α-18:3 synthesis in insects (Buckner and Hagen, 2003). In
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the nematode (Cænorhabditis elegans), an ω-3 desaturase, which is respon-

sible for the conversion of 18:2 to α-18:3, has been characterised (Meesapy-

odsuk et al., 2000). However, no homologue has been reported in insects.

These results suggest that de novo synthesis of α-18:3 is theoretically pos-

sible in other species. A common ancestor may have had this ability and it

was either lost or repressed during evolution.

Heliothis virescens, a generalist, and Heliothis subflexa, which specialises on

Physalis species, are closely related lepidopterans. De Moraes and Mescher

(2004) suggested that unlike H. virescens, H. subflexa does not have typi-

cal α-18:3 requirements as they are able to thrive on cutleaf groundcherry

(Physalis angulata) fruits — despite the apparent absence of dietary α-18:3

in the fruits. Heliothis virescens were unable to grow on the fruits unless

they were sprayed with α-18:3. Additionally, the regurgitant of H. sub-

flexa larvæ fed on Physalis fruits did not contain the FA conjugate, volic-

itin (N-(17-hydroxylinolenoyl)-L-glutamine), for which α-18:3 is a precursor.

De Moraes and Mescher (2004) suggested that this gives H. subflexa another

advantage on Physalis as they are rendered less vulnerable to the parasitoid,

Cardiochiles nigiceps, which is attracted to volicitin.

While the claims of De Moraes and Mescher (2004) have serious implications,

especially considering that this is the first report of a lepidopteran without

dietary α-18:3 requirements, they also provoke additional questions. First,

does P. angulata really lack α-18:3? Bateman (2006) performed FA analysis

on several species of Physalis and found substantial amounts of α-18:3 in

various tissues. Second, does H. subflexa really have a zero requirement for

α-18:3? De Moraes and Mescher (2004) neither performed a side-by-side

comparison of the two Heliothis species on Physalis nor on an artificial diet.

It was therefore prudent to follow up on the study of De Moraes and Mescher

(2004) with a systematic comparison of the two species. A meridic diet was

used, allowing for the manipulation of the α-18:3 available to each species.

Heliothis subflexa does indeed have dietary α-18:3 requirements, although
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the two species appear to respond differently to alterations in dietary α-18:3

composition.

2.2 Materials and methods

2.2.1 Chemicals

Pure FAs (18:1, 18:2, and α-18:3) were obtained from Acros Organics (Geel,

Belgium). Fatty acid free casein was from Merck KGaA (Darmstadt, Ger-

many). Vanderzant vitamin mix, Wesson’s salt, sucrose, methyl 4-hydroxybenzoate,

and sorbic acid were from Bio-Serv (Frenchtown, NJ, USA). Agar and sol-

vents were from Carl Roth GmbH (Karlsruhe, Germany). Boron trifloride

and lipid standards, and all remaining compounds were from Sigma-Aldrich

(Schnelldorf, Germany).

2.2.2 Insects

Insects were obtained from the Gould laboratory (North Carolina State Uni-

versity, Raleigh). Larvæ were reared on a 16:8 light:dark cycle at 55% rela-

tive humidity at 26 ◦C. Heliothis virescens larvæ were normally maintained

on a pinto bean diet (Table 2.1), while H. subflexa were normally maintained

on a corn soy blend diet (Table 2.2).

2.2.3 Minimal diet experiments

The minimal diet used (Table 2.3) was based on one described by Vanderzant

(1968) with several modifications. Cholesterol and FA were first dissolved in

chloroform adsorbed to the α-cellulose to ensure even distribution of these

components. Water soluble β-carotene was prepared as described by Pfitzner

et al. (2000). Diets were prepared containing 0, 100, 250, 500, or 1000 µg of
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Table 2.1: Composition of standard pinto bean diet

Component Quantity (for 2400g diet)
ground pinto beans 125 g
wheat germ 100 g
soy protein 50 g
casein 50 g
torula yeast 62.5 g
ascorbic acid 6 g
methyl 4-hydroxybenzoate 5 g
sorbic acid 3 g
chlorotetracycline HCl 250 mg
Vanderzant vitamin mix 10 g
agar 35 g
distilled water 1950 ml

α-18:3 per g of diet (fresh weight). Second instar larvæ were weighed and

transferred to individual plastic cups containing a cube of diet approximately

1 cm3 in size. At two-day intervals, the insects were weighed and supplied

with fresh diet. Parameters including pupal weight, time to pupation, time

to eclosion, and health of adult were recorded for each insect. For both H.

virescens and H. subflexa, two replicates were performed; one in which the

two species were reared concurrently (Trial 1), and one where they were

reared at different time points (Trial 2).

2.2.4 Pinto bean diet experiments

Three pinto bean diets were prepared. The PBN diet was the standard diet,

on which the H. virescens were normally reared. Both PB+ and PB- were

made with FA free casein, defatted soy protein and defatted wheat germ

(Hafen-Mühlen-Werke GmBH, Bremen). The PB+ diet was supplemented

with 1460 µg/g α-18:3, 520 µg/g 18:2, and 105 µg/g 18:1. The PB- diet

was only supplemented with 520 µg/g 18:2,and 105 µg/g 18:1. The FAs

were adsorbed to α-cellulose as described for the minimal diet. One group

30

Demo Version, http://www.verydoc.com and http://www.verypdf.comDemo Watermark



2.2. Materials and methods

Table 2.2: Composition of corn soy blend diet

Component Quantity (for 1500g diet)
corn soy blend 350 g
dry milk powder 18.3 g
torula yeast 20 g
methyl 4-hydroxybenzoate 4 g
sorbic acid 2 g
ascorbic acid 30 g
Vitamin mix 7.5 g
agar 30 g
distilled water 1050 ml

Table 2.3: Composition of miminal diet

Component Quantity (for 800g diet)
α-cellulose 40 g
cholesterol 400 mg
α-18:3 variable
menadione 4 mg
cholecalciferol 4 mg
FA free casein 32 g
Wesson’s salt 8 g
sucrose 32 g
cysteine-HCl 800 mg
methyl 4-hydroxybenzoate 2 g
sorbic acid 1.2 g
zinc acetate 400 µg
cobalt chloride 200 µg
sodium molybdate 200 µg
10 M potassium hydroxide 2.4 ml
chlorotetracycline HCl 100 mg
Vanderzant vitamin mix 8 g
water soluble β-carotene complex 200 mg
agar 12 g
distilled water 650 ml
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of larvæ was started on the PBN diet. The remaining larvæ were started

on the PB- diet. Every three days, a subset of larvæ were transferred to

the PB+ diet. Parameters including pupal weight, time to pupation, time

to eclosion, and health of adult were recorded for each insect. Adults with

no noticeable deformities were classified as “healthy. Partially eclosed adults

and fully eclosed adults with crumpled wings were classified as “abnormal .

Adults were stored at -20 ◦C until extraction.

2.2.5 Lipid extraction

Total lipids were extracted from insects as described by Bligh and Dyer

(1959). The adult was placed in a 4 ml vial to which 100 µg triheptadecanoin,

an internal standard, had been added. Next, 0.8 ml chloroform, 1.6 ml

methanol, and 0.8 ml distilled water were added to the vial and the adults

were homogenised for 1 min using a Polytron dispersing aggregate (5 mm �,

Kinimatica AG, Lucerne, Switzerland). An additional 0.8 ml of chloroform

was added to the vial, which was then centrifiged for 2 min at 3000 g.

The chlorform layer was then transferred to a new vial and the solvent was

evaporated under a stream of nitrogen.

2.2.6 GC analysis of insects

The lipid extracts were methylated with 14% boron trifluoride in methanol

to produce fatty acid methyl esters (FAMEs) for analysis, and 100 µg of

methyl nonadecanoate was added as a second internal standard. Aliquots of

1 µl were injected at 60 ◦C, with a split ratio of 20:1, into an Agilent 7890

gas chromatograph (GC) equipped with a DB-Wax column (30 m x 0.25

mm diameter x 0.25 µm film thickness) and a flame ionisation detector with

helium as a carrier gas. The temperature was held at 60 ◦C for 4 min, then

increased by 15 ◦C/min to 100 ◦C, held for 4 min, increased by 15 ◦C/min to

175 ◦C and by 1 ◦C/min to 230 ◦C and held for 6 min.
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2.2.7 Statistical analysis

Differences in proportions of pupated/eclosed/healthy insects across the di-

ets and species were examined using a general linear model (GLM). The

significance of the terms in each of our models was tested using a randomi-

sation test where the F values from the above GLM (Freal) were compared

to those produced when the same GLM was executed but each response

variable was shuffled at random (without replacement) across diet and the

species (Frandom) (Manly, 1997). This shuffling procedure was iterated 10

000 times using a Monte Carlo simulation, and the proportion of times (p)

that Frandom exceeded Freal was calculated for each term in the model. Two

tailed significance values were calculated for each term in the model as 2p if

P < 0.5 or as 2(1-p) if P > 0.5 (Manly, 1997). All randomisation tests were

executed in R (R Development Core Team, 2011) using a modified version of

the “shuffle” function. For multiple group comparisons, one-way analysis of

variance (ANOVA) with LSD post-hoc analysis was performed using SPSS

version 17.0 (SPSS, Inc., Chicago IL).

2.3 Results

2.3.1 Performance of H. virescens and H. subflexa on

alpha linolenic acid concentration series

Both H. virescens and H. subflexa were reared on a series of meridic di-

ets supplemented with increasing amounts of α-18:3 (0-1000 µg/g diet) and

developmental parameters were monitored. For Trial 1 (Figure 2.1), H. sub-

flexa had a significantly reduced pupation rate compared with H. virescens

(F = 204.37, P < 0.001 (Figure 2.1b) on each diet. There was also a signif-

icant effect of diet on pupation (F = 7.69, P < 0.001); for both species, the

proportion of larvæ pupating increased with increasing α-18:3. Eclosion was
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significantly affected by diet (F = 7.14, P < 0.001), and the total proportion

of healthy insects eclosing increased with increasing α-18:3 in both species

(F = 0.43, P < 0.001; Figure 2.1c). Heliothis virescens had normal eclo-

sion starting at 500 µg/g , while H. subflexa began to eclose normally at 250

µg/g α-18:3. Species and diet combined to affect the development of healthy

adults (F = 3.81, P = 0.015). On diets containing at least 250 µg/g α-18:3,

H. subflexa larvæ pupated after a longer period . In H. virescens, the num-

ber of days until pupation decreased with increasing α-18:3 (Figure 2.2b).

The time required for H. virescens to eclose decreased (Figure 2.2c) and its

pupal weight increased (Figure 2.2d) with increasing α-18:3. Similar results

were observed for Trial 2 (Figure 2.3 and Figure 2.4).

2.3.2 Performance of H. virescens and H. subflexa on

pinto bean diets

Although the pinto bean diets contained basal amounts of FA, the PB+

diet had significantly higher amounts of α-18:3 (P < 0.05)(Figure 2.5). For

both H. virescens and H. subflexa, the rate of pupation and eclosion (Fig-

ure 2.6), as well as the pupal weight (Figure 2.7) increased with increasing

time feeding on the PB+ diet.

2.3.3 Accumulation of fatty acids in adult H. virescens

and H. subflexa

Adults from each treatment were extracted and the FAMEs were analysed

via GC. For both H. virescens (Figure 2.8) and H. subflexa (Figure 2.9), the

longer the insects were reared on the PB+ diet, the greater the amount of

accumulated α-18:3.
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Figure 2.1: Survival rates of H. virescens and H. subflexa larvæ reared on
minimal diet supplemented with α-18:3 (0-1000 µg per g of diet): Trial
1.“Abnormal adults represent partially eclosed adults and fully eclosed
adults with crumpled wings. “Healthy adults had no noticeable deformi-
ties.
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Figure 2.2: Performance of H. virescens and H. subflexa larvæ reared on
minimal diet supplemented with α-18:3 (0-1000 µg per g of diet): Trial 1.
Values represent means ± S.D.
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Figure 2.3: Survival rates of H. virescens and H. subflexa larvæ reared on
minimal diet supplemented with α-18:3. (0-1000 µg per g of diet): Trial 2.
“Abnormal adults represent partially eclosed adults and fully eclosed adults
with crumpled wings. “Healthy adults had no noticeable deformities.
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Figure 2.4: Performance of H. virescens and H. subflexa larvæ reared on
minimal diet supplemented with α-18:3 (0-1000 µg per g of diet): Trial 2.
Values represent means ± S.D.
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Figure 2.5: Fatty acid composition of pinto bean diets. Values represent
means ± S.D.

2.4 Discussion

Both H. virescens and H. subflexa were reared on artificial diets with vary-

ing concentrations of α-18:3. For both species, increasing dietary α-18:3

up to 1000 µg/g had a large effect on the rate of healthy eclosion. This

is consistent with results obtained by Bracken (1982) who found that sim-

ilar amounts were able to reduce “wing syndrome” in Bertha armyworm

(Mamestra brassica). They found that higher levels (approximately 2000

µg/g) were required to affect pupation rates and approximately 5800 µg/g

were required to have an effect on eclosion rate. Vanderzant (1968) fed corn

earworm (Heliothis zea) on a series of minimal diets supplemented with up

to 500 µg α-18:3 per gram of diet. Consistent with the current results,

increasing α-18:3 had a positive effect on pupation rate. The threshold con-

centration for healthy eclosion was between 200 and 250 µg /g.

It is unclear why De Moraes and Mescher (2004) were unable to detect

α-18:3 in P. angulata fruits, but we suspect that the reason lies with their

methodology. Using a DB-5 column, 18:2 and α-18:3 can be difficult to
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Figure 2.6: Pupation and eclosion rates of H. virescens and H. subflexa larvæ
which had been reared for varying durations on defatted pinto bean diets
supplemented with α-18:3 (PB+).
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with α-18:3 (PB+). Values represent means ± S.D.
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resolve and often overlap. They overcame this difficulty by detecting α-18:3

using GC-MS, by scanning for the characteristic ion (m/z= 292). Using this

technique, they reported that α-18:3 was present in the calyx (leafy covering)

but absent in the fruits of P. angulata. However, the figure presented in

support of this statement was based on a single sample, and neither any

estimate of the amount actually detected in the calyx nor an estimate of the

detection limit of their technique was reported. In all species of Physalis

tested, Bateman (2006) found levels of α-18:3 equal to or greater than the

concentrations found in the diets on which H. virescens and H. subflexa

experienced normal development.

Different species differ in the extent to which the adult and larval FA content

reflects that of the diet. In some species, the FA of the larvæ is tightly linked

to the FA composition of the diet (referenced in Cookman et al. (1984)).

Furthermore, the FA composition undergoes relatively minor changes dur-

ing metamorphosis. In this respect, the FA composition of the adult can give

clues as to the larval diet. Stanley-Samuelson et al. (1985) reared the greater

wax moth (Galleria mellonella) on diets with increasing levels of α-18:3.

Although the α-18:3 content of adult triacylglycerols (TAGs) remained rel-

atively constant, the overall proportion of α-18:3 in adults increased with

the diet.

In other cases, however, the FA composition of the diet is not reflected in the

FA content of the insect. For example, Wood et al. (1969) found that in H.

virescens the dietary FAs are not directly reflected in the insect TAGs; 18:1

and 18:2 represented 16% and 53% of dietary FAs respectively and 40-45%

and 7-17% of TAGs, respectively. Nelson and Sukkestad (1968) found that

the FA composition of Trichoplusia ni larvæ substantially differed from the

FA composition of the diet; while 18:2 was the major dietary FA (53%), the

levels found in the larvæ were only about 11%.

On the pinto bean diets, the FA composition of both H. virescens and H.

subflexa reflected that of the diet in that 16:0 and 18:2 were the predominant
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FAs. Even though the diets contained more 18:2, it was the α-18:3 content

of the adults that increased in relationship to increased feeding time on the

PB+ diet.

It is possible that H. virescens and H. subflexa differ in the way that they take

up and/or retain α-18:3. Dikeman et al. (1981) found that in H. virescens

polyunsaturated FAs, namely 18:2 and α-18:3, were preferentially absorbed

compared with saturated and monounsaturated FAs. Torres-Ruiz et al.

(2010) found that caddisflies, which are closely related to Lepidoptera, ac-

cumulated 20:5, an essential FA, more readily than any other FA.

The form of a particular FA may also be an important factor in the extent to

which it is taken up. Weintraub and Tietz (1973) found that when grasshop-

pers (Locusta migratoria) were fed the TAGs tri-18:1 and tri-16:0, 18:1 was

readily absorbed, while 16:0 was not. Palmitic acid, however, was readily

absorbed when it was given as free acid. Additionally, Turunen (1973) re-

ported impaired utilisation of α-18:3 in P. brassicæ that were reared on a

diet supplemented with linseed oil (where α-18:3 is present mainly as TAG).

In nature, α-18:3 is mostly available in the forms of phospholipids and gly-

colipids. Future work could involve preparing minimal diet with differing

concentrations of α-18:3 containing glyco- or phospholipids, although these

compounds are difficult to obtain in sufficient amounts.

Alpha-linolenic acid is a component of the FA conjugate (FAC) volicitin

(N-(17-hydroxylinolenoyl)-L-glutamine), found in the regurgitant of larvæ.

Aside from being an elicitor of defence responses in plants, FACs may play

an integral role in nitrogen metabolism. While the glutamine moiety of

FACs is derived mainly from midgut cells, approximately 20% is synthesised

from glutamic acid and ammonia. This reaction is catalysed by glutamine

synthetase (GS). Yoshinaga et al. (2008) found that enriching the diet of

Spodoptera litura larvæ with α-18:3 resulted in substantial increases in the

assimilation of glutamic acid and ammonia from the diet, and thus increased

GS productivity. They propose that the newly formed glutamine is rapidly
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coupled to α-18:3 to form FACs. When glutamine is stored in FACs, glu-

tamine in midgut cells is depleted, thereby shifting equilibrium in favour

of glutamine synthesis. Furthermore Yoshinaga et al. (2008) propose that

FACs also function as the primary stores of glutamine.

De Moraes and Mescher (2004) detected volicitin in the regurgitant of H.

virescens and H. subflexa that had been reared on Physalis leaves, but not on

the fruit. The amount of FAC in the regurgitant represents an equilibrium

between conjugation of the fatty acid and glutamine, and hydrolysis of volic-

itin. Lait et al. (2010) investigated the rates of biosynthesis and hydrolysis

between H. virescens, tobacco hornworm (Manduca sexta), and H. zea and

found that both biosynthesis and hydrolysis is fastest in H. virescens. The

rates have not yet been studies in H. subflexa. Kuhns et al. (2012) identi-

fied an aminoacylase (L-ACY-1) responsible for hydrolysis of FACs. This

enzyme was more abundant and had higher activity in H. subflexa than in

H. virescens resulting in species-specific equilibria between FAC synthesis

and hydrolysis, which could explain disparities in the responses to dietary

α-18:3.

Chemicals in Physalis may serve as deterrents for H. virescens, which would

account for their poor growth on the fruits. Compounds such as withanole

have been shown to have antifeedant activities (Ascher et al., 1980).
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Chapter 3

The timing of alpha-linolenic

acid acquisition in developing

Heliothis virescens

3.1 Introduction

Heliothis virescens, the tobacco budworm, is a serious agricultural pest, par-

ticularly in the southern United States and Mexico (Molina-Ochoa et al.,

2010). Like all Lepidoptera, H. virescens requires dietary α-linolenic acid

(α-18:3) for successful development. Without sufficient amounts, rates of pu-

pation and eclosion are reduced, and adults that do eclose have malformed

wings. A greater understanding of the essential fatty acid (FA) requirements

of H. virescens may aid in the development of sustainable pest control strate-

gies.

De Moraes and Mescher (2004) had investigated the α-18:3 requirements of

H. virescens and the related species, Heliothis subflexa. Their results raised

some important questions, not only about species differences in α-18:3 re-

quirements, but about the requirements for α-18:3 at various developmental

stages. Knowing the optimal timing of α-18:3 acquisition would allow one
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to target the developmental stage where the insect is most dependent on

α-18:3.

While α-18:3 can be obtained from the diet, it may also be transferred from

the mother to the eggs, just as a number of other compounds essential to egg

survival. Through a series of experiments using a meridic diet supplemented

with α-18:3 we show that α-18:3 is transferred maternally to the egg in a

dose dependent manner. Furthermore, the timing of α-18:3 acquisition does

affect the rate of normal eclosion.

3.2 Materials and methods

3.2.1 Chemicals and insects

The chemicals used were the sames as described in Section 2.2.1. Heliothis

virescens larvæ were reared as described in Section 2.2.2. A series of minimal

diets was prepared as described in Section 2.2.3 except that the diet was

supplemented with up to 2000 µg α-18:3 per g.

3.2.2 Maternal effects

Larvæ were reared on the minimal diet series and upon eclosion, adults

from corresponding diets were mated and FAs were extracted from the eggs

and mothers. Total lipids were extracted from insects as described in Sec-

tion 2.2.5. Fatty acid methyl esters were prepared and GC analysis was

performed as described in Section 2.2.6
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3.2.3 Rescue experiment

Second instar larvæ were started on minimal diet either with (L) or with-

out (0) α-18:3. Every two days, a subset of insects was transferred to the

opposite diet and maintained on this diet until pupation. The insects were

weighed every two days. Pupal weights as well as rates of pupation and

eclosion were also recorded.

3.2.4 Statistical analysis

For multiple group comparisons, one-way analysis of variance (ANOVA)

with LSD post-hoc analysis was performed using SPSS version 17.0 (SPSS,

Inc., Chicago IL).

3.3 Results

3.3.1 Effect of larval diet on adult fatty acid compo-

sition

Larvæ were reared on minimal diet supplemented with a range of α-18:3.

Between each increasing dietary concentration of α-18:3, there was a signif-

icant increase (P < 0.05) in the absolute amount of α-18:3 in the total lipid

extract of the adult females (Figure 3.1a). Between the 250 and 1000 µ/g

α-18:3 diets, there was also a significant increase in the absolute amounts of

16:0, 16:1, 18:0, 18:1, and 18:2 in the lipid extracts of the adult females.
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3.3.2 Effect of larval diet on fatty acid composition of

the egg

The FA composition of the eggs from the females that were reared on the

α-18:3 supplemented diet was also determined (Figure 3.1b). The eggs from

females that had fed on diet containing 2000 µ/g α-18:3 had a significantly

higher molar ratio of α-18:3 (P < 0.05) than those from females that had

fed on the diets containing 250 and 500 α-18:3. The eggs from these same

mothers had a significantly lower (P < 0.05) molar ratio of both 16:1 and

18:1.

3.3.3 Linolenic acid is transferred from the mother to

the egg

There is a positive correlation between the absolute amount of α-18:3 in

the females and the molar ratio of α-18:3 in the eggs (r=.82, P < 0.01)

(Figure 3.2).

3.3.4 Acquisition of alpha-linolenic acid is essential

during later stages of larval development

One group of H. virescens larvæ was started on minimal diet containing

500µg of α-18:3 per g (L). Every two days, a subset was transferred to a diet

devoid of FA (0) and maintained on this diet until death or pupation. The

second group of larvæ were started on diet 0 and subsets were transferred

every two days to diet L. In general insects that had been transferred to diet

0, failed to successfully eclose, while a substantial proportion of the insects

transferred to diet L successfully eclosed (Figure 3.3). The weight gains for

each interval on the α-18:3 diet were summed, the average amount of α-18:3

ingested was assumed to be proportional to these weight gains. For each
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Figure 3.1: Fatty acid composition of female H. virescens adults which as
larvæ had been reared on minimal diet supplemented with α-18:3 (250-2000
µg per g of diet) and the fatty acid composition of the corresponding eggs.
Values represent means ± S.D.
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Figure 3.2: Relationship between α-18:3 content in the mother and corre-
sponding eggs

subset, the rate of eclosion was calculated and plotted against the average

amount of α-18:3 (Figure 3.4). Approximately 600 µg/g of pupal weight

seems to be the threshold amount of α-18:3 that a larva needs to ingest in

order to ensure successful eclosion.

3.4 Discussion

At various stages in development, H. virescens larvæ were transferred to or

from an α-18:3 enriched diet. Insects obtaining α-18:3 later in development

performed better than those obtaining α-18:3 earlier in development. The

main reason why later acquisition is more successful than early acquisition

is that larger larvæ simply eat more and therefore obtain more α-18:3 per

unit time than the smaller larvæ. H. virescens also typically feeds on leaves

in the first or second instar and then moves to fruits in later instars. The

linolenic acid content of leaves is higher than that of fruit. If the levels of

α-18:3 in fruit are insufficient, this may result in eclosion difficulties.
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In addition to increases in α-18:3, there were significant increases in the

absolute amounts of palmitic (16:0), palmitoleic (16:1), stearic (18:0), and

oleic (18:1) acids in the total lipid fractions when the larvæ were fed diets

with increasing amounts of α-18:3 up to 1000g/g (Figure 3.1a). With higher

dietary α-18:3 concentrations, however, the levels of all other FA decreased.

It is possible that these levels of α-18:3 inhibited de novo FA synthesis. A

similar effect was observed by Horie and Nakasone (1971) in Bombyx mori.

That the adults had increases of other FAs, even though these were not

included in the diet, suggests that α-18:3 was involved in carbon recycling,

and that its oxidation products were used in the de novo biosynthesis of

other FAs. This effect was noted by Lambremont et al. (1976). The levels

of linoleic acid (18:2), however, did not increase as H. virescens is incapable

of synthesising this FA.

Earle et al. (1967) found that the FA composition of boll weevil eggs was

representative of the maternal FA composition, which in turn reflected that

of the diet. There was a significant correlation between the amount of α-18:3

in the H. virescens mother and that in the egg. This could represent a form of

reproductive investment. Although this was not investigated, it is possible

that maternal α-18:3 is divided unevenly among the eggs, thereby giving

certain eggs an advantage. It would be prudent to search for differences in

the α-18:3 content of the first and last eggs that were laid.

These results suggest that the acquisition of α-18:3 is more crucial during

the later stages of larval development. With respect to pest control, the

aim should be to deter α-18:3 acquisition during later larval stages. While

there is maternal transfer of α-18:3 to the eggs, far less than the 100 µg/mg

pupal weight would be transferred, which would require the larvæ to obtain

additional α-18:3 from dietary sources. Nevertheless, the α-18:3 transferred

to the egg is likely sufficient to support initial larval growth. It would also

be interesting to determine whether eggs with a higher ratio of α-18:3 have

an advantage on diets deficient in α-18:3. For this, the mothers would need
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to be fed on diet with much higher levels of α-18:3, which may exceed the

range found in natural diets.

55

Demo Version, http://www.verydoc.com and http://www.verypdf.comDemo Watermark



Chapter 4

The performance of

Helicoverpa armigera larvæ on

tomato leaves with normal and

reduced levels of

alpha-linolenic acid

4.1 Introduction

It is well established that α-linolenic acid (α-18:3) is an essential fatty acid

(FA) with respect to the successful development of Lepidoptera. Insects that

obtain insufficient amounts of this FA tend to have reduced growth rates,

and a lower proportion survive to pupation with even fewer surviving to

adulthood. These findings are based on studies in which insects were fed

defined amounts of α-18:3 in meridic diets, which did not necessarily reflect

the FA content of plants which are the natural foods for these insects. Alpha-

linolenic acid is generally only included as a free FA, while in nature, it tends

to be found in the form of phospholipids and glycerolipids. Most insects are
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generally better able to utilise α-18:3 when it is in this form. While it is

theoretically possible to prepare a meridic diet that more closely resembles

the FA found in natural diets, this is not often practical, mainly due to the

cost factors of including all the α-18:3 in relatively pure form.

Mutagenesis offers the possibility of manipulating the FA composition of

living plants. Howe and Ryan (1999) isolated several EMS-induced mu-

tants of tomato that were deficient in the systemin-mediated signal cascade.

Li et al. (2003) subsequently showed that one of these mutants, spr2, was

caused by a premature stop codon in the leFAD7 gene which encodes the

chloroplastic ω-3 fatty acid desaturase enzyme responsible for production of

most of the 18:3 in the plant. leFAD7 mutant plants have approximately

20% of the α-18:3 as their wild type counterparts (Cañoles et al., 2006).

These plants, which also have an inherent defence system, were utilised to

test the effects of reduced levels of α-18:3 on Helicoverpa armigera (cotton

bollworm) larvæİnsects that were grown on the leFAD7 mutants had lower

growth rates, as well as lower pupation and eclosion rates.

4.2 Materials and Methods

4.2.1 Plants

The tomato plants were a generous gift from Gregg A. Howe, Michigan

State University. The wild type were from the variety Castlemart. The

jasmonic acid (JA) insensitive plants (jai1-1) were a mutant line derived

by mutagenesis of the Castlemart variety, and cannot induce antiherbivory

defenses mediated by the JA pathway (Li et al., 2004). The leFAD7 mutant

plants had a reduced α-18:3 content. Since α-18:3 is a precursor of jasmonic

acid, these plants are also deficient in antiherbivory defenses. All plants

were vegetatively propagated. Total lipids were extracted from leaf material

as described in Section 2.2.5 and FAMES were prepared and GC analysis
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Figure 4.1: Fatty acid composition of tomato leaves with reduced and normal
levels of α-18:3

was performed as described in Section 2.2.6.

4.2.2 Insects

H. armigera larvæ were from the TWB strain. Larvæ were normally reared

on a pinto bean diet. The insects were propagated via single pair matings.

Larvæ were grown directly on the plants to minimise any response that

might result from mechanical damage to the leaves (i.e., from cutting the

leafs, or removing discs from the leaves) as well as to prevent leaf materal

from drying out. Cages were prepared from dome shaped and flat drink cup

lids (Solo, USA). A piece of gauze was cut to the dimensions of the opening

in the dome lid and glued on. A slit was cut into the lid to allow the cage

to be fitted onto a branch. A piece of cotton was wrapped around the stem

before the cage was secured in order to reduce any mechanical damage to

the stem. A maximum of five cages was placed on any individual plant. The

cages were further supported by a scaffold of bamboo sticks.
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4.3 Statistics

Statistical analyses were performed using R (R Development Core Team,

2011). For multiple group comparisons, one-way analysis of variance (ANOVA)

with LSD post-hoc analysis was performed. Student’s t tests were used for

comparing means of two groups.

4.4 Results

H. armigera were grown on three lines of tomato plants: wild type, jai-

1 insensitive, and leFAD7 mutants. Larvæ were weighed every three days

until pupation. Larval growth on each of the plants was measured using

the mean relative growth rate (MRGR) (Equation 4.1), where Wi is the

initial weight, Wf , and d is the time period over which the growth rate was

measured.

MRGR =
ln(Wf )− ln(Wi)

d
(4.1)

For the first three-day interval, there were significant differences (P < 0.001)

in the MRGRs of the larvæ grown on the three types of plants (Figure 4.2).

The larvæ grown on the jai-1 insensitive plants had the highest MRGR, while

the larvæ grown on the wild type plants had the lowest. The trend continued

throughout development, although there were no significant differences for

the other intervals. There were also significant differences (P < 0.001) in the

weights of the larvæ twelve days after being placed on the plants (Figure 4.3).

Larvæ reared on the jai-1 insensitive plants had the highest weights, while

those reared on the wild type plants had the lowest.

Only the larvæ that were reared on the jai-1 insensitive and leFAD7 mu-

tant plants survived to the pupal stage. Therefore, only these two groups of

insects were used for further comparison. A lower proportion of the insects
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Figure 4.2: Mean relative growth rates of larvæ on tomato plants. Values
represent means ± S.D.
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Figure 4.3: Final larval weights (12 days after being placed on tomato
plants). Values represent means ± S.D.
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4.5. Discussion

reared on the leFAD7 mutant plants pupated compared to those on the jai-1

insensitive plants (Figure 4.4a). Also, a lower proportion of the insects that

pupated on the leFAD7 mutant plants survived to eclosion. (Figure 4.4b)

There were, however, no differences in the proportions of normal eclosion be-

tween the insects that did eclose on the jai-1 insensitive and leFAD7 mutant

plants (Figure 4.4c).

The larvæ that fed on the jai-1 insensitive plants had a shorter time to

pupation than those that fed on the leFAD7 mutant plants (Figure 4.5a),

although this difference was only mildy significant ( P < 0.1). The time

to eclosion (Figure 4.5b) of the insects on the jai-1 insensitive plants was

also significantly less (P < 0.05). The insects that were grown on the jai-

1 insensitive plants had a significantly higher pupal weight (P < 0.001,

Figure 4.5c).

4.5 Discussion

In order to test the effects of α-18:3 on the growth of H. armigera on a

natural diet, larvæ were grown on three types of tomato plants: wild type;

jai-1 insensitive, which had wild type levels of α-18:3, but reduced responses

to jasmonic acid; and leFAD7 mutant, which had reduced levels of α-18:3.

The larvæ had a reduced growth rate on the wild type and leFAD7 mutant

plants, and none of the larvæ grown on the wild type plants survived to pu-

pation. The larvæ grown on the leFAD7 mutant plants had decreased rates

of pupation and eclosion compared to those grown on the jai-1 insensitive

plants.

The normal JA induced defences (i.e., those of the wild type plants) are

highly effective in protecting against herbivory by H. armigera. Therefore,

studies of the effects of α-18:3 deficiency can only be done with the jai-1

insensitive and leFAD7 mutant plants. The jai-1 insensitive plants likely

have a weaker JA induced response than the leFAD7 mutant plants and the

61

Demo Version, http://www.verydoc.com and http://www.verypdf.comDemo Watermark



4.5. Discussion

plant

Wild type jai-1 insensitive leFAD7 mutant

pu
pa

tio
n 

ra
te

0.0

0.2

0.4

0.6

0.8

1.0

(a) Pupation rate

plant

wild type jai-1 insensitive leFAD7 mutant
ec

lo
si

on
 ra

te
0,0

0,2

0,4

0,6

0,8

1,0

(b) Eclosion rate

plant

wild type jai-1 insensitive leFAD7 mutant

ra
te

 o
f h

ea
lth

y 
ec

lo
si

on

0.0

0.2

0.4

0.6

0.8

1.0

(c) Rate of normal eclosion
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grown on the three types of tomato plants.
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decreased growth rates, pupal weights, as well as pupation and eclosion rates

that were observed for the insects that were grown on the leFAD7 mutant

plants are more likely to be due to α-18:3 than to JA induced responses. In

order to fully test this however, it would be necessary to have an additional

set of plants — with both decreased levels α-18:3 and decreased JA-induced

responses.

These findings may ultimately have use in pest control. If FAD7 tomatoes

are planted alongside wild type tomatoes, the larvæ growing on these plants

would have a lower chance of survival. Wang et al. (2010) have explored

the depletion of ω-3 desaturases with the hope of increasing heat tolearance,

which provides additional motivation for utilising tomatoes with reduced

α-18:3. Ultimately, however, a high response to JA would be more effective

against herbivores than decreased amounts of α-18:3.
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Chapter 5

Synthesis of alpha-linolenic

acid analogues

5.1 Introduction

It is well established that α-18:3 and metabolites are essential to successful

insect development. Inhibition of α-18:3 metabolism may therefore be a

useful strategy for pest control. Beta-oxidation is one process that has often

been targeted. The products of β-oxidation may be used for pheromone

biosynthesis, or recycled back into the synthesis of other FAs.

In recent years, the introduction of fluorine into FA has been explored. The

steric influence caused by fluorine substitution is generally small, although

fluorine may affect properties such as volatility and stability.

A fluorine atom substituted at the ∆-2 or ∆-3 positon should theoretically

block β-oxidation by preventing acyl-CoA dehydrogenase from abstracting

a proton. Rosell et al. (1992) describe using both ∆-2 and ∆-3 fluorinated

FA to inhibited the chain shortening step in the biosynthesis of cis-9, trans-

11-tetradecadienyl acetate, which is a major sex pheromone component of

Spodoptera littoralis. These compounds proved to be more effective than
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5.1. Introduction

those that had the fluorine at the ∆-4 position. Hernanz et al. (1997) used

2-fluoro derivatives of 16:0 to inhibit pheromone biosynthesis in S. littoralis,

Bombyx mori, and Thaumotopoea pityocampa. Bosch et al. (1996) prepared

∆-2,2- , ∆-3,3-, and ∆-4,4- difluoro derivatives of 16:0 and evaluated the

efficiency of these derivatives in S. littoralis. Only the ∆-2,2- and ∆-3,3-

derivatives were active.

Analogues where the fluorine is introduced at a desaturation site have also

been used for inhibiting desaturases, which are also integral to pheromone

biosynthesis. Abad et al. (2003) used 11-F-14:0 to partly inhibit ∆-11 de-

saturase in S. littoralis. Alpha-linolenic acid has been ignored as a substrate

for fluorination although it or its esters are known pheromones (e.g., methyl

ester in Pieris rapæ or acetate ester in Triphosahæsitata affirmata).

A number of syntheses for fluorinated FAs have been (e.g., (Michel and

Schlosser, 1996)), although most of these entail multi-step reactions. Diethy-

laminosulfur trifluoride (DAST) is a useful reagent that converts alchohols

to alkylfluorides. Arsequell et al. (1992) used DAST to prepare fluorinated

FA from secondary alcohols. The synthesis of these alcohols, however, also

involved multiple steps.

Several hydroxylated FA are commercially available, or in some cases make

up a considerable fraction of natural oils. For example, thyme (Thymus vul-

garis) seed oil contains up to 13% 2-OH 18:3 (Smith and Wolff, 1969). Such

FAs would provide a quicker route to the synthesis of fluorinated analogues.

A facile method for the preparation of fluorinated linolenic acid from thyme

seed oil is described (Figure 5.1).
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5.2 Experimental

5.2.1 Chemicals

Thyme seeds were from N.L. Chrestensen Erfurter Samen- und Pflanzen-

zucht GmbH ( Erfurt, Germany). Silica gel, boron triflouride,

N,0-bis(trimethylsilyl) trifluoroacetamide, DAST were from Sigma-Aldrich

(Schnelldorf, Germany). Solvents were from Fisher Scientific GmbH (Schw-

erte, Germany).

5.2.2 Extraction

Thyme seeds were extracted in hexane using a Soxhlet extractor. Fatty

acid methyl esters were prepared from the thyme seed oil using BF3 in

MeOH. The hydroxy FAMES were eluted from a silica gel column with

hexane/diethyl ether (50:50).

5.2.3 Synthesis of 2-fluorolinolenic acid methyl ester

The fluorination of 2-hydroxylinolenic acid methyl ester was performed ac-

cording to Bin Omar et al. (2003). 900 mg of 2-hydroxylinolenic acid methyl

ester were dissolved in 4.5 ml of N,0-bis(trimethylsilyl) trifluoroacetamide

and heated for 30 min at 90 ◦C, after which the excess was evaporated.

The residue was dissolved in 90 ml CH2Cl2 and cooled to −78 ◦C in a dry

ice/acetone bath. A solution of DAST (0.9 ml in 9 ml CH2Cl2) was added

and the mixture was allowed to stir for 1 h at −78 ◦C and for 30 min at

ambient temperature. The reaction was then quenched with water, washed

with an aqueous solution of of NaHCO3, and dried over MgSO4. The prod-

uct was purified on a silica column with hexane/ether (95:5). The solvent

was removed under a stream of nitrogen, yielding 226 mg (24.9 %) of a yel-

lowish oil. MS: m/z 310 (C19H31F02)
1H: (500 MHz, CDCl3 δ = 5.36 (6H,
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O

O
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2-hydroxy linolenic acid methyl ester 2-�uoro linolenic acid methyl ester 
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Figure 5.1: Reaction scheme for the synthesis of 2-fluorolinolenic acid methyl
ester

m), δ =4.91 (1H, dt, J = 50 Hz, 5.7 Hz), δ =3.80 (3H, s), δ = 2.80 (4H, m),

δ = 2.06 (4H, m), δ = 1.87 (2H, m), δ = 1.33 (8H, m), δ = 0.98 (3H, t J =

7.5 Hz).

5.3 Discussion

A fluorinated analogue of α-18:3 was successfully synthesised starting from

thyme seed oil. As thyme seeds are in ready supply, this analogue could be

used to study the underlying mechanisms of α-18:3 and its derivatives. This

facile synthesis could also be applied to other hydroxylated 18:3 derivatives

such as 18-hydroxylinolenic acid, which was identified in the cutin of young

apple fruits Kolattukudy et al. (1973). Isolation of sufficient amounts may

not, however, be feasible. 17-hydroxylinolenic acid is present in the well-

known fatty acid conjugate volicitin. Fluorine substution of the hydroxyl

group may provide a means of further studying this important FA conjugate.

While hydroxylated linolenic acid derivatives are in short supply, a possible

solution may be to employ chemoenzymatic synthesis to introduce a hy-

droxyl group into commercially available α-18:3. Brodowsky et al. (1992)

describe an isomerase from the fungus Gaeumannomyces graminis, which

is able to introduce a hydroxyl group to the ∆-8 position of α-18:3 with-

out affecting the double bonds. Similarly, Hamberg (1993) found that an
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extract of the red algae, Lithothamnion coralliodes was able to oxidise 18:3

to produce both 11 and 14 hydroxy 18:3. Weibel et al. (2002) describe a

method for the synthesis of 11-OH 18:3, which would serve as a substrate

for the synthesis of 11-F 18:3. One possible point of consideration may be

stereospecific synthesis. Khrimian et al. (1996) synthesised both S and R

2-F carboxyllic acids and found that only the R- enantiomer was biologically

active in Ostrinia nubilalis.

Practical studies using this novel α-18:3 analogue are currently being inves-

tigated.
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Chapter 6

Conclusions and outlook

In recent years, there has been a resurgence of research interest in insects

FAs. One area of focus has been the role of α-18:3 in the development of

Lepidoptera. The importance of this essential FA to successful development

cannot be understated. De Moraes and Mescher (2004) published a rather

provocative study in which they suggested that the specialist Heliothis sub-

flexa does not have dietary α-18:3 requirements, although the closely related

generalist Heliothis virescens, not to mention virtually all other species of

Lepidoptera, does.

These findings raised an important question — what confers this unique

property to H. subflexa? One possible hypothesis would be that H. subflexa

is capable of de novo α-18:3 synthesis, which would most likely entail ∆-15

desaturase activity, although this has not yet been reported in Lepidoptera.

Using a well defined artificial diet supplemented with α-18:3 we were able

to show that H. subflexa does in fact have dietary α-18:3 requirements.

This is not to say that the results of De Moraes and Mescher (2004) are

completely invalid. Instead they point to other possible differences between

H. subflexa and H. virescens as well as between other Heliothines and Lep-

idopterans. This includes differences in the metabolism of FACs such as

volicitin which is composed of α-18:3.
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While it is perhaps disappointing that H. subflexa did not prove to be an

example of a Lepidopteran capable of endogenous α-18:3, the possibility

remains that such species may exist. Buckner and Hagen (2003) provide

evidence that the silverleaf whitefly is capable of this.

Ongoing efforts have led to the identification and characterisation of lepi-

dopteran desaturases, many of which have bifunctional activity. Genes for

bifunctional desaturases with ∆-15 desaturase activity may exist, although

for whatever reason this activity may have been suppressed, thereby result-

ing in a dependence on dietary α-18:3.

Changes in dietary α-18:3 not only result in changes in the α-18:3 content

of insect tissues, but also of other FAs (i.e., 18:1 and 16:1). The oxidation

products of α-18:3 may be recycled back into FA synthesis. As FAs also

serve as pheromone precursors, alterations in dietary α-18:3 may have an

effect on the pheromone blend of the insect. This remains to be investigated.

Artificial diets have allowed for the careful regulation of essential nutrients,

but these may not necessarily represent the composition of the natural diet.

H. armigera larvæ were reared on tomato plants with decreased levels of

α-18:3 as a result of a mutation in the leFAD7 gene. The insects had de-

creased growth and survival rates on plants with decreased α-18:3 compared

to those grown on plants with wild type levels. However, other factors (i.e.,

JA-induced defense responses) may contribute to differences in insect per-

formance.

In addition to the leFAD7 mutants, Domı́nguez et al. (2010) described sev-

eral transgenic lines of tomato with increased expression of ω-3 desaturase,

which may prove useful in investigating the effects of increased α-18:3 on

larval growth. In addition to tomato, other plant species (including those

which are threatened by herbivory) may also be conducive to the genetic

modification of α-18:3 content.

Finally, the synthesis of an α-18:3 analogue was explored. Using readily
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available starting material and simple reaction mechanisms, we were able to

synthesise 2-fluorolinolenic acid methyl ester. This analogue could be poten-

tially useful in the further investigation of the requirements and functions

of α-18:3 in Heliothines and other insects.

While some of the nuances of the α-18:3 requirements of Heliothines have

been revealed, there are many aspects that require clarification. Doing so

will require the continued application of techniques from a broad range of

disciplines.
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Büyükguüzel, E., Tunaz, H., Stanley, D., Büyükguüzel, K., 2011. The in-
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